WorldWideScience

Sample records for oxide pollution evaluation

  1. Evaluation of pollution in Camichin estuary (Mexico): pro-oxidant and antioxidant response in oyster (Crassostrea corteziensis).

    Science.gov (United States)

    Girón-Pérez, M I; Romero-Bañuelos, C A; Toledo-Ibarra, G A; Rojas-García, A E; Medina-Diaz, I M; Robledo-Marenco, M L; Vega-López, A

    2013-08-01

    The physiological system of molluscs, particularly pro-oxidant and antioxidant mechanisms, could be altered by pollutants and induce disturbance on health status and productive parameters of aquatic organisms, such as oyster. Therefore, the aim of this study was to evaluate the chemical contamination in water (total metals and polycyclic aromatic hydrocarbons) and oxidative stress parameters in oysters (Crassostrea corteziensis) in Camichin estuary, located in Mexican Tropical Pacific. The results obtained showed the presence of arsenic, lead and zinc, as well as naphthalene, pyrene and benzo[a]pyrene in concentrations relatively higher than criteria established by local and international guidelines. Regarding the biomarkers of oxidative stress response (H2O2 and O2 concentration, catalase activity, lipid peroxidation, and hydroperoxide concentration), differences between oyster from estuary and control group were significant. These results indicate that these pollutants could be related with oxidative stress detected in oyster. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The nitrogen oxides and the atmospheric pollution

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of this document is to bring information on the acid atmospheric pollution, on the researches and studies in progress, on the european directives and the national regulations, on the processus and burners with low emission of nitrogen oxides and on the rule that the gas, fuel without sulphur, generating little nitrogen oxides, plays in the fight against atmospheric pollution. 20 refs., 8 figs., 12 tabs

  3. Use of oxidative stress biomarkers in Cyprinus carpio L. for the evaluation of water pollution in Ataturk Dam Lake (Adiyaman, Turkey).

    Science.gov (United States)

    Karadag, Hasan; Fırat, Özgür; Fırat, Özge

    2014-03-01

    Adiyaman city, which is located in the north of the Ataturk Dam Lake, has no wastewater purification facilities which results in municipal, agricultural, and industrial wastewater discharges directly entering the reservoir. To assess the pollution in the dam lake, we used several oxidative stress biomarkers in blood tissue of Cyprinus carpio. Fish samples were taken from Sitilce, polluted area by untreated wastewaters, and Samsat, relatively clean area, in the reservoir in August 2012. The activity of catalase and level of malondialdehyde increased while activity of superoxide dismutase and glutathione level decreased in fish from Sitilce site when compared to Samsat site. The findings of the present investigation suggest that the presence of certain prooxidative compounds that can lead to oxidative stress in the fish at the Sitilce site and oxidative stress biomarkers may be important in order to evaluate the effects of untreated wastewaters on living organisms in the dam lake.

  4. Exposure to automotive pollution increases plasma susceptibility to oxidation.

    Science.gov (United States)

    Sharman, James E; Coombes, Jeff S; Geraghty, Dominic P; Fraser, David I

    2002-01-01

    Low-density lipoprotein oxidation is implicated in the development of atherosclerosis. Plasma susceptibility to oxidation may be used as a marker of low-density lipoprotein oxidation and thus predict atherosclerotic risk. In this study the authors investigated the relationship between plasma susceptibility to oxidation and exposure to automotive pollution in a group of automobile mechanics (n = 16) exposed to high levels of automotive pollution, vs. matched controls (n = 13). The authors induced plasma oxidation by a free radical initiator and they determined susceptibility to oxidation by (1) change in absorbance at 234 nm, (2) lag time to conjugated diene formation, and (3) linear slope of the oxidation curve. Mechanics had significantly higher values (mean +/- standard error) for change in absorbance (1.60 +/- 0.05 vs. 1.36 +/- 0.05; p automotive pollutants increases plasma susceptibility to oxidation and may, in the long-term, increase the risk of developing atherosclerosis.

  5. Assessment of pollution of the Boca de Camichin Estuary in Nayarit (Mexico) and its influence on oxidative stress in Crassostrea corteziensis oysters.

    Science.gov (United States)

    Toledo-Ibarra, G A; Díaz Resendiz, K J G; Ventura-Ramón, G H; Romero-Bañuelos, C A; Medina-Díaz, I M; Rojas-García, A E; Vega-López, A; Girón-Pérez, M I

    2016-10-01

    Boca de Camichin Estuary is one of the main producers of Crassostrea corteziensis oysters in Mexico, but the presence of pollutants can affect oyster production. Molluscs produce reactive oxygen species (ROS) in response to changes in the environment and pollution. These ROS induce oxidative damage in biomolecules. The main objective of this study was to evaluate pollution in the estuary and the subsequent oxidative stress in C. corteziensis oysters during the 2010 production cycle. For this aim, we performed monthly samplings in the oyster farms from January to May. We took water samples to quantify polycyclic aromatic hydrocarbon (PAH) and metal content; also, we evaluated oxidative damage (lipoperoxidation, lipidic hydroperoxides, protein oxidation) and enzyme activity (CAT, SOD, GPx, GST and AChE) in oyster gills. The results show the presence of Cu, Fe, Mn, naphthalene, benz[a]anthracene, pyrene, benz[a]pyrene and benzo[k]fluoranthene. On the other hand, AChE activity was not inhibited, which suggests that organophosphorus pollutants or carbamates were absent. Regarding oxidative stress, oysters from the estuary had oxidative damage in lipids, not proteins, and altered antioxidant enzyme activity, when compared to control organisms. Interestingly, we did not observe any correlation between the pollutants and the oxidative stress parameters evaluated in this study. Thus, we cannot rule out that a synergistic effect between the environmental variables and the pollutants is causing the oxidative stress in these oysters. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. L'IIASA and the integrated simulation of the trans-border atmospheric pollution assessment and evaluation; L'IIASA et la modelisation integree de la pollution atmospherique transfrontiere. Bilan et evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Soleille, S.; Brignon, J.M.; Farret, R.; Landrieu, G.; Le Gall, A.C.; Rouil, L

    2003-09-15

    The RAINS model is an integrated evaluation model for many pollutants and many effects, developed by he IIASA. This model studies the emissions of 4 atmospheric pollutants (nitrogen oxides, sulfur oxides, ammonium and volatile organic compounds) and the necessary costs to reduce them and the dispersion of these pollutants and their effects (tropospheric ozone formation, acidification and eutrophication). The model can be used in activities scenario mode (energy, agriculture, transports...) to calculate the emissions and their effects or in optimization mode to calculate strategies of emissions control from environmental constraints. (A.L.B.)

  7. Evaluation of air pollution-related risks for Austrian mountain forests

    International Nuclear Information System (INIS)

    Smidt, Stefan; Herman, Friedl

    2004-01-01

    The present paper describes air pollution status and evaluation of risks related to effects of phytotoxic pollutants in the Austrian mountain forests. The results are based on Austrian networks (Forest Inventory, Forest Damage Monitoring System, Austrian Bioindicator Grid), the Austrian sample plots of the European networks of the UN-ECE (ICP Forests, Level I and Level II) and interdisciplinary research approaches. Based on the monitoring data and on modelling and mapping of Critical Thresholds, the evaluation of risk factors was possible. Cause-effect relationships between air pollution and tree responses were shown by tree-physiological measurements. Sulfur impact, proton and lead input, concentrations of nitrogen oxides, nitrogen input and ozone were evaluated. The risk was demonstrated at a regional and large-scale national level. Especially the increasing O 3 level and the accumulation of Pb with altitude present most serious risk for mountain forests. - Despite strong reduction of emissions in Europe, pollutants are still a potential stress factor, especially for sensitive mountain forest ecosystems in Austria

  8. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    OpenAIRE

    Ebrahiem E. Ebrahiem; Mohammednoor N. Al-Maghrabi; Ahmed R. Mobarki

    2017-01-01

    The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process) for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2) dose, ferrous sulfate (FeSO4·7H2O) dose, Initial dye concentration, an...

  9. Gas-phase advanced oxidation for effective, efficient in situ control of pollution

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Nilsson, Elna Johanna Kristina; Svensson, Erik Anders

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution......, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process...... particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution....

  10. L'IIASA and the integrated simulation of the trans-border atmospheric pollution assessment and evaluation

    International Nuclear Information System (INIS)

    Soleille, S.; Brignon, J.M.; Farret, R.; Landrieu, G.; Le Gall, A.C.; Rouil, L.

    2003-09-01

    The RAINS model is an integrated evaluation model for many pollutants and many effects, developed by he IIASA. This model studies the emissions of 4 atmospheric pollutants (nitrogen oxides, sulfur oxides, ammonium and volatile organic compounds) and the necessary costs to reduce them and the dispersion of these pollutants and their effects (tropospheric ozone formation, acidification and eutrophication). The model can be used in activities scenario mode (energy, agriculture, transports...) to calculate the emissions and their effects or in optimization mode to calculate strategies of emissions control from environmental constraints. (A.L.B.)

  11. Quantifying effects of oxidant air pollutants on agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, W H; Moskowitz, P D

    1983-01-01

    Estimating risks of air pollution damage to agricultural crops requires identifying crop location and size, likely doses, models for translating dose to response, and measures of response appropriate for economic analysis. Assessment of risk requires compatible data sets for each of these variables. Analysis of air pollution mixtures suggests that oxidant crop damage is caused by three compounds: ozone, nitrogen oxides, and peroxyacetylnitrates. The phytotoxicity of ozone, the most prevalent photochemical oxidant, has been studied more extensively than the other two oxidants, and its effects on vegetation are best understood. Response of vegetation to air pollutants was first characterized by foliar or visible injury. Subsequent research indicated that foliar injury did not translate directly into reduced plant growth or yield, which can be measured. Response to air pollutants may be influenced by physical, biological, and environmental factors. Inherent genetic resistance is probably the most important single factor affecting plant response, although environmental factors influencing stomatal aperture may also be important. For several crops open-top chamber studies and cross sectional analyses of field data provide adequate information to develop dose-response functions. All of these studies have both strengths and weaknesses. Although a number of different models exist for selected crops, there is no single biological or statistical criterion which identifies the best or most accurate model.

  12. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation

    Directory of Open Access Journals (Sweden)

    Mingming Luan

    2017-02-01

    Full Text Available Wet air oxidation (WAO is one of the most economical and environmentally-friendly advanced oxidation processes. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. In wet air oxidation aqueous waste is oxidized in the liquid phase at high temperatures (125–320 °C and pressures (0.5–20 MPa in the presence of an oxygen-containing gas (usually air. The advantages of the process include low operating costs and minimal air pollution discharges. The present review is concerned about the literature published in the treatment of refractory organic pollutants in industrial wastewaters, such as dyes. Phenolics were taken as model pollutants in most cases. Reports on effect of treatment for the WAO of refractory organic pollutants in industrial wastewaters are reviewed, such as emulsified wastewater, TNT red water, etc. Discussions are also made on the mechanism and kinetics of WAO and main technical parameters influencing WAO. Finally, development direction of WAO is summed up.

  13. Treatment of Some Hazardous Industrial Pollutants by Simple Oxidation Techniques

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.M.

    1999-01-01

    Central treatment of Industrial wastewater requires pretreatment of some specific pollutants which may be not effectively degraded in down stream processes in central treatment unit. Some of the hazardous pollutants in industrial wastewater including acrylonitrile, pesticides and some commonly used dyes (active and acid dyes) have been subjected individually to oxidation using hydrogen peroxide catalyzed by ferrous ions in acidic solution. Treatment efficiency was monitored by chemical oxygen demand (COD) removal using a specially developed concentration/COD curves. Initial concentrations (in terms of COD) were 910 PPM, 1348 and 530 ppm and the respective COD reductions were 91, 98 and 99%, for the pesticide, acrylonitrile and the reactive dye. Oxidative degradation of polared and acid green also reduced COD by 99 and 100% respectively. The obtained results confirm the appropriateness of oxidative degradation as a pretreatment for some hazardous pollutants prior to treatment in central facilities or municipal activated sludge stations

  14. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    Science.gov (United States)

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism. © 2013 Wiley Periodicals, Inc.

  15. Total free radical species and oxidation equivalent in polluted air.

    Science.gov (United States)

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng

    2017-12-31

    Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  17. Traffic air pollution and oxidized LDL.

    Directory of Open Access Journals (Sweden)

    Lotte Jacobs

    Full Text Available BACKGROUND: Epidemiologic studies indirectly suggest that air pollution accelerates atherosclerosis. We hypothesized that individual exposure to particulate matter (PM derived from fossil fuel would correlate with plasma concentrations of oxidized low-density lipoprotein (LDL, taken as a marker of atherosclerosis. We tested this hypothesis in patients with diabetes, who are at high risk for atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: In a cross-sectional study of non-smoking adult outpatients with diabetes we assessed individual chronic exposure to PM by measuring the area occupied by carbon in airway macrophages, collected by sputum induction and by determining the distance from the patient's residence to a major road, through geocoding. These exposure indices were regressed against plasma concentrations of oxidized LDL, von Willebrand factor and plasminogen activator inhibitor 1 (PAI-1. We could assess the carbon load of airway macrophages in 79 subjects (58 percent. Each doubling in the distance of residence from major roads was associated with a 0.027 µm(2 decrease (95% confidence interval (CI: -0.048 to -0.0051 in the carbon load of airway macrophages. Independently from other covariates, we found that each increase of 0.25 µm(2 [interquartile range (IQR] in carbon load was associated with an increase of 7.3 U/L (95% CI: 1.3 to 13.3 in plasma oxidized LDL. Each doubling in distance of residence from major roads was associated with a decrease of -2.9 U/L (95% CI: -5.2 to -0.72 in oxidized LDL. Neither the carbon load of macrophages nor the distance from residence to major roads, were associated with plasma von Willebrand factor or PAI-1. CONCLUSIONS: The observed positive association, in a susceptible group of the general population, between plasma oxidized LDL levels and either the carbon load of airway macrophages or the proximity of the subject's residence to busy roads suggests a proatherogenic effect of traffic air pollution.

  18. Zinc oxide tetrapods as efficient photocatalysts for organic pollutant degradation

    Science.gov (United States)

    Liu, Fangzhou; Leung, Yu Hang; Djurisić, Aleksandra B.; Liao, Changzhong; Shih, Kaimin

    2014-03-01

    Bisphenol A (BPA) and other organic pollutants from industrial wastewater have drawn increasing concern in the past decades regarding their environmental and biological risks, and hence developing strategies of effective degradation of BPA and other organic pollutants is imperative. Metal oxide nanostructures, in particular titanium oxide (TiO2) and zinc oxide (ZnO), have been demonstrated to exhibit efficient photodegradation of various common organic dyes. ZnO tetrapods are of special interest due to their low density of native defects which consequently lead to lower recombination losses and higher photocatalytic efficiency. Tetrapods can be obtained by relatively simple and low-cost vapor phase deposition in large quantity; the micron-scale size would also be advantageous for catalyst recovery. In this study, the photodegradation of BPA with ZnO tetrapods and TiO2 nanostructures under UV illumination were compared. The concentration of BPA dissolved in DI water was analyzed by high-performance liquid chromatography (HPLC) at specified time intervals. It was observed that the photocatalytic efficiency of ZnO tetrapods eventually surpassed Degussa P25 in free-standing form, and more than 80% of BPA was degraded after 60 min. Photodegradation of other organic dye pollutants by tetrapods and P25 were also examined. The superior photocatalytic efficiency of ZnO tetrapods for degradation of BPA and other organic dye pollutants and its correlation with the material properties were discussed.

  19. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants

    International Nuclear Information System (INIS)

    Moon, Young-E; Jung, Gowun; Yun, Jumi; Kim, Hyung-Il

    2013-01-01

    Graphical abstract: The photocatalytic removal of pollutants was improved by the two-step mechanism based on the adsorption of pollutants by hydrogel and the effective decomposition by combination of TiO 2 and graphene oxide. -- Highlights: • pH sensitive PVA/PAAc hydrogels were prepared by radical polymerization and condensation reaction. • PVA/PAAc/TiO 2 /graphene oxide nanocomposite hydrogels were used for treatment of basic waste water. • Photocatalytic acitivity of TiO 2 was improved by incorporation of graphene oxide. • Photocatalytic decomposition by nanocomposite hydrogel was improved by increasing pH. -- Abstract: Poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were prepared using radical polymerization and condensation reaction for the photocatalytic treatment of waste water. Graphene oxide was used as an additive to improve the photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 nanocomposite hydrogels. Both TiO 2 and graphene oxide were immobilized in poly(vinyl alcohol)/poly(acrylic acid) hydrogel matrix for an easier recovery after the waste water treatment. The photocatalytic activity of poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels was evaluated on the base of the degradation of pollutants by using UV spectrometer. The improved removal of pollutants was due to the two-step mechanism based on the adsorption of pollutants by nanocomposite hydrogel and the effective decomposition of pollutants by TiO 2 and graphene oxide. The highest swelling of nanocomposite hydrogel was observed at pH 10 indicating that poly(vinyl alcohol)/poly(acrylic acid)/TiO 2 /graphene oxide nanocomposite hydrogels were suitable as a promising system for the treatment of basic waste water

  20. Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology

    Directory of Open Access Journals (Sweden)

    Ebrahiem E. Ebrahiem

    2017-05-01

    Full Text Available The general strategy of this study was based on evaluation of the possibility of applying advanced photo-oxidation technique (Fenton oxidation process for removal of the residuals organic pollutants present in cosmetic wastewater. The different parameters that affect the chemical oxidation process for dyes in their aqueous solutions were studied by using Fenton’s reaction. These parameters are pH, hydrogen peroxide (H2O2 dose, ferrous sulfate (FeSO4·7H2O dose, Initial dye concentration, and time. The optimum conditions were found to be: pH 3, the dose of 1 ml/l H2O2 and 0.75 g/l for Fe(II and Fe(III and reaction time 40 min. Finally, chemical oxygen demands (COD, before and after oxidation process was measured to ensure the entire destruction of organic dyes during their removal from wastewater. The experimental results show that Fenton’s oxidation process successfully achieved very good removal efficiency over 95%.

  1. Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. P., E-mail: chengjp@zju.edu.cn [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering (China); Shereef, Anas; Gray, Kimberly A., E-mail: k-gray@northwestern.edu [Northwestern University, Center for Catalysis and Surface Science (United States); Wu, Jinsong [Northwestern University, Department of Materials Science and Engineering (United States)

    2015-03-15

    Porous cobalt oxide was successfully prepared by precipitation of cobalt hydroxide followed by low temperature thermal decomposition. The morphologies of the resultant oxides remained as the corresponding hydroxides, although the morphology of cobalt hydroxides was greatly influenced by the precursor salts. The cobalt oxides with average crystal size less than 20 nm were characterized by X-ray diffraction, scanning electron microscope, BET surface area, and XPS analysis. The photocatalytic activities of the various cobalt oxides morphologies were investigated by comparing the photo-degradation of acetaldehyde under simulated solar illumination. Relative to their low order structures and reference titania samples, the hierarchical nanostructures of cobalt oxide showed excellent abilities to rapidly degrade acetaldehyde, a model air pollutant. This was attributed to the unique nature of these hierarchical cobalt oxide nanoassemblies, which contained many catalytically active reaction sites and open pores.

  2. A comparative view of radiation, photo and photocatalytically induced oxidation of water pollutants

    International Nuclear Information System (INIS)

    Getoff, N.

    1997-01-01

    Water resources are presently overloaded with biologically resistant (refractory) pollutants. Several oxidation methods have been developed for their degradation, the most efficient of which is irradiation treatment, particularly that based on e-beam processing in the presence of O 2 /O 3 . The next-best method is photoinduced pollutant oxidation with VUV- and/or UV-light, using H 2 O 2 or H 2 O 2 /O 3 as an additional source of OH radicals. The photocatalytic method, using e.g. TiO 2 as a catalyst in combination with oxidation agents such as H 2 O 2 or H 2 O 2 /O 3 , is also recommended. The suitability of these three methods is illustrated by examples and they are briefly discussed and compared on the basis of the energy consumption and efficiency. Other methods, such as ozone treatment, the photo-Fenton process, ultrasonic and electrochemical treatments, as well as the well known biological process and thermal oxidation of refractory pollutants, are briefly mentioned. (author)

  3. Improved oxidation of air pollutants in a non-thermal plasma

    International Nuclear Information System (INIS)

    Roland, U.; Holzer, F.; Kopinke, F.-D.

    2002-01-01

    The performance of non-thermal plasma (NTP) for the removal of organic air pollutants (especially in low concentrations) is improved by the introduction of ferroelectric and catalytically active materials into the discharge zone of an NTP reactor. Experiments with model systems (various contaminants and packed-bed materials) have shown that such a modification of a homogeneous gas-phase plasma can overcome the most serious restrictions of the NTP technique at its present state of the art: the incomplete total oxidation (i.e. the low selectivity to CO 2 ) and the energetic inefficiency. Placing a ferroelectric packed-bed material in the discharge zone was shown to result in a lowering of the energy input required. The main effects of plasma catalysis enabled by the introduction of a catalytically active material were an enhanced conversion of pollutants and a higher CO 2 selectivity. These improvements are based on the presence of short-lived oxidising species in the inner volume of porous catalysts. Additionally, the formation of a reservoir of adsorbed oxidants in the NTP zone could be shown. The combination of both modifications (ferroelectric packed-bed materials and plasma catalysis) is a promising method to support the NTP-initiated oxidation of air pollutants

  4. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution.

    Science.gov (United States)

    Kelly, Frank J; Fussell, Julia C

    2017-09-01

    Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Oxidative Stress in Fish induced by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Anton Kováčik

    2017-05-01

    Full Text Available Environmental pollutants represent a risk factor for human and animals in all areas of occurrence. Environmental pollution caused by anthropogenic activities is a major problem in many countries. Numbers of studies deals with cumulation of xenobiotics in tissues but not all respond to the real impact on living organisms. Freshwater fishes are exposed to several anthropogenic contaminants. The most commonly studied are three metals: mercury (Hg, lead (Pb, cadmium (Cd. These contaminants could have several impacts to oxidative stress. In the normal healthy cell, ROS and pro-oxidant products are detoxified by antioxidant defences. Redox-active or Redox-inactive metals may cause an increase in production of reactive oxygen species (ROS. Mercury has a high affinity for thiol groups, and can non-specifically affect several enzymes, e. g. GSH (glutathione, which can induce GSH depletion and oxidative stress in tissue, also can induce lipid peroxidation, and mitochondrial dysfunction. The toxicity of Cd to aquatic species depends on speciation, with the free ion, Cd2+ concentration being proportional to bioavailability. Cadmium toxicity worsened of Ca, Na, and Mg ions homeostasis. Lead can be toxic to nervous and skeletal systems; at cellular level can cause apoptosis, also can affect mitochondria, neurotransmitters, and can substitute for Ca.

  6. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  7. Catalysts Promoted with Niobium Oxide for Air Pollution Abatement

    Directory of Open Access Journals (Sweden)

    Wendi Xiang

    2017-05-01

    Full Text Available Pt-containing catalysts are currently used commercially to catalyze the conversion of carbon monoxide (CO and hydrocarbon (HC pollutants from stationary chemical and petroleum plants. It is well known that Pt-containing catalysts are expensive and have limited availability. The goal of this research is to find alternative and less expensive catalysts to replace Pt for these applications. This study found that niobium oxide (Nb2O5, as a carrier or support for certain transition metal oxides, promotes oxidation activity while maintaining stability, making them candidates as alternatives to Pt. The present work reports that the orthorhombic structure of niobium oxide (formed at 800 °C in air promotes Co3O4 toward the oxidation of both CO and propane, which are common pollutants in volatile organic compound (VOC applications. This was a surprising result since this structure of Nb2O5 has a very low surface area (about 2 m2/g relative to the more traditional Al2O3 support, with a surface area of 150 m2/g. The results reported demonstrate that 1% Co3O4/Nb2O5 has comparable fresh and aged catalytic activity to 1% Pt/γ-Al2O3 and 1% Pt/Nb2O5. Furthermore, 6% Co3O4/Nb2O5 outperforms 1% Pt/Al2O3 in both catalytic activity and thermal stability. These results suggest a strong interaction between niobium oxide and the active component—cobalt oxide—likely by inducing an oxygen defect structure with oxygen vacancies leading to enhanced activity toward the oxidation of CO and propane.

  8. Oxidative stress, inflammation, and pulmonary function assessment in rats exposed to laboratory-generated pollutant mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Seagrave, J.; Campen, M.J.; McDonald, J.D.; Mauderly, J.L.; Rohr, A.C. [Lovelace Respiratory Research Institute, Albuquerque, NM (United States)

    2008-07-01

    Oxidative stress may mediate adverse health effects of many inhaled pollutants. Cardiopulmonary responses of Sprague-Dawley rats to inhalation of whole or filtered gasoline engine exhaust (GEE, FGEE); simulated downwind coal emission atmospheres (SDCAs) from two types of coal, each tested at two concentrations; and two concentrations of re-aerosolized paved road dust (RD) were evaluated. In situ chemiluminescence and thiobarbituric acid-reactive substances (TBARS) were used to evaluate oxidative reactions in the lungs, heart, and liver immediately following exposures. Pulmonary inflammatory responses were measured by bronchoalveolar lavage (BAL) cell counts. Respiratory function parameters during exposure were measured by plethysmography. Only GEE significantly enhanced in situ chemiluminescence (all three organs), but only exposure to the high RD concentration increased TBARS (hearts only). There was a weak trend toward increased macrophages recovered in lavage fluid from both SDCAs, and macrophages were significantly elevated by both FGEE and the lower concentration of RD. Respiratory function effects were small, though the effects of the Central Appalachian low-sulfur SDCA on enhanced pause and the effects of the Powder River Basin SCDA on tidal volume were significant. The discordance between the oxidative stress indicators may relate to the use of a single time point in the context of dynamic changes in compensatory mechanisms. These results further suggest that inflammatory responses measured by BAL cellularity may not always correlate with oxidative stress. Overall, the toxicological effects from exposure to these pollutant mixtures were subtle, but the results show differences in the effects of atmospheres having different physical/chemical characteristics.

  9. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    International Nuclear Information System (INIS)

    Thakur, Suman; Karak, Niranjan

    2014-01-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb 2+ and Cd 2+ within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous

  10. One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Suman; Karak, Niranjan, E-mail: karakniranjan@yahoo.com

    2014-04-01

    An environmentally friendly effective technique was demonstrated to prepare iron oxide/reduced graphene oxide nanohybrid (IO/RGO) at room temperature by using banana peel ash aqueous extract as the base source and Colocasia esculenta leaves aqueous extract as the reducing agent. The nanohybrid was characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, transmission electron microscopy, vibrating sample magnetometry, Raman spectroscopy and thermal studies. The results indicated the decoration of superparamagnetic IO nanoparticles on the surface of the RGO. Both organic and inorganic pollutants were effectively removed from the contaminated water (for Pb{sup 2+} and Cd{sup 2+} within 10 min, whereas for tetrabromobisphenol A within 30 min) by IO/RGO. The study revealed that adsorption followed pseudo-second order kinetics and isotherms were well described by the Langmuir model in all the cases. The thermodynamics parameters (ΔG°, ΔS° and ΔH°) were calculated from the temperature dependent isotherms and indicated that the adsorptions were endothermic and spontaneous. - Highlights: • Eco-friendly one step preparation of iron oxide/reduced graphene oxide nanohybrid. • The nanohybrid has excellent pollutants removal capacity from contaminated water. • Superparamagnetic iron oxide nanoparticles help in easy recycle. • The adsorption processes of pollutants are endothermic and spontaneous.

  11. European scale modeling of sulfur, oxidized nitrogen and photochemical oxidants. Model development and evaluation for the 1994 growing season

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden); Pleijel, K. [Swedish Environmental Research Inst., Goeteborg (Sweden)

    1998-09-01

    A chemical mechanism, including the relevant reactions leading to the production of ozone and other photochemical oxidants, has been implemented in the MATCH regional tracer transport/chemistry/deposition model. The aim has been to develop a model platform that can be used as a basis for a range of regional scale studies involving atmospheric chemistry, including assessment of the importance of different sources of pollutants to the levels of photochemical oxidants and air pollutant forecasting. Meteorological input data to the model were taken from archived output from the operational version of HIRLAM at SMHI. Evaluation of model calculations over Europe for a six month period in 1994 for a range of chemical components show good results considering known sources of error and uncertainties in input data and model formulation. With limited further work the system is sufficiently good to be applied for scenario studies and for regional scale air pollutant forecasts 42 refs, 24 figs, 17 tabs

  12. STIMULATION OF OXIDANT PRODUCTION IN ALVEOLAR MACROPHAGES BY POLLUTANT AND LATEX PARTICLES

    Science.gov (United States)

    Air pollutant dusts as well as chemically defined particles were examined for their activating effect on oxidant production (O2- and H2O2) in guinea pig alveolar macrophages (AM). Oxidant production was measured as chemiluminescence of albumin-bound luminol. All particles examine...

  13. A comparative view of radiation, photo and photocatalytically induced oxidation of water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, N [Institute for Theoretical Chemistry and Radiation Chemistry, Univ. of Vienna, Vienna (Austria)

    1997-10-01

    Water resources are presently overloaded with biologically resistant (refractory) pollutants. Several oxidation methods have been developed for their degradation, the most efficient of which is irradiation treatment, particularly that based on e-beam processing in the presence of O{sub 2}/O{sub 3}. The next-best method is photoinduced pollutant oxidation with VUV- and/or UV-light, using H{sub 2}O{sub 2} or H{sub 2}O{sub 2}/O{sub 3} as an additional source of OH radicals. The photocatalytic method, using e.g. TiO{sub 2} as a catalyst in combination with oxidation agents such as H{sub 2}O{sub 2} or H{sub 2}O{sub 2}/O{sub 3}, is also recommended. The suitability of these three methods is illustrated by examples and they are briefly discussed and compared on the basis of the energy consumption and efficiency. Other methods, such as ozone treatment, the photo-Fenton process, ultrasonic and electrochemical treatments, as well as the well known biological process and thermal oxidation of refractory pollutants, are briefly mentioned. (author). 36 refs, 9 figs, 3 tabs.

  14. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    Science.gov (United States)

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.

  15. [Evaluation of treatment technology of odor pollution source in petrochemical industry].

    Science.gov (United States)

    Mu, Gui-Qin; Sui, Li-Hua; Guo, Ya-Feng; Ma, Chuan-Jun; Yang, Wen-Yu; Gao, Yang

    2013-12-01

    Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil.

  16. Role Of Ascorbic Acid In Imparting Tolerance To Plants Against Oxidizing Pollutants

    Directory of Open Access Journals (Sweden)

    Priyanka Sharma

    2015-08-01

    Full Text Available Ascorbic acid is an antioxidant in plants which play important role in activation of many physiological and defense mechanisms. The level of ascorbic acid in plants is determinant of its tolerance against the adverse effect of oxidizing pollutants. The present study tries to relate the variation in ascorbic acid content with the tolerance and sensitivity of two selected plant species viz. Azadirachtaindica and Pongamiapinnata by calculating their Air Pollution Tolerance Index APTI during winter season from November to March in the urban city Delhi of North India. Moreover ascorbic acid is also an important part of chloroplast it protects different components of photosynthetic system from oxidative stress. Thus to understand the role of ascorbic acid in imparting tolerance to plants against oxidizing pollutants the changes in chlorophyll content of the selected plant species with variation in ambient ozone concentration was analysed. It was found that as per APTI values Azadirachta sp. came under tolerant range with highest ascorbic acid content whereas Pongamia sp. was under intermediate range with less ascorbic acid content. It was statistically established that ozone has no significant relation with chlorophyll content of Azadirachta sp. which has the highest ascorbic acid content. Whereas ambient ozone concentrations showed significant negative relation with the chlorophyll content of Pongamia sp. p 0.05. Thus it was observed that the plants with high ascorbic acid content are tolerant and have greater ability to remediate pollutants.

  17. Co3O4/reduced graphene oxide nanocomposite for removal of organic pollutants from aqueous medium

    Science.gov (United States)

    Mishra, Amodini; Kuanr, B. K.; Mohanty, T.

    2017-05-01

    The magnetic nanocomposite (MNC) of cobalt oxide/graphene oxide (Co3O4/rGO) has been synthesized by hydrothermal method to demonstrate its use as organic pollutants remover. The phase formation of the cobalt oxide magnetic nanoparticles (MNPs) has been confirmed by X-ray diffraction (XRD) analysis. The nanocomposite has been characterized by Raman spectroscopic technique and two Raman peaks associated with graphene oxide are observed. The morphological study of the nanocomposite has been done using scanning electron microscope (SEM). The nanocomposite has been used for removal of organic pollutants from aqueous medium by using ultra-violet spectroscopy.

  18. Molecular epidemiology studies of carcinogenic environmental pollutants. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage.

    Science.gov (United States)

    Farmer, Peter B; Singh, Rajinder; Kaur, Balvinder; Sram, Radim J; Binkova, Blanka; Kalina, Ivan; Popov, Todor A; Garte, Seymour; Taioli, Emanuela; Gabelova, Alena; Cebulska-Wasilewska, Antonina

    2003-11-01

    Exposure to high levels of environmental air pollution is known to be associated with an increased carcinogenic risk. The individual contribution to this risk derived from specific carcinogenic chemicals within the complex mixture of air pollution is less certain, but may be explored by the use of molecular epidemiological techniques. Measurements of biomarkers of exposure, of effect and of susceptibility provide information of potential benefit for epidemiological and cancer risk assessment. The application of such techniques has been mostly concerned in the past with the carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) that are associated with particulate matter in air pollution, and has showed clear evidence of genotoxic effects, such as DNA adducts, chromosome aberrations (CA) and ras oncogene overexpression, in environmentally exposed Czech and Polish populations. We are currently extending these studies by an investigation of populations exposed to environmental pollution in three European countries, Czech Republic, Slovak Republic and Bulgaria. This pays particular attention to PAHs, but also investigates the extent of radically induced (oxidative) DNA damage in the exposed populations. Policemen, bus drivers and controls, who carried personal monitors to determine their exposures to PAHs have been studied, and blood and urine were collected. Antioxidant and dietary status were assessed in these populations. Stationary monitors were also used for ambient air monitoring. Amongst the parameters studied in the biological samples were: (a) exposure biomarkers, such as PAH adducts with DNA, p53 and p21(WAF1) protein levels, (b) oxidative DNA damage, (c) the biological effect of the exposure by measurement of chromosome damage by fluorescence in situ hybridisation (FISH) or conventional methods, and (d) polymorphisms in carcinogen metabolising and DNA repair enzymes. Repair ability was also measured by the Comet assay. In vitro systems are being evaluated to

  19. Oxidative Stress and Ageing: The Influence of Environmental Pollution, Sunlight and Diet on Skin

    Directory of Open Access Journals (Sweden)

    Khimara Naidoo

    2017-01-01

    Full Text Available Skin ageing is a complex process that is determined by both intrinsic and extrinsic factors, which leads to a progressive loss of structure and function. There is extensive evidence indicating that oxidative stress induced by reactive oxygen species plays an important role in the process of human skin ageing. Mitochondria are the major source of cellular oxidative stress and are widely implicated in cutaneous ageing. Extrinsic skin ageing is driven to a large extent by environmental factors and external stressors such as ultraviolet radiation (UVR, pollution and lifestyle factors which have been shown to stimulate the production of reactive oxygen species and generate oxidative stress. The oxidative damage from these exogenous sources can impair skin structure and function, leading to the phenotypic features of extrinsic skin ageing. The following review highlights the current evidence surrounding the role of mitochondria and oxidative stress in the ageing process and the influence of environmental factors such as ultraviolet radiation, pollution and diet on skin ageing.

  20. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    Science.gov (United States)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  1. Removal of Hazardous Pollutants from Wastewaters: Applications of TiO2-SiO2 Mixed Oxide Materials

    Directory of Open Access Journals (Sweden)

    Shivatharsiny Rasalingam

    2014-01-01

    Full Text Available The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application of TiO2-SiO2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.

  2. Atmospheric pollution

    International Nuclear Information System (INIS)

    Lambrozo, J.; Guillossou, G.

    2008-01-01

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  3. Respiratory symptoms, spirometry, and oxidant air pollution in nonsmoking adults

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, C.A.; Hudson, A.R.; Clauson, J.L.; Knelson, J.H.

    1972-01-01

    Comparison of 197 nonsmokers (Seventh Day Adventists) residing in the San Gabriel Valley (high oxidant) with 244 living in San Diego area (similar pollution but with lower oxidant) is discussed. Study was conducted in winter when differences between the two areas were negligible and thus when irreversible effects could be detected. Some unusual findings included: an unexpectedly low chronic bronchitis prevalence rate of 1.77% as compared with the general population, a greater prevalence of chronic bronchitis in women in both areas (not significant), and no effect of socio-economic status. Comparison of pulmonary function using VC, FEV, MEF, peak flow, time constant, and FVC showed no differences between the two groups. The annual mean oxidant level is about the same in both areas and may have influenced spirometric values more than oxidant peaks. Also, these tests may not have been sufficiently sensitive.

  4. Ecological evaluation of polluted soils from Sasa mine

    OpenAIRE

    Krstev, Boris; Golomeov, Blagoj; Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Aleksandar

    2009-01-01

    The paper presents various strategies developed to evaluate the quality of soils and sites correspond to three possible objectives: to establish references or criteria of soil quality, on chemical and/or ecotoxicological bases (to define thresholds), to develop methods of ranking to classify polluted sites for the purpose of their decontamination (to establish a classification), and to develop methods of risk evaluation. The paper presents result of ecological evaluation of polluted soils fro...

  5. A simple air sampling technique for monitoring nitrous oxide pollution

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J C; Shaw, R; Moyes, D; Cleaton-Jones, P E

    1981-01-01

    A simple, inexpensive device for the continuous low-flow sampling of air was devised to permit monitoring of pollution by gaseous anaesthetics. The device consisted of a water-filled Perspex cylinder in which a double-walled flexible-film gas sample collection bag was suspended. Air samples could be aspirated into the collection bag at flow rates of as low as 1 ml min-1 by allowing the water to drain from the cylinder at a controlled rate. The maintenance of sample integrity with aspiration and storage of samples of nitrous oxide in air at concentrations of 1000, 100 and 30 p.p.m. v/v was examined using gas chromatography. The sample bags retained a mean 94% of the nitrous oxide in air samples containing nitrous oxide 25 p.p.m. over a 72-h storage period.

  6. Evaluating the biological activity of oil-polluted soils using a complex index

    Science.gov (United States)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  7. Unsaturated medium hydrocarbons pollution evaluation

    International Nuclear Information System (INIS)

    Di Luise, G.

    1991-01-01

    When the so called porous unsaturated medium, that's the vertical subsoil section between both the ground and water-table level, is interested by a hydrocarbons spill, the problem to evaluate the pollution becomes difficult: considering, essentially, the natural coexistence in it of two fluids, air and water, and the interactions between them. This paper reports that the problems tend to increase when a third fluid, the pollutant, immiscible with water, is introduced into the medium: a three-phases flow, which presents several analogies with the flow conditions present in an oil-reservoir, will be established. In such a situation, it would be very useful to handle the matter by the commonly used parameters in the oil reservoirs studies such as: residual saturation, relative permeability, phases mobility, to derive a first semiquantitative estimation of the pollution. The subsoil pollution form hydrocarbons agents is one of the worldwide more diffused causes of contamination: such events are generally referable to two main effects: accidental (oil pipeline breakdowns, e.g.), and continuous (underground tanks breaks, industrial plants leakages, e.g.)

  8. Performance evaluation on air pollution reducing facilities and mechanism research on the third-party governance on environmental pollution

    Science.gov (United States)

    Bingsheng, Xu; Ling, Lin; Jin, Huang; Geng, Wang; Jianhua, Chen; Shuo, Yang; Huiting, Guo

    2017-11-01

    The paper focuses on developing the operational efficiency of air pollution reducing facilities and the treatment effect of the third-party governance on environmental pollution. Comprehensive analysis method and influence factor analysis are employed to build an evaluation index system by means of discussing major pollution control factors derived from the performance of pollution control equipment operation, environmental protection, technological economy, recourse consumption and manufacturing management. Based on the pattern of environmental pollution control offered by the third-party company, the static games model is further established between the government and the pollution emission firm by considering the whole process of the pollution abatement including investment, construction and operation of the treatment project, which focuses on establishing the policy condition and consequence by discussing the cost and benefit in a short and a long time, respectively. The research results can improve the market access requests of the pollution control equipment and normalize the environmental protection service offered by the third-party company. Moreover, the establishment of the evaluation index system for pollution control equipment and the evaluation mechanism for the third-party governance on environmental pollution has guiding significance on leading environmental protection industry and promoting market-oriented development

  9. Functional evaluation of pollutant transformation in sediment from combined sewer system.

    Science.gov (United States)

    Shi, Xuan; Ngo, Huu Hao; Sang, Langtao; Jin, Pengkang; Wang, Xiaochang C; Wang, Guanghua

    2018-07-01

    In this study, a pilot combined sewer system was constructed to characterize the pollutant transformation in sewer sediment. The results showed that particulate contaminants deposited from sewage could be transformed into dissolved matter by distinct pollutant transformation pathways. Although the oxidation-reduction potential (ORP) was varied from -80 mV to -340 mV in different region of the sediment, the fermentation was the dominant process in all regions of the sediment, which induced hydrolysis and decomposition of particulate contaminants. As a result, the accumulation of dissolved organic matter and the variation of ORP values along the sediment depth led to the depth-dependent reproduction characteristics of methanogens and sulfate-reducing bacteria, which were existed in the middle and deep layer of the sediment respectively. However, the diversity of nitrifying and polyphosphate-accumulating bacteria was low in sewer sediment and those microbial communities showed a non-significant correlation with nitrogen and phosphorus contaminants, which indicated that the enrichment of nitrogen and phosphorus contaminants was mainly caused by physical deposition process. Thus, this study proposed a promising pathway to evaluate pollutant transformation and can help provide theoretical foundation for urban sewer improvement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis

    International Nuclear Information System (INIS)

    Panizza, M.; Kapalka, Agnieszka; Comninellis, Ch.

    2008-01-01

    In this paper, a theoretical model is presented for organic pollutants mineralization at high current efficiency (close to 100%) and low energy consumption on boron-doped diamond electrodes. The model is formulated for a perfect mixed electrochemical reactor operated as a batch recirculation system under multiple current steps, in which the applied current is adjusted during the electrolysis to be close to the limiting value. An experimental validation with the anodic oxidation of 3,4,5-trihydroxybenzoic acid is also provided. The results have shown that multiple current steps electrolysis and continuous current control allowed obtaining high oxidation rate and current efficiency

  11. Oxidation of organic pollutants on BDD anodes using modulated current electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M. [Department of Chemical and Process Engineering, University of Genoa, P.le J.F. Kennedy 1, 16129 Genova (Italy)], E-mail: marco.panizza@unige.it; Kapalka, Agnieszka [Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Comninellis, Ch. [Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)], E-mail: christos.comninellis@epfl.ch

    2008-01-01

    In this paper, a theoretical model is presented for organic pollutants mineralization at high current efficiency (close to 100%) and low energy consumption on boron-doped diamond electrodes. The model is formulated for a perfect mixed electrochemical reactor operated as a batch recirculation system under multiple current steps, in which the applied current is adjusted during the electrolysis to be close to the limiting value. An experimental validation with the anodic oxidation of 3,4,5-trihydroxybenzoic acid is also provided. The results have shown that multiple current steps electrolysis and continuous current control allowed obtaining high oxidation rate and current efficiency.

  12. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  13. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid......Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  14. Short-Term Exposure to Air Pollution and Biomarkers of Oxidative Stress: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Wilker, Elissa H; Dorans, Kirsten S; Rice, Mary B; Schwartz, Joel; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Lin, Honghuang; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A

    2016-04-28

    Short-term exposure to elevated air pollution has been associated with higher risk of acute cardiovascular diseases, with systemic oxidative stress induced by air pollution hypothesized as an important underlying mechanism. However, few community-based studies have assessed this association. Two thousand thirty-five Framingham Offspring Cohort participants living within 50 km of the Harvard Boston Supersite who were not current smokers were included. We assessed circulating biomarkers of oxidative stress including blood myeloperoxidase at the seventh examination (1998-2001) and urinary creatinine-indexed 8-epi-prostaglandin F2α (8-epi-PGF2α) at the seventh and eighth (2005-2008) examinations. We measured fine particulate matter (PM2.5), black carbon, sulfate, nitrogen oxides, and ozone at the Supersite and calculated 1-, 2-, 3-, 5-, and 7-day moving averages of each pollutant. Measured myeloperoxidase and 8-epi-PGF2α were loge transformed. We used linear regression models and linear mixed-effects models with random intercepts for myeloperoxidase and indexed 8-epi-PGF2α, respectively. Models were adjusted for demographic variables, individual- and area-level measures of socioeconomic position, clinical and lifestyle factors, weather, and temporal trend. We found positive associations of PM2.5 and black carbon with myeloperoxidase across multiple moving averages. Additionally, 2- to 7-day moving averages of PM2.5 and sulfate were consistently positively associated with 8-epi-PGF2α. Stronger positive associations of black carbon and sulfate with myeloperoxidase were observed among participants with diabetes than in those without. Our community-based investigation supports an association of select markers of ambient air pollution with circulating biomarkers of oxidative stress. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  15. Air pollution damage to plants

    Energy Technology Data Exchange (ETDEWEB)

    Daly, G T

    1974-01-01

    The effects of the most important air pollutants on plants are described in detail. The include: smoke and particulates, sulfur dioxide, fluorides, peroxyacetyl nitrate, nitrogen oxides, and ozone. An attempt is made to show that plant injury by air pollution can be recognized and evaluated in the presence of effects from insect, fungal, bacterial, viral pathogens and the symptoms of nutrient and enviromental stress. All plants are more or less affected by toxic gases and metals absorbed from the air. For each plant and each pollutant there is a critical concentration above which damage occurs, and below which growth is normal.

  16. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants

    Directory of Open Access Journals (Sweden)

    Alexander Karich

    2017-08-01

    Full Text Available Unspecific peroxygenases (UPOs are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO and Marasmius rotula (MroUPO converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs, (ii strong inactivation of aromatic rings (e.g., nitrobenzene, and (iii low water solubility (e.g., complex arenes. The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments.

  17. Noise Pollution in Turkish Elementary Schools: Evaluation of Noise Pollution Awareness and Sensitivity Training

    Science.gov (United States)

    Bulunuz, Nermin

    2014-01-01

    This study investigates noise pollution levels in two elementary schools. Also, "noise level awareness and sensitivity training" was given for reducing noise pollution, and the effects and results of this training were evaluated. "Sensitivity" training was given to 611 students and 48 teachers in a private and a public school.…

  18. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  19. Evaluation of major polluting accidents in China-Results and perspectives

    International Nuclear Information System (INIS)

    Hou Yu; Zhang Tianzhu

    2009-01-01

    Lessons learnt from accidents are essential sources for updating state-of-the-art requirements in pollution accident prevention. To improve this input in the People's Republic of China in a systematic way, a database for collecting and evaluating major pollution accidents is being established. This is being done in co-operation with Chinese Society for Environment Sciences and other national Institutions. At the time of writing over 80 major events from 2002-2006 have been collected. In this paper, a summary evaluation on the major polluting events in China from 2002 to 2006 is presented and some basic lessons drawn shown. There is no a systematic pollution accident notification system currently in China. The results from root cause analysis underline the importance of emergency measures, maintenance, human factor issues and the role of safety organization. Chronic pollution, especially water pollution and air pollution should be paid the same attention as the sudden pollution. It is important to keep in mind that collecting information from major accidents represents a small percentage of the actual number of events taking place.

  20. Regional distribution and pollution evaluation of heavy metal pollution in topsoils of the Chengdu plain

    International Nuclear Information System (INIS)

    Li Bing; Wang Changquan; Yang Juan; Tan Ting; Li Huanxiu; Li Qiquan; Yuan Quan

    2009-01-01

    197 farm field samples were designated by GPS and the spatial distribution characteristic and pollution evaluation of Cd, Pb, Cr and Hg in the soils were studied. Compared to the background investigated 20 years ago, the content of Cd in Guanghan, Xindu, Qionglai increased 1, 1.26 and 2 times; respectively; and the content of Pb in Xinjin, Deyang, Guanghan, Xindu increased 1.1 and 3.3 times. However, the content of Cr and Hg in most regions changed much smaller. The results of Kriging interpolation analysis of the heavy metals showed that the content of Cd was grandly decreased followed with the direction from northeast to southwest, the content of other elements exhibited the regional characteristics. The geoaccumulation index was used to evaluate the heavy metals pollution and results indicated that nearly 50% of the soils was polluted by Pb and Cd in different degrees influenced by men activities. With the key contaminated area of Xindu, Guanghan, Xinjing, Deyang the pollution ranks of Pb in soils was in 1 to 4. The Cd pollution although small, but still ranks in 1 to 2 level, the pollution area was bigger, mainly distributed in Xindu, Deyang, Guanghan, Shuangliu, Xinjing, Pengzhou. Only a small number of samples was contaminated by Cr or Hg. (authors)

  1. Remediation of electronic waste polluted soil using a combination of persulfate oxidation and chemical washing.

    Science.gov (United States)

    Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing

    2017-12-15

    Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe 2+ activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe 2+ activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe 2+ and SP-CA-Fe 2+ processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiuping [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Ni, Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Wei, Junjun; Xing, Xuan; Li, Hongna [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China)

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L{sup -1} (<100 mg L{sup -1}, the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  3. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  5. To the micro-climatic condition influence upon the environment pollution during exploitation of being oxidized mineral deposits

    International Nuclear Information System (INIS)

    Akhmedzhanov, T.K.; Al'mukhambetova, Sh.K.; Bajramov, I.M.

    1998-01-01

    Conducted researches showed dependence of environment pollution rate under exploration of being oxidized mineral deposits from number of meteorological futures of season changes. Zones of gases spreading in atmosphere from sources of pollution in dependence from micro-climatic conditions are estimated. Results can be used during preventive measures projecting for environment in deposits districts. (author)

  6. Air pollution and risk of hospitalization for epilepsy: the role of farm use of nitrogen fertilizers and emissions of the agricultural air pollutant, nitrous oxide

    Directory of Open Access Journals (Sweden)

    Keith Fluegge

    Full Text Available ABSTRACT The link between various air pollutants and hospitalization for epilepsy has come under scrutiny. We have proposed that exposure to air pollution and specifically the pervasive agricultural air pollutant and greenhouse gas, nitrous oxide (N2O, may provoke susceptibility to neurodevelopmental disorders. Evidence supports a role of N2O exposure in reducing epileptiform seizure activity, while withdrawal from the drug has been shown to induce seizure-like activity. Therefore, we show here that the statewide use of anthropogenic nitrogen fertilizers (the most recognized causal contributor to environmental N2O burden is significantly negatively associated with hospitalization for epilepsy in all three pre-specified hospitalization categories, even after multiple pollutant comparison correction (p<.007, while the other identified pollutants were not consistently statistically significantly associated with hospitalization for epilepsy. We discuss potential neurological mechanisms underpinning this association between air pollutants associated with farm use of anthropogenic nitrogen fertilizers and hospitalization for epilepsy.

  7. Maternal antioxidant provisioning mitigates pollutant-induced oxidative damage in embryos of the temperate sea urchin Evechinus chloroticus

    OpenAIRE

    Lister, Kathryn N.; Lamare, Miles D.; Burritt, David J.

    2017-01-01

    One mechanism of pollution resistance in marine populations is through transgenerational plasticity, whereby offspring capacity to resist pollution reflects parental exposure history. Our study aimed to establish correlations between oxidative stress biomarkers and key reproductive fitness parameters in the temperate sea urchin Evechinus chloroticus following exposure to dietary polycyclic aromatic hydrocarbons (PAHs). PAH-exposed adults exhibited total gonad tissue concentrations of PAHs in ...

  8. Sensing sulfur oxides and other sulfur bearing pollutants with solid electrolyte pellets. I. Gas concentration cells

    Energy Technology Data Exchange (ETDEWEB)

    Chamberland, A M; Gauthier, J M

    1977-01-01

    A new sensing technique using a solid electrolyte has been demonstrated for sulfur-bearing pollutants. Based on potentiometric measurements across a pellet of potassium sulfate, this sensor allows concentrations of sulfur dioxides, sulfur trioxide, hydrogen sulfide, methyl mercaptan and carbonyl sulfide in air to be measured with accuracy. Its operational concentration range at the present time is 0.1 ppM up to at least 10,000 ppM. The presence of other common pollutants such as carbon dioxide, methane, nitric oxide and nitrogen dioxide does not interfere with the measurement of air samples containing sulfur-bearing pollutants.

  9. Heritable oxidative phosphorylation differences in a pollutant resistant Fundulus heteroclitus population

    International Nuclear Information System (INIS)

    Du, Xiao; Crawford, Douglas L.; Nacci, Diane E.; Oleksiak, Marjorie F.

    2016-01-01

    Highlights: • Laboratory reared fish from a highly polluted and clean reference population were compared. • Oxidative phosphorylation (e.g., State 3, enzymes, and proton LEAK) was quantified. • Laboratory reared F3 fish from polluted population displayed higher routine metabolism and complex II activity but lower complex I enzyme activity. • Enhanced OxPhos metabolism and toxicity resistance were retained in laboratory reared F3 fish from the polluted population. - Abstract: Populations can adapt to stress including recent anthropogenic pollution. Our published data suggests heritable differences in hepatocyte oxidative phosphorylation (OxPhos) metabolism in field-caught killifish (Fundulus heteroclitus) from the highly polluted Elizabeth River, VA, USA, relative to fish from a nearby, relatively unpolluted reference site in King’s Creek VA. Consistent with other studies showing that Elizabeth River killifish are resistant to some of the toxic effects of certain contaminants, OxPhos measurements in hepatocytes from field-caught King’s Creek but not field-caught Elizabeth River killifish were altered by acute benzo [a] pyrene exposures. To more definitively test whether the enhanced OxPhos metabolism and toxicity resistance are heritable, we measured OxPhos metabolism in a laboratory-reared F3 generation from the Elizabeth River population versus a laboratory-reared F1 generation from the King’s Creek population and compared these results to previous data from the field-caught fish. The F3 Elizabeth River fish compared to F1 King’s Creek fish had significantly higher State 3 respiration (routine metabolism) and complex II activity, and significantly lower complex I activity. The consistently higher routine metabolism in the F3 and field-caught Elizabeth River fish versus F1 and field-caught King’s Creek fish implies a heritable change in OxPhos function. The observation that LEAK, E-State, Complex I and Complex II were different in laboratory bred

  10. Heritable oxidative phosphorylation differences in a pollutant resistant Fundulus heteroclitus population

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiao, E-mail: xdu@rsmas.miami.edu [Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 (United States); Crawford, Douglas L. [Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 (United States); Nacci, Diane E. [Population Ecology Branch, Atlantic Ecology Division, Office of Research and Development, U.S. Environmental Protection Agency, 27 Tarzwell Dr., Narragansett, RI 02882 (United States); Oleksiak, Marjorie F., E-mail: moleksiak@rsmas.miami.edu [Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149 (United States)

    2016-08-15

    Highlights: • Laboratory reared fish from a highly polluted and clean reference population were compared. • Oxidative phosphorylation (e.g., State 3, enzymes, and proton LEAK) was quantified. • Laboratory reared F3 fish from polluted population displayed higher routine metabolism and complex II activity but lower complex I enzyme activity. • Enhanced OxPhos metabolism and toxicity resistance were retained in laboratory reared F3 fish from the polluted population. - Abstract: Populations can adapt to stress including recent anthropogenic pollution. Our published data suggests heritable differences in hepatocyte oxidative phosphorylation (OxPhos) metabolism in field-caught killifish (Fundulus heteroclitus) from the highly polluted Elizabeth River, VA, USA, relative to fish from a nearby, relatively unpolluted reference site in King’s Creek VA. Consistent with other studies showing that Elizabeth River killifish are resistant to some of the toxic effects of certain contaminants, OxPhos measurements in hepatocytes from field-caught King’s Creek but not field-caught Elizabeth River killifish were altered by acute benzo [a] pyrene exposures. To more definitively test whether the enhanced OxPhos metabolism and toxicity resistance are heritable, we measured OxPhos metabolism in a laboratory-reared F3 generation from the Elizabeth River population versus a laboratory-reared F1 generation from the King’s Creek population and compared these results to previous data from the field-caught fish. The F3 Elizabeth River fish compared to F1 King’s Creek fish had significantly higher State 3 respiration (routine metabolism) and complex II activity, and significantly lower complex I activity. The consistently higher routine metabolism in the F3 and field-caught Elizabeth River fish versus F1 and field-caught King’s Creek fish implies a heritable change in OxPhos function. The observation that LEAK, E-State, Complex I and Complex II were different in laboratory bred

  11. Role of Free Radicals, Oxidative Stress and Xenobiotics in Carcinogenesis by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Dibyajyoti Saha

    2014-09-01

    Full Text Available Carcinogenesis by many small molecular weight chemicals involves either a direct action of the chemical on cellular DNA or metabolism of the parent chemical to an active or ultimate form, which can than react with cellular DNA to produce a permanent chemical change in a DNA structure. A free radical is an atom or molecule that has one or more unpaired electron(s. These are highly reactive species capable of wide spread, indiscriminate oxidation and per oxidation of proteins, lipids and DNA which can lead to significant cellular damage and even tissue and/or organ failure. . Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. Xenobiotics are a compound that is foreign to the body. Xenobiotics can produce a variety of biological effects, including pharmacologic responses, toxicity, genes, immunologic reactions and cancer. Oxidative stress is a leading cause to damage cells by oxidation. The rate at which oxidative damage is induced (input and the rate at which it is efficiently repaired and removed (output. This communication highlights the role of carcinogens as environmental pollutants with the possible mechanism of free radicals, oxidative stress and xenobiotics.

  12. Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup.

    Science.gov (United States)

    Wang, Xiangxue; Fan, Qiaohui; Chen, Zhongshan; Wang, Qi; Li, Jiaxing; Hobiny, Aatef; Alsaedi, Ahmed; Wang, Xiangke

    2016-02-01

    Graphene oxides (GOs) have come under intense multidisciplinary study because of their unique physicochemical properties and possible applications. The large amount of oxygen-containing functional groups on GOs leads to a high sorption capacity for the removal of various kinds of organic and inorganic pollutants from aqueous solutions in environmental pollution cleanup. However, the lack of selectivity results in difficulty in the selective removal of target pollutants from aqueous solutions in the presence of other coexisting pollutants. Herein, the surface grafting of GOs with special oxygen-containing functional groups using low-temperature plasma techniques and the application of the surface-modified GOs for the efficient removal of organic and inorganic pollutants in environmental pollution are reviewed. This paper gives an account of our research on the application of GO-based nanomaterials in environmental pollution cleanup, including: (1) the synthesis and surface grafting of functional groups on GOs, summarizing various types of low-temperature plasma techniques for the synthesis of graphene/GOs; and (2) the application of graphene/GOs and their composites for the efficient removal of organic and inorganic pollutants from aqueous solutions, including the interaction mechanism according to recently published results. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The 1979 convention on long range transfrontier air pollution; La convention sur la pollution atmospherique transfrontiere a longue distance de 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jagusiewicz, A. [UNECE, Palais des Nations, Geneve (Switzerland)

    1997-12-31

    Applied in March 1983, the 1979 international Convention have induced five protocols related to sulfur, nitrogen oxide and VOC emissions. After 1994, three new protocols are under study, concerning the reduction of nitrogenous and related compounds, heavy metals and long-lasting organic pollutants. Works and organization of the European EMEP program for the continuous monitoring and evaluation of the long range air pollution transport in Europe, are presented

  14. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution

    DEFF Research Database (Denmark)

    Møller, Peter; Loft, Steffen

    2010-01-01

    BACKGROUND: Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE: We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers...... of biologically effective dose in studies of the health effects of exposure to particulate matter (PM) from combustion processes. DATA SOURCES: We identified publications that reported estimated associations between environmental exposure to PM and oxidative damage to DNA and lipids in PubMed and EMBASE. We also...... identified publications from reference lists and articles cited in the Web of Science. DATA EXTRACTION: For each study, we obtained information on the estimated effect size to calculate the standardized mean difference (unitless) and determined the potential for errors in exposure assessment and analysis...

  15. Biochemical modifications in Pinus pinaster Ait. as a result of environmental pollution.

    Science.gov (United States)

    Acquaviva, Rosaria; Vanella, Luca; Sorrenti, Valeria; Santangelo, Rosa; Iauk, Liliana; Russo, Alessandra; Savoca, Francesca; Barbagallo, Ignazio; Di Giacomo, Claudia

    2012-11-01

    Exposure to chemical pollution can cause significant damage to plants by imposing conditions of oxidative stress. Plants combat oxidative stress by inducing antioxidant metabolites, enzymatic scavengers of activated oxygen and heat shock proteins. The accumulation of these proteins, in particular heat shock protein 70 and heme oxygenase, is correlated with the acquisition of thermal and chemical adaptations and protection against oxidative stress. In this study, we used Pinus pinaster Ait. collected in the areas of Priolo and Aci Castello representing sites with elevated pollution and reference conditions, respectively. The presence of heavy metals and the levels of markers of oxidative stress (lipid hydroperoxide levels, thiol groups, superoxide dismutase activity and expression of heat shock protein 70, heme oxygenase and superoxide dismutase) were evaluated, and we measured in field-collected needles the response to environmental pollution. P. pinaster Ait. collected from a site characterized by industrial pollution including heavy metals had elevated stress response as indicated by significantly elevated lipid hydroperoxide levels and decreased thiol groups. In particular, we observed that following a chronic chemical exposure, P. pinaster Ait. showed significantly increased expression of heat shock protein 70, heme oxygenase and superoxide dismutase. This increased expression may have protective effects against oxidative stress and represents an adaptative cellular defence mechanism. These results suggest that evaluation of heme oxygenase, heat shock protein 70 and superoxide dismutase expression in P. pinaster Ait. could represent a useful tool for monitoring environmental contamination of a region and to better understand mechanisms involved in plant defence and stress tolerance.

  16. Air Pollution Modeling at Road Sides Using the Operational Street Pollution Model-A Case Study in Hanoi, Vietnam

    DEFF Research Database (Denmark)

    Hung, Ngo Tho; Ketzel, Matthias; Jensen, Steen Solvang

    2010-01-01

    In many metropolitan areas, traffic is the main source of air pollution. The high concentrations of pollutants in streets have the potential to affect human health. Therefore, estimation of air pollution at the street level is required for health impact assessment. This task has been carried out...... in many developed countries by a combination of air quality measurements and modeling. This study focuses on how to apply a dispersion model to cities in the developing world, where model input data and data from air quality monitoring stations are limited or of varying quality. This research uses...... the operational street pollution model (OSPM) developed by the National Environmental Research Institute in Denmark for a case study in Hanoi, the capital of Vietnam. OSPM predictions from five streets were evaluated against air pollution measurements of nitrogen oxides (NO), sulfur dioxide (SO2), carbon monoxide...

  17. IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION

    Science.gov (United States)

    IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION.T. L. Knuckles1 R. Jaskot2, J. Richards2, and K.Dreher2.1Department of Molecular and Biomedical Sciences, College of Veterinary Medicin...

  18. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    OpenAIRE

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Moller, Lennart

    2005-01-01

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyg...

  19. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan [School of Environment, Northeast Normal University, Changchun 130117 (China); Yuan, Xing, E-mail: yuanx@nenu.edu.cn [School of Environment, Northeast Normal University, Changchun 130117 (China); Li, Baikun, E-mail: baikun@engr.uconn.edu [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2017-02-15

    Highlights: • Graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed. • The cytotoxicity detection vessel was miniaturized to the 96-well plate. • The electrochemical behavior of HepG2 cell was investigated for the first time. • The mixture signal of adenine and hypoxanthine was separated successfully. • The biosensor was used to assess the toxicity of heavy metals and phenols. - Abstract: The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24 h IC{sub 50} values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology.

  20. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  1. Evaluation of retrofit crankcase ventilation controls and diesel oxidation catalysts for reducing air pollution in school buses

    Science.gov (United States)

    Trenbath, Kim; Hannigan, Michael P.; Milford, Jana B.

    2009-12-01

    This study evaluates the effect of retrofit closed crankcase ventilation filters (CCFs) and diesel oxidation catalysts (DOCs) on the in-cabin air quality in transit-style diesel school buses. In-cabin pollution levels were measured on three buses from the Pueblo, CO District 70 fleet. Monitoring was conducted while buses were driven along their regular routes, with each bus tested three times before and three times after installation of control devices. Ultrafine number concentrations in the school bus cabins were 33-41% lower, on average, after the control devices were installed. Mean mass concentrations of particulate matter less than 2.5 μm in diameter (PM2.5) were 56% lower, organic carbon (OC) 41% lower, elemental carbon (EC) 85% lower, and formaldehyde 32% lower after control devices were installed. While carbon monoxide concentrations were low in all tests, mean concentrations were higher after control devices were installed than in pre-retrofit tests. Reductions in number, OC, and formaldehyde concentrations were statistically significant, but reductions in PM2.5 mass were not. Even with control devices installed, during some runs PM2.5 and OC concentrations in the bus cabins were elevated compared to ambient concentrations observed in the area. OC concentrations inside the bus cabins ranged from 22 to 58 μg m -3 before and 13 to 33 μg m -3 after control devices were installed. OC concentrations were correlated with particle-bound organic tracers for lubricating oil emissions (hopanes) and diesel fuel and tailpipe emissions (polycyclic aromatic hydrocarbons (PAH) and aliphatic hydrocarbons). Mean concentrations of hopanes, PAH, and aliphatic hydrocarbons were lower by 37, 50, and 43%, respectively, after the control devices were installed, suggesting that both CCFs and DOCs were effective at reducing in-cabin OC concentrations.

  2. Air Pollution, Causes and Cures.

    Science.gov (United States)

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  3. [Environmental geochemical baseline of heavy metals in soils of the Ili river basin and pollution evaluation].

    Science.gov (United States)

    Zhao, Xin-Ru; Nasier, Telajin; Cheng, Yong-Yi; Zhan, Jiang-Yu; Yang, Jian-Hong

    2014-06-01

    Environmental geochemical baseline models of Cu, Zn, Pb, As, Hg were established by standardized method in the ehernozem, chestnut soil, sierozem and saline soil from the Ili river valley region. The theoretical baseline values were calculated. Baseline factor pollution index evaluation method, environmental background value evaluation method and heavy metal cleanliness evaluation method were used to compare soil pollution degrees. The baseline factor pollution index evaluation showed that As pollution was the most prominent among the four typical types of soils within the river basin, with 7.14%, 9.76%, 7.50% of sampling points in chernozem, chestnut soil and sierozem reached the heavy pollution, respectively. 7.32% of sampling points of chestnut soil reached the permitted heavy metal Pb pollution index in the chestnut soil. The variation extent of As and Pb was the largest, indicating large human disturbance. Environmental background value evaluation showed that As was the main pollution element, followed by Cu, Zn and Pb. Heavy metal cleanliness evaluation showed that Cu, Zn and Pb were better than cleanliness level 2 and Hg was the of cleanliness level 1 in all four types of soils. As showed moderate pollution in sierozem, and it was of cleanliness level 2 or better in chernozem, chestnut soil and saline-alkali soil. Comparing the three evaluation systems, the baseline factor pollution index evaluation more comprehensively reflected the geochemical migration characteristics of elements and the soil formation processes, and the pollution assessment could be specific to the sampling points. The environmental background value evaluation neglected the natural migration of heavy metals and the deposition process in the soil since it was established on the regional background values. The main purpose of the heavy metal cleanliness evaluation was to evaluate the safety degree of soil environment.

  4. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO3−δ metal oxide

    International Nuclear Information System (INIS)

    Leiw, Ming Yian; Guai, Guan Hong; Wang, Xiaoping; Tse, Man Siu; Ng, Chee Mang; Tan, Ooi Kiang

    2013-01-01

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O 2 · − is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment

  5. Preliminary evaluation of the air pollution in 2010; Luftbelastungssituation 2010. Vorlaeufige Auswertung. Hintergrund

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-01-25

    In the contribution under consideration, the Federal Office for Environment Protection (Dessau-Rosslau, Federal Republic of Germany) evaluates the situation of air pollution in the year 2010 in comparison to the previous years. The evaluation is based on preliminary data and considers the pollutants fine dust (PM{sub 1}0), nitrogen dioxide and ozone. In 2010, these pollutants exceed the up-to-date valid limiting values for the protection of the human health.

  6. The atmospheric pollution in a few words; La pollution atmospherique en bref

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This paper takes stock briefly on the different pollution sources (carbon dioxide, nitrogen oxides, sulfur dioxide, VOC, methane...), the mechanisms (acidification, photochemical pollution, eutrophication, greenhouse effect, ozone...) and the effects on the health. (A.L.B.)

  7. Biofluid metabotyping of occupationally exposed subjects to air pollution demonstrates high oxidative stress and deregulated amino acid metabolism

    Science.gov (United States)

    Pradhan, Surya Narayan; Das, Aleena; Meena, Ramovatar; Nanda, Ranjan Kumar; Rajamani, Paulraj

    2016-10-01

    Occupational exposure to air pollution induces oxidative stress and prolonged exposure increases susceptibility to cardiovascular and respiratory diseases in several working groups. Biofluid of these subjects may reflect perturbed metabolic phenotypes. In this study we carried out a comparative molecular profiling study using parallel biofluids collected from subjects (n = 85) belonging to auto rickshaw drivers (ARD), traffic cops (TC) and office workers (OW). Higher levels of oxidative stress and inflammation markers in serum of ARD subjects were observed as compared to OW and TC. Uni and multivariate analyses of metabolites identified in urine by 1H NMR revealed 11 deregulated molecules in ARD subjects and involved in phenylalanine, histidine, arginine and proline metabolism. Despite contribution of confounding factors like exposure period, dietary factors including smoking and alcohol status, our results demonstrate existence of exposure specific metabotypes in biofluids of ARD, OW and TC groups. Monitoring serum oxidative stress and inflammation markers and urine metabolites by NMR may be useful to characterize perturbed metabolic phenotypes in populations exposed to urban traffic air pollution.

  8. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress.

    Science.gov (United States)

    Altemose, Brent; Robson, Mark G; Kipen, Howard M; Ohman Strickland, Pamela; Meng, Qingyu; Gong, Jicheng; Huang, Wei; Wang, Guangfa; Rich, David Q; Zhu, Tong; Zhang, Junfeng

    2017-05-01

    Using data collected before, during, and after the 2008 Summer Olympic Games in Beijing, this study examines associations between biomarkers of blood coagulation (vWF, sCD62P and sCD40L), pulmonary inflammation (EBC pH, EBC nitrite, and eNO), and systemic oxidative stress (urinary 8-OHdG) with sources of air pollution identified utilizing principal component analysis and with concentrations of three aldehydes of health concern. Associations between the biomarkers and the air pollution source types and aldehydes were examined using a linear mixed effects model, regressing through seven lag days and controlling for ambient temperature, relative humidity, gender, and day of week for the biomarker measurements. The biomarkers for pulmonary inflammation, particularly EBC pH and eNO, were most consistently associated with vehicle and industrial combustion, oil combustion, and vegetative burning. The biomarkers for blood coagulation, particularly vWF and sCD62p, were most consistently associated with oil combustion. Systemic oxidative stress biomarker (8-OHdG) was most consistently associated with vehicle and industrial combustion. The associations of the biomarkers were generally not significant or consistent with secondary formation of pollutants and with the aldehydes. The findings support policies to control anthropogenic pollution sources rather than natural soil or road dust from a cardio-respiratory health standpoint.

  9. Evaluation of environmental damage due to atmospheric pollution caused by power economy

    International Nuclear Information System (INIS)

    Burneikis, J.; Shtreimikiene, D.

    1996-01-01

    Methods to evaluate the environmental damage due to atmospheric pollution caused by power economy are presented. The products of burning fossil fuel (CO 2 , SO 2 , NO x and ashes) make the bulk of the pollutants that are being discharged into the atmosphere. To evaluate the damage caused by these pollutants an empirical method is suggested. The direct and analytical methods are used as a basis in collecting data for the empirical evaluation. All the three methods are described and empirical formulas suggested for calculating environmental damage due to burning fossil fuel in thermal power stations. The authors prove the necessity to change the present system of environmental taxes in Lithuania, which are purely symbolic. (author). 8 refs., 9 tabs

  10. Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice

    Directory of Open Access Journals (Sweden)

    Keshavarzian Ali

    2011-06-01

    Full Text Available Abstract Background Exposure to particulate matter (PM air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles. Methods We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours. Results PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice. Conclusions Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut in vitro and in vivo. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut.

  11. Dark ambient degradation of Bisphenol A and Acid Orange 8 as organic pollutants by perovskite SrFeO{sub 3−δ} metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Leiw, Ming Yian, E-mail: LEIW0003@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Guai, Guan Hong [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Wang, Xiaoping [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Tse, Man Siu [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, Chee Mang [GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D Street 2, Singapore 738406 (Singapore); Tan, Ooi Kiang [School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2013-09-15

    Highlights: • Perovskite SFO prepared by high temperature and high-energy ball milling process. • SFO metal oxide shows good efficiency in degrading and mineralizing BPA. • Rapid decoloration of AO8 was achieved in the presence of SFO metal oxide. • O{sub 2}·{sup −} is the predominant ROS for dark oxidative degradation of BPA and AO8. -- Abstract: Current advanced oxidation processes (AOPs) are chemically and energetically intensive processes, which are undesirable for cost-effective and large-scale system water treatment and wastewater recycling. This study explored the Strontium Ferrite (SFO) metal oxide on the degradation of highly concentrated organic pollutants under dark ambient condition without any external stimulants. The SFO particles with single perovskite structure were successfully synthesized with a combined high temperature and high-energy ball milling process. An endocrine disruptor, Bisphenol A (BPA) and an azo dye, Acid Orange 8 (AO8) were used as probe organic pollutants. BPA was completely degraded with 83% of mineralization in 24 h while rapid decoloration of AO8 was achieved in 60 min and complete breakdown into primary intermediates and aliphatic acids occurred in 24 h under the treatment of dispersed SFO metal oxide in water. Such efficient degradation could be attributed to the enhanced adsorption of these anionic pollutants on positively charged ball-milled SFO metal oxide surface, resulted in higher degradation activity. Preliminary degradation mechanisms of BPA and AO8 under the action of SFO metal oxide were proposed. These results showed that the SFO metal oxide could be an efficient alternative material as novel advanced oxidation technology for low cost water treatment.

  12. Oxidization of squalene, a human skin lipid: a new and reliable marker of environmental pollution studies.

    Science.gov (United States)

    Pham, D-M; Boussouira, B; Moyal, D; Nguyen, Q L

    2015-08-01

    A review of the oxidization of squalene, a specific human compound produced by the sebaceous gland, is proposed. Such chemical transformation induces important consequences at various levels. Squalene by-products, mostly under peroxidized forms, lead to comedogenesis, contribute to the development of inflammatory acne and possibly modify the skin relief (wrinkling). Experimental conditions of oxidation and/or photo-oxidation mechanisms are exposed, suggesting that they could possibly be bio-markers of atmospheric pollution upon skin. Ozone, long UVA rays, cigarette smoke… are shown powerful oxidizing agents of squalene. Some in vitro, ex vivo and in vivo testings are proposed as examples, aiming at studying ingredients or products capable of boosting or counteracting such chemical changes that, globally, bring adverse effects to various cutaneous compartments. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Emission of toxic air pollutants from biomass combustion

    International Nuclear Information System (INIS)

    Houck, J.E.; Barnett, S.G.; Roholt, R.B.; Rock, M.E.

    1991-01-01

    Combustion of biomass for power generation, home heating, process steam generation, and waste disposal constitutes a major source of air pollutants nationwide. Emissions from hog-fueled boilers, demolition wood-fired power plants, municipal waste incinerators, woodstoves, fireplaces, pellet stoves, agricultural burning, and forestry burning have been characterized for a variety of purposes. These have included risk assessment, permitting, emission inventory development, source profiling for receptor modeling, and control technology evaluations. From the results of the source characterization studies a compilation of emission factors for criteria and non-criteria pollutants are presented here. Key among these pollutants are polycyclic aromatic hydrocarbons, priority pollutant metals, carbon monoxide, sulfur dioxide, nitrous oxides, and PM 10 particles. The emission factors from the biomass combustion processes are compared and contrasted with other pollutant sources. In addition, sampling and analysis procedures most appropriate for characterizing emissions from the biomass combustion sources are also discussed

  14. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    Science.gov (United States)

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  15. Evaluation of Noise pollution in Omidiyeh city, 2015

    Directory of Open Access Journals (Sweden)

    satar soltanian

    2016-03-01

    Full Text Available Introduction and Purpose: Noise pollution is one of the important environmental problems that has been on a growing trend in the recent years. This study was conducted to evaluate the level of noise pollution in Omidiyeh city, Iran. Methods: Testo 815 sound level meter was employed to quantify the sound pressure level (SPL. The measurements were conducted during 7-9 am, 12- 14 am, and 19-21 pm, at three locations (one station in each of commercial, residential, and commercial-residential areas, and the results were compared with the standard level of noise pollution. Results: The results indicated that the SPL at all the specified times and areas were higher than the standard level. The mean SPL in commercial, residential, and commercial-residential areas were 72.86, 67.36, and 61.71 dB, respectively, which were 7.86, 7.36, and 6.71 dB higher than the standards of noise in the open air. Conclusion: This study showed that the SPL was higher than standard level, Therefor new approaches should be implemented to reduce the level of noise pollution

  16. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series.

    Science.gov (United States)

    Niemann, Bernd; Rohrbach, Susanne; Miller, Mark R; Newby, David E; Fuster, Valentin; Kovacic, Jason C

    2017-07-11

    Oxidative stress occurs whenever the release of reactive oxygen species (ROS) exceeds endogenous antioxidant capacity. In this paper, we review the specific role of several cardiovascular risk factors in promoting oxidative stress: diabetes, obesity, smoking, and excessive pollution. Specifically, the risk of developing heart failure is higher in patients with diabetes or obesity, even with optimal medical treatment, and the increased release of ROS from cardiac mitochondria and other sources likely contributes to the development of cardiac dysfunction in this setting. Here, we explore the role of different ROS sources arising in obesity and diabetes, and the effect of excessive ROS production on the development of cardiac lipotoxicity. In parallel, contaminants in the air that we breathe pose a significant threat to human health. This paper provides an overview of cigarette smoke and urban air pollution, considering how their composition and biological effects have detrimental effects on cardiovascular health. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Xiong, Xinmei; Gao, Naiyun; Song, Weihua; Du, Erdeng; Guan, Xiaohong; Zhou, Gongming

    2014-10-15

    TiO2 supported ruthenium nanoparticles, Ru/TiO2 (0.94‰ as Ru), was synthesized to catalyze permanganate oxidation for degrading emerging pollutants (EPs) with diverse organic moieties. The presence of 1.0 g L(-1) Ru/TiO2 increased the second order reaction rate constants of bisphenol A, diclofenac, acetaminophen, sulfamethoxazole, benzotriazole, carbamazepine, butylparaben, diclofenac, ciprofloxacin and aniline at mg L(-1) level (5.0 μM) by permanganate oxidation at pH 7.0 by 0.3-119 times. The second order reaction rate constants of EPs with permanganate or Ru/TiO2-catalyzed permanganate oxidation obtained at EPs concentration of mg L(-1) level (5.0 μM) underestimated those obtained at EPs concentration of μg L(-1) level (0.050 μM). Ru/TiO2-catalyzed permanganate could decompose a mixture of nine EPs at μg L(-1) level efficiently and the second order rate constant for each EP was not decreased due to the competition of other EPs. The toxicity tests revealed that Ru/TiO2-catalyzed permanganate oxidation was effective not only for elimination of EPs but also for detoxification. The removal rates of sulfamethoxazole by Ru/TiO2-catalyzed permanganate oxidation in ten successive cycles remained almost constant in ultrapure water and slightly decreased in Songhua river water since the sixth run, indicating the satisfactory stability of Ru/TiO2. Ru/TiO2-catalyzed permanganate oxidation was selective and could remove selected EPs spiked in real waters more efficiently than chlorination. Therefore, Ru/TiO2-catalyzed permanganate oxidation is promising for removing EPs with electron-rich moieties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Pollution monitoring by dosimetry and passive diffusion sampling for evaluation of environmental conditions for paintings in microclimate frames

    DEFF Research Database (Denmark)

    Grøntoft, Terje; Odlyha, Marianne; Mottner, P.

    2010-01-01

    from a synthetic polymer and the Resin Mastic coated Piezo electric Quartz Crystals (RM-PQC) respond to photo-oxidation and showed higher values outside than inside the mc-frames. Two other dosimeters, the Glass Slide Dosimeter (GSD) and the Lead coated Piezo electric Quartz Crystals (L-PQC) respond......Pollutants and their potential degradation of paintings have been measured for the first time in microclimate frames (mc-frames), which are used to protect paintings. The pollutants that were measured include both inorganic pollutants, which originate mainly from external sources, and organic...... samplers were used together with different types of dosimeters. Results show that the dosimeters respond to either the photo-oxidizing conditions or the level of volatile organic acids in the environments both in the museums and within the mc-frames. Two dosimeters, the Early Warning Organic (EWO) made...

  19. The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China

    Directory of Open Access Journals (Sweden)

    J. Z. Ma

    2012-05-01

    Full Text Available In the past decades, regional air pollution characterized by photochemical smog and grey haze-fog has become a severe environmental problem in China. To investigate this, a field measurement campaign was performed in the Huabei region, located between 32–42° N latitude in eastern China, during the period 2 April–16 May 2006 as part of the project "Influence of Pollution on Aerosols and Cloud Microphysics in North China" (IPAC-NC. It appeared that strong pollution emissions from urban and industrial centers tend to accumulate in the lower atmosphere over the central area of Huabei. We observed widespread, very high SO2 mixing ratios, about 20–40 ppbv at 0.5–1.5 km altitude and 10–30 ppbv at 1.5–3.0 km altitude. Average CO mixing ratios were 0.65–0.7 ppmv at 0.5–1.5 km altitude, and very high CO around 1 ppmv was observed during some flights, and even higher levels at the surface. We find the high pollution concentrations to be associated with enhanced levels of OH and HO2 radicals, calculated with a chemical box model constrained by the measurements. In the upper part of the boundary layer and in the lower free troposphere, high CO and SO2 compete with relatively less NO2 in reacting with OH, being efficiently recycled through HO2, preventing a net loss of HOx radicals. In addition to reactive hydrocarbons and CO, the oxidation of SO2 causes significant ozone production over Huabei (up to ~13% or 2.0 ppbv h−1 at 0.8 km altitude. Our results indicate that the lower atmosphere over Huabei is not only strongly polluted but also acts as an oxidation pool, with pollutants undergoing very active photochemistry over this part of China.

  20. Effects of Anthropogenic Pollution on the Oxidative Phosphorylation Pathway of Hepatocytes from Natural Populations of Fundulus heteroclitus

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiao; Crawford, Douglas L.; Oleksiak, Marjorie F., E-mail: moleksiak@rsmas.miami.edu

    2015-08-15

    Highlights: • Fish from a highly polluted and clean reference population were compared. • Oxidative phosphorylation (e.g., State 3, enzymes, and proton LEAK) was quantified. • Polluted fish had lower LEAK, enzyme III and enzyme IV but higher enzyme I. • Exposures to PAH and PCB only affected individuals from the reference population. - Abstract: Persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), potentially target mitochondria and cause toxicity. We compared the effects of POPs on mitochondrial respiration by measuring oxidative phosphorylation (OxPhos) metabolism in hepatocytes isolated from lab-depurated Fundulus heteroclitus from a Superfund site contaminated with PAHs (Elizabeth River VA, USA) relative to OxPhos metabolism in individuals from a relatively clean, reference population (King’s Creek VA, USA). In individuals from the polluted Elizabeth River population, OxPhos metabolism displayed lower LEAK and lower activities in complex III, complex IV, and E State, but higher activity in complex I compared to individuals from the reference King’s Creek population. To test the supposition that these differences were due to or related to the chronic PAH contamination history of the Elizabeth River population, we compared the OxPhos functions of undosed individuals from the polluted and reference populations to individuals from these populations dosed with a PAH {benzo [α] pyrene (BaP)} or a PCB {PCB126 (3,3′,4,4′,5-pentachlorobiphenyl)}, respectively. Exposure to PAH or PCB affected OxPhos in the reference King’s Creek population but had no detectable effects on the polluted Elizabeth River population. Thus, PAH exposure significantly increased LEAK, and exposure to PCB126 significantly decreased State 3, E state and complex I activity in the reference King’s Creek population. These data strongly implicate an evolved tolerance in the Elizabeth River fish where dosed

  1. Effects of Anthropogenic Pollution on the Oxidative Phosphorylation Pathway of Hepatocytes from Natural Populations of Fundulus heteroclitus

    International Nuclear Information System (INIS)

    Du, Xiao; Crawford, Douglas L.; Oleksiak, Marjorie F.

    2015-01-01

    Highlights: • Fish from a highly polluted and clean reference population were compared. • Oxidative phosphorylation (e.g., State 3, enzymes, and proton LEAK) was quantified. • Polluted fish had lower LEAK, enzyme III and enzyme IV but higher enzyme I. • Exposures to PAH and PCB only affected individuals from the reference population. - Abstract: Persistent organic pollutants (POPs), including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), potentially target mitochondria and cause toxicity. We compared the effects of POPs on mitochondrial respiration by measuring oxidative phosphorylation (OxPhos) metabolism in hepatocytes isolated from lab-depurated Fundulus heteroclitus from a Superfund site contaminated with PAHs (Elizabeth River VA, USA) relative to OxPhos metabolism in individuals from a relatively clean, reference population (King’s Creek VA, USA). In individuals from the polluted Elizabeth River population, OxPhos metabolism displayed lower LEAK and lower activities in complex III, complex IV, and E State, but higher activity in complex I compared to individuals from the reference King’s Creek population. To test the supposition that these differences were due to or related to the chronic PAH contamination history of the Elizabeth River population, we compared the OxPhos functions of undosed individuals from the polluted and reference populations to individuals from these populations dosed with a PAH {benzo [α] pyrene (BaP)} or a PCB {PCB126 (3,3′,4,4′,5-pentachlorobiphenyl)}, respectively. Exposure to PAH or PCB affected OxPhos in the reference King’s Creek population but had no detectable effects on the polluted Elizabeth River population. Thus, PAH exposure significantly increased LEAK, and exposure to PCB126 significantly decreased State 3, E state and complex I activity in the reference King’s Creek population. These data strongly implicate an evolved tolerance in the Elizabeth River fish where dosed

  2. Mapping of lichen frequencies as a tool in evaluating intensity of pollution

    Energy Technology Data Exchange (ETDEWEB)

    Kunze, M

    1972-01-01

    A method is presented for determining the intensity of air pollution by evaluating the frequency of lichen species growing on the trunks of trees. The lichens growing on the trunks of isolated trees in the surroundings of factories or other pollutants have been investigated. A ladder enclosing the panels is used to determine the frequency: the calculation is made electronically and permits statistical statements about the quantity of the lichens to be made. The numerical material evaluated consists of reproduceable data obtained by a standardized method that appears to be suitable for routine use. Pollution zones can be recognized by changes in frequency of the various sensitive species.

  3. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants

    Science.gov (United States)

    Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.

    2017-06-01

    Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

  4. Immobilization of leachable toxic soil pollutants by using oxidative enzymes

    International Nuclear Information System (INIS)

    Shannon, M.J.R.; Bartha, R.

    1988-01-01

    Screening of leachable toxic chemicals in a horseradish peroxidase-H 2 O 2 immobilization system established that immobilization was promising for most phenolic pollutants but not for benzoic acid, 2,6-dinitrocresol, or dibutyl phthalate. The treatment did not mobilize inherently nonmobile pollutants such as anilines and benzo[a]pyrene. In a separate study, an extracellular laccase in the culture filtrate of Geotrichum candidum was selected from five fungal enzymes evaluated as a cost-effective substitute for horseradish peroxidase. This enzyme was used in demonstrating the immobilization and subsequent fate of 14 C-labeled 4-methylphenol and 2,4-dichlorophenol in soil columns. When applied to Lakewood sand, 98.1% of 4-methylpheno was leached through with distilled water. Two days after immobilization treatment with the G. candidum culture filtrate, only 9.1% of the added 4-methylphenol was leached with the same volume of water. Of the more refractory test pollutant 2,4-dichlorophenol, 91.6% had leached at time zero and 48.5% had leached 1 day after the immobilization treatment. However, 2 weeks after immobilization, only 12.0% of the 2,4-dichlorophenol was leached compared with 61.7% from the control column that received no immobilization treatment. No remobilization of the bound pollutants was detected during 3- and 4-week incubation periods

  5. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    Science.gov (United States)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assessment of groundwater pollution from the oxidation ponds in tenth of Ramadan city, using isotopic techniques and hydrogeological modelling

    International Nuclear Information System (INIS)

    Abd El-Samie, S.G.; Sadek, M.A.; Mahmoud, N.S.

    2002-01-01

    The tenth of ramadan city is an intensive industrial settement on the peripheries of cairo. All types of wastewater from industrial and domestic practices are discharged into three unlined oxidation ponds to eliminate pollutants. The present srudy has been conduted to assess the extent of seepage to groundwater from the ponds and how efficient they are for pollution reduction. The chemical composition is more developed in the groundwater of the miocene aquifer due to the less active recharge and the dominance of readily dissolved salts that interact with the inflow. The seepage from ismailia canal and the excess irrigation from agricultural lands and the infiltration from the oxidation ponds as well as the upleaked water represent the main sources of recharge in the quaternary aquifer. The chemical and isotopic composition of the water in the oxidation ponds is controlled by the nature of the drained water and the geochemical processes affecting the solute content. The isotopic enrichment differs for the three ponds being related to the evaporation intensity in each

  7. Evaluation of different numerical methodologies for dispersion of air pollutants in an urban environment

    International Nuclear Information System (INIS)

    Mumovic, D.; Crowther, J.M.; Stevanovic, Z.

    2003-01-01

    Since 1950 the world population has more than doubled but meanwhile the global number of cars has increased by a factor of 10. In that same period the fraction of people living in urban areas has increased by a factor of 4. Apart from large point-sources of local air pollution, traffic induced pollution is now the most significant contributor to urban air quality in city centres, particularly for carbon monoxide, oxides of nitrogen and fine particulate matter. Until recently, pollutant dispersion in urban areas has usually been numerically investigated by using empirical models, such as the Gaussian plume model, or by extensions of this technique to line sources and multiple sources. More recently, advanced computational fluid dynamics (CFD) simulations have been attempted but have been mainly two-dimensional and often encompassing only a single street canyon. This paper provides a comprehensive, critical evaluation of dispersion of pollutants in urban areas. A three-dimensional flow model has been set-up for a staggered crossroad, using the Navier-Stokes equations and the conservation equation for species concentration. The effect of using several different turbulence models, including the k-ε model, modifications and extensions, has been investigated. Cartesian coordinates have been used in connection with the Partial Solution Algorithm (PARSOL) and Body Fitted Coordinates (BFC). The effects of several different numerical algorithms for discretization of differential equations have also been studied. More than thirty cases are analysed, and the main results are compared with wind tunnel experiments. The numerical results are presented as non-dimensional values to facilitate comparison between experimental and numerical studies. It has been shown that the numerical studies have been able to simulate the air-flow in urban areas and confirm, qualitatively, the previous field observations and wind tunnel results. This success encouraged the authors to extend such

  8. Evaluation of different numerical methodologies for dispersion of air pollutants in an urban environment

    Energy Technology Data Exchange (ETDEWEB)

    Mumovic, D.; Crowther, J.M. [Glasgow Caledonian Univ., School of Built and Natural Environment, Glasgow (United Kingdom)]. E-mail: dmumov10@caledonian.ac.uk; Stevanovic, Z. [Univ. of Belgrade, Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro)

    2003-07-01

    Since 1950 the world population has more than doubled but meanwhile the global number of cars has increased by a factor of 10. In that same period the fraction of people living in urban areas has increased by a factor of 4. Apart from large point-sources of local air pollution, traffic induced pollution is now the most significant contributor to urban air quality in city centres, particularly for carbon monoxide, oxides of nitrogen and fine particulate matter. Until recently, pollutant dispersion in urban areas has usually been numerically investigated by using empirical models, such as the Gaussian plume model, or by extensions of this technique to line sources and multiple sources. More recently, advanced computational fluid dynamics (CFD) simulations have been attempted but have been mainly two-dimensional and often encompassing only a single street canyon. This paper provides a comprehensive, critical evaluation of dispersion of pollutants in urban areas. A three-dimensional flow model has been set-up for a staggered crossroad, using the Navier-Stokes equations and the conservation equation for species concentration. The effect of using several different turbulence models, including the k-{epsilon} model, modifications and extensions, has been investigated. Cartesian coordinates have been used in connection with the Partial Solution Algorithm (PARSOL) and Body Fitted Coordinates (BFC). The effects of several different numerical algorithms for discretization of differential equations have also been studied. More than thirty cases are analysed, and the main results are compared with wind tunnel experiments. The numerical results are presented as non-dimensional values to facilitate comparison between experimental and numerical studies. It has been shown that the numerical studies have been able to simulate the air-flow in urban areas and confirm, qualitatively, the previous field observations and wind tunnel results. This success encouraged the authors to extend

  9. Economic evaluation of health losses from air pollution in Beijing, China.

    Science.gov (United States)

    Zhao, Xiaoli; Yu, Xueying; Wang, Ying; Fan, Chunyang

    2016-06-01

    Aggravated air pollution in Beijing, China has caused serious health concern. This paper comprehensively evaluates the health losses from illness and premature death caused by air pollution in monetary terms. We use the concentration of PM10 as an indicator of the pollution since it constitutes the primary pollutant in Beijing. By our estimation, air pollution in Beijing caused a health loss equivalent to Ұ583.02 million or 0.03 % of its GDP. Most of the losses took the form of depreciation in human capital that resulted from premature death. The losses from premature deaths were most salient for people of either old or young ages, with the former group suffering from the highest mortality rates and the latter group the highest per capital losses of human capitals from premature death. Policies that target on PM10 emission reduction, urban vegetation expansion, and protection of vulnerable groups are all proposed as possible solutions to air pollution risks in Beijing.

  10. Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silwana, Bongiwe; Horst, Charlton van der [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa); SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Iwuoha, Emmanuel [SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Somerset, Vernon, E-mail: vsomerset@csir.co.za [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa)

    2015-10-01

    This paper demonstrates some aspects on the synthesis and characterisation of nanoparticles of metallic alloys using polyvinyl alcohol as a stabiliser, which combines high surface area and superior hybrid properties. The present experimental design was to synthesise a nanocomposite of reduced graphene oxide and antimony nanoparticles to be used as thin films for macro- and micro-carbon electrodes for enhancing sensing of different toxic metal pollutants in the environment. The synthetic process of reduced graphene oxide was done using the modified Hummers method while antimony pentachloride was reduced with sodium borohydride into nanoparticles of antimony using polyvinyl-alcohol as a stabiliser. The systematic investigation of morphology was done by scanning electron microscopy and high resolution-transmission electron microscope, which revealed the synthesis of a product, consists of reduced graphene oxide antimony nanoparticles. The electrochemical behaviour of the reduced graphene oxide antimony nanoparticles coated on a glassy carbon electrode was performed using voltammetric and impedance techniques. Electrochemical impedance measurements showed that the overall resistance, including the charge–transfer resistance, was smaller with reduced graphene oxide antimony nanoparticles than reduced graphene oxide and antimony nanoparticles, on their own. Evaluation of the reduced graphene oxide antimony nanoparticle sensor in the stripping voltammetry has shown a linear working range for concentration of platinum (II) between 6.0 × 10{sup −6}–5.4 × 10{sup −5} μg L{sup −1} with limit of detection of 6 × 10{sup −6} μg L{sup −1} (signal-to-noise ratio = 3), which is below the World Health Organisation guidelines for freshwater. - Highlights: • Reduced graphene oxide modified antimony nanoparticles were chemically synthesised. • TEM results show rGO-Sb nanoparticles with a diameter range of between 2 and 20 nm. • Impedance results confirm

  11. Atmosphere pollutants-their health and environmental effects

    International Nuclear Information System (INIS)

    Issa, Ali Sasi; Ibsaim, Rajab A.

    2006-01-01

    The conducted studies, continuous monitoring and measuring of the atmosphere pollution surrounding the world cities for a decade in the last century demonstrated increased rates of some pollutants, often exceeded the levels which are considered to be safe for health. Most of the dangerous pollutants in the atmosphere are suspended particles, sulfur oxides, nitrogen oxides, ozone troposphere and lead, these are the main responsible pollutant in contaminating the atmosphere leading to increase of death percentage in the major cities. For a duration of nearly a century, atmosphere pollution accidents in cities like London approved that inhaling contaminated air is dangerous and deadly sometimes. In 1880 2200 person from London inhabitants have died when coal smoke with heating and industrial gases have been accumulated to form a toxic smog of sulfur oxide gas and suspended particles in the atmosphere of the city. In this paper we discuss type of atmosphere pollutants and their health and environmental effects on human being, creatures and earth and ways of eliminating that.(Author)

  12. Removal of macro-pollutants in oily wastewater obtained from soil remediation plant using electro-oxidation process.

    Science.gov (United States)

    Zolfaghari, Mehdi; Drogui, Patrick; Blais, Jean François

    2018-03-01

    Electro-oxidation process by niobium boron-doped diamond (Nb/BDD) electrode was used to treat non-biodegradable oily wastewater provided from soil leachate contaminated by hydrocarbons. Firstly, the diffusion current limit and mass transfer coefficient was experimentally measured (7.1 mA cm -2 and 14.7 μm s -1 , respectively), in order to understand minimum applied current density. Later on, the oxidation kinetic model of each pollutant was investigated in different current densities ranged between 3.8 and 61.5 mA cm -2 . It was observed that direct oxidation was the main removal mechanism of organic and inorganic carbon, while the indirect oxidation in higher current density was responsible for nitrogen oxidation. Hydrocarbon in the form of colloidal particles could be removed by electro-flotation. On the other hand, electro-decomposition on the surface of cathode and precipitation by hydroxyl ions were the utmost removal pathway of metals. According to the initial experiments, operating condition was further optimized by central composite design model in different current density, treatment time, and electrolyte addition, based on the best responses on the specific energy consumption (SEC), chemical oxygen demand (COD), and total organic carbon (TOC) removal efficiency. Unde r optimum operating condition (current density = 23.1 mA cm -2 , time = 120 min, Ti/Pt as a cathode, and Nb/BDD as the anode), electro-oxidation showed the following removal efficiencies: COD (84.6%), TOC (68.2%), oil and grease (99%), color (87.9%), total alkalinity (92%), N tot (18%), NH 4 + (31%), Ca (66.4%), Fe (71.1%), Mg (41.4%), Mn (78.1%), P tot (75%), S (67.1%), and Si (19.1%). Graphical abstract Environmental significance statement Soil treatment facilities are rapidly grown throughout the world, especially in North America due to its intense industrialization. High water content soil in humid area like Canada produces significant amount of leachate which is

  13. Regulations Concerning Agriculture and Air Pollution

    Directory of Open Access Journals (Sweden)

    Chiara Bertora

    2010-03-01

    Full Text Available The main issues related to the atmospheric pollution are the stratospheric ozone depletion, the transboundary air pollution, the troposphere air quality and the climate change. The three last decades have seen the birth of several measures for the atmosphere safeguard. Agricultural activities play a key role in determining, preventing and mitigating atmospheric pollution. The emission to atmosphere of different ozone-depleting substances is regulated by the Montreal Protocol. The role of agriculture activity in ozone depletion is linked to the utilization of methyl bromide as soil sterilant and to the emission of nitrogen oxides and nitrous oxide, from agricultural soils. The Convention on long-range transboundary air pollution regulates the emission of several pollutants, i.e. sulphur dioxide, nitrogen oxides, ammonia, non methane volatile organic compounds, carbon monoxide, heavy metals, persistent organic pollutants, and tropospheric ozone. The agriculture sector is responsible for a large part of the emissions of ammonia and nitrogen oxides, mainly through manure management and nitrogen fertilization, and of most persistent organic pollutants, largely used in the past as insecticides and fungicides. The increase of the greenhouse gases (GHGs concentration in the atmosphere is under the control of the Kyoto Protocol. Agriculture accounts for 59-63% of global non-CO2 GHGs emissions but at the same time it contributes to the atmospheric CO2 concentration stabilisation through the substitution of fossil fuels by biofuels and the sequestration of C in soil and vegetal biomass. In this paper we provide an outline of the numerous scientific and legislative initiatives aimed at protecting the atmosphere, and we analyse in detail the agriculture sector in order to highlight both its contribution to atmospheric pollution and the actions aimed at preventing and mitigating it.

  14. Evaluation of the Abidjan lagoon pollution BRITON BI, G H; *YAO, B ...

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: The Abidjan lagoon pollution evaluation via the physicochemical and biochemical characteristics of effluents pouring in it, in order to take decision concerning the installation of a treatment station was reported. All samples of effluents studied contain high quantity of organic and mineral pollutants except for.

  15. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    Science.gov (United States)

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption.

  16. Instrumentation for Air Pollution Monitoring

    Science.gov (United States)

    Hollowell, Craig D.; McLaughlin, Ralph D.

    1973-01-01

    Describes the techniques which form the basis of current commercial instrumentation for monitoring five major gaseous atmospheric pollutants (sulfur dioxide, oxides of nitrogen, oxidants, carbon monoxide, and hydrocarbons). (JR)

  17. Ecophysiological evaluation of tree species for biomonitoring of air quality and identification of air pollution-tolerant species.

    Science.gov (United States)

    Sen, Abhishek; Khan, Indrani; Kundu, Debajyoti; Das, Kousik; Datta, Jayanta Kumar

    2017-06-01

    Identification of tree species that can biologically monitor air pollution and can endure air pollution is very much important for a sustainable green belt development around any polluted place. To ascertain the species, ten tree species were selected on the basis of some previous study from the campus of the University of Burdwan and were studied in the pre-monsoon and post-monsoon seasons. The study has been designed to investigate biochemical and physiological activities of selected tree species as the campus is presently exposed to primary air pollutants and their impacts on plant community were observed through the changes in several physical and biochemical constituents of plant leaves. As the plant species continuously exchange different gaseous pollutants in and out of the foliar system and are very sensitive to gaseous pollutants, they serve as bioindicators. Due to air pollution, foliar surface undergoes different structural and functional changes. In the selected plant species, it was observed that the concentration of primary air pollutants, proline content, pH, relative water holding capacity, photosynthetic rate, and respiration rate were higher in the pre-monsoon than the post-monsoon season, whereas the total chlorophyll, ascorbic acid, sugar, and conductivity were higher in the post-monsoon season. From the entire study, it was observed that the concentration of sulfur oxide (SO x ), nitrogen oxide (NO x ), and suspended particulate matter (SPM) all are reduced in the post-monsoon season than the pre-monsoon season. In the pre-monsoon season, SO x , NO x , and SPM do not have any significant correlation with biochemical as well as physiological parameters. SPM shows a negative relationship with chlorophyll 'a' (r = -0.288), chlorophyll 'b' (r = -0.267), and total chlorophyll (r = -0.238). Similarly, chlorophyll a, chlorophyll b, and the total chlorophyll show negative relations with SO x and NO x (p tree species according to their air

  18. Research on evaluation of third-party governance operation services for environmental pollution

    Science.gov (United States)

    Xu, Bingsheng; Ling, Lin; Jin, Huang

    2017-11-01

    This paper focuses on the evaluation of third-party governance operation services for environmental pollution, and determines the evaluation indicator system composed of 5 primary indicators as the basic competence of enterprise, operation of equipment, technique economics, environmental benefit and management level, and 26 secondary indicators via policies and regulations, standards, literature research and expert consultation in combination with the composition elements, service value judgment factors and full-life cycle of the work, providing theoretical support for the effect evaluation of third-governance over the environmental pollution in China. Then, the hierarchical analytic matrix is formed by analyzing the environmental pollution governance evaluation indicator system via analytic hierarchy process and scoring the importance of various indicators by experts by applying the Delphi method. The feature vector of the matrix is then calculated to obtain the weight of each indicator and verify the effectiveness of the Delphi method and obtain the comprehensive weight by judging the consistency of the matrix, so as to finally determine the overall ordering level of the importance of secondary indicators.

  19. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  20. Signaling in a polluted world: oxidative stress as an overlooked mechanism linking contaminants to animal communication

    Directory of Open Access Journals (Sweden)

    Valeria Marasco

    2016-08-01

    Full Text Available The capacity to communicate effectively with other individuals plays a critical role in the daily life of an individual and can have important fitness consequences. Animals rely on a number of visual and non-visual signals, whose production brings costs to the individual. The theory of honest signaling states that these costs are higher for low than for high-quality individuals, which prevents cheating and makes signals, such as skin and plumage colouration, indicators of individual’s quality or condition. The condition-dependent nature of signals makes them ideally suited as indicators of environmental quality, implying that signal production might be affected by contaminants. In this mini-review article, we have made the point that oxidative stress (OS is one overlooked mechanism linking exposure to contaminants to signaling because (i many contaminants can influence the individual’s oxidative balance, and (ii generation of both visual and non-visual signals is sensitive to oxidative stress. To this end, we have provided the first comprehensive review on the way both non-organic (heavy metals, especially mercury and organic (persistent organic pollutants contaminants may influence either OS or sexual signaling. We have also paid special attention to emerging classes of pollutants like brominated flame-retardants and perfluoroalkoxy alkanes in order to stimulate research in this area. We have finally provided suggestions and warnings for future work on the links among OS, sexual signaling and contaminant exposure.

  1. Problem of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Berge, H

    1964-01-01

    The effects of air pollutants on plants are dependent on and modified by climatic, orographic, edaphic, and biotic factors; the synergism of pollutants; and differences in the sensitivity of individual plants and species. Sulfur dioxide and fluorine are the most dangerous pollutants for plants, but ammonia, hydrogen sulfide, nitrogen oxides, nitric acid, chlorine, hydrochloric acid, bromine, iodine, hydrocyanic acid, ethylene, carbon monoxide, hydrocarbons, mercaptans, asphalt and tar vapors, mercury, and selenium can also inflict damage. Young leaves, sensitive to H/sub 2/S, nitrogen oxides, Cl, HCl, HCN, mercaptans, Hg, and sulfuric acid, are more resistant to SO/sub 2/, gaseous F compounds, ethylene, and selenium than older leaves. Damage is most serious when pollutants enter leaves simultaneously or alternately through epidermis and stomata. The yellow-to-brown coloration of leaves is usually a result of the precipitation of tanning. Plasmolysis is caused by SO/sub 2/, gaseous F compounds, ammonia, nitrogen oxides, HNO/sub 3/, Br, asphalt and tar vapors, while photosynthesis is stimulated by traces of ammonia, HNO/sub 3/, and saturated hydrocarbons. Increased transpiration due to SO/sub 2/ and HCl and elevated permeability and osmosis due to SO/sub 2/ were observed. 9 references, 12 figures, 1 table.

  2. Evaluation of environmental impact produced by different economic activities with the global pollution index.

    Science.gov (United States)

    Zaharia, Carmen

    2012-07-01

    The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms). The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index (I (GP)*) for quantification of environmental impacts is applied. Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ES(i)) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index (I (GP)*). The I (GP)* values for each productive unit (i.e. 1.664-2.414) correspond to an 'environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects'. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control.

  3. Comparison of different test methods to assess thermal stresses of metal oxide surge arresters under pollution conditions

    International Nuclear Information System (INIS)

    Bargigia, A.; de Nigris, M.; Pigini, A.; Sironi, A.

    1992-01-01

    The report deals with the research conducted by ENEL, the Italian Electricity Board, to assess the performance of zinc oxide surge arresters under pollution condition, with special reference to the consequent thermal stress on internal active parts which can affect the energy handling capabality of the arrester and may lead, in particular conditions, even to thermal runaway

  4. Atlanta Rail Yard Study: Evaluation of local-scale air pollution ...

    Science.gov (United States)

    Intermodal rail yards are important nodes in the freight transportation network, where freight is organized and moved from one mode of transport to another, critical equipment is serviced, and freight is routed to its next destination. Rail yard environments are also areas with multiple sources of air pollutant emissions (e.g., heavy-duty vehicles, locomotives, cranes), which may affect local air quality in residential areas nearby. In order to understand emissions and related air quality impacts, two field studies took place over the time span of 2010-2012 to measure air pollution trends in close proximity to the Inman and Tilford rail yard complex in Atlanta, GA. One field study involved long-term stationary monitoring of black carbon, fine particles, and carbon dioxide at two stations nearby the rail yard. In addition, a second field study performed intensive mobile air monitoring for a one month period in the summer of 2012 at a roadway network surrounding the rail yard complex and measured a comprehensive array of pollutants. Real-time mobile particulate measurements included particle counts, extinction coefficient, black carbon via light-absorption and particle incandescence, and particle composition derived by aerosol mass spectrometry. Gas-phase measurements included oxides of nitrogen, sulfur dioxide, carbon dioxide, and air toxics (e.g., benzene). Both sets of measurements determined detectable local influence from rail yard-related emissions.

  5. AIR POLLUTION INFLUENCES ON EXHALED NITRIC OXIDE AMONG PEOPLE WITH TYPE II DIABETES.

    Science.gov (United States)

    Peng, Cheng; Luttmann-Gibson, Heike; Zanobetti, Antonella; Cohen, Allison; De Souza, Celine; Coull, Brent A; Horton, Edward S; Schwartz, Joel; Koutrakis, Petros; Gold, Diane R

    2016-04-01

    In a population with type 2 diabetes mellitus (T2DM), we examined associations of short-term air pollutant exposures with pulmonary inflammation, measured as fraction of exhaled pulmonary nitric oxide (FeNO). Sixty-nine Boston Metropolitan residents with T2DM completed up to 5 bi-weekly visits with 321 offline FeNO measurements. We measured ambient concentrations of particle mass, number and components at our stationary central site. Ambient concentrations of gaseous air pollutants were obtained from state monitors. We used linear models with fixed effects for participants, adjusting for 24-hour mean temperature, 24-hour mean water vapor pressure, season, and scrubbed room NO the day of the visit, to estimate associations between FeNO and interquartile range increases in exposure. Interquartile increases in the 6-hour averages of black carbon (BC) (0.5 μg/m 3 ) and particle number (PN) (1,000 particles/cm 3 ) were associated with increases in FeNO of 3.84% (95% CI 0.60% to 7.18%) and 9.86 % (95% CI 3.59% to 16.52%), respectively. We also found significant associations of increases in FeNO with increases in 24-hour moving averages of BC, PN and nitrogen oxides (NOx). Recent studies have focused on FeNO as a marker for eosinophilic pulmonary inflammation in asthmatic populations. This study adds support to the relevance of FeNO as a marker for pulmonary inflammation in diabetic populations, whose underlying chronic inflammatory status is likely to be related to innate immunity and proinflammatory adipokines.

  6. Thermal oxidation for air toxics control

    International Nuclear Information System (INIS)

    Pennington, R.L.

    1991-01-01

    The Administration projects annual expenditures of $1.1 billion by 1995, increasing to $6.7 billion by 2005, in order to comply with the new Clean Air Act Title III hazardous air pollutant requirements. The Title III requirements include 189 hazardous air pollutants which must be reduced or eliminated by 2003. Twenty of the 189 listed pollutants account for approximately 75 percent of all hazardous air pollutant emissions. Ninety percent of these 20 pollutants can be effectively controlled through one or mote of the thermal oxidation technologies. This paper reports that the advantages and disadvantages of each thermal oxidation technology vary substantially and must be reviewed for each application in order to establish the most effective thermal oxidation solution. Effective thermal oxidation will meet MACT (maximum achievable control technology) emission standards

  7. Effects of air pollution on the skin: A review.

    Science.gov (United States)

    Puri, Poonam; Nandar, Shashi Kumar; Kathuria, Sushruta; Ramesh, V

    2017-01-01

    The increase in air pollution over the years has had major effects on the human skin. Various air pollutants such as ultraviolet radiation, polycyclic aromatic hydrocarbons, volatile organic compounds, oxides, particulate matter, ozone and cigarette smoke affect the skin as it is the outermost barrier. Air pollutants damage the skin by inducing oxidative stress. Although human skin acts as a biological shield against pro-oxidative chemicals and physical air pollutants, prolonged or repetitive exposure to high levels of these pollutants may have profound negative effects on the skin. Exposure to ultraviolet radiation has been associated with extrinsic skin aging and skin cancers. Cigarette smoke contributes to premature aging and an increase in the incidence of psoriasis, acne and skin cancers. It is also implicated in allergic skin conditions such as atopic dermatitis and eczema. Polyaromatic hydrocarbons are associated with extrinsic skin aging, pigmentation, cancers and acneiform eruptions. Volatile organic compounds have been associated with atopic dermatitis. Given the increasing levels of air pollution and its detrimental effects on the skin, it is advisable to use strategies to decrease air pollution.

  8. UV light and urban pollution: bad cocktail for mosquitoes?

    Science.gov (United States)

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud'homme, Sophie M; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane

    2014-01-01

    Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species-ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis-Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on mosquitoes, including tolerance to three insecticides (imidacloprid, propoxur and temephos), cell damage and response to oxidative stress. Taken together, our results suggest that UV and pollution, individually or in combination, are abiotic parameters that can affect the physiology and insecticide tolerance of mosquitoes; but the complexity of their direct effect and of their interaction will require further

  9. Health Effects of Air Pollution: A Historical Review and Present Status.

    Science.gov (United States)

    Shima, Masayuki

    2017-01-01

    During the 1960s, the concentrations of air pollutants, particularly that of sulfur dioxide (SO 2 ), were extremely high in many industrial cities in Japan, and the prevalence of bronchial asthma and chronic bronchitis increased among residents living in the cities. To evaluate the effects of air pollution on respiratory diseases, many epidemiological studies were conducted, and the findings played an important role in the regulatory control of air pollution. After 1970, the concentration of SO 2 has decreased markedly, and its adverse health effects have been minimized. On the other hand, the increasing automobile traffic in Japan has caused considerable increases in concentrations of air pollutants, such as nitrogen oxides (NOx) and particulate matter (PM). The large-scale epidemiological studies conducted in Japan showed that traffic-related air pollution was associated with the development of asthma in school children and the persistence of asthmatic symptoms in preschool children. In recent years, however, the concentrations of NOx and PM have gradually decreased, since control measures based on the Automobile NOx/PM law were enforced in 2001. At present, the adverse health effects of airborne fine particulate matter (PM 2.5 ) and photochemical oxidants have become a major concern. These air pollutants consist of not only emissions from primary sources but also secondary formations in air, and have spread worldwide. Both short- and long-term exposure to these air pollutants are reported to increase the risk of respiratory and cardiovascular diseases in the population. Therefore, global efforts are necessary to reduce the health risk of these air pollutants.

  10. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  11. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: Impact of air pollution and genetic polymorphisms

    Czech Academy of Sciences Publication Activity Database

    Bagryantseva, Yana; Novotná, Božena; Rössner ml., Pavel; Chvátalová, Irena; Milcová, Alena; Švecová, Vlasta; Lněničková, Zdena; Solanský, I.; Šrám, Radim

    2010-01-01

    Roč. 199, č. 1 (2010), s. 60-68 ISSN 0378-4274 R&D Projects: GA MŽP(CZ) SP/1B3/8/08 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * bud drivers * oxidative stress Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.581, year: 2010

  12. The impact of climate upon variation in air pollution using a synoptic climatological approach

    International Nuclear Information System (INIS)

    Powley, J.F.

    1991-01-01

    The Environmental Protection Agency has set national ambient air quality standards for six different pollutants: sulfur dioxide, nitrogen dioxide, ozone, total suspended particulates, nitrogen oxides, and oxidants. The goal of this study was to apply an automatic air mass-based synoptic methodology to surface weather data in order to evaluate the impact of climate on the above pollutant concentrations in Philadelphia, PA; Dallas, TX; and St. Louis, MO. A group of synoptic categories depicting the summer and winter weather in each city was developed using principal components analysis and average linkage clustering. The concentrations of the six air pollutants were then related to the synoptic weather categories. The synoptic categories and associated weather conditions exhibiting particularly high pollution concentrations were analyzed in detail. Ultimately, the procedure was validated for prediction of future pollutant levels. The results from this study support the conclusion that there is a close link between synoptic-air mass combinations and various pollutant concentrations. The climate-pollutant relationship seems to change from summer to winter in the three cities. It appears that climatic thresholds could be found for high levels of various air pollutants. Similar synoptic conditions appear to lead to high accumulations of all six pollutants, although the transportation-related pollutants showed more dependency on the level of solar radiation. These pollutants seem to be more significant in the southern city of Dallas. The synoptic methodology proved to be of assistance in developing a weather/pollution watch-warning system; such a system would be designed to signal impending synoptic conditions which could significantly raise pollutant concentrations

  13. Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide® TiO2 P25

    International Nuclear Information System (INIS)

    Dillert, Ralf; Stötzner, Julia; Engel, Astrid; Bahnemann, Detlef W.

    2012-01-01

    Highlights: ► The photocatalytic oxidation of nitrogen(II) oxide at the TiO 2 surface was studied. ► The effect of the UV(A) light intensity on the reaction rate was evaluated. ► The effect of the NO concentration on the reaction rate was evaluated. ► A mechanistic model for the heterogeneous NO oxidation is presented. ► A rate law describing the influence of NO concentration and light intensity is given. - Abstract: Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is the light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material, e.g., paints, roof tiles, or pavement stones. Herein, results of an investigation concerning the photocatalytic oxidation of nitrogen(II) oxide (NO) in the presence of molecular oxygen and UV(A) irradiated TiO 2 powder are presented. The standard operating procedure described in ISO 22197-1 which was developed to characterize the photocatalytic activity of air-cleaning products was successfully applied to determine the photocatalytic activity of a bare TiO 2 powder. The experimental data reveal that at the light intensity stipulated by the operation procedure the amount of NO removed from the gas phase by photocatalytic oxidation is strongly affected by small changes of this light intensity as well as of the NO concentration in the gas stream in the photoreactor. Therefore, these parameters have to be controlled very carefully. Based upon the experimental data obtained in this study a rate law for the photocatalytic NO oxidation inside the photoreactor is derived.

  14. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Bender-Koch, C.; Starckpoole, M. M.

    2000-01-01

    Stabilization of air pollution control residues by coprecipitation with ferrous iron and subsequent thermal treatment (at 600 and 900 °C) has been examined as a means to reduce heavy metal leaching and to improve product stability. Changes in mineralogy and metal binding were analyzed using various...... analytical and environmental techniques. Ferrihydrite was formed initially but transformed upon thermal treatment to more stable and crystalline iron oxides (maghemite and hematite). For some metals leaching studies showed more substantial binding after thermal treatment, while other metals either....... Thermal treatment of the stabilized residues produced structures with an inherently better iron oxide stability. However, the concentration of metals in the leachate generally increased as a consequence of the decreased solubility of metals in the more stable iron oxide structure....

  15. Investigation and Evaluation of Heavy Metals Pollution of Agricultural Soils Near a Steel Plant

    Directory of Open Access Journals (Sweden)

    XIE Tuan-hui

    2018-02-01

    Full Text Available The pollution of heavy metals in farmland around a steel plant in the west of Fujian Province was investigated. The pollution index method, principal component analysis and factor analysis on the pollution of Cr, Pb, Cd, Ni, Cu, Zn and As in the soils were carried out to clarify the pollution status, the main source, the degree, and the distribution of the heavy metals pollution in the soil. The secondary standards for acidic agricultural soils of "soil environmental quality standard"(GB 15618-1995were used as the evaluation criterion. The single factor evaluation results showed that the pollution of soil by Cd and Zn in the investigated area was widespread and serious and the points over standard rate was 100% and 95.5% respectively, while the pollution by Pb, Cu and As was slight and the points over standard rate was 29.6%,15.9% and 6.8% respectively. The soils were not polluted by Cr and Ni. The principal component analysis and factor analysis showed that the correlation between Pb, Cd, Cu, Zn and As was significant and homologous. Therefore, the pollution of Pb, Cd, Cu, Zn and As of the soils should be mainly attributed to the pollutants emitted from the steel plant. The correlation between Cr and Ni was also significant and homologous. It was deduced that Cr and Ni in the soils were largely originated from the soils themselves. The comprehensive pollution degree of the heavy metals in the soils decreased as the distance between the steel plant and farmland increasing. The soils of the fields near the entrance of irrigation water from the waste water of the steel plant were more seriously polluted.

  16. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    Full Text Available While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  17. Fenton Process Coupled to Ultrasound and UV Light Irradiation for the Oxidation of a Model Pollutant

    Directory of Open Access Journals (Sweden)

    Karen E. Barrera-Salgado

    2016-01-01

    Full Text Available The Fenton process coupled to photosonolysis (UV light and Us, using Fe2O3 catalyst supported on Al2O3, was used to oxidize a model pollutant like acid green 50 textile dye (AG50. Dye degradation was followed by AG50 concentration decay analyses. It was observed that parameters like iron content on a fixed amount of catalyst supporting material, catalyst annealing temperature, initial dye concentration, and the solution pH influence the overall treatment efficiency. High removal efficiencies of the model pollutant are achieved. The stability and reusability tests of the Fe2O3 catalyst show that the catalyst can be used up to three cycles achieving high discoloration. Thus, this catalyst is highly efficient for the degradation of AG50 in the Fenton process.

  18. Evaluation of noise pollution level based upon community exposure and response data

    Science.gov (United States)

    Edmiston, R. D.

    1972-01-01

    The results and procedures are reported from an evaluation of noise pollution level as a predictor of annoyance, based on aircraft noise exposure and community response data. The measures of noise exposure presented include composite noise rating, noise exposure forecast, noise and number index. A proposed measure as a universal noise exposure measure for noise pollution level (L sub NP) is discussed.

  19. Evaluation of pollution status of heavy metals in the groundwater ...

    African Journals Online (AJOL)

    Evaluation of pollution status of heavy metals in the groundwater system around ... cadmium (Cd), mercury (Hg), manganese (Mn), lead (pb) and arsenic (As) as ... Water samples (from bore holes, hand-dug wells, ponds and streams) were ...

  20. Modification by antioxidant supplementation of changes in human lung function associated with air pollutant exposure: A systematic review

    Directory of Open Access Journals (Sweden)

    Chow Katherine S

    2011-07-01

    Full Text Available Abstract Background Outdoor air pollution, given its demonstrated negative effects on the respiratory system, is a growing public health concern worldwide, particularly in urban cities. Human exposure to pollutants such as ozone, nitrogen oxides, combustion-related particulate matter and oxides of sulfur is responsible for significant cardiopulmonary morbidity and mortality in both adults and children. Several antioxidants have shown an ability to partially attenuate the negative physiological and functional impacts of air pollutants. This study systematically presents current data on the potential benefits of antioxidant supplementation on lung function outcomes associated with air pollutant exposures in intact humans. Methods Electronic databases (MEDLINE, EMBASE, BIOSIS Previews, Web of Sciences, Environmental Sciences & Pollution Management and TOXNET were systematically searched for all studies published up to April 2009. Search terms relating to the concepts of respiratory tract diseases, respiratory function tests, air pollution, and antioxidants were used. Data was systematically abstracted from original articles that satisfied selection criteria for inclusion. For inclusion, the studies needed to have evaluated human subjects, given supplemental antioxidants, under conditions of known levels of air pollutants with measured lung function before and after antioxidant administration and/or air pollution exposure. Selected studies were summarized and conclusions presented. Results Eight studies investigated the role of antioxidant supplementation on measured lung function outcomes after subject exposure to air pollutants under controlled conditions; 5 of these studies concluded that pollutant-induced airway hyper-responsiveness and diminution in lung function measurements were attenuated by antioxidant supplementation. The remaining five studies took place under ambient (uncontrolled exposures and unanimously concluded that antioxidant

  1. Effect of air and water pollutants on human health

    Energy Technology Data Exchange (ETDEWEB)

    Rondia, D.

    1973-01-01

    Toxicological and epidemiological studies on the effects of air pollutants on human health are reviewed. The epidemiological approach is based on the study of the human population actually exposed to air pollutants in daily life. Levels of increasing toxicity were established for the commonest air pollutants such as lead, sulfur dioxide, nitrogen oxides, and various allergens. The effects of pollution on immunology and adaptation, of carbon monoxide on carboxyhemoglobin levels, of sulfur dioxide on mortality and morbidity in urban areas, of nitrogen oxides on electrolytes and glutathion, of ozone and NO/sub x/ on respiratory diseases, and of pollutants on chronic bronchitis are reviewed.

  2. Advances in Multi-Pollutant Control

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-11-01

    Pollutants, such as nitrogen oxides (nitrogen dioxide (NO2) and nitric oxide (NO)), sulphur dioxide (SO2), sulphur trioxide (SO3), carbon dioxide (CO2), mercury (Hg) and particulate matter (PM), are formed when coal is combusted in a power plant boiler. With the concern over the environmental and health consequences of these pollutants, legislation and regulations have been implemented limiting the amounts that can be emitted to the atmosphere. Emission control systems on conventional coal-fired power plants typically employ technologies designed to remove one specific pollutant.These are then combined, in series, to remove several pollutants in order to meet the emission regulations. This report discusses multi-pollutant systems which remove two or more of the principal regulated pollutants (SO2, NOx, mercury, particulate matter and CO2) in a single reactor or a single system designed for the purpose. The emphasis is on commercial or near commercial processes, and those that are under active development. Ways to improve the co-benefit removal of oxidised mercury in conventional limestone wet scrubbers, spray dry scrubbers and circulating dry scrubbers are also included. Multi-pollutant systems can have lower capital and operating costs than a series of traditional systems to remove the s ame number of pollutants. Nevertheless, many of the multi-pollutant technologies rely on by-product sales to be economically competitive. Their footprint is often smaller than conventional single pollutant counterparts treating a similar volume of flue gas, making them easier to install in retrofit applications. Some of the systems use modular designs that ensures easy scalability for larger boilers.

  3. Protective Effect Of Garlic Oil On Some Neurotransmitters And Physiological Parameters In Male Rats Exposed To electro pollution

    International Nuclear Information System (INIS)

    Ali, E.A.; Ali, E.A.

    2013-01-01

    Increasing exposure to electro pollution has become inevitable for people living in civilized and industrialized environments. This pollution can increase the production and life-span of free radicals which are causative factors in the oxidative damage of cellular structures and functions. This study evaluated the effects of exposure to electro pollution emitted from mobile base station on the oxidative status parameters, neurotransmitters, glycemic index and lipid profile in male rats and the protective role of garlic oil. Twenty four male albino rats were divided into three equal groups; group 1 served as control, group 2 exposed for 24 hr to electro pollution emitted from mobile base station founded on a roof of building for 4 weeks and group 3 exposed to electro pollution as group 2 then supplemented by stomach tube with garlic oil (250 mg/kg) for 4 weeks. Exposure to electro pollution caused significant increases in malondialdehyde (MDA) and nitric oxide (NO) while significant decreases in reduced glutathione (GSH) and catalase (CAT) were observed. Significant decrease in serotonin (5-HT) and significant increase in dopamine (DA) were also noticed with significant increase in serum glucose and significant decrease in insulin hormone. In addition, the lipid profile showed significant decrease in total cholesterol (TC) and high density lipoprotein-cholesterol (HDL-C) and significant increase in triglycerides (TG) and low density lipoprotein-cholesterol (LDL-C). Garlic oil supplementation ameliorates almost these disturbances leading to the conclusion that garlic oil exhibited significant protection against oxidative stress, neuro degeneration, hyperglycemia and hyperlipidaemia produced by electro pollution

  4. Ozone Pollution

    Science.gov (United States)

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  5. INDOOR AIR POLLUTION

    OpenAIRE

    Ahmet Soysal; Yucel Demiral

    2007-01-01

    The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas...

  6. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.

    Science.gov (United States)

    Thomson, Errol M; Kumarathasan, Prem; Calderón-Garcidueñas, Lilian; Vincent, Renaud

    2007-10-01

    Recent work suggests that air pollution is a risk factor for cerebrovascular and neurodegenerative disease. Effects of inhaled pollutants on the production of vasoactive factors such as endothelin (ET) and nitric oxide (NO) in the brain may be relevant to disease pathogenesis. Inhaled pollutants increase circulating levels of ET-1 and ET-3, and the pituitary is a potential source of plasma ET, but the effects of pollutants on the expression of ET and NO synthase genes in the brain and pituitary are not known. In the present study, Fischer-344 rats were exposed by nose-only inhalation to particles (0, 5, 50mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Real-time reverse transcription polymerase chain reaction was used to measure mRNA levels in the cerebral hemisphere and pituitary 0 and 24 h post-exposure. Ozone inhalation significantly increased preproET-1 but decreased preproET-3 mRNAs in the cerebral hemisphere, while increasing mRNA levels of preproET-1, preproET-3, and the ET-converting enzyme (ECE)-1 in the pituitary. Inducible NO synthase (iNOS) was initially decreased in the cerebral hemisphere after ozone inhalation, but increased 24 h post-exposure. Particles decreased tumour necrosis factor (TNF)-alpha mRNA in the cerebral hemisphere, and both particles and ozone decreased TNF-alpha mRNA in the pituitary. Our results show that ozone and particulate matter rapidly modulate the expression of genes involved in key vasoregulatory pathways in the brain and pituitary, substantiating the notion that inhaled pollutants induce cerebrovascular effects.

  7. Global air pollution crossroads over the Mediterranean

    NARCIS (Netherlands)

    Lelieveld, J; Berresheim, H; Borrmann, S; Crutzen, P J; Dentener, F J; Fischer, H; Feichter, J; Flatau, P J; Heland, J; Holzinger, R; Korrmann, R; Lawrence, M G; Levin, Z; Markowicz, K M; Mihalopoulos, N; Minikin, A; Ramanathan, V; De Reus, M; Roelofs, G J; Scheeren, H A; Sciare, J; Schlager, H; Schultz, M; Siegmund, P; Steil, B; Stephanou, E G; Stier, P; Traub, M; Warneke, C; Williams, J; Ziereis, H

    2002-01-01

    The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north.

  8. Urban traffic pollution reduction for sedan cars using petrol engines by hydro-oxide gas inclusion.

    Science.gov (United States)

    Al-Rousan, Ammar A; Alkheder, Sharaf; Musmar, Sa'ed A

    2015-12-01

    Petrol cars, in particular nonhybrid cars, contribute significantly to the pollution problem as compared with other types of cars. The originality of this article falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/hr). Results indicated that through using hydro-oxy gas, a noticeable reduction in pollution was recorded. Oxygen (O2) percentage has increased by about 2.5%, and nitric oxide (NO) level has been reduced by about 500 ppm. Carbon monoxide (CO) has decreased by about 2.2%, and also CO2 has decreased by 2.1%. It's worth mentioning that for hybrid system in cars at speeds between 10 and 50 km/hr, the emission percentage change is zero. However, hybrid cars are less abundant than petrol cars. The originality of this paper falls in the direction of using hydro-oxy gas to reduce pollution from petrol car engines. Experiments were performed in city areas at low real speeds, with constant engine speeds in the average of 2500 rpm and at variable velocity ratios (first speed was 10-20 km/hr, second speed was 20-35 km/hr, and third speed was 35-50 km/h).

  9. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  10. Evaluation of urban air pollution impact. Brest and Nantes impact at long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Brest et Nantes impact a long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The assessment for Brest and Nantes of the health impact in 1999 of chronic exposure to air pollution relies on four stages: health outcome identification, the selection of exposure-response functions, exposure assessment and risk characterization. The study characterizes: - the health gain due to a 25% decrease in air pollution levels; - the expected health impact of a 15% rise in air pollution levels. The results give the number of deaths attributable to air pollution. As for the health gain, the gain in days of life expectancy is also calculated. The study for Brest relies on one single exposure-response function. Concerning Nantes, the air control network is more complete and allows to use four exposure-response functions. The health gain due to a 25% decrease in air pollution levels is interpreted as a prudent evaluation of the health impact of air pollution. The estimated number of deaths due to the impact is around 38 (23 - 53) for Brest and around 40 (14 - 65) for Nantes. It means a decrease in the lifespan of 48 (29 - 68) days for Brest and 51 (17 - 84) days for Nantes. The uncertainty about exposure evaluation, the use of American exposure-response functions and of strong hypotheses to calculate the lifespan reduction generate more errors and uncertainty than for short term health impact assessment. (author)

  11. Wastewater treatment processes for the removal of emerging organic pollutants

    Directory of Open Access Journals (Sweden)

    Ainhoa Rubio Clemente

    2013-12-01

    Full Text Available Emerging organic pollutants form a very heterogeneous group of substances that have negative effects on aquatic organisms, so they should be removed from the environment. Unfortunately, conventional processes in wastewater treatment plants, especially biological ones, are inefficient in the degradation of these substances. It is therefore necessary to evaluate and optimize the effectiveness of the treatments, including advanced oxidation and membrane filtration processes. However, both techniques have drawbacks that may limit their stand-alone application, so it is proposed that the best solution may be to combine these technologies with biological processes to treat wastewater contaminated with emerging organic pollutants.

  12. A system for evaluating the impact of noise pollution on the population's health.

    Science.gov (United States)

    Bressane, Adriano; Mochizuki, Patricia Satie; Caram, Rosana Maria; Roveda, José Arnaldo Frutuoso

    2016-05-01

    The aim of this study was to develop a support system for the evaluation of noise pollution, applied to the central urban area of Rio Claro, São Paulo State, Brazil. Data were obtained from noise measurements and interviews with the population, generating the following indicators: equivalent sound level (Leq ), traffic noise index (LTNI ), and a participatory diagnosis (Dp ), integrated through a fuzzy inference system (FIS). The proposed system allowed classifying the measurement points according to the degree of impact of noise pollution on the population's health (IPS ) in the study area. Impact was considered significant in 31.4% of the measurement points and very significant in 62.9%. The FIS can be adjusted to local conditions, allowing generalization and thus also supporting noise pollution evaluation and respective environmental noise management in other geographic areas.

  13. EVALUATING KEY ENVIRONMENTAL RISK FACTORS FOR POLLUTION AT INTERNATIONAL PORTS IN TAIWAN

    Directory of Open Access Journals (Sweden)

    Kuan-Hao Chang

    2017-01-01

    Full Text Available The main purpose of this paper is to use the fuzzy analytic hierarchy process (FAHP approach to evaluate the key environmental risk factors for pollution at international ports in Taiwan. Relying on the literature and experts’ opinions, a hierarchical structure with three risk aspects and thirteen risk factors is first constructed, and a FAHP model then proposed. Based on data from the AHP experts’ questionnaires, we use the FAHP approach to determine key environmental risk factors. Finally, the results show that: (1 Air pollution is the most important aspect of environmental pollution at international ports in Taiwan. (2 In order of relative importance, the top five key environmental risk factors for pollution at international ports in Taiwan are the oil leaks from ships, volatile organic compounds (VOCs, exhaust emissions from ships at berth, harmful coatings on ships' hulls, and ships' failure to use low-pollution fuel. Furthermore, some discussions are provided for port authority in Taiwan.

  14. Plant response to chronic exposure to low levels of oxidant-type pollution

    Energy Technology Data Exchange (ETDEWEB)

    Feder, W.A.

    1970-01-01

    Cultivars of geranium and carnation exhibit a reduction of side branching, a retardation of floral initiation, and a decrease in floral productivity when exposed daily for 5-7 h to 0.1 ppm ozone for 1-3 months. These plants also exhibit a reduction in leaf size, an increase in internode length, a progressive destruction of leaf tissue and eventual defoliation in the case of geranium. Cultivars of petunia exposed to chronic low levels of oxidant are slower to flower and bear fewer flowers than those same cultivars grown in charcoal-filtered air from the same source. These plant effects are of special interest because they occur in the presence of pollutant levels encountered daily in areas surrounding US metropolitan centers.

  15. Removal of organic pollutants from produced water using Fenton oxidation

    Directory of Open Access Journals (Sweden)

    Afzal Talia

    2018-01-01

    Full Text Available Produced water (PW is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L, [H2O2]/[Fe2+] molar ratio (2 to 75, and reaction time (30 to 200 minutes, on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O and hydrogen peroxide (H2O2 were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  16. Removal of organic pollutants from produced water using Fenton oxidation

    Science.gov (United States)

    Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul

    2018-03-01

    Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  17. Ambient air pollution and semen quality.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  18. Oxidative stress and inflammation mediate the effect of air pollution on cardio- and cerebrovascular disease: A prospective study in nonsmokers.

    Science.gov (United States)

    Fiorito, Giovanni; Vlaanderen, Jelle; Polidoro, Silvia; Gulliver, John; Galassi, Claudia; Ranzi, Andrea; Krogh, Vittorio; Grioni, Sara; Agnoli, Claudia; Sacerdote, Carlotta; Panico, Salvatore; Tsai, Ming-Yi; Probst-Hensch, Nicole; Hoek, Gerard; Herceg, Zdenko; Vermeulen, Roel; Ghantous, Akram; Vineis, Paolo; Naccarati, Alessio

    2018-04-01

    Air pollution is associated with a broad range of adverse health effects, including mortality and morbidity due to cardio- and cerebrovascular diseases (CCVD), but the molecular mechanisms involved are not entirely understood. This study aims to investigate the involvement of oxidative stress and inflammation in the causal chain, and to identify intermediate biomarkers that are associated retrospectively with the exposure and prospectively with the disease. We designed a case-control study on CCVD nested in a cohort of 18,982 individuals from the EPIC-Italy study. We measured air pollution, inflammatory biomarkers, and whole-genome DNA methylation in blood collected up to 17 years before the diagnosis. The study sample includes all the incident CCVD cases among former- and never-smokers, with available stored blood sample, that arose in the cohort during the follow-up. We identified enrichment of altered DNA methylation in "ROS/Glutathione/Cytotoxic granules" and "Cytokine signaling" pathways related genes, associated with both air pollution (multiple comparisons adjusted p for enrichment ranging from 0.01 to 0.03 depending on pollutant) and with CCVD risk (P = 0.04 and P = 0.03, respectively). Also, Interleukin-17 was associated with higher exposure to NO 2 (P = 0.0004), NO x (P = 0.0005), and CCVD risk (OR = 1.79; CI 1.04-3.11; P = 0.04 comparing extreme tertiles). Our findings indicate that chronic exposure to air pollution can lead to oxidative stress, which in turn activates a cascade of inflammatory responses mainly involving the "Cytokine signaling" pathway, leading to increased risk of CCVD. Inflammatory proteins and DNA methylation alterations can be detected several years before CCVD diagnosis in blood samples, being promising preclinical biomarkers. Environ. Mol. Mutagen. 59:234-246, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Air pollution

    International Nuclear Information System (INIS)

    Feugier, A.

    1996-01-01

    The air pollution results from the combustion of petroleum products, natural gas, coal, wastes and transports. Some compounds are considered as particularly pollutants: the carbon monoxide, the nitrogen oxides, the tropospheric ozone and the sulfur dioxides. Their environmental and biological effects are described. The present political guide lines concerns the combustion plants, the ozone, the wastes incineration and the vehicles emissions. The aim is at some future date to control the air quality, to reduce the volatile organic compounds emissions and to limit the sulfur rate of some petroleum products. (O.L.)

  20. Influence of inlet concentration and light intensity on the photocatalytic oxidation of nitrogen(II) oxide at the surface of Aeroxide{sup Registered-Sign} TiO{sub 2} P25

    Energy Technology Data Exchange (ETDEWEB)

    Dillert, Ralf, E-mail: dillert@iftc.uni-hannover.de [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratorium fuer Nano- und Quantenengineering, Leibniz Universitaet Hannover, Schneiderberg 39, 30167 Hannover (Germany); Stoetzner, Julia [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Engel, Astrid [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany); Laboratorium fuer Nano- und Quantenengineering, Leibniz Universitaet Hannover, Schneiderberg 39, 30167 Hannover (Germany); Bahnemann, Detlef W. [Institut fuer Technische Chemie, Leibniz Universitaet Hannover, Callinstr. 3, 30167 Hannover (Germany)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The photocatalytic oxidation of nitrogen(II) oxide at the TiO{sub 2} surface was studied. Black-Right-Pointing-Pointer The effect of the UV(A) light intensity on the reaction rate was evaluated. Black-Right-Pointing-Pointer The effect of the NO concentration on the reaction rate was evaluated. Black-Right-Pointing-Pointer A mechanistic model for the heterogeneous NO oxidation is presented. Black-Right-Pointing-Pointer A rate law describing the influence of NO concentration and light intensity is given. - Abstract: Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is the light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material, e.g., paints, roof tiles, or pavement stones. Herein, results of an investigation concerning the photocatalytic oxidation of nitrogen(II) oxide (NO) in the presence of molecular oxygen and UV(A) irradiated TiO{sub 2} powder are presented. The standard operating procedure described in ISO 22197-1 which was developed to characterize the photocatalytic activity of air-cleaning products was successfully applied to determine the photocatalytic activity of a bare TiO{sub 2} powder. The experimental data reveal that at the light intensity stipulated by the operation procedure the amount of NO removed from the gas phase by photocatalytic oxidation is strongly affected by small changes of this light intensity as well as of the NO concentration in the gas stream in the photoreactor. Therefore, these parameters have to be controlled very carefully. Based upon the experimental data obtained in this study a rate law for the photocatalytic NO oxidation inside the photoreactor is derived.

  1. Soil pollution by oxidation of tailings from toxic spill of a pyrite mine

    International Nuclear Information System (INIS)

    Simon, M.; Martin, F.; Ortiz, I.; Garcia, I.; Fernandez, J.; Fernandez, E.; Dorronsoro, C.; Aguilar, J.

    2001-01-01

    On the 25th April 1998, toxic water and tailings from a pyrite mine of Aznalcollar (southern Spain) spilled into the Agrio and Guadiamar River Basin affecting some 40 km 2 . In five sectors throughout the basin, we monitored the physical and chemical properties of the tailings as well as the degree of pollution in the soils on four different sampling dates: 5 May, 20 May, 4 June and 22 July 1998. The characteristics of the tailings deposited on the soils are shown to be related to distance from the spill. The oxidation rate of the tailings and the solubilization of the pollutant elements were more pronounced in the middle and lower sectors of the basin, where the particle size was finer, the sulfur content higher and the bulk density less. The increases in water-soluble sulfates, Zn, Cd and Cu were very rapid (the highest values being reached 25 days after the spill) and intense (reaching 45% of the total Cu, 65% of the total Zn and Cd). Meanwhile, the increases in water-soluble As, Bi, Sb, Pb and Tl were far lower (ranging between 0.002% of the total Tl and 2.5% of the total As) and less rapid in the case of As, Bi and Pb (the highest values for these elements being reached 40 days after the spill). These soluble elements infiltrated the soils with the rainwater, swiftly augmenting the soil pollution. Twenty-five days after the spill, when the rainfall ranged between 45 and 63 mm, the first 10-cm of the soils in the middle and lower sectors of the basin exceeded the maximum concentration permitted for agricultural soils in Zn, Cu and Tl. At 40 days after the spill, when the rainfall ranged between 60 and 89 mm, all the soils reached or exceeded the maximum permitted concentrations for As and Tl. Nevertheless, the pollutants tended to concentrate in the first 10 cm of the soils without seriously contaminating either the subsoil or the groundwaters. Consequently, a rapid removal of the tailings and the ploughing of the first 25-30 cm of the soils would be urgent

  2. Application of integrated GIS and multimedia modeling on NPS pollution evaluation.

    Science.gov (United States)

    Lin, C E; Kao, C M; Lai, Y C; Shan, W L; Wu, C Y

    2009-11-01

    In Taiwan, nonpoint source (NPS) pollution is one of the major causes of the impairment of surface waters. I-Liao Creek, located in southern Taiwan, flows approximately 90 km and drains toward the Kaoping River. Field investigation results indicate that NPS pollution from agricultural activities is one of the main water pollution sources in the I-Liao Creek Basin. Assessing the potential of NPS pollution to assist in the planning of best management practice (BMP) is significant for improving pollution prevention and control in the I-Liao Creek Basin. In this study, land use identification in the I-Liao Creek Basin was performed by properly integrating the skills of geographic information system (GIS) and global positioning system (GPS). In this analysis, 35 types of land use patterns in the watershed area of the basin are classified with the aid of Erdas Imagine process system and ArcView GIS system. Results indicate that betel palm farms, orchard farms, and tea gardens dominate the farmland areas in the basin, and are scattered around on both sides of the river corridor. An integrated watershed management model (IWMM) was applied for simulating the water quality and evaluating NPS pollutant loads to the I-Liao Creek. The model was calibrated and verified with collected water quality and soil data, and was used to investigate potential NPS pollution management plans. Simulated results indicate that NPS pollution has significant contributions to the nutrient loads to the I-Liao Creek during the wet season. Results also reveal that NPS pollution plays an important role in the deterioration of downstream water quality and caused significant increase in nutrient loads into the basin's water bodies. Simulated results show that source control, land use management, and grassy buffer strip are applicable and feasible BMPs for NPS nutrient loads reduction. GIS system is an important method for land use identification and waste load estimation in the basin. Linking the

  3. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  4. Air pollution sources, impact and monitoring

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    1999-01-01

    Improper management of socio-economic developmental activities has put a great stress on natural resources and eco-systems and has caused environmental degradation. Indiscriminate release of toxic substances into the atmosphere from power generation, industrial operations, transportation, incineration of waste and other operations has affected the quality of ambient air. Combustion of fossil fuel results in the emission of oxides of carbon, sulfur and nitrogen, particulate and organic compounds which affect the local, regional and global environment. Industrial operations release a wide variety of pollutants which directly affect the local environment. Operation of automobiles releases oxides of carbon, sulfur and nitrogen, hydrocarbons, traces of heavy metals and toxic polycyclic aromatic compounds whereas incineration of municipal waste releases particulate, acid fumes and photochemically reactive and odorous compounds. These air pollutants have varying impacts on health and environment. The intake of polluted air may produce various physiological disorders ranging from respiratory diseases to changes in blood chemistry. Therefore, the emission of pollutants should be controlled at the source and monitoring the levels of pollution should assess the quality of air. (author)

  5. Air pollution control regulation. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sogabe, K

    1975-05-01

    The Basic Law for Environmental Pollution Control is reviewed. The fundamental ideology of pollution control, range of pollution control, environmental standards, and national policy concerning pollution control are discussed. The content of the Air Pollution Control Law is summarized. The purpose of the Air Pollution Control Law, a list of substances regulated by the law, the type of facilities regulated by the law, control standards, type of control means, and emission standards for flue gas (sulfur oxides, particulate matters, and toxic substances) are described. The environmental standard for each pollutant and the target date for achieving the environmental standard are also given. The list of cities where the 7-rank K value control regulation for SOx is enforced is given. The procedure for registration in compliance with the law is also described.

  6. Origin and monitoring of pollutants in fossil-fuel flames

    International Nuclear Information System (INIS)

    Chigier, N.A.

    1976-01-01

    A review is given of the origin of pollutants in fossil-fuel flames. Burning of fossil fuels is the major cause of air pollution and significant reductions in levels of environmental pollution can be achieved by more effective control of combustion systems. The chemical kinetics of formation of unburned hydrocarbons, oxides of nitrogen, carbon monoxide and particulate matter are described, as well as the reactions which can lead to oxidation and destruction of these pollutants within the flame. The important influence of mixing and aerodynamics is discussed, together with methods of mathematical modelling and prediction methods. Practical problems arising in gas turbine engines, spark ignition engines and diesel engines are investigated in order to minimize the emission of pollutants while preserving fuel economy. (author)

  7. Air pollution and its control in China

    Institute of Scientific and Technical Information of China (English)

    HAO Jiming; HE Kebin; DUAN Lei; LI Junhua; WANG Litao

    2007-01-01

    The rapid growth of China's economy has led to severe air pollution characterized by acid rain,severe pollution in cities,and regional air pollution.High concentrations are found for various pollutants such as sulfur dioxides(SO2),nitrogen oxides(NOx),and fine particulates.Great efforts have thus been undertaken for the control of air pollution in the country.This paper discusses the development and application of appropriate technologies for reducing the major pollutants produced by coal and vehicles,and investi gates air quality modeling as an important support for policy-making.

  8. A brief review and evaluation of earthworm biomarkers in soil pollution assessment.

    Science.gov (United States)

    Shi, Zhiming; Tang, Zhiwen; Wang, Congying

    2017-05-01

    Earthworm biomarker response to pollutants has been widely investigated in the assessment of soil pollution. However, whether and how the earthworm biomarker-approach can be actually applied to soil pollution assessment is still a controversial issue. This review is concerned about the following points: 1. Despite much debate, biomarker is valuable to ecotoxicology and biomarker approach has been properly used in different fields. Earthworm biomarker might be used in different scenarios such as large-scale soil pollution survey and soil pollution risk assessment. Compared with physicochemical analysis, they can provide more comprehensive and straightforward information about soil pollution at low cost. 2. Although many earthworm species from different ecological categories have been tested, Eisenia fetida/andrei is commonly used. Many earthworm biomarkers have been screened from the molecular to the individual level, while only a few biomarkers, such as avoidance behavior and lysosomal membrane stability, have been focused on. Other aspects of the experimental design were critically reviewed. 3. More studies should focus on determining the reliability of various earthworm biomarkers in soil pollution assessment in future research. Besides, establishing a database of a basal level of each biomarker, exploring biomarker response in different region/section/part of earthworm, and other issues are also proposed. 4. A set of research guideline for earthworm biomarker studies was recommended, and the suitability of several earthworm biomarkers was briefly evaluated with respect to their application in soil pollution assessment. This review will help to promote further studies and practical application of earthworm biomarker in soil pollution assessment.

  9. Correlation between air pollution and weather data in urban areas: Assessment of the city of Rome (Italy) as spatially and temporally independent regarding pollutants

    Science.gov (United States)

    Battista, Gabriele; de Lieto Vollaro, Roberto

    2017-09-01

    Air pollution represents the biggest environmental risk for health. It is so widespread and it represents one of the main problems of the worldwide, especially because it is emitted by so many different types of sources. The pollutants can originate directly by exhausted or they can be formed because of the reaction with the atmosphere. The first one includes particulate matter and gaseous pollutants such as sulfur oxides, nitrogen oxides, and carbon oxides. The second one includes the ozone formed from nitrogen oxides and hydrocarbons, and particulate sulfate and nitrate aerosols created in the atmosphere from sulfur and nitrogen oxide gases. During the entire life course, people are exposed to the pollutants and suffer from different consequences depending on the age. The first nine month of life are generally recognized as more critical than latter time periods. The mortality associated to air pollutant exposure is main related to the concentrations of NOx , ozone, carbon monoxide, sulfur dioxides and particular matter. More than 92% of the world's population lives in places where air quality levels exceed the standards. In 2012, one out of every nine deaths was the result of air pollution-related conditions. In 2016 about 3 million deaths a year were linked to exposure to outdoor air pollution. In the last few years many epidemiological studies have shown associations between air pollutant concentrations and human health. Apart from people, even monuments and artworks can be damaged by pollution, especially in city centres. Furthermore, urbanization modified microclimate conditions of the cities, and, together with traffic and domestic heating, led to a discomfort of living conditions. For these reasons, there is the necessity to improve the research on the impact of pollutant and microclimate conditions inside urban areas. In this work different kinds of pollutants in Rome from 2006 to 2015 were analysed, and different techniques of post elaboration were used

  10. The Sources of Air Pollution and Their Control.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Arlington, VA.

    The problems of air pollution and its control are discussed. Major consideration is given the sources of pollution - motor vehicles, industry, power plants, space heating, and refuse disposal. Annual emission levels of five principle pollutants - carbon monoxide, sulfur dioxide, nitrogen oxides, hydrocarbons, and particulate matter - are listed…

  11. Solving widespread low-concentration VOC air pollution problems: Gas-phase photocatalytic oxidation answers the needs of many small businesses

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, C; Turchi, C; Gratson, D

    1995-04-01

    Many small businesses are facing new regulations under the 1990 Amendments to the Clean Air Act. Regulators, as well as the businesses themselves, face new challenges to control small point-source air pollution emissions. An individual business-such as a dry cleaner, auto repair shop, bakery, coffee roaster, photo print shop, or chemical company-may be an insignificant source of air pollution, but collectively, the industry becomes a noticeable source. Often the businesses are not equipped to respond to new regulatory requirements because of limited resources, experience, and expertise. Also, existing control strategies may be inappropriate for these businesses, having been developed for major industries with high volumes, high pollutant concentrations, and substantial corporate resources. Gas-phase photocatalytic oxidation (PCO) is an option for eliminating low-concentration, low-flow-rate emissions of volatile organic compounds (VOCs) from small business point sources. The advantages PCO has over other treatment techniques are presented in this paper. This paper also describes how PCO can be applied to specific air pollution problems. We present our methodology for identifying pollution problems for which PCO is applicable and for reaching the technology`s potential end users. PCO is compared to other gas-phase VOC control technologies.

  12. Aircraft engine pollution reduction.

    Science.gov (United States)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  13. Methods of valuing air pollution and estimated monetary values of air pollutants in various U.S. regions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.Q.; Santini, D.J.; Warinner, S.A.

    1994-12-01

    Air pollutant emission values are used to determine the social costs of various technologies that cause air pollution and to estimate the benefits of emission control technologies. In this report, the authors present two methods of estimating air pollutant emission values--the damage value method and the control cost method--and review 15 recent studies in which these methods were employed to estimate emission values. The reviewed studies derived emission values for only a limited number of areas; emission value estimates are needed for other US regions. Using the emission values estimated in the reviewed studies, they establish regression relationships between emission values, air pollutant concentrations, and total population exposed, and apply the established relationships to 17 US metropolitan areas to estimate damage-based and control-cost-based emission values for reactive organic gases, nitrogen oxides, particulate matter measuring less than 10 microns, sulfur oxides, and carbon monoxide in these areas. Their estimates show significant variations in emission values across the 17 regions.

  14. Is smog innocuous? Air pollution and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Sundeep Mishra

    2017-07-01

    Full Text Available Air pollution is a significant environmental and health hazard. Earlier studies had examined the adverse health effects associated with short- and long-term exposure to particulate matter on respiratory disease. However, later studies demonstrated that was actually cardiovascular disease that accounted for majority of mortality. Furthermore, it was not gaseous pollutants like oxides of nitrate, sulfur, carbon mono-oxide or ozone but the particulate matter or PM, of fine or coarse size (PM2.5 and PM10 which was linearly associated with mortality; PM2.5 with long term and PM10 with short term. Several cardiovascular diseases are associated with pollution; acute myocardial infarction, heart failure, cardiac arrhythmias, atherosclerosis and cardiac arrest. The ideal way to address this problem is by adhering to stringent environmental standards of pollutants but some individual steps like choosing to stay indoors (on high pollution days, reducing outdoor air permeation to inside, purifying indoor air using air filters, and also limiting outdoor physical activity near source of air pollution can help. Nutritional anti-oxidants like statins or Mediterranean diet, and aspirin have not been associated with reduced risk but specific nutritional agents like broccoli, cabbage, cauliflower or brussels sprouts, fish oil supplement may help. Use of face-mask has been controversial but may be useful if particulate matter load is higher.

  15. Is smog innocuous? Air pollution and cardiovascular disease.

    Science.gov (United States)

    Mishra, Sundeep

    Air pollution is a significant environmental and health hazard. Earlier studies had examined the adverse health effects associated with short- and long-term exposure to particulate matter on respiratory disease. However, later studies demonstrated that was actually cardiovascular disease that accounted for majority of mortality. Furthermore, it was not gaseous pollutants like oxides of nitrate, sulfur, carbon mono-oxide or ozone but the particulate matter or PM, of fine or coarse size (PM 2.5 and PM 10 ) which was linearly associated with mortality; PM 2.5 with long term and PM 10 with short term. Several cardiovascular diseases are associated with pollution; acute myocardial infarction, heart failure, cardiac arrhythmias, atherosclerosis and cardiac arrest. The ideal way to address this problem is by adhering to stringent environmental standards of pollutants but some individual steps like choosing to stay indoors (on high pollution days), reducing outdoor air permeation to inside, purifying indoor air using air filters, and also limiting outdoor physical activity near source of air pollution can help. Nutritional anti-oxidants like statins or Mediterranean diet, and aspirin have not been associated with reduced risk but specific nutritional agents like broccoli, cabbage, cauliflower or brussels sprouts, fish oil supplement may help. Use of face-mask has been controversial but may be useful if particulate matter load is higher. Copyright © 2017. Published by Elsevier B.V.

  16. Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources

    Science.gov (United States)

    Wang, Yao

    2018-01-01

    The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.

  17. Solving Multi-Pollutant Emission Dispatch Problem Using Computational Intelligence Technique

    Directory of Open Access Journals (Sweden)

    Nur Azzammudin Rahmat

    2016-06-01

    Full Text Available Economic dispatch is a crucial process conducted by the utilities to correctly determine the satisfying amount of power to be generated and distributed to the consumers. During the process, the utilities also consider pollutant emission as the consequences of fossil-fuel consumption. Fossil-fuel includes petroleum, coal, and natural gas; each has its unique chemical composition of pollutants i.e. sulphur oxides (SOX, nitrogen oxides (NOX and carbon oxides (COX. This paper presents multi-pollutant emission dispatch problem using computational intelligence technique. In this study, a novel emission dispatch technique is formulated to determine the amount of the pollutant level. It utilizes a pre-developed optimization technique termed as differential evolution immunized ant colony optimization (DEIANT for the emission dispatch problem. The optimization results indicated high level of COX level, regardless of any type of fossil fuel consumed.

  18. INDOOR AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2007-06-01

    Full Text Available The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas and people in the cities have spending approximetely 90% of their time in the closed enviroments, health problems could increased due to indoor air pollution. Moreover, currently there is no specific regulation on this area. [TAF Prev Med Bull 2007; 6(3.000: 221-226

  19. INDOOR AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2007-06-01

    Full Text Available The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas and people in the cities have spending approximetely 90% of their time in the closed enviroments, health problems could increased due to indoor air pollution. Moreover, currently there is no specific regulation on this area. [TAF Prev Med Bull. 2007; 6(3: 221-226

  20. PolEASIA Project: Pollution in Eastern Asia - towards better Air Quality Prevision and Impacts' Evaluation

    Science.gov (United States)

    Dufour, Gaëlle; Albergel, Armand; Balkanski, Yves; Beekmann, Matthias; Cai, Zhaonan; Fortems-Cheiney, Audrey; Cuesta, Juan; Derognat, Claude; Eremenko, Maxim; Foret, Gilles; Hauglustaine, Didier; Lachatre, Matthieu; Laurent, Benoit; Liu, Yi; Meng, Fan; Siour, Guillaume; Tao, Shu; Velay-Lasry, Fanny; Zhang, Qijie; Zhang, Yuli

    2017-04-01

    The rapid economic development and urbanization of China during the last decades resulted in rising pollutant emissions leading to amongst the largest pollutant concentrations in the world for the major pollutants (ozone, PM2.5, and PM10). Robust monitoring and forecasting systems associated with downstream services providing comprehensive risk indicators are highly needed to establish efficient pollution mitigation strategies. In addition, a precise evaluation of the present and future impacts of Chinese pollutant emissions is of importance to quantify: first, the consequences of pollutants export on atmospheric composition and air quality all over the globe; second, the additional radiative forcing induced by the emitted and produced short-lived climate forcers (ozone and aerosols); third, the long-term health consequences of pollution exposure. To achieve this, a detailed understanding of East Asian pollution is necessary. The French PolEASIA project aims at addressing these different issues by providing a better quantification of major pollutants sources and distributions as well as of their recent and future evolution. The main objectives, methodologies and tools of this starting 4-year project will be presented. An ambitious synergistic and multi-scale approach coupling innovative satellite observations, in situ measurements and chemical transport model simulations will be developed to characterize the spatial distribution, the interannual to daily variability and the trends of the major pollutants (ozone and aerosols) and their sources over East Asia, and to quantify the role of the different processes (emissions, transport, chemical transformation) driving the observed pollutant distributions. A particular attention will be paid to assess the natural and anthropogenic contributions to East Asian pollution. Progress made with the understanding of pollutant sources, especially in terms of modeling of pollution over East Asia and advanced numerical approaches

  1. Primary and oxidative DNA damage in salivary leukocytes as a tool for the evaluation of air pollution early biological effects in children: current status of the MAPEC (Monitoring Air Pollution Effects on Children for supporting public health policy study

    Directory of Open Access Journals (Sweden)

    Samuele Vannini

    2015-05-01

    Conclusions - The main objective of the MAPEC study is to evaluate the associations in children between air pollutants and early biological effects, and to propose a model for estimating the global genotoxic risk.

  2. Interaction patterns of major air pollutants in Hong Kong territory

    International Nuclear Information System (INIS)

    Lu, W.Z.; Wang, X.K.

    2004-01-01

    Air pollution in a metropolitan city like Hong Kong is a major obstacle to improve air quality and living environment due to the high population density and the vehicle emission increases. The high air pollutant levels impose harm to the human health and impair the city image. The characteristic analysis of air pollutants is very important and necessary to pollutant monitoring, forecasting and controlling. In this study, the interaction patterns of principle air pollutants, e.g. nitrogen dioxide (NO 2 ), nitric oxide (NO), nitric oxides (NO x ) and ozone (O 3 ), a secondary pollutant, are investigated based on the measured database in four selected areas, which covers two urban types (i.e. residential area, mixed residential/commercial/industrial area) in Hong Kong, during the period of 1999-2001. The study involves analyzing the chemical and physical properties, the characteristics of air pollutants and the factors affecting such interactions using statistical method. The results reveal several routines in urban air pollutants' variations, interaction and trends from macro aspect

  3. Plant response to chronic exposure of low levels of oxidant type air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Feder, W.A.

    1970-01-01

    Cultivars of geranium and carnation exhibit a reduction of side branching, a retardation of floral initiation, and a decrease in floral productivity when exposed daily for 5-7 hr to 0.1 ppm ozone for 1-3 months. These plants also exhibit a reduction in leaf size, an increase in internode length, a progressive destruction of leaf tissue and eventual defoliation in the case of geranium. Cultivars of petunia exposed to chronic low levels of oxidant are slower to flower and bear fewer flowers than those same cultivars grown in charcoal-filtered air from the same source. These plant effects are of special interest because they occur in the presence of pollutant levels encountered daily in areas surrounding US metropolitan centres. 6 references, 3 figures.

  4. Photochemical pollution indicators; Les indicateurs de la pollution photochimique. La mesure des composes azotes

    Energy Technology Data Exchange (ETDEWEB)

    Perros, P E; Marion, T [Paris-7 Univ., 75 (France). Laboratoire Interuniversitaire des Systemes Atmospheriques

    1998-11-01

    The number of photochemical pollution is generally based on the observation of ozone and nitrogen oxides concentration levels. So, the measurement of photochemical pollution indicators becomes essential to better understand the involved phenomena, and at the end to enable its reduction control and strategy. In this paper, we focus on the measurements of nitrogen compounds (NO{sub x} PAN, HNO{sub 3}). (authors) 24 refs.

  5. Laboratory evaluation of PAH oxidation by magnesium peroxides and iron oxides mixtures as reactive material for groundwater remediation

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Cortina, J.L.; Farran, A.; Marti, V.

    2005-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are a class of compounds consisting of two or more fused aromatic rings. They represent the largest group of compounds that are mutagenic, carcinogenic, and teratogenic and are included in the priority pollutants lists. In recent years, increasing attention has been drawn to PAH contamination in aquatic sediments. Biological aerobic degradation was earlier the promoted option to degrade PAH in soils and sediments; however this could be extended for decades. In this direction, addition of oxygen has been proposed as an effective way to speed up their degradation in contaminated soil or groundwater. This objective could be achieved either by adding oxygen releasing compounds or by using an oxygen pump. The latter option is not economically defensible due to the enormous power needed. The use of ex-situ technologies to treat contaminated soils is in general not effective due to the high costs and work efforts demanded to remove big quantities of soil. For that reason, the use of in-situ technologies based on degradation processes has been identified as a suitable approach. These technologies would reduce costs and environmental impacts due to reduction of soil transportations and digging activities. In-situ degradation of recalcitrant contaminants could be achieved by using strong oxidant agents by soil injection or by using permeable treatment wall or zones. Oxidants typically used have been hydrogen peroxide, potassium permanganate and ozone. In situ chemical oxidation using Fenton's reagent (hydrogen peroxide and iron(II) mixtures) has been evaluated for BTEX and poly-aromatic compounds. The successful application of in situ Fenton's reagent chemical oxidation is based on an understanding of oxidant chemistry and the geology, hydrogeology and chemistry of the contaminant site. Choosing the proper conditions requires the determination of 1) the better way to promote the formation of the OH radicals that react with the

  6. Environmental pollution and lung effects in children.

    Science.gov (United States)

    Searing, Daniel A; Rabinovitch, Nathan

    2011-06-01

    Studies over the last 2 years have added important new information on the relationship between air pollution and asthma incidence and severity. Outdoor air pollution has been associated with asthma exacerbations, including emergency department visits and hospitalizations, as well as with the onset of asthma. Possible mechanisms mediating both incidence and severity effects include the induction of oxidative stress, and/or allergic sensitization, as well as increased susceptibility to viral infections. Some of these mechanisms may be occurring in utero including epigenetic changes that may increase risk for development of asthma. Factors related to increased susceptibility for air pollution-related asthma severity include age, season and genetic polymorphisms related to antioxidant enzymes. Ambient pollution levels may be associated with both asthma incidence and severity. Susceptibility to air pollution may be higher in children with genetic polymorphisms related to the 'oxidant stress pathways'. Potential interventions for susceptible children at risk for asthma development and/or severity include decreased exposure on high air pollution days, especially in the summer months, and antioxidant supplementation. On the population level, changes in school and home zoning to increase distance from busy roadways may help reduce both asthma incidence and severity.

  7. Solar photocatalytic cleaning of polluted water

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI) [de

  8. Evaluation of AirGIS: a GIS-based air pollution and human exposure modelling system

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Berkowicz, Ruwim; Hvidberg, Martin

    2011-01-01

    This study describes in brief the latest extensions of the Danish Geographic Information System (GIS)-based air pollution and human exposure modelling system (AirGIS), which has been developed in Denmark since 2001 and gives results of an evaluation with measured air pollution data. The system...... shows, in general, a good performance for both long-term averages (annual and monthly averages), short-term averages (hourly and daily) as well as when reproducing spatial variation in air pollution concentrations. Some shortcomings and future perspectives of the system are discussed too....

  9. Microfluidic liquid-air dual-gradient chip for synergic effect bio-evaluation of air pollutant.

    Science.gov (United States)

    Liu, Xian-Jun; Hu, Shan-Wen; Xu, Bi-Yi; Zhao, Ge; Li, Xiang; Xie, Fu-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2018-05-15

    In this paper, a novel prototype liquid-air dual gradient chip is introduced, which has paved the way for effective synergic effect bio-evaluation of air pollutant. The chip is composed of an array of the agarose liquid-air interfaces, top air gradient layer and bottom liquid gradient layer. The novel agarose liquid-air interface allows for non-biased exposure of cells to all the substances in the air and diffusive interactions with the liquid phase; while the dual liquid-air gradient provides powerful screening abilities, which well reduced errors, saved time and cost from repeated experiment. Coupling the two functions, the chip subsequently facilitates synergic effect evaluation of both liquid and air factors on cells. Here cigarette smoke was taken as the model air pollutant, and its strong synergic effects with inflammatory level of A549 lung cancer cells on their fate were successfully quantified for the first time. These results well testified that the proposed dual-gradient chip is powerful and indispensable for bio-evaluation of air pollutant. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A novel field transplantation technique reveals intra-specific metal-induced oxidative responses in strains of Ectocarpus siliculosus with different pollution histories

    International Nuclear Information System (INIS)

    Sáez, Claudio A.; González, Alberto; Contreras, Rodrigo A.; Moody, A. John; Moenne, Alejandra; Brown, Murray T.

    2015-01-01

    A novel field transplantation technique, in which seaweed material is incorporated into dialysis tubing, was used to investigate intra-specific responses to metals in the model brown alga Ectocarpus siliculosus. Metal accumulation in the two strains was similar, with higher concentrations in material deployed to the metal-contaminated site (Ventanas, Chile) than the pristine site (Quintay, Chile). However, the oxidative responses differed. At Ventanas, strain Es147 (from low-polluted site) underwent oxidative damage whereas Es524 (from highly polluted site) was not affected. Concentrations of reduced ascorbate (ASC) and reduced glutathione (GSH) were significantly higher in Es524. Activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) all increased in Es524, whereas only SOD increased in Es147. For the first time, employing a field transplantation technique, we provide unambiguous evidence of inter-population variation of metal-tolerance in brown algae and establish that antioxidant defences are, in part, responsible. - Highlights: • Metal tolerance in Ectocarpus siliculosus populations was studied through in situ experiments. • Metal tolerance in E. siliculosus populations is partly based in antioxidant defences. • In situ experiments using a dialysis tubing device was successful for metal diagnosis. - Field transplantation experimentation provides evidence that differential antioxidant defences, in part, mediate inter-population tolerance to metal pollution in the model brown alga Ectocarpus siliculosus

  11. Plant injury due to air pollution - similar symptoms. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Y

    1976-01-01

    Many plant diseases cause injuries to leaves which mimic the damage inflicted by air pollution. The relationship between air pollution injuries and those caused by meteorological conditions are discussed. Rice plants often contract akagare which causes reddish-brown spots on leaves similar to the symptoms caused by photochemical oxidants. Spider mites produce leaf damage in kidney beans which mimics the spotting caused by photochemical oxidants. Lace bugs produce minute white spots on azaleas similar to those caused by photochemical oxidants.

  12. Practical applications of the Fenton reaction to the removal of chlorinated aromatic pollutants. Oxidative degradation of 2,4-dichlorophenol.

    Science.gov (United States)

    Detomaso, Antonia; Lopez, Antonio; Lovecchio, Giangiuseppe; Mascolo, Giuseppe; Curci, Ruggero

    2003-01-01

    Chlorophenols (CPs) constitute a group of organic pollutants that are introduced into the environment as a result of several man-made activities, such as uncontrolled use of pesticides and herbicides, and as byproducts in the paper pulp bleaching. Promising removal technologies of chlorinated aromatics consist in the application of advanced oxidation processes (AOPs) that can provide an almost total degradation of a variety of contaminants. Among these, wide application find Fenton systems based on generation of reactive species having a high oxidizing power, such as hydroxyl radical HO*. Our objective was that of determining the overall degradation efficiency of the model compound 2,4-dichlorophenol (DCP) by thermal Fenton-type oxidation systems with a view toward defining in more details relevant process parameters, the effect of reaction temperature and of co-catalyst Cu2+. Reaction conditions were similar to those generally adopted as optimal in many practical applications, i.e. pollutant/Fe2+ (as FeSO4) ratio ca. 20, Fe2+/Cu2+ (co-catalyst) 2:1, pH adjusted and controlled at pH 3, and H2O2 in excess (up to four-fold over the stoichiometric amount required for complete mineralization). The results demonstrate that it is advantageous to carry out the reaction at a temperature markedly higher (70 degrees C) than ambient. The stepwise addition of H2O2 in aliquots yields an efficient transformation, while allowing a convenient control of the reaction exothermicity. Under these conditions, the essentially complete removal of the initial DCP is accomplished using just one equiv of H2O2 during 15 min; excess H2O2 (5 equivalents) yields extensive substrate mineralization. Also relevant, at 70 degrees C dechlorination of the initial DCP (and of derived reaction intermediates) is remarkably extensive (3-5% residual TOX), already with the addition of 1 equiv of H2O2. At the end of the reaction, IC and IC-MS analyses of the solution reveal that only low-molecular weight

  13. Nitrous oxide pollution during x-ray exposure

    International Nuclear Information System (INIS)

    Yanagida, Hisashi; Nakajima, Michiaki.

    1980-01-01

    X-radiation has been shown to produce NO and NO 2 in the presence of nitrous oxide. The purpose of the present study was to confirm how much NO and NO 2 was produced when constant amount of nitrous oxide was exposed by constant X-radiation. Twenty polyethylene bottles (capacity 10 litres) were filled with nitrous oxide alone. Another 20 bottles were filled with nitrous oxide and 30% oxygen. Each bottle was placed at a distance of 30 cm from X-ray tube and they were directly in the line of the X-ray beam at a setting of 90 KV at 0.5 mA, a standard setting for chest fluoroscopy. The range of duration of X-ray exposure was from 0 (control), to 2, 3, and 5 minutes in 5 bottles each, respectively. A colorimetric recording method (Saltzman) and a chemiluminescent monitor were used for measurement of NO and NO 2 . In the bottles filled with nitrous oxide alone, the production of NO was not affected by the duration of X-ray exposure, but the longer duration of X-ray exposure produced a larger amount of NO 2 . In the bottles filled with nitrous oxide and 30% oxygen, the longer duration of X-ray exposure produced larger amounts of both NO and NO 2 . These findings confirmed a previous investigation in which nitrous oxide was not inert under X-ray exposure. As the presence of oxygen plays an important role in the oxidation of nitrous oxide under X-ray, this study suggests another potentially hazardous interaction that may occur secondary to the administration of anesthetic in the presence of X-irradiation such as pulmonary angiography, cardiac catheterization, and fluoroscopic bronchoscopy or biopsy under general anesthesia. (author)

  14. pH effect on decolorization of raw textile wastewater polluted with reactive dyes by advanced oxidation with uv/h2o2

    NARCIS (Netherlands)

    Racyte, J.; Rimeika, M.; Bruning, H.

    2009-01-01

    The effectiveness of the advanced oxidation process (UV/H2O2) in decolorizing real textile wastewater polluted with commercial reactive dyes - Reactive Yellow 84 and Reactive Red 141 was investigated. All the experiments were performed in a lab-scale reactor with the original high pH of the

  15. NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Apte, Michael G.; Black, Douglas R.; Hotchi, Toshifumi; Lucas, Donald; Lunden, Melissa M.; Mirer, Anna G.; Spears, Michael; Sullivan, Douglas P.

    2009-12-01

    The effect of liquefied natural gas on pollutant emissions was evaluated experimentally with used and new appliances in the laboratory and with appliances installed in residences, targeting information gaps from previous studies. Burner selection targeted available technologies that are projected to comprise the majority of installed appliances over the next decade. Experiments were conducted on 13 cooktop sets, 12 ovens, 5 broiler burners, 5 storage water heaters, 4 forced air furnaces, 1 wall furnace, and 6 tankless water heaters. Air-free concentrations and fuel-based emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, and the number of (predominantly ultrafine) particles over complete burns?including transient effects (device warm-up and intermittent firing of burners) following ignition--and during more stable end-of-burn conditions. Formaldehyde was measured over multi-burn cycles. The baseline fuel was Northern California line gas with Wobbe number (a measure of fuel energy delivery rate) of 1320-1340; test fuels had Wobbe numbers of roughly 1390 and 1420, and in some cases 1360. No ignition or operational problems were observed during test fuel use. Baseline emissions varied widely across and within burner groups and with burner operational mode. Statistically significant emissions changes were observed for some pollutants on some burners.

  16. System approach for evaluation of air pollution toxic compounds in the 30-km area of nuclear power plants

    International Nuclear Information System (INIS)

    Shevtsova, O.V.; Zhigunova, L.N.; Makovskaya, N.A.; Pavlovich, E.L.

    2012-01-01

    The article shows the importance of a systematic approach to address environmental problems that arise during the construction of nuclear power plants, and identified the need to consider the transformation and biotransformation of primary pollutants and monitoring secondary pollutants. The basic pathways of pollutants in the air a 30-km zone of nuclear power plants established. The content of primary and secondary air pollutants identified. The evaluation of general toxic risk from primary pollutant and the calculation of the carcinogenic risk of secondary pollutants entering the body by inhalation are carried out. (authors)

  17. Measurements of radiological background and some chemical pollutants in two areas of greater cairo

    International Nuclear Information System (INIS)

    Tawfik, F.S.; Ramadan, A.; Abdel Aziz, M.A.; Aly, A.I.M.

    2002-01-01

    The present work aims to the evaluation of radiological background levels and chemical pollutants in greater cairo as the most dense populated city in Egypt. The meteorological data of a complete one year of Cairo city have been collected, investigated and processed to determined the behavior of the pollutants in the atmosphere and the sector that is strongly affected by the pollutants. Portable detector for measuring the radiological background was deployed in Nasr City, where two nuclear centers belonging to Atomic Energy Authority are located, to measure the radioactivity levels in the atmosphere and compare them with the international standard limits. Other detectors were deployed in Shobra El- Khema area to study two significant phenomena, the first is the formation of ozone through the photo-chemical oxidation, its level and its behavior in the atmosphere, taking into consideration the international standard limits. The second phenomenon is the impact of the black plume on the capital Cairo started on October (1999) and its association of pollutant levels increment, defining the nature and the site location of the pollutant source. The carbon monoxide concentrations (as an example), before and during the black plume, were calculated using Gaussian equation then compared with the measured data in Shobra El- Khema region. The other available instruments were used to measure nitrogen oxides, ozone and carbon monoxide

  18. Evaluation of the impact on the environment of thermal power plant releases

    International Nuclear Information System (INIS)

    Roussel, C.; Bertrand, R.; Garnier, G.; Berard, P.; Archimbaud, M.

    1983-01-01

    The aim of this study is to compare the impact on the environment of oil and coal fired power plants, and of nuclear plants. The impact is evaluated by the level of the air pollution around the plant. But the selected pollutants (Sulfur oxides, Nitrogen oxides, Trace elements, organic compounds) are not specific of the pollution produced by the power plant. Therefore, we measured the specific emission of the plant by a continuous sampling in the stack gases. To evaluate the contribution of the plant to the global pollution, a series of diffusion tests was run to measure the atmospheric transfer between the stack and the monitoring system. Sulfur hexafluoride (SF6) was added to the stack plume and its concentration was measured in the environment continuously at the monitoring stations, and by a mobile network for tracing the movement of the plume due to a shift in wind direction. Thereby the impact of other sources could be estimated [fr

  19. Biomarkers of exposure to tobacco smoke and environmental pollutants in mothers and its transplacental transfer to the foetus. Part II: Oxidative damage

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Milcová, Alena; Líbalová, Helena; Nováková, Zuzana; Topinka, Jan; Balaščak, I.; Šrám, Radim

    2009-01-01

    Roč. 669, 1-2 (2009), s. 20-26 ISSN 0027-5107 R&D Projects: GA MŠk 2B06088 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * oxidative stress * newborns Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.556, year: 2009

  20. Inheritance of photochemical air pollution tolerance in petunias

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.P.; Addis, D.H.; Thorne, L.

    1976-12-01

    Seven commercial inbred lines of pink flowered multiflora petunia (Petunia hybrida Vilm.) which differed widely in degrees of tolerance to photochemical oxidants were crossed in all possible combinations to yield a complete diallel cross. Sibling representatives of all 49 possible hybrids were then separately subjected to ozone (O/sub 3/), peroxyacetyl nitrate (PAN), and ambient oxidants at Arcadia, California. The seedlings were scored for tolerance to each pollutant and the inheritance of tolerance to each pollutant was studied. At the ambient levels of photochemical oxidants encountered, PAN more severely injured the petunias than did the O/sub 3/ component. Hybrids tolerant to one oxidant were not necessarily tolerant to the other. The genes which contributed photochemical oxidant tolerance in petunia acted primarily in an additive manner with some indication of partial dominance for tolerance. Gene interaction was evident in the expression of petunia sensitivity to PAN.

  1. EVALUATION OF WATER POLLUTION STATUS IN SIRET HYDROGRAPHICAL BASIN (SUCEAVA REGION DUE TO AGRICULTURAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Carmen Zaharia

    2014-06-01

    Full Text Available The study presents data concerning the water pollution status of Siret hydrographical basin (i.e. surface and ground waters, lakes in Suceava County area (different controlling/monitoring sections due to agricultural productive activities, especially regarding some quality indicators (nitrogen-based nutrient concentrations evaluated for 2008. These data are recommending the necessity of continuous monitoring of water quality in the Siret River hydrographical basin, in all existing control sections, for identification of any pollution episodes, non-reported by polluters to the local environmental regulators.

  2. Plants as indicators of the environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Michler, R

    1971-01-01

    Possibilities of surveying air pollution by means of indicator plants are reviewed. Though the effects of air pollutants such as sulfur dioxide and nitrogen oxides on plants are dependent on several factors such as plant species, stage of development, weather, pollutant concentration, and part of the day, it is possible to use certain plants, especially lichens, as indicators of the degree of air pollution. Comparative observations of vegetation over a period of years, and the exposure of transplanted plants in selected sites represent two different, though complementary, methods for the use of indicator plants.

  3. Evaluation of oxidative status in patients with brucellosis.

    Science.gov (United States)

    Serefhanoglu, Kivanc; Taskin, Abdullah; Turan, Hale; Timurkaynak, Funda Ergin; Arslan, Hande; Erel, Ozcan

    2009-08-01

    Oxidative stress can be defined as an increase in oxidants and/or a decrease in antioxidant capacity. We aimed to determine total antioxidant capacity (TAC), total peroxide, malondialdehyde and catalase levels in plasma samples, and calculation of oxidative stress index (OSI) in patients with brucellosis to evaluate their oxidative status using a novel automated method. Sixty-nine patients with brucellosis and 69 healthy control subjects were included in the present study. Plasma levels of total peroxide and malondialdehyde were significantly increased in patients as compared with healthy controls (p0.05). OSI level was significantly increased in patients as compared with healthy controls (pantioxidants were decreased in patients with brucellosis. Oxidative stress was increased in patients with brucellosis.

  4. UV light and urban pollution: Bad cocktail for mosquitoes?

    International Nuclear Information System (INIS)

    Tetreau, Guillaume; Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud’homme, Sophie M.; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane

    2014-01-01

    Highlights: •Mosquito tolerance to temephos is induced by PAHs and UV exposure. •Toxicity of fluoranthene for mosquito Malpighian tubules cells is induced by UV. •Fluoranthene crystallizes in mosquito Malpighian tubules upon UV exposure. •Mixture of two PAHs is less toxic for mosquitoes than each PAHs separately. •Combination of abiotic parameters (PAHs and UV) affect mosquito physiology. -- Abstract: Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species–ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis–Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on

  5. UV light and urban pollution: Bad cocktail for mosquitoes?

    Energy Technology Data Exchange (ETDEWEB)

    Tetreau, Guillaume, E-mail: guillaume.tetreau@gmail.com [Laboratoire d’Ecologie Alpine, LECA-UMR 5553, Université de Grenoble 1, BP 53, 38041 Grenoble cedex 09 (France); Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States); Chandor-Proust, Alexia; Faucon, Frédéric; Stalinski, Renaud; Akhouayri, Idir; Prud’homme, Sophie M.; Régent-Kloeckner, Myriam; Raveton, Muriel; Reynaud, Stéphane [Laboratoire d’Ecologie Alpine, LECA-UMR 5553, Université de Grenoble 1, BP 53, 38041 Grenoble cedex 09 (France)

    2014-01-15

    Highlights: •Mosquito tolerance to temephos is induced by PAHs and UV exposure. •Toxicity of fluoranthene for mosquito Malpighian tubules cells is induced by UV. •Fluoranthene crystallizes in mosquito Malpighian tubules upon UV exposure. •Mixture of two PAHs is less toxic for mosquitoes than each PAHs separately. •Combination of abiotic parameters (PAHs and UV) affect mosquito physiology. -- Abstract: Mosquito breeding sites consist of water pools, which can either be large open areas or highly covered ponds with vegetation, thus with different light exposures combined with the presence in water of xenobiotics including polycyclic aromatic hydrocarbons (PAHs) generated by urban pollution. UV light and PAHs are abiotic factors known to both affect the mosquito insecticide resistance status. Nonetheless, their potential combined effects on the mosquito physiology have never been investigated. The present article aims at describing the effects of UV exposure alongside water contamination with two major PAH pollutants (fluoranthene and benzo[a]pyrene) on a laboratory population of the yellow fever mosquito Aedes aegypti. To evaluate the effects of PAH exposure and low energetic UV (UV-A) irradiation on mosquitoes, different parameters were measured including: (1) The PAH localization and its impact on cell mortality by fluorescent microscopy; (2) The detoxification capacities (cytochrome P450, glutathione-S-transferase, esterase); (3) The responses to oxidative stress (Reactive Oxygen Species–ROS) and (4) The tolerance of mosquito larvae to a bioinsecticide (Bacillus thuringiensis subsp. israelensis–Bti) and to five chemical insecticides (DDT, imidacloprid, permethrin, propoxur and temephos). Contrasting effects regarding mosquito cell mortality, detoxification and oxidative stress were observed as being dependent on the pollutant considered, despite the fact that the two PAHs belong to the same family. Moreover, UV is able to modify pollutant effects on

  6. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    Science.gov (United States)

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Möller, Lennart

    2005-11-15

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyguanosine (8-oxodG), (32)P-HPLC for measurements of lipophilic DNA-adducts, and the Comet assay to measure a variety of DNA lesions, including oxidative stress. No significant oxidative damage from either isomer was found regarding formation of 8-oxodG analysed using HPLC-EC/UV. However, the Comet assay (with FPG-treatment), which is more sensitive and detects more types of damages compared to HPLC-EC/UV, showed a significant effect from both 3-NBA and 2-NBA. (32)P-HPLC revealed a strong DNA-adduct formation from both 3-NBA and 2-NBA, and also a significant difference between both isomers compared to negative control. These results clearly show that 2-NBA has a genotoxic potential. Even if the DNA-adduct forming capacity and the amount of DNA lesions measured with the (32)P-HPLC and Comet assay is about one third of 3-NBA, the high abundance of 2-NBA in ambient air calls for further investigation and evaluation of its health hazard.

  7. Epidemiology and air pollution. A report of the Committee on the Epidemiology of Air Pollutants, Board on Toxicology and Environmental Health Hazards, Commission on Life Sciences, National Research Council

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This report examines the role of epidemiology in the study of the health effects of air pollution. The four health effects of concern in the report art acute respiratory infection, chronic obstructive pulmonary disease, asthma and lung cancer. The five types of pollution said to be of continuing concern are woodsmoke, nitrogen oxides, persistant ozone and acid aerosols, episodic ozone and acid aerosol haze and radon. The advantages of using epidemiological studies are discussed. They include: direct determination of public health problems and estimation of their magnitude; evaluation of the impact of decreases in exposure; and defining characteristics of the problem that can guide intervention even before the mechanics are understood

  8. Evaluation of oxidative status in patients with brucellosis

    Directory of Open Access Journals (Sweden)

    Kivanc Serefhanoglu

    Full Text Available Oxidative stress can be defined as an increase in oxidants and/or a decrease in antioxidant capacity. We aimed to determine total antioxidant capacity (TAC, total peroxide, malondialdehyde and catalase levels in plasma samples, and calculation of oxidative stress index (OSI in patients with brucellosis to evaluate their oxidative status using a novel automated method. Sixty-nine patients with brucellosis and 69 healthy control subjects were included in the present study. Plasma levels of total peroxide and malondialdehyde were significantly increased in patients as compared with healthy controls (p0.05. OSI level was significantly increased in patients as compared with healthy controls (p<0.001. In conclusion, oxidants were increased and antioxidants were decreased in patients with brucellosis. Oxidative stress was increased in patients with brucellosis.

  9. The characteristics and evaluation of water pollution in Ganjiang Tail River

    Science.gov (United States)

    Liu, W. J.; Li, Z. B.; Zou, D. S.; Ren, C. J.; Pei, Q. B.

    2017-08-01

    The water quality in Ganjiang River has an important impact on the ecological environment of Poyang Lake, because Ganjiang River is an important water supply of Poyang Lake. In this paper, the electrical conductivity (ED), turbidity (NTU), suspended solids (SS), total phosphorus (NP), total nitrogen (NT), ammonia nitrogen (NH4-N), nitrate nitrogen (NO3-N), and chemical oxygen demand quantity (COD) have been considered as indicators of water quality while performing an assessment of water in Ganjiang River. We evaluated and analyzed comprehensively the quality of surface and underground water by using the Water Quality Identification Index Method. The sample water was retrieved every 50 days from eight monitoring points located in three sections of downstream Ganjiang River in Nanchang city; the study was conducted from September 10, 2015 to June 1, 2016. The results indicate that the pollution index of northern, central, and southern tributaries in Ganjiang River downstream are 3.807, 3.567, and 3.795, respectively; these results were obtained by performing the primary pollutants quality identification index method (PP-WQI); the pollution index for the same tributaries was found to be 3.8077, 3.5003, 3.7465, respectively when we performed comprehensive water quality identification index method (CWQI). The water pollution grades are between level 3 and level 4. The main pollutants are COD, TN, and SS; moreover, there is a linear relationship between the pollution index in groundwater and surface water. The water quality is the best in the central branch, and worst in the south; the water quality is moderate in the north. Furthermore, the water of upstream is better than that of downstream. Finally, the water quality is worst in summer but best in winter.

  10. Medical aspects of atmosphere pollution in Tbilisi, Georgia.

    Science.gov (United States)

    Lagidze, Lamzira; Matchavariani, Lia; Tsivtsivadze, Nodar; Khidasheli, Nargiz; Paichadze, Nino; Motsonelidze, Nargiz; Vakhtangishvili, Maia

    2015-01-01

    Climate change and its impact on ecosystems is one of the main problem of 21st century. Increase in green house gas in the atmosphere was regarded as an important cause. Atmospheric composition had significantly changed due to intensive technogenic pollution. Increase in aerosol (solid, liquid and gas) concentration had serious impact on human health and raised the level of risk factors for longevity of life. Despite, global character of climatic change and its intensity in numerous ways was influenced by local specificity of regions, their geographical location and meteorological factors. A study on the atmospheric quality (quantitative and percentage estimation of aerosols) of Georgia was carried out. Also the assessment of impact of meteorological and ecological conditions on human health was made for Tbilisi city. A relation between contaminants and meteorological factors was evaluated, particularly gas pollutants were strongly correlated with each other due to their photochemical activity; positive correlation (0.65; 0.69) between air temperature and pollutants. All the contaminants showed negative correlation with relative humidity, due to hydrolyzing ability. On the basis of multi-factorial statistical analysis, correlation between ambulance call, weather type, atmosphere pollution index, change in ground ozone quantity and earth magnetic field were determined. Atmospheric pollution due to dust, carbon, sulfur and nitrogen oxides, ground ozone quantity in Tbilisi significantly exceeded maximum permissible level, that effected human health.

  11. Cross-comparison and evaluation of air pollution field estimation methods

    Science.gov (United States)

    Yu, Haofei; Russell, Armistead; Mulholland, James; Odman, Talat; Hu, Yongtao; Chang, Howard H.; Kumar, Naresh

    2018-04-01

    Accurate estimates of human exposure is critical for air pollution health studies and a variety of methods are currently being used to assign pollutant concentrations to populations. Results from these methods may differ substantially, which can affect the outcomes of health impact assessments. Here, we applied 14 methods for developing spatiotemporal air pollutant concentration fields of eight pollutants to the Atlanta, Georgia region. These methods include eight methods relying mostly on air quality observations (CM: central monitor; SA: spatial average; IDW: inverse distance weighting; KRIG: kriging; TESS-D: discontinuous tessellation; TESS-NN: natural neighbor tessellation with interpolation; LUR: land use regression; AOD: downscaled satellite-derived aerosol optical depth), one using the RLINE dispersion model, and five methods using a chemical transport model (CMAQ), with and without using observational data to constrain results. The derived fields were evaluated and compared. Overall, all methods generally perform better at urban than rural area, and for secondary than primary pollutants. We found the CM and SA methods may be appropriate only for small domains, and for secondary pollutants, though the SA method lead to large negative spatial correlations when using data withholding for PM2.5 (spatial correlation coefficient R = -0.81). The TESS-D method was found to have major limitations. Results of the IDW, KRIG and TESS-NN methods are similar. They are found to be better suited for secondary pollutants because of their satisfactory temporal performance (e.g. average temporal R2 > 0.85 for PM2.5 but less than 0.35 for primary pollutant NO2). In addition, they are suitable for areas with relatively dense monitoring networks due to their inability to capture spatial concentration variabilities, as indicated by the negative spatial R (lower than -0.2 for PM2.5 when assessed using data withholding). The performance of LUR and AOD methods were similar to

  12. A simple Cr(VI)–S(IV)–O{sub 2} system for rapid and simultaneous reduction of Cr(VI) and oxidative degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yanan; Yang, Shaojie [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, 430079 (China); Zhou, Danna, E-mail: zdncug@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Wu, Feng [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, 430079 (China)

    2016-04-15

    Highlights: • Rapid and simultaneous reduction of Cr(VI) and degradation of organic pollutants occur. • Oxysulfur radicals generated in Cr(VI)–S(IV)–O{sub 2} system oxidize the organic pollutants. • Acidic pH facilitates the reactions from both directions of reduction and oxidation. • Degradation potential of aromatic amines depends on the substituted groups. • Cr(VI)–S(IV)–O{sub 2} system is promising for “waste control by waste”. - Abstract: Hexavalent chromium (Cr(VI)), a heavy-metal contaminant, can be easily reduced to less toxic trivalent chromium (Cr(III)) by sulfite ions (S(IV)). However, S(IV) has not drawn as much attention as the ferrous ion has. We report herein a novel Cr(VI)–S(IV)–O{sub 2} system containing sulfite ions that rapidly and simultaneously reduces Cr(VI) and oxidize organic pollutants in the presence of oxygen in aqueous solutions. This Cr(VI)–S(IV)-O{sub 2} system contains the initiator Cr(VI), the reductant S(IV), and the oxidant O{sub 2}, which produce oxysulfur radicals (mainly SO{sub 4}·{sup −} and SO{sub 5}·{sup −}) and hydroxyl radicals (OH·). The Cr(VI)/S(IV) molar ratio, pH, and oxygen content play important roles in the entire reaction system. Acidic conditions (pH 3.0) facilitated degradation of organic compounds and reduction of Cr(VI) as well. In addition, experiments of rapid degradation of several kinds of organic pollutants such as azo dye (acid orange 7, AO7), aniline, phenol, bisphenol A etc were also conducted. Preliminary results show that the removal rates of the analogs of phenols or aromatic amines in this Cr(VI)–S(IV)–O{sub 2} system have a relationship with the electronic parameters (Hammett constant, σ) of the substituted groups. Thus, the Cr(VI)–S(IV)–O{sub 2} system, provides an excellent strategy of “waste control by waste” for removing multiple industrial contaminants.

  13. Air pollution monitoring in downtown Rome, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Brocco, D; Petricca, M; Polesi, R [Consiglio Nazionale delle Ricerche, Rome (Italy). Ist. sull' Inquinamento Atmosferico Assessorato Ambiente, Rome (Italy). Amministrazione Provinciale

    1992-09-01

    This paper tables air pollution data indicating concentrations of sulfur dioxide, nitrous oxides, carbon monoxide, ozone, non-methane hydrocarbons (NMTHC) and particulate matter measured in downtown Rome during the period, April 1990 - March 1991. These data are analyzed according to National Air Quality Standards. Correlations are developed for nitrous oxide, NMTHC and ozone concentration trends as a function of solar radiation intensity. Analysis of the data reveals that the concentrations of the primary pollutants, carbon monoxide and nitrogen oxide, were very high in the winter months when building heating systems were operating under stable weather conditions. In many cases, the concentrations of carbon monoxide exceeded ambient air quality standards. The paper also discusses the need for the development of limits for NMTHC concentrations and including these limits in the Air Quality Standards.

  14. Self-Propelled Micromotors for Cleaning Polluted Water

    Science.gov (United States)

    2013-01-01

    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623

  15. In-Situ Regeneration of Saturated Granular Activated Carbon by an Iron Oxide Nanocatalyst

    Science.gov (United States)

    Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed con...

  16. Exposure of lichens for the recognition and the evaluation of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, H; Van Haut, H

    1971-01-01

    Lower and higher plants can be used as biological indicators to evaluate air quality. Both field and fumigation experiments have proven that the lichen Parmelia physodes is measurably influenced by sulfur dioxide, hydrogen fluoride and hydrogen chloride. A distinct relationship was found between the dose of a toxicant and the death rate. Development of methods of exposing these lichens in polluted areas and of determining their reactions made it possible to use these organisms as a biological measuring procedure. The death rate within a certain period of time is used as an effect criterion, and serves as a measure. By means of different examples it is demonstrated that lichens can be used for monitoring air pollution in both small and large areas. The use of lichens as indicators for toxicants in air can lead to a simple and inexpensive method of monitoring air pollutants.

  17. Effect of oil pollution on pattern and functions of soil microbiosensors

    International Nuclear Information System (INIS)

    Talibli, A.K.; Mamedova, I.S.; Mamedyarov, M.A.

    2002-01-01

    Full text : The soil polluted by oil and petroleum creates severe social and ecological problem. The solution of indicated problem is requires the development and intrusion of modern progressive technology. Most perspective in this sense can be clearing the oil-polluted soils with usage of activity of microorganisms. The modern level of learning of microorganisms oxidizing oil hydrocarbon testifies to a capability of creation of the non-polluting, economically effective biotechnological schemes. It was established by our researches that in oil polluted soils of Absheron peninsula alongside with hydrocarbon oxidizing bacteria it is finding everywhere lithotrophic bacteria of cycle of sulfur - representatives of sulfate-reducing and bacteria of genus Thiobacillus. It was established that the soil polluted by heavy tarry oil renders negative influencing on development of microorganisms

  18. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation.

    Science.gov (United States)

    Petranović, Zvonimir; Bešenić, Tibor; Vujanović, Milan; Duić, Neven

    2017-12-01

    In order to reduce the harmful effect on the environment, European Union allowed using the biofuel blends as fuel for the internal combustion engines. Experimental studies have been carried on, dealing with the biodiesel influence on the emission concentrations, showing inconclusive results. In this paper numerical model for pollutant prediction in internal combustion engines is presented. It describes the processes leading towards the pollutant emissions, such as spray particles model, fuel disintegration and evaporation model, combustion and the chemical model for pollutant formation. Presented numerical model, implemented in proprietary software FIRE ® , is able to capture chemical phenomena and to predict pollutant emission concentration trends. Using the presented model, numerical simulations of the diesel fuelled internal combustion engine have been performed, with the results validated against the experimental data. Additionally, biodiesel has been used as fuel and the levels of pollutant emissions have been compared to the diesel case. Results have shown that the biodiesel blends release lower nitrogen oxide emissions than the engines powered with the regular diesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Analysis of organic pollutants in the soils of the disused gas plants. Experimental evaluation and recommendations

    International Nuclear Information System (INIS)

    Caron, S.; Carmant, S.

    1997-01-01

    In France, environmental investigations are at the moment carried out on numerous disused gas plants sites, which soils can have been polluted by the by-products generated during the fabrication of the gas (most of the time coal tar). Within the context of those investigations, diagnosis of the pollution of soils by the analytical way is an essential operation on the basis of which the risks are evaluated and the treatments are decided. Moreover, the evolution of the pollution level during the cleaning up of the soils and the efficiency of the treatment can only be measured by the analytical way. Until today, analytical aspects, relative to the study of polluted soils can be discussed. Indeed, in consideration of the heterogeneity of the soils, there are difficulties, on the first hand on sites during the sampling of the soils, on the other hand in the laboratory during the chemical analysis of the organic pollutants. After having evoked this problematic, the paper accounts for the evaluation, done by GDF, of varied analytical methods, used and even recommended by reference oragnizations (included: preparatation of the samples, extraction of the organic pollutants, analysis of the extract and interpretation). Finally, on the basis of the accumulated experinece, some advice are given on how to optimize the number and the kind of samples as well as the combined analysis. (au)

  20. Wastes incineration and public health: status of recent knowledge and risk evaluation; L'incineration des dechets et la sante publique: bilan des connaissances recentes et evaluation du risque

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The incineration of municipal and industrial wastes produces combustion products with various pollutants like: dusts, acid gases, heavy metals, nitrogen oxides, dioxines etc.. This report analyzes the toxicity of different pollutants (particulates, polycyclic halogenated compounds, cadmium, mercury, lead), the exposure of the population with respect to incineration pollutants (occupational and general exposure), and the risks linked with this exposure (hazard identification, exposure evaluation, risk characterization, results). (J.S.)

  1. Effects of atmospheric pollutants on lipids

    International Nuclear Information System (INIS)

    Howton, D.R.

    1976-01-01

    Studies on effects of atmospheric pollutants on lipids emphasized effects of nitrogen dioxide on olefinic centers of alveolar fluid surfactant lipids. The finding that NO 2 attacks α-tocopherol much more avidly than olefinic fatty esters indicates that the autoxidation enhancing effects of this atmospheric pollutant may be greatly magnified by destruction of native antioxidants that normally suppress the extensiveness of such lipid oxidation

  2. Wastes incineration and public health: status of recent knowledge and risk evaluation; L'incineration des dechets et la sante publique: bilan des connaissances recentes et evaluation du risque

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The incineration of municipal and industrial wastes produces combustion products with various pollutants like: dusts, acid gases, heavy metals, nitrogen oxides, dioxines etc.. This report analyzes the toxicity of different pollutants (particulates, polycyclic halogenated compounds, cadmium, mercury, lead), the exposure of the population with respect to incineration pollutants (occupational and general exposure), and the risks linked with this exposure (hazard identification, exposure evaluation, risk characterization, results). (J.S.)

  3. Evaluation of heavy metals transfer: impact of a dredged sediment deposit on a on-polluted soil; Migration des polluants metalliques: cas d'un depot de sediments contamines sur un sol non pollue

    Energy Technology Data Exchange (ETDEWEB)

    Vauleon, C.; Laboudigue, A. [Centre National de Recherche sur les Sites et Sols Pollues, CNRSSP, 59 - Douai (France); Tiffreau, Ch. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    In many countries and especially in the North of France, inland waterways need to be dredged regularly to provide a high quality environment for customers, staff and local communities. However, dredging operations generate yearly large quantities of sediments, which in spite of their high pollutant contents, are often stored in non-specific sites. Thus, the threat of a spreading contamination for the surrounding environment is important. In order to evaluate this potential risk and to quantify the transfer of heavy metals from the dredged layer to the non-polluted soil below, an interdisciplinary research project was undertaken including, (i) the monitoring of an experimental sediment deposit, (ii) the microscopic study of metal distribution inside this deposit, (iii) the evaluation of microbial activity, (iv) the impact of natural vegetation growth on metal migration. Up to now, the main processes identified (oxidation of sulphur compounds, vertical migration of Zinc) allowed us to make several recommendations for the future management of dredged sediments by: (i) controlling the oxidation processes during dredging operations or (ii) assessing the high neutralizing capacity of the local environment of deposition. Moreover, an adequate vegetation management can reduce the heavy metals migration to groundwater's with maximum efficiency and at low costs. (author)

  4. Pollution prevention at ports: clearing the air

    International Nuclear Information System (INIS)

    Bailey, Diane; Solomon, Gina

    2004-01-01

    Seaports are major hubs of economic activity and of environmental pollution in coastal urban areas. Due to increasing global trade, transport of goods through ports has been steadily increasing and will likely continue to increase in the future. Evaluating air pollution impacts of ports requires consideration of numerous sources, including marine vessels, trucks, locomotives, and off-road equipment used for moving cargo. The air quality impacts of ports are significant, with particularly large emissions of diesel exhaust, particulate matter, and nitrogen oxides. The health effects of these air pollutants to residents of local communities include asthma, other respiratory diseases, cardiovascular disease, lung cancer, and premature mortality. In children, there are links with asthma, bronchitis, missed school days, and emergency room visits. The significance of these environmental health impacts requires aggressive efforts to mitigate the problem. Approaches to mitigation encompass a range of possibilities from currently available, low-cost approaches, to more significant investments for cleaner air. Examples of the former include restrictions on truck idling and the use of low-sulfur diesel fuel; the latter includes shore-side power for docked ships, and alternative fuels. A precautionary approach to port-related air pollution would encourage local production of goods in order to reduce marine traffic, greener design for new terminals, and state-of-the art approaches to emissions-control that have been successfully demonstrated at ports throughout the world

  5. Development and evaluation of best management practices (BMPS) for highway runoff pollution control.

    Science.gov (United States)

    2013-12-01

    Polluted storm water runoff is commonly transported through Municipal Separate Storm Sewer Systems (MS4s). Currently, : sufficient information is not available on development and evaluation of Best Management Practices (BMPs) within an MS4 : boundary...

  6. OXIDATIVE STRESS BIOMARKERS IN MUSSELS SAMPLED FROM FOUR SITES ALONG THE MOROCCAN ATLANTIC COAST (BIG CASABLANCA

    Directory of Open Access Journals (Sweden)

    LAILA EL JOURMI

    2012-12-01

    Full Text Available Catalase (CAT activity and malondialdehyde (MDA level in whole bodies of the mussel perna perna, collected from four stations along the Moroccan Atlantic coast (Big Casablanca area, were monitored to evaluate stress effects on mussels collected from the selected sites. The oxidative stress biomarkers showed statistically significant differences at the polluted sites when compared to the control ones. In general, our data indicated that CAT activity and MDA concentration are a higher and significant (p < 0.05 in mussels collected at polluted site when compared to specimen sampled from control ones. In conclusion, the oxidative stress biomarkers response obtained for October 2010 and 2011, clearly demonstrate the potential presence of different contaminants in Site 4 and Site 3 reflecting the intensity of pollution in these areas.

  7. Cleaning up coal-fired plants : multi-pollutant technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2009-06-15

    Coal is the source of 41 per cent of the world's electricity. Emission reduction technologies are needed to address the rapid growth of coal-fired plants in developing countries. This article discussed a multi-pollutant technology currently being developed by Natural Resources Canada's CANMET Energy Technology Centre. The ECO technology was designed to focus on several types of emissions, including sulfur oxides (SOx), nitrogen oxides (NOx), mercury and particulates, as well as acid gases and other metals from the exhaust gas of coal-fired plants. The ECO process converts and absorbs incoming pollutants in a wet electrostatic precipitator while at the same time producing a valuable fertilizer. The ECO system is installed as part of the plant's existing particulate control device and treats flue gas in 3 process steps: (1) a dielectric barrier discharge reactor oxidizes gaseous pollutants to higher oxides; (2) an ammonia scrubber then removes sulfur dioxide (SO{sub 2}) not converted by the reactor while also removing the NOx; and (3) the wet electrostatic precipitator captures acid aerosols produced by the discharge reactor. A diagram of the ECO process flow was included. It was concluded that the systems will be installed in clean coal plants by 2015. 2 figs.

  8. Ecotoxicological evaluation of areas polluted by mining activities

    Science.gov (United States)

    García-Lorenzo, M. L.; Martínez-Sánchez, M. J.; Pérez-Sirvent, C.; Molina, J.

    2009-04-01

    Determination of the contaminant content is not enough to evaluate the toxic effects or to characterise contaminated sites, because such a measure does not reflect the ecotoxicological danger in the environment and does not provide information on the effects of the chemical compounds. To estimate the risk of contaminants, chemical methods need to be complemented with biological methods. Therefore, ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. The aim of this study was to develop a battery of bioassays for the ecotoxicological screening of areas polluted by mining activities. Particularly, the toxicity of water samples, sediments and their pore-water extracts was evaluated by using three assays: bacteria, plants and ostracods. Moreover, the possible relationship between observed toxicity and results of chemical analysis was studied. The studied area, Sierra Minera, is close to the mining region of La Uni

  9. Evaluation of biochars by temperature programmed oxidation/mass spectrometry

    Science.gov (United States)

    Michael Jackson; Thomas Eberhardt; Akwasi Boateng; Charles Mullen; Les Groom

    2013-01-01

    Biochars produced from thermochemical conversions of biomass were evaluated by temperature programmed oxidation (TPO). This technique, used to characterize carbon deposits on petroleum cracking catalysts, provides information on the oxidative stability of carbonaceous solids, where higher temperature reactivity indicates greater structural order, an important property...

  10. Recognition, evaluation, and control of indoor air pollution

    International Nuclear Information System (INIS)

    Chastain, B.

    1993-01-01

    Indoor air pollution is typically associated with terms sick building syndrome, tight building syndrome, building related illness, and problem building. Indoor air pollution is a relatively new public health concern (approximately 15 years old) although this issue is an age-old problem dating back to prehistoric times when humans came to live indoors. This presentation summarizes indoor air quality issues in order to provide you with usable information concerning the recognition and evaluation of indoor air quality (IAQ) problems and the subsequent control measures which can be used for maintaining or improving the indoor air environment for better occupant health and comfort control. Why has the subject become so vocalized in the last fifteen years? Why the sudden interest and awareness concerning indoor air quality issues? During the last half of the 1970's and all of the 1980's, buildings were built or remodeled to minimize air handling, heating, and cooling costs, often limiting the amount of outside air brought into the buildings to near minimums. Paralleling these developments, complaints related to modern buildings increased. The new terms tight building syndrome, sick building syndrome, and indoor air quality became widely used by health and safety professionals and subsequently by newspaper columnist and the general public

  11. Working group 6: Health. 3. Biological effects of nonradioactive pollutants associated with nuclear and conventional power plants

    International Nuclear Information System (INIS)

    Lauwerys, R.

    1976-01-01

    The major air pollutants released from conventional power plants have been found to be sulfur dioxide (SO 2 ), nitrogen oxides (NOx) and suspended particulates beside these three major pollutants other substances (CO, O 3 , hydrocarbons, vanadium...) occur in air or in water. Origin and extent of these pollutants as well as their main health hazards, especially for the respiratory system, have been evaluated. Other risks connected with the whole fuel cycle (coal extraction, petrol refining...) have been considered to be significant for human health. A mathematical model has been set up by the C.E.N. of Mol (Belgium) in order to predict the content of pollutants at the soil level, especially for SO 2 . A relationship between SO 2 content and the concentration of the other pollutants has been found by assuming certain hypothesis. Epidemiological and toxicological data connected with the SO 2 release have been given. As for nonradioactive pollutants released from nuclear power plants their amount has been considered to be negligible. (G.C.)

  12. Long-range transport of air pollution under light gradient wind conditions

    International Nuclear Information System (INIS)

    Kurita, H.; Sasaki, K.; Muroga, H.; Ueda, H.; Wakamatsu, S.

    1985-01-01

    The long-range transport of air pollution on clear days under light gradient wind conditions is investigated from an analysis of all days with high oxidant concentrations in 1979 at locations in central Japan that are far from pollutant sources. Surface-level wind and pressure distributions over a 300 x 300 km area were analyzed, together with concentration isopleths of oxidants and suspended particles produced by photochemical reactions

  13. The Protective Role of Antioxidants in the Defence against ROS/RNS-Mediated Environmental Pollution

    Directory of Open Access Journals (Sweden)

    Borut Poljšak

    2014-01-01

    Full Text Available Overproduction of reactive oxygen and nitrogen species can result from exposure to environmental pollutants, such as ionising and nonionising radiation, ultraviolet radiation, elevated concentrations of ozone, nitrogen oxides, sulphur dioxide, cigarette smoke, asbestos, particulate matter, pesticides, dioxins and furans, polycyclic aromatic hydrocarbons, and many other compounds present in the environment. It appears that increased oxidative/nitrosative stress is often neglected mechanism by which environmental pollutants affect human health. Oxidation of and oxidative damage to cellular components and biomolecules have been suggested to be involved in the aetiology of several chronic diseases, including cancer, cardiovascular disease, cataracts, age-related macular degeneration, and aging. Several studies have demonstrated that the human body can alleviate oxidative stress using exogenous antioxidants. However, not all dietary antioxidant supplements display protective effects, for example, β-carotene for lung cancer prevention in smokers or tocopherols for photooxidative stress. In this review, we explore the increases in oxidative stress caused by exposure to environmental pollutants and the protective effects of antioxidants.

  14. Toxicity Evaluation of Graphene Oxide and Titania Loaded Nafion Membranes in Zebrafish

    Directory of Open Access Journals (Sweden)

    Roberta Pecoraro

    2018-01-01

    Full Text Available The use of nanomaterials in several application fields has received in the last decades a great attention due to their peculiar properties, but also raised many doubts about possible toxicity when these materials are used for some specific applications, such as water purification. Indeed a careful investigation is needed in order to exclude possible harmful side effects related to the use of nanotechnology. Nanoparticles effects on the marine organisms may depend on their chemical composition, size, surface structure, solubility, shape and how the individual nanoparticles aggregate together. In order to make the most of their potential, without polluting the environment, many researchers are trying to trap them into some kind of matrix that keeps them active but avoids their dispersion in the environment. In this study we have tested nanocomposite membranes prepared using Nafion polymer combined with various fillers, such as anatase-type TiO2 nanoparticles and graphene oxide. The non-toxicity of these nanocomposites, already shown to be effective for water purification applications in our previous studies, was recognized by testing the effect of the different materials on zebrafish embryos. Zebrafish was considered an excellent model for ecotoxicological studies and for this motivation zebrafish embryos were exposed to different concentrations of free nanoparticles and to the nanocomposite membranes. As biomarkers of exposure, we evaluated the expression of heme-oxygenase 1 and inducible Nitric Oxide Synthases by immunohistochemistry and gene expression. Embryo toxicity test showed that nor sublethal effects neither mortality were caused by the different nanoparticles and nano-systems tested. Only zebrafish larvae exposed to free nanoparticles have shown a different response to antibodies anti-heme-oxygenase 1 and anti- inducible Nitric Oxide Synthases. The immunolocalization analysis in fact has highlighted an increase in the synthesis of these

  15. LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD.

    Science.gov (United States)

    Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John

    2014-05-01

    Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This 'on-line' system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R 2 = 0.69) than the traditional method (R 2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method.

  16. Integrated use of antioxidant enzymes and oxidative damage in two fish species to assess pollution in man-made hydroelectric reservoirs.

    Science.gov (United States)

    Sakuragui, M M; Paulino, M G; Pereira, C D S; Carvalho, C S; Sadauskas-Henrique, H; Fernandes, M N

    2013-07-01

    This study investigated the relationship between contaminant body burden and the oxidative stress status of the gills and livers of two wild fish species in the Furnas Hydroelectric Power Station (HPS) reservoir (Minas Gerais, Brazil). Gills and livers presented similar pathways of metals and organochlorine bioaccumulation. During June, organochlorines were associated with lipid peroxidation (LPO), indicating oxidative stress due to the inhibition of the antioxidant enzymes superoxide dismutase and glutathione peroxidase. In the most polluted areas, metal concentrations in the liver were associated with metallothionein. During December, contaminants in the gills and liver were associated with catalase activity and LPO. Aldrin/dieldrin was the contaminant most associated with oxidative damage in the livers of both species. This integrated approach shed light on the relationship between adverse biological effects and bioaccumulation of contaminants inputted by intensive agricultural practices and proved to be a suitable tool for assessing the environmental quality of man-made reservoirs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes.

    Science.gov (United States)

    Yan, Junyan; Chen, Liliang; Huang, Chih-Ching; Lung, Shih-Chun Candice; Yang, Lingyan; Wang, Wen-Cheng; Lin, Po-Hsiung; Suo, Guangli; Lin, Chia-Hua

    2017-05-01

    The biocompatibilities of graphene-family nanomaterials (GFNs) should be thoroughly evaluated before their application in drug delivery and anticancer therapy. The present study aimed to consecutively assess the immunotoxicity of graphene oxide nanoplatelets (GONPs) and reduced GONPs (rGONPs) on THP-1 cells, a human acute monocytic leukemia cell line. GONPs induced the expression of antioxidative enzymes and inflammatory factors, whereas rGONPs had substantially higher cellular uptake rate, higher levels of NF-κB expression. These distinct toxic mechanisms were observed because the two nanomaterials differ in their oxidation state, which imparts different affinities for the cell membrane. Because GONPs have a higher cell membrane affinity and higher impact on membrane proteins compared with rGONPs, macrophages (THP-1a) derived from GONPs treated THP-1cells showed a severer effect on phagocytosis. By consecutive evaluation the effects of GONPs and rGONPs on THP-1 and THP-1a, we demonstrated that their surface oxidation states may cause GFNs to behave differently and cause different immunotoxic effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Economic development and multiple air pollutant emissions from the industrial sector.

    Science.gov (United States)

    Fujii, Hidemichi; Managi, Shunsuke

    2016-02-01

    This study analyzed the relationship between economic growth and emissions of eight environmental air pollutants (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitrogen oxide (NOx), sulfur oxide (SOx), carbon monoxide (CO), non-methane volatile organic compound (NMVOC), and ammonia (NH3)) in 39 countries from 1995 to 2009. We tested an environmental Kuznets curve (EKC) hypothesis for 16 individual industry sectors and for the total industrial sector. The results clarified that at least ten individual industries do not have an EKC relationship in eight air pollutants even though this relationship was observed in the country and total industrial sector level data. We found that the key industries that dictated the EKC relationship in the country and the total industrial sector existed in CO2, N2O, CO, and NMVOC emissions. Finally, the EKC turning point and the relationship between economic development and trends of air pollutant emissions differ among industries according to the pollution substances. These results suggest inducing new environmental policy design such as the sectoral crediting mechanism, which focuses on the industrial characteristics of emissions.

  19. The Oxides of Nitrogen in Air Pollution.

    Science.gov (United States)

    California State Air Resources Board, Sacramento.

    Research on the health effects of oxides of nitrogen and on the role of oxides of nitrogen in producing photochemical smog effects is presented in this report. Prepared by the California State Department of Public Health at the request of the State Legislature, it gives a comprehensive review of available information, as well as the need for air…

  20. An early warning system for groundwater pollution based on the assessment of groundwater pollution risks.

    Science.gov (United States)

    Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong

    2009-04-01

    Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords

  1. X-ray fluorescence spectrometry analysis of soil heavy metals in a populous place and evaluation on its heavy metals pollution

    International Nuclear Information System (INIS)

    Li Dan; Wang Guangxi; Luo Yaoyao; Qiu Luyang

    2012-01-01

    Abstract The contents of As, Cr, Pb, Cu, Zn and Ni in soil of the populous place, were determined by X-ray fluorescence spectrometry. The heavy metals pollution of soil was evaluated by using single pollute index, synthesis pollute index, geoaccumulation index and potential ecological risk index, and the results showed that the populous place was in the state of slight pollution and ecological risk. (authors)

  2. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests.

    Science.gov (United States)

    Efremova, Ludmila V; Vasilchenko, Alexey S; Rakov, Eduard G; Deryabin, Dmitry G

    2015-01-01

    The plate-like graphene shells (GS) produced by an original methane pyrolysis method and their derivatives graphene oxide (GO) and graphene oxide paper (GO-P) were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials' toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., "membrane stress") as a clue to graphene oxide's mechanism of toxicity.

  3. Pollution and Sun Exposure: a Deleterious Synergy. Mechanisms and Opportunities for Skin Protection.

    Science.gov (United States)

    Marrot, Laurent

    2017-09-18

    Pollutants are highly diverse chemical entities, including gases such as ozone or nitrogen and sulphur oxides and particulate matter of different sizes and with different chemical constituents. PM2.5 is composed of particles that are sometimes about ten nanometres or so in size (ultrafine particles) which can be deposited in lung alveoli, translocated into capillaries and then distributed to all organs through blood circulation. PM2.5 is often associated with toxic chemicals such as heavy metals or polycyclic aromatic hydrocarbons (PAHs) and some photo-reactive PAHs can induce strong oxidative stress under UVA exposure. Skin may thus be impacted by external influences through oxidation of some of its surface components. Moreover, internal contamination is highly probable since some pollutants present in plasma could be delivered by the circulation of the blood. In fact, aggravation of skin diseases such as atopy or eczema during peaks in pollution suggests that skin surface is not the only one to be impacted. Moreover, epidemiological data pointed to a significant correlation between exposure to pollution or cigarette smoke and early occurrence of aging markers. Oxidative stress, inflammation and metabolic impairments are among the most probable mechanisms of pollution-derived dermatological hazards which might be amplified by the deleterious synergy of pollution and sun, particularly UVA. Protection strategies should thus combine surface protection (sunscreens with high UVA absorption, antioxidants preventing lipid peroxidation) and enhanced deeper skin tissue resistance to oxidative stress and inflammation, with antioxidants targeting mitochondria or the induction of natural antioxidation and detoxification such as the Nrf2 pathway. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Applying of Electrical Imaging Survey (EIS) to Evaluate Leachate Pollution in Underground Area of Informal Landfill

    DEFF Research Database (Denmark)

    Du, Song; Wang, Di; Mou, Zishen

    2014-01-01

    An informal landfill is an open dump that pollutes the underground environment because it lacks an impervious liner. The leakage of such a landfill is unidirectional and thus difficult to directly test. This study uses electrical imaging survey to evaluate the pollution of the underground...... environment of an informal landfill for municipal solid waste in Beijing. We hypothesize that every location has a specific resistivity resulting from the leachate. We use the membership function of fuzzy mathematics to quantitatively represent the pollution of the underground environment in the sanitary...... landfill. The results are consistent with borehole data....

  5. Evaluation of the sanitary impact of urban air pollution. Update version of the methodological guide; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Version actualisee du guide methodologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-15

    In order to bring a help to the evaluation of effects of air quality on health, the Institute of Sanitary surveillance published in 1999 a method guide for the realisation of sanitary impact evaluations of the urban air pollution. This work to prepare to an update version of the guide presents the first recommendations that can be made today for the realisation of sanitary impact evaluations at short and long term at a local level, taking into account the knowledge evolution. (N.C.)

  6. Air pollution due to road traffic in Ljubljana

    Directory of Open Access Journals (Sweden)

    Matej Ogrin

    2007-01-01

    Full Text Available Air pollution is due to road traffic an inevitable outcome of internal combustion in engines ofvehicles and some other processes. Air near the roads is more polluted with some pollutants,such as carbon monoxide, nitrogen oxides, ozone, particulate matter and some others.Monitoring the air quality is a key issue, when one wants to estimate environmental impactsof the road traffic. The article shows a method of passive samplers for air quality monitoringalong different roads in the area of Ljubljana Municipality.

  7. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Science.gov (United States)

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  8. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution.

    Science.gov (United States)

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G; Clougherty, Jane E; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-12-10

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors-including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)-as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions.

  9. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution

    Science.gov (United States)

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G.; Clougherty, Jane E.; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-01-01

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors—including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)—as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions. PMID:26690474

  10. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution

    Directory of Open Access Journals (Sweden)

    Szabolcs Péter

    2015-12-01

    Full Text Available Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors—including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources—as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions.

  11. Some measurements of ambient air pollution

    International Nuclear Information System (INIS)

    Memon, H.R.; Memon, A.A.; Behan, M.Y.

    1999-01-01

    Ambient air pollution arising from different sources in Karachi and its surroundings has been studied. The urban centres like Karachi are mostly confronted with eye-irritation, reduce visibility, heart-diseases, nervous disorder, smog and other unpleasant experiences. In this paper quantitative estimations of some air-pollutants such as sulphur dioxide, carbon monoxide, oxides of nitrogen, chlorine and particular matters are presented with their hazardous effects. The remedial measures for the control of major air emissions are also discussed. (author)

  12. Health Effects of Ambient Air Pollution in Developing Countries

    OpenAIRE

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-01-01

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality...

  13. Evaluation of Capacity on a High Throughput Vol-oxidizer for Operability

    International Nuclear Information System (INIS)

    Kim, Young Hwan; Park, Geun Il; Lee, Jung Won; Jung, Jae Hoo; Kim, Ki Ho; Lee, Yong Soon; Lee, Do Youn; Kim, Su Sung

    2010-01-01

    KAERI is developing a pyro-process. As a piece of process equipment, a high throughput vol-oxidizer which can handle a several tens kg HM/batch was developed to supply U 3 O 8 powders to an electrolytic reduction(ER) reactor. To increase the reduction yield, UO 2 pellets should be converted into uniform powders. In this paper, we aim at the evaluation of a high throughput vol-oxidizer for operability. The evaluation consisted of 3 targets, a mechanical motion test, a heating test and hull separation test. In order to test a high throughput vol-oxidizer, By using a control system, mechanical motion tests of the vol-oxidizer were conducted, and heating rates were analyzed. Also the separation tests of hulls for recovery rate were conducted. The test results of the vol-oxidizer are going to be applied for operability. A study on the characteristics of the volatile gas produced during a vol-oxidation process is not included in this study

  14. Volatile trace compounds released from municipal solid waste at the transfer stage: Evaluation of environmental impacts and odour pollution.

    Science.gov (United States)

    Zhao, Yan; Lu, Wenjing; Wang, Hongtao

    2015-12-30

    Odour pollution caused by municipal solid waste is a public concern. This study quantitatively evaluated the concentration, environmental impacts, and olfaction of volatile trace compounds released from a waste transfer station. Seventy-six compounds were detected, and ethanol presented the highest releasing rate and ratio of 14.76 kg/d and 12.30 g/t of waste, respectively. Life cycle assessment showed that trichlorofluoromethane and dichlorodifluoromethane accounted for more than 99% of impact potentials to global warming and approximately 70% to human toxicity (non-carcinogenic). The major contributor for both photochemical ozone formation and ecotoxicity was ethanol. A detection threshold method was also used to evaluate odour pollution. Five compounds including methane thiol, hydrogen sulphide, ethanol, dimethyl disulphide, and dimethyl sulphide, with dilution multiples above one, were considered the critical compounds. Methane thiol showed the highest contribution to odour pollution of more than 90%, as indicated by its low threshold. Comparison of the contributions of the compounds to different environmental aspects indicated that typical pollutants varied based on specific evaluation targets and therefore should be comprehensively considered. This study provides important information and scientific methodology to elucidate the impacts of odourant compounds to the environment and odour pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Evaluation of oxidative status in short-term exercises of adolescent athletes

    Directory of Open Access Journals (Sweden)

    K Karacabey

    2010-09-01

    Full Text Available The aim of the study was to evaluate the effects of short-term exercise on total antioxidant status (TAS, lipid hydroperoxide (LOOHs, total oxidative status (TOS and oxidative stress index (OSI in adolescent athletes. A total of 62 adolescent participated in the study. Athletes were trained regularly 3 days a week for 2 hours. All subjects followed a circuit exercise program. Blood samples were collected just before and immediately after the exercise program. Antioxidant status was evaluated by measuring the TAS level in the plasma. Oxidative status was evaluated by measuring the total peroxide level. The percentage ratio of TAS to total peroxide level was accepted as the OSI. Plasma triglyceride, total cholesterol, LDL, HDL and VLDL were measured by automated chemical analyzer using commercially available kits.There was a significant increase in TOS (p<0.05 and OSI (p<0.01 levels and a significant decrease in TAS levels (p<0.01 compared to the resting state. There were no significant changes in LOOHs levels before and after the short-term exercise. After short-term exercise, the balance between oxidative stress and antioxidant status moves towards oxidative stress as a result of increasing oxidants and decreasing antioxidants.

  16. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos.

    Science.gov (United States)

    Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria

    2018-06-14

    Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Impacts of Different Water Pollution Sources on Antioxidant Defense Ability in Three Aquatic Macrophytes in Assiut Province, Egypt

    Directory of Open Access Journals (Sweden)

    Mohamed A.A. Gadallah

    2014-08-01

    Full Text Available The present study was undertaken to evaluate the impacts of surface water pollution with wastes coming from sewage effluents (Site 2, agricultural runoff (Site 4 and oils and detergents factory (Site 3 on the stability of leaf membrane (measured as injury %, hydrogen peroxide (H2O2, ascorbic acid (Asc A, lipid peroxidation, chlorophyll (Chl content, soluble sugars (SS, soluble proteins (SP and total free amino acids (TAA of Cyperus alopeucroides, Persicaria salicifolia and Echinochloa stagnina. Concentration of H2O2, MDA and TAA were higher in the three plants collected from polluted sites as compared with those of plants grown in control Nile site (Site1. The opposite was true for Asc A, SS and SP where their concentrations reduced significantly in response to water pollution. Leaf membrane was more damaged (high injury % in plants exposed to wastes from different sources than in plants growing at control site. The results of this study indicated that water pollution reduced the oxidative defense abilities in the three plants through reduction of Asc A activities, enhancement of H2O2 production and increasing MDA accumulation. In addition it impaired the metabolic activity through lowering the SS and SP contents and enhancement of TAA accumulation and increase membrane injury. The over production of hydrogen peroxide by the studied aquatic plants under water pollution could be used as an oxygen source needed to oxidize the more resistant organic and inorganic pollutants and used for pollution control and municipal and industrial wastewater treatment.

  18. On - road mobile source pollutant emissions : identifying hotspots and ranking roads.

    Science.gov (United States)

    2010-12-30

    A considerable amount of pollution to the air in the forms of hydrocarbons, carbon : monoxide (CO), nitrogen oxides (NOx), particulate matter (PM) and air toxics comes : from the on-road mobile sources. Estimation of the emissions of these pollutants...

  19. An Evaluation of the Role of Ozone, Acid Deposition, and other Airborne Pollutants in the Forests of Eastern North America

    Science.gov (United States)

    J.H.B. Garner; Terry Pagano; Ellis B. Cowling

    1989-01-01

    Existing knowledge on air pollutants that occur in the forests of eastern North America is summarized and interpreted.Resolution is sought to the conflict between the prevailing scientific judgment that ozone and other oxidants are most likely to be damaging eastern forests and the prevailing public perception that acidic and acidifying substances are the most likely...

  20. Evaluation of sanitary impact of the urban air pollution. Avignon area impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Zone d'Avignon impact a court et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    An health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Avignon according to the Regional Plan for the quality of air in the region of Provence Alpes Cote d'Azur. Short term impact of atmospheric pollution has been estimated in term of mortality (total, cardiovascular and respiratory mortality) and hospital admissions (for respiratory, cardiovascular and cardiac reasons) attributable to air pollution. Long-term impact was also assessed by the number of deaths due to atmospheric pollution. The study has been carried out in seven cities homogeneously exposed belonging to Vaucluse (Avignon, Le Pontet, Morieres les Avignon, Sorgues and Vedene) and two cities of the Gard department (les Angles and Villeneuve les Avignon) representing a study population of 153,624 inhabitants. Two period of study have been defined: period 1999-2000 for short and long term evaluations on the mortality and the year 2001 for the morbidity analysis. This study rests on methodological principles of E.I.S. (evaluation of sanitary impact) of urban air pollution whom methodology is in four steps: identification of dangers, exposure estimation, choice of exposure-risk relationship and risk characterisation. The pollutions indicators are built from four pollutants nitrogen dioxide, ozone, sulfur dioxide and PM{sub 10}. The exposure-risk relationships used come from epidemiological studies realised in general population, by preferring the multi centers studies and European ones. The number of deaths by year due to air pollution is 23, whom 10 by cardiovascular diseases, 2 by respiratory diseases. The most efficient scenario are these ones corresponding to air pollution decreases of 25% in the considered pollutant. About the long term sanitary benefits, the different scenario show that the European norm forecasted for 2005 is respected. The respect of the European norm expected for 2010 should allow to avoid 10 deaths on the totality of registered

  1. Bioleaching of heavy metal polluted sediment: kinetics of leaching and microbial sulfur oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebenmitteltechnik und Bioverfahrenstechnik, D-01062 Dresden (Germany); Zehnsdorf, A. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Umwelt- und Biotechnologisches Zentrum (UBZ), Permoserstrasse 15, D-04318 Leipzig (Germany); Goersch, K.; Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, D-04318 Leipzig (Germany)

    2005-12-01

    Remediation of heavy metal polluted sediment through bioleaching using elemental sulfur (S{sup 0}) as the leaching agent can be regarded as a two-step process: firstly, the microbial oxidation of the added S{sup 0} to sulfuric acid and, secondly, the reaction of the produced acid with the sediment. Here, both subprocesses were studied in detail independently: oxidized river sediment was either suspended in sulfuric acid of various strengths, or mixed with various amounts of finely ground S{sup 0} powder (diameter of the S{sup 0} particles between 1 and 175 {mu}m with a Rosin-Rammler-Sperling-Bennet (RRSB) distribution and an average diameter of 35 {mu}m) and suspended in water. The leaching process was observed by repeated analysis of the suspension concerning pH, soluble sulfate and metals, and remaining S{sup 0}. In the case of abiotic leaching with H{sub 2}SO{sub 4}, the reaction between the acid and the sediment resulted in a gradual increase in pH and a solubilization of sediment-borne heavy metals which required some time; 80 % of the finally solubilized heavy metals was dissolved after 1 h, 90 % after 10 h, and 100 % after 100 h. In the case of bioleaching, the rate of S{sup 0} oxidation was maximal at the beginning, gradually diminished with time, and was proportional to the initial amount of S{sup 0}. Due to its very low solubility in water, S{sup 0} is oxidized in a surface reaction catalyzed by attached bacteria. The oxidation let the particles shrink, their surface became smaller and, thus, the S{sup 0} oxidation rate gradually decreased. The shrinking rate was time-invariant and, at 30 C, amounted to 0.5 {mu}m/day (or 100 {mu}g/cm{sup 2}/day). Within 21 days, 90 % of the applied S{sup 0} was oxidized. Three models with a different degree of complexity have been developed that describe this S{sup 0} oxidation, assuming S{sup 0} particles of uniform size (I), using a measured particle size distribution (II), or applying an adapted RRSB distribution (III

  2. Population Structure and Abundance of Arsenite-Oxidizing Bacteria along an Arsenic Pollution Gradient in Waters of the Upper Isle River Basin, France▿ †

    Science.gov (United States)

    Quéméneur, Marianne; Cébron, Aurélie; Billard, Patrick; Battaglia-Brunet, Fabienne; Garrido, Francis; Leyval, Corinne; Joulian, Catherine

    2010-01-01

    Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) were successfully developed to monitor functional aoxB genes as markers of aerobic arsenite oxidizers. DGGE profiles showed a shift in the structure of the aoxB-carrying bacterial population, composed of members of the Alpha-, Beta- and Gammaproteobacteria, depending on arsenic (As) and Eh levels in Upper Isle River Basin waters. The highest aoxB gene densities were found in the most As-polluted oxic surface waters but without any significant correlation with environmental factors. Arsenite oxidizers seem to play a key role in As mobility in As-impacted waters. PMID:20453153

  3. Air Pollution Manual, Part 1--Evaluation. Second Edition.

    Science.gov (United States)

    Giever, Paul M., Ed.

    Due to the great increase in technical knowledge and improvement in procedures, this second edition has been prepared to update existing information. Air pollution legislation is reviewed. Sources of air pollution are examined extensively. They are treated in terms of natural sources, man-made sources, metropolitan regional emissions, emission…

  4. Decomposition of organic pollutants in industrial Effluent induced by advanced oxidation process with Electron beam irradiation

    International Nuclear Information System (INIS)

    Duarte, C.L.; Sampa, M.H.O.; Rela, P.R.; Oikawa, H.; Silveira, C.G.

    2001-01-01

    Advanced Oxidation Process (AOP) by electron beam irradiation induce the decomposition of pollutants in industrial effluent. Experiments were conducted using a Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37 Kew power. Experiments were conducted using samples from a Governmental Wastewater Treatment Plant (WTP) that receives about 20% of industrial wastewater, with the objective of use the electrons beam technology to destroy the refractory organic pollutants. Samples from WTP main Industrial Receiver Unit influent (IRU), Coarse Bar Screens effluent (CBS), Medium Bar Screens effluent (MBS), Primary Sedimentation effluent (PS) and Final Effluent (FE), were collected and irradiated in the electron beam accelerator in a batch system. The delivered doses were 5.0kGy, 10.0kGy and 20.0kGy. The electron beam irradiation showed be efficient on destroying the organic compounds delivered in these effluents mainly chloroform, dichloroethane, methyl isobutyl ketone, benzene, toluene, xylene, phenol. The necessary dose to remove 90% of the most organic compounds from industry effluent was 20 kGy. The removal of organic compounds from this complex mixture were described by the destruction G value (Gd) that were obtained for those compounds in different initial concentration and compared with literature

  5. Air pollution: what matters most? : Physical, chemical and oxidative properties of air pollution components related to toxic effects

    NARCIS (Netherlands)

    Steenhof, M.

    2015-01-01

    Numerous studies have been published on the adverse health effects associated with both short- and long-term exposure to air pollution. Air pollution is a heterogeneous, complex mixture of gases, liquids, and particulate matter (PM). Up to now, PM mass concentration has been the metric of choice to

  6. Evaluation of secondary environmental impacts of urban runoff pollution control

    International Nuclear Information System (INIS)

    Huibregtse, K.R.; Geinopolos, A.

    1982-03-01

    A generalized evaluation of the impacts associated with different urban stormwater runoff (UR) treatment techniques is presented. It addresses the definition of the problem, estimates the volume and characteristics of the UR and the sludges expected, evaluates six methods of UR sludge treatment, and examines alternatives and impacts for UR treatment sludge handling such as bleed/pump back to the dry weather plant, and land disposal. Regarding bleed/pump back of UR sludges, solids deposition in sewers and overload to the dry weather facilities are anticipated to cause problems. The most cost effective sludge treatment alternative appeared to be lime stabilization followed by thickening, pressure filter dewatering, and landfill disposal. Secondary impacts included costs, water quality, noise, energy consumption, air pollution, and land area requirements

  7. Ageing, exposure to pollution, and interactions between climate change and local seasons as oxidant conditions predicting incident hematologic malignancy at KINSHASA University clinics, Democratic Republic of CONGO (DRC).

    Science.gov (United States)

    Nkanga, Mireille Solange Nganga; Longo-Mbenza, Benjamin; Adeniyi, Oladele Vincent; Ngwidiwo, Jacques Bikaula; Katawandja, Antoine Lufimbo; Kazadi, Paul Roger Beia; Nzonzila, Alain Nganga

    2017-08-23

    The global burden of hematologic malignancy (HM) is rapidly rising with aging, exposure to polluted environments, and global and local climate variability all being well-established conditions of oxidative stress. However, there is currently no information on the extent and predictors of HM at Kinshasa University Clinics (KUC), DR Congo (DRC). This study evaluated the impact of bio-clinical factors, exposure to polluted environments, and interactions between global climate changes (EL Nino and La Nina) and local climate (dry and rainy seasons) on the incidence of HM. This hospital-based prospective cohort study was conducted at Kinshasa University Clinics in DR Congo. A total of 105 black African adult patients with anaemia between 2009 and 2016 were included. HM was confirmed by morphological typing according to the French-American-British (FAB) Classification System. Gender, age, exposure to traffic pollution and garages/stations, global climate variability (El Nino and La Nina), and local climate (dry and rainy seasons) were potential independent variables to predict incident HM using Cox regression analysis and Kaplan Meier curves. Out of the total 105 patients, 63 experienced incident HM, with an incidence rate of 60%. After adjusting for gender, HIV/AIDS, and other bio-clinical factors, the most significant independent predictors of HM were age ≥ 55 years (HR = 2.4; 95% CI 1.4-4.3; P = 0.003), exposure to pollution and garages or stations (HR = 4.9; 95% CI 2-12.1; P pollution, combined local dry season + La Nina and combined local dry season + El Nino were the most significant predictors of incident hematologic malignancy. These findings highlight the importance of aging, pollution, the dry season, El Nino and La Nina as related to global warming as determinants of hematologic malignancies among African patients from Kinshasa, DR Congo. Cancer registries in DRC and other African countries will provide more robust database for future researches on

  8. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process.

    Science.gov (United States)

    Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie

    2018-03-01

    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

  9. Air pollution impacts from carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Harmelen, T. van; Horssen, A. van; Jozwicka, M.; Pulles, T. (TNO, Delft (Netherlands)); Odeh, N. (AEA Technology, Harwell (United Kingdom)); Adams, M. (EEA, Copenhagen (Denmark))

    2011-11-15

    This report comprises two separate complementary parts that address the links between CCS implementation and its subsequent impacts on GHG and air pollutant emissions on a life-cycle basis: Part A discusses and presents key findings from the latest literature, focusing upon the potential air pollution impacts across the CCS life-cycle arising from the implementation of the main foreseen technologies. Both negative and positive impacts on air quality are presently suggested in the literature - the basis of scientific knowledge on these issues is rapidly advancing. Part B comprises a case study that quantifies and highlights the range of GHG and air pollutant life-cycle emissions that could occur by 2050 under a low-carbon pathway should CCS be implemented in power plants across the European Union under various hypothetical scenarios. A particular focus of the study was to quantify the main life-cycle emissions of the air pollutants taking into account the latest knowledge on air pollutant emission factors and life-cycle aspects of the CCS life-cycle as described in Part A of the report. Pollutants considered in the report were the main GHGs CO{sub 2}, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) and the main air pollutants with potential to harm human health and/or the environment - nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}), ammonia (NH{sub 3}), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM{sub 10}). (Author)

  10. Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh.

    Science.gov (United States)

    Bhuiyan, Mohammad A H; Islam, M A; Dampare, Samuel B; Parvez, Lutfar; Suzuki, Shigeyuki

    2010-07-15

    An integrated approach of pollution evaluation indices, principal component analysis (PCA) and cluster analysis (CA) was employed to evaluate the intensity and sources of pollution in irrigation and drinking water systems of northwestern Bangladesh. Temperature, BOD, chemical oxygen demand (COD), Mn, Fe, Co, Ni, Cu and Pb levels in most of the water samples exceed the Bangladesh and international standards. The heavy metal pollution index (HPI) and degree of contamination (C(d)) yield different results despite significant correlations between them. The heavy metal evaluation index (HEI) shows strong correlations with HPI and C(d), and gives a better assessment of pollution levels. Modifications to the existing HPI and C(d) schemes show comparable results with HEI, and indicate that about 55% of the mine drainage/irrigation waters and 50% of the groundwaters are moderately to highly contaminated. The CA, PCA and pollution indices suggest that the mine drainage water (DW) is contaminated by anthropogenic (mining operation and agrogenic) sources, and the proximal parts are more contaminated than the distal part. The groundwater system in the vicinity of the coal mine site is also heavily polluted by anthropogenic sources. The pollution status of irrigation and drinking water systems in the study area are of great environmental and health concerns. 2010 Elsevier B.V. All rights reserved.

  11. Evaluation of 5 Air Criteria Pollutants; Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mazaheri Tehrani A. MSc,

    2015-09-01

    Full Text Available Aims Tehran’s uncontrolled expansion, which promoted housing, public utilities, industries and increase of vehicles caused the problem of air pollution. Necessary information about air quality in different places and different times is the first step of combating the air pollution. The purpose of this study was to investigate the annual, monthly and hourly average of 5 criteria air pollutants (PM10, O3, NO2, SO2, CO of Tehran City, Iran. Instrument & Methods The hourly concentrations of PM10, O3, NO2, SO2, CO were obtained from 21 air quality-measuring stations of Tehran City, Iran, during April 2012 to March 2013. Data were presented by descriptive statistics in the form of mean and standard deviation. Findings CO concentration was not changed during the period of study. Nitrogen dioxide increased in spring and winter. Sulfur dioxide was not changed in the first six months of the year but its concentration increased in winter. Trend of changes of floating particles showed increasing the concentration of this pollutant in May 2012 and January 2013. Ozone concentration increased in the warm seasons and decreased in the cold seasons. Conclusion PM10, O3, NO2, SO2 and CO has high concentrations and cold periods of the year are more polluted than the warm periods in Tehran City, Iran.

  12. Effects and control of long-range transboundary air pollution. Report prepared within the framework of the Convention on Long-range Transboundary Air Pollution

    International Nuclear Information System (INIS)

    1994-01-01

    This tenth volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the eleventh session of the Executive Body held at Geneva from 1 to 3 December 1993. Part One is the Annual Review of Strategies and Policies for Air Pollution Abatement. National emission data and forecasts for sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), volatile organic compounds (VOCs), ammonia (NH 3 ) and carbon dioxide (CO 2 ) from 1980 to 2005 are presented. Conclusions are drawn concerning the status of implementation of the sulphur and nitrogen oxides protocols on the basis of these data. Part Two is an executive summary of the 1992 Report on the Forest Condition in Europe. The main objective of this report is to give a condensed description of the condition of forests in Europe, as it has been assessed by the transnational and national annual surveys, carried out jointly by the ECE under the Convention on Long-range Transboundary Air Pollution and by the European Community (EC). Part Three is a summary report that focuses on the reduction of air pollution from heat and electric energy production. It is based on discussion papers submitted to the fifth ECE Seminar on Emission Control Technology for Stationary Sources, held in Nuremberg (Germany) from 10 to 14 June 1991. This chapter presents the main control techniques to reduce emissions from fuel combustion, which is a major contribution in most ECE countries to air pollution by sulphur and nitrogen compounds, carbon oxides, organic compounds, as well as heavy metals. Three principal abatement options are reviewed: fuel cleaning and fuel conversion, low-emission combustion processes, and flue gas cleaning processes. Both technical and economic aspects of the different measures are discussed

  13. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  14. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    Khan, Gulzar; Kim, Young Kwang; Choi, Sung Kyu; Han, Dong Suk; Abdelwahab, Ahmed; Park, Hyunwoong

    2013-01-01

    TiO 2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H 2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H 2 production as compared to bare TiO 2 . Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO 2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO 2 /carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  15. Effects of polycyclic aromatic hydrocarbons (PAHs) in environmental pollution on exogenous and oxidative DNA damage (EXPAH project): description of the population under study.

    Science.gov (United States)

    Taioli, Emanuela; Sram, Radim J; Garte, Seymour; Kalina, Ivan; Popov, Todor A; Farmer, Peter B

    2007-07-01

    The EXPAH project was a molecular epidemiology study whose aims were to evaluate the hypothesis that polycyclic aromatic hydrocarbons (PAHs) are a major source of genotoxic activities of organic mixtures associated with air pollution. Biomarkers of exposure, effects and susceptibility, and oxidative DNA damage were measured in three PAH-exposed populations from Prague (Czech Republic), Kosice (Slovakia) and Sofia (Bulgaria). Control populations were included from each city. In total 356 individuals were enrolled. A questionnaire was used to determine life style/dietary factors. Ambient air exposure was measured by stationary monitoring, and personal exposure monitoring was also carried out. The characteristics of the population are described in this paper together with their personal exposure to carcinogenic PAHs (c-PAHs). The dose of c-PAH exposure was found to vary between the occupationally exposed (e.g. policemen and bus drivers) and the control populations in each country, and also varied from country to country.

  16. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karine Andreau

    2012-01-01

    Full Text Available Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.

  17. Health Effects of Ambient Air Pollution in Developing Countries.

    Science.gov (United States)

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-09-12

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations.

  18. Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas.

    Science.gov (United States)

    Francová, Anna; Chrastný, Vladislav; Šillerová, Hana; Vítková, Martina; Kocourková, Jana; Komárek, Michael

    2017-01-01

    Samples of lichens, snow and particulate matter (PM 10 , 24 h) are used for the source identification of air pollution in the heavily industrialized region of Ostrava, Upper Silesia, Czech Republic. An integrated approach that uses different environmental samples for metal concentration and Pb isotope analyses was applied. The broad range of isotope ratios in the samples indicates a combination of different pollution sources, the strongest among them being the metallurgical industry, bituminous coal combustion and traffic. Snow samples are proven as the most relevant indicator for tracing metal(loid)s and recent local contamination in the atmosphere. Lichens can be successfully used as tracers of the long-term activity of local and remote sources of contamination. The combination of PM 10 with snow can provide very useful information for evaluation of current pollution sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Atmospheric dispersion of pollutants in an industrial area of Cuba

    International Nuclear Information System (INIS)

    Cruz Monte de Oca, Feliberto de la; Furet Bridon, Norma Raisa; Turtos Carbonell, Leonor; Lorente Vera, Mercedes

    2011-01-01

    Air pollution by different chemicals; take a great connotation in the world, given the adverse effects on ecosystems and particularly human health. The urban development, the modification of the land surface and the climate change, phenomena derived from a world population explosion, are altering the composition of the air. The atmosphere deposits pollutants in the water courses and in land, which harms not only the persons, but also to the animals and the plants of the ecosystem. To know as these pollutants are dispersed in the atmosphere it is very important in the establishment of better urban, regional and world predictions of the air quality. The present study aims to assess the local spread of sulphur dioxide, nitrogen oxides and particulate matter from an industrial zone. The study was done using the pollutant Gaussian Dispersion Models AERMOD. For the evaluation of contaminants were considered two modeling scenarios: urban and rural. The SO 2 concentrations (μg/m 3 ) were obtained for 1 h, 24 h and all period (1 year), exceeding the permissible limits (500, 50 y 20 μg/m 3 ). It was also recorded for each period the number of times SO 2 concentrations exceeded the reference values in each of the scenarios discussed (urban: 39, 61 y 39; rural: 99, 75 y 25). At the end of modeling in the urban setting, 39 recipients exceeded the reference value, occupying an area of 9.75 km 2 and 25 receivers in the case of the rural setting, for an area of 6.25 km 2 . For NOx and particulate matter concentrations estimated values were always below the reference values. The obtained results in this case show the potentiality of AERMOD system for the evaluation of atmospheric dispersion of pollutants

  20. Heat indicators of oxidative stress, inflammation and metal transport show dependence of cadmium pollution history in the liver of female zebrafish.

    Science.gov (United States)

    Zhu, Qing-Ling; Guo, Sai-Nan; Yuan, Shuang-Shuang; Lv, Zhen-Ming; Zheng, Jia-Lang; Xia, Hu

    2017-10-01

    Environmental stressors such as high temperature and metal exposure may occur sequentially, simultaneously, previously in aquatic ecosystems. However, information about whether responses to high temperature depend on Cd exposure history is still unknown in fish. Zebrafish were exposed to 0 (group 1), 2.5 (group 2) and 5μg/L (group 3) cadmium (Cd) for 10 weeks, and then each group was subjected to Cd-free water maintained at 26°C and 32°C for 7days respectively. 26 indicators were used to compare differences between 26°C and 32°C in the liver of female zebrafish, including 5 biochemical indicators (activity of Cu/Zn-SOD, CAT and iNOS; LPO; MT protein), 8 molecular indicators of oxidative stress (mRNA levels of Nrf2, Cu/Zn-SOD, CAT, HSF1, HSF2, HSP70, MTF-1 and MT), 5 molecular indicators of inflammation (mRNA levels of IL-6, IL-1β, TNF-α, iNOS and NF-κB), 8 molecular indicators of metal transport (mRNA levels of, ZnT1, ZnT5, ZIP8, ZIP10, ATP7A, ATP7B and CTR1). All biochemical indicators were unchanged in group 1 and changed in group 2 and 3. Contrarily, differences were observed in almost all of molecular indicators of inflammation and metal transport in group 1, about half in group 2, and few in group 3. We also found that all molecular indicators of oxidative stress in group 2 and fewer in group 1 and 3 were significantly affected by heat. Our data indicated that heat indicators of oxidative stress, inflammation and metal transport showed dependence of previous cadmium exposure in the liver of zebrafish, emphasizing metal pollution history should be carefully considered when evaluating heat stress in fish. Copyright © 2017. Published by Elsevier B.V.

  1. Delocalized organic pollutant destruction through a self-sustaining supercritical water oxidation process

    International Nuclear Information System (INIS)

    Lavric, E.D.; Weyten, H.; Ruyck, J. de; Plesu, V.; Lavric, V.

    2005-01-01

    Supercritical water oxidation (SCWO) is a recent development aiming at the destruction of organic pollutants present with low concentrations in waste waters. The present paper focuses on the process simulation of SCWO with emphasis on the proper modelling of supercritical thermodynamic conditions and on the possibility to make the SCWO process self-sufficient from the energetic viewpoint. Self-sufficiency may be of interest to encourage more delocalization of waste water treatment. The process of SCWO for dilute waste water (no more than 5 wt.%) is modelled through the ASPEN Plus copyright process simulator. Studies were made to search for energetic self-sufficiency conditions using various technologies for power production from the heat of reaction, like supercritical water expansion in a turbine, use of a closed Brayton cycle (CBC) and use of an organic Rankine cycle (ORC). The results obtained showed that the process is energetically self-sufficient using either a small supercritical turbine, or an ORC. In less restrictive conditions regarding the component efficiencies, the CBC, in theory, also leads to self-sufficiency, but from the analysis, it appears that this solution is less realistic

  2. Development and comparison of the effectivity of oxidation processes initiated by radicals, created by heterogeneous catalysis and by high pressure process for the reduction of persistent organic sewage pollutants. Final report; Entwicklung und vergleichende Bewertung der Leistungsfaehigkeit von radikalisch initiierten oxidativen Verfahren auf Traegerkatalysator- und Hochdruckbasis zum Abbau persistenter organischer Wasserschadstoffe. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bach, G.; Maeurer, H.

    2002-07-01

    Persistente and highly toxic sewages with an extremely high content of substances are still a problem in the waste water management. Wet oxidation offers a possibility to reduce the pollutant content in the water. Comparative experiments of the efficiency of oxidation initiated by radicals were carried out, using as heterogeneous catalysis on strap catalyst base as cavitation. By means of the wet oxidation on strap catalyst base with H{sub 2}O{sub 2} as oxidation reagent it was possible, to decontaminate effectively as single pollutants in model sewages as complex substance mixtures in real sewages. The tested catalytic systems worked especially effectively for high pollutant concentrations. At lower concentrations of sewage pollutants the amount of H{sub 2}O{sub 2} must be increased in regard to the actual CSB. In real sewages the pollutant decrease was, related on the TOC, in the cut, at 50%, a raise of the average concentration of the oxidation agent didn't produce any further decrease of the pollutant concentration. Aromatic hydrocarbons could be reduced more effectively than aliphatic ones. The conception for a technical plant was developed including cost estimate. The reduction of pollutants by cavitation was fundamentally lower than by using the heterogeneous catalysis way. Without addition of an oxidation agent (i.e. H{sub 2}O{sub 2}) only a TOC decrease of approx. 15% was registered in real sewages. The pollutant reduction increased at higher pollutant concentration. A complete elimination of all pollutants could not be obtained in none of the examined cases neither at model nor at real sewages. Especially the long reaction times (6 to 24 h) of the cavitation process in comparison with those, necessary for the catalytic reaction (2 to 6 h) are hindering a technical realization of the cavitation process, which seems to be doubtful for this and other reasons. So the use of cavitation in industrial scale sewage cleaning plants under the parameter

  3. Quantifying light pollution

    International Nuclear Information System (INIS)

    Cinzano, P.; Falchi, F.

    2014-01-01

    In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information. - Highlights: • We review new available indicators useful to quantify and monitor light pollution. • These indicators are a primary step in light pollution quantification. • These indicators allow to improve light pollution mapping from a 2D to a 3D grid. • These indicators allow carrying out a tomography of light pollution. • We show an application of this technique to an Italian region

  4. A methodological approach for the identification of arsenic bearing phases in polluted soils

    International Nuclear Information System (INIS)

    Matera, V.; Le Hecho, I.; Laboudigue, A.; Thomas, P.; Tellier, S.; Astruc, M.

    2003-01-01

    Arsenic in the three polluted soils is mainly associated with neoformed amorphous iron (hydr)oxides. - A methodological approach is used to characterize arsenic pollution in three soils and to determine arsenic speciation and association with solid phases in three polluted soils. HPLC-ICP-MS was used for arsenic speciation analysis, SEM-EDS and XRD for physical characterization of arsenic pollution, and sequential chemical extractions to identify arsenic distribution. Arsenic was concentrated in the finest size fractions also enriched in iron and aluminium. Total arsenic concentrations in soils are close to 1%. Arsenic was mainly present as arsenate, representing more than 90% of total arsenic. No crystallised arsenic minerals were detected by XRD analysis. SEM-EDS observations indicated arsenic/iron associations. Modified Tessier's procedure showed that arsenic was mainly extracted from amorphous iron oxide phase. The results of this methodological approach lead to predict the formation of iron arsenates in the case of one of the studied soils while arsenic sorption on iron amorphous (hydr)oxides seemed to be the determinant in the two other soils

  5. Evaluation of Trichoptera as an indicator organism for environmental pollution by heavy metals

    International Nuclear Information System (INIS)

    Aizawa, Shoichi; Tsunoda, Kin-ichi; Akatsuka, Masayoshi; Inoue, Sadao; Akaiwa, Hideo

    1994-01-01

    A method of analysis for heavy metals in trichopteran larvae by AAS was established to evaluate this aquatic insect as an indicator organism for environmental pollution by heavy metals. A wet digestion method with nitric acid and hydrogen peroxide was found to be suitable for the decomposition of trichopteran larva samples. No serious variation in heavy metal contents was found in individual samples collected from one sampling point. A weak negative correlation was observed between the body length and the heavy metal contents of trichopteran larvae. In addition, the heavy metal content of trichopteran larvae seems to show a seasonal fluctuation. Trichopteran larvae in the Watarase River, which has abandoned copper and manganese mines along its upper stream, show an enriched heavy metal content as compared with those in other non-polluted rivers. Moreover, this aquatic insect in the Kiryu River also shows enrichment of manganese due to abandoned manganese mines situated upstream. These facts suggest that the trichopteran larva in a useful indicator organism for environmental pollution by heavy metals. (author)

  6. Persistent environmental pollutants. Detoxification by means of fungi; Persistente Umweltschadstoffe. Detoxifizierung durch Pilze

    Energy Technology Data Exchange (ETDEWEB)

    Sietmann, Rabea; Schauer, Frieder [Ernst-Moritz-Arndt-Universitaet, Greifswald (Germany). Inst. fuer Mikrobiologie

    2010-01-15

    Microorganisms either may use environmental pollutants as a source of carbon or attack pollutants oxidatively in the presence of a growth substrate. Furthermore, accumulated toxic products partly can be removed from a cell and oxidized or mineralized by microorganisms. The structural chemical analysis of the accumulated metabolites is performed by means of high-performance liquid chromatography (HPLC), gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). This analysis supplies information on the mechanism of degradation of the environmental pollutants. Under this aspect, the authors of the contribution under consideration report on the use of fungi (aspergillus, candida, cunninghamella, fusarium, mucor, paecilomyces, penicillium, pycnoporus, trametes, trichosporon) in the degradation of biphenyl and its derivatives. The following mechanisms of degradation are discussed: Primary oxidation, hydroxylation, ring scission, formation of conjugates, oligomerisation and dehalogenation.

  7. [Airway oxidative stress and inflammation markers in chronic obstructive pulmonary diseases(COPD) patients are linked with exposure to traffic-related air pollution: a panel study].

    Science.gov (United States)

    Chen, J; Zhao, Q; Liu, B B; Wang, J; Xu, H B; Zhang, Y; Song, X M; He, B; Huang, W

    2016-05-01

    To investigate the effects of short-term exposure to traffic-related air pollution on airway oxidative stress and inflammation in chronic obstructive pulmonary diseases (COPD) patients. A panel of forty-five diagnosed COPD patients were recruited and followed with repeated measurements of biomarkers reflecting airway oxidative stress and inflammation in exhaled breath condensate (EBC), including nitrate and nitrite, 8-isoprostane, interleukin-8 and acidity of EBC (pH), between 5(th) September in 2014 and 26(th) May in 2015. The associations between air pollution and biomarkers were analyzed with mixed-effects models, controlling for confounding covariates. The concentration of PM2.5, black carbon, NO2 and number concentration of particles with diameter less than 100 nm (PNC100), and particles in size ranges between 100 nm to 200 nm (PNC100-200) during the first follow-up were (156.5±117.7), (10.7±0.7), (165.9±66.0)μg/m(3) and 397 521±96 712, 79 421±44 090 per cubic meter, respectively; the concentration were (67.9±29.6), (3.4±1.3), (126.1±10.9) μg/m(3) and (295 682±39 430), (24 693±12 369) per cubic meter, respectively during the second follow-up. The differences were of significance, with t value being 3.10, 4.42, 2.61, 4.02, 5.12, respectively and P value being 0.005,stress. For an IQR increase in PM2.5, black carbon and PNC100-200, respective increases of 0.17 ng/ml (95% CI: 0.02-0.33), 0.12 ng/ml (95% CI: 0.01-0.24) and 0.13 ng/ml (95% CI:0.02-0.24) in interleukin-8 in EBC reflecting airway inflammation were also observed. An IQR increase in ozone was also associated with a 0.24 (95%CI: 0.05-0.42) decrease in pH of EBC reflecting increased airway inflammation. No significant association observed between air pollution and 8-isoprostane in EBC in COPD patients. Our results suggested that short-term exposure to traffic-related air pollution was responsible for exacerbation of airway oxidative stress and inflammation in COPD patients.

  8. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Rodrigo Silva Macedo

    2016-01-01

    Full Text Available Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days and treated or not with PBMT (1 and 5 h after each FA exposure. Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment.

  9. A Modular Plug-And-Play Sensor System for Urban Air Pollution Monitoring: Design, Implementation and Evaluation.

    Science.gov (United States)

    Yi, Wei-Ying; Leung, Kwong-Sak; Leung, Yee

    2017-12-22

    Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems' hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field.

  10. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products.

    Science.gov (United States)

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Xu, Zi-Bin; Lee, Min-Yong; Hu, Hong-Ying

    2018-05-15

    UV based advanced oxidation processes (UV-AOPs) that efficiently eliminate organic pollutants during water treatment have been the subject of numerous investigations. Most organic pollutants are not completely mineralized during UV-AOPs but are partially oxidized into transformation products (TPs), thereby adding complexity to the treated water and posing risks to humans, ecological systems, and the environment. While the degradation kinetics and mechanisms of pollutants have been widely documented, there is little information about the risks associated with TPs. In this review, we have collated recent knowledge about the harmful TPs that are generated in UV/H 2 O 2 and UV photocatalysis, two UV-AOPs that have been studied extensively. Toxic and assimilable TPs were ubiquitously observed in more than 80% of UV-AOPs of organic pollutants, of which the toxicity and assimilability levels changed with variations in the reaction conditions, such as the UV fluence and oxidant dosage. Previous studies and modeling assessments showed that toxic and assimilable TPs may be generated during hydroxylation, dealkylation, decarboxylation, and deamination. Among various reactions, TPs generated from dealkylation and decarboxylation were generally less and more toxic than the parent pollutants, respectively; TPs generated from decarboxylation and deamination were generally less and more assimilable than the parent pollutants, respectively. There is also potential concern about the sensory-unpleasant TPs generated by oxidations and subsequent metabolism of microorganisms. In this overview, we stress the need to include both the concentrations of organic pollutants and the evaluations of the risks from TPs for the quality assessments of the water treated by UV-AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2017-11-01

    Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM 10 ), fine particles (PM 2.5 ) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10μg/m 3 increase in long-term exposure to PM 2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM 2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia)

    Science.gov (United States)

    Yazidi, Amira; Saidi, Salwa; Ben Mbarek, Nabiha; Darragi, Fadila

    2017-10-01

    The concentrations of nutrients and heavy elements in the surface water of the lake Ichkeul, main wadis which feed directly and thermal springs that flow into the lake, are measured to evaluate these chemical elements. There are used to highlight the interactions between these different aquatic compartments of Ichkeul. All metal concentrations in lake water, except Cu, were lower than the maximum permitted concentration for the protection of aquatic life. The results show that the highest concentrations are located in the eastern and south-eastern part of the lake where the polluted water comes from the lagoon of Bizerte through the wadi Tinja as well as from the city of Mateur through the wadi Joumine. The pollution indices and especially the heavy metal evaluation index (HEI) show high pollution specially located at the mouths of wadis and an increase of heavy metal concentrations, as a result of uncontrolled releases of domestic and industrial wastewater.

  13. Pollution loads from stormwater overflows

    International Nuclear Information System (INIS)

    Bonomo, L.

    1991-01-01

    The knowledge of the volume of combined effluents outflowing from overflows is not enough to allow a direct evaluation of polluting loads discharged into final receptors; the hypothesis of complete mixing between sewage and stormwater flow, fed in at a pollutant concentration level equal to zero, hasn't proved to be successful. The amount of the outflowing loads largely depends on the contamination of the stormwater runoff before inflow into the drainage system and on sedimentation and resuspension phenomena. This paper reports the main aspects connected with wet and dry atmospheric deposition of pollutants and with paved surface wash-out phenomena. The origin of pollutants flush, due to the resuspension and mass transport of polluting substances stored up in the sewer during draughts, is also described. Attention is drawn to the importance of the behaviour of the different pollutants with respect to the sedimentation phenomena. Reference is made to evaluations conducted on a drainage system for the recovery of a small pre-alpine lake

  14. 40 CFR 60.4315 - What pollutants are regulated by this subpart?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What pollutants are regulated by this subpart? 60.4315 Section 60.4315 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... pollutants regulated by this subpart are nitrogen oxide (NOX) and sulfur dioxide (SO2). ...

  15. Biomass energy, air pollution and health

    International Nuclear Information System (INIS)

    Mathis, Paul

    2014-06-01

    This article reports the negative effects on human health due to the use of biomass for energy. In addition to the emission of nitrogen oxides and of metals, these effects result largely from an incomplete combustion, generating various air pollutants: fine particles, carbon monoxide, volatile organic compounds and aromatic polycyclic hydrocarbons. Four situations are discussed: indoor air pollution due to cooking in developing countries, residential wood combustion for heating, the use of biofuels, and waste incineration. In all cases, negative health effects have been demonstrated, but they can be prevented by appropriate strategies. (author)

  16. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    Science.gov (United States)

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  17. Toxicity of Graphene Shells, Graphene Oxide, and Graphene Oxide Paper Evaluated with Escherichia coli Biotests

    Directory of Open Access Journals (Sweden)

    Ludmila V. Efremova

    2015-01-01

    Full Text Available The plate-like graphene shells (GS produced by an original methane pyrolysis method and their derivatives graphene oxide (GO and graphene oxide paper (GO-P were evaluated with luminescent Escherichia coli biotests and additional bacterial-based assays which together revealed the graphene-family nanomaterials’ toxicity and bioactivity mechanisms. Bioluminescence inhibition assay, fluorescent two-component staining to evaluate cell membrane permeability, and atomic force microscopy data showed GO expressed bioactivity in aqueous suspension, whereas GS suspensions and the GO-P surface were assessed as nontoxic materials. The mechanism of toxicity of GO was shown not to be associated with oxidative stress in the targeted soxS::lux and katG::lux reporter cells; also, GO did not lead to significant mechanical disruption of treated bacteria with the release of intracellular DNA contents into the environment. The well-coordinated time- and dose-dependent surface charge neutralization and transport and energetic disorders in the Escherichia coli cells suggest direct membrane interaction, internalization, and perturbation (i.e., “membrane stress” as a clue to graphene oxide’s mechanism of toxicity.

  18. Linear stochastic models for forecasting daily maxima and hourly concentrations of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    McCollister, G M; Wilson, K R

    1975-04-01

    Two related time series models were developed to forecast concentrations of various air pollutants and tested on carbon monoxide and oxidant data for the Los Angeles basin. One model forecasts daily maximum concentrations of a particular pollutant using only past daily maximum values of that pollutant as input. The other model forecasts 1 hr average concentrations using only the past hourly average values. Both are significantly more accurate than persistence, i.e., forecasting for tomorrow what occurred today (or yesterday). Model forecasts for 1972 of the daily instantaneous maxima for total oxidant made using only past pollutant concentration data are more accurate than those made by the Los Angeles APCD using meteorological input as well as pollutant concentrations. Although none of these models forecast as accurately as might be desired for a health warning system, the relative success of simple time series models, even though based solely on pollutant concentration, suggests that models incorporating meteorological data and using either multi-dimensional times series or pattern recognition techniques should be tested.

  19. Solid oxide fuel cell field trial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.P.; Winstanley, R.; Nietsch, T.; Smith, C.; Knight, R.; Seymore, C.

    2000-07-01

    This report focuses on issues relating to a field trial of a solid oxide fuel cell (SOFC). Aspects examined include markets for SOFC systems, the choice of systems for demonstration in year 2002, the assessment of industrial interest, and evaluation and ranking of candidate systems. The identification and evaluation of interest in field trials, the estimation of the capital and running costs of a field trial, and identification of the benefits to the UK and barriers to implementation of SOFC systems are discussed. (UK)

  20. Evaluation of oxidative stress in hunting dogs during exercise.

    Science.gov (United States)

    Pasquini, A; Luchetti, E; Cardini, G

    2010-08-01

    Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Effect of environmental air pollution on cardiovascular diseases.

    Science.gov (United States)

    Meo, S A; Suraya, F

    2015-12-01

    Environmental air pollution has become a leading health concern especially in the developing countries with more urbanization, industrialization and rapidly growing population. Prolonged exposure to air pollution is a risk factor for cardiovascular diseases. The present study aimed to investigate the effects of environmental air pollution on progression of cardiovascular problems. In this study, we identified 6880 published articles through a systematic database including ISI-Web of Science, PubMed and EMBASE. The allied literature was searched by using the key words such as environmental pollution, air pollution, particulate matter pollutants PM 2.5 μm-PM 10 μm. Literature in which environmental air pollution and cardiac diseases were discussed was included. Descriptive information was retrieved from the selected literature. Finally, we included 67 publications and remaining studies were excluded. Environmental pollution can cause high blood pressure, arrhythmias, enhanced coagulation, thrombosis, acute arterial vasoconstriction, atherosclerosis, ischemic heart diseases, myocardial infarction and even heart failure. Environmental air pollution is associated with increased risk of cardiovascular diseases. Environmental pollution exerts its detrimental effects on the heart by developing pulmonary inflammation, systemic inflammation, oxidative stress, endothelial dysfunction and prothrombotic changes. Environmental protection officials must take high priority steps to minimize the air pollution to decrease the prevalence of cardiovascular diseases.

  2. Natural gas and quality of fuels for the reduction of atmospheric pollution

    International Nuclear Information System (INIS)

    Riva, A.; Occhio, L.; Andreetto, B.

    1998-01-01

    The production of atmospheric pollutants in combustion processes depends on plant characteristic, combustion conditions and fuel quality. The influence of fuel quality on the emission of sulphur oxides, nitrogen oxides, carbon monoxide, dust and carbon dioxide and on the emission of some toxic pollutants, such as heavy metals and polycyclic aromatic hydrocarbons, is analysed. The comparison between the emission limits, fixed by the Italian legislation, and the uncontrolled pollutant emissions, produced by fossil fuel combustion in power plants and industrial use, shows that, in order to comply with the limits, a reduction of pollutant emissions is required through the use of abatement systems and cleaner fuels where natural gas has a primary role. The use of cleaner fuels is particularly required in heating plants and appliances for the residential sector, where the development of new gas technologies further increases the environmental advantages of natural gas in comparison with other fuels [it

  3. Evaluation of oxidative status in short-term exercises of adolescent athletes

    OpenAIRE

    K Karacabey; A Atas; D Zeyrek; A Cakmak; R Kurkcu; F Yamaner

    2010-01-01

    The aim of the study was to evaluate the effects of short-term exercise on total antioxidant status (TAS), lipid hydroperoxide (LOOHs), total oxidative status (TOS) and oxidative stress index (OSI) in adolescent athletes. A total of 62 adolescent participated in the study. Athletes were trained regularly 3 days a week for 2 hours. All subjects followed a circuit exercise program. Blood samples were collected just before and immediately after the exercise program. Antioxidant status was evalu...

  4. PM2.5, oxidant defence and cardiorespiratory health: a review.

    Science.gov (United States)

    Weichenthal, Scott A; Godri-Pollitt, Krystal; Villeneuve, Paul J

    2013-05-04

    Airborne fine particle mass concentrations (PM2.5) are used for ambient air quality management worldwide based in part on known cardiorespiratory health effects. While oxidative stress is generally thought to be an important mechanism in determining these effects, relatively few studies have specifically examined how oxidant defence may impact susceptibility to particulate air pollution. Here we review studies that explore the impact of polymorphisms in anti-oxidant related genes or anti-oxidant supplementation on PM2.5-induced cardiorespiratory outcomes in an effort to summarize existing evidence related to oxidative stress defence and the health effects of PM2.5. Recent studies of PM-oxidative burden were also examined. In total, nine studies were identified and reviewed and existing evidence generally suggests that oxidant defence may modify the impact of PM2.5 exposure on various health outcomes, particularly heart rate variability (a measure of autonomic function) which was the most common outcome examined in the studies reviewed. Few studies examined interactions between PM2.5 and oxidant defence for respiratory outcomes, and in general studies focused primarily on acute health effects. Therefore, further evaluation of the potential modifying role of oxidant defence in PM2.5-induced health effects is required, particularly for chronic outcomes. Similarly, while an exposure metric that captures the ability of PM2.5 to cause oxidative stress may offer advantages over traditional mass concentration measurements, little epidemiological evidence is currently available to evaluate the potential benefits of such an approach. Therefore, further evaluation is required to determine how this metric may be incorporated in ambient air quality management.

  5. Physicochemical conditions and properties of particles in urban runoff and rivers: Implications for runoff pollution.

    Science.gov (United States)

    Wang, Qian; Zhang, Qionghua; Wu, Yaketon; Wang, Xiaochang C

    2017-04-01

    In this study, to gain an improved understanding of the fate and fractionation of particle-bound pollutants, we evaluated the physicochemical conditions and the properties of particles in rainwater, urban runoff, and rivers of Yixing, a city with a large drainage density in the Taihu Lake Basin, China. Road runoff and river samples were collected during the wet and dry seasons in 2015 and 2016. There were significant differences between the physicochemical conditions (pH, oxidation-reduction potential (ORP), and electroconductivity (EC)) of rainwater, runoff, and rivers. The lowest pH and highest ORP values of rainwater provide the optimal conditions for leaching of particle-bound pollutants such as heavy metals. The differences in the physicochemical conditions of the runoff and rivers may contribute to the redistribution of pollutants between particulate and dissolved phases after runoff is discharged into waterways. Runoff and river particles were mainly composed of silt and clay (runoff particles contained a higher proportion of nano-scale particles (runoff pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis report: program ecosystems, transport, pollutions, 1998 - 2001; Rapport de synthese: programme ecosystemes, transport, pollutions, 1998 - 2001

    Energy Technology Data Exchange (ETDEWEB)

    Etchelecou, A; Deletraz, G; Elichegaray, Ch

    2001-04-01

    The ''Ecosystems, Transports, Pollution Program'' ETP Program, has been elaborated to evaluate the road pollution impacts on the mountain ecosystems. Four mountains valleys have been chosen: two in Alps (Chamonix and Maurienne) and two in Pyrenees (Biriatou and Vallee d'Aspe). This Program presents six objectives: the road traffic characterization, the pollutants emission estimation, the pollutants concentrations in the air, the pollutants dispersion according to relief, the relationships between pollutants emissions and bio-monitoring, the road pollution effects on nearby ecosystems. (A.L.B.)

  7. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    Science.gov (United States)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  8. Ambient air pollution and thrombosis.

    Science.gov (United States)

    Robertson, Sarah; Miller, Mark R

    2018-01-03

    Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM 2.5 ) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially

  9. A statistical study of the macroepidemiology of air pollution and total mortality

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.; Malone, R.G.; Daum, M.L.; Mendell, N.R.; Yang, Chin-Chun

    1988-04-01

    A statistical analysis of spatial patterns of 1980 US urban total mortality (all causes) was performed, evaluating demographic, socioeconomic and air pollution factors as predictors. Specific mortality predictors included cigarette smoking, drinking water hardness, heating fuel use, and 1978-1982 annual concentrations of the following air pollutants: ozone, carbon monoxide, sulfate aerosol, particulate concentrations of lead, iron, cadmium, manganese, vanadium, as well as total and fine particle mass concentrations from the inhalable particulate network (dichotomous samplers). In addition, estimates of sulfur dioxide, oxides of nitrogen, and sulfate aerosol were made for each city using the ASTRAP long-range transport diffusion model, and entered into the analysis as independent variables. Because the number of cities with valid air quality and water hardness data varied considerably by pollutant, it was necessary to consider several different data sets, ranging from 48 to 952 cities. The relatively strong associations (ca. 5--10%) shown for 1980 pollution with 1980 total mortality are generally not confirmed by independent studies, for example, in Europe. In addition, the US studies did not find those pollutants with known adverse health effects at the concentrations in question (such as ozone or CO) to be associated with mortality. The question of causality vs. circumstantial association must therefore be regarded as still unresolved. 59 refs., 20 figs., 40 tabs.

  10. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices.

    Science.gov (United States)

    Bhuiyan, Mohammad Amir Hossain; Dampare, Samuel B; Islam, M A; Suzuki, Shigeyuki

    2015-01-01

    Concentrations of heavy metals in water and sediment samples of Buriganga River in the capital city Dhaka, Bangladesh, were studied to understand the level of heavy metals and their source apportionment. The results showed that the mean concentrations of heavy metals both in water and sediment samples were very high and, in most cases, exceeded the permissible limits recommended by the Bangladesh government and other international organizations. Significantly higher concentrations of Pb, Cr, Mn, Co, Ni, Cu, Zn, As, and Cd were found in sediment samples. However, average concentrations of metals both in water and sediment samples were above the effect range median. The heavy metal pollution index (HPI) and degree of contamination (Cd) yielded different results in water samples despite significant correlations between them. The heavy metal evaluation index (HEI) showed strong correlations with HPI and Cd and provided better assessment of pollution levels. The enrichment factor (EF) and geoaccumulation index (Igeo) showed the elevated value of Cr, Pb, and Cd in access of background values. The measured elements were subjected to positive matrix factorization (PMF) and examining correlations in order to explain the content, behavior, and source apportionment of metals. PMF resulted in a successful partitioning of variances into sources related to background geochemistry and contaminant influences. However, the PMF approach successfully demarcated the major sources of metals from tannery, paint, municipal sewage, textiles, and agricultural activities.

  11. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  12. Removal of sulfur and nitrogen containing pollutants from discharge gases

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, J.I.

    1985-02-08

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  13. Set organic pollution as an impact category to achieve more comprehensive evaluation of life cycle assessment in wastewater-related issues

    NARCIS (Netherlands)

    Zhao, X.; Yang, Jixian; Ma, Fang

    2018-01-01

    For wastewater-related issues (WRI), life cycle assessment (LCA) is often used to evaluate environmental impacts and derive optimization strategies. To promote the application of LCA for WRI, it is critical to incorporate local impact of water pollutants. Organic pollution, a main type of water

  14. Evaluation of sanitary impact of the urban air pollution. Agglomeration of Angouleme, Niort and Poitiers impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Agglomeration d'Angouleme, Niort et Poitiers impact a cour et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    An health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Angouleme, Niort and Poitiers according to the Regional Plan for the quality of air in the region of Poitou- Charentes. Short-term effects on morbidity (hospital admissions in 2001 and 2002) and mortality were estimated. Long-term effects due to air pollution on mortality were also evaluated. The estimated numbers of hospitalizations for cardiovascular and respiratory admissions due to air pollution are 19 in Angouleme, 11 in Niort and 19 in Poitiers. For long-term mortality the estimated impact is 25 in Angouleme, 19 in Niort and 23 in Poitiers. The different scenarios of air pollution reduction showed that the most effective ones are those which lead to reduce of 25% the mean of the involved pollutant. Results showed that air pollution are even resulting in health effects for some levels of pollution lower than current limits. The most effective actions should therefore associate reduction of the source emissions on a daily basis and decrease of the over-limits levels of pollution. (author)

  15. Continuing pollution from the Rum Jungle U-Cu project: A critical evaluation of environmental monitoring and rehabilitation

    Energy Technology Data Exchange (ETDEWEB)

    Mudd, Gavin M., E-mail: Gavin.Mudd@eng.monash.edu.a [Environmental Engineering, Dept of Civil Engineering, Monash University, Clayton, VIC 3800 (Australia); Patterson, James [Environmental Engineering Consultant, Sydney, NSW (Australia)

    2010-05-15

    The former Rum Jungle uranium-copper project, Australia, is an internationally important case study on environmental pollution from and rehabilitation of mining. The Rum Jungle mining project is briefly reviewed, followed by a critical evaluation of monitoring data and pollution loads prior to and after rehabilitation - leading to the conclusion that rehabilitation has clearly failed the test of time after just two decades. The most critical findings are the need to understand pollution cycles holistically, and designing monitoring regimes to match, explicit inclusion of radiological criteria (lacking in original planning), and finally the need to set targets based on environmental criteria. Two examples include polluted groundwater which was excluded from rehabilitation and the poor design, construction and/or performance of engineered soil covers - both leading to increasing acid drainage impacts on the Finniss River. The critical review therefore presents a valuable case study of the environmental performance of uranium mine site rehabilitation. - The Rum Jungle U-Cu project underwent extensive rehabilitation in the 1980's, however, it remains a major cause of pollution to the Finniss River.

  16. Evaluation of pollutant emissions in North China Plain using aircraft measurements from the Air Chemistry Research In Asia (ARIAs) campaign

    Science.gov (United States)

    He, H.; Ren, X.; Li, Z.; Dickerson, R. R.

    2017-12-01

    The North China Plain (NCP) is one of the most populated and polluted regions on Earth. With rapid economic development in past decades, air pollution including heavy atmospheric aerosol loadings became severe in this region, leading to environmental and climate problems. An aircraft campaign, Air Chemistry Research In Asia (ARIAs), was conducted in spring 2016 (in parallel to KORUS-AQ) to understand air quality in the NCP and transport of air pollutants from this area. Measurements of trace gases such as O3, CO, and SO2 and aerosol optical properties were analyzed to investigate the anthropogenic emissions in the NCP. Both high-efficiency combustion such as from automobiles and modern power plants as well as low-efficiency combustion such as from biomass burnings were identified. Transformations of primary pollutants and formation of secondary pollutants were simulated using the EPA CMAQ v5.2 model. The global HTAP-EDGAR v4.2 emission inventory of year 2010 was processed with SMOKE v4.5 to drive CMAQ. Modeling results were evaluated with aircraft observations to improve our knowledge of anthropogenic emissions and transport. We also used satellite observations including OMI SO2/NO2 and MODIS AOD to evaluate the model performance in the NCP. Through the comparison, we estimated the changes in emissions of major anthropogenic pollutants from 2010 to 2016. Sensitivity experiments with improved emission inventory were conducted to better investigate the air pollution in the NCP.

  17. Evaluation of noise pollution level in the operating rooms of hospitals: A study in Iran.

    Science.gov (United States)

    Giv, Masoumeh Dorri; Sani, Karim Ghazikhanlou; Alizadeh, Majid; Valinejadi, Ali; Majdabadi, Hesamedin Askari

    2017-06-01

    Noise pollution in the operating rooms is one of the remaining challenges. Both patients and physicians are exposed to different sound levels during the operative cases, many of which can last for hours. This study aims to evaluate the noise pollution in the operating rooms during different surgical procedures. In this cross-sectional study, sound level in the operating rooms of Hamadan University-affiliated hospitals (totally 10) in Iran during different surgical procedures was measured using B&K sound meter. The gathered data were compared with national and international standards. Statistical analysis was performed using descriptive statistics and one-way ANOVA, t -test, and Pearson's correlation test. Noise pollution level at majority of surgical procedures is higher than national and international documented standards. The highest level of noise pollution is related to orthopedic procedures, and the lowest one related to laparoscopic and heart surgery procedures. The highest and lowest registered sound level during the operation was 93 and 55 dB, respectively. Sound level generated by equipments (69 ± 4.1 dB), trolley movement (66 ± 2.3 dB), and personnel conversations (64 ± 3.9 dB) are the main sources of noise. The noise pollution of operating rooms are higher than available standards. The procedure needs to be corrected for achieving the proper conditions.

  18. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review.

    Science.gov (United States)

    Kowalska, Joanna Beata; Mazurek, Ryszard; Gąsiorek, Michał; Zaleski, Tomasz

    2018-04-05

    The paper provides a complex, critical assessment of heavy metal soil pollution using different indices. Pollution indices are widely considered a useful tool for the comprehensive evaluation of the degree of contamination. Moreover, they can have a great importance in the assessment of soil quality and the prediction of future ecosystem sustainability, especially in the case of farmlands. Eighteen indices previously described by several authors (I geo , PI, EF, C f , PI sum , PI Nemerow , PLI, PI ave , PI Vector , PIN, MEC, CSI, MERMQ, C deg , RI, mCd and ExF) as well as the newly published Biogeochemical Index (BGI) were compared. The content, as determined by other authors, of the most widely investigated heavy metals (Cd, Pb and Zn) in farmland, forest and urban soils was used as a database for the calculation of all of the presented indices, and this shows, based on statistical methods, the similarities and differences between them. The indices were initially divided into two groups: individual and complex. In order to achieve a more precise classification, our study attempted to further split indices based on their purpose and method of calculation. The strengths and weaknesses of each index were assessed; in addition, a comprehensive method for pollution index choice is presented, in order to best interpret pollution in different soils (farmland, forest and urban). This critical review also contains an evaluation of various geochemical backgrounds (GBs) used in heavy metal soil pollution assessments. The authors propose a comprehensive method in order to assess soil quality, based on the application of local and reference GB.

  19. New investigations in the USA into formation of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1983-06-01

    This paper discusses laboratory investigations in the USA on air pollution by nitrogen oxides during coal combustion. Laboratory combustors used for combustion of black coal, anthracite and brown coal are described. Measuring systems and measuring instruments used for flue gas analyses and determining nitrogen oxide, hydrocyanic acid and ammonia content in flue gas are evaluated. Effects of excess air on nitrogen oxide formation are analyzed. Analyses show that excess air influences relation between nitrogen oxides, hydrocyanic acid and ammonia. Recommendations on the optimum excess air rate are made. In the case of all coal typs, with the exception of anthracite, the optimum excess air rate is 0.7 which guarantees the highest transformation rate of nitrogen in fuel into molecular nitrogen. Effects of excess air on oxidation of hydrocyanic acid and ammonia are described. The analyses consider effects of excess air on chemical reactions during coal combustion under laboratory conditions. (4 refs.) (In Russian)

  20. Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables

    International Nuclear Information System (INIS)

    Cogliani, E.

    2001-01-01

    There are many different air pollution indexes which represent the global urban air pollution situation. The daily index studied here is also highly correlated with meteorological variables and this index is capable of identifying those variables that significantly affect the air pollution. The index is connected with attention levels of NO 2 , CO and O 3 concentrations. The attention levels are fixed by a law proposed by the Italian Ministries of Health and Environment. The relation of that index with some meteorological variables is analysed by the linear multiple partial correlation statistical method. Florence, Milan and Vicence were selected to show the correlation among the air pollution index and the daily thermic excursion, the previous day's air pollution index and the wind speed. During the January-March period the correlation coefficient reaches 0.85 at Milan. The deterministic methods of forecasting air pollution concentrations show very high evaluation errors and are applied on limited areas around the observation stations, as opposed to the whole urban areas. The global air pollution, instead of the concentrations at specific observation stations, allows the evaluation of the level of the sanitary risk regarding the whole urban population. (Author)

  1. [Pollution Evaluation and Risk Assessment of Heavy Metals from Atmospheric Deposition in the Parks of Nanjing].

    Science.gov (United States)

    Wang, Cheng; Qian, Xin; Li, Hui-ming; Sun, Yi-xuan; Wang, Jin-hua

    2016-05-15

    Contents of heavy metals involving As, Cd, Cr, Cu, Ni, Pb and Zn from atmospheric deposition in 10 parks of Nanjing were analyzed. The pollution level, ecological risk and health risk were evaluated using Geoaccumulation Index, Potential Ecological Risk Index and the US EPA Health Risk Assessment Model, respectively. The results showed that the pollution levels of heavy metals in Swallow Rock Park, Swallow Rock Park and Mochou Lake Park were higher than the others. Compared to other cities such as Changchun, Wuhan and Beijing, the contents of heavy metals in atmospheric deposition of parks in Nanjing were higher. The evaluation results of Geoaccumulation Index showed that Pb was at moderate pollution level, Zn and Cu were between moderate and serious levels, while Cd was between serious and extreme levels. The ecological risk level of Cd was high. The assessment results of Health Risk Assessment Model indicated that there was no non-carcinogenic risk for all the seven heavy metals. For carcinogenic risk, the risks of Cd, Cr and Ni were all negligible (Risk < 1 x 10⁻⁶), whereas As had carcinogenic risk possibility but was considered to be acceptable (10⁻⁶ < Risk < 10⁻⁴).

  2. Synthesis report: program ecosystems, transport, pollutions, 1998 - 2001; Rapport de synthese: programme ecosystemes, transport, pollutions, 1998 - 2001

    Energy Technology Data Exchange (ETDEWEB)

    Etchelecou, A.; Deletraz, G.; Elichegaray, Ch

    2001-04-01

    The ''Ecosystems, Transports, Pollution Program'' ETP Program, has been elaborated to evaluate the road pollution impacts on the mountain ecosystems. Four mountains valleys have been chosen: two in Alps (Chamonix and Maurienne) and two in Pyrenees (Biriatou and Vallee d'Aspe). This Program presents six objectives: the road traffic characterization, the pollutants emission estimation, the pollutants concentrations in the air, the pollutants dispersion according to relief, the relationships between pollutants emissions and bio-monitoring, the road pollution effects on nearby ecosystems. (A.L.B.)

  3. Pollution control and environmental monitoring efforts at DOE's Coal-Fired Flow Facility

    International Nuclear Information System (INIS)

    Attig, R.C.; Crawford, L.W.; Lynch, T.P.; Sheth, A.C.

    1991-01-01

    Proof-of-Concept (POC) scale demonstration of such technology is currently being carried out at the US Department of Energy's (DOE's) Coal-Fired Flow Facility (CFFF), located at The University of Tennessee Space Institute (UTSI) in Tullahoma, Tennessee and at the Component Development and Integration Facility in Butte, Montana. The CFFF is dedicated to the evaluation of downstream (steam cycle) components and technology that may be considered for a full-scale MHD system. The objectives of the CFFF testing include the demonstration of various pollution control devices and techniques at a scale sufficient for future scale-up. The CFFF offers a unique test environment in which emissions control techniques can be developed and evaluated through emissions and environmental monitoring. Results thus far have demonstrated the ability of sulfur oxide (SO x ), nitrogen oxide (NO x ) and particulate emissions well below the New Source Performance Standards (NSPS). Regeneration of the potassium sulfate to produce sulfur-free compounds also has been demonstrated. The experimental program at the CFFF is now aimed at determining the optimum conditions for future commercial scale designs. Because of increased interests in Air Toxics, measurements of nitrous oxide (N 2 O), a potential greenhouse gas, priority pollutants (inorganic as well as organics), and chlorine-containing species (Cl 2 and HCl) are also included in our ongoing efforts. Environmental monitoring activities are being pursued to develop an environmental impact assessment data base. These include the use of three ambient air sites to determine the impacts of gaseous and particulate emissions, five lake water sites to determine impacts due to process water discharges and seven sites to collect terrestrial data on possible soil contamination and tree growth. In this paper, we will summarize the status of our ongoing environmental program. 16 refs., 15 figs., 3 tabs

  4. Local evaluation of air pollution by remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    1975-02-01

    Air pollution in Kanagawa Prefecture was studied by examining the relationship between tree vitality (on the ground) and the density distribution of trees as remotely measured with an aerial multiband camera. There was a close relationship between tree vitality and air pollution; a positive significant correlation existed between the density determination of trees obtained by remote sensing and the vitality of trees. The best time for photographing the trees by multiband camera was August. 4 figures, 24 tables.

  5. Association of ambient air pollution with the prevalence and incidence of COPD

    NARCIS (Netherlands)

    Schikowski, Tamara; Adam, Martin; Marcon, Alessandro; Cai, Yutong; Vierkötter, Andrea; Carsin, Anne Elie; Jacquemin, Benedicte; Al Kanani, Zaina; Beelen, Rob; Birk, Matthias; Bridevaux, Pierre Olivier; Brunekreef, Bert; Burney, Peter; Cirach, Marta; Cyrys, Josef; De Hoogh, Kees; De Marco, Roberto; De Nazelle, Audrey; Declercq, Christophe; Forsberg, Bertil; Hardy, Rebecca; Heinrich, Joachim; Hoek, Gerard; Jarvis, Debbie; Keidel, Dirk; Kuh, Diane; Kuhlbusch, Thomas; Migliore, Enrica; Mosler, Gioia; Nieuwenhuijsen, Mark J.; Phuleria, Harish; Rochat, Thierry; Schindler, Christian; Villani, Simona; Tsai, Ming Yi; Zemp, Elisabeth; Hansell, Anna; Kauffmann, Francine; Sunyer, Jordi; Probst-Hensch, Nicole; Krämer, Ursula; Künzli, Nino

    2014-01-01

    The role of air pollution in chronic obstructive pulmonary disease (COPD) remains uncertain. The aim was to assess the impact of chronic exposure to air pollution on COPD in four cohorts using the standardised ESCAPE exposure estimates. Annual average particulate matter (PM), nitrogen oxides (NO x)

  6. Oxidative stress associated with exercise, psychological stress and life-style factors

    DEFF Research Database (Denmark)

    Møller, P; Wallin, H; Knudsen, Lisbeth E.

    1996-01-01

    generation. Here, we review the effect of alcohol, air pollution, cigarette smoke, diet, exercise, non-ionizing radiation (UV and microwaves) and psychological stress on the development of oxidative stress. Regular exercise and carbohydrate-rich diets seem to increase the resistance against oxidative stress....... Air pollution, alcohol, cigarette smoke, non-ionizing radiation and psychological stress seem to increase oxidative stress. Alcohol in lower doses may act as an antioxidant on low density lipoproteins and thereby have an anti-atherosclerotic property....

  7. Neurotoxicity of traffic-related air pollution.

    Science.gov (United States)

    Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J

    2017-03-01

    The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m 3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. An assessment of the effects of human-caused air pollution on resources within the interior Columbia River basin.

    Science.gov (United States)

    Anna W. Schoettle; Kathy Tonnessen; John Turk; John Vimont; Robert Amundson; Ann Acheson; Janice Peterson

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides,...

  9. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The role of non-invasive biomarkers in detecting acute respiratory effects of traffic-related air pollution.

    Science.gov (United States)

    Scarpa, M C; Kulkarni, N; Maestrelli, P

    2014-09-01

    The role of non-invasive methods in the investigation of acute effects of traffic-related air pollution is not clearly established. We evaluated the usefulness of non-invasive biomarkers in detecting acute air pollution effects according to the age of participants, the disease status, their sensitivity compared with lung function tests and their specificity for a type of pollutant. Search terms lead to 535 titles, among them 128 had potentially relevant abstracts. Sixtynine full papers were reviewed, while 59 articles were excluded as they did not meet the selection criteria. Methods used to assess short-term effects of air pollution included analysis of nasal lavage (NAL) for the upper airways, and induced sputum (IS), exhaled breath condensate (EBC) and exhaled nitric oxide (FeNO) for central and lower airways. There is strong evidence that FeNO evaluation is useful independently from subject age, while IS analysis is suitable almost for adults. Biomarker changes are generally observed upon pollutant exposure irrespective of the disease status of the participants. None of the biomarkers identified are specific for a type of pollutant exposure. Based on experimental exposure studies, there is moderate evidence that IS analysis is more sensitive than lung function tests, whereas this is not the case for biomarkers obtained by NAL or EBC. Cells and some cytokines (IL-6, IL-8 and myeloperoxidase) have been measured both in the upper respiratory tract (NAL) and in the lower airways (IS). Overall, the response to traffic exposure seems different in the two compartments. In conclusion, this survey of current literature displays the complexity of this research field, highlights the significance of short-term studies on traffic pollution and gives important tips when planning studies to detect acute respiratory effects of air pollution in a non-invasive way. © 2014 John Wiley & Sons Ltd.

  11. Influence of fossil energy applications on environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    Balat, M.; Ayar, G.; Oguzhan, C.; Uluduz, H.; Faiz, U. [University of Mahallesi, Trabzon (Turkey)

    2007-07-01

    The aim of this work is to investigate influence of fossil energy applications on the environmental pollution. Turkey's high rate of economic growth experienced during much of the 1990s, besides resulting in booming industrial production, also led to higher levels of energy consumption, imports, air and water pollution, and greater risks to the country's environment. Air pollution is a major problem in Turkey, with key pollutants including sulfur dioxide, suspended particulates, nitrogen oxides, and carbon dioxide. In Turkey, carbon dioxide emissions from fossil fuels totaled about 50.07 million tons in 2001. However, fuel share of carbon emissions in 2001 was oil 44.2%, coal 38.8%, and natural gas 16.9%. Total carbon dioxide emissions from fossil fuels are expected to be 104 million tons in 2025.

  12. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China

    Science.gov (United States)

    Xu, Zheng; Wang, Tao; Xue, L. K.; Louie, Peter K. K.; Luk, Connie W. Y.; Gao, J.; Wang, S. L.; Chai, F. H.; Wang, W. X.

    2013-09-01

    A widely used method for measuring nitrogen dioxide (NO2) in the atmosphere is the conversion of NO2 to nitric oxide (NO) on the hot surface of a molybdenum oxide (MoO) catalyst followed by the chemiluminescence detection of NO. Although it has long been recognized that this type of conversion may suffer from the positive interference of other oxidized nitrogen compounds, evaluations of such interference in the atmosphere are scarce, thus rendering it difficult to make use of a large portion of the NO2 or NOx data obtained via this method (often denoted as NO2* or NOx*). In the present study, we compared the MoO converter with a selective, more accurate photolytic approach at four differently polluted sites in China. The converter worked well at the urban site, which was greatly affected by fresh emissions, but, on average, overestimated NO2 by 30%-50% at the two suburban sites and by more than 130% at the mountain-top site during afternoon hours, with a much larger positive bias seen during the top 10% of ozone events. The degree of overestimation depended on both air-parcel age and the composition of the oxidation products/intermediates of NOx (NOz). We attempted to derive an empirical formula to correct for this overestimation using concurrently measured O3, NO, and NO2* at the two suburban sites. Although the formula worked well at each individual site, the different NOz partitions at the sites made it difficult to obtain a universal formula. In view of the difficulty of assessing the uncertainties of the conventional conversion method, thus limiting the usability of data obtained via this method in atmospheric research, we suggest that, in areas away from fresh NOx emission sources, either a more selective NO2 measurement method or a NOy (NOx and its reaction products and intermediates) instrument should be adopted.

  13. Contribution to the study of the behaviour of polluted atmospheres under low β radiation rates

    International Nuclear Information System (INIS)

    Colin, J.P.

    1981-01-01

    In some cases where nuclear power plants are built in industrial areas, radiochemical impacts might occur at the same time as radiobiological impacts. These radiochemical impacts would be due to interactions between gaseous radioactive emissions and pollutants of the ambient atmosphere in these areas. Fundamental data needed for evaluating this have been brought together in this paper. The published data on air radiochemistry are discussed in detail, particularly for low radiation rates and low pollutant levels. But generally, published data appear to be plainly insufficient because of the high level of radiation rates and concentrations, particularly for NOsub(x). So the experimental study concerns nitrogen oxides mainly. Mixtures with concentration of about 1 ppmV of NO 2 , NO or SO 2 are irradiated, in a glass chamber, by β radiations from krypton 85. Mixtures are analyzed after various time lapses. The irradiation of NO and NO 2 polluted air leads to a progressive disappearance of NO and NO 2 and to the formation of a great amount of O 3 and N 2 O 5 (so the total amount of nitrogen oxides is increasing). Results can be explained with a radicalar model. With water vapor, the disappearance speed of NO and NO 2 is increased, the formation speed of O 3 is reduced. Some results of SO 2 irradiation are given [fr

  14. Evaluation of the suspening property of Grewia gum in zinc oxide ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in zinc oxide suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for zinc oxide. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  15. The relationships between ambient air pollutants and childhood asthma and eczema are modified by emotion and conduct problems.

    Science.gov (United States)

    Zhou, Cailiang; Baïz, Nour; Banerjee, Soutrik; Charpin, Denis André; Caillaud, Denis; de Blay, Fréderic; Raherison, Chantal; Lavaud, François; Annesi-Maesano, Isabella

    2013-12-01

    This study examined the hypothesis that emotion and conduct problems (ECPs) may modify the relationships between ambient air pollutants and childhood asthma and eczema. In the cross-sectional study, 4209 French schoolchildren (aged 10e12 years) were investigated between March 1999 and October 2000. Ambient air pollutants exposures were estimated with dispersion modeling. Health outcomes and ECPs were evaluated by validated questionnaires, completed by the parents. Marginal models were used to analyze the relationships of exposures to ambient air pollutants and/or ECPs to asthma phenotypes and current eczema, adjusting for potential confounders. In our population, interactions were found between ECPs and exposures to ambient air pollutants (benzene, carbon monoxide, nitrogen dioxide, nitrogen oxides, particulate matter with an aerodynamic diameter below 10 mm, volatile organic compounds) (P eczema (aOR, 2.21; 95% CI, 1.61e3.02). Children with ECPs had 1.17e1.51 times higher aORs for the associations between ambient air pollutants and asthma phenotypes and current eczema than those without ECPs. ECPs may modify the relationships between ambient air pollutants and childhood asthma and eczema. 2013 Elsevier Inc. All rights reserved.

  16. Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation.

    Science.gov (United States)

    Coutinho de Paula, Eduardo; Gomes, Júlia Célia Lima; Amaral, Míriam Cristina Santos

    2017-07-01

    The adverse impacts caused by the disposal of thousands of tonnes per annum of reverse osmosis (RO) membranes modules have grown dramatically around the world. The objective of this study was to evaluate the technical feasibility of recycling by chemical oxidation of end-of-life RO membranes for applications in other separation processes with specifications less rigorous. The recycling technique consisted in to cause a membrane exposition with oxidant solutions in order to remove its aromatic polyamide layer and subsequent conversion to a porous membrane. The recycling technique was evaluated by water permeability and salt rejection tests before and after the oxidative treatments. Initially, membranes' chemical cleaning and pretreatment procedures were assessed. Among factors evaluated, the oxidizing agent, its concentration and pH, associated with the oxidative treatment time, showed important influence on the oxidation of the membranes. Results showed that sodium hypochlorite and potassium permanganate are efficient agents for the membrane recycling. The great increased permeability and decreased salt rejection indicated changes on membranes' selective properties. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and contact angle characterization techniques revealed marked changes on the main membranes' physical-chemical properties, such as morphology, roughness and hydrophobicity. Reuse of produced effluents and fouling tendency of recycled membranes were also evaluated.

  17. Decontaminating soil organic pollutants with manufactured nanoparticles.

    Science.gov (United States)

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  18. Cost-effective and simple solutions for environmental pollution problems by electrochemical methods

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Environmental pollution is a worldwide problem and has increased significantly with industrialization, urbanization and population growth and is effecting quality of our air, land and water resources. Pollutants include heavy metals, organic toxic and reactive compounds and toxic gases. Major problems in environmental pollution are monitoring and remediation. Now pollutants include such wide range of elements, compounds and gases and normally one needs a whole range of costly analytical techniques to analyse all the pollutants which only very few institutes can afford to purchased. Equipment for electro analytical techniques are much cheaper than most of the other analytical techniques and are also sensitive and accurate for the analysis of nearly the whole range of pollutants including heavy metal. organic reactive compounds, inorganic elements and compounds and toxic gases. application of electrochemical methods for the analysis of different pollutants are reviewed. after monitoring, remediation in the most important aspect of environmental pollution control. Best way could be to treat the pollutants from different industries in such a way that either these are removed from the waste or converted in to non-toxic compounds before their release into the environment. Among all the other treatment methods, electrochemical methods of utilizing the electron as a clean chemical regent are very attractive. Electrodes in electrochemical reactors are abundantly use for the removal and recycling of toxic metals like Cd, Cu, Ni, Pb, Cr and Zn from the industrial waste after electrodeposition. Electrochemical reactors are also being used for electro oxidation of cyanides and other toxic organic compounds into non-toxic species. Such reactors can, in principal, be applied to any environmental pollution problem where the pollutant can either be electro-reduced or oxidized. Different types of electrochemical reactors are discussed, with a view, of their envisaged used for

  19. Evaluation of peroxidases from roots of Cyperus hermaphroditus as enzymatic mechanisms in phenanthrene oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero Zuniga, A. [Inst. Mexicano del Petroleo, Mexico City (Mexico). Environmental Protection Management Office; Rodriguez Dorantes, A.M. [Lab. Fisiologia Vegetal, Escuela Nacional de Ciencias Biologicas, Mexico City (Mexico). Depto Botanica

    2006-07-01

    Although phenanthrene is not mutagenic or carcinogenic, it has been shown to be toxic to aquatic organisms. This study evaluated in-vitro phenanthrene oxidation by peroxidases from radical extracts of Cyperus hermaphroditus plants. The characterization of oxidation products of phenanthrene related to the induction of root peroxidases was also examined. Concentrated ethanol stock of phenanthrene solution was added to the mineral solution of each plant container. The total radical biomass was placed in 4.5 ml of an ionic solution to analyze the enzymatic activity of the extracellular peroxidases. The total protein for each experiment was quantified by the Bradford method. Extracellular peroxidases activity was measured using the spectrophotometric method. The amount of radical biomass was quantified as high in the 80 and 120 ppm phenanthrene treatments relative to the control plants. It was suggested that the nature of the Cyperaceae roots combined with the high-octanol water coefficient and a low water solubility for phenanthrene may have facilitated the stabilization of the contaminant towards the roots. The ability of Cyperus hermaphroditus to immobilize phenanthrene through its adhesion was encouraged by the conditions of the hydroponic culture system. The adsorption of phenanthrene was increased with the time of exposure to the contaminant due to the greater total root mass. The study also showed the transformation of phenanthrene by radical extracts of Cyperus hermaphroditus containing guaiacol peroxidases with 12 per cent residual phenanthrene in the in vitro assays. The spectrophotometric analysis confirmed that the enzymatic systems are responsible for the phytotransformation of the pollutant. 9 refs., 2 tabs., 5 figs.

  20. Effects of air pollution on plants

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, G.

    1965-01-01

    Weather, automobile exhaust, waste dumps and industrial activities are major factors in the creation of air pollution problems. The first indication of an air pollution problem is often the injury that appears on comparatively sensitive vegetation. Sulfur dioxide causes both acute and chronic plant injury. Plants especially sensitive to SO/sub 2/ are alfalfa, cosmos, sweet pea, bachelor's button, and blackberry. Fluoride causes characteristic injury on plants. Plants sensitive to fluoride injury are gladiolus, azalea, tulip, and young needles of pine. Ethylene damage to plants was initially noted in greenhouses using artificial gas for heating. Orchids and carnations are sensitive to ethylene. Ozone is highly reactive and causes typical spotting injury to the upper surface of leaves. PAN causes injury to vegetation, especially petunia and lettuce. Other pollutants also cause plant injury. Mercury vapor, chlorine gas, ammonia, H/sub 2/S, CO, and nitrogen oxides are minor hazards. Susceptibility of vegetation to air pollution depends on various things such as variety of plants, amount of moisture available to the plants, temperature, and amount of sunlight during the period of air pollution. 8 references.

  1. Evaluation to the aspen for the air pollution monitoring

    International Nuclear Information System (INIS)

    De La Rosa, D.; Lima, L.; Santana, J.L.; Olivares, S.; Martin, R.; Garcia, M.

    2003-01-01

    Aspen is not often used in bio monitoring programs, but when it is, several interacting and confounding variables have to be considered. Biomass of leaves, and height changes are not easy linked with air pollution, whereas dry weight and leaf abscission are. Visible injury diagnosis and crown thinning are useful records for bio monitoring programs to consider, but skill and understanding of air pollution effects versus seasonal effects are very important. Understanding of actual air pollution symptoms and elemental ratios are especially important. Clonal response and heritability is discuses below, and has to be considered in any bio monitoring program. Above all, integration of aspen response with other key variables is key

  2. Evaluation of Oil Removal Efficiency and Enzymatic Activity in Some fungal Strains for Bioremediation of Petroleum-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Fariba Mohsenzadeh

    2012-12-01

    Full Text Available Background: Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation.Methods: In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w.Results: Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected asthe most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed thehighest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp.,Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively.Conclusions: Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  3. Set organic pollution as an impact category to achieve more comprehensive evaluation of life cycle assessment in wastewater-related issues.

    Science.gov (United States)

    Zhao, Xinyue; Yang, Jixian; Ma, Fang

    2018-02-01

    For wastewater-related issues (WRI), life cycle assessment (LCA) is often used to evaluate environmental impacts and derive optimization strategies. To promote the application of LCA for WRI, it is critical to incorporate local impact of water pollutants. Organic pollution, a main type of water pollution, has not been given much consideration in current LCA systems. This paper investigates the necessity of setting a regionalized impact category to reflect the local impact of organic pollution. A case study is conducted concerning an upgraded wastewater treatment plant (WWTP) in China, which is assumed to meet different sewage control strategies. Chemical oxygen demand (COD) is selected to represent the organic pollution and treated as an individual impact category. CML 2002 is used to quantify the environmental impacts of different strategies. Results show that abnormal LCA results are generated with the traditional eutrophication impact category, and after the introduction of COD, more reasonable LCA results are obtained, making the entire comparison of different control strategies more meaningful and compelling. Moreover, BEES, Ecovalue 08, and Chinese factors are adopted here as different weighting methods. Different weighting results exhibited various trade-offs for the increasingly strict control strategies; the results of BEES and Ecovalue08 underlined the potential environmental burden, but the results of Chinese factors only emphasized the local environmental improvement. It is concluded that setting regionalized impact category for organic pollution can make LCA results more reasonable in wastewater treatment, especially in evaluating Chinese cases because of the serious water pollution caused by large quantities of COD emission.

  4. Ecological risk evaluation of polluted soils from Sasa mineral processing concentrator

    OpenAIRE

    Krstev, Boris; Golomeov, Blagoj; Golomeova, Mirjana; Krstev, Aleksandar

    2007-01-01

    The idea that the earth is a closed system and that soil, like other mediums, is polluted by human activities, is very recent, hardly thirty years old. The chief preoccupation has been with water pollution, a conviction that, sooner or later, all the pollutants found in water were the principal cause of the emergence of aquatic ecotoxicology. Yet, the existence of polluted soils has been cited since ancient times. Greek and Roman writers remarked that the contamination of water and air near m...

  5. Traffic-related Air Pollution, Lung Function, and Host Vulnerability. New Insights from the PARIS Birth Cohort.

    Science.gov (United States)

    Bougas, Nicolas; Rancière, Fanny; Beydon, Nicole; Viola, Malika; Perrot, Xavier; Gabet, Stephan; Lezmi, Guillaume; Amat, Flore; De Blic, Jacques; Just, Jocelyne; Momas, Isabelle

    2018-05-01

    Although the effects of traffic-related air pollution on respiratory exacerbations have been well documented, its impact on lung function in childhood remains unclear. Our aim was to investigate the associations of prenatal, early, and lifetime traffic-related air pollution exposure with lung function at 8-9 years studying possible effect modification by sex, sensitization at 8-9 years, and early lower respiratory tract infections. We conducted this study among 788 children from the PARIS (Pollution and Asthma Risk: an Infant Study) birth cohort. Lung function tests were performed during the medical examination at 8-9 years. Traffic-related air pollution exposure during each trimester of pregnancy was estimated using nitrogen oxides background measurements. Postnatal traffic-related air pollution exposure was assessed by a nitrogen oxides air dispersion model at both residential and daycare/school addresses. Associations between lung function and traffic-related air pollution exposure were analyzed by multiple linear regression models. Higher prenatal nitrogen oxides levels, especially during the second trimester of pregnancy, were associated with a lower forced expiratory flow at 25-75% of the forced vital capacity, but there were no significant associations between prenatal nitrogen oxide levels and forced vital capacity, forced expiratory volume during 1 second, or the forced expiratory volume during 1 second/forced vital capacity ratio overall. Postnatal traffic-related air pollution exposure was associated with lower lung function among children with early lower respiratory tract infections or sensitization at 8-9 years, but not in the full cohort. In children with early repeated lower respiratory tract infections, an interquartile increase in lifetime nitrogen oxides exposure was associated with both a lower forced expiratory volume during 1 second (-62.6 ml; 95% confidence interval = -107.0 to -18.1) and forced vital capacity (-55.7 ml; 95% confidence

  6. The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen

    International Nuclear Information System (INIS)

    Catalá, M.; Gasulla, F.; Pradas del Real, A.E.; García-Breijo, F.; Reig-Armiñana, J.; Barreno, E.

    2013-01-01

    Organic pollutants effects on lichens have not been addressed. Rehydration is critical for lichens, a burst of free radicals involving NO occurs. Repeated dehydrations with organic pollutants could increase oxidative damage. Our aim is to learn the effects of cumene hydroperoxide (CP) during lichen rehydration using Ramalina farinacea (L.) Ach., its photobiont Trebouxia spp. and Asterochloris erici. Confocal imaging shows intracellular ROS and NO production within myco and phycobionts, being the chloroplast the main source of free radicals. CP increases ROS, NO and lipid peroxidation and reduces chlorophyll autofluorescence, although photosynthesis remains unaffected. Concomitant NO inhibition provokes a generalized increase of ROS and a decrease in photosynthesis. Our results suggest that CP induces a compensatory hormetic response in Ramalina farinacea that could reduce the lichen's antioxidant resources after repeated desiccation-rehydration cycles. NO is important in the protection from CP. -- Highlights: •Organic pollutants could be involved in lichen decline but effects are unknown. •Cumene hydroperoxide induces a compensatory response in rehydration (hormesis). •Cumene hydroperoxide induces a delayed lipid peroxidation. •NO is involved in rehydration oxidative stress regulation under cumene hydroperoxide. •Symbionts display specific responses probably involving communication along time. -- The organic air pollutant cumene hydroperoxide induces oxidative membrane damage in the lichen Ramalina farinacea during rehydration. Nitric oxide (NO) is involved in lichen response

  7. An MCM modeling study of nitryl chloride (ClNO2) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow

    Science.gov (United States)

    Riedel, T. P.; Wolfe, G. M.; Danas, K. T.; Gilman, J. B.; Kuster, W. C.; Bon, D. M.; Vlasenko, A.; Li, S.-M.; Williams, E. J.; Lerner, B. M.; Veres, P. R.; Roberts, J. M.; Holloway, J. S.; Lefer, B.; Brown, S. S.; Thornton, J. A.

    2014-04-01

    Nitryl chloride (ClNO2) is produced at night by reactions of dinitrogen pentoxide (N2O5) on chloride containing surfaces. ClNO2 is photolyzed during the morning hours after sunrise to liberate highly reactive chlorine atoms (Cl·). This chemistry takes place primarily in polluted environments where the concentrations of N2O5 precursors (nitrogen oxide radicals and ozone) are high, though it likely occurs in remote regions at lower intensities. Recent field measurements have illustrated the potential importance of ClNO2 as a daytime Cl· source and a nighttime NOx reservoir. However, the fate of the Cl· and the overall impact of ClNO2 on regional photochemistry remain poorly constrained by measurements and models. To this end, we have incorporated ClNO2 production, photolysis, and subsequent Cl· reactions into an existing master chemical mechanism (MCM version 3.2) box model framework using observational constraints from the CalNex 2010 field study. Cl· reactions with a set of alkenes and alcohols, and the simplified multiphase chemistry of N2O5, ClNO2, HOCl, ClONO2, and Cl2, none of which are currently part of the MCM, have been added to the mechanism. The presence of ClNO2 produces significant changes to oxidants, ozone, and nitrogen oxide partitioning, relative to model runs excluding ClNO2 formation. From a nighttime maximum of 1.5 ppbv ClNO2, the daytime maximum Cl· concentration reaches 1 × 105 atoms cm-3 at 07:00 model time, reacting mostly with a large suite of volatile organic compounds (VOC) to produce 2.2 times more organic peroxy radicals in the morning than in the absence of ClNO2. In the presence of several ppbv of nitrogen oxide radicals (NOx = NO + NO2), these perturbations lead to similar enhancements in hydrogen oxide radicals (HOx = OH + HO2). Neglecting contributions from HONO, the total integrated daytime radical source is 17% larger when including ClNO2, which leads to a similar enhancement in integrated ozone production of 15%. Detectable

  8. Solar photocatalytic cleaning of polluted water. Solare Reinigung verschmutzter Waesser mittels Photokatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, D

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI)

  9. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative.

  10. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  11. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    OpenAIRE

    Mussatti, Eleonora; Merlini, Claudia; Barra, Guilherme Mariz de Oliveira; Güths, Saulo; Oliveira, Antonio Pedro Novaes de; Siligardi, Cristina

    2012-01-01

    The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3). The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5%) were prepared through the casting process followed by compression molding at room temperature. The composites were ana...

  12. A new integrated evaluation method of heavy metals pollution control during melting and sintering of MSWI fly ash.

    Science.gov (United States)

    Li, Rundong; Li, Yanlong; Yang, Tianhua; Wang, Lei; Wang, Weiyun

    2015-05-30

    Evaluations of technologies for heavy metal control mainly examine the residual and leaching rates of a single heavy metal, such that developed evaluation method have no coordination or uniqueness and are therefore unsuitable for hazard control effect evaluation. An overall pollution toxicity index (OPTI) was established in this paper, based on the developed index, an integrated evaluation method of heavy metal pollution control was established. Application of this method in the melting and sintering of fly ash revealed the following results: The integrated control efficiency of the melting process was higher in all instances than that of the sintering process. The lowest integrated control efficiency of melting was 56.2%, and the highest integrated control efficiency of sintering was 46.6%. Using the same technology, higher integrated control efficiency conditions were all achieved with lower temperatures and shorter times. This study demonstrated the unification and consistency of this method. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The study on the evaluation of the pollution control situation of the sewage systems in the counties and cities of Taiwan by applying the VIKOR method.

    Science.gov (United States)

    Kuo, Jun-Yuan

    2017-12-01

    Currently, the pollution control situation of the sewage systems across Taiwan can be divided into the two major sewage systems, namely, industrial area sewage and public community sewage. When the counties and cities of Taiwan cannot effectively control the sewage pollution situation, ecological pollution of the environment and personal health damage would result. Therefore, evaluating the pollution control situation of the sewage systems can help the environmental protection authorities developing strategies for the pollution control of the sewage systems in the future. In this study, the Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method was applied to evaluate the pollution control situation of the sewage systems. The water sample test qualification rate, the emission permit issuance rate, and the staff setting rate of the dedicated wastewater treatment company were used as the pollution control evaluation indexes. According to the results, the use of the VIKOR method to evaluate the pollution control situation of the sewage systems is effective. In cities and counties in Taiwan, public community sewage systems, dedicated to pollution control case, the public community should be actively coached in emission control technology to upgrade sewage capacity, the issuance of discharge permits, and the staff setting rate of the dedicated wastewater treatment, to improve public community sewage pollution control system capabilities. In Taiwan, the industrial area sewage systems, dedicated to pollution control situations, must pay attention to business units in raw materials, spare part inventory, and machine supplier of choice, and we must choose to meet environmental supply chain of green suppliers, which would be effective in reducing effluent produce and improve water sample test qualification rate. The VIKOR value of Yilan County is 1.0000, which is the worst in the pollution control of all the industrial area sewage systems, followed by Taoyuan

  14. Evaluation of tissue morphology and gene expression as biomarkers of pollution in mussel Mytilus galloprovincialis caging experiment

    International Nuclear Information System (INIS)

    Rossi, Federica; Palombella, Silvia; Pirrone, Cristina; Mancini, Giuseppe; Bernardini, Giovanni; Gornati, Rosalba

    2016-01-01

    Highlights: • The paper describes how marine pollution modifies the biology of aquatic species. • Measurable parameters at different levels of biological organization are introduced. • The evaluation of mRNA is widely used as a biomarker to highlight side effects. • mRNA expression, even if transient, can anticipate morphological changes. • mRNA is a useful endpoint for an integrated evaluation of marine ecosystem pollution. - Abstract: The ecosystem is being anthropogenically disturbed, which has serious consequences for the environment and human health, having strong social and economic impacts on the community. One of the most common methods to evaluate the effects of toxic contaminants is based on biomonitoring, e.g., placing Mytilus galloprovincialis in the polluted areas investigated. In this study, we have combined two different methods, transcriptomic and morphological analysis, with the purpose of determining whether cell morphology and the ultrastructural organization of our animal model are related to gene expression in outdoor experiments. The most pronounced changes were observed in mussel gills and digestive gland for mRNA involved in protein machinery (18S, 28S and EF1), while HSP70, MT10, CYP4Y1, SOD1, and CAT mRNAs showed scattered modifications not related to the studied area. In agreement with 18S, 28S, and EF1 mRNA evaluation, optical and electron microscopy demonstrated an initial inflammatory response of the cells that can lead to apoptosis in the caged mussels in all the polluted areas. In conclusion, the application of a multi-disciplinary approach proved to be effective for assessing the biological effects of contaminations on the health of aquatic organisms, and thus suitable to be applied in eco-toxicological studies. Although affected by several uncontrolled environmental variables, the assessment of mRNA can represent a useful endpoint for an integrated estimation of the overall threats to the sea environment within a field

  15. Evaluation of tissue morphology and gene expression as biomarkers of pollution in mussel Mytilus galloprovincialis caging experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Federica; Palombella, Silvia; Pirrone, Cristina [Dipartimento di Biotecnologie e Scienze della Vita, Università dell’Insubria, Via Dunant 3, Varese (Italy); Mancini, Giuseppe [Dipartimento di Ingegneria Elettrica, Elettronica e Informatica Università di Catania, Viale Andrea Doria 6, Catania (Italy); Bernardini, Giovanni [Dipartimento di Biotecnologie e Scienze della Vita, Università dell’Insubria, Via Dunant 3, Varese (Italy); “The Protein Factory” Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell' Insubria, Via Mancinelli 7, Milano (Italy); Gornati, Rosalba, E-mail: rosalba.gornati@uninsubria.it [Dipartimento di Biotecnologie e Scienze della Vita, Università dell’Insubria, Via Dunant 3, Varese (Italy); “The Protein Factory” Research Center, Politecnico di Milano, ICRM-CNR Milano and Università dell' Insubria, Via Mancinelli 7, Milano (Italy)

    2016-12-15

    Highlights: • The paper describes how marine pollution modifies the biology of aquatic species. • Measurable parameters at different levels of biological organization are introduced. • The evaluation of mRNA is widely used as a biomarker to highlight side effects. • mRNA expression, even if transient, can anticipate morphological changes. • mRNA is a useful endpoint for an integrated evaluation of marine ecosystem pollution. - Abstract: The ecosystem is being anthropogenically disturbed, which has serious consequences for the environment and human health, having strong social and economic impacts on the community. One of the most common methods to evaluate the effects of toxic contaminants is based on biomonitoring, e.g., placing Mytilus galloprovincialis in the polluted areas investigated. In this study, we have combined two different methods, transcriptomic and morphological analysis, with the purpose of determining whether cell morphology and the ultrastructural organization of our animal model are related to gene expression in outdoor experiments. The most pronounced changes were observed in mussel gills and digestive gland for mRNA involved in protein machinery (18S, 28S and EF1), while HSP70, MT10, CYP4Y1, SOD1, and CAT mRNAs showed scattered modifications not related to the studied area. In agreement with 18S, 28S, and EF1 mRNA evaluation, optical and electron microscopy demonstrated an initial inflammatory response of the cells that can lead to apoptosis in the caged mussels in all the polluted areas. In conclusion, the application of a multi-disciplinary approach proved to be effective for assessing the biological effects of contaminations on the health of aquatic organisms, and thus suitable to be applied in eco-toxicological studies. Although affected by several uncontrolled environmental variables, the assessment of mRNA can represent a useful endpoint for an integrated estimation of the overall threats to the sea environment within a field

  16. Nanoscale wide-band semiconductors for photocatalytic remediation of aquatic pollution.

    Science.gov (United States)

    Sarkar, Biplab; Daware, Akshay Vishnu; Gupta, Priya; Krishnani, Kishore Kumar; Baruah, Sunandan; Bhattacharjee, Surajit

    2017-11-01

    Water pollution is a serious challenge to the public health. Among different forms of aquatic pollutants, chemical and biological agents create paramount threat to water quality when the safety standards are surpassed. There are many conventional remediatory strategies that are practiced such as resin-based exchanger and activated charcoal/carbon andreverse osmosis. Newer technologies using plants, microorganisms, genetic engineering, and enzyme-based approaches are also proposed for aquatic pollution management. However, the conventional technologies have shown impending inadequacies. On the other hand, new bio-based techniques have failed to exhibit reproducibility, wide specificity, and fidelity in field conditions. Hence, to solve these shortcomings, nanotechnology ushered a ray of hope by applying nanoscale zinc oxide (ZnO), titanium dioxide (TiO 2 ), and tungsten oxide (WO 3 ) particles for the remediation of water pollution. These nanophotocatalysts are active, cost-effective, quicker in action, and can be implemented at a larger scale. These nanoparticles are climate-independent, assist in complete mineralization of pollutants, and can act non-specifically against chemically and biologically based aquatic pollutants. Photocatalysis for environmental remediation depends on the availability of solar light. The mechanism of photocatalysis involves the formation of electron-hole pairs upon light irradiations at intensities higher than their band gap energies. In the present review, different methods of synthesis of nanoscale ZnO, TiO 2 , and WO 3 as well as their structural characterizations have been discussed. Photodegradation of organic pollutants through mentioned nanoparticles has been reviewed with recent advancements. Enhancing the efficacy of photocatalysis through doping of TiO 2 and ZnO nanoparticles with non-metals, metals, and metal ions has also been documented in this report.

  17. The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans

    Czech Academy of Sciences Publication Activity Database

    Shing, R.; Šrám, Radim; Binková, Blanka; Kalina, I.; Popov, T. A.; Georgieva, T.; Garte, S.; Taioli, E.; Farmer, P. B.

    2007-01-01

    Roč. 620, - (2007), s. 83-92 ISSN 0027-5107 Grant - others:EU(GB) 2000-00091; EU(GB) G0100873 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : air pollution * PAHs * oxidative DNA damage Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.159, year: 2007

  18. Air pollutant taxation: an empirical survey

    International Nuclear Information System (INIS)

    Cansier, D.; Krumm, R.

    1997-01-01

    An empirical analysis of the current taxation of the air pollutants sulphur dioxide, nitrogen oxides and carbon dioxide in the Scandinavian countries, the Netherlands, France and Japan is presented. Political motivation and technical factors such as tax base, rate structure and revenue use are compared. The general concepts of the current polices are characterised

  19. Pollution biomarkers in estuarine animals: critical review and new perspectives.

    Science.gov (United States)

    Monserrat, José M; Martínez, Pablo E; Geracitano, Laura A; Amado, Lílian Lund; Martins, Camila Martinez Gaspar; Pinho, Grasiela Lopes Leães; Chaves, Isabel Soares; Ferreira-Cravo, Marlize; Ventura-Lima, Juliane; Bianchini, Adalto

    2007-01-01

    In this review, recent developments in monitoring toxicological responses in estuarine animals are analyzed, considering the biomarker responses to different classes of pollutants. The estuarine environment imposes stressful conditions to the organisms that inhabit it, and this situation can alter their sensitivity to many pollutants. The specificity of some biomarkers like metallothionein tissue concentration is discussed in virtue of its dependence on salinity, which is highly variable in estuaries. Examples of cholinesterase activity measurements are also provided and criteria to select sensitive enzymes to detect pesticides and toxins are discussed. Regarding non-specific biomarkers, toxic responses in terms of antioxidant defenses and/or oxidative damage are also considered in this review, focusing on invertebrate species. In addition, the presence of an antioxidant gradient along the body of the estuarine polychaete Laeonereis acuta (Nereididae) and its relationship to different strategies, which deal with the generation of oxidative stress, is reviewed. Also, unusual antioxidant defenses against environmental pro-oxidants are discussed, including the mucus secreted by L. acuta. Disruption of osmoregulation by pollutants is of paramount importance in several estuarine species. In some cases such as in the estuarine crab Chasmagnathus granulatus, there is a trade off between bioavailability of toxicants (e.g. metals) and their interaction with key enzymes such as Na(+)-K(+)-ATPase and carbonic anhydrase. Thus, the metal effect on osmoregulation is also discussed in the present review. Finally, field case studies with fish species like the croaker Micropogonias furnieri (Scianidae) are used to illustrate the application of DNA damage and immunosuppressive responses as potential biomarkers of complex mixture of pollutants.

  20. Modelling the photochemical pollution over the metropolitan area of Porto Alegre, Brazil

    Science.gov (United States)

    Borrego, C.; Monteiro, A.; Ferreira, J.; Moraes, M. R.; Carvalho, A.; Ribeiro, I.; Miranda, A. I.; Moreira, D. M.

    2010-01-01

    The main purpose of this study is to evaluate the photochemical pollution over the Metropolitan Area of Porto Alegre (MAPA), Brazil, where high concentrations of ozone have been registered during the past years. Due to the restricted spatial coverage of the monitoring air quality network, a numerical modelling technique was selected and applied to this assessment exercise. Two different chemistry-transport models - CAMx and CALGRID - were applied for a summer period, driven by the MM5 meteorological model. The meteorological model performance was evaluated comparing its results to available monitoring data measured at the Porto Alegre airport. Validation results point out a good model performance. It was not possible to evaluate the chemistry models performance due to the lack of adequate monitoring data. Nevertheless, the model intercomparison between CAMx and CALGRID shows a similar behaviour in what concerns the simulation of nitrogen dioxide, but some discrepancies concerning ozone. Regarding the fulfilment of the Brazilian air quality targets, the simulated ozone concentrations surpass the legislated value in specific periods, mainly outside the urban area of Porto Alegre. The ozone formation is influenced by the emission of pollutants that act as precursors (like the nitrogen oxides emitted at Porto Alegre urban area and coming from a large refinery complex) and by the meteorological conditions.

  1. Advance planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, G L

    1972-11-01

    An air quality management program for nitric acid plants emitting pollutants which include nitrogen oxides is proposed. The program consists of the following five phases: an inventory of the handling equipment within the plant, including the identification of potential emission sources in terms of process material balances; source testing (if required); ambient air quality measurements; emission control analysis; and the development of a complete air management plan which includes a balance between air exhausted from buildups and processes and air supplied in a controlled economical manner. Typical NOx air pollution problems associated with nitric acid plants are reviewed along with various approaches to control and by-product recovery.

  2. Evaluating methods for estimating space-time paths of individuals in calculating long-term personal exposure to air pollution

    Science.gov (United States)

    Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek

    2016-04-01

    Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel

  3. Effects of air pollution on human health and practical measures for prevention in Iran.

    Science.gov (United States)

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran.

  4. Effects of air pollution on human health and practical measures for prevention in Iran

    Science.gov (United States)

    Ghorani-Azam, Adel; Riahi-Zanjani, Bamdad; Balali-Mood, Mahdi

    2016-01-01

    Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer's and Parkinson's diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran. PMID:27904610

  5. Effects of air pollution on human health and practical measures for prevention in Iran

    Directory of Open Access Journals (Sweden)

    Adel Ghorani-Azam

    2016-01-01

    Full Text Available Air pollution is a major concern of new civilized world, which has a serious toxicological impact on human health and the environment. It has a number of different emission sources, but motor vehicles and industrial processes contribute the major part of air pollution. According to the World Health Organization, six major air pollutants include particle pollution, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. Long and short term exposure to air suspended toxicants has a different toxicological impact on human including respiratory and cardiovascular diseases, neuropsychiatric complications, the eyes irritation, skin diseases, and long-term chronic diseases such as cancer. Several reports have revealed the direct association between exposure to the poor air quality and increasing rate of morbidity and mortality mostly due to cardiovascular and respiratory diseases. Air pollution is considered as the major environmental risk factor in the incidence and progression of some diseases such as asthma, lung cancer, ventricular hypertrophy, Alzheimer′s and Parkinson′s diseases, psychological complications, autism, retinopathy, fetal growth, and low birth weight. In this review article, we aimed to discuss toxicology of major air pollutants, sources of emission, and their impact on human health. We have also proposed practical measures to reduce air pollution in Iran.

  6. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    Directory of Open Access Journals (Sweden)

    Maria Ángeles Fernández de Dios

    2014-01-01

    Full Text Available The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption.

  7. Application of Electro-Fenton Technology to Remediation of Polluted Effluents by Self-Sustaining Process

    Science.gov (United States)

    Fernández de Dios, Maria Ángeles; Iglesias, Olaia; Pazos, Marta; Sanromán, Maria Ángeles

    2014-01-01

    The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption. PMID:24723828

  8. Air pollution around the Keihin heavy chemical industrial zone, and living environment and health injury in the inhabitants therein

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, I

    1975-08-01

    A survey of air pollution levels and the health of high school pupils and their parents was conducted in a heavily industrialized area of Kawasaki, Japan. The concentration of sulfur oxides in 1974 was about half of that in 1970 (0.029 ppM). The concentration of nitrogen oxides ranged from 0.030 to 0.040 ppM. There was a correlation between the concentrations of oxides of sulfur nitrogen. According to questionnaires, about 32 percent of the inhabitants showed concern about air pollution and photochemical smog. About 22 percent of the inhabitants complained of symptoms such as cold, rhinitis, and pharyngitis; and there was a correlation between total subjective symptoms and concentration of sulfur oxides. Near roadsides the concentration of nitrogen oxides was very high. Green plants are gradually disappearing from the heavily polluted area. Further industrialization in this area appears to be very dangerous for man and other living things.

  9. ADVANCED OXIDATION PROCESSES (AOX) TEXTILE WASTEWATER

    OpenAIRE

    Salas C., G.

    2014-01-01

    Advanced Oxidation Processes (AOX) are based on the in situ generation of hydroxyradicals (·OH), which have a high oxidation potential. In the case of Fenton processes !he generation of hydroxy radicals takes place by the combination of an oxidation agent (H202) with a catalyst (Fe(II)). These radicals are not selective and they react very fast with the organic matter,being able to oxidize a high variety of organic compounds. This property allows the degradation of pollutants into more biodeg...

  10. Study Uncovers Dirty Little Secret: Soil Emissions are Much-Bigger-than-Expected Component of Air Pollution

    Science.gov (United States)

    Stricherz, Vince

    2005-01-01

    Nitrogen oxides produced by huge fires and fossil fuel combustion are a major component of air pollution. They are the primary ingredients in ground-level ozone, a pollutant harmful to human health and vegetation. But new research led by a University of Washington atmospheric scientist shows that, in some regions, nitrogen oxides emitted by the soil are much greater than expected and could play a substantially larger role in seasonal air pollution than previously believed. Nitrogen oxide emissions total more than 40 million metric tons worldwide each year, with 64 percent coming from fossil fuel combustion, 14 percent from burning and a surprising 22 percent from soil, said Lyatt Jaegle, a UW assistant professor of atmospheric sciences. The new research shows that the component from soil is about 70 percent greater than scientists expected. Instead of relying on scattered ground-based measurements of burning and combustion and then extrapolating a global total for nitrogen oxide emissions, the new work used actual observations recorded in 2000 by the Global Ozone Monitoring Experiment aboard the European Space Agency's European Remote Sensing 2 satellite. Nitrogen oxide emissions from fossil fuel combustion are most closely linked to major population centers and show up in the satellite's ozone-monitoring measurements of nitrogen dioxide, part of the nitrogen oxides family.

  11. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    Science.gov (United States)

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Preliminary evaluation of rotational Vol-oxidizer for hot cell operation - 5320

    International Nuclear Information System (INIS)

    Kim, Y.H.; Lee, J.W.; Cho, Y.Z.; Ahn, D.H.; Song, K.C.

    2015-01-01

    KAERI is developing a mechanical head-end process for pyro-processing. As a piece of the processing equipment, a vol-oxidizer that can handle several tens of kg of HM/batch is under development to supply U 3 O 8 powders to an electrolytic reduction (ER) reactor. To operate a vol-oxidizer in a hot cell, the reactor should be optimized by the mechanical design, and the vol-oxidizer should have a high hull recovery rate. In addition, a vol-oxidizer for hot cell demonstrations that handles the spent fuel of high radiation virulence in a limited space should have a small size and not scatter in its outlet. In this paper, we aim at a preliminary evaluation of a rotational vol-oxidizer for hot cell operation. To evaluate the preliminary situation, we produced a theoretical equation of an optimum reactor size, and verification tests were conducted using an acryl vessel and zircaloy-4 tube according to various weights and lengths. In addition, we predicted the terminal velocity of U 3 O 8 using the terminal velocity of SiO 2 , which will determine the optimum air flux, and through an oxidation experiment, we verified the theory form to detect the existence of U 3 O 8 powder in a discharge filter. In addition, hull separation tests were conducted using a reactor and hulls with a 50 kg HM/batch for the recovery rate of the hulls. The results indicate that we obtained an appropriate air flux so as to not cause U 3 O 8 powder dispersion from using a Stokes equation and density ratio equation prior to the demonstration. The optimum flow and experimental results of the hull separation test have been applied for the design of the demonstration oxidizer, and the operation conditions of the oxidizer were produced. (authors)

  13. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  14. Effects of seasonal variation on oxidative stress physiology in natural population of toad Bufo melanostictus; clues for analysis of environmental pollution.

    Science.gov (United States)

    Samanta, Luna; Paital, Biswaranjan

    2016-11-01

    Natural population of Bufo melanostictus in response to environmental cues shows several physiologic changes such as reproductive activity, hibernation, aestivation and metabolic depression in different seasons. We investigated the effects of seasonal fluctuations on oxidative stress (OS) physiology biomarkers, such as endogenous (ELPx) and induced (ILPx) lipid peroxidation, front-line redox regulatory enzymes (superoxide dismutase: SOD and catalase) and two non-enzyme antioxidant metabolites (ascorbic acid and reduced glutathione) in liver, gonad and cerebral hemisphere of toads collected from the Bhubaneswar area of India, where temperature fluctuates considerably rising to the highest in summer (∼46 °C) and being lowest in winter (pollutants alone and/or as results of metabolic changes under hibernation, aestivation and due to reproductive activities. Therefore, seasonal changes in OS physiological responses in poikilothermic models especially in toads must be cautiously used as indicators to assess environmental impact, mainly soil pollution. Results of the present study may be used as baseline data for any future analyses of the physiological impacts of environmental changes using toads as model organism.

  15. An Analysis of Air Pollution in Makkah - a View Point of Source Identification

    Directory of Open Access Journals (Sweden)

    Turki M. Habeebullah

    2013-07-01

    Full Text Available Makkah is one of the busiest cities in Saudi Arabia and remains busy all year around, especially during the season of Hajj and the month of Ramadan when millions of people visit this city. This emphasizes the importance of clean air and of understanding the sources of various air pollutants, which is vital for the management and advanced modeling of air pollution. This study intends to identify the major sources of air pollutants in Makkah, near the Holy Mosque (Al-Haram using a graphical approach. Air pollutants considered in this study are nitrogen oxides (NOx, nitrogen dioxide (NO2, nitric oxide (NO, carbon monoxide (CO, sulphur dioxide (SO2, ozone (O3 and particulate matter with aero-dynamic diameter of 10 um or less (PM10. Polar plots, time variation plots and correlation analysis are used to analyse the data and identify the major sources of emissions. Most of the pollutants demonstrate high concentrations during the morning traffic peak hours, suggesting road traffic as the main source of emission. The main sources of pollutant emissions identified in Makkahwere road traffic, re-suspended and windblown dust and sand particles. Further investigation on detailedsource apportionment is required, which is part of the ongoing project.

  16. Supported Mixed Oxide Catalysts for the Total Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Jirátová, Květa

    2011-01-01

    Roč. 176, č. 1 (2011), s. 110-115 ISSN 0920-5861. [International Symposium on Air Pollution Abatement Catalysis (APAC) /2./. Cracow, 08.09.2010-10.09.2010] R&D Projects: GA ČR GAP106/10/1762; GA ČR GA106/09/1664 Institutional research plan: CEZ:AV0Z40720504 Keywords : layered double hydroxides * mixed oxides * ethanol total oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.407, year: 2011

  17. Evaluation of the impact of reducing national emissions of SO2 and metals in Poland on background pollution using a bioindication method.

    Science.gov (United States)

    Dmuchowski, Wojciech; Gozdowski, Dariusz; Baczewska-Dąbrowska, Aneta H; Dąbrowski, Piotr; Gworek, Barbara; Suwara, Irena

    2018-01-01

    Changes in environmental pollution by S, Cd, Cu, Pb and Zn in 2006-2014 were evaluated using a bioindication method. This method was based on measurements of pollutants in Scots pine (Pinus sylvestris L.) needles. The measurements were performed in the Chojnowskie Forests, a region recognized as a background area for central Poland. The changes in the contents of sulfur (S) and metals in needles were not comparable with the changes in the global emissions of the pollutants in Poland. On average, the pollution level in the study area decreased by 9.9% for S, 61.4% for Pb, 22.5% for Cd, 11.7% for Zn and 10.4% for Cu. During the same period, global emissions in Poland decreased by 38.1% for S, 8.0% for Pb, 63.2% for Cd, 11.7% for Zn and 14.0% for Cu. Therefore, the differences in the changes in emissions and the needle contents of each element should be examined separately which was not a goal of this study. However, the discrepancy between these results did not prevent the use of bioindication methods. Evaluation of pollutant contents in plants reflected their incorporation in biological processes rather than air or soil pollution levels.

  18. Benzimidazole for the prevention of toxic effects of air pollutants on plants

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, I; Fukuda, M; Kitano, H; Shinohara, T

    1974-02-02

    Tobacco plants were sprayed with benzimidazole before being exposed to 30 ppM of photochemical oxidants for a period of two hours. The plants were observed 48 hours after exposure and found to have suffered no toxic effects from the oxidants. It may be concluded that benzimidazole is an effective agent for preventing the toxic effects of air pollutants, such as photochemical oxidants on plants.

  19. Natural sources of gaseous pollutants in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P

    1958-01-01

    Various gaseous pollutants including ozone, nitrous oxide, nitric oxide, nitrogen dioxide, methane, hydrogen, formaldehyde, ammonia, hydrogen sulfide, mercaptans, chlorine compounds and free radicals can be formed by natural processes such as ultraviolet photochemical processes in the upper atmosphere and microbiological processes. The modes of formation and destruction of these gases, especially of their concentrations in the atmosphere, and the various reactions in which these gases can participate with each other are discussed in detail. 114 references.

  20. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils

    Directory of Open Access Journals (Sweden)

    Mohsenzadeh Fariba

    2012-12-01

    Full Text Available Abstract Background Petroleum pollution is a global disaster and there are several soil cleaning methods including bioremediation. Methods In a field study, fugal strains were isolated from oil-contaminated sites of Arak refinery (Iran and their growth ability was checked in potato dextrose agar (PDA media containing 0-10% v/v crude oil, the activity of three enzymes (Catalase, Peroxidase and Phenol Oxidase was evaluated in the fungal colonies and bioremediation ability of the fungi was checked in the experimental pots containing 3 kg sterilized soil and different concentrations of petroleum (0-10% w/w. Results Four fungal strains, Acromonium sp., Alternaria sp., Aspergillus terreus and Penicillium sp., were selected as the most resistant ones. They were able to growth in the subjected concentrations and Alternaria sp. showed the highest growth ability in the petroleum containing media. The enzyme assay showed that the enzymatic activity was increased in the oil-contaminated media. Bioremediation results showed that the studied fungi were able to decrease petroleum pollution. The highest petroleum removing efficiency of Aspergillus terreus, Penicillium sp., Alternaria sp. and Acromonium sp. was evaluated in the 10%, 8%, 8% and 2% petroleum pollution respectively. Conclusions Fungi are important microorganisms in decreasing of petroleum pollution. They have bioremediation potency that is related to their enzymatic activities.

  1. Evaluation of the oxidant and antioxidant balance in the pathogenesis of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    C. Cristóvão

    2013-03-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is one of the most common chronic diseases and a major cause of morbidity and mortality. An imbalance between oxidants and antioxidants (oxidative stress has been proposed as a critical event in the pathogenesis of COPD. The increased oxidative stress in patients with COPD is the result of exogenous oxidants namely pollutants and cigarette smoke as well as endogenous oxidant production during inflammation. The aim of the present study was to clarify the hypothesis about the presence of an imbalance between oxidants and the antioxidant defences associated to COPD. In this study, we evaluated a biomarker of oxidative stress (malondialdehyde, a lipid peroxidation derived product and non-enzymatic antioxidants (vitamin C and the sulphydryl groups in COPD patients and healthy controls. The marker of oxidative stress was found to be significantly (p < 0.001 higher in COPD patients when compared with control group. No age dependent changes in the plasma levels of lipid peroxidation products were found. COPD patients had a significant (p < 0.001 decrease in antioxidant status as compared with control group. Our results show that oxidative stress is an important pathophysiologic change in COPD. Resumo: A doença pulmonar obstrutiva crónica (DPOC é uma das doenças crónicas mais comuns e representa uma importante causa de morbilidade e mortalidade. Um desequilíbrio entre oxidantes e antioxidantes (stress oxidativo tem sido proposto como um acontecimento importante na patogénese da DPOC. O aumento do stress oxidativo em doentes com DPOC é o resultado da presença de oxidantes exógenos, nomeadamente, poluentes e fumo do tabaco, assim como oxidantes endógenos produzidos durante a inflamação. O objetivo do presente estudo consistiu em clarificar a hipótese sobre a existência de um desequilíbrio entre oxidantes e as defesas antioxidantes associado à DPOC. Neste estudo, avaliou-se um biomarcador do

  2. [Evaluation and source analysis of the mercury pollution in soils and vegetables around a large-scale zinc smelting plant].

    Science.gov (United States)

    Liu, Fang; Wang, Shu-Xiao; Wu, Qing-Ru; Lin, Hai

    2013-02-01

    The farming soil and vegetable samples around a large-scale zinc smelter were collected for mercury content analyses, and the single pollution index method with relevant regulations was used to evaluate the pollution status of sampled soils and vegetables. The results indicated that the surface soil and vegetables were polluted with mercury to different extent. Of the soil samples, 78% exceeded the national standard. The mercury concentration in the most severely contaminated area was 29 times higher than the background concentration, reaching the severe pollution degree. The mercury concentration in all vegetable samples exceeded the standard of non-pollution vegetables. Mercury concentration, in the most severely polluted vegetables were 64.5 times of the standard, and averagely the mercury concentration in the vegetable samples was 25.4 times of the standard. For 85% of the vegetable samples, the mercury concentration, of leaves were significantly higher than that of roots, which implies that the mercury in leaves mainly came from the atmosphere. The mercury concentrations in vegetable roots were significantly correlated with that in soils, indicating the mercury in roots was mainly from soil. The mercury emissions from the zinc smelter have obvious impacts on the surrounding soils and vegetables. Key words:zinc smelting; mercury pollution; soil; vegetable; mercury content

  3. Comparative study of photocatalytic oxidation on the degradation of formaldehyde and fuzzy mathematics evaluation of filters

    Science.gov (United States)

    Yu, Huili; Zhang, Jieting

    2012-04-01

    In this study, formaldehyde, one of the major volatile organic compounds, is chosen as the target pollutant. The polytetrafluoroethylene (PTFE) filter, a low cost and commonly used material in industry, is employed as the substrate for nano TiO2 photocatalyst coating at room temperature, which has been scarcely used compared to ceramics or glass beads. Furthermore, a specific experimental set-up that is similar to actual air purification system is developed for the testing. The degradation mechanisms of photolysis reaction, adsorption and photocatalytic oxidation reaction on volatile organic compounds are present respectively. The influences of three aspects mentioned above are compared by a serial of experimental data. The high efficiency of volatile organic compounds on the degradation of formaldehyde is assured. Furthermore, the purification characteristics of three kinds of activated carbon filters and PTFE filter with nano TiO2 are evaluated with the method of fuzzy mathematics. In the end, the result shows that the filter with nano TiO2 has the optimal comprehensive performances.

  4. EARTH MICRO-COSMOS. A technique to evaluate the effect produce by pollutants

    International Nuclear Information System (INIS)

    Sanchez Gimeno, B.; Sanchez Cabrero, B.; Varela Gonzalez, J.

    1987-01-01

    Chemical pollution is one of the risks of industrialization. Daily there emerge a great deal of chemical compounds and it is necessary to asses the risk they might suppose to the environmental and/or human health. Till recently, the toxicity tests of the chemicals or their transformation products, were carried out using individuals of a few species. This approach doesn't seem correct because it ignores the relations that are stablished at the ecosystem level. Microcosms pretend to be an adecuated tool for the ecotoxicologicals tests. This review presents two different parts: in the first one, we show the possible applications of microcosms, in the second one, we present the validation and evaluation of the soil core microcosm, following the works done by EPRI and EPA. It would be interesting to assess and validate the soil core microcosm using it with fumigation of atmospheric pollutant in controlled environment and subsequently compare the results obtained in the laboratory with those obtained in the field. We think that this approach, along with other, techniques, may be useful. (Author) 37 refs

  5. Air pollution control in India

    International Nuclear Information System (INIS)

    Jain, S.K.

    1995-01-01

    Prior to rapid spurt in industrialization in India, people were used to inhale pure air containing about 78% nitrogen, 21% oxygen and some carbon dioxide. But afterwards this composition of pure air was disturbed as a result of increased economic activities. Air, now a days also contains sulphur dioxide, carbon monoxide, nitrogen oxides etc., etc. which are extremely harmful for human health. Virulence of air pollution was realised in late eighties after Bhopal Gas Tragedy (BGT) and an effective air quality management started taking shape in India afterwards. The basic components of air quality management are legislation and regulations, emission inventory, air quality standards and monitoring, air dispersion models and installation of pollution control equipment which are being discussed in this paper. (author). 15 refs., 5 tabs

  6. An assessment the effects of human-caused air pollution on resources within the interior Columbia River basin

    Science.gov (United States)

    Schoettle, A.W.; Tonnessen, K.; Turk, J.; Vimont, J.; Amundson, Ronald; Acheson, A.; Peterson, J.

    1999-01-01

    An assessment of existing and potential impacts to vegetation, aquatics, and visibility within the Columbia River basin due to air pollution was conducted as part of the Interior Columbia Basin Ecosystem Management Project. This assessment examined the current situation and potential trends due to pollutants such as ammonium, nitrogen oxides, sulfur oxides, particulates, carbon, and ozone. Ecosystems and resources at risk are identified, including certain forests, lichens, cryptogamic crusts, high-elevation lakes and streams, arid lands, and class I areas. Current monitoring data are summarized and air pollution sources identified. The assessment also includes a summary of data gaps and suggestions for future research and monitoring related to air pollution and its effects on resources in the interior Columbia River basin.

  7. Investigation and comprehensive evaluation of the litter pollution on the Heishijiao beach in Dalian

    Science.gov (United States)

    Han, Mengdi; Zhao, Kaiyuan; Zhang, Yan; Sui, Chuanguo

    2018-02-01

    From November 2015 to August 2016, this paper conducted an investigation into the classification of the litter on the Heishijiao beach in Dalian, and made a comprehensive evaluation of the litter pollution on the beach in different seasons. According to the results, the litter on the Heishijiao beach in Dalian mainly come from human’s offshore activities and other wastes, and spring is the season which witnesses the largest quantity of litter resulting from the activities. Most of the fragmental wastes are glass, plastic and paper, while there is a little metal, rubber and wooden products. On the Heishijiao beach, most of the fragmental litter are small, followed by medium and large ones; outsized wastes are rare. The quantitative density of litter is highest in winter (9.0items/m2), with the average quantitative density of 4.6 items/m2; the qualitative density of litter is highest in spring (8 g/m2), with the average qualitative density of 6.0 g/m2. The results of the comprehensive evaluation show that the litter pollution on the Heishijiao beach stays between “Average” and “Unsatisfactory”.

  8. Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008

    Science.gov (United States)

    Quennehen, B.; Raut, J.-C.; Law, K. S.; Daskalakis, N.; Ancellet, G.; Clerbaux, C.; Kim, S.-W.; Lund, M. T.; Myhre, G.; Olivié, D. J. L.; Safieddine, S.; Skeie, R. B.; Thomas, J. L.; Tsyro, S.; Bazureau, A.; Bellouin, N.; Hu, M.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Myriokefalitakis, S.; Quaas, J.; Rumbold, S. T.; Schulz, M.; Cherian, R.; Shimizu, A.; Wang, J.; Yoon, S.-C.; Zhu, T.

    2016-08-01

    The ability of seven state-of-the-art chemistry-aerosol models to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over eastern Asia in summer 2008, is evaluated. The study focuses on the performance of models used to assess impacts of pollutants on climate and air quality as part of the EU ECLIPSE project. Models, run using the same ECLIPSE emissions, are compared over different spatial scales to in situ surface, vertical profiles and satellite data. Several rather clear biases are found between model results and observations, including overestimation of ozone at rural locations downwind of the main emission regions in China, as well as downwind over the Pacific. Several models produce too much ozone over polluted regions, which is then transported downwind. Analysis points to different factors related to the ability of models to simulate VOC-limited regimes over polluted regions and NOx limited regimes downwind. This may also be linked to biases compared to satellite NO2, indicating overestimation of NO2 over and to the north of the northern China Plain emission region. On the other hand, model NO2 is too low to the south and west of this region and over South Korea/Japan. Overestimation of ozone is linked to systematic underestimation of CO particularly at rural sites and downwind of the main Chinese emission regions. This is likely to be due to enhanced destruction of CO by OH. Overestimation of Asian ozone and its transport downwind implies that radiative forcing from this source may be overestimated. Model-observation discrepancies over Beijing do not appear to be due to emission controls linked to the Olympic Games in summer 2008.With regard to aerosols, most models reproduce the satellite-derived AOD patterns over eastern China. Our study nevertheless reveals an overestimation of ECLIPSE model mean surface BC and sulphate aerosols in urban China in summer 2008. The effect of the short-term emission mitigation in Beijing

  9. Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008

    Directory of Open Access Journals (Sweden)

    B. Quennehen

    2016-08-01

    Full Text Available The ability of seven state-of-the-art chemistry–aerosol models to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over eastern Asia in summer 2008, is evaluated. The study focuses on the performance of models used to assess impacts of pollutants on climate and air quality as part of the EU ECLIPSE project. Models, run using the same ECLIPSE emissions, are compared over different spatial scales to in situ surface, vertical profiles and satellite data. Several rather clear biases are found between model results and observations, including overestimation of ozone at rural locations downwind of the main emission regions in China, as well as downwind over the Pacific. Several models produce too much ozone over polluted regions, which is then transported downwind. Analysis points to different factors related to the ability of models to simulate VOC-limited regimes over polluted regions and NOx limited regimes downwind. This may also be linked to biases compared to satellite NO2, indicating overestimation of NO2 over and to the north of the northern China Plain emission region. On the other hand, model NO2 is too low to the south and west of this region and over South Korea/Japan. Overestimation of ozone is linked to systematic underestimation of CO particularly at rural sites and downwind of the main Chinese emission regions. This is likely to be due to enhanced destruction of CO by OH. Overestimation of Asian ozone and its transport downwind implies that radiative forcing from this source may be overestimated. Model-observation discrepancies over Beijing do not appear to be due to emission controls linked to the Olympic Games in summer 2008.With regard to aerosols, most models reproduce the satellite-derived AOD patterns over eastern China. Our study nevertheless reveals an overestimation of ECLIPSE model mean surface BC and sulphate aerosols in urban China in summer 2008. The effect of the short-term emission

  10. Evaluation of nitrate pollution of groundwater in Mnasra region

    International Nuclear Information System (INIS)

    Marouane, B.; El hajjaji, S.; Dahchour, A.; Dousset, S.

    2012-01-01

    Gharb area is one of the most important agricultural regions in Morocco, where the application of fertilizers is conducted in many cases without any respect of standards. This situation may generate negative environmental impact in vulnerable areas such as Mnasra groundwater. Our study tends to evaluate the level of contamination by nitrate of groundwater in a Mnasra area. The results show that 80% of the sampled wells are highly concentrated in nitrates in comparison with the standard of WHO. Intensification of agriculture in the area associated to excessive fertilizer application, repeated applications, irrigation and rainfall are reasons for an increasing nitrates pollution of water resources. Leaching of nitrate to the groundwater should receive more attention for its potential high mobile propriety which could cause serious damages for the environment and negative impact to the health of population.

  11. The risks of premature mortality related to atmospheric pollution. Comparison with those related to tobacco and those related to radioactivity

    International Nuclear Information System (INIS)

    Durand, Bernard

    2014-01-01

    Whereas atmospheric pollution is now recognized as one of the most important cause of mortality in the world, this report first notices that these pollutants have mainly an anthropogenic origin. In a first part, the author presents the main harmful atmospheric pollutants, and briefly discusses their origin and their impact on health: carbon monoxide, sulphur oxides, ammonia, nitrogen oxides, persistent organic pollutants, volatile organic compounds, ozone, tars, soot or particles, heavy metals. In a second part, the author discusses the assessment of hazards related to atmospheric pollution, and more particularly the assessment of premature morbidity due to different pollutants according to different organisations and programs. He also discusses health impacts on a short and on a long term, notably in terms of exposure in big cities. In a third part, based on measurements of emissions of primary pollutant, notably primary particles, the author tries to identify the most dangerous sources of atmospheric pollutions

  12. Air quality modeling: evaluation of chemical and meteorological parameterizations

    International Nuclear Information System (INIS)

    Kim, Youngseob

    2011-01-01

    The influence of chemical mechanisms and meteorological parameterizations on pollutant concentrations calculated with an air quality model is studied. The influence of the differences between two gas-phase chemical mechanisms on the formation of ozone and aerosols in Europe is low on average. For ozone, the large local differences are mainly due to the uncertainty associated with the kinetics of nitrogen monoxide (NO) oxidation reactions on the one hand and the representation of different pathways for the oxidation of aromatic compounds on the other hand. The aerosol concentrations are mainly influenced by the selection of all major precursors of secondary aerosols and the explicit treatment of chemical regimes corresponding to the nitrogen oxides (NO x ) levels. The influence of the meteorological parameterizations on the concentrations of aerosols and their vertical distribution is evaluated over the Paris region in France by comparison to lidar data. The influence of the parameterization of the dynamics in the atmospheric boundary layer is important; however, it is the use of an urban canopy model that improves significantly the modeling of the pollutant vertical distribution (author) [fr

  13. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration.

    Science.gov (United States)

    Murakami, Michio; Sato, Nobuyuki; Anegawa, Aya; Nakada, Norihide; Harada, Arata; Komatsu, Toshiya; Takada, Hideshige; Tanaka, Hiroaki; Ono, Yoshiro; Furumai, Hiroaki

    2008-05-01

    Groundwater replenishment by infiltration of road runoff is expected to be a promising option for ensuring a sustainable urban water cycle. In this study, we performed a soil infiltration column test using artificial road runoff equivalent to approximately 11-12 years of rainfall to evaluate the removal of pollutants by using various chemical analyses and bioassay tests. These results indicated that soil infiltration treatment works effectively to remove most of the pollutants such as organic matter (chemical oxygen demand (CODMn) and dissolved organic carbon (DOC)), P species, polycyclic aromatic hydrocarbons (PAHs), numerous heavy metals and oestrogenic activities. Bioassay tests, including algal growth inhibition test, Microtox and mutagen formation potential (MFP) test, also revealed effective removal of toxicities by the soils. However, limited amounts of NO3, Mn, Ni, alkaline earth metals, perfluorooctane sulphonate (PFOS) and perfluorooctane sulphonamide (FOSA) were removed by the soils and they possibly reach the groundwater and cause contamination.

  14. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    Science.gov (United States)

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  15. Treatment of a Textile Effluent by Electrochemical Oxidation and Coupled System Electooxidation–Salix babylonica

    Directory of Open Access Journals (Sweden)

    Alejandra Sánchez-Sánchez

    2018-01-01

    Full Text Available The removal of pollutants from textile wastewater via electrochemical oxidation and a coupled system electrooxidation—Salix babylonica, using boron-doped diamond electrodes was evaluated. Under optimal conditions of pH 5.23 and 3.5 mA·cm−2 of current density, the electrochemical method yields an effective reduction of chemical oxygen demand by 41.95%, biochemical oxygen demand by 83.33%, color by 60.83%, and turbidity by 26.53% at 300 minutes of treatment. The raw and treated wastewater was characterized by infrared spectroscopy to confirm the degradation of pollutants. The wastewater was oxidized at 15-minute intervals for one hour and was placed in contact with willow plants for 15 days. The coupled system yielded a reduction of the chemical oxygen demand by 14%, color by 85%, and turbidity by 93%. The best efficiency for the coupled system was achieved at 60 minutes, at which time the plants achieved more biomass and photosynthetic pigments.

  16. Long-Term Exposure to Ambient Air Pollution and Incidence of Cerebrovascular Events

    DEFF Research Database (Denmark)

    Stafoggia, Massimo; Cesaroni, Giulia; Peters, Annette

    2014-01-01

    and occurrence of a first stroke was evaluated. Individual air pollution exposures were predicted from land-use regression models developed within the "European Study of Cohorts for Air Pollution Effects" (ESCAPE). The exposures were: PM2.5 (particulate matter [PM] below 2.5 µm in diameter), coarse PM (PM...... between 2.5 and 10 µm), PM10 (PM below 10 µm), PM2.5 absorbance, nitrogen oxides, and two traffic indicators. Cohort-specific analyses were conducted using Cox proportional hazards models. Random-effects meta-analysis was used for pooled effect estimation. RESULTS: 99,446 subjects were included, 3......,086 of whom developed stroke. A 5-μg/m(3) increase in annual PM2.5 exposure was associated with 19% increased risk of incident stroke (hazard ratio [HR] = 1.19, 95% confidence interval [CI]: 0.88, 1.62). Similar findings were obtained for PM10. The results were robust to adjustment for an extensive list...

  17. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, Henry W; Hoffman, James S

    2013-10-01

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  18. Healthy neighborhoods: walkability and air pollution.

    Science.gov (United States)

    Marshall, Julian D; Brauer, Michael; Frank, Lawrence D

    2009-11-01

    The built environment may influence health in part through the promotion of physical activity and exposure to pollution. To date, no studies have explored interactions between neighborhood walkability and air pollution exposure. We estimated concentrations of nitric oxide (NO), a marker for direct vehicle emissions), and ozone (O(3)) and a neighborhood walkability score, for 49,702 (89% of total) postal codes in Vancouver, British Columbia, Canada. NO concentrations were estimated from a land-use regression model, O(3) was estimated from ambient monitoring data; walkability was calculated based on geographic attributes such as land-use mix, street connectivity, and residential density. All three attributes exhibit an urban-rural gradient, with high walkability and NO concentrations, and low O(3) concentrations, near the city center. Lower-income areas tend to have higher NO concentrations and walkability and lower O(3) concentrations. Higher-income areas tend to have lower pollution (NO and O(3)). "Sweet-spot" neighborhoods (low pollution, high walkability) are generally located near but not at the city center and are almost exclusively higher income. Increased concentration of activities in urban settings yields both health costs and benefits. Our research identifies neighborhoods that do especially well (and especially poorly) for walkability and air pollution exposure. Work is needed to ensure that the poor do not bear an undue burden of urban air pollution and that neighborhoods designed for walking, bicycling, or mass transit do not adversely affect resident's exposure to air pollution. Analyses presented here could be replicated in other cities and tracked over time to better understand interactions among neighborhood walkability, air pollution exposure, and income level.

  19. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    Science.gov (United States)

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  20. Oxidative stress-induced telomeric erosion as a mechanism underlying airborne particulate matter-related cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Grahame Thomas J

    2012-06-01

    Full Text Available Abstract Particulate matter (PM pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD. While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer

  1. Development of New Diesel Oxidation and NH3 Slip Catalysts

    DEFF Research Database (Denmark)

    Hansen, Thomas Klint

    Diesel engines used in the transport sector and for other heavy machinery form pollutants during the combustion process. Emission of these pollutants into the atmosphere has harmful consequences on human health and the environment. In order to mitigate these harmful effects, regulations have been...... imposed by environmental protection agencies on the most significant pollutants, including CO, hydrocarbons, NOx, and particulate matter. To reduce emissions to the levels specified by the recent Euro VI regulations, it is necessary to apply catalytic exhaust gas aftertreat-ment systems. A modern diesel...... exhaust aftertreatment system commonly consists of a Pt-based diesel oxidation catalyst (DOC) to oxidize CO and unburnt hydrocarbons to CO2 and H2O, and oxidize NO to NO2. This is followed by the diesel particulate filter (DPF), which entraps particulate matter from the exhaust gas. A solution of urea...

  2. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents

    International Nuclear Information System (INIS)

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-01-01

    Highlights: • Different chemical pollution accidents were simplified using the event tree analysis. • Emergency disposal technique plan repository of chemicals accidents was constructed. • The technique evaluation index system of chemicals accidents disposal was developed. • A combination of group decision and analytical hierarchy process (AHP) was employed. • Group decision introducing similarity and diversity factor was used for data analysis. - Abstract: The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012

  3. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Shenggang [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); College of Chemistry, Baotou Teachers’ College, Baotou 014030 (China); Cao, Jingcan; Feng, Li; Liang, Wenyan [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China); Zhang, Liqiu, E-mail: zhangliqiu@163.com [College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 (China)

    2014-07-15

    Highlights: • Different chemical pollution accidents were simplified using the event tree analysis. • Emergency disposal technique plan repository of chemicals accidents was constructed. • The technique evaluation index system of chemicals accidents disposal was developed. • A combination of group decision and analytical hierarchy process (AHP) was employed. • Group decision introducing similarity and diversity factor was used for data analysis. - Abstract: The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012.

  4. Modeling of atmospheric pollutant transfers

    International Nuclear Information System (INIS)

    Jourdain, F.

    2007-01-01

    Modeling is today a common tool for the evaluation of the environmental impact of atmospheric pollution events, for the design of air monitoring networks or for the calculation of pollutant concentrations in the ambient air. It is even necessary for the a priori evaluation of the consequences of a pollution plume. A large choice of atmospheric transfer codes exist but no ideal tool is available which allows to model all kinds of situations. The present day approach consists in combining different types of modeling according to the requested results and simulations. The CEA has a solid experience in this domain and has developed independent tools for the impact and safety studies relative to industrial facilities and to the management of crisis situations. (J.S.)

  5. Modification of Colombian clays with pillars mixed Al-Fe and their evaluation in the catalytic oxidation of phenol in diluted watery solution

    International Nuclear Information System (INIS)

    Galeano, Luis A; Moreno G, Sonia

    2002-01-01

    The environmental legislation has become in the last time particularly restrictive with the bio-recalcitrant pollutants manage in the wastewaters. The pillared clays show great versatility to adjust at demands of the environmental reactions. Present study show that is achieve the modification of starting Colombian clays with precursor solutions of Al-Fe mixed pillars, and is found an excellent performance of them in the catalytic oxidation of aqueous solutions with middle contents of Total Organic Carbon TOC (36 mg C/L). The materials prepared in this way reached quantitative conversion of phenol, as model pollutant, in 2 hours of reaction at 20 Celsius degrade and atmospheric pressure; in 4 hours of reaction, the removal reached 62% of TOC in the solution yielding light carboxylic acids as main byproducts, although that CO 2 . The materials are stable under strongly oxidation media of reaction, and the iron leached in the effluent is close to 0,2 mg/L for the material of better catalytic performance

  6. Effect modification of air pollution on Urinary 8-Hydroxy-2'-Deoxyguanosine by genotypes: an application of the multiple testing procedure to identify significant SNP interactions

    Directory of Open Access Journals (Sweden)

    Christiani David C

    2010-12-01

    Full Text Available Abstract Background Air pollution is associated with adverse human health, but mechanisms through which pollution exerts effects remain to be clarified. One suggested pathway is that pollution causes oxidative stress. If so, oxidative stress-related genotypes may modify the oxidative response defenses to pollution exposure. Methods We explored the potential pathway by examining whether an array of oxidative stress-related genes (twenty single nucleotide polymorphisms, SNPs in nine genes modified associations of pollutants (organic carbon (OC, ozone and sulfate with urinary 8-hydroxy-2-deoxygunosine (8-OHdG, a biomarker of oxidative stress among the 320 aging men. We used a Multiple Testing Procedure in R modified by our team to identify the significance of the candidate genes adjusting for a priori covariates. Results We found that glutathione S-tranferase P1 (GSTP1, rs1799811, M1 and catalase (rs2284367 and group-specific component (GC, rs2282679, rs1155563 significantly or marginally significantly modified effects of OC and/or sulfate with larger effects among those carrying the wild type of GSTP1, catalase, non-wild type of GC and the non-null of GSTM1. Conclusions Polymorphisms of oxidative stress-related genes modified effects of OC and/or sulfate on 8-OHdG, suggesting that effects of OC or sulfate on 8-OHdG and other endpoints may be through the oxidative stress pathway.

  7. Effect of air pollution with nitrogen oxide on experimental animals under conditions of long-term continuous exposure

    Energy Technology Data Exchange (ETDEWEB)

    Misiakiewicz, Z.; Szulinska, G.; Chyba, A.; Czyz, E.

    1974-01-01

    The action of nitric oxide in concentrations of 0.25 and 0.5 mg/cu m on 16 male Wistar rats was studied. Three groups of 8 rats each were used. The control group was placed in a chamber with a capacity of 150 l and a continuous air flow of approximately 30 l/min with no NO. The test groups were placed in chambers containing respectively 0.25 mg/cu m and 0.5 mg/cu m NO. The experiment lasted 6 months. Every 5 to 6 weeks the body weight increased, the activity of the blood cholinesterase, the activity of asparaginian blood serum aminotransferase, the activity of blood catalase, the hemoglobin count, and histopathological changes were examined. Significant changes were observed in the group exposed to the 0.5 mg/cu m NO concentration after 170 days, among them changes in the lungs, changes of blood cholinesterase activity, asparaginian aminotranspherase of blood serum activity, and blood catalase activity. These changes are more pronounced in air polluted with a 0.5 mg/cu m NO concentration than in air with 0.25 mg/cu m NO. The Polish standards for nitrogen oxides concentrations are too high, the highest concentration allowed in the atmospheric being 0.2 mg/cu m up to 0.6 mg/cu m for 20 min.

  8. Synthesis report: program ecosystems, transport, pollutions, 1998 - 2001

    International Nuclear Information System (INIS)

    Etchelecou, A.; Deletraz, G.; Elichegaray, Ch.

    2001-04-01

    The ''Ecosystems, Transports, Pollution Program'' ETP Program, has been elaborated to evaluate the road pollution impacts on the mountain ecosystems. Four mountains valleys have been chosen: two in Alps (Chamonix and Maurienne) and two in Pyrenees (Biriatou and Vallee d'Aspe). This Program presents six objectives: the road traffic characterization, the pollutants emission estimation, the pollutants concentrations in the air, the pollutants dispersion according to relief, the relationships between pollutants emissions and bio-monitoring, the road pollution effects on nearby ecosystems. (A.L.B.)

  9. [Distribution Characteristics and Pollution Status Evaluation of Sediments Nutrients in a Drinking Water Reservoir].

    Science.gov (United States)

    Huang, Ting-lin; Liu, Fei; Shi, Jian-chao

    2016-01-15

    The main purpose of this paper is to illustrate the influence of nutrients distribution in sediments on the eutrophication of drinking water reservoir. The sediments of three representative locations were field-sampled and analyzed in laboratory in March 2015. The distribution characteristics of TOC, TN and TP were measured, and the pollution status of sediments was evaluated by the comprehensive pollution index and the manual for sediment quality assessment. The content of TOC in sediments decreased with depth, and there was an increasing trend of the nitrogen content. The TP was enriched in surface sediment, implying the nutrients load in Zhoucun Reservoir was aggravating as the result of human activities. Regression analysis indicated that the content of TOC in sediments was positively correlated with contents of TN and TP in sediments. The TOC/TN values reflected that the vascular land plants, which contain cellulose, were the main source of organic matter in sediments. The comprehensive pollution index analysis result showed that the surface sediments in all three sampling sites were heavily polluted. The contents of TN and TP of surface sediments in three sampling sites were 3273-4870 mg x kg(-1) and 653-2969 mg x kg(-1), and the content of TOC was 45.65-83.00 mg x g(-1). According to the manual for sediment quality assessment, the TN, TP and TOC contents in sediments exceed the standard values for the lowest level of ecotoxicity, so there is a risk of eutrophication in Zhoucun Reservoir.

  10. Integrated survey of water pollution in the Suquía River basin (Córdoba, Argentina).

    Science.gov (United States)

    Monferrán, Magdalena Victoria; Galanti, Lucas Nicolás; Bonansea, Rocío Inés; Amé, María Valeria; Wunderlin, Daniel Alberto

    2011-02-01

    We report a combined two-year seasonal monitoring of Suquía River basin using both chemical parameters and biomarkers measured in Jenynsia multidentata, aiming to correlate external levels of contaminants with the response of oxidative stress biomarkers in this fish. Identified pollution sources correspond to city sewage as well as agricultural and small industry activities downstream from Córdoba city. Physicochemical parameters integrated into a water quality index (WQI) were measured in Suquía River during dry and wet seasons. Ag, Mn, Cu, Cr, Ni, Fe, Pb and Zn were also monitored in water and sediment samples. Biomarkers include detoxication and antioxidant enzymes: catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and glutathione reductase (GR). Enzymes showed a pollution dependent response, with increased activities in fish collected close to the sewage exit and progressive drop further downstream, matching changes in the Water Quality index. The combined use of biomarkers with water quality parameters allowed both the identification of pollution sources and the evaluation of effects of contaminants on the aquatic biota.

  11. Forum environmental and energy technology 2013. Power-heat cogeneration and air pollution prevention

    International Nuclear Information System (INIS)

    Carlowitz, Otto; Meyer, Sven

    2013-01-01

    The volume covers the following topics: The teaching reward 2013 - concept and implementation of the ''Forum environmental and energy technology''; energy efficient air pollution control and material recovery; air pollution control by oxidation; electrical energy production from low-temperature waste heat (ORC processes), electrical power production and process heat utilization.

  12. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    Science.gov (United States)

    This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) National Ambient Air Quality Standard (NAAQS) for sulfur dioxide. The references considered for inclusion in or cited in the external review draft ISA are available at https://hero.epa.gov/hero/sulfur-oxides. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes an assessment of scientific research from atmospheric sciences, exposure sciences, dosimetry, mode of action, animal and human toxicology, and epidemiology. Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for sulfur oxides (SOx) are included; Annexes provide additional details supporting the ISA. Together, the ISA and Annexes serve to update and revise the last SOx ISA which was published in 2008.

  13. Pollution biomarkers in the spiny lizard (Sceloporus spp.) from two suburban populations of Monterrey, Mexico.

    Science.gov (United States)

    Aguilera, Carlos; del Pliego, Pamela González; Alfaro, Roberto Mendoza; Lazcano, David; Cruz, Julio

    2012-11-01

    Environmental pollution may severely impact reptile species in urbanized areas. The magnitude of the impact is analyzed in the present study using lizard tail tips for the quantitative evaluation of enzymatic biomarkers of pollution. Spiny lizards (Sceloporus serrifer and S. torquatus) were collected from two suburban localities in the Monterrey metropolitan area, Mexico: Chipinque Ecological Park, a natural protected area, and El Carmen Industrial Park (IP), a highly polluted site. Different enzymes were used as biomarkers including: acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CaE), alkaline phosphatase (ALP), acid phosphatase (ACP), superoxide dismutase (SOD) and glutathione S-transferase (GST). The levels of AChE, BChE and ACP activity were not significantly different between localities. AChE and BChE, commonly used as biomarkers of neurotoxic polluting agents (e.g. organophosphate pesticides) do not appear to be affecting the populations from the study locations. In contrast, the levels of CaE, GST, ALP and SOD were significantly different between the localities. These biomarkers are regularly associated with oxidative stress and processes of detoxification, and generally indicate pollution caused by heavy metals or hydrocarbons, which are common in industrial sites. The data resulting from the analysis of these biomarkers indicate that these polluting agents are affecting the populations of Sceloporus in IP. The present work validates the possibility of conducting additional ecotoxicological studies using biomarkers in combination with a nondestructive sampling technique in species of spiny lizards that are abundant in many North America areas.

  14. Nitrogen doped nanocrystalline semiconductor metal oxide: An efficient UV active photocatalyst for the oxidation of an organic dye using slurry Photoreactor.

    Science.gov (United States)

    Ramachandran, Saranya; Sivasamy, A; Kumar, B Dinesh

    2016-12-01

    Water pollution is a cause for serious concern in today's world. A major contributor to water pollution is industrial effluents containing dyes and other organic molecules. Waste water treatment has become a priority area in today's applied scientific research as it seeks to minimize the toxicity of the effluents being discharged and increase the possibility of water recycling. An efficient and eco-friendly way of degrading toxic molecules is to use nano metal-oxide photocatalysts. The present study aims at enhancing the photocatalytic activity of a semiconductor metal oxide by doping it with nitrogen. A sol-gel cum combustion method was employed to synthesize the catalyst. The prepared catalyst was characterized by FT-IR, XRD, UV-DRS, FESEM and AFM techniques. UV-DRS result showed the catalyst to possess band gap energy of 2.97eV, thus making it active in the UV region of the spectrum. Its photocatalytic activity was evaluated by the degradation of a model pollutant-Orange G dye, under UV light irradiation. Preliminary experiments were carried out to study the effects of pH, catalyst dosage and initial dye concentration on the extent of dye degradation. Kinetic studies revealed that the reaction followed pseudo first order kinetics. The effect of electrolytes on catalyst efficiency was also studied. The progress of the reaction was monitored by absorption studies and measuring the reduction in COD. The catalyst thus prepared was seen to have a high photocatalytic efficiency. The use of this catalyst is a promising means of waste water treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Pollution and health: a verdict without appeal

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The new inquiry of ERPURS ( evaluation of urban pollution risks on health) has definitively established that there are obvious connections between urban pollution and health. Sur mortality, hospitalizations, stoppage of work are particularly observed when the air pollution indicators on diesel particulates, sulfur dioxide and nitrogen dioxides increase. (N.C.)

  16. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene,...

  17. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    Science.gov (United States)

    Wang, Xiaoping; Mauzerall, Denise L.

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the

  18. AQB - air quality biomonitoring an innovative and standardized approach for the evaluation of traffic pollutant diffusion in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Virano, M. [SITAF Spa, Susa (Italy); Orsi, M. [Consulagri Srl., Torino (Italy); Badino, G. [Univ. degli Studi di Torino, Torino (Italy). Dipt. di Biologia Animale e dell' Uomo; Ostacoli, G.; Zelano, V.; Gastaldi, D. [Univ. degli Studi di Torino, Torino (Italy). Dipt. di Chimica Analitica; Parodi, A. [Univ. degli Studi di Torino, Torino (Italy). Dipt. di Biologia Animale e dell' Uomo]|[Consulagri Srl., Torino (Italy)

    2002-07-01

    AQB - Air Quality Biomonitoring - is a wide scale, effective and valid biorecording system at both a scientific and an economic level. It enables a detailed evaluation of pollutant diffusion in space, as well as their accumulation over time. The data relate to the diffusion of pollutants (PAH and heavy metals) due to traffic emissions on the A32 Turin-Bardonecchia motorway. Results were obtained using aeroponic culture biostations equipped with vegetal biosensors: Brassica oleracea and Holcus lanatus. (orig.)

  19. Studies on the local evaluation of the effects of air pollution by biological index, interim report I. On the evaluation of air pollution by remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    1973-12-01

    The amount of arboreal activity locally affected by air pollution and numerical data obtained by transformation of aerial photography of local arboreal activity were compared to determine a biological air pollution index. The remote sensing technique used in Japan is described. The investigation was carried out in Sept. 1973 and Oct. 1972 in 16 districts of Kanagawa prefecture on three evergreen trees and three deciduous trees easily affected by air pollution. A noticeable correlation occurred between arboreal activity of zelkova, ginkgo, castanopsis, and mixed flora and the photographic density and their ratios.

  20. Chocolate, Air Pollution and Children's Neuroprotection: What Cognition Tools should be at Hand to Evaluate Interventions?

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; San Juan Chávez, Vanessa; Vacaseydel-Aceves, Nora B; Calderón-Sánchez, Raymundo; Macías-Escobedo, Edgar; Frías, Carmen; Giacometto, Marcela; Velasquez, Luis; Félix-Villarreal, Renata; Martin, Jessie D; Draheim, Christopher; Engle, Randall W

    2016-01-01

    Millions of children across the world are exposed to multiple sources of indoor and outdoor air pollutants, including high concentrations of fine particulate matter (PM2.5) and ozone (O3). The established link between exposure to PM2.5, brain structural, volumetric and metabolic changes, severe cognitive deficits (1.5-2 SD from average IQ) in APOE 4 heterozygous females with >75 - < 94% BMI percentiles, and the presence of Alzheimer's disease (AD) hallmarks in urban children and young adults necessitates exploration of ways to protect these individuals from the deleterious neural effects of pollution exposure. Emerging research suggests that cocoa interventions may be a viable option for neuroprotection, with evidence suggesting that early cocoa interventions could limit the risk of cognitive and developmental concerns including: endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, and metabolic detrimental brain effects. Currently, however, it is not clear how early we should implement consumption of cocoa to optimize its neuroprotective effects. Moreover, we have yet to identify suitable instruments for evaluating cognitive responses to these interventions in clinically healthy children, teens, and young adults. An approach to guide the selection of cognitive tools should take into account neuropsychological markers of cognitive declines in patients with Alzheimer's neuropathology, the distinct patterns of memory impairment between early and late onset AD, and the key literature associating white matter integrity and poor memory binding performance in cases of asymptomatic familial AD. We highlight potential systemic and neural benefits of cocoa consumption. We also highlight Working Memory Capacity (WMC) and attention control tasks as opened avenues for exploration in the air pollution scenario. Exposures to air pollutants during brain development have serious brain consequences in the short and long term and reliable cognition tools should be at

  1. Wastewater Pollution from Cruise Ships in the Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Tina Perić

    2016-08-01

    Full Text Available The global growth of cruise tourism has brought increasing concern for the pollution of the marine environment. Marine pollution from sanitary wastewater is a problem especially pronounced on large cruise ships where the number of people on board may exceed 8,000. To evaluate future marine pollution in any selected period of time it is necessary to know the movement of ships in the Adriatic Sea. This paper presents the problem of marine pollution by sanitary wastewater from cruise ships, wastewater treatment technology and a model of cruise ship traffic in the Adriatic Sea considering MARPOL Annex IV areas of limited wastewater discharge. Using the model, it is possible to know in advance the routes of the cruisers and retention time in certain geographic areas. The data obtained by this model can be used as input parameters for evaluation model of wastewater pollution or for evaluation of other types of pollution from cruise ships.

  2. The Compounds Responsible for Air Pollution

    Directory of Open Access Journals (Sweden)

    Magdalena Kostrz

    2017-12-01

    Full Text Available Air quality in Poland poses a serious threat for boththe society and the environment. According to the WHO research Poland is located on the 14th place as a country most contaminated by particulate matter (PM10. Equally health-threatening substances are ozone, PAH, nitrogen dioxide, sulfur oxide, carbon oxide and heavy metals. Long-lasting exposure to high concentrations of ozone and nitrogen dioxide may lead to many irreversible changes in lungs, pulmonary oedema and even death. The main PAH, which cumulates in the organism is benzopyrene. This substance has been described by the IARC as a the most cancerogenic factor. High concentration of sulfur oxide in the air may cause severe damage of upper respiratory tract, sulfur oxide contributes greatly also to the appearance of acid rain and is an ingredient of a London type smog. Heavy metals polluting the air are one of the most severe health threat for people, due to the ability to cumulate in the organism.

  3. Evaluation of the properties of iron oxide-filled castor oil polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2013-02-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  4. Evaluation of the Properties of Iron Oxide-Filled Castor Oil Polyurethane

    Directory of Open Access Journals (Sweden)

    Eleonora Mussatti

    2012-01-01

    Full Text Available The aim of this study was to obtain and evaluate the electrical, thermal and mechanical properties of iron oxide-filled castor oil polyurethane (PU/Fe2O3. The iron oxide used in this study was a residue derived from the steel pickling process of a Brazilian steel rolling industry. Polymeric composites with different iron oxide volume fractions (2.5, 5.0, 7.5, 10.0 and 12.5% were prepared through the casting process followed by compression molding at room temperature. The composites were analyzed by FTIR, XRD and densities, tensile strength, Young's modulus, electrical and thermal conductivities measurements. By increasing the iron oxide content, the apparent density, tensile strength, Young's modulus and electrical conductivity values of the composites were also increased. The iron oxide additions did not change significantly the value of thermal conductivity (from 0.191 W.mK-1 for PU up to 0.340 W.mK-1 for PU enriched with 12.5% v/v of iron oxide. Thus, even at the higher iron oxide concentration, the compounds as well as the pure polyurethane can be classified as thermal insulators.

  5. Fractal and variability analysis of simulations in ozone level due to oxides of nitrogen and sulphur

    Science.gov (United States)

    Bhardwaj, Rashmi; Pruthi, Dimple

    2017-10-01

    Air pollution refers to the release of pollutants into the air. These pollutants are detrimental to human the planet as a whole. Apart from causing respiratory infections and pulmonary disorders, rising levels of Nitrogen Dioxide is worsening ozone pollution. Formation of Ground-level ozone involves nitrogen oxides and volatile gases in the sunlight. Volatile gases are emitted from vehicles primarily. Ozone is harmful gas and its exposure can trigger serious health effects as it damages lung tissues. In order to decrease the level of ozone, level of oxides leading to ozone formation has to be dealt with. This paper deals with the simulations in ozone due to oxides of nitrogen and sulphur. The data from Central Pollution Control Board shows positive correlation for ozone with oxides of sulphur and nitrogen for RK Puram, Delhi in India where high concentration of ozone has been found. The correlation between ozone and sulphur, nitrogen oxides is moderate during summer while weak during winters. Ozone with nitrogen and sulphur dioxide follow persistent behavior as Hurst exponent is between 0.5 and 1. The fractal dimension for Sulphur dioxide is 1.4957 indicating the Brownian motion. The behavior of ozone is unpredictable as index of predictability is close to zero.

  6. Extraction and Ozonation of organic pollutants in drinking waters

    International Nuclear Information System (INIS)

    Kenawi, I.M.; Barsoum, B.N.; Abdelhaflz, M.M.

    2006-01-01

    The continuous liquid-liquid, CLLE, and solid-phase, SPE. extraction techniques were used to study a problem of international relevance. The work was incident on the evaluation of the efficiency and optimisation of extruding techniques, CLLE. SPE and CLLEt-SPE, towards chlorinated pesticides and phenolic compounds from the Giza treatment plant station (Egypt), where the degree of pollution of such substances in drinking waters must be reduced. The total recoveries, rs, using SPE ranged between I).74 -0.87, whereas, the values were much less using the other two methods (0.158 - 0.1961; indicating the preferability of the SF'E technique. Analytical results were obtained through the various chromatographic techniques, liquid or gas. with adequately chosen detectors. A simple mathematical algorithm has been empirically developed allowing the assessment and comparison of the efficiencies of the three extracting procedures. Further treatment with ozone resulted in the oxidation and elimination of organic pollutants, with consequent improvement of water quality (total pesticide content 0.332-0.19μgL -1 ). A useful ozone treatment unit, capable of dealing with the emanation of contaminants in tap water, was built

  7. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2013-01-01

    Full Text Available Oxidation by Fenton-like (Fe3+/H2O2 reactions is proven to be an economically feasible process for destruction of a variety of hazardous pollutants in wastewater. In this study, the degradation and mineralization of malachite green dye are reported using Fenton-like reaction. The effects of different parameters like pH of the solution, the initial concentrations of Fe3+, H2O2, and dye, temperature, and added electrolytes (Cl− and on the oxidation of the dye were investigated. Optimized condition was determined. The efficiency of 95.5% degradation of MAG after 15 minutes of reaction at pH 3 was obtained. TOC removal indicates partial and insignificant mineralization of malachite green dye. The results of experiments showed that degradation of malachite green dye in Fenton-like oxidation process can be described with a pseudo-second-order kinetic model. The thermodynamic constants of the Fenton oxidation process were evaluated. The results implied that the oxidation process was feasible, spontaneous, and endothermic. The results will be useful for designing the treatment systems of various dye-containing wastewaters.

  8. Locational evaluation of chemical soil pollution. Lectures; Standortgerechte Bewertung chemischer Bodenbelastungen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, U; Schulte-Hostede, S [eds.

    1998-12-31

    This lecture event dealt with the following subjects: Deposition, transport and interactions of organic pollutants in soil, such as pesticides and polycyclic aromatic hydrocarbons. Biological availability of pollutants, influence of other substances on the biological availability of pollutants, quantitative and qualitative analyses of pollutants in soil, toxicity. (SR) [Deutsch] Themen dieser Vortragsveranstaltung waren: Deposition, Transport und Wechselwirkungen organischer Schadstoffe im Boden, wie Pestizide und polycyclische Aromatische Kohlenwasserstoffe. Bioverfuegbarkeit der Schadstoffe, Einfluss anderer Substanzen auf die Bioverfuegbarkeit der Schadstoffe, quantitative und qualitative Analyse von Schadstoffen im Boden, Toxizitaet. (SR)

  9. Locational evaluation of chemical soil pollution. Lectures; Standortgerechte Bewertung chemischer Bodenbelastungen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    Doerfler, U.; Schulte-Hostede, S. [eds.

    1997-12-31

    This lecture event dealt with the following subjects: Deposition, transport and interactions of organic pollutants in soil, such as pesticides and polycyclic aromatic hydrocarbons. Biological availability of pollutants, influence of other substances on the biological availability of pollutants, quantitative and qualitative analyses of pollutants in soil, toxicity. (SR) [Deutsch] Themen dieser Vortragsveranstaltung waren: Deposition, Transport und Wechselwirkungen organischer Schadstoffe im Boden, wie Pestizide und polycyclische Aromatische Kohlenwasserstoffe. Bioverfuegbarkeit der Schadstoffe, Einfluss anderer Substanzen auf die Bioverfuegbarkeit der Schadstoffe, quantitative und qualitative Analyse von Schadstoffen im Boden, Toxizitaet. (SR)

  10. Photo-oxidation. Of the system chrome hexavalent-4-chlorophenol

    International Nuclear Information System (INIS)

    Gil Pavas, Edison; Cabrera Limpias, Marianela; Jaramillo Jimenez, Sergio Alejandro

    2003-01-01

    As a proposal to eliminate highly toxic chemical components derived from industrial waste, the researchers study the behavior of the compound hexavalent chromium / 4-chlorophenol system when subjected to photo degradation in a photo-reactor compound parabolic cylinder (CPC) to scale pilot. The effect is analyzed in order to determine the operation conditions to reach the highest degradation levels possible. The analyzed variables were pH, concentration of catalyst (TiO 2 ), time of recirculation and the relation of initial concentrations among polluting agents. The factor that most influences the levels of removal reached is the pH, which has a different effect for each of the pollutants. This implies that, theoretically, you cannot adopt a unique group of operation parameters to favor the degradation of both however, in the practice; high levels of degradation of both pollutants are obtained in the optimal point of operation of the chrome. It is also observed that the catalyst concentration does not influence the degradation of the polluting agents significantly, at least for the initial concentrations studied. The recirculation time is closely related to the kinetics of degradation of each polluting agent. Elevated degradation levels are reached in a short time for 4-chlorophenol, while more prolonged recirculation times are required for hexavalent chromium. The relation of initial concentrations of the polluting agents also exerts an opposite effect on the degradation levels reached for each polluting agent; the hexavalent chromium reduction is favored with high initial concentrations of 4-chlorophenol, whereas the oxidation of 4-chlorophenol is favored with high initial hexavalent chromium concentrations, which suggests some synergy between the oxidation-reduction reactions of 4-chlorophenol and hexavalent chromium. Finally, a 97% hexavalent chromium reduction and a 94.9% oxidation of 4-chlorophenol were obtained

  11. Permeable reactive barriers for pollutant removal from groundwater

    International Nuclear Information System (INIS)

    Simon, F.G.; Meggyes, T.

    2001-01-01

    The removal of pollutants from the groundwater using permeable reactive barriers is a novel in-situ groundwater remediation technology. The most relevant decontamination processes used are chemical reduction, oxidation, precipitation and sorption, for which examples are given. Some common organic pollutants are halogenated hydrocarbons, aromatic and nitroaromatic compounds which can be treated in reactive barriers successfully. Lead, chromium and, in particular, uranium are dealt with in great detail among inorganic pollutants because of their occurrence in many European countries. Construction methods for cut-off walls and reactive barriers exhibit similar features. Apart from conventional methods, drilling, deep soil mixing, jet technology, arrays of wells, injected systems and biobarriers are applied to construct permeable reactive barriers. Permeable reactive barriers bear great potential for the future in remediation engineering. (orig.)

  12. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  13. [Use of macroalgae for the evaluation of organic pollution in the Preto river, northwest of São Paulo State].

    Science.gov (United States)

    Necchi Júnior, O; Branco, H Z; Dip, M R

    1994-01-01

    The Preto River, located in the northwest of São Paulo State, receives a total wastewater load of 15.150 kg DBO day-1, from which 13.685 kg DBO day-1 (90.5%) corresponds to domestic sewage, and the city of São José do Rio Preto contributes with 12.400 kg DBO day-1 (90% of domestic sewage). During the period from August 1990 through January 1991, monthly sampling was carried out to evaluate the use of macroalgae as bioindicator of organic pollution. Five sampling sites were established along the main river and the following variables were analised: temperature, conductance, turbidity, dissolved oxygen, BOD, COD, total and fecal coliforms, and composition and abundance of macroalgal communities. Data were submitted to analysis of variance, correlation coefficient, cluster analysis (four different approaches) and converted to biological indices (species deficit, relative pollution, saprobity, diversity and uniformity indices). A wide range in water quality was found (particularly for conductance, oxygen, BOD and COD) among the sampling sites, which were classified into three groups (polluted, moderately polluted and unpolluted/weakly polluted). As regards the occurrence and abundance of macroalgae the Rhodophyta were found only in unpolluted or weakly polluted sites, whereas Cyanophyta occurred mostly under high pollution load; the Chlorophyta species were observed under a wide range of conditions. Among the biological indices, saprobity was the most sensitive and correlated to all water variables and the other indices. Cluster analyses showed that the composition of macroalgal communities was consistent with the levels of organic pollution in the Preto River.

  14. Comparing Multipollutant Emissions-Based Mobile Source Indicators to Other Single Pollutant and Multipollutant Indicators in Different Urban Areas

    Directory of Open Access Journals (Sweden)

    Michelle M. Oakes

    2014-11-01

    Full Text Available A variety of single pollutant and multipollutant metrics can be used to represent exposure to traffic pollutant mixtures and evaluate their health effects. Integrated mobile source indicators (IMSIs that combine air quality concentration and emissions data have recently been developed and evaluated using data from Atlanta, Georgia. IMSIs were found to track trends in traffic-related pollutants and have similar or stronger associations with health outcomes. In the current work, we apply IMSIs for gasoline, diesel and total (gasoline + diesel vehicles to two other cities (Denver, Colorado and Houston, Texas with different emissions profiles as well as to a different dataset from Atlanta. We compare spatial and temporal variability of IMSIs to single-pollutant indicators (carbon monoxide (CO, nitrogen oxides (NOx and elemental carbon (EC and multipollutant source apportionment factors produced by Positive Matrix Factorization (PMF. Across cities, PMF-derived and IMSI gasoline metrics were most strongly correlated with CO (r = 0.31–0.98, while multipollutant diesel metrics were most strongly correlated with EC (r = 0.80–0.98. NOx correlations with PMF factors varied across cities (r = 0.29–0.67, while correlations with IMSIs were relatively consistent (r = 0.61–0.94. In general, single-pollutant metrics were more correlated with IMSIs (r = 0.58–0.98 than with PMF-derived factors (r = 0.07–0.99. A spatial analysis indicated that IMSIs were more strongly correlated (r > 0.7 between two sites in each city than single pollutant and PMF factors. These findings provide confidence that IMSIs provide a transferable, simple approach to estimate mobile source air pollution in cities with differing topography and source profiles using readily available data.

  15. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung.

    Science.gov (United States)

    Pereira, C E L; Heck, T G; Saldiva, P H N; Rhoden, C R

    2007-10-01

    Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 +/- 0.51;P-20: 5.01 x 105 +/- 0.81; P air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  16. Future air pollution in the Shared Socio-economic Pathways

    NARCIS (Netherlands)

    Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; Van Dingenen, Rita; Dentener, Frank; Bouwman, Lex|info:eu-repo/dai/nl/090428048; Riahi, Keywan; Amann, Markus; Bodirsky, Benjamin Leon; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Aleluia Reis, Lara; Calvin, Katherine; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Gernaat, David|info:eu-repo/dai/nl/372664636; Havlik, Petr; Harmsen, Mathijs|info:eu-repo/dai/nl/374336520; Hasegawa, Tomoko; Heyes, Chris; Hilaire, Jérôme; Luderer, Gunnar; Masui, Toshihiko; Stehfest, Elke; Strefler, Jessica; van der Sluis, Sietske; Tavoni, Massimo

    Abstract Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global

  17. Organic indoor air pollutants: occurrence, measurement, evaluation

    National Research Council Canada - National Science Library

    Salthammer, Tunga; Uhde, Erik

    2009-01-01

    ... hand, organic chemical pollutants emitted from materials and appliances can adversely affect human health. People in developed countries spend more than 90% of their time indoors. In the light of this fact, the cleanliness of occupied spaces such as buildings, houses, and transportation systems becomes very important. In contemporary so...

  18. Evaluation of the immune responses of the brown mussel Perna perna as indicators of fecal pollution.

    Science.gov (United States)

    Silva Dos Santos, Fernanda; Neves, Raquel Almeida Ferrando; Carvalho, Wanderson Fernandes de; Krepsky, Natascha; Crapez, Mirian Araújo Carlos

    2018-06-01

    The mussel Perna perna is an intertidal bivalve that is widely distributed, cultivated and consumed in South Africa, Brazil and Venezuela. Among marine resources, bivalve mollusks are one of the most impacted by anthropogenic pollution, as they can accumulate pathogenic bacteria and water pollutants. Hemocytes are molluscan defense cells, and their abundance and functions can be affected in response to contaminants, such as bacterial load. However, no previous study has investigated the immune response of P. perna hemocytes. The aim of this study was to evaluate several immune parameters in P. perna as indicators of fecal pollution in mussel hemolymph and in seawater. We collected mussels and adjacent seawater from beaches with different levels of fecal contamination in Rio de Janeiro state (Brazil): Vermelha Beach (VB); Icaraí Beach (IB); Urca Beach (UB); and Jurujuba Beach (JB). Hemocyte parameters (density, morphology, phagocytic activity and production of Reactive Oxygen Species - ROS) were evaluated using flow cytometry. We quantified Fecal Indicator Bacteria (FIB) in seawater by the multiple tubes technique for each beach and for hemolymph by the spread-plate technique. In agreement with historical evaluation of fecal contamination levels, UB presented the highest FIB abundance in seawater (thermotolerant coliforms, TEC = 1600 NMP 100 mL -1 ), whereas VB exhibited the lowest (TEC = 17 NMP 100 mL -1 ). UB mussels had six and eight times higher hemocyte density and phagocytic activity, respectively, than mussels from VB. Mussels from VB and IB presented a significantly lower number of total coliforms in hemolymph and a significantly higher relative internal complexity of hemocytes than those from UB and JB (p ≤ 0.01, PERMANOVA). ROS production by hemocytes was significantly lower in mussels from VB compared to those from JB (p = 0.04, ANOVA). Our results indicate a significant relationship between the level of fecal contamination in

  19. Plants as indicators of photochemical oxidants in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, J.S.

    1977-01-01

    Plant indicators have been important in identifying the photochemical oxidant problem in the USA since the 1940's. They continue to serve as an inexpensive means of detecting oxidants in the atmosphere and determining the geographical extent and frequency of occurrence of oxidants. Plant indicators are particularly useful for land-use planning and in the evaluation of air pollution effects on agriculture, forestry, and native vegetation. Plant indicators are not satisfactory substitutes for chemical monitoring of the atmosphere because their responses lack specificity and are affected by climatic, edaphic, and cultural factors, as well as the concentration and frequency of occurrence of oxidants. Because they integrate many environmental variables, plant indicators may be valuable models for the response of other species but only to the extent that they respond to oxidants in the same manner as these other species. The four most important factors for the successful use of plant indicators are: genetic uniformity of plant material; standardization of cultural conditions; standardization of procedures for scoring foliar symptoms; and uniformity of climatic and edaphic factors among study sites. The species used most frequently as indicators of oxidants in the US have been Bel W-3 tobacco and Pinto bean for 0/sub 3/ and petunia for peroxyacyl nitrate. 41 references, 1 table.

  20. Air pollution: Tropospheric ozone, and wet deposition of sulfate and inorganic nitrogen

    Science.gov (United States)

    John W. Coulston

    2009-01-01

    The influence of air pollutants on ecosystems in the United States is an important environmental issue. The term “air pollution” encompasses a wide range of topics, but acid deposition and ozone are primary concerns in the context of forest health. Acid deposition partially results from emissions of sulfur dioxide, nitrogen oxides, and ammonia that are deposited in wet...

  1. Evaluation of atmospheric pollution in Kenitra city (MOROCCO) (Particles and Metals)

    International Nuclear Information System (INIS)

    Zghaid, M.; Noack, Y.; Tahiri, M.; Zahry, F.; Bounakhla, M.; Benyaich, F

    2008-01-01

    Full text: All Recent epidemiological studies show that air pollution in general and especially particulate pollution have a strong influence on human health, particularly on the respiratory and cardio-vascular systems, but also affect the developing fetus. Like developed countries, countries under development are subject to significant air pollution both urban and industrial. The car park is often old, sometimes uncontrolled industrialization, the regulations of atmospheric emissions are infancy and the network monitoring rare. The aim of this work is to focus on the problem of particulate air pollution in Kenitra (50 km north of Rabat, Morocco) by characterizing the pollution in both quantity and quality, to assess the impact potential health and provide decision makers with reliable data. Initial results show that the OMS recommendations, along with European standards on sulfur dioxide as well as PM10 are largely outdated (80 ug / Nm 3 instead of 40 in average). This is also the case for some metals: Lead concentrations are approximately ten times greater than those encountered in urban sites in Europe; nickel is fifteen times higher than the European standard. The metals are mainly present in the thin fraction (particles below 2.5 um). The low proportion of thin particles in the total particles, show the influence of resuspension events and other natural inputs from arid or desert. The SO2 average concentrations are also quite important (60 ug / m 3 ). The concentrations near the site are much higher than those that can be measured on similar sites in Europe. It is more than probable that in this city, the health impacts are not negligible. We will look to continue this work in three aspects: Spatial distribution of particulate pollution in Kenitra; The health impact of air pollution in Kenitra; Cyto-and geno-toxicity of airborne particles in Kenitra [fr

  2. Integrated Science Assessment (ISA) for Oxides of Nitrogen ...

    Science.gov (United States)

    This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision on retaining or revising the current secondary standards for NO2, SO2, PM 2.5 and PM 10 since the prior release of the assessment. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes scientific research from atmospheric sciences, exposure and deposition, biogeochemistry, hydrology, soil science, marine science, plant physiology, animal physiology, and ecology conducted at multiple scales (e.g., population, community, ecosystem, landscape levels). Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for oxides of nitrogen, oxides of nitrogen and particulate matter for ecological effects are included; Appendixes provide additional details supporting the ISA. Together, the ISA and Appendixes serve to update and revise the last oxides of nitrogen and oxides of sulfur ISA which was published in 2008 and the ecological portion of the last particulate matter ISA, which was published in 2009.

  3. Effects of environment pollution on the ocular surface.

    Science.gov (United States)

    Jung, Se Ji; Mehta, Jodhbir S; Tong, Louis

    2018-04-01

    The twenty-first century is fraught with dangers like climate change and pollution, which impacts human health and mortality. As levels of pollution increase, respiratory illnesses and cardiovascular ailments become more prevalent. Less understood are the eye-related complaints, which are commonly associated with increasing pollution. Affected people may complain of irritation, redness, foreign body sensation, tearing, and blurring of vision. Sources of pollution are varied, ranging from gases (such as ozone and NO 2 ) and particulate matter produced from traffic, to some other hazards associated with indoor environments. Mechanisms causing ocular surface disease involve toxicity, oxidative stress, and inflammation. Homeostatic mechanisms of the ocular surface may adapt to certain chronic changes in the environment, so affected people may not always be symptomatic. However there are many challenges associated with assessing effects of air pollution on eyes, as pollution is large scale and difficult to control. Persons with chronic allergic or atopic tendencies may have a pre-existing state of heightened mucosal immune response, hence they may have less tolerance for further environmental antigenic stimulation. It is beneficial to identify vulnerable people whose quality of life will be significantly impaired by environmental changes and provide counter measures in the form of protection or treatment. Better technologies in monitoring of pollutants and assessment of the eye will facilitate progress in this field. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Radioactive contamination: what actions for the polluted sites

    International Nuclear Information System (INIS)

    Lacoste, A.C.; Averous, J.; Palut-Laurent, O.; Dupuis, M.C.; Paquot, A.; Barescut, J.C.; Cessac, B.; Darmendrail, D.; Grevoz, A.

    2004-01-01

    A national conference was held on May, 2004, in Paris. It concerned the radioactively polluted soil and sites, in order to identify action strategies for the treatment of radioactive pollution. Several aspects have been studied: action plan for radioactivity polluted sites, regulation of radioactively polluted sites in France, situation and practice abroad, natural radioactivity and radioactive pollution: definition and limits, inventory and descriptive data on polluted sites in France and in Europe, radioactive waste and radioactivity polluted sites management: national inventory contribution, then ended with three panels sessions about experience feedback on the management of radioactively polluted sites, responsibilities, legal and regulatory context and financing issues, from evaluation to remediation for polluted sites. (N.C.)

  5. How to evaluate the risks of exceeding limits: geostatistical models and their application to air pollution

    International Nuclear Information System (INIS)

    Fouquet, Ch. de; Deraisme, J.; Bobbia, M.

    2007-01-01

    Geo-statistics is increasingly applied to the study of environmental risks in a variety of sectors, especially in the fields of soil decontamination and the evaluation of the risks due to air pollution. Geo-statistics offers a rigorous stochastic modeling approach that makes it possible to answer questions expressed in terms of uncertainty and risk. This article focusses on nonlinear geo-statistical methods, based on the Gaussian random function model, whose essential properties are summarised. We use two examples to characterize situations where direct and thus rapid methods provide appropriate solutions and cases that inevitably require more laborious simulation techniques. Exposure of the population of the Rouen metropolitan area to the risk of NO 2 pollution is assessed by simulations, but the surface area where the pollution exceeds the threshold limit can be easily estimated with nonlinear conditional expectation techniques. A second example is used to discuss the bias introduced by direct simulation, here of a percentile of daily SO 2 concentration for one year in the city of Le Havre; an operational solution is proposed. (authors)

  6. Evaluated experience of communication with the public about radioactive pollution issues

    International Nuclear Information System (INIS)

    Vicente, Roberto; Dellamano, Jose Claudio; Rocca, Fatima F. Della

    2000-01-01

    This paper describes the results of an experiment aiming at communicating radioactive waste and radioactive pollution issues to the public. The target group was high school students of Belo Horizonte, Minas Gerais, Brazil and the experiment was carried out during their visit to Exponuclear Fair parallel to the VII Brazilian General Conference on Nuclear Energy, in September, 1999. The students were presented two 3D interactive panels at the Poster section of the event and attended a 10 minutes speech on the subjects. Three months latter, they were invited to answer a questionnaire. Their responses allowed the authors to evaluate the efficiency of the communication in terms of knowledge acquisition and risk perception. (author)

  7. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    Science.gov (United States)

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  8. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  9. Higher fuel prices are associated with lower air pollution levels.

    Science.gov (United States)

    Barnett, Adrian G; Knibbs, Luke D

    2014-05-01

    Air pollution is a persistent problem in urban areas, and traffic emissions are a major cause of poor air quality. Policies to curb pollution levels often involve raising the price of using private vehicles, for example, congestion charges. We were interested in whether higher fuel prices were associated with decreased air pollution levels. We examined an association between diesel and petrol prices and four traffic-related pollutants in Brisbane from 2010 to 2013. We used a regression model and examined pollution levels up to 16 days after the price change. Higher diesel prices were associated with statistically significant short-term reductions in carbon monoxide and nitrogen oxides. Changes in petrol prices had no impact on air pollution. Raising diesel taxes in Australia could be justified as a public health measure. As raising taxes is politically unpopular, an alternative political approach would be to remove schemes that put a downward pressure on fuel prices, such as industry subsidies and shopping vouchers that give fuel discounts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  11. Performance of school bus retrofit systems: ultrafine particles and other vehicular pollutants.

    Science.gov (United States)

    Zhang, Qunfang; Zhu, Yifang

    2011-08-01

    This study evaluated the performance of retrofit systems for diesel-powered school buses, a diesel oxidation catalyst (DOC) muffler and a spiracle crankcase filtration system (CFS), regarding ultrafine particles (UFPs) and other air pollutants from tailpipe emissions and inside bus cabins. Tailpipe emissions and in-cabin air pollutant levels were measured before and after retrofitting when the buses were idling and during actual pick-up/drop off routes. Retrofit systems significantly reduced tailpipe emissions with a reduction of 20-94% of total particles with both DOC and CFS installed. However, no unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The AC/fan unit and the surrounding air pollutant concentrations played more important roles for determining the in-cabin air quality of school buses than did retrofit technologies. Although current retrofit systems reduce children's exposure while waiting to board at a bus station, retrofitting by itself does not protect children satisfactorily from in-cabin particle exposures. Turning on the bus engine increased in-cabin UFP levels significantly only when the wind blew from the bus' tailpipe toward its hood with its windows open. This indicated that wind direction and window position are significant factors determining how much self-released tailpipe emissions may penetrate into the bus cabin. The use of an air purifier was found to remove in-cabin particles by up to 50% which might be an alternative short-to-medium term strategy to protect children's health.

  12. Residential demand response reduces air pollutant emissions on peak electricity demand days in New York City

    International Nuclear Information System (INIS)

    Gilbraith, Nathaniel; Powers, Susan E.

    2013-01-01

    Many urban areas in the United States have experienced difficulty meeting the National Ambient Air Quality Standards (NAAQS), partially due to pollution from electricity generating units. We evaluated the potential for residential demand response to reduce pollutant emissions on days with above average pollutant emissions and a high potential for poor air quality. The study focused on New York City (NYC) due to non-attainment with NAAQS standards, large exposed populations, and the existing goal of reducing pollutant emissions. The baseline demand response scenario simulated a 1.8% average reduction in NYC peak demand on 49 days throughout the summer. Nitrogen oxide and particulate matter less than 2.5 μm in diameter emission reductions were predicted to occur (−70, −1.1 metric tons (MT) annually), although, these were not likely to be sufficient for NYC to meet the NAAQS. Air pollution mediated damages were predicted to decrease by $100,000–$300,000 annually. A sensitivity analysis predicted that substantially larger pollutant emission reductions would occur if electricity demand was shifted from daytime hours to nighttime hours, or the total consumption decreased. Policies which incentivize shifting electricity consumption away from periods of high human and environmental impacts should be implemented, including policies directed toward residential consumers. - Highlights: • The impact of residential demand response on air emissions was modeled. • Residential demand response will decrease pollutant emissions in NYC. • Emissions reductions occur during periods with high potential for poor air quality. • Shifting demand to nighttime hours was more beneficial than to off-peak daytime hours

  13. Application of 2 microbioassays for evaluating the pollution present in the Xochimilco and Lerma-Santiago basins.

    Science.gov (United States)

    Pineda-Flores, G; Hernández, T; Cruz, M C; Gutiérrez-Castrejón, T

    1999-01-01

    Pollution due to urban-agricultural and urban-industrial activities, on the enzymatic activity of two microorganisms was evaluated. The zones under study are located in the Caltongo "embarcadero", in Xochimilco, D.F., and the basin of Lerma-Santiago river, State of Mexico. Nine and ten stations were established, respectively. Samples of water and sediment were taken, in order to determine their pH, salinity, organic matter, as well as the toxic effect produced on Escherichia coli beta-galactosidase activity and on Bacillus cereus hydrogenase activity. Fecal coliforms and anionic detergents were quantified on the water samples. A correlation analysis was applied to results of chemical variables and microbiotest performed. In Xochimilco were found six stations over 50% of inhibition of the enzymatic activities evaluated, in Lerma-Santiago were only four stations. The correlation coefficient found was between -0.95 and 0.53. In general, the zones under study showed a pollution degree and toxic effect moderate, as well as a minimum correlation between chemical variables and the response of microorganisms used as indicators.

  14. Matrix effects on organic pollutants analysis in marine sediment

    Science.gov (United States)

    Azis, M. Y.; Asia, L.; Piram, A.; Buchari, B.; Doumenq, P.; Setiyanto, H.

    2018-05-01

    Interference from the matrix sample can influence of the accurate analytical method. Accelerated Solvent Extraction and their purification methods were tried to separate the organic micropollutants respectively in marine sediment. Those matrix were as organic pollutants evaluation in marine environment. Polychlorinated Biphenyls (PCBs) and Organochlorine pesticides (OCPs) are two examples organic pollutant in environment which are carcinogenic and mutagenic. Marine sediments are important matrices of information regarding the human activities in coastal areas as well as the fate and behavior of organic pollutants, which are persistent in long-term. This research purpose to evaluate the matrice effect and the recovery from marine sediment spiking with several standar solution and deuterium of molecular target from organic pollutants in not polluted sample of sediment. Matrice samples was tested from indicate in unpolluted location. The methods were evaluated with standard calibration curve (linearity LOQ). Recovery (YE) relative, Matrice Effect (ME) relative correction with deuteriated standar were evaluated the interference the matrix. Interference effect for OCPs compounds were higher than PCBs in marine sediment.

  15. Air pollution exposure and preeclampsia among US women with and without asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mendola, Pauline, E-mail: pauline.mendola@nih.gov [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Wallace, Maeve [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Liu, Danping [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20852 (United States); Robledo, Candace [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Männistö, Tuija [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Northern Finland Laboratory Centre NordLab, Oulu (Finland); Department of Clinical Chemistry, University of Oulu, Oulu (Finland); Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 500, 90029 OYS (Finland); Department of Chronic Disease Prevention, National Institute for Health and Welfare, PO Box 310, 90101 Oulu (Finland); Grantz, Katherine L. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States)

    2016-07-15

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}) and carbon monoxide (CO); PM{sub 2.5} constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO{sub x} and SO{sub 2} and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  16. Air pollution exposure and preeclampsia among US women with and without asthma

    International Nuclear Information System (INIS)

    Mendola, Pauline; Wallace, Maeve; Liu, Danping; Robledo, Candace; Männistö, Tuija; Grantz, Katherine L.

    2016-01-01

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO x ), sulfur dioxide (SO 2 ) and carbon monoxide (CO); PM 2.5 constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO x and SO 2 and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  17. Impact of Oxidant Gases on the Relationship between Outdoor Fine Particulate Air Pollution and Nonaccidental, Cardiovascular, and Respiratory Mortality.

    Science.gov (United States)

    Weichenthal, Scott; Pinault, Lauren L; Burnett, Richard T

    2017-11-27

    Outdoor fine particulate air pollution (PM 2.5 ) is known to increase mortality risk and is recognized as an important contributor to global disease burden. However, less is known about how oxidant gases may modify the chronic health effects of PM 2.5 . In this study, we examined how the oxidant capacity of O 3 and NO 2 (using a redox-weighted average, O x ) may modify the relationship between PM 2.5 and mortality in the 2001 Canadian Census Health and Environment Cohort. In total, 2,448,500 people were followed over a 10.6-year period. Each 3.86 µg/m 3 increase in PM 2.5 was associated with nonaccidental (Hazard Ratio (HR) = 1.095, 95% CI: 1.077, 1.112), cardiovascular (HR = 1.088, 95% CI: 1.059, 1.118), and respiratory mortality (HR = 1.110, 95% CI: 1.051, 1.171) in the highest tertile of O x whereas weaker/null associations were observed in the middle and lower tertiles. Analysis of joint non-linear concentration-response relationships for PM 2.5 and O x suggested threshold concentrations between approximately 23 and 25 ppb with O x concentrations above these values strengthening PM 2.5 -mortality associations. Overall, our findings suggest that oxidant gases enhance the chronic health risks of PM 2.5 . In some areas, reductions in O x concentrations may have the added benefit of reducing the public health impacts of PM 2.5 even if mass concentrations remain unchanged.

  18. Fluctuating asymmetry rather than oxidative stress in Bufo raddei can be an accurate indicator of environmental pollution induced by heavy metals.

    Science.gov (United States)

    Guo, Rui; Zhang, Wenya; Ai, Shiwei; Ren, Liang; Zhang, Yingmei

    2017-06-01

    Oxidative stress (OS) and fluctuating asymmetry (FA) as risk markers for environmental stress are widely used to predict changes in the health and fitness of many animals exposed to pollutants. However, from the perspective of protecting declining amphibians, it remains to be verified which one would be a reliable indicator for amphibians exposed to long-term heavy metal pollution under natural conditions. In this study, the OS and FA of Bufo raddei exposed to natural heavy metal pollution were analyzed to determine which marker is more accurate for indicating heavy metal-induced stress. Three years of data were collected during the breeding season of B. raddei from Baiyin (BY), which has been mainly contaminated with Cu, Zn, Pb, and Cd compounds for a long period, and from Liujiaxia (LJX), which is a relatively unpolluted area. Unexpectedly, although significant accumulation of the four heavy metals was found in the kidney and liver of B. raddei from BY, the levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde in these two organs were found to be irregular, with low repeatability in both BY and LJX. However, significant differences in the levels of FA were observed in B. raddei populations from these two areas over the past 3 years (P < 0.01). The degrees of FA in B. raddei populations from BY and LJX were assessed as degree 4 and 1, respectively. In short, this study suggested that FA was a more reliable and effective indicator than OS to monitor and predict long-term environmental stress on anuran amphibians.

  19. Evaluation of Groundwater Pollution with Heavy Metals at the Oblogo No.1 Dumpsite in Accra, Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2014-07-01

    Full Text Available The aim of this research study was to evaluate the groundwater pollution risks from heavy metal contaminants near the de-commissioned Oblogo No.1 dumpsite using a combination of USEPA leachate estimation and migration models. The Hydraulic Evaluation of Landfill Performance (HELP model was used to determine leachate volumes from the base of the dumpsite whereas the Industrial Waste Evaluation Model (IWEM was used to determine contaminant concentrations at groundwater wells located at various distances from the dumpsite. It was observed that there is a wide variation in the concentration of the contaminants measured at different sampling periods between 2004 and 2011. Pollution risks from chromium, lead, manganese, cobalt and zinc were determined to be very low since the simulated contaminant concentrations in the wells were less than the reference ground water concentrations. However, the concentrations of cadmium, copper and arsenic were determined to be high enough to constitute a potential risk to groundwater wells which are down-gradient of the dumpsite. It was also determined that the minimum buffer distance of 360 m specified in the Ghana Landfill Guidelines may not ensure adequate protection for groundwater wells located down-gradient of the Oblogo No.1 dumpsite.

  20. Inhibitory Effect Evaluation of Glycerol-Iron Oxide Thin Films on Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    C. L. Popa

    2015-01-01

    Full Text Available The main purpose of this study was to evaluate the inhibitory effect of glycerol- iron oxide thin films on Methicillin-Resistant Staphylococcus aureus (MRSA. Our results suggest that glycerol-iron oxide thin films could be used in the future for various biomedical and pharmaceutical applications. The glycerol-iron oxide thin films have been deposited by spin coating method on a silicon (111 substrate. The structural properties have been studied by X-ray diffraction (XRD and scanning electron spectroscopy (SEM. The XRD investigations of the prepared thin films demonstrate that the crystal structure of glycerol-iron oxide nanoparticles was not changed after spin coating deposition. On the other hand, the SEM micrographs suggest that the size of the glycerol-iron oxide microspheres increased with the increase of glycerol exhibiting narrow size distributions. The qualitative depth profile of glycerol-iron oxide thin films was identified by glow discharge optical emission spectroscopy (GDOES. The GDOES spectra revealed the presence of the main elements: Fe, O, C, H, and Si. The antimicrobial activity of glycerol-iron oxide thin films was evaluated by measuring the zone of inhibition. After 18 hours of incubation at 37°C, the diameters of the zones of complete inhibition have been measured obtaining values around 25 mm.

  1. Electrokinetic treatment of polluted soil at pilot level coupled to an advanced oxidation process of its wastewater

    Science.gov (United States)

    Ochoa, B.; Ramos, L.; Garibay, A.; Pérez-Corona, M.; Cuevas, M. C.; Cárdenas, J.; Teutli, M.; Bustos, E.

    2016-02-01

    Soil contaminated with hydrocarbons is a current problem of great importance. These contaminants may be toxic, can retain water and block gas exchange with the atmosphere, which produces a poor-quality soil unsuitable for ecological health. Electroremediation is among the treatments for the removal of such contaminants. In this research, a pilot-level electroremediation test was applied using a circular arrangement of electrodes with a Ti cathode at the middle of the cell surrounded by six IrO2-Ta2O5 | Ti anodes. The presence of an NaOH electrolyte helps to develop the electromigration and electro-osmosis of gasoline molecules (at 1126 mg kg-1) surrounded by Na+ ions. The hydrocarbons are directed towards the cathode and subsequently removed in an aqueous Na+ - hydrocarbon solution, and the -OH migrates to the anode. During electrokinetic treatment, the physicochemical characteristics of the soil close to either the cathode or anode and at the half-cell were evaluated during the three weeks of treatment. During that time, more than 80% of hydrocarbons were removed. Hydrocarbons removed by the electrokinetic treatment of gasoline-polluted soil were collected in a central wastewater compartment and subsequently treated with a Fenton-type advanced oxidation process. This achieved more than 70% mineralization of the hydrocarbons to CO2 and H2O within 1.5 h; its low toxicity status was verified using the Deltatox® kit test. With this approach, the residual water complied with the permissible limits of COD, pH, and electrical conductivity for being discharged into water bodies, according to Mexican norm NOM-001-SEMARNAT-1996.

  2. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine.

    Science.gov (United States)

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei

    2015-01-01

    To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.

  3. Organ nic pollutants in underground water

    International Nuclear Information System (INIS)

    Hussein, H. H.

    1998-01-01

    Many organic compounds have been diagnosed in underground and surface waters, and there are many theories that explain the source of the dangerous materials on Punic health. The source of pollution could be the underground stored fuel or the polluted water in farms saturated with agricultural insecticides and chemical fertilizers, or there could be leaks in sewage water wastes. The source of pollution could also be the water surfaces in the areas of garbage disposal or industrial and home waste discharge. Due to the fact that the underground water is separated from oxygen in the air, its ability on self-purification is very low, in that the micro-organism that will do the dismantling and decomposition of the organic materials that pollute the water are in need for oxygen. In the event that underground water is subject to pollution m there are many methods for t resting the polluted water including the chemical decomposition method by injecting the polluted areas with neutralizing or oxidizing chemicals, such as Ozone, Chlorine or Hydrogen Peroxide. The mechanical methods could be used for getting rid of the volatile organic materials. As to biological decomposition, it is done with the use of bacteria in dismantling the poisonous materials into un poisonous materials. The preliminary analysis of water samples in one of the water wells in Sar ir and Tazarbo in Great Jamahirieh indicated that the concentration of total organic compounds (TOC) exceeded the internationally allowed limits. This indicates a deterioration of quality of some of underground water resources. It is well known that some of the organic pollutants have a great role in causing dangerous diseases, such as the polynuclear aromatic hydrocarbons and some halogenated compounds that cause cancer. Therefore, much research is required in this field for diagnosing the polluting organic compounds and determining the suitability of this water for drinking or for human consumption. (author). 21 refs., 6 figs

  4. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats.

    Science.gov (United States)

    Gharib, Ola Ali

    2009-11-27

    Trichloroethylene (TCE) may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Twenty male albino rats were divided into four groups: (1) the control group treated with vehicle, (2) Kombucha (KT)-treated group, (3) TCE-treated group and (4) KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO) and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT) and lactate dehydrogenase (LDH) activities were also measured. TCE administration increased the malondiahyde (MDA) and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH) level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  5. Evaluation of the Street Pollution Model OSPM for Measurements at 12 Streets Stations Using a Newly Developed and Freely Available Evaluation Tool

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Jensen, Steen Solvang; Brandt, Jørgen

    2012-01-01

    In the present work, the Operational Street Pollution Model (OSPM) has been evaluated in comparison with continuous half-hourly measurements over a multi-year period for five permanent street monitor stations that constitute part of the Danish Air Quality Monitoring Programme as well as with pass......In the present work, the Operational Street Pollution Model (OSPM) has been evaluated in comparison with continuous half-hourly measurements over a multi-year period for five permanent street monitor stations that constitute part of the Danish Air Quality Monitoring Programme as well...... the observations well, especially for the most recent years, while for NO2 the model over-predicts in two cases. The explanation for this over-prediction is believed to be uncertainties in the traffic or emission input data, but also in model parameters, and the representativeness of the urban background data may....... OSPM calculations for nine streets with passive sampler measurements were conducted as ‘blind test’ i.e. without knowing the measured values. OSPM calculations were in good agreement with the measurements for seven out of nine street sections. Refinements of the input data lead to a significant...

  6. Trends in air pollution in Ireland : A decomposition analysis

    NARCIS (Netherlands)

    Tol, Richard S.J.

    2016-01-01

    Trends in the emissions to air of sulphur dioxide, nitrogen oxides, carbon monoxide, volatile organic compounds and ammonia in Ireland are analysed with a logarithmic mean Divisia index decomposition for the period of 1990-2009. Emissions fell for four of the five pollutants, with ammonia being

  7. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    International Nuclear Information System (INIS)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta

    2015-01-01

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping

  8. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta, E-mail: paulo.zannin@pesquisador.cnpq.br

    2015-02-15

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.

  9. Human health effects of air pollution

    International Nuclear Information System (INIS)

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O 3 ), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed. - The effect of air pollutants on human health and underlying mechanisms of cellular action are discussed

  10. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden

    International Nuclear Information System (INIS)

    Berglund, A.M.M.; Sturve, J.; Foerlin, L.; Nyholm, N.E.I.

    2007-01-01

    Metals have been shown to induce oxidative stress in animals. One of the most metal polluted terrestrial environments in Sweden is the surroundings of a sulfide ore smelter plant located in the northern part of the country. Pied flycatcher nestlings (Ficedula hypoleuca) that grew up close to the industry had accumulated amounts of arsenic, cadmium, mercury, lead, iron and zinc in their liver tissue. The aim of this study was to investigate if pied flycatcher nestlings in the pollution gradient of the industry were affected by oxidative stress using antioxidant molecules and enzyme activities. The antioxidant assays were also evaluated in search for useful biomarkers in pied flycatchers. This study indicated that nestlings in metal contaminated areas showed signs of oxidative stress evidenced by up regulated hepatic antioxidant defense given as increased glutathione reductase (GR) and catalase (CAT) activities and slightly but not significantly elevated lipid peroxidation and glutathione-S-transferase (GST) activities. Stepwise linear regression indicated that lipid peroxidation and CAT activities were influenced mostly by iron, but iron and lead influenced the CAT activity to a higher degree. Positive relationships were found between GST and lead as well as GR activities and cadmium. We conclude that GR, CAT, GST activities and lipid peroxidation levels may function as useful biomarkers for oxidative stress in free-living pied flycatcher nestlings exposed to metal contaminated environments

  11. Role of Chinese wind-blown dust in enhancing environmental pollution in Metropolitan Seoul

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wonnyon [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of); Doh, Seong-Jae [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of)], E-mail: sjdoh@korea.ac.kr; Yu, Yongjae; Lee, Meehye [Department of Earth and Environmental Sciences, Korea University, Seoul 136-713 (Korea, Republic of)

    2008-05-15

    A suite of rock magnetic experiments and intensive microscopic observations were carried out on Asian dust deposits in Seoul, Korea, collected on 19 and 23 March 2002, 9 April 2002 and 12 April 2003. Desert-sand and loess from the dust source regions in China were also analyzed as a comparison. Asian dust showed a higher magnetic concentration than the source region samples, indicating a significant influx of magnetic particles into Asian dust had occurred during its transportation. Electron microscopy identified carbon-bearing iron-oxides as the added material. These iron-oxides were likely to have been produced by anthropogenic pollution (fossil fuel combustion) while the wind-blown dusts passing across the industrial areas of eastern China and western Korea. Such wind-paths were confirmed by a simulation of the air-mass trajectories. The magnetic technique appears to be useful for determining the anthropogenic pollution of Asian dust. - Magnetic quantification of anthropogenic pollution of Asian dust.

  12. Role of Chinese wind-blown dust in enhancing environmental pollution in Metropolitan Seoul

    International Nuclear Information System (INIS)

    Kim, Wonnyon; Doh, Seong-Jae; Yu, Yongjae; Lee, Meehye

    2008-01-01

    A suite of rock magnetic experiments and intensive microscopic observations were carried out on Asian dust deposits in Seoul, Korea, collected on 19 and 23 March 2002, 9 April 2002 and 12 April 2003. Desert-sand and loess from the dust source regions in China were also analyzed as a comparison. Asian dust showed a higher magnetic concentration than the source region samples, indicating a significant influx of magnetic particles into Asian dust had occurred during its transportation. Electron microscopy identified carbon-bearing iron-oxides as the added material. These iron-oxides were likely to have been produced by anthropogenic pollution (fossil fuel combustion) while the wind-blown dusts passing across the industrial areas of eastern China and western Korea. Such wind-paths were confirmed by a simulation of the air-mass trajectories. The magnetic technique appears to be useful for determining the anthropogenic pollution of Asian dust. - Magnetic quantification of anthropogenic pollution of Asian dust

  13. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    Science.gov (United States)

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  14. Chocolate, air pollution and children’s neuroprotection: What cognition tools should be at hand to evaluate interventions?

    Directory of Open Access Journals (Sweden)

    Lilian Calderon-Garciduenas

    2016-08-01

    Full Text Available Millions of children across the world are exposed to multiple sources of indoor and outdoor air pollutants, including high concentrations of fine particulate matter (PM2.5 and ozone (O3. The established link between exposure to PM2.5, brain structural, volumetric and metabolic changes, severe cognitive deficits (1.5-2SD from average IQ in APOE 4 heterozygous females with >75% to <94% BMI percentiles, and the presence of Alzheimer’s disease (AD hallmarks in urban children and young adults necessitates exploration of ways to protect these individuals from the deleterious neural effects of pollution exposure. Emerging research suggests that cocoa interventions may be a viable option for neuroprotection, with evidence suggesting that early cocoa interventions could limit the risk of cognitive and developmental concerns including: endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, and metabolic detrimental brain effects. Currently, however, it is not clear how early we should implement consumption of cocoa to optimize its neuroprotective effects. Moreover, we have yet to identify suitable instruments for evaluating cognitive responses to these interventions in clinically healthy children, teens, and young adults. An approach to guide the selection of cognitive tools should take into account neuropsychological markers of cognitive declines in patients with Alzheimer’s neuropathology, the distinct patterns of memory impairment between early and late onset Alzheimer’s disease (AD, and the key literature associating white matter integrity and poor memory binding performance in cases of asymptomatic familial AD. We highlight potential systemic and neural benefits of cocoa consumption. We also highlight Working Memory Capacity (WMC and attention control tasks as opened avenues for exploration in the air pollution scenario. Exposures to air pollutants during brain development have serious brain consequences in the short and long term

  15. A novel two-stage evaluation system based on a Group-G1 approach to identify appropriate emergency treatment technology schemes in sudden water source pollution accidents.

    Science.gov (United States)

    Qu, Jianhua; Meng, Xianlin; Hu, Qi; You, Hong

    2016-02-01

    Sudden water source pollution resulting from hazardous materials has gradually become a major threat to the safety of the urban water supply. Over the past years, various treatment techniques have been proposed for the removal of the pollutants to minimize the threat of such pollutions. Given the diversity of techniques available, the current challenge is how to scientifically select the most desirable alternative for different threat degrees. Therefore, a novel two-stage evaluation system was developed based on a circulation-correction improved Group-G1 method to determine the optimal emergency treatment technology scheme, considering the areas of contaminant elimination in both drinking water sources and water treatment plants. In stage 1, the threat degree caused by the pollution was predicted using a threat evaluation index system and was subdivided into four levels. Then, a technique evaluation index system containing four sets of criteria weights was constructed in stage 2 to obtain the optimum treatment schemes corresponding to the different threat levels. The applicability of the established evaluation system was tested by a practical cadmium-contaminated accident that occurred in 2012. The results show this system capable of facilitating scientific analysis in the evaluation and selection of emergency treatment technologies for drinking water source security.

  16. Steam oxidation and the evaluation of coatings and material performance through collaborative research

    Energy Technology Data Exchange (ETDEWEB)

    Fry, A.T. [National Physical Lab., Teddington (United Kingdom); Aguero, A. [INTA, Madrid (Spain)

    2010-07-01

    Over the last five years through the COST 536 Programme researchers across Europe have been collaborating to better understand the phenomena of steam oxidation and to characterise coated and uncoated materials for use in power plants. During this period fundamental study of the oxidation mechanisms and changes in the oxidation kinetics caused by the presence of steam have been undertaken. Materials covering a range of high temperature plant applications have been studied, from low alloy martensitic alloys through to Ni-based superalloy materials, with investigations into the effect of increasing temperatures and pressures on the oxidation kinetics, oxide morphology and spallation characteristics. In addition conventional and novel coatings have been evaluated to assess their potential use in new USC plant. This paper will present an overview of these activities demonstrating the effect that steam has on the oxidation of alloys and coatings. (orig.)

  17. The influence of combustion derived pollutants on limestone deterioration

    DEFF Research Database (Denmark)

    Johnson, JB; Montgomery, Melanie; Thompson, GE

    1996-01-01

    This study concerns quantification of the relative chemical degradation effects of dry deposition of combustion-derived atmospheric pollutants, HCl, SO2 and NO2, on Portland and Monks Park limestones, employing laboratory exposure chambers for periods of 30 days. Using presentation rates up to 40 x...... 10(-4) mu g cm(-2) s(-1), the pollutants were assessed individually and in various combinations, along with ozone as oxidant, at 84% RH with dry or water-wetted surfaces. The degradation was followed by analysis of exposed stone, for Cl-, SO42- and NO3-, and of run-off solution for Ca2+, in addition...... to the anions. From these data, the total calcium released from limestone to reaction ions and products and the percentages of each pollutant reacted (and so the deposition velocity (V-D)) in each exposure regime were calculated. HCl acted independently of the presence of other pollutants, showed 40 and 100...

  18. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    Science.gov (United States)

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  19. Integral biostimulation of soil polluted by 60000 ppm of motor waste oil

    Directory of Open Access Journals (Sweden)

    Saucedo-Martínez Blanca Celeste

    2017-08-01

    Full Text Available Waste motor oil (WMO is a mixture of hydrocarbons (HICO soil pollutants. An alternative solution for its elimination is the biostimulation (BIS, secuancial, complementary and accumulative or integral which requires at first BIS by detergents to emulsify WMO, the second one following by enrichment by mineral solution, H2O2 as a O2 source for oxidation of WMO and controlling moisture soil content at 80% field capacity for exchange gases in soil to stimulate WMO mineralization The aim of the work was: i analyze in the integral BIS of contaminated soil by 60000 ppm of WMO. The first BIS was applying detergents to emulsify the WMO, the second BIS by mineral solution, then by H2O2, under humidity control at 80% of field capacity, for the best oxidation of WMO. Additionally bacterial population oxidant WMO was meas-ured, to select those which synthetized detergent related to WMO degradation, finally the type of bacteria were molecular identify. Results showed than integral BIS by an anionic / nonionic detergent, then en-richment with mineral solution, and 0.5% H2O2, reduced WMO from 60000 ppm to 27200 ppm in 23 days. Density of bacterial WMO oxidant population was 268 X 106 CFU/g dry soil, from which the domi-nant ones were selected and identified 47 bacterial genera divided into: Actinomycetes, Firmicutes and Proteobacteria. These results showed that soil pollution by high concentration level of WMO demanded at integrated BIS, also was found some bacterial genus which synthetized detergent with potential used in soil polluted by WMO.

  20. Evaluating the potential use of Tamarix gallica L. for phytoremediation practices in heavy-metal polluted soils

    Science.gov (United States)

    Abou Jaoudé, R.; Pricop, A.; Laffont-Schwob, I.; Prudent, P.; Rabier, J.; Masotti, V.; de Dato, G.; De Angelis, P.

    2012-04-01

    The rapid growth of population, the increased urbanisation and the expansion of industrial activities have provoked an augmented occurrence of soil contamination by heavy-metals. Important sources of contamination are industrial, mining and military infrastructures, which are often abandoned without performing the appropriate reclamation work. In the Mediterranean Basin, where coastal areas are largely affected by human overexploitation, the use of species able to tolerate heavy-metals and other abiotic stresses may represent a low-cost solution for phytoremediation in these harsh environments. Tamarix gallica L. is a widespread species in coastal Mediterranean areas, showing a high adaptability to different environments and a high tolerance of adversity. With the objective of testing local species as candidates for phytoremediation practices in heavy-metal contaminated coastal soils, cuttings of T. gallica from a wild population around Marseille (France) were planted in pots containing: 1) control soil (loamy soil and sand (2/1)), 2) half-polluted soil (loamy soil, sand and heavy-metal polluted soil (1/1/1)), and 3) polluted soil (sand and heavy-metal polluted soil (1/2)). The contaminated soils were collected in the surrounding of a former lead industry of Marseille littoral and characterised by the presence of Fe, Pb, Zn, As and Al. After three months from planting, leaf functionality was evaluated by measuring leaf gas exchanges, leaf chlorophyll fluorescence and, chlorophyll, phenols, flavonoids and anthocyanins contents. SEM observations coupled to EDXS analysis were used to determine elements (Pb, As and Al) presence and location on the leaf surface and in leaf and root tissues. T. gallica was moderately affected by the presence of heavy-metals in the soil treatments. In fact, a reduction in stomatal conductance was only observed in plants grown in the polluted soil. This reduction did not cause a significant decrease in CO2 assimilation rates. Moreover, the

  1. Operational evaluation of the RLINE dispersion model for studies of traffic-related air pollutants

    Science.gov (United States)

    Milando, Chad W.; Batterman, Stuart A.

    2018-06-01

    Exposure to traffic-related air pollutants (TRAP) remains a key public health issue, and improved exposure measures are needed to support health impact and epidemiologic studies and inform regulatory responses. The recently developed Research LINE source model (RLINE), a Gaussian line source dispersion model, has been used in several epidemiologic studies of TRAP exposure, but evaluations of RLINE's performance in such applications have been limited. This study provides an operational evaluation of RLINE in which predictions of NOx, CO and PM2.5 are compared to observations at air quality monitoring stations located near high traffic roads in Detroit, MI. For CO and NOx, model performance was best at sites close to major roads, during downwind conditions, during weekdays, and during certain seasons. For PM2.5, the ability to discern local and particularly the traffic-related portion was limited, a result of high background levels, the sparseness of the monitoring network, and large uncertainties for certain processes (e.g., formation of secondary aerosols) and non-mobile sources (e.g., area, fugitive). Overall, RLINE's performance in near-road environments suggests its usefulness for estimating spatially- and temporally-resolved exposures. The study highlights considerations relevant to health impact and epidemiologic applications, including the importance of selecting appropriate pollutants, using appropriate monitoring approaches, considering prevailing wind directions during study design, and accounting for uncertainty.

  2. Effect of air-polluting gases on plant metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I

    1972-01-01

    Among the air-polluting gases, SO/sub 2/, ozone, peroxyacetylnitrate (PAN) and fluorine are those whose action is studied most. This review tries to show the connection between the well-known macroscopic symptoms, on the one hand, the the primary point of attack at the enzymatic level, the changes in the plant's metabolism, and the microscopic and electronmicroscopic results, on the other. PAN and ozone, which originate through the action of sunlight on auto-exhausts, cause the strong oxidizing character of this type of smog. Their primary point of attack seems to be their oxidizing effect on protein SH-groups. PAN in special oxidizes the SH-groups of a photoreducible disulfide containing chloroplast protein, thus blocking photosynthesis. SO/sub 2/, which originates from combustion of coal and petroleum as well as from roasting of sulfur-containing ores, causes the reductive character of this type of smog. SO/sub 2/ has a special position among the air-polluting gases because it can be incorporated without damaging effect into the normal sulfur metabolism up to a certain level. After exceeding this limit, it causes a rapid depression of photosynthesis. F/sup -/ is bound as a salt in the cell wall or in the cell vacuole and is thereby prevented from its damaging effect on metabolic processes up to a certain level. Upon exceeding this, it acts mainly on the enzymes of carbohydrate metabolism. In a few examples it is shown in which way the collapse of cell compartmentation causes the loss of regulatory mechanisms of the cell. The influence of internal (genetic conditions, physiological age etc.) and external (light, temperature, humidity etc.) factors on the general metabolism, and, in this way, on the sensitivity of the plant to air-polluting gases, is shown. 195 references.

  3. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  4. [Spatiotemporal dynamic fuzzy evaluation of wetland environmental pollution risk in Dayang estuary of Liaoning Province, Northeast China based on remote sensing].

    Science.gov (United States)

    Sun, Yong-Guang; Zhao, Dong-Zhi; Zhang, Feng-Shou; Wei, Bao-Quan; Chu, Jia-Lan; Su, Xiu

    2012-11-01

    Based on the aerial image data of Dayang estuary in 2008, and by virtue of Analytic Hierarchy Process (AHP) , remote sensing technology, and GIS spatial analysis, a spatiotemporal evaluation was made on the comprehensive level of wetland environmental pollution risk in Dayang estuary, with the impacts of typical human activities on the dynamic variation of this comprehensive level discussed. From 1958 to 2008, the comprehensive level of the environmental pollution risk in study area presented an increasing trend. Spatially, this comprehensive level declined from land to ocean, and showed a zonal distribution. Tourism development activities unlikely led to the increase of the comprehensive level, while human inhabitation, transportation, and aquaculture would exacerbate the risk of environmental pollution. This study could provide reference for the sea area use planning, ecological function planning, and pollutants control of estuary region.

  5. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  6. Toxicological Impact of Air Pollution Particulate Matter PM 2.5 Collected under Urban Industrial or Rural Influence Occurrence of Oxidative Stress and Inflammatory Reaction in BEAS 2B Human Bronchial Epithelial Cells Corrected Version

    International Nuclear Information System (INIS)

    Dergham, M.; Billet, S; Verdin, A.; Courcot, D.; Cazier, F.; Pirouz, Sh.; Garcon, G.

    2011-01-01

    Exposure to air pollution Particulate Matter (PM) is one of the risk factors involved in the high incidence of respiratory and cardio-vascular diseases. In this work, to integrate inter-seasonal and inter-site variations, fine particle (PM2.5) samples have been collected in spring-summer 2008) and autumn 2008-winter 2009, in Dunkerque (France) under urban or industrial influence, and in Rubrouck (France), under rural influence. Attention was paid to characterize their physico-chemical characteristics, and to determine their ability to induce oxidative stress and inflammatory response in a human bronchial epithelial cell model (BEAS-2B cell line). Physico-chemical characterization of the six PM samples showed their heterogeneities and complexities depending upon their respective natural and/or anthropogenic emission sources. Lung cytotoxicity of these air pollution PM2.5 samples, as shown in BEAS-2B cells, might rely on the induction of oxidative stress conditions and particularly on the excessive inflammatory response. (author)

  7. Long-term exposure to indoor air pollution and wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O.; Hermansen, M.N.; Loland, L.

    2010-01-01

    Long-term exposure to air pollution is suspected to cause recurrent wheeze in infants. The few previous studies have had ambiguous results. The objective of this study was to estimate the impact of measured long-term exposure to indoor air pollution on wheezing symptoms in infants. We monitored......-point 'any symptom-day' (yes/no) and by standard linear regression with the end-point 'number of symptom-days'. The results showed no systematic association between risk for wheezing symptoms and the levels of these air pollutants with various indoor and outdoor sources. In conclusion, we found no evidence...... of an association between long-term exposure to indoor air pollution and wheezing symptoms in infants, suggesting that indoor air pollution is not causally related to the underlying disease. Practical Implications Nitrogen oxides, formaldehyde and fine particles were measured in the air in infants' bedrooms...

  8. Pollution prevention constraints within DOE facilities

    International Nuclear Information System (INIS)

    Walzer, A.E.

    1992-01-01

    The signing of the Pollution Prevention Act of 1990, has marked a new environmental era. The 1990s environmental movement is shifting from ''end of the pipe'' treatment towards a philosophy of source reduction (predicated by the Pollution Prevention Act), where engineering solutions and materials substitution are sought to reduce the volume and toxicity of waste. This change comes after 20 years of treatment legislation, where in many cases the location or media in which our pollution is deposited was merely changed. This problem is exemplified by the enormous environmental problems created by waste sites. Our inability to deal with the substantial waste generated has produced the environmental legacy on the Department of Energy (DOE) sites, a legacy that will cost billions of dollars to remediate. How then do we solve our waste problems and avoid future legacies? This paper outlines some of the obstacles to pollution prevention within the DOE system and explores opportunities to remove these barriers. Industry, whose foundation is economics, has found it attractive to reduce their wastes, particularly in the wake of escalating waste disposal costs. However, within federal facilities where basic economic principles do not prevail, incentives towards pollution prevention need to be evaluated. Our current system of segregated DOE programs creates obstacles for waste generators to work productively with other programs. Certain policies and practices also limit the generators' responsibility and costs for their waste, which is counter productive to waste minimization and pollution prevention. To meet new environmental challenges and to be proactive in pollution prevention we must evaluate our systems and remove barriers that impede progress toward pollution prevention

  9. Socio-economic costs of indoor air pollution: A tentative estimation for some pollutants of health interest in France.

    Science.gov (United States)

    Boulanger, Guillaume; Bayeux, Thomas; Mandin, Corinne; Kirchner, Séverine; Vergriette, Benoit; Pernelet-Joly, Valérie; Kopp, Pierre

    2017-07-01

    An evaluation of the socio-economic costs of indoor air pollution can facilitate the development of appropriate public policies. For the first time in France, such an evaluation was conducted for six selected pollutants: benzene, trichloroethylene, radon, carbon monoxide, particles (PM 2.5 fraction), and environmental tobacco smoke (ETS). The health impacts of indoor exposure were either already available in published works or were calculated. For these calculations, two approaches were followed depending on the available data: the first followed the principles of quantitative health risk assessment, and the second was based on concepts and methods related to the health impact assessment. For both approaches, toxicological data and indoor concentrations related to each target pollutant were used. External costs resulting from mortality, morbidity (life quality loss) and production losses attributable to these health impacts were assessed. In addition, the monetary costs for the public were determined. Indoor pollution associated with the selected pollutants was estimated to have cost approximately €20 billion in France in 2004. Particles contributed the most to the total cost (75%), followed by radon. Premature death and the costs of the quality of life loss accounted for approximately 90% of the total cost. Despite the use of different methods and data, similar evaluations previously conducted in other countries yielded figures within the same order of magnitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Projection of greenhouse gases and air pollutants 2011-2015

    International Nuclear Information System (INIS)

    Verdonk, M.; Daniels, B.

    2011-05-01

    This report outlines the expected greenhouse gas emissions (mainly CO2 but also methane and nitrous oxide) and air pollutants in the period 2011 up to and including 2015. Attention is paid to whether or not the Netherlands will comply with the mandatory European and international regulations. [nl

  11. Scientific stream pollution analysis

    National Research Council Canada - National Science Library

    Nemerow, Nelson Leonard

    1974-01-01

    A comprehensive description of the analysis of water pollution that presents a careful balance of the biological,hydrological, chemical and mathematical concepts involved in the evaluation of stream...

  12. The Cardiopulmonary Effects of Ambient Air Pollution and Mechanistic Pathways: A Comparative Hierarchical Pathway Analysis

    Science.gov (United States)

    Thomas, Duncan C.; Zhang, Junfeng; Kipen, Howard M.; Rich, David Q.; Zhu, Tong; Huang, Wei; Hu, Min; Wang, Guangfa; Wang, Yuedan; Zhu, Ping; Lu, Shou-En; Ohman-Strickland, Pamela; Diehl, Scott R.; Eckel, Sandrah P.

    2014-01-01

    Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001) and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005). These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours) and the hemostasis pathway responds gradually over a 2–3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system. PMID:25502951

  13. The cardiopulmonary effects of ambient air pollution and mechanistic pathways: a comparative hierarchical pathway analysis.

    Directory of Open Access Journals (Sweden)

    Ananya Roy

    Full Text Available Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001 and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005. These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours and the hemostasis pathway responds gradually over a 2-3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system.

  14. Use of multi-objective air pollution monitoring sites and online air pollution monitoring system for total health risk assessment in Hyderabad, India.

    Science.gov (United States)

    Anjaneyulu, Y; Jayakumar, I; Hima Bindu, V; Sagareswar, G; Mukunda Rao, P V; Rambabu, N; Ramani, K V

    2005-08-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad "it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM". These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000-15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced

  15. Nitrate-driven urban haze pollution during summertime over the North China Plain

    Science.gov (United States)

    Li, Haiyan; Zhang, Qiang; Zheng, Bo; Chen, Chunrong; Wu, Nana; Guo, Hongyu; Zhang, Yuxuan; Zheng, Yixuan; Li, Xin; He, Kebin

    2018-04-01

    Compared to the severe winter haze episodes in the North China Plain (NCP), haze pollution during summertime has drawn little public attention. In this study, we present the highly time-resolved chemical composition of submicron particles (PM1) measured in Beijing and Xinxiang in the NCP region during summertime to evaluate the driving factors of aerosol pollution. During the campaign periods (30 June to 27 July 2015, for Beijing and 8 to 25 June 2017, for Xinxiang), the average PM1 concentrations were 35.0 and 64.2 µg m-3 in Beijing and Xinxiang. Pollution episodes characterized with largely enhanced nitrate concentrations were observed at both sites. In contrast to the slightly decreased mass fractions of sulfate, semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA) in PM1, nitrate displayed a significantly enhanced contribution with the aggravation of aerosol pollution, highlighting the importance of nitrate formation as the driving force of haze evolution in summer. Rapid nitrate production mainly occurred after midnight, with a higher formation rate than that of sulfate, SV-OOA, or LV-OOA. Based on observation measurements and thermodynamic modeling, high ammonia emissions in the NCP region favored the high nitrate production in summer. Nighttime nitrate formation through heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) enhanced with the development of haze pollution. In addition, air masses from surrounding polluted areas during haze episodes led to more nitrate production. Finally, atmospheric particulate nitrate data acquired by mass spectrometric techniques from various field campaigns in Asia, Europe, and North America uncovered a higher concentration and higher fraction of nitrate present in China. Although measurements in Beijing during different years demonstrate a decline in the nitrate concentration in recent years, the nitrate contribution in PM1 still remains high. To effectively alleviate

  16. Nitrate-driven urban haze pollution during summertime over the North China Plain

    Directory of Open Access Journals (Sweden)

    H. Li

    2018-04-01

    Full Text Available Compared to the severe winter haze episodes in the North China Plain (NCP, haze pollution during summertime has drawn little public attention. In this study, we present the highly time-resolved chemical composition of submicron particles (PM1 measured in Beijing and Xinxiang in the NCP region during summertime to evaluate the driving factors of aerosol pollution. During the campaign periods (30 June to 27 July 2015, for Beijing and 8 to 25 June 2017, for Xinxiang, the average PM1 concentrations were 35.0 and 64.2 µg m−3 in Beijing and Xinxiang. Pollution episodes characterized with largely enhanced nitrate concentrations were observed at both sites. In contrast to the slightly decreased mass fractions of sulfate, semivolatile oxygenated organic aerosol (SV-OOA, and low-volatility oxygenated organic aerosol (LV-OOA in PM1, nitrate displayed a significantly enhanced contribution with the aggravation of aerosol pollution, highlighting the importance of nitrate formation as the driving force of haze evolution in summer. Rapid nitrate production mainly occurred after midnight, with a higher formation rate than that of sulfate, SV-OOA, or LV-OOA. Based on observation measurements and thermodynamic modeling, high ammonia emissions in the NCP region favored the high nitrate production in summer. Nighttime nitrate formation through heterogeneous hydrolysis of dinitrogen pentoxide (N2O5 enhanced with the development of haze pollution. In addition, air masses from surrounding polluted areas during haze episodes led to more nitrate production. Finally, atmospheric particulate nitrate data acquired by mass spectrometric techniques from various field campaigns in Asia, Europe, and North America uncovered a higher concentration and higher fraction of nitrate present in China. Although measurements in Beijing during different years demonstrate a decline in the nitrate concentration in recent years, the nitrate contribution in PM1 still remains high

  17. Relation between some environmental pollutants and recurrent spontaneous abortion

    Directory of Open Access Journals (Sweden)

    Aziza A. Saad

    2016-09-01

    Full Text Available Reproductive health is exquisitely sensitive to characteristics of an individual’s environment including physical, biological, behavioral, cultural and socioeconomic factors. This study was launched to elucidate the effect of the exposure to chemical pollutants as aromatic amines viz. (benzidine, mono-acetyl benzidine, diacetyl benzidine, α,β-naphthylamine as well as the biological pollutants e.g., human cytomegalovirus (HCMV as risk factors for recurrent spontaneous abortion (RSA through determination of MDA as a marker of oxidative stress and determination of some antioxidant markers. The results of the current study revealed that the aborter mothers were being exposed to environmental pollutants as aromatic amines which were manifested by the presence of benzidine, mono-acetyl-benzidine, di-acetyl-benzidine, α,β-naphthylamine in most of their urine samples, where the level of aromatic amines were more 13.6, 10, 15, and 4-folds than the control group, respectively. Also, the data suggest that in early pregnancy failure there is an increase in markers of oxidative stress and a probable decrease in maternal antioxidant defenses (22 nmol/ml and 17 mg/l, 550 U/l, respectively. Generation of ROS in large quantities, in the first trimester placenta which has limited antioxidant defenses may cause DNA damage, oxidation of protein and lipid resulting in extensive cell death. Also, it was demonstrated that high elevation of HCMV inhibits cytotrophoblasts proliferation, migration invasion and matrix metalloproteins (MMP expression. Obviously, placental toxicological responses are partly due to pharmaco/toxico dynamic responses to the chemicals. Conclusively, the aforementioned findings emphasis that, the exposures to environmental chemical and/or biological risk factors are implicated in the pathogenesis of recurrent spontaneous abortion.

  18. Evaluation of emission control strategies to reduce ozone pollution in the Paso del Norte region using a photochemical air quality modeling system

    Science.gov (United States)

    Valenzuela, Victor Hugo

    Air pollution emissions control strategies to reduce ozone precursor pollutants are analyzed by applying a photochemical modeling system. Simulations of air quality conditions during an ozone episode which occurred in June, 2006 are undertaken by increasing or reducing area source emissions in Ciudad Juarez, Chihuahua, Mexico. Two air pollutants are primary drivers in the formation of tropospheric ozone. Oxides of nitrogen (NOx) and volatile organic compounds (VOC) undergo multiple chemical reactions under favorable meteorological conditions to form ozone, which is a secondary pollutant that irritates respiratory systems in sensitive individuals especially the elderly and young children. The U.S. Environmental Protection Agency established National Ambient Air Quality Standards (NAAQS) to limit ambient air pollutants such as ozone by establishing an 8-hour average concentration of 0.075 ppm as the threshold at which a violation of the standard occurs. Ozone forms primarily due reactions in the troposphere of NOx and VOC emissions generated primarily by anthropogenic sources in urban regions. Data from emissions inventories indicate area sources account for ˜15 of NOx and ˜45% of regional VOC emissions. Area sources include gasoline stations, automotive paint bodyshops and nonroad mobile sources. Multiplicity of air pollution emissions sources provides an opportunity to investigate and potentially implement air quality improvement strategies to reduce emissions which contribute to elevated ozone concentrations. A baseline modeling scenario was established using the CAMx photochemical air quality model from which a series of sensitivity analyses for evaluating air quality control strategies were conducted. Modifications to area source emissions were made by varying NOx and / or VOC emissions in the areas of particular interest. Model performance was assessed for each sensitivity analysis. Normalized bias (NB) and normalized error (NE) were used to identify

  19. Evaluation of statistical distributions to analyze the pollution of Cd and Pb in urban runoff.

    Science.gov (United States)

    Toranjian, Amin; Marofi, Safar

    2017-05-01

    Heavy metal pollution in urban runoff causes severe environmental damage. Identification of these pollutants and their statistical analysis is necessary to provide management guidelines. In this study, 45 continuous probability distribution functions were selected to fit the Cd and Pb data in the runoff events of an urban area during October 2014-May 2015. The sampling was conducted from the outlet of the city basin during seven precipitation events. For evaluation and ranking of the functions, we used the goodness of fit Kolmogorov-Smirnov and Anderson-Darling tests. The results of Cd analysis showed that Hyperbolic Secant, Wakeby and Log-Pearson 3 are suitable for frequency analysis of the event mean concentration (EMC), the instantaneous concentration series (ICS) and instantaneous concentration of each event (ICEE), respectively. In addition, the LP3, Wakeby and Generalized Extreme Value functions were chosen for the EMC, ICS and ICEE related to Pb contamination.

  20. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.