WorldWideScience

Sample records for oxide nanoparticles cuo

  1. Synthesis and characterization of cupric oxide (CuO) nanoparticles ...

    African Journals Online (AJOL)

    In the present work, cupric oxide (CuO) nanoparticles (NPs) were prepared by adopting aqueous precipitation method using copper sulphate 5-hydrate as a precursor and NaOH as a stabilizing agent. This gives a large scale production of CuO-NPs which are utilized for the removal of methylene blue (MB) dye. The CuO ...

  2. Tailoring oxides of copper-Cu_2O and CuO nanoparticles and evaluation of organic dyes degradation

    International Nuclear Information System (INIS)

    Raghav, Ragini; Aggarwal, Priyanka; Srivastava, Sudha

    2016-01-01

    We report a simple one-pot colloidal synthesis strategy tailoring cuprous or cupric nano-oxides in pure state. NaOH provided alkaline conditions (pH 12.5 -13) for nano-oxides formation, while its concentration regulated the oxidation state of the nano-oxides. The morphological, structural and optical properties of synthesized Cu_2O and CuO nanoparticles were studied by transmission electron microscopy (TEM), X-Ray diffraction (XRD) and UV-vis spectroscopy. Dye degradation capability of CuO and Cu2O nanoparticles was evaluated using four organic dyes - Malachite green, Methylene blue, Methyl orange and Methyl red. The results demonstrate effective degradation of all four dyes employing with almost comparable activity both Cu_2O and CuO nanoparticles.

  3. Synthesis and characterization of cupric oxide (CuO) nanoparticles ...

    African Journals Online (AJOL)

    hp

    2013-11-20

    Nov 20, 2013 ... magnetic Fe3O4@C nanoparticles have been synthesized and employed ... was washed with 95% alcohol and ether. ... banana stalk waste by Hameed et al. ... peel (Wang et al., 2007) and castor shell seed (Ni et al., 2007).

  4. Antibacterial Activity of Copper Oxide (CuO Nanoparticles Biosynthesized by Bacillus sp. FU4: Optimization of Experiment Design

    Directory of Open Access Journals (Sweden)

    Mojtaba Taran, Maryam Rad, Mehran Alavi

    2017-09-01

    Full Text Available Background: There are several methods for synthesis of metallic nanoparticles (NPs including chemical, physical and biological process. In this study, Bacillus sp. FU4 was used as biological source for biosynthesis of CuO NPs. Methods: CuO NPs have been prepared by copper sulfate (CuSO4. CuO NPs were formed after oxidation of Cu NPs. Design and analysis of Taguchi experiments (an orthogonal assay and analysis of variance (ANOVA carried out by the Qualitek-4 software. Average effect of CuSO4 concentration (0.1, 0.01 and 0.001 M, incubation and culturing time (48, 72, 96 hours as three controllable factors with three levels were evaluated in CuO NPs biosynthesis. Characterization of CuO NPs was determined by UV-Vis spectroscopy, X-ray diffraction (XRD, Fourier transform infra-red (FT-IR spectroscopy and scanning electron microscopy (SEM. Also, the antimicrobial properties of CuO NPs were investigated using Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 43300 as multidrug resistant (MDR bacteria. Results: Results: It was evaluated that, NPs size distributions were in the range of 2-41 nm with spherical shapes. The anti-bacterial activities of CuO NPs were measured based on diameter of inhibition zone in disk diffusion tests of NPs dispersed in batch cultures. Two levels of CuSO4 concentrations (0.1 and 0.01M had antibacterial effect on E.coli (33±0.57 and 6 ±2mm. In the case of S. aureus, there was surprisingly no sign of growth. Conclusion: CuO NPs have antibacterial activity that can be benefit in medicinal aspect for fighting against prominent pathogen bacteria such as E.coli ATCC 25922 and S.aureus ATCC 43300.

  5. Magnetoelectric Coupling in CuO Nanoparticles for Spintronics Applications

    Science.gov (United States)

    Kaur, Mandeep; Tovstolytkin, Alexandr; Lotey, Gurmeet Singh

    2018-05-01

    Multiferroic copper oxide (CuO) nanoparticles have been synthesized by colloidal synthesis method. The morphological, structural, magnetic, dielectric and magnetodielectric property has been investigated. The structural study reveals the monoclinic structure of CuO nanoparticles. Transmission electron microscopy images disclose that the size of the CuO nanoparticles is 18 nm and the synthesized nanoparticles are uniform in size and dispersion. Magnetic study tells the weak ferromagnetic character of CuO nanoparticles with coercivity and retentivity value 206 Oe and 0.060 emu/g respectively. Dielectric study confirms that the dielectric constant of CuO nanoparticles is around 1091 at low frequency. The magnetoelectric coupling in the synthesized CuO nanoparticles has been calculated by measuring magnetodielectric coupling coefficient.

  6. Synthesis of Thermally Spherical CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nittaya Tamaekong

    2014-01-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully synthesized by a thermal method. The CuO nanoparticles were further characterized by thermogravimetric analysis (TGA, differential thermal analysis (DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDS, and high resolution transmission electron microscopy (HRTEM, respectively. The specific surface area (SSABET of CuO nanoparticles was determined by nitrogen adsorption. The SSABET was found to be 99.67 m2/g (dBET of 9.5 nm. The average diameter of the spherical CuO nanoparticles was approximately 6–9 nm.

  7. Green synthesis of CuO nanoparticles using Cassia auriculata leaf ...

    African Journals Online (AJOL)

    Purpose: To undertake green synthesis of copper oxide nanoparticles (CuO NPs) using Cassia auriculata leaf extract ... Several methods are available for CuO NP preparation ... reader. Characterization .... would be important targets in current.

  8. Effects of CuO nanoparticles on Lemna minor.

    Science.gov (United States)

    Song, Guanling; Hou, Wenhua; Gao, Yuan; Wang, Yan; Lin, Lin; Zhang, Zhiwei; Niu, Qiang; Ma, Rulin; Mu, Lati; Wang, Haixia

    2016-12-01

    Copper dioxide nanoparticles (NPs), which is a kind of important and widely used metal oxide NP, eventually reaches a water body through wastewater and urban runoff. Ecotoxicological studies of this kind of NPs effects on hydrophyte are very limited at present. Lemna minor was exposed to media with different concentrations of CuO NPs, bulk CuO, and two times concentration of Cu 2+ released from CuO NPs in culture media. The changes in plant growth, chlorophyll content, antioxidant defense enzyme activities [i.e., peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) activities], and malondialdehyde (MDA) content were measured in the present study. The particle size of CuO NPs and the zeta potential of CuO NPs and bulk CuO in the culture media were also analyzed to complementally evaluate their toxicity on duckweed. Results showed that CuO NPs inhibited the plant growth at lower concentration than bulk CuO. L. minor roots were easily broken in CuO NPs media under the experimental condition, and the inhibition occurred only partly because CuO NPs released Cu 2+ in the culture media. The POD, SOD, and CAT activities of L. minor increased when the plants were exposed to CuO NPs, bulk CuO NPs and two times the concentration of Cu 2+ released from CuO NPs in culture media, but the increase of these enzymes were the highest in CuO NPs media among the three kinds of materials. The MDA content was significantly increased compared with that of the control from 50 mg L -1 CuO NP concentration in culture media. CuO NPs has more toxicity on L. minor compared with that of bulk CuO, and the inhibition occurred only partly because released Cu 2+ in the culture media. The plant accumulated more reactive oxygen species in the CuO NP media than in the same concentration of bulk CuO. The plant cell encountered serious damage when the CuO NP concentration reached 50 mg L -1 in culture media. The toxicology of CuO NP on hydrophytes must be considered because that hydrophytes

  9. Assessment of copper nanoparticles (Cu-NPs) and copper (II) oxide (CuO) induced hemato- and hepatotoxicity in Cyprinus carpio

    Science.gov (United States)

    Noureen, Aasma; Jabeen, Farhat; Tabish, Tanveer A.; Yaqub, Sajid; Ali, Muhammad; Shakoor Chaudhry, Abdul

    2018-04-01

    Recently, Cu-based nanoparticles have drawn considerable attention for their various fascinating roles in multiple biological systems. It is recognized that their frequent use can create compatibility challenges for the recipient systems. Nevertheless, it is unclear how various biological interactions affect the compatibility of Cu oxide II (CuO) and Cu oxide nanoparticles (Cu-NPs) for different organisms. Consequently, it has been difficult to perform structured risk assessments for their use in biological systems. Therefore, this study compared the effects of different doses of waterborne Cu-NPs and CuO on the blood and liver of selected groups of Cyprinus (C) carpio. These fish while housed in suitable water tanks were exposed to one of the following treatments for 14 d: control (no added Cu) or 0.5 or 1 or 1.5 mg Cu as Cu-NPs or CuO l-1 of water. We found significant changes in all assessed blood parameters of fish in response to increasing doses from 0 to 1.5 mg of Cu-NPs or CuO. Similarly, increased levels of lipid peroxide and reduced glutathione (GSH) were also observed in the livers of C. carpio in Cu-NPs or CuO treated groups. Enhanced levels of lipid peroxidation and GSH were also recorded in the Cu-NP treated groups compared with the CuO treated groups in a dose dependent manner. The lowest catalase activity was observed in the liver of C. carpio treated with the higer dose of Cu-NPs. Cu-NP or CuO exposure induced significant histological alterations in the liver of C. carpio including focal necrosis, cloudy swelling of hepatocytes, degenerative hepatocytes, vacuolization, pyknotic nuclei, damaged central vein, nuclear hypertrophy, dilated sinusoid, vacuolated degeneration, congestion, and complete degeneration in a dose dependent manner. Substantial alterations in blood and liver specimens were observed in the Cu-NP treated fish when compared with the CuO treated fish. It appeared that the Cu-NPs were more toxic than the CuO as shown by the hemato- and

  10. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Science.gov (United States)

    Dimkpa, Christian O.; McLean, Joan E.; Latta, Drew E.; Manangón, Eliana; Britt, David W.; Johnson, William P.; Boyanov, Maxim I.; Anderson, Anne J.

    2012-09-01

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  11. Plant Mediated Green Synthesis of CuO Nanoparticles: Comparison of Toxicity of Engineered and Plant Mediated CuO Nanoparticles towards Daphnia magna

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Research on green production methods for metal oxide nanoparticles (NPs is growing, with the objective to overcome the potential hazards of these chemicals for a safer environment. In this study, facile, ecofriendly synthesis of copper oxide (CuO nanoparticles was successfully achieved using aqueous extract of Pterospermum acerifolium leaves. P. acerifolium-fabricated CuO nanoparticles were further characterized by UV-Visible spectroscopy, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray (EDX, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and dynamic light scattering (DLS. Plant-mediated CuO nanoparticles were found to be oval shaped and well dispersed in suspension. XPS confirmed the elemental composition of P. acerifolium-mediated copper nanoparticles as comprised purely of copper and oxygen. DLS measurements and ion release profile showed that P. acerifolium-mediated copper nanoparticles were more stable than the engineered CuO NPs. Copper oxide nanoparticles are used in many applications; therefore, their potential toxicity cannot be ignored. A comparative study was performed to investigate the bio-toxic impacts of plant-synthesized and engineered CuO nanoparticles on water flea Daphnia. Experiments were conducted to investigate the 48-h acute toxicity of engineered CuO NPs and plant-synthesized nanoparticles. Lower EC50 value 0.102 ± 0.019 mg/L was observed for engineered CuO NPs, while 0.69 ± 0.226 mg/L was observed for plant-synthesized CuO NPs. Additionally, ion release from CuO nanoparticles and 48-h accumulation of these nano CuOs in daphnids were also calculated. Our findings thus suggest that the contribution of released ions from nanoparticles and particles/ions accumulation in Daphnia needs to be interpreted with care.

  12. CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Utah State University, Department of Biological Engineering (United States); McLean, Joan E. [Utah State University, Utah Water Research Laboratory (United States); Latta, Drew E. [Argonne National Laboratory, Biosciences Division (United States); Manangon, Eliana [University of Utah, Department of Geology and Geophysics (United States); Britt, David W. [Utah State University, Department of Biological Engineering (United States); Johnson, William P. [University of Utah, Department of Geology and Geophysics (United States); Boyanov, Maxim I. [Argonne National Laboratory, Biosciences Division (United States); Anderson, Anne J. [Utah State University, Department of Biological Engineering (United States)

    2012-09-15

    Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat (Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly (p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)-sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

  13. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  14. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    Science.gov (United States)

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  15. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids

    Energy Technology Data Exchange (ETDEWEB)

    El-Trass, A.; ElShamy, H.; El-Mehasseb, I. [Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh, University, 33516 Kafr ElSheikh (Egypt); El-Kemary, M., E-mail: elkemary@yahoo.com [Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh, University, 33516 Kafr ElSheikh (Egypt)

    2012-01-15

    Cupric oxide (CuO) nanoparticles with an average size of 6 nm have been successfully prepared by an alcothermal method. The prepared CuO nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) and UV-visible absorption spectroscopy. A strong sharp emission under UV excitation is reported from the prepared CuO nanoparticles. The results show that the CuO nanoparticles have high dispersion and narrow size distribution. The fluorescence emission spectra display an intense sharp emission at 365 nm and weak broad intensity emission at 470 nm. Picosecond fluorescence measurements of the nanoparticles suggest bi-exponential function giving time constants of {tau}{sub 1} (330 ps, 94.21%) and {tau}{sub 2} (4.69 ns, 5.79%). In neutral and alkaline solutions, Zeta potential values of CuO nanoparticles are negative, due to the adsorption of COO{sup -} group via the coordination of bidentate. At low pH the zeta potential value is positive due to the increased potential of H{sup +} ions in solution. Comparative UV-visible absorption experiments with the model amino acid compounds of positive and negative charges as arginine and aspartic acid, respectively confirmed the negative surface of CuO nanoparticles. The results should be extremely useful for understanding the mode of the interaction with biological systems. This binding process also affects the particle's behavior inside the body.

  16. Polymethacrylic acid as a new precursor of CuO nanoparticles

    Science.gov (United States)

    Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick

    2012-11-01

    Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.

  17. Synthesis, characterization and catalytic property of CuO and Ag/CuO nanoparticles for the epoxidation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Lashanizadegan, Maryam; Erfaninia, Nasrin [Alzahra University, Tehran (Iran, Islamic Republic of)

    2013-11-15

    CuO nanorodes, CuO nanoplates and Ag/CuO nanoparticles were synthesized in the presence of polyethylene glycol by depositional in alkaline environment. Oxide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared absorption spectra (FT-IR). CuO and Ag/CuO nanoparticles show high catalytic activity for the selective epoxidation of styrene to styrene oxide by TBHP. Under the optimized reaction condition, the oxidation of styrene catalyzed by CuO nanorods gave 100% conversion with 60 and 35% styrene oxide and benzaldehyde, respectively. Ag/CuO gave 99% conversion and styrene oxide (71%) and benzaldehyde (12%) being the major product.

  18. Zeolite Encapsulated Nanocrystalline CuO: A Redox Catalyst for the Oxidation of Secondary Alcohols

    Directory of Open Access Journals (Sweden)

    Sakthivel Vijaikumar

    2008-01-01

    Full Text Available Zeolite encapsulated nanocrystalline CuO is synthesized and characterized by powder XRD and HRTEM analyses which clearly show that the particles are less than 15 nm and the nanoparticles are highly dispersed. This nano CuO encapsulated CuY zeolite is used as catalyst in the oxidation of aromatic secondary alcohols. CuY zeolite acts as an efficient support for nano CuO, by stabilizing it and preventing its aggregation. Plausible mechanisms for the formation of the various products are also given.

  19. Complete transformation of ZnO and CuO nanoparticles in ...

    Science.gov (United States)

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during

  20. Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells

    Science.gov (United States)

    Kung, Mei-Lang; Hsieh, Shu-Ling; Wu, Chih-Chung; Chu, Tian-Huei; Lin, Yu-Chun; Yeh, Bi-Wen; Hsieh, Shuchen

    2015-01-01

    Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively. Cellular fluorescence intensity using DCFH-DA staining analysis revealed significant intracellular reactive oxygen species (ROS) generation of up to 242% in SK-Hep-1 cells, compared with 86% in HepG2 cells. HPLC analysis demonstrated that a CuO NP treatment caused cellular GSH depletion of 58% and a GSH/GSSG ratio decrease to ~0.1 in SK-Hep-1 cells. The oxidative stress caused by enhanced superoxide anion production was observed in both HepG2 (146%) and SK-Hep-1 (192%) cells. The Griess assay verified that CuO NPs induced NO production (170%) in SK-Hep-1 cells. Comet assay and western blot further demonstrated that CuO NPs induced severe DNA strand breakage (70%) in SK-Hep-1 cells and caused DNA damage via increased γ-H2AX levels. These results suggest that well-differentiated HepG2 cells possess a robust antioxidant defense system against CuO NP-induced ROS stress and exhibit more tolerance to oxidative stress. Conversely, poorly differentiated SK-Hep-1 cells exhibited a deregulated antioxidant defense system that allowed accumulation of CuO NP-induced ROS and resulted in severe cytotoxicity.Copper oxide nanoparticles (CuO NPs) are known to exhibit toxic effects on a variety of cell types and organs. To determine the oxidative impact of CuO NPs on hepatocellular carcinoma (HCC) cells, well-differentiated (HepG2) and poorly differentiated (SK-Hep-1) cells were exposed to CuO NPs. Cell viability assay showed that the median inhibition concentration (IC50) for SK-Hep-1 and HepG2 cells was 25 μg ml-1 and 85 μg ml-1, respectively

  1. SELDI-TOF MS-based discovery of a biomarker in Cucumis sativus seeds exposed to CuO nanoparticles.

    Science.gov (United States)

    Moon, Young-Sun; Park, Eun-Sil; Kim, Tae-Oh; Lee, Hoi-Seon; Lee, Sung-Eun

    2014-11-01

    Metal oxide nanoparticles (NPs) can inhibit plant seed germination and root elongation via the release of metal ions. In the present study, two acute phytotoxicity tests, seed germination and root elongation tests, were conducted on cucumber seeds (Cucumis sativus) treated with bulk copper oxide (CuO) and CuO NPs. Two concentrations of bulk CuO and CuO NPs, 200 and 600ppm, were used to test the inhibition rate of root germination; both concentrations of bulk CuO weakly inhibited seed germination, whereas CuO NPs significantly inhibited germination, showing a low germination rate of 23.3% at 600ppm. Root elongation tests demonstrated that CuO NPs were much stronger inhibitors than bulk CuO. SELDI-TOF MS analysis showed that 34 proteins were differentially expressed in cucumber seeds after exposure to CuO NPs, with the expression patterns of at least 9 proteins highly differing from those in seeds treated with bulk CuO and in control plants. Therefore, these 9 proteins were used to identify CuO NP-specific biomarkers in cucumber plants exposed to CuO NPs. A 5977-m/z protein was the most distinguishable biomarker for determining phytotoxicity by CuO NPs. Principal component analysis (PCA) of the SELDI-TOF MS results showed variability in the modes of inhibitory action on cucumber seeds and roots. To our knowledge, this is the first study to demonstrate that the phytotoxic effect of metal oxide NPs on plants is not caused by the same mode of action as other toxins. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Photocatalytic effect of green synthesised CuO nanoparticles on selected environmental pollutants and pathogens

    Science.gov (United States)

    Fuku, Xolile; Thovhogi, Ntevheleni; Maaza, Malik

    2018-05-01

    Highly crystalline irregular green synthesised CuO nanoparticles (CuO NPs) which are 10 nm in particle size were successfully characterised by HRSEM and AFM. EDS confirmed the main components of prepared sample which are Cu and O. Meanwhile, UV/Vis revealed the reflectance, transmittance, absorbance and the semiconducting nature of the synthesised nano-oxides. The optical band gap of CuO NPs was calculated to be 1.4 - 2.3 eV which indicates that CuO NPs can be used in metal oxide semiconductor-based devices. CuO NPs were found to be excellent photocatalysts for the degradation of methyl orange organic dye under the illumination of artificial light irradiation. The experiments demonstrated that MO in aqueous solution was more efficiently photo-degraded (65 %) using CuO NPs as photocatalysts. Further, the nanomaterials were also found to be good inhibitors of bacterial strains at both low and high concentrations of 5 - 10 mg mL-1.

  3. Facile Large-scale synthesis of stable CuO nanoparticles

    Science.gov (United States)

    Nazari, P.; Abdollahi-Nejand, B.; Eskandari, M.; Kohnehpoushi, S.

    2018-04-01

    In this work, a novel approach in synthesizing the CuO nanoparticles was introduced. A sequential corrosion and detaching was proposed in the growth and dispersion of CuO nanoparticles in the optimum pH value of eight. The produced CuO nanoparticles showed six nm (±2 nm) in diameter and spherical feather with a high crystallinity and uniformity in size. In this method, a large-scale production of CuO nanoparticles (120 grams in an experimental batch) from Cu micro-particles was achieved which may met the market criteria for large-scale production of CuO nanoparticles.

  4. Combination of CuO nanoparticles and fluconazole: preparation, characterization, and antifungal activity against Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Weitz, Iris S., E-mail: irisweitz@braude.ac.il; Maoz, Michal; Panitz, Daniel [ORT Braude College, Department of Biotechnology Engineering (Israel); Eichler, Sigal; Segal, Ester [Technion – Israel Institute of Technology, Department of Biotechnology and Food Engineering (Israel)

    2015-08-15

    Combination therapy becomes an important strategy in the management of invasive fungal infections and emergence of resistant fungi mutants. In this work, we examine the combination of copper oxide (CuO) nanoparticles (NPs) with fluconazole as potential treatment against the pathogenic fungi, Candidaalbicans. CuO NPs (∼7 nm in size) were synthesized with acetate ligands assembled on their surface, as shown by both thermal gravimetric analysis and FTIR spectroscopy. Unlike the commercial CuO (both bulk and 50 nm particles), that are poorly dispersed in water, the interaction with water allows the fine dispersion of the coated CuO NPs and their excellent colloidal stability. The addition of fluconazole to the aqueous CuO dispersion induced spontaneous self-assembly of the NPs into linear pearl-like chains network, shown by cryogenic transmission electron microscopy (cryo-TEM). The antifungal activity of the CuO NPs and their combination with fluconazole (fluconazole–CuO NPs) was studied against C. albicans. The best MIC values were obtained at concentrations as low as 0.2 and 0.3 mg/mL, respectively. The results suggest that fluconazole–CuO NPs can provide a potential alternative treatment for C. albicans infections.

  5. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties

    Energy Technology Data Exchange (ETDEWEB)

    Duman, Fatih, E-mail: fduman@erciyes.edu.tr [Erciyes University, Science Faculty, Biology Department, Kayseri 38039, Kayseri (Turkey); Ocsoy, Ismail [Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, 38039, Kayseri (Turkey); Erciyes University, Nanotechnology Research Center, 38039, Kayseri (Turkey); Kup, Fatma Ozturk [Erciyes University, Science Faculty, Biology Department, Kayseri 38039, Kayseri (Turkey)

    2016-03-01

    In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv–Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV–Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as − 20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. - Highlights: • The synthesis of microwave assisted green synthesis of CuO nanoparticles • The synthesized nanoparticles were analyzed by FT-IR, DLS, XRD, EDX and SEM. • Concentration-dependent antioxidant activity of CuO NPs was determined. • CuO NPs cause both cleavage in the DNA double helix structure and breaks as well.

  6. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    Science.gov (United States)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  7. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.

    Science.gov (United States)

    Aruoja, Villem; Dubourguier, Henri-Charles; Kasemets, Kaja; Kahru, Anne

    2009-02-01

    Toxicities of ZnO, TiO2 and CuO nanoparticles to Pseudokirchneriella subcapitata were determined using OECD 201 algal growth inhibition test taking in account potential shading of light. The results showed that the shading effect by nanoparticles was negligible. ZnO nanoparticles were most toxic followed by nano CuO and nano TiO2. The toxicities of bulk and nano ZnO particles were both similar to that of ZnSO4 (72 h EC50 approximately 0.04 mg Zn/l). Thus, in this low concentration range the toxicity was attributed solely to solubilized Zn2+ ions. Bulk TiO2 (EC50=35.9 mg Ti/l) and bulk CuO (EC50=11.55 mg Cu/l) were less toxic than their nano formulations (EC50=5.83 mg Ti/l and 0.71 mg Cu/l). NOEC (no-observed-effect-concentrations) that may be used for risk assessment purposes for bulk and nano ZnO did not differ (approximately 0.02 mg Zn/l). NOEC for nano CuO was 0.42 mg Cu/l and for bulk CuO 8.03 mg Cu/l. For nano TiO2 the NOEC was 0.98 mg Ti/l and for bulk TiO2 10.1 mg Ti/l. Nano TiO2 formed characteristic aggregates entrapping algal cells that may contribute to the toxic effect of nano TiO2 to algae. At 72 h EC50 values of nano CuO and CuO, 25% of copper from nano CuO was bioavailable and only 0.18% of copper from bulk CuO. Thus, according to recombinant bacterial and yeast Cu-sensors, copper from nano CuO was 141-fold more bioavailable than from bulk CuO. Also, toxic effects of Cu oxides to algae were due to bioavailable copper ions. To our knowledge, this is one of the first systematic studies on effects of metal oxide nanoparticles on algal growth and the first describing toxic effects of nano CuO towards algae.

  8. CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Rashad

    2013-01-01

    Full Text Available Copper oxide and cobalt oxide (CuO, Co3O4 nanocrystals (NCs have been successfully prepared in a short time using microwave irradiation without any postannealing treatment. Both kinds of nanocrystals (NCs have been prepared using copper nitrate and cobalt nitrate as the starting materials and distilled water as the solvent. The resulted powders of nanocrystals (NCs were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and atomic force microscopy (AFM measurements. The obtained results confirm the presence of the both of oxides nanopowders produced during chemical precipitation using microwave irradiation. A strong emission under UV excitation is obtained from the prepared CuO and Co3O4 nanoparticles. The results show that the nanoparticles have high dispersion and narrow size distribution. The line scans of atomic force microscopy (AFM images of the nanocrystals (NCs sprayed on GaAs substrates confirm the results of both X-ray diffraction and transmission electron microscopy. Furthermore, vibrational studies have been carried out using Raman spectroscopic technique. Specific Raman peaks have been observed in the CuO and Co3O4 nanostructures, and the full width at half maximum (FWHM of the peaks indicates a small particle size of the nanocrystals.

  9. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing

    Science.gov (United States)

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge st...

  10. Magnetic and dielectric studies of multiferroic CuO nanoparticles confined to porous glass

    International Nuclear Information System (INIS)

    Charnaya, E.V.; Lee, M.K.; Tien, C.; Pak, V.N.; Formus, D.V.; Pirozerskii, A.L.; Nedbai, A.I.; Ubyivovk, E.V.; Baryshnikov, S.V.; Chang, L.J.

    2012-01-01

    Dc magnetization and ac electric permittivity were measured for the CuO-porous glass nanocomposite made and for pressed powder CuO. Magnetization curves showed a bend between two linear segments for both the nanocomposite and bulk cupric oxide at 230 K evidencing that the temperature of the transition from the paramagnetic into multiferroic phase did not change noticeably under nanoconfinement. Results suggested also a reduction of the temperature of the second transition into the collinear antiferromagnetic phase. ZFC and FC magnetizations were found to bifurcate for the nanocomposite and bulk CuO. The bifurcation was accompanied with peaks on ZFC magnetization. - Highlights: ► CuO nanoparticles embedded into porous glass compared to bulk. ► ZFC and FC magnetizations bifurcate in the nanocomposite and bulk CuO. ► Dc magnetization suggests a reduction of the temperature T N1 till about 190 K. ► Temperature T N2 of the transition into multiferroic phase did not change.

  11. Effects of CuO nanoparticles on compressive strength of self ...

    Indian Academy of Sciences (India)

    In the present study, the compressive strength, thermal properties and microstructure of self-compacting concrete with different amounts of CuO nanoparticles have been investigated. CuO nanoparticles with an average particle size of 15 nm were added to self-compacting concrete and various properties of the specimens ...

  12. Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Pratibha, E-mail: rkpratibha@yahoo.com; Merwyn, S.; Agarwal, G. S.; Tripathi, B. K.; Pant, S. C. [Defence Research and Development Establishment (India)

    2012-01-15

    Copper (II) oxide multi-armed nanoparticles composed of 500-1000 nm long radiating nanospicules with 100-200 nm width near the base and 50-100 nm width at the tapered ends and {approx}25 nm thickness were synthesized by electrochemical deposition in the presence of an oxidant followed by calcination at 150 Degree-Sign C. The nanoparticles were characterized using SEM/EDX for morphology and composition, Raman spectroscopy for compound identification, and broth culture method for antibacterial efficacy. The CuO nanoparticles have shown remarkable bactericidal efficacy against Gram-positive and -negative waterborne disease causing bacteria like Escherichia coli, Salmonella typhi, staphylococcus aureus and Bacillus subtilis. E. coli has been chosen as representative species for waterborne disease causing bacteria. In antibacterial tests 500 {mu}g/mL nano CuO killed 3 Multiplication-Sign 10{sup 8} CFU/mL E. coli bacteria within 4 h of exposure. Moreover, 8.3 Multiplication-Sign 10{sup 6} CFU/mL E. coli were killed by 100 and 10 {mu}g/mL nano CuO within 15 min and 4 h of exposure, respectively. Antibacterial activity of nano CuO has been found many-fold compared with commercial bulk CuO. The fate of nanoparticles after antibacterial test has also been studied. The synthesized CuO nanoparticles are expected to have potential antibacterial applications in water purification and in paints and coatings used on frequently touched surfaces and fabrics in hospital settings.

  13. Solid-State Synthesis and Effect of Temp erature on Optical Prop erties of CuO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C. C. Vidyasagar; Y. Arthoba Naik∗; T. G. Venkatesha; R. Viswanatha

    2012-01-01

    Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. The P-type semiconductor of copper oxide is an important functional material used for photovoltaic cells. CuO is attractive as a selective solar absorber since it has high solar absorbance and a low thermal emittance. The present work describes the synthesis and characterization of semiconducting CuO nanoparticles via one-step, solid-state reaction in the presence of Polyethylene glycol 400 as size controlling agent for the preparation of CuO nanoparticles at different temperatures. Solid-state mechanochemical processing, which is not only a physical size reduction process in conventional milling but also a chemical reaction, is mechanically activated at the nanoscale during grinding. The present method is a simple and efficient method of preparing nanoparticles with high yield at low cost. The structural and chemical composition of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive spectrometer, respectively. Optical properties and band gap of CuO nanoparticles were studied by UV-Vis spectroscopy. These results showed that the band gap energy decreased with increase of annealing temperature, which can be attributed to the improvement in grain size of the samples.

  14. Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

    Science.gov (United States)

    Croteau, Marie-Noele; Misra, Superb K.; Luoma, Samuel N.; Valsami-Jones, Eugenia

    2014-01-01

    The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide (65CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated 65Cu after aqueous and dietary exposures to 65CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g–1 d–1 at low exposure concentrations (–1), and declined by nearly 50% above this concentration. We estimated that 80–90% of the bioaccumulated 65Cu concentration in L. stagnalis originated from the 65CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of 65Cu incorporated into tissues after exposures to 65CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.

  15. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species.

    Science.gov (United States)

    Rotini, A; Gallo, A; Parlapiano, I; Berducci, M T; Boni, R; Tosti, E; Prato, E; Maggi, C; Cicero, A M; Migliore, L; Manfra, L

    2018-01-01

    Metal oxide nanoparticles, among them copper oxide nanoparticles (CuO NPs), are widely used in different applications (e.g. batteries, gas sensors, superconductors, plastics and metallic coatings), increasing their potential release in the environment. In aquatic matrix, the behavior of CuO NPs may strongly change, depending on their surface charge and some physical-chemical characteristics of the medium (e.g. ionic strength, salinity, pH and natural organic matter content). Ecotoxicity of CuO NPs to aquatic organisms was mainly studied on freshwater species, few tests being performed on marine biota. The aim of this study was to assess the toxicity of CuO NPs on suitable indicator species, belonging to the ecologically relevant level of consumers. The selected bioassays use reference protocols to identify Effect/Lethal Concentrations (E(L)C), by assessing lethal and sub-lethal endpoints. Mortality tests were performed on rotifer (Brachionus plicatilis), shrimp (Artemia franciscana) and copepod (Tigriopus fulvus). While moult release failure and fertilization rate were studied, as sub-lethal endpoints, on T. fulvus and sea urchin (Paracentrotus lividus), respectively. The size distribution and sedimentation rates of CuO NPs, together with the copper dissolution, were also analyzed in the exposure media. The CuO NP ecotoxicity assessment showed a concentration-dependent response for all species, indicating similar mortality for B. plicatilis (48hLC 50 = 16.94 ± 2.68mg/l) and T. fulvus (96hLC 50 = 12.35 ± 0.48mg/l), followed by A. franciscana (48hLC 50 = 64.55 ± 3.54mg/l). Comparable EC 50 values were also obtained for the sub-lethal endpoints in P. lividus (EC 50 = 2.28 ± 0.06mg/l) and T. fulvus (EC 50 = 2.38 ± 0.20mg/l). Copper salts showed higher toxicity than CuO NPs for all species, with common sensitivity trend as follows: P. lividus ≥ T. fulvus (sublethal endpoint) ≥ B. plicatilis >T. fulvus (lethal endpoint) >A. franciscana. CuO NP micrometric

  16. Toxicity and transfer of CuO Nanoparticles on Arabidopsis thaliana

    Science.gov (United States)

    Zhao, Shilin; Dai, Yanhui; Xu, Lina

    2018-02-01

    CuO engineered nanoparticles (ENPs) are widely used in commercial applications. With increasing CuO ENPs production, CuO ENPs are likely to present in the environment and cause a potential threaten to ecosystem. In this work, Arabidopsis thaliana (Bay-0) was chosen to take the toxic experiment after exposed to CuO ENPs (0, 20, and 50 mg/L) and Cu2+ (0.15 mg/L). And the copper content of shoots at 50 mg/L CuO ENPs was about 20 times of control, indicating that CuO ENPs could be absorbed into Arabidopsis thaliana seedlings and transfered from root to shoot in a certain way.

  17. Exchange bias effect in composites of cuo nanoparticles and nanosilica glass

    Energy Technology Data Exchange (ETDEWEB)

    Ranjan Saha, Dhriti [MLS Professor' s Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India); Kumar Nandi, Arun [Polymer Science Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India); Chakravorty, Dipankar, E-mail: mlsdc@iacs.res.in [MLS Professor' s Unit, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032 (India)

    2014-04-15

    Nanodimensional silica based glass containing iron ions was prepared within the compressed pellet of CuO nanoparicles. The nanocomposite material showed exchange bias effect. This effect arose due to ferromagnetic iron doped CuO phase and antiferromagnetic CuO interface formation within the nanocomposite during the synthesis process. Coercive field as a function of temperature was fitted with Arhenius–Neel equation and extracted blocking temperature was 511 K. The value of effective anisotropy constant for the nanocomposite was found to be 3.64x10{sup 5} erg/cc. - Highlights: • Nanoglass comprising SiO{sub 2} and Fe{sub 2}O{sub 3} was grown with pores of CuO nanoparticle compacts. • CuO (AFM)-core and Fe doped CuO (FM) shell were formed during synthesis. • The nanocomposite material showed exchange bias effect.

  18. CuO nanoparticle sensor for the electrochemical determination of dopamine

    International Nuclear Information System (INIS)

    Reddy, Sathish; Kumara Swamy, B.E.; Jayadevappa, H.

    2012-01-01

    Highlights: ► The MCPE prepared from flake-shaped CuO nanoparticles exhibits good electrocatalytic activity for DA compared with MCPE prepared from rod-shaped CuO nanoparticles. ► The MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles strong electrocatalytic enhancement of redox peak currents for DA and large peak potential separation between E AA − E DA . ► Analysis of DA shows linearly increase in anodic peak current in presence of excess ascorbic acid. ► Ease of preparation and good analytical response supports its claim for use as a potential dopamine sensor. - Abstract: In the present work, different shaped CuO nanoparticles were synthesized using cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) in a co-precipitation method. The CuO nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared absorption spectroscopy (IR) and UV–visible absorption spectroscopy (UV–vis). The prepared CuO nanoparticles were used for the preparation of modified carbon-paste electrodes (MCPE) for the electrochemical detection of dopamine (DA) at pH 6.0. The MCPE prepared from flake-shaped CuO nanoparticles exhibited an enhanced current response for DA. Electrochemical parameters, such as the surface area of the electrode, the heterogeneous rate constant (k s ) and the lower detection limit (5.5 × 10 −8 M), were calculated and compared with those of the MCPE prepared from rod-shaped CuO nanoparticles. The MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles exhibited a further improved current response for DA and a high selectivity (E AA − E DA = 0.28 V) for the simultaneous investigation of DA and ascorbic acid (AA) at pH 6.0. The modified carbon-paste electrochemical sensors were compared, and the MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles exhibited better performance than the MCPE prepared from CTAB

  19. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    OpenAIRE

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD r...

  20. Enhancement in light harvesting ability of photoactive layer P3HT: PCBM using CuO nanoparticles

    Science.gov (United States)

    Tiwari, D. C.; Dwivedi, Shailendra Kumar; Dipak, Pukhrambam; Chandel, Tarun

    2018-05-01

    In this paper, we have synthesized CuO nanoparticles via precipitation method and incorporated CuO nanoparticles in the P3HT-poly (3-hexyl) thiophene: PCBM-[6, 6]-phenyl-C61-butyric acid methyl ester heterogeneous blend. The ratio of P3HT to CuO in the blend was varied, while maintaining the fixed ratio of PCBM. The UV-visible absorption spectra of P3HT: PCBM photoactive layer containing different weight percentages of CuO nanoparticles showed a clear enhancement in the photo absorption of the active layer. The absorption band starts from 310 nm to 750 nm for P3HT: CuO (NPs):PCBM (0.5:0.5:1). This shows that incorporation of CuO nanoparticles leads to larger absorption band. In addition, the X-ray diffraction (XRD) shows improvement in P3HT crystallinity and the better formation of CuO nanostructures.

  1. The Effect of CuO Nanoparticles on Antimicrobial Effects and Shear Bond Strength of Orthodontic Adhesives.

    Science.gov (United States)

    Toodehzaeim, Mohammad Hossein; Zandi, Hengameh; Meshkani, Hamidreza; Hosseinzadeh Firouzabadi, Azadeh

    2018-03-01

    Orthodontic appliances facilitate microbial plaque accumulation and increase the chance of white spot lesions. There is a need for new plaque control methods independent of patient's cooperation. The aim of this study was to determine the effects of incorporating copper oxide (CuO) nanoparticles on antimicrobial properties and bond strength of orthodontic adhesive. CuO nanoparticles were added to the composite transbond XT at concentrations of 0.01, 0.5 and 1 wt.%. To evaluate the antimicrobial properties of composites containing nanoparticles, the disk agar diffusion test was used. For this purpose, 10 discs from each concentration of nano-composites (totally 30 discs) and 10 discs from conventional composite (as the control group) were prepared. Then the diameter of streptococcus mutans growth inhibition around each disc was determined in blood agar medium. To evaluate the shear bond strength, with each concentration of nano-composites as well as the control group (conventional composite), 10 metal brackets were bonded to the human premolars and shear bond strength was determined using a universal testing machine. Nano-composites in all three concentrations showed significant antimicrobial effect compared to the control group ( p nano-composites compared to control group ( p = 0.695). Incorporating CuO nanoparticles into adhesive in all three studied concentrations added antimicrobial effects to the adhesive with no adverse effects on shear bond strength.

  2. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 'C for 3 hours. As the annealing temperature was raised from 300 to 900 'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  3. Synthesis of Cu/Cu2O nanoparticles by laser ablation in deionized water and their annealing transformation into CuO nanoparticles

    KAUST Repository

    Gondal, M. A.

    2013-08-01

    Nano-structured Cupric Oxide (CuO) has been synthesized using pulsed laser ablation of pure copper in water using Q-switched pulsed laser beam of 532 nm wavelength and, 5 nanosecond pulse duration and laser pulse energy of 100 mJ/pulse. In the initial unannealed colloidal suspension, the nanoparticles of Copper (Cu) and Cuprious oxide (Cu2O) were identified. Further the suspension was dried and annealed at different temperatures and we noticed the product (Cu/Cu2O) was converted predominantly into CuO at annealing temperature of 300 \\'C for 3 hours. As the annealing temperature was raised from 300 to 900 \\'C, the grain sizes of CuO reduced to the range of 9 to 26 nm. The structure and the morphology of the prepared samples were investigated using X-ray diffraction and Transmission Electron Microscope. Photoluminescence and UV absorption spectrometrystudies revealed that the band gap and other optical properties of nano-structured CuO were changed due to post annealing. Fourier transform spectrometry also confirmed the transformation of Cu/Cu2O into CuO. Copyright © 2013 American Scientific Publishers All rights reserved.

  4. CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meixia [Hebei University of Engineering, Faculty of Material Science and Engineering (China); Guo, Qingbin, E-mail: guoqingbinhue@163.com [Hebei University of Engineering, Academic Affairs office (China); Xie, Juan; Li, Yongde; Feng, Yapeng [Hebei University of Engineering, Faculty of Material Science and Engineering (China)

    2017-01-15

    Developing highly active catalysts to promote the electrocatalytic glucose oxidation (EGO) is a crucial demand for non-enzymatic glucose sensing. Herein, we reported the use of nitrogen and sulfur co-doped graphene (NSG) as a novel support material for anchoring CuO nanoparticles and obtained CuO/NSG was employed as an efficient EGO catalyst for non-enzymatic glucose sensing. The results showed that the NSG endowed the CuO/NSG with large surface area, increased structural defects, improved conductivity, and strong covalent coupling between NSG and CuO. Owing to the significant contribution of NSG and the synergistic effect of NSG and CuO, the CuO/NSG exhibited a remarkably higher EGO activity than CuO and CuO/reduced graphene oxide. The CuO/NSG-based sensor displayed excellent glucose sensing performances with a considerably low detection limit of 0.07 μM. These findings elucidate that the NSG is a promising support material for non-enzymatic glucose detection.

  5. Green Synthesis and Characterizations of Flower Shaped CuO Nanoparticles for Biodiesel Application

    Directory of Open Access Journals (Sweden)

    Rintu Varghese

    2017-03-01

    Full Text Available Nanomaterials are primary candidates to play a key role in energy future. In this work, plant-mediated green synthesis of CuO nanoparticles was studied. The CuO nanoparticles were used as the catalysts for the production of biodiesel from coconut oil. An aqueous extract of Centella Asiatica leaves was used as a bio-reducing agent for the synthesis of CuO nanoparticles. This biocatalyst was characterized by using different techniques (FTIR, UV-Vis spectroscopy, XRD, FESEM with EDX which were confirmed the formation of CuO nanoparticles. Further, the presences of FAME (Fatty Acid Methyl Ester groups at the produced biodiesel were confirmed using both the GC-MS and FTIR analysis. From this work, it has been concluded that the plant extract mediated synthesis of CuO nanoparticles is quite simple, cost-effective and environmentally friendly. The produced biodiesel from coconut oil is considered to be a potential source for alternative conventional fuel.

  6. Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions.

    NARCIS (Netherlands)

    Zhao, Jing; Liu, Yang; Pan, Bo; Gao, Guoqian; Liu, Ying; Liu, Siqian; Liang, Ni; Zhou, Dandan; Vijver, Martina G; Peijnenburg, Willie J G M

    2017-01-01

    The increasing number of applications in which copper oxide nanoparticles (CuO NPs) are used, may lead to potential release of CuO NPs into the environment. However, the impact of natural organic matters on the behavior and fate of CuO NPs in aquatic media is still largely unknown. In this study,

  7. Comparison of Antibacterial Effects of ZnO and CuO Nanoparticles Coated Brackets against Streptococcus Mutans.

    Science.gov (United States)

    Ramazanzadeh, Baratali; Jahanbin, Arezoo; Yaghoubi, Masoud; Shahtahmassbi, Nasser; Ghazvini, Kiarash; Shakeri, Mohammadtaghi; Shafaee, Hooman

    2015-09-01

    During the orthodontic treatment, microbial plaques may accumulate around the brackets and cause caries, especially in high-risk patients. Finding ways to eliminate this microbial plaque seems to be essential. The aim of this study was to compare the antibacterial effects of nano copper oxide (CuO) and nano zinc oxide (ZnO) coated brackets against Streptococcus mutans (S.mutans) in order to decrease the risk of caries around the orthodontic brackets during the treatment. Sixty brackets were coated with nanoparticles of ZnO (n=20), CuO (n=20) and CuO-ZnO (n=20). Twelve uncoated brackets constituted the control group. The brackets were bonded to the crowns of extracted premolars, sterilized and prepared for antimicrobial tests (S.mutans ATCC35668). The samples taken after 0, 2, 4, 6 and 24 hours were cultured on agar plates. Colonies were counted 24 hours after incubation. One-way ANOVA and Tukey tests were used for statistical analysis. In CuO and CuO-ZnO coated brackets, no colony growth was seen after two hours. Between 0-6 hours, the mean colony counts were not significantly different between the ZnO and the control group (p>0.05). During 6-24 hours, the growth of S.mutans was significantly reduced by ZnO nanoparticles in comparison with the control group (pbrackets have better antimicrobial effect on S.mutans than ZnO coated brackets.

  8. Azide-Alkyne Huisgen [3+2] Cycloaddition Using CuO Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hyunjoon Song

    2012-11-01

    Full Text Available Recent developments in the synthesis of CuO nanoparticles (NPs and their application to the [3+2] cycloaddition of azides with terminal alkynes are reviewed. With respect to the importance of click chemistry, CuO hollow NPs, CuO hollow NPs on acetylene black, water-soluble double-hydrophilic block copolymer (DHBC nanoreactors and ZnO–CuO hybrid NPs were synthesized. Non-conventional energy sources such as microwaves and ultrasound were also applied to these click reactions, and good catalytic activity with high regioselectivity was observed. CuO hollow NPs on acetylene black can be recycled nine times without any loss of activity, and water-soluble DHBC nanoreactors have been developed for an environmentally friendly process.

  9. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kumaresa P S; Dhawale, Dattatray S; Ariga, Katsuhiko; Vinu, Ajayan [International Center for Materials Nanoarchitectonics (MANA), World Premier International (WPI) Research Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sivakumar, Thiripuranthagan [Department of Chemical Engineering, Anna University, Gundy, Chennai 600025 (India); Aldeyab, Salem S [Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, PO Box 2455 Riyadh 11451 (Saudi Arabia); Zaidi, Javaid S M, E-mail: vinu.ajayan@nims.go.jp [Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-08-15

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g{sup -1} at a 20 mV s{sup -1} scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  10. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Science.gov (United States)

    Prasad, Kumaresa P. S.; Dhawale, Dattatray S.; Sivakumar, Thiripuranthagan; Aldeyab, Salem S.; Zaidi, Javaid S. M.; Ariga, Katsuhiko; Vinu, Ajayan

    2011-08-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  11. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    Directory of Open Access Journals (Sweden)

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    Full Text Available We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD, high-resolution scanning electron microscopy (HRSEM and high-resolution transmission electron microscopy (HRTEM. XRD results reveal that nanoporous carbons with embedded CuO nanoparticles exhibit a well-ordered mesoporous structure, whereas the nitrogen adsorption measurements indicate the presence of excellent textural characteristics such as high surface area, large pore volume and uniform pore size distribution. The amount of CuO nanoparticles in the nanochannels of the nanoporous carbon could be controlled by simply varying the Si/Cu molar ratio of the mesoporous silica template. Morphological characterization by SEM and TEM reveals that high-quality CuO nanoparticles are distributed homogeneously within the nanoporous carbon framework. The supercapacitance behavior of the CuO-loaded nanoporous carbons was investigated. The material with a small amount of CuO in the mesochannels and high surface area affords a maximum specific capacitance of 300 F g-1 at a 20 mV s-1 scan rate in an aqueous electrolyte solution. A supercapacitor containing the CuO-loaded nanoporous carbon is highly stable and exhibits a long cycle life with 91% specific capacitance retained after 1000 cycles.

  12. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects

    International Nuclear Information System (INIS)

    Chibber, Sandesh; Ansari, Shakeel Ahmed; Satar, Rukhsana

    2013-01-01

    Nanomaterials and nanotechnology have attracted more and more attention due to their wide ranges of applications in various fields. With a high level of surface energy, high magnetism, high surface area, and low melting point, engineered nanoparticles (ENPs) has been widely used in industry for various applications. Metal nanoparticles, in particular, have been shown to cause significant biological effects. Review discusses cytotoxic to neurotoxic effects of CuO, ZnO, and TiO 2 nanoparticles based on the scenario drawn from various in vitro and in vivo studies. ENPs such as TiO 2 and ZnO NPs have great practical importance in industrial applications. CuO NPs is also widely used in biomedical applications as catalyst supports, drug carriers, and gene delivery. However, study conducted on TiO 2 NPs have forecast that oxidative DNA damage could be attributed due to reduced glutathione levels with concomitant increase in lipid peroxidation and reactive oxygen species generation. Moreover, there are many evidences showing that ZnO NP and CuO NPs generates ROS production and can cause cell death in different types of cultured cell. Nanoparticle toxicity is assessed by set of tests designed to characterize a given risk and also the mechanism for related outcomes. Conclusively, it becomes more and more important for nanotechnologist to understand the potential health effects of ENPs and what new methodology can be applied to reveal problems like gene silencing and inhibition in antioxidant defense mechanism which can be occurred on severe effects to oxidative stress by ENPs.

  13. New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects

    Science.gov (United States)

    Chibber, Sandesh; Ansari, Shakeel Ahmed; Satar, Rukhsana

    2013-04-01

    Nanomaterials and nanotechnology have attracted more and more attention due to their wide ranges of applications in various fields. With a high level of surface energy, high magnetism, high surface area, and low melting point, engineered nanoparticles (ENPs) has been widely used in industry for various applications. Metal nanoparticles, in particular, have been shown to cause significant biological effects. Review discusses cytotoxic to neurotoxic effects of CuO, ZnO, and TiO2 nanoparticles based on the scenario drawn from various in vitro and in vivo studies. ENPs such as TiO2 and ZnO NPs have great practical importance in industrial applications. CuO NPs is also widely used in biomedical applications as catalyst supports, drug carriers, and gene delivery. However, study conducted on TiO2 NPs have forecast that oxidative DNA damage could be attributed due to reduced glutathione levels with concomitant increase in lipid peroxidation and reactive oxygen species generation. Moreover, there are many evidences showing that ZnO NP and CuO NPs generates ROS production and can cause cell death in different types of cultured cell. Nanoparticle toxicity is assessed by set of tests designed to characterize a given risk and also the mechanism for related outcomes. Conclusively, it becomes more and more important for nanotechnologist to understand the potential health effects of ENPs and what new methodology can be applied to reveal problems like gene silencing and inhibition in antioxidant defense mechanism which can be occurred on severe effects to oxidative stress by ENPs.

  14. Legionella pneumophila transcriptional response following exposure to CuO nanoparticles

    Science.gov (United States)

    Copper ions are an effective antimicrobial agent used to control Legionnaires’ disease and Pontiac fever arising from institutional drinking water systems. Here we present data on an alternative bactericidal agent, CuO nanoparticles (CuO-NPs), and test its efficacy at three conce...

  15. Theory of phonon properties in doped and undoped CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bahoosh, S.G. [Institute of Physics, Martin-Luther-University, D-06099 Halle (Germany); Apostolov, A.T. [University of Architecture, Civil Engineering and Geodesy Faculty of Hydrotechnics, Department of Physics, 1, Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Apostolova, I.N. [University of Forestry, Faculty of Forest Industry, 10, Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria); Wesselinowa, J.M., E-mail: julia@phys.uni-sofia.bg [University of Sofia, Department of Physics, 5 J. Bouchier Blvd., 1164 Sofia (Bulgaria)

    2012-07-02

    We have studied the phonon properties of CuO nanoparticles and have shown the importance of the anharmonic spin–phonon interaction. The Raman peaks of CuO nanoparticles shift to lower frequency and become broader as the particle size decreases in comparison with those of bulk CuO crystals owing to size effects. By doping with different ions, in dependence of their radius compared to the host ionic radius the phonon energies ω could be reduced or enhanced. The phonon damping is always enhanced through the ion doping effects. -- Highlights: ► The phonon properties of CuO nanoparticles are studied using a miscroscopic model. ► The phonon energy decreases whereas the damping increases with decreasing of particle size. ► It is shown the importance of the anharmonic spin–phonon interaction. ► By doping with RE-ions the phonon energy is reduced, whereas with TM-ions it is enhanced. ► The phonon damping is always enhanced through the ion doping effects.

  16. Room temperature ferromagnetism in Fe-doped CuO nanoparticles.

    Science.gov (United States)

    Layek, Samar; Verma, H C

    2013-03-01

    The pure and Fe-doped CuO nanoparticles of the series Cu(1-x)Fe(x)O (x = 0.00, 0.02, 0.04, 0.06 and 0.08) were successfully prepared by a simple low temperature sol-gel method using metal nitrates and citric acid. Rietveld refinement of the X-ray diffraction data showed that all the samples were single phase crystallized in monoclinic structure of space group C2/c with average crystallite size of about 25 nm and unit cell volume decreases with increasing iron doping concentration. TEM micrograph showed nearly spherical shaped agglomerated particles of 4% Fe-doped CuO with average diameter 26 nm. Pure CuO showed weak ferromagnetic behavior at room temperature with coercive field of 67 Oe. The ferromagnetic properties were greatly enhanced with Fe-doping in the CuO matrix. All the doped samples showed ferromagnetism at room temperature with a noticeable coercive field. Saturation magnetization increases with increasing Fe-doping, becomes highest for 4% doping then decreases for further doping which confirms that the ferromagnetism in these nanoparticles are intrinsic and are not resulting from any impurity phases. The ZFC and FC branches of the temperature dependent magnetization (measured in the range of 10-350 K by SQUID magnetometer) look like typical ferromagnetic nanoparticles and indicates that the ferromagnetic Curie temperature is above 350 K.

  17. Cupric Oxide (CuO) Oxidation Detects Pyrogenic Carbon in Burnt Organic Matter and Soils

    Science.gov (United States)

    Hatten, Jeff; Goñi, Miguel

    2016-01-01

    Wildfire greatly impacts the composition and quantity of organic carbon stocks within watersheds. Most methods used to measure the contributions of fire altered organic carbon–i.e. pyrogenic organic carbon (Py-OC) in natural samples are designed to quantify specific fractions such as black carbon or polyaromatic hydrocarbons. In contrast, the CuO oxidation procedure yields a variety of products derived from a variety of precursors, including both unaltered and thermally altered sources. Here, we test whether or not the benzene carboxylic acid and hydroxy benzoic acid (BCA) products obtained by CuO oxidation provide a robust indicator of Py-OC and compare them to non-Py-OC biomarkers of lignin. O and A horizons from microcosms were burned in the laboratory at varying levels of fire severity and subsequently incubated for 6 months. All soils were analyzed for total OC and N and were analyzed by CuO oxidation. All BCAs appeared to be preserved or created to some degree during burning while lignin phenols appeared to be altered or destroyed to varying extents dependent on fire severity. We found two specific CuO oxidation products, o-hydroxybenzoic acid (oBd) and 1,2,4-benzenetricarboxylic acid (BTC2) that responded strongly to burn severity and withstood degradation during post-burning microbial incubations. Interestingly, we found that benzene di- and tricarboxylic acids (BDC and BTC, respectively) were much more reactive than vanillyl phenols during the incubation as a possible result of physical protection of vanillyl phenols in the interior of char particles or CuO oxidation derived BCAs originating from biologically available classes of Py-OC. We found that the ability of these compounds to predict relative Py-OC content in burned samples improved when normalized by their respective BCA class (i.e. benzene monocarboxylic acids (BA) and BTC, respectively) and when BTC was normalized to total lignin yields (BTC:Lig). The major trends in BCAs imparted by burning

  18. A Root-Colonizing Pseudomonad Lessens Stress Responses in Wheat Imposed by CuO Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Melanie Wright

    Full Text Available Nanoparticle (NPs containing essential metals are being considered in formulations of fertilizers to boost plant nutrition in soils with low metal bioavailability. This paper addresses whether colonization of wheat roots by the bacterium, Pseudomonas chlororaphis O6 (PcO6, protected roots from the reduced elongation caused by CuO NPs. There was a trend for slightly elongated roots when seedlings with roots colonized by PcO6 were grown with CuO NPs; the density of bacterial cells on the root surface was not altered by the NPs. Accumulations of reactive oxygen species in the plant root cells caused by CuO NPs were little affected by root colonization. However, bacterial colonization did reduce the extent of expression of an array of genes associated with plant responses to stress induced by root exposure to CuO NPs. PcO6 colonization also reduced the levels of two important chelators of Cu ions, citric and malic acids, in the rhizosphere solution; presumably because these acids were used as nutrients for bacterial growth. There was a trend for lower levels of soluble Cu in the rhizosphere solution and reduced Cu loads in the true leaves with PcO6 colonization. These studies indicate that root colonization by bacterial cells modulates plant responses to contact with CuO NPs.

  19. Oxidative fabrication of patterned, large, non-flaking CuO nanowire arrays

    International Nuclear Information System (INIS)

    Mumm, F; Sikorski, P

    2011-01-01

    We report a simple and fast approach to fabricate large, non-flaking arrays of CuO nanowires by oxidizing thin copper substrates in air. Oxidative CuO nanowire growth is commonly accompanied by oxide layer flaking due to stress at the copper-copper oxide interface. Using thin substrates is shown to prevent this flaking by introducing favourable material thickness ratios in the samples after oxidation. Additionally, thin foils allow larger scale topographic patterns to be transferred from an underlying mould to realize non-flat, nanowire-decorated surfaces. Further patterning is possible by electrodeposition of a nickel layer, which restricts nanowire growth to specific areas of the sample.

  20. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba

    International Nuclear Information System (INIS)

    Perreault, François; Popovic, Radovan; Dewez, David

    2014-01-01

    In this report, we investigated how the presence of a polymer shell (poly(styrene-co-butyl acrylate) alters the toxicity of CuO NPs in Lemna gibba. Based on total Cu concentration, core–shell CuO NPs were 10 times more toxic than CuO NPs, inducing a 50% decrease of growth rate at 0.4 g l −1 after 48-h of exposure while a concentration of 4.5 g l −1 was required for CuO NPs for a similar effect. Toxicity of CuO NPs was mainly due to NPs solubilization in the media. Based on the accumulated copper content in the plants, core–shell CuO NPs induced 4 times more reactive oxygen species compared to CuO NPs and copper sulfate, indicating that the presence of the polymer shell changed the toxic effect induced in L. gibba. This effect could not be attributed to the polymer alone and reveals that surface modification may change the nature of NPs toxicity. -- Highlights: • Bare and polymer-coated CuO nanoparticles were toxic to Lemna gibba. • Toxicity of bare CuO was mainly due to solubilized soluble copper. • Coated CuO accumulated inside the plants four times more. • Formation of reactive oxygen species was increased by polymer coating. • Coating of nanomaterials modifies mechanisms of action at cellular level. -- Polymer coating increases oxidative stress effect by core–shell CuO nanoparticles

  1. Speciation of ZnO and CuO nanoparticles exposed to culture medium and lymphocyte cells

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spectral fits and linear combination data for ZnO and CuO nanoparticles exposure during toxicity testing. This dataset is associated with the following publication:...

  2. Effect of aqueous media on the copper-ion-mediated phototoxicity of CuO nanoparticles toward green fluorescent protein-expressing Escherichia coli.

    Science.gov (United States)

    Shang, Enxiang; Li, Yang; Niu, Junfeng; Guo, Huiyuan; Zhou, Yijing; Liu, Han; Zhang, Xinqi

    2015-12-01

    Quantitative comparison of different aqueous media on the phototoxicity of copper oxide nanoparticles (CuO NPs) is crucial for understanding their ecological effects. In this study, the phototoxicity of CuO NPs toward the green fluorescent protein-expressing Escherichia coli (GFP-E. coli) under UV irradiation (365 nm) was investigated in Luria-Bertani medium (LB), NaCl solution, deionized water (DI) and phosphate-buffered saline (PBS). The phototoxicity of CuO NPs toward GFP-E. coli decreased in the order of DI>NaCl>PBS>LB because of different released concentrations of Cu(2+). The 3h released Cu(2+) concentrations by 10mg/L CuO NPs in DI water, NaCl solution, LB medium, and PBS were 1946.3 ± 75.6, 1242.5 ± 47.6, 1023.4 ± 41.2, and 1162.1 ± 41.9 μg/L, respectively. Transmission electron microscope and laser scanning confocal microscope images of E. coli exposed to CuO NPs demonstrated that the released Cu(2+) resulted in fragmentation of bacterial cell walls, leakage of intracellular components, and finally death of bacteria in four media after UV light irradiation. In each medium, the bacterial mortality rate logarithmically increased with the releasing concentrations of Cu(2+) by CuO NPs (R(2)>0.90) exposed to 3h UV light. This study highlights the importance of taking into consideration of water chemistry when the phototoxicity of CuO NPs is assessed in nanotoxicity research. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    International Nuclear Information System (INIS)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu

    2016-01-01

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V Cu , V O ) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V − Cu - V + O complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  4. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    International Nuclear Information System (INIS)

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2015-01-01

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu 2+ /total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  5. Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Lingzhan; Wang, Chao; Hou, Jun, E-mail: hhuhjyhj@126.com; Wang, Peifang; Ao, Yanhui; Li, Yi; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi [Hohai University, Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education (China)

    2015-10-15

    Stability of engineered nanoparticles in aquatic environment is an essential parameter to evaluate their fate, bioavailability, and potential toxic effects toward living organisms. As CuO NPs enter the wastewater systems, they will encounter extracellular polymeric substances (EPS) from microbial community before directly interacting with bacterial cells. EPS may play an important role in affecting the stability and the toxicity of CuO NPs in aquatic environment. In this study, the influences of flocculent sludge-derived EPS, as well as model protein (BSA) and natural polysaccharides (alginate) on the dissolution kinetics and colloidal stability of CuO NPs were investigated. Results showed that the presence of NOMs strongly suppressed CuO NPs aggregation, confirmed by DLS, zeta potentials, and TEM analysis. The enhanced stability of CuO NPs in the presence of EPS and alginate were attributed to the electrostatic combined with steric repulsion, while the steric-hindrance effect may be the predominant mechanism retarding nano-CuO aggregation for BSA. Higher degrees of copper release were achieved with the increasing concentrations of NOMs. EPS are more effective than alginate and BSA in releasing copper, probably due to the abundant functional groups and the excellent metal-binding capacity. The ratio of free-Cu{sup 2+}/total dissolved Cu significantly decreased in the presence of EPS, indicating that EPS may affect the speciation and Cu bioavailability in aqueous environment. These results may be important for assessing the fate and transport behaviors of CuO NPs in the environment as well as for setting up usage regulation and treatment strategy.

  6. Obtention of superconductivity by room temperature electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Casan-Pastor, N.; Fuertes, A.; Gomez-Romero, P.

    1993-01-01

    The undoped oxide La2CuO4 has required traditionally synthesis under high pressure of oxygen (and high temperatures) to incorporate excess oxygen into its structure and become a superconductor. The electrochemical oxidation of this same oxide at room temperature and pressure constitutes a striking example of the use of an alternative driving force for the oxidation of oxides to become superconductors. Electrochemical treatment of oxides has been frequently applied to their reduction with cationic intercalation. Oxidations of these solid with the concomitant intercalation of anions into their lattice shows also great promises. The paper reports recent results in the electrochemical oxidation of La2CuO4 and other cuprates, showing also the important role of post-oxidation thermal treatments on the properties of the resulting solids

  7. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application

    Directory of Open Access Journals (Sweden)

    Thekkae Padil VV

    2013-02-01

    Full Text Available Vinod Vellora Thekkae Padil, Miroslav ČerníkLaboratory of Chemical Remediation Processes, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec, Czech RepublicBackground: Copper oxide (CuO nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial application.Methods: The CuO nanoparticles were synthesized by a colloid-thermal synthesis process. The mixture contained various concentrations of CuCl2 · 2H2O (1 mM, 2 mM, and 3 mM and gum karaya (10 mg/mL and was kept at 75°C at 250 rpm for 1 hour in an orbital shaker. The synthesized CuO was purified and dried to obtain different sizes of the CuO nanoparticles. The well diffusion method was used to study the antibacterial activity of the synthesized CuO nanoparticles. The zone of inhibition, minimum inhibitory concentration, and minimum bactericidal concentration were determined by the broth microdilution method recommended by the Clinical and Laboratory Standards Institute.Results: Scanning electron microscopy analysis showed CuO nanoparticles evenly distributed on the surface of the gum matrix. X-ray diffraction of the synthesized nanoparticles indicates the formation of single-phase CuO with a monoclinic structure. The Fourier transform infrared spectroscopy peak at 525 cm−1 should be a stretching of CuO, which matches up to the B2u mode. The peaks at 525 cm−1 and 580 cm−1 indicated the formation of CuO nanostructure. Transmission electron microscope analyses revealed CuO nanoparticles of 4.8 ± 1.6 nm, 5.5 ± 2.5 nm, and 7.8 ± 2.3 nm sizes were synthesized with various concentrations of CuCl2 · 2H2O (1 mM, 2 mM, and

  8. CuO nanoparticles and their antimicrobial activity against nosocomial strains

    Directory of Open Access Journals (Sweden)

    Mónica Marcela Gómez León

    2017-09-01

    Full Text Available Using a prototype reactor, CuO nanoparticles (NPs were synthetized through the precipitation method, starting from CuSO2·5H2O and Cu(CH3COO2·H2O. The obtained NPs were characterized by XDR, FT-IR, SEM, and TEM. The antimicrobial activity of the NPs was determined by the plate diffusion method, placing 20 mg of NPs onto four nosocomial strains obtained from north Lima national hospital Intensive-Care Unit (Staphylococcus epidermidis, Aerococcus viridans, Ochrobactrum anthropic, and Micrococcus lylae. NPs characterization revealed that those synthetized from acetate (CuO–Acet shown pure CuO phase, while those synthetized from sulphate CuO–Sulf shown two phases where CuO was the predominant one, having more than 84%. The crystal domains for CuO–Acet and CuO–Sulf were 15 and 19 nm, respectively. The inhibition halos for the studied strains were larger for CuO–Sulf NPs than CuO–Acet NPs, only Ochrobactrum anthropi displayed similar inhibition halos for both types of NPs.

  9. Use of Vegetable Waste Extracts for Controlling Microstructure of CuO Nanoparticles: Green Synthesis, Characterization, and Photocatalytic Applications

    Directory of Open Access Journals (Sweden)

    Hameed Ullah

    2017-01-01

    Full Text Available Chemical syntheses involve either hazardous reactants or byproducts which adversely affect the environment. It is, therefore, desirable to develop synthesis processes which either do not involve hazardous reactants or consume all the reactants giving no byproducts. We have synthesized CuO nanoparticles (NPs adhering to some of the principles of green chemistry. The CuO NPs have been synthesized exploiting extracts of vegetable wastes, that is, Cauliflower waste and Potatoes and Peas peels. The extracts were aimed to work as capping agents to get control over the microstructure and morphology of the resulting CuO NPs. The green synthesized CuO NPs were characterized to explore the microstructure, morphology, optical bandgaps, and photocatalytic performances. XRD revealed that the CuO NPs of all the samples crystallized in a single crystal system, that is, monoclinic. However, the morphologies and the optical bandgaps energies varied as a function of the extract of vegetable waste. Similarly, the CuO NPs obtained through different extracts have shown different photocatalytic activities. The CuO NPs produced with extract of Cauliflower have shown high degradation of MB (96.28% compared to obtained with Potatoes peels (87.37% and Peas peels (79.11%.

  10. Preparation of CuO nanoparticles by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Abdulateef, Sinan A., E-mail: sinan1974@yahoo.com; MatJafri, M. Z.; Omar, A. F., E-mail: thinker-academy@yahoo.com; Ahmed, Naser M.; Azzez, Shrook A. [School of Physics, USM, 11800 Penang (Malaysia); Ibrahim, Issam M. [Baghdad university, physics department (Iraq); Al-Jumaili, Batool E. B. [Department of Physics, (UPM), Serdang, Selangor 43400 (Malaysia)

    2016-07-06

    Colloidal Cu nanoparticles (NPs) were synthesized by pulsed Nd:YAG laser ablation in acetone. Cu NPs were converted into CuO. The size and optical properties of these NPs were characterized using an UV/Vis spectrophotometer, transmission electron microscopy, and X-ray diffraction. Cu NPs were spherical, and their mean diameter in acetone was 8 nm–10 nm. Optical extinction immediately after the ablation showed surface Plasmon resonance peaks at 602 nm. The color of Cu NPs in acetone was green and stable even after a long time.

  11. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos.

    Science.gov (United States)

    Naatz, Hendrik; Lin, Sijie; Li, Ruibin; Jiang, Wen; Ji, Zhaoxia; Chang, Chong Hyun; Köser, Jan; Thöming, Jorg; Xia, Tian; Nel, Andre E; Mädler, Lutz; Pokhrel, Suman

    2017-01-24

    The safe implementation of nanotechnology requires nanomaterial hazard assessment in accordance with the material physicochemical properties that trigger the injury response at the nano/bio interface. Since CuO nanoparticles (NPs) are widely used industrially and their dissolution properties play a major role in hazard potential, we hypothesized that tighter bonding of Cu to Fe by particle doping could constitute a safer-by-design approach through decreased dissolution. Accordingly, we designed a combinatorial library in which CuO was doped with 1-10% Fe in a flame spray pyrolysis reactor. The morphology and structural properties were determined by XRD, BET, Raman spectroscopy, HRTEM, EFTEM, and EELS, which demonstrated a significant reduction in the apical Cu-O bond length while simultaneously increasing the planar bond length (Jahn-Teller distortion). Hazard screening was performed in tissue culture cell lines and zebrafish embryos to discern the change in the hazardous effects of doped vs nondoped particles. This demonstrated that with increased levels of doping there was a progressive decrease in cytotoxicity in BEAS-2B and THP-1 cells, as well as an incremental decrease in the rate of hatching interference in zebrafish embryos. The dissolution profiles were determined and the surface reactions taking place in Holtfreter's solution were validated using cyclic voltammetry measurements to demonstrate that the Cu + /Cu 2+ and Fe 2+ /Fe 3+ redox species play a major role in the dissolution process of pure and Fe-doped CuO. Altogether, a safe-by-design strategy was implemented for the toxic CuO particles via Fe doping and has been demonstrated for their safe use in the environment.

  12. Coordination-induced formation of nanometer-scale infinite coordination polymer at room temperature and conversion to CuO nanoparticles

    Science.gov (United States)

    Mohammadikish, Maryam; Zafari, Zohreh

    2018-03-01

    In this work, the construction of CuO nanoparticles semiconductor utilizing infinite coordination polymers (ICPs) as precursor was investigated. After successful functionalization of salpn (salpn = N,N‧-Bis(salicylidene)-1,3-propanediamine) ligand with sodium thioglycolate, bi-thioglycolate functionalized salpn linker was obtained, which was further transformed into Cu-ICP nanoparticles by simple precipitation method in the presence of Cu2+ cations. The mechanism of morphology evolution was illustrated by systematic time dependent studies, which demonstrated the preparation of Cu-ICP nanoparticles in shortest possible time, 5 min. Photoluminescence spectra show the emission quenching of the bi-thioglycolate functionalized salpn linker due to coordination to copper ion. In addition, the copper oxide nanoparticles are fabricated by thermal decomposition of the Cu-ICP precursor which showed larger band gap compared to bulk counterpart.

  13. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles

    International Nuclear Information System (INIS)

    Chowdhuri, Arijit; Gupta, Vinay; Sreenivas, K.; Kumar, Rajeev; Mozumdar, Subho; Patanjali, P. K.

    2004-01-01

    CuO nanoparticles on sputtered SnO 2 thin-film surface exhibit a fast response speed (14 s) and recovery time (61 s) for trace level (20 ppm) H 2 S gas detection. The sensitivity of the sensor (S∼2.06x10 3 ) is noted to be high at a low operating temperature of 130 deg. C. CuO nanoparticles on SnO 2 allow effective removal of excess adsorbed oxygen from the uncovered SnO 2 surface due to spillover of hydrogen dissociated from the H 2 S-CuO interaction

  14. Positron annihilation spectroscopy study on annealing effect of CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianjian; Wang, Jiaheng; Yang, Wei; Zhu, Zhejie; Wu, Yichu, E-mail: ycwu@whu.edu.cn [School of Physics and Technology, Hubei Key Laboratory of Nuclear Solid State Physics, Wuhan University (WHU), Wuhan (China)

    2016-03-15

    The microstructure and defects of CuO nanoparticles under isochronal annealing were investigated by positron annihilation spectroscopy (PAS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD and SEM results indicated that the average grain sizes of CuO nanoparticles grew slowly below 800 °C, and then increased rapidly with the annealing temperature from 800 to 1000 °C. Positron lifetime analysis exhibited that positrons were mainly annihilated in mono-vacancies (V{sub Cu}, V{sub O}) and vacancy clusters when annealing from 200 to 800 °C. Furthermore, W-S plot of Doppler broadening spectra at different annealing temperatures found that the (W, S) points distributed on two different defect species, which suggested that V{sup −}{sub Cu} - V{sup +}{sub O} complexes were produced when the grains grew to bigger size after annealing above 800 °C, and positrons might annihilate at these complexes. (author)

  15. Influence of CuO nanoparticle on palm oil based alkyd resin preparation and its antimicrobial activity

    Science.gov (United States)

    Ruey Ong, Huei; Maksudur Rahman Khan, Md.; Ramli, Ridzuan; Shein Hong, Chi; Yunus, Rosli Mohd

    2018-03-01

    An alkyd resin has been synthesized from palm oil that reacted with glycerol and phthalic anhydride by alcoholysis-polyesterification process and co-catalyzed by CuO nanoparticle. The CuO nanoparticle was pre-prepared in the glycerol via sol gel method, which creates a new reaction condition for resin preparation. The resins were characterized by fourier transform infrared spectroscopy (FTIR), where a new ester linkage bond (C-O-C) was noticed for resin sample. The antimicrobial activity and the curing behaviour of the resin were determined by Kirby-Bauer and differential scanning calorimeter technique. It was found that, the addition of CuO speeded up the reaction rate and played antimicrobial role. Moreover, it shortens the reaction time of alcoholysis and polyesterification process.

  16. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos.

    Science.gov (United States)

    Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria

    2018-06-14

    Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The effects of CuO nanoparticles on properties of self compacting concrete with GGBFS as binder

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2011-09-01

    Full Text Available In this work, strength assessments and percentage of water absorption of high performance self compacting concrete containing different amounts of ground granulated blast furnace slag and CuO nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early age of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (% at later ages. CuO nanoparticles with the average particle size of 15 nm were partially added to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. CuO nanoparticle as a partial replacement of cement up to 3.0 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased the CuO nanoparticles' content more than 3.0 wt. (%, causes the reduced the split tensile strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. More rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that CuO nanoparticles could improve mechanical and physical properties of the concrete specimens.

  18. Facile Synthesis of Copper Oxide Nanoparticles via Electrospinning

    Directory of Open Access Journals (Sweden)

    Abdullah Khalil

    2014-01-01

    Full Text Available A novel approach for synthesizing copper oxide (CuO nanoparticles (NPs through electrospinning is reported. The approach is based on producing rough and discontinuous electrospun nanofibers from a precursor based on copper acetate salt and polyvinyl alcohol (PVA polymer. Selectively removing the polymeric phase from the fibers produced highly rough CuO nanofibers, which were composed of NPs that are weakly held together in a one-dimensional (1D manner. Sonication in a suitable liquid under controlled conditions completely disintegrated the nanofibers into NPs, resulting in the formation of uniform CuO NPs suspension. Aberration corrected high resolution transmission electron microscope (HRTEM showed that the obtained NPs are highly crystalline and nearly sphere-like with a diameter of 30 to 70 nm. Thus, electrospinning, which is a low cost and industrially scalable technique, can also be employed for economic and large scale synthesis of NPs.

  19. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were......V and showed a similar tendency to form agglomerates with a size of ∼200 nm in cell culture environment. The cytotoxicity of CuO NPs to MSCs at various concentrations and incubation periods were firstly evaluated. The CuO NPs showed dose-dependent and time-dependent toxicity to MSCs, and their surface...

  20. Accumulation and Toxicity of CuO and ZnO Nanoparticles through Waterborne and Dietary Exposure of Goldfish (Carassius auratus)

    Science.gov (United States)

    Ates, Mehmet; Arslan, Zikri; Demir, Veysel; Daniels, James; Farah, Ibrahim O.

    2014-01-01

    Dietary and waterborne exposure to CuO and ZnO nanoparticles (NPs) was conducted using a simplified model of an aquatic food chain consisting of zooplankton (Artemia salina) and goldfish (Carassius auratus) to determine bioaccumulation, toxic effects and particle transport through trophic levels. Artemia contaminated with NPs were used as food in dietary exposure. Fish were exposed to suspensions of the NPs in waterborne exposure. ICP-MS analysis showed that accumulation primarily occurred in the intestine, followed by the gills and liver. Dietary uptake was lower, but was found to be a potential pathway for transport of NPs to higher organisms. Waterborne exposure resulted in about a tenfold higher accumulation in the intestine. The heart, brain and muscle tissue had no significant Cu or Zn. However, concentrations in muscle increased with NP concentration, which was ascribed to bioaccumulation of Cu and Zn released from NPs. Free Cu concentration in the medium was always higher than that of Zn, indicating CuO NPs dissolved more readily. ZnO NPs were relatively benign, even in waterborne exposure (p≥0.05). In contrast, CuO NPs were toxic. Malondialdehyde levels in the liver and gills increased substantially (p<0.05). Despite lower Cu accumulation, the liver exhibited significant oxidative stress, which could be from chronic exposure to Cu ions. PMID:24860999

  1. Peroxymonosulfate activation and pollutants degradation over highly dispersed CuO in manganese oxide octahedral molecular sieve

    Science.gov (United States)

    Li, Jun; Ye, Peng; Fang, Jia; Wang, Manye; Wu, Deming; Xu, Aihua; Li, Xiaoxia

    2017-11-01

    Manganese oxide octahedral molecular sieves (OMS-2) supported CuO catalysts were synthesized, characterized and used in the removal of Acid Orange 7 (AO7) in aqueous solution by an oxidation process involving peroxymonosulfate (PMS). It was found that the CuO species were highly dispersed in OMS-2 with a high ratio of easily reduced surface oxygen species. The synergetic effect between CuO and OMS-2 significantly improved the dye degradation rate and catalytic stability, compared with CuO, OMS-2 and supported CuO on other materials. About 97% of the dye was removed within 15 min at neutral solution pH by using 0.2 g/L of CuO/OMS-2 and PMS. The effect of initial solution pH, PMS concentration, reaction temperature and CuO content in the composites on AO7 degradation was also investigated. Mechanism study indicated that SO4-rad radicals generated from the interaction between PMS and Mn and Cu species with different oxidation states, mainly accounted for the degradation.

  2. Adsorption and inhibition of CuO nanoparticles on Arabidopsis thaliana root

    Science.gov (United States)

    Xu, Lina

    2018-02-01

    CuO NPs, the size ranging from 20 to 80 nm were used to detect the adsorption and inhibition on the Arabidopsis thaliana roots. In this study, CuO NPs were adsorbed and agglomerated on the surface of root top after exposed for 7 days. With the increasing of CuO NPs concentrations, CuO NPs also adsorbed on the meristernatic zone. The growth of Arabidopsis thaliana lateral roots were also inhibited by CuO NPs exposure. The Inhibition were concentration dependent. The number of root top were 246, 188 and 123 per Arabidopsis thaliana, respectively. The number of root tops after CuO NPs exposure were significantly decreased compared with control groups. This results suggested the phytotoxicity of CuO NPs on Arabidopsis thaliana roots.

  3. Evaluation of a cloud point extraction approach for the preconcentration and quantification of trace CuO nanoparticles in environmental waters

    International Nuclear Information System (INIS)

    Majedi, Seyed Mohammad; Kelly, Barry C.; Lee, Hian Kee

    2014-01-01

    Graphical abstract: - Highlights: • The robustness of cloud point extraction approach was investigated for the analysis of trace CuO NPs in water. • The behavior and fate, and therefore, the recovery of CuO NPs varied substantially under different extraction conditions. • The effects of environmental factors on the NP behavior and extraction were determined and minimized. • Limits of detection of 0.02 and 0.06 μg L −1 were achieved using ICP-MS and GF-AAS, respectively. • Environmental water samples were successfully pre-treated and analyzed. - Abstract: The cloud point extraction (CPE) of commercial copper(II) oxide nanoparticles (CuO NPs, mean diameter of 28 nm) in water samples was fully investigated. Factors such as Triton X-114 (TX-114) concentration, pH, incubation temperature and time, were optimized. The effects of CuO NP behavior like agglomeration, dissolution, and surface adsorption of natural organic matter, Cu 2+ , and coating chemicals, on its recovery were studied. The results indicated that all the CPE factors had significant effects on the extraction efficiency. An enrichment factor of ∼89 was obtained under optimum CPE conditions. The hydrodynamic diameter of CuO NPs increased to 4–5 μm upon agglomeration of NP-micelle assemblies, and decreased at pH >10.0 at which the extraction efficiency was also lowered. The solubility and therefore, the loss of NPs were greatly enhanced at pH 5 mg C L −1 and Cu 2+ >2 times that of CuO NPs, lowered and enhanced the extraction efficiency, respectively. Pre-treatment of samples with 3% w v −1 of hydrogen peroxide and 10 mM of ethylenediaminetetraacetic acid minimized the interferences posed by DOC and Cu 2+ , respectively. The decrease in CPE efficiency was also evident for ligands like poly(ethylene glycol). The TX-114-rich phase could be determined with either inductively coupled plasma mass spectrometry following microwave digestion, or graphite furnace atomic absorption spectrometry

  4. Shape-controlled synthesis of Sn-doped CuO nanoparticles for catalytic degradation of Rhodamine B

    Czech Academy of Sciences Publication Activity Database

    Vomáčka, Petr; Štengl, Václav; Henych, Jiří; Kormunda, M.

    2016-01-01

    Roč. 481, NOV (2016), s. 28-38 ISSN 0021-9797 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Sn-doped CuO * Tin doping * Copper oxide * Catalyst * Catalytic activity * Morphology Subject RIV: CA - Inorganic Chemistry Impact factor: 4.233, year: 2016

  5. Vacancy-Mediated Magnetism in Pure Copper Oxide Nanoparticles

    Science.gov (United States)

    2010-01-01

    Room temperature ferromagnetism (RTF) is observed in pure copper oxide (CuO) nanoparticles which were prepared by precipitation method with the post-annealing in air without any ferromagnetic dopant. X-ray photoelectron spectroscopy (XPS) result indicates that the mixture valence states of Cu1+ and Cu2+ ions exist at the surface of the particles. Vacuum annealing enhances the ferromagnetism (FM) of CuO nanoparticles, while oxygen atmosphere annealing reduces it. The origin of FM is suggested to the oxygen vacancies at the surface/or interface of the particles. Such a ferromagnet without the presence of any transition metal could be a very good option for a class of spintronics. PMID:20671775

  6. Analysis of Anti-Wear Properties of CuO Nanoparticles as Friction Modifiers in Mineral Oil (460cSt Viscosity Using Pin-On-Disk Tribometer

    Directory of Open Access Journals (Sweden)

    S. Bhaumik

    2015-06-01

    Full Text Available The present work investigated the anti-wear properties of CuO nanoparticles based mineral oil using pin-on-disk apparatus. The pin material selected was EN 24(untreated as it is used in gear manufacturing. Commonly used graphite macro particles (wt.% and CuO nanoparticles(wt.% were used as additives. It had been observed that the additives based mineral oil samples exhibited superior antiwear properties than pure mineral oil. Both CuO nanoparticles (0.2 wt.% and graphite (0.2 wt.% based lubricant showed significant decrease in coefficient of friction and specific wear rate. There was a reduction in both coefficient of friction (28.5 % approx. and specific wear rate (70 % approx. in case of CuO nanolubricants and graphite based mineral oil as compared with the pure mineral oil.Flash-fire point, viscosity and viscosity index also increased with the increase in additive concentration. The surface characteristics of the pin were studied using Scanning Electron Microscope (SEM and surface roughness tester. The SEM images showed more rough surfaces in case of pure mineral oil samples as compared with graphite and CuO nanoparticles based samples. The surface roughness values of the pins in case of graphite (0.2 wt.% and CuO nano particles (0.2 wt.% based lubricant were much lesser than pure mineral oil. From the results predicted minimum 0.2 wt.% CuO nanoparticles were required to enhance the antiwear property of the lubricant. This work aimed in bringing a comparative experimental analysis using CuO nanoparticles and commonly used graphite macro particles as lubricant additives on various properties such as viscosity, flash point, fire point, surface roughness and anti-wear properties. Thus, the work would be useful in developing new nano lubricants with minimum additive concentration.

  7. A new way for preparing superconducting materials: the electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Wattiaux, A.; Park, J.C.; Grenier, J.C.; Pouchard, M.

    1990-01-01

    The electrochemical oxidation in alkaline medium is described as a new way for preparing superconducting oxides at room temperature. The application of this method to La 2 CuO 4 gave rise to a metallic material with a superconducting behaviour below 39 K and whose physical and chemical features appear as quite promising [fr

  8. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae

    Directory of Open Access Journals (Sweden)

    Sun Y

    2016-03-01

    Full Text Available Yan Sun, Gong Zhang, Zizi He, Yajie Wang, Jianlin Cui, Yuhao Li Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Copper oxide nanoparticles (CuO NPs are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin–eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae. Keywords: copper oxide nanoparticles

  9. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baldisserri, Carlo, E-mail: carlo.baldisserri@istec.cnr.it; Costa, Anna Luisa [ISTEC-CNR (Italy)

    2016-04-15

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco’s modified Eagle’s medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu{sup 2+} ions or 15 nm CuO nanoparticles. Addition of either Cu{sup 2+} ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu{sup 2+} concentration in Cu{sup 2+}-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu{sup 2+}-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu{sup 2+}-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu{sup 2+} ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  10. Electrochemical detection of copper ions leached from CuO nanoparticles in saline buffers and biological media using a gold wire working electrode

    Science.gov (United States)

    Baldisserri, Carlo; Costa, Anna Luisa

    2016-04-01

    We performed explorative cyclic voltammetry in phosphate-buffered saline buffers, Dulbecco's modified Eagle's medium (DMEM), and fetal bovine serum-added DMEM using Au wire as working electrode, both in the absence and in the presence of known nominal concentrations of Cu2+ ions or 15 nm CuO nanoparticles. Addition of either Cu2+ ions or aqueous suspension of CuO nanoparticles caused a single anodic peak to appear in the double-layer region of all three pristine media. The height of the anodic peak was found to increase in a monotonic fashion vs. Cu2+ concentration in Cu2+-added media, and versus time since CuO addition in CuO-added media. Stepwise addition of glycine to Cu2+-added phosphate-buffered saline buffer caused an increasing cathodic shift of the anodic peak accompanied by decreasing peak currents. Results indicate that preparing Cu2+-free suspensions of CuO nanoparticles in such media is difficult, owing to the presence of leached copper ions. The implications on results of experiments in which CuO nanoparticle-added biological media are used as cell culture substrates are discussed. Literature data on the interactions between Cu2+ ions, dissolved carbon dioxide in aqueous CuO suspensions, and amino acids present in such media are compared to our results.

  11. A density functional theory study of CO oxidation on CuO1-x(111).

    Science.gov (United States)

    Yang, Bing-Xing; Ye, Li-Ping; Gu, Hui-Jie; Huang, Jin-Hua; Li, Hui-Ying; Luo, Yong

    2015-08-01

    The surface structures, CO adsorption, and oxidation-reaction properties of CuO1-x(111) with different reduction degree have been investigated by using density functional theory including on-site Coulomb corrections (DFT + U). Results indicate that the reduction of Cu has a great influence on the adsorption of CO. Electron localization caused by the reduction turns Cu(2+) to Cu(+), which interacts much stronger with CO, and the adsorption strength of CO is related to the electronic interaction with the substrate as well as the structural relaxation. In particular, the electronic interaction is proved to be the decisive factor. The surfaces of CuO1-x(111) with different reduction degree all have good adsorption to CO. With the expansion of the surface reduction degree, the amount of CO that is stably adsorbed on the surface increases, while the number of surface active lattice O decreases. In general, the activity of CO oxidation first rises and then declines.

  12. Intensification of the separation of CuO nanoparticles from their highly diluted suspension using a foam flotation column with S type internal

    International Nuclear Information System (INIS)

    Hu, Nan; Li, Rui; Wu, Zhao-liang; Huang, Di; Li, Hong Zhen

    2015-01-01

    Foam flotation is a promising technique for recovering nanoparticles from their highly diluted suspensions. In this work, a novel S type internal was developed to intensify the foam flotation of CuO nanoparticles (357.6 nm in average particle size) from their suspension of 6.2 × 10 −2  mmol/L. By enhancing foam drainage, the S type internal increased the enrichment ratio of CuO nanoparticles by 139.3 ± 12.5 % without significantly affecting their recovery percentage. Under the optimal conditions of Cetyl trimethyl ammonium bromide (CTAB) concentration 0.45 mmol/L, superficial airflow rate 2.6 mm/s, and volumetric feed rate 1.0 mL/min, the enrichment ratio and recovery percentage of CuO nanoparticles reached 81.6 ± 4.1 and 95.4 ± 4.9 %, respectively, using the foam flotation column with the S type internal. Furthermore, about 95 % CTAB could be recycled by recovering CTAB from the foamate and the residual solution. The recovered CuO nanoparticles were associated with CTAB molecules, so they had better dispersity and dispersion stability than the starting CuO nanoparticles. Therefore, they would have good reusability

  13. Room temperature chemically oxidized La2CuO4+y: Phase separation induced by thermal treatment

    DEFF Research Database (Denmark)

    Rial,C.; Moran, E.; Alario-Franco, M.A.

    1997-01-01

    The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured for this m......The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured...... a short treatment at 433 K, La2CuO4.103(4) undergoes a phase separation into two phases: phase 1, with estimated y(1) = 0.086(4) and T-cl = 30 K, and phase 2, with estimated y(2) = 0.12(1) and T-c2 = 17 K. By increasing the annealing times, phase 2 transforms to phase I and finally disappears. Therefore...

  14. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry of Compounds Containing Carboxyl Groups Using CdTe and CuO Nanoparticles

    OpenAIRE

    Megumi Sakurai; Taro Sato; Jiawei Xu; Soichi Sato; Tatsuya Fujino

    2018-01-01

    Matrix-assisted laser desorption ionization mass spectrometry of compounds containing carboxyl groups was carried out by using semiconductor nanoparticles (CdTe and CuO) as the matrix. Salicylic acid (Sal), glucuronic acid (Glu), ibuprofen (Ibu), and tyrosine (Tyr) were ionized as deprotonated species (carboxylate anions) by using electrons ejected from CdTe after the photoexcitation. When CuO was used as the matrix, the peak intensity of Tyr became high compared with that obtained with CdTe....

  15. A comparative investigation of SO2 oxidative transfer over CuO with a CeO2 surface

    Science.gov (United States)

    Liu, Yifeng; Shen, Benxian; Pi, Zhipeng; Chen, Hua; Zhao, Jigang

    2017-04-01

    To further improve the catalytic desulfurization function of the Mg-Al spinel sulfur transfer agent in a fluid catalytic cracking (FCC) unit, the reaction paths of SO2 oxidation by O2 over the metal oxide surface of CuO (111) and CeO2 (111) were investigated. In reference to the fact that SO2 reacting with O2 over CuO was a Mars-van Krevelen cycle, a similar reaction law for SO2 oxidation over CeO2 was also verified by characterization methods (e.g., IR, XPS). Meanwhile, the molecular simulation results indicated that the rate-control step of SO2 oxidation over CeO2 (111) and CuO (111) was a SO3 desorption step. The lower energy barrier in the rate-control step corresponded to better catalytic performance; hence, it could explain the reason that CeO2 had a better sulfur oxidization transfer performance than CuO.

  16. Improving the Efficiency of DASC by Adding CeO2/CuO Hybrid Nanoparticles in Water

    Science.gov (United States)

    Midhun Mohan, V.; Sajeeb, A. M.

    Solar energy is the abundantly available source of renewable energy with least impact on environment. Direct absorption solar collector (DASC) is the commonly used device to absorb heat directly from sun and make use of it for different heating applications. In the past, many experiments have been done to increase the efficiency of DASC using nanofluids. In this paper, an examination of solar collector efficiency for hybrid CeO2/CuO-water (0.1% by volume) nanofluid under various flow rates and proportions of CeO2/CuO nanoparticles is investigated. The experiments were conducted at flow rates spanning from 20cc/min to 100cc/min and with CeO2/CuO nanoparticles proportions of 1:0, 1:0.5, 1:1, 0.5:1 and 0:1. The efficiency increases from 16.5% to 51.6% when the flow rate is increased from 20cc/min to 100cc/min for hybrid CeO2/CuO (1:1)-water nanofluid. The results also showed an increase in efficiency of 13.8%, 18.1%, 24.3%, 24.9% and 26.1% with hybrid combination of CeO2/CuO at ratios 1:0, 1:0.5, 1:1, 0.5:1 and 0:1, respectively, in comparison with water at a flow rate of 100cc/min.

  17. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    Science.gov (United States)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  18. Bioaccumulation and effects of different-shaped copper oxide nanoparticles in the deposit-feeding snail Potamopyrgus antipodarum

    DEFF Research Database (Denmark)

    Ramskov, Tina; Selck, Henriette; Banta, Gary Thomas

    2014-01-01

    Copper oxide (CuO) nanoparticles (NPs) are among the most widely used engineered NPs and are thus likely to end up in the environment, predominantly in sediments. Copper oxide NPs have been found to be toxic to a variety of (mainly pelagic) organisms, but to differing degrees. In the present stud...

  19. Morphological Control of Mesoporosity and Nanoparticles within Co3O4-CuO Electrospun Nanofibers: Quantum Confinement and Visible Light Photocatalysis Performance.

    Science.gov (United States)

    Pradhan, Amaresh C; Uyar, Tamer

    2017-10-18

    The one-dimensional (1D) mesoporous and interconnected nanoparticles (NPs) enriched composite Co 3 O 4 -CuO nanofibers (NFs) in the ratio Co:Cu = 1/4 (Co 3 O 4 -CuO NFs) composite have been synthesized by electrospinning and calcination of mixed polymeric template. Not merely the mesoporous composite Co 3 O 4 -CuO NFs but also single mesoporous Co 3 O 4 NFs and CuO NFs have been produced for comparison. The choice of mixed polymer templates such as polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) for electrospinning is responsible for the formation of 1D mesoporous NFs. The HR-TEM result showed evolution of interconnected nanoparticles (NPs) and creation of mesoporosity in all electrospun NFs. The quantum confinement is due to NPs within NFs and has been proved by the surface-enhanced Raman scattering (SERS) study and the UV-vis-NRI diffuse reflectance spectra (DRS). The high intense photoluminescence (PL) spectra showing blue shift of all NFs also confirmed the quantum confinement phenomena. The lowering of PL spectrum after mixing of CuO in Co 3 O 4 nanofibers framework (Co 3 O 4 -CuO NFs) proved CuO as an efficient visible light response low cost cocatalyst/charge separator. The red shifting of the band gap in composite Co 3 O 4 -CuO NFs is due to the internal charge transfer between Co 2+ to Co 3+ and Cu 2+ , proved by UV-vis absorption spectroscopy. Creation of oxygen vacancies by mixing of CuO and Co 3 O 4 also prevents the electron-hole recombination and enhances the photocatalytic activity in composite Co 3 O 4 -CuO NFs. The photocurrent density, Mott-Schottky (MS), and electrochemical impedance spectroscopy (EIS) studies of all NFs favor the high photocatalytic performance. The mesoporous composite Co 3 O 4 -CuO NFs exhibits high photocatalytic activity toward phenolic compounds degradation as compared to the other two NFs (Co 3 O 4 NFs and CuO NFs). The kinetic study of phenolic compounds followed first order rate equation. The high photocatalytic

  20. Cellular and molecular responses of adult zebrafish after exposure to CuO nanoparticles or ionic copper.

    Science.gov (United States)

    Vicario-Parés, Unai; Lacave, Jose M; Reip, Paul; Cajaraville, Miren P; Orbea, Amaia

    2018-01-01

    Due to their antimicrobial, electrical and magnetic properties, copper nanoparticles (NPs) are suitable for a vast array of applications. Copper can be toxic to biota, making it necessary to assess the potential hazard of copper nanomaterials. Zebrafish (Danio rerio) were exposed to 10 µg Cu/L of CuO NPs of ≈100 nm (CuO-poly) or ionic copper to compare the effects provoked after 3 and 21 days of exposure and at 6 months post-exposure (mpe). At 21 days, significant copper accumulation was only detected in fish exposed to ionic copper. Exposure to both copper forms caused histopathological alterations that could reduce gill functionality, more markedly in the case of ionic copper. Nevertheless, at 6 mpe higher prevalences of gill lesions were detected in fish previously exposed to CuO-poly NPs. No relevant histological alterations were detected in liver, but the lysosomal membrane stability test showed significantly impaired general health status after exposure to both metal forms that lasted up to 6 mpe. 69 transcripts appeared regulated after 3 days of exposure to CuO-poly NPs, suggesting that NPs could produce oxidative stress and reduce metabolism and transport processes. Thirty transcripts were regulated after 21 days of exposure to ionic copper, indicating possible DNA damage. Genes of the circadian clock were identified as the key genes involved in time-dependent differences between the two copper forms. In conclusion, each copper form showed a distinct pattern of liver transcriptome regulation, but both caused gill histopathological alterations and long lasting impaired health status in adult zebrafish.

  1. Effect of Metal Oxides on Plant Germination: Phytotoxicity of Nanoparticles, Bulk Materials, and Metal Ions

    Czech Academy of Sciences Publication Activity Database

    Landa, Přemysl; Cyrusová, Tereza; Jeřábková, J.; Drábek, O.; Vaněk, Tomáš; Podlipná, Radka

    2016-01-01

    Roč. 227, č. 12 (2016), č. článku 448. ISSN 0049-6979 R&D Projects: GA MŠk(CZ) LD14100; GA MŠk LD14125 Institutional support: RVO:61389030 Keywords : zno nanoparticles * pseudokirchneriella-subcapitata * particle solubility * oxidative stress * root-growth * toxicity * aluminum * cuo * ph * cytotoxicity * Nanoparticles * Phytotoxicity * Accumulation * Germination * Sinapis alba Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.702, year: 2016

  2. Dynamic Behavior of CuZn Nanoparticles under Oxidizing and Reducing Conditions

    DEFF Research Database (Denmark)

    Holse, Christian; Elkjær, Christian Fink; Nierhoff, Anders Ulrik Fregerslev

    2015-01-01

    migrate to the Cu surface forming a Cu–Zn surface alloy. The oxidation and reduction dynamics of the CuZn nanoparticles is of great importance to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boosts the catalytic activity. Thus, the present......The oxidation and reduction of CuZn nanoparticles was studied using X-ray photoelectron spectroscopy (XPS) and in situ transmission electron microscopy (TEM). CuZn nanoparticles with a narrow size distribution were produced with a gas-aggregation cluster source in conjunction with mass......-filtration. A direct comparison between the spatially averaged XPS information and the local TEM observations was thus made possible. Upon oxidation in O2, the as-deposited metal clusters transform into a polycrystalline cluster consisting of separate CuO and ZnO nanocrystals. Specifically, the CuO is observed...

  3. Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of sulphur mustard.

    Science.gov (United States)

    Mahato, T H; Singh, Beer; Srivastava, A K; Prasad, G K; Srivastava, A R; Ganesan, K; Vijayaraghavan, R

    2011-09-15

    Present study investigates the potential of CuO nanoparticles calcined at different temperature for the decontamination of persistent chemical warfare agent sulphur mustard (HD) at room temperature (30 ± 2 °C). Nanoparticles were synthesized by precipitation method and characterized by using SEM, EDAX, XRD, and Raman Spectroscopy. Synthesized nanoparticles were tested as destructive adsorbents for the degradation of HD. Reactions were monitored by GC-FID technique and the reaction products characterized by GC-MS. It was observed that the rate of degradation of HD decreases with the increase in calcination temperature and there is a change in the percentage of product of HD degradation. GC-MS data indicated that the elimination product increases with increase in calcination temperature whereas the hydrolysis product decreases. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Synthesis and characterization of binary (CuO)0.6(CeO2)0.4 nanoparticles via a simple heat treatment method

    Science.gov (United States)

    Baqer, Anwar Ali; Matori, Khamirul Amin; Al-Hada, Naif Mohammed; Shaari, Abdul Halim; Kamari, Halimah Mohamed; Saion, Elias; Chyi, Josephine Liew Ying; Abdullah, Che Azurahanim Che

    2018-06-01

    A binary (CuO)0.6 (CeO2)0.4 nanoparticles were prepared via thermal treatment method, using copper nitrate, cerium nitrate as precursors, PVP as capping agent and de-ionized water as a solvent. The structures, morphology, composition of the element and optical properties of these nanoparticles have been studied under different temperatures using various techniques. The XRD spectrum of the samples at 500 °C and above confirmed the existence of both monoclinic (CuO) and cubic fluorite (CeO2) structures. The findings of FESEM and TEM exhibited the average practical size and agglomeration increment with an elevation in the calcination temperature. The synthesized nanoparticles were also characterized by FTIR, which indicated the formation of binary Cu-O and Ce-O bonds. The EDX analysis was performed to indicate the chemical composition of the sample. The double energy band gaps of (CuO)0.6(CeO2)0.4 reduction with rising calcination temperature, can be referred to the enhancement of the crystallinity of the samples. PL intensity of (CuO)0.6(CeO2)0.4 nanoparticles peaks, which increased with the elevation of the calcination temperature to 800 °C was observed from the PL spectrum; this was due to the increment of the particle size that occurred.

  5. Solid-State Synthesis and Effect of Temperature on Optical Properties of CuO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C.C.Vidyasagar; Y.Arthoba Naik; T.G.Venkatesha; R.Viswanatha

    2012-01-01

    Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. The P-type semiconductor of copper oxide is an important functional material used for photovoltaic cells. Cu O is attractive as a selective solar absorber since it has high solar absorbance and a low thermal emittance. The present work describes the synthesis and characterization of semiconducting Cu O nanoparticles via one-step, solid-state reaction in the presence of Polyethylene glycol400 as size controlling agent for the preparation of Cu O nanoparticles at different temperatures. Solid-state mechanochemical processing, which is not only a physical size reduction process in conventional milling but also a chemical reaction, is mechanically activated at the nanoscale during grinding. The present method is a simple and efficient method of preparing nanoparticles with high yield at low cost. The structural and chemical composition of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive spectrometer, respectively. Optical properties and band gap of Cu O nanoparticles were studied by UV-Vis spectroscopy. These results showed that the band gap energy decreased with increase of annealing temperature, which can be attributed to the improvement in grain size of the samples.

  6. Transcriptomic Response of Arabidopsis thaliana Exposed to CuO Nanoparticles, Bulk Material, and Ionic Copper

    Czech Academy of Sciences Publication Activity Database

    Landa, Přemysl; Dytrych, Pavel; Přerostová, Sylva; Petrová, Šárka; Vaňková, Radomíra; Vaněk, Tomáš

    2017-01-01

    Roč. 51, č. 18 (2017), s. 10814-10824 ISSN 0013-936X R&D Projects: GA MŠk LD14125; GA MŠk 8G15003 Institutional support: RVO:61389030 ; RVO:67985858 Keywords : METAL -OXIDE NANOPARTICLES * GENE-EXPRESSION * JASMONIC ACID Subject RIV: DN - Health Impact of the Environment Quality; CI - Industrial Chemistry, Chemical Engineering (UCHP-M) OBOR OECD: Plant sciences, botany; Chemical process engineering (UCHP-M) Impact factor: 6.198, year: 2016

  7. Kinetics of carbon monoxide oxidation over modified supported CuO catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Loc, Luu Cam; Tri, Nguyen; Cuong, Hoang Tien; Thoang, Ho Si [Vietnam Academy of Science and Technology (VAST), Ho Chi Minh City (Viet Nam). Inst. of Chemical Technology; Agafonov, Yu.A.; Gaidai, N.A.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry

    2013-11-01

    The following supported on {gamma}-Al{sub 2}O{sub 3} catalysts: 10(wt.)%CuO (CuAl), 10%CuO+10%Cr{sub 2}O{sub 3} (CuCrAl) and 10%CuO+20%CeO{sub 2} (CuCeAl) were under the investigation. Physico-chemical characteristics of the catalysts were determined by the methods of BET, X-ray Diffraction (XRD), and Temperature-Programmed Reduction (TPR). A strong interaction of copper with support in CuAl resulted in the formation of low active copper aluminates. The bi-oxide CuCrAl was more active than CuAl owing to the formation of high catalytically active spinel CuCr{sub 2}O{sub 4}. The fact of very high activity of the sample CuCeAl can be explained by the presence of the catalytically active form of CuO-CeO{sub 2}-Al{sub 2}O{sub 3}. The kinetics of CO total oxidation was studied in a gradientless flow-circulating system at the temperature range between 200 C and 270 C. The values of initial partial pressures of carbon monoxide (P{sup o}{sub CO}), oxygen (P{sup o}{sub O2}), and specially added carbon dioxide (P{sup o}{sub CO{sub 2}}) were varied in ranges (hPa): 10 / 45; 33 / 100, and 0 / 30, respectively. (orig.)

  8. Nanotoxicology of Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amedea B. Seabra

    2015-06-01

    Full Text Available This review discusses recent advances in the synthesis, characterization and toxicity of metal oxide nanoparticles obtained mainly through biogenic (green processes. The in vitro and in vivo toxicities of these oxides are discussed including a consideration of the factors important for safe use of these nanomaterials. The toxicities of different metal oxide nanoparticles are compared. The importance of biogenic synthesized metal oxide nanoparticles has been increasing in recent years; however, more studies aimed at better characterizing the potent toxicity of these nanoparticles are still necessary for nanosafely considerations and environmental perspectives. In this context, this review aims to inspire new research in the design of green approaches to obtain metal oxide nanoparticles for biomedical and technological applications and to highlight the critical need to fully investigate the nanotoxicity of these particles.

  9. Structural and thermal properties of nanocrystalline CuO synthesized by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Verma, M. [Department of Chemistry, IIT Roorkee, Roorkee-247667, India and Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee-247667 (India); Gupta, V. K. [Department of Chemistry, IIT Roorkee, Roorkee-247667 (India); Gautam, Y. K.; Dave, V.; Chandra, R. [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee-247667 (India)

    2014-01-28

    Recent research has shown immense application of metal oxides like CuO, MgO, CaO, Al{sub 2}O{sub 3}, etc. in different areas which includes chemical warfare agents, medical drugs, magnetic storage media and solar energy transformation. Among the metal oxides, CuO nanoparticles are of special interest because of their excellent gas sensing and catalytic properties. In this paper we report structural and thermal properties of CuO synthesized by reactive magnetron DC sputtering. The synthesized nanoparticles were characterized by X-ray diffractometer. The XRD result reveals that as DC power increased from 30W to 80W, size of the CuO nanoparticles increased. The same results have been verified through TEM analysis. Thermal properties of these particles were studied using thermogravimetry.

  10. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guanying; Du, Bin; Liu, Lei; Zhang, Weiwei; Liang, Yujie; Shi, Honglong; Wang, Wenzhong, E-mail: wzhwangmuc@163.com

    2017-03-31

    Highlights: • ZnO/CuO nanoparticle/dandelion heterostructures were fabricated for the first time. • ZnO/CuO nanoparticle/dandelion heterostructures show enhanced PEC activity. • ZnO nanoparticle loading contents have significant effect on PEC water splitting. • Interaction, charge transfer and enhanced mechanism of photocatalyst were proposed. • p-n junction drives the photoexcited charges efficient separation. - Abstract: Here we report an easy and large-scale synthesis of three-dimensional (3D) ZnO nanoparticle-loaded CuO dandelion (denoted as n-ZnO/p-CuO nanoparticle/dandelion) heterostructures and their photoelectrochemical (PEC) water splitting under simulated solar light illumination. CuO dandelions were fabricated by a facile and cost-effective chemical strategy, in which the ribbon-like CuO nanoplates were first formed and then assembled into dandelion-like architectures. ZnO nanoparticle-loaded CuO dandelion heterostructures were fabricated by calcining Zn(Ac){sub 2}-loaded CuO dandelions. High resolution transmission electron microscope (HRTEM) studies demonstrate that intimate p-n junction is built between p-CuO and n-ZnO interface. The n-ZnO/p-CuO nanoparticle/dandelion photoelectrodes exhibit significant improvement in PEC water splitting to CuO dandelion photoelectrodes. The correlation between photocurrents and different loading contents of ZnO nanoparticles (NPs) is studied in which the n-ZnO/p-CuO nanoparticle/dandelion heterostructures with loading 4.6 wt% ZnO NPs show higher photocathodic current. The efficient separation of the photogenerated electrons and holes driven by the intimate p-n junction between p-type CuO and n-type ZnO interface is mainly contributed to the enhanced photoanode current. The achieved results in the present study offer a very useful strategy for designing p-n junction photoelectrodes for efficiency and low-cost PEC cells for clean solar hydrogen production.

  11. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    Science.gov (United States)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode

  12. Effect of CuO Nanoparticles over Isolated Bacterial Strains from Agricultural Soil

    International Nuclear Information System (INIS)

    Concha-Guerrero, S.I.; Pinon-Castillo, H.A.; Luna-Velasco, A.; Orrantia-Borunda, E.; Brito, E.M.S.; Tarango-Rivero, S.H.; Caretta, C.A.; Duran, R.

    2014-01-01

    The increased use of the nanoparticles (NPs) on several processes is notorious. In contrast the eco toxicological effects of NPs have been scarcely studied. The main current researches are related to the oxide metallic NPs. In the present work, fifty-six bacterial strains were isolated from soil, comprising 17 different OTUs distributed into 3 classes: Bacilli (36 strains), Flavobacteria (2 strains), and Gamma proteobacteria (18 strains). Copper oxide nanoparticles (CuONPs) were synthesized using a process of chemical precipitation. The obtained CuONPs have a spherical shape and primary size less than 17 nm. Twenty-one strains were used to evaluate the cytotoxicity of CuONPs and 11 of these strains showed high sensibility. Among those 11 strains, 4 (Brevibacillus later osporus strain CSS8, Chryseobacterium indoltheticum strain CSA28, and Pantoea ananatis strains CSA34 and CSA35) were selected to determine the kind of damage produced. The CuONPs toxic effect was observed at expositions over 25 mg·L -1 and the damage to cell membrane above 160 mg·L -1 . The electron microscopy showed the formation of cavities, holes, membrane degradation, blebs, cellular collapse, and lysis. These toxic effects may probably be due to the ions interaction, the oxide-reduction reactions, and the generation of reactive species

  13. Carbon Nanoparticles decorated with cupric oxide Nanoparticles prepared by laser ablation in liquid as an antibacterial therapeutic agent

    Science.gov (United States)

    Khashan, Khawla S.; Jabir, Majid S.; Abdulameer, Farah A.

    2018-03-01

    Carbon nanoparticles (CNPs) decorated with cupric oxide nanoparticles (CuO NPs) were prepared by laser ablation in water, and their antibacterial activity was examined. X-ray diffraction measurements demonstrated the presence of carbon phases and different CuO phases, and results were confirmed by Fourier transform infrared analysis. Energy- Dispersive spectra showed the presence of C, O, and Cu in the final product. Transmission electron micrographs revealed that the CNPs were 10-80 nm in size and spherical; after being decorated with CuO NPs, particles became 5-50 nm in size and uniform in shape. The absorption spectrum of decorated Nanoparticles indicated the appearance of a new peak at 254-264 nm in addition to the fundamental peak at 228 nm. We then examined the antibacterial activity of the decorated CNPs for both gram-negative and -positive bacteria using the agar-well-diffusion method. The mode of action was determined using acridine orange-ethidium bromide staining to detect reactive oxygen species, and bacterial morphological change was studied by scanning electron microscopy. Results showed that CNPs decorated with 43% CuO NPs had the highest antibacterial activity for gram-positive bacteria. The CNPs acted on the cytoplasmic membrane and nucleic acid of bacteria, which led to a loss of cell-wall integrity, increased cell-wall permeability, and nucleic acid damage. The results offer a novel way to synthesis Carbon nanoparticles decorated with cupric oxide nanoparticles and could use them as novel antibacterial agent in future for pharmaceutical and biomedical applications.

  14. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus.

    Science.gov (United States)

    Tunçsoy, Mustafa; Duran, Servet; Ay, Özcan; Cicik, Bedii; Erdem, Cahit

    2017-09-01

    Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.

  15. Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles.

    Science.gov (United States)

    Shankar, Shiv; Wang, Long-Feng; Rhim, Jong-Whan

    2017-08-01

    The present study aimed to develop the carbohydrate biopolymer based antimicrobial films for food packaging application. The nanocomposite films of various biopolymers and copper oxide nanoparticles (CuONPs) were prepared by solvent casting method. The nanocomposite films were characterized using SEM, FTIR, XRD, and UV-vis spectroscopy. The thermal stability, UV barrier, water vapor permeability, and antibacterial activity of the composite films were also evaluated. The surface morphology of the films was dependent on the types of polymers used. The XRD revealed the crystallinity of CuONPs in the composite films. The addition of CuONPs increased the thickness, tensile strength, UV barrier property, relative humidity, and water vapor barrier property. The CuONPs incorporated composite films exhibited strong antibacterial activity against Escherichia coli and Listeria monocytogenes. The developed composite films could be used as a UV-light barrier antibacterial films for active food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Tailored 3D CuO Nanogrid Formation

    International Nuclear Information System (INIS)

    Lee, J.; Gouma, P.I.

    2011-01-01

    This paper reports on the controlled synthesis of 3D CuO nano grids by the combined use of electro spinning and thermal oxidation of a composite metal mesh/polymer mat architecture. The obtained nano grids result from three steps encompassing: (i) Cu atom clusters diffusing into the nano fibers producing polymer-metal core-shell-type fibers (ii) decomposition of the polymeric shell; (iii) oxidation of the metallic core of the nano fibers to form self-supported, open nano grids consisting of continuous nano fibers of CuO nanoparticles with an average diameter of 20 nm. The calculated band gap energy of the cupric oxide nano grids was determined from the UV-Vis spectrum to be 1.32 eV. The unique 3D CuO nano grids may be used as key components of 3D nano batteries, photo catalysts, and p-type chemo sensors.

  17. Synthesis and characterization of ZrO2-CuO co-doped ceria nanoparticles via chemical precipitation method.

    Science.gov (United States)

    Viruthagiri, G; Gopinathan, E; Shanmugam, N; Gobi, R

    2014-10-15

    In the present study, the fluorite cubic phase of bare and ZrO2-CuO co-doped ceria (CeO2) nanoparticles have been synthesized through a simple chemical precipitation method. X-ray diffraction results revealed that average grain sizes of the samples are within 5-6nm range. The functional groups present in the samples were identified by Fourier Transform Infrared Spectroscopy (FTIR) study. Surface area measurement was carried out for the ceria nanoparticles to characterize the surface properties of the synthesized samples. The direct optical cutoff wavelength from DRS analysis was blue-shifted evidently with respect to the bulk material and indicated quantum-size confinement effect in the nanocrystallites. PL spectra revealed the strong and sharp UV emission at 401nm. The surface morphology and the element constitution of the pure and doped nanoparticles were studied by scanning electron microscope fitted with energy dispersive X-ray spectrometer arrangement. The thermal decomposition course was followed using thermo gravimetric and differential thermal analyses (TG-DTA). Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors

    International Nuclear Information System (INIS)

    Li, Yanrong; Wang, Xue; Yang, Qi; Javed, Muhammad Sufyan; Liu, Qipeng; Xu, Weina; Hu, Chenguo; Wei, Dapeng

    2017-01-01

    High conductivity, large specific surface area and excellent performance redox materials are urgently desired for improving electrochemical energy storage. However, with single redox material it is hard to achieve these properties. Herein, we develop ultra-fine CuO nanoparticles embedded in three-dimensional graphene network grown on carbon cloth (CuO/3DGN/CC) to construct a novel electrode material with advantages of high conductivity, large specific area and excellent redox activity for supercapacitor application. The CuO/3DGN/CC with different CuO mass ratios are utilized to fabricate supercapacitors and the optimized mass loading achieves the high areal capacitance of 2787 mF cm"−"2 and specific capacitance of 1539.8 F g"−"1 at current density of 6 mA cm"−"2 with good stability. In addition, a high-flexible solid-state symmetric supercapacitor is also fabricated by using this CuO/3DGN/CC composite. The device shows excellent electrochemical performance even at various bending angles indicating a promising application for wearable electronic devices, and two devices with area 2 × 4 cm"2 in series can light nine light emitting diodes for more than 3 minutes.

  19. Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.

    Directory of Open Access Journals (Sweden)

    Sammy Frenk

    Full Text Available Increased availability of nanoparticle-based products will, inevitably, expose the environment to these materials. Engineered nanoparticles (ENPs may thus find their way into the soil environment via wastewater, dumpsters and other anthropogenic sources; metallic oxide nanoparticles comprise one group of ENPs that could potentially be hazardous for the environment. Because the soil bacterial community is a major service provider for the ecosystem and humankind, it is critical to study the effects of ENP exposure on soil bacteria. These effects were evaluated by measuring bacterial community activity, composition and size following exposure to copper oxide (CuO and magnetite (Fe3O4 nanosized (<50 nm particles. Two different soil types were examined: a sandy loam (Bet-Dagan and a sandy clay loam (Yatir, under two ENP concentrations (1%, 0.1%. Results indicate that the bacterial community in Bet-Dagan soil was more susceptible to change due to exposure to these ENPs, relative to Yatir soil. More specifically, CuO had a strong effect on bacterial hydrolytic activity, oxidative potential, community composition and size in Bet-Dagan soil. Few effects were noted in the Yatir soil, although 1% CuO exposure did cause a significant decreased oxidative potential and changes to community composition. Fe3O4 changed the hydrolytic activity and bacterial community composition in Bet-Dagan soil but did not affect the Yatir soil bacterial community. Furthermore, in Bet-Dagan soil, abundance of bacteria annotated to OTUs from the Bacilli class decreased after addition of 0.1% CuO but increased with 1% CuO, while in Yatir soil their abundance was reduced with 1% CuO. Other important soil bacterial groups, including Rhizobiales and Sphingobacteriaceae, were negatively affected by CuO addition to soil. These results indicate that both ENPs are potentially harmful to soil environments. Furthermore, it is suggested that the clay fraction and organic matter in

  20. Gas-Phase Synthesis of Bimetallic Oxide Nanoparticles with Designed Elemental Compositions for Controlling the Explosive Reactivity of Nanoenergetic Materials

    Directory of Open Access Journals (Sweden)

    Ji Young Ahn

    2011-01-01

    Full Text Available We demonstrate a simple and viable method for controlling the energy release rate and pressurization rate of nanoenergetic materials by controlling the relative elemental compositions of oxidizers. First, bimetallic oxide nanoparticles (NPs with a homogeneous distribution of two different oxidizer components (CuO and Fe2O3 were generated by a conventional spray pyrolysis method. Next, the Al NPs employed as a fuel were mixed with CuO-Fe2O3 bimetallic oxide NPs by an ultrasonication process in ethanol solution. Finally, after the removal of ethanol by a drying process, the NPs were converted into energetic materials (EMs. The effects of the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs on the explosive reactivity of the resulting EMs were examined by using a differential scanning calorimeter and pressure cell tester (PCT systems. The results clearly indicate that the energy release rate and pressurization rate of EMs increased linearly as the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs increased. This suggests that the precise control of the stoichiometric proportions of the strong oxidizer (CuO and mild oxidizer (Fe2O3 components in the bimetallic oxide NPs is a key factor in tuning the explosive reactivity of EMs.

  1. Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus.

    Science.gov (United States)

    Devipriya, Duraipandi; Roopan, Selvaraj Mohana

    2017-11-01

    Recently, non-toxic source mediated synthesis of metal and a metal oxide nanoparticle attains more attention due to key applicational responsibilities. This present report stated that the eco-friendly synthesis of copper oxide nanoparticles (CuO NPs) using Cissus quadrangularis (C. quadrangularis) plant extract. Further the eco-friendly synthesized CuO NPs were characterized using a number of analytical techniques. The observed results stated that the synthesized CuO NPs were spherical in shape with 30±2nm. Then the eco-friendly synthesized CuO NPs were subjected for anti-fungal against two strains namely Aspergillus niger (A. niger) resulted in 83% at 500ppm, 86% of inhibition at 1000ppm and Aspergillus flavus (A. flavus) resulted in 81% at 500ppm, 85% of inhibition at 1000ppm respectively. Despite the fact that compared to standard Carbendazim, eco-friendly synthesized CuO NPs exhibits better results were discussed in this manuscript. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  3. Preparation and characterization of CuO nanostructures on copper substrate as selective solar absorbers

    International Nuclear Information System (INIS)

    Karthick Kumar, S.; Murugesan, S.; Suresh, S.

    2014-01-01

    Selective solar absorber coatings of copper oxide (CuO) on copper substrates are prepared by room temperature oxidation of copper at different alkaline conditions. The surface morphology and structural analyses of the CuO coatings are carried out by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and Raman spectroscopy techniques. XRD and Raman studies indicated the single phase nature and high crystallinity of the prepared CuO nanostructures. Different CuO nanostructures, viz., nanoneedles, nanofibers and nanoparticles are formed at different alkaline conditions. The influence of reaction time on morphology of the CuO nanostructures is also studied. The thermal emittance values of these nanostructured CuO samples are found to be in the range of 6–7% and their solar absorptances are ranged between 84 and 90%. The observed high solar selectivity values (>12.7) suggest that these coatings can be used as selective absorbers in solar thermal gadgets. - Highlights: • Nanostructured CuO thin films on Cu substrate have been prepared by a facile method. • Morphology of the CuO nanostructures varies with reaction pH. • The thin films show high absorptance in the visible region and low thermal emittance. • Multiple absorption in the porous structure leads to high solar absorptance. • Nanostructures posses solar selectivity values >12

  4. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species

    Directory of Open Access Journals (Sweden)

    Amiri M

    2017-03-01

    Full Text Available Statement of Problem: Acid producing bacteria including Streptococcus mutans and lactobacilli cause tooth demineralization and lead to tooth decay. Also, oral colonization of the species of Candida has been reported in many studies that are resistant to antifungal agents. Objectives: In this study, antibacterial and antifungal effects of nano-CuO were studied against some oral bacteria and yeast fungi. Materials and Methods: The minimum inhibitory concentrations (MICs of copper oxide nanoparticles (CuO NPs for oral bacterial and fungal test strains were determined in 96-well microtiter plate technique. The agar diffusion test (ADT was employed to assess the antifungal properties of nystatin. Results: The MIC50 value of CuO NPs was determined at the range of 1–10 µg/ml for S. mutans, < 1 µg/ml for L. acidophilus, and 10 µg/ml for L. casei. Higher concentrations of CuO NPs (100-1000 µg/ml were effective on the bacterial cell growth, resulting in 100% reduction in the optical density in TSB medium. The cells of Candida albicans, C. krusei and C. glabrata were treated with CuO NPs and the results showed a decrease in fungal growth at a concentration of 1-1000 µg/ml in TSB medium. The MIC50 value of CuO NPs was determined 1000 µg/ml for three species of Candida. The diameter of growth inhibition zones of 1100 µg/ml nystatin was obtained 15-21 mm for clinical isolates of three species of Candida. Conclusions: With respect to the potential bactericidal activity of CuO NPs on various cariogenic bacteria examined in this study, these NPs could be introduce as a candidate control agent for preventing dental caries or dental infections. In our study, on the other hand, Nano copper oxide had a weak effect on the candida species.

  5. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  6. Structural, spectroscopic and biological investigation of copper oxides nanoparticles with various capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Szade, J.; Talik, E.; Ratuszna, A. [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Ostafin, M. [Agricultural University of Cracow, Department of Microbiology, Krakow (Poland); Peszke, J. [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland)

    2014-06-01

    Powder composed of copper oxides nanoparticles with various capping agents has been synthesized and characterized with the use of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Polyvinyl alcohol (PVA), glycol propylene, glycerin and glycerin plus ammonia were used as capping agents. The scanning electron microscopy (SEM) studies showed that nanoparticles form agglomerates with the size from 80 to 120 nm while particles size determined from the XRD experiment was in the range from 7 to 21 nm. XPS and XRD experiments revealed that depending on capping and reducing agents used in the synthesis nanoparticles are composed of Cu{sub 2}O, CuO or a mixture of them. The biological activity test performed for a selected sample where the capping agent was glycerin plus ammonia has shown promising killing/inhibiting behavior, very effective especially for Gram negatives bacteria. - Highlights: • We obtained copper oxide nanoparticles in a powder form. • Several capping agents were tested. • Structural and chemical tests showed that the main component were Cu{sub 2}O and CuO. • The size of nanoparticles was in the range 7–21 nm. • Nanoparticles with glycerin and ammonia capping agent showed good antibacterial properties.

  7. Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response

    Science.gov (United States)

    Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2012-10-01

    The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major

  8. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles.

    Science.gov (United States)

    Rezaie, Ali Bashiri; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-11-01

    In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    Science.gov (United States)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  10. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties.

    Science.gov (United States)

    Stankic, Slavica; Suman, Sneha; Haque, Francia; Vidic, Jasmina

    2016-10-24

    Th antibacterial activity of metal oxide nanoparticles has received marked global attention as they can be specifically synthesized to exhibit significant toxicity to bacteria. The importance of their application as antibacterial agents is evident keeping in mind the limited range and effectiveness of antibiotics, on one hand, and the plethora of metal oxides, on the other, along with the propensity of nanoparticles to induce resistance being much lower than that of antibiotics. Effective inhibition against a wide range of bacteria is well known for several nano oxides consisting of one metal (Fe 3 O 4 , TiO 2 , CuO, ZnO), whereas, research in the field of multi-metal oxides still demands extensive exploration. This is understandable given that the relationship between physicochemical properties and biological activity seems to be complex and difficult to generalize even for metal oxide nanoparticles consisting of only one metal component. Also, despite the broad scope that metal oxide nanoparticles have as antibacterial agents, there arise problems in practical applications taking into account the cytotoxic effects. In this respect, the consideration of polymetallic oxides for biological applications becomes even greater since these can provide synergetic effects and unify the best physicochemical properties of their components. For instance, strong antibacterial efficiency specific of one metal oxide can be complemented by non-cytotoxicity of another. This review presents the main methods and technological advances in fabrication of nanostructured metal oxides with a particular emphasis to multi-metal oxide nanoparticles, their antibacterial effects and cytotoxicity.

  11. METAL OXIDE NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  12. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes

    International Nuclear Information System (INIS)

    Pandiyarajan, T.; Udayabhaskar, R.; Vignesh, S.; James, R. Arthur; Karthikeyan, B.

    2013-01-01

    We report, synthesis and antibacterial activities of CuO nanoflakes. CuO nanoparticles are prepared at room temperature through sol–gel method. X-ray diffraction studies show the particles are monoclinic (crystalline) in nature. Scanning electron microscopy (SEM) images clearly show that the prepared particles are flake like in structure. Fourier transform infrared (FTIR) spectra exhibits three different bands that correspond to the A u and B u modes. Antibacterial studies were performed on Shigella flexneri, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium, Bacillus subtilis, Escherichia coli, Vibrio cholera, Pseudomonas aeruginosa and Aeromonas liquefaciens bacterial strains. Among these bacterial strains, S. flexneri and B. subtilis are most sensitive to copper oxide nanoparticles than the positive control (Penicillin G) and S. typhimurium strain shows the less sensitive. Results show that sensitivity is highly dependent on the concentrations of CuO nanoflakes. - Highlights: ► CuO nanoflakes are prepared through simple sol–gel method at room temperature. ► Bacterial strains are highly affected by CuO nanoflakes than the positive control. ► Zone of inhibition increases with an increase of CuO concentrations. ► Sensitivity is highly dependent on the concentrations of CuO nanoflakes

  13. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyarajan, T.; Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Vignesh, S.; James, R. Arthur [Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024 (India); Karthikeyan, B., E-mail: balkarin@yahoo.com [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2013-05-01

    We report, synthesis and antibacterial activities of CuO nanoflakes. CuO nanoparticles are prepared at room temperature through sol–gel method. X-ray diffraction studies show the particles are monoclinic (crystalline) in nature. Scanning electron microscopy (SEM) images clearly show that the prepared particles are flake like in structure. Fourier transform infrared (FTIR) spectra exhibits three different bands that correspond to the A{sub u} and B{sub u} modes. Antibacterial studies were performed on Shigella flexneri, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium, Bacillus subtilis, Escherichia coli, Vibrio cholera, Pseudomonas aeruginosa and Aeromonas liquefaciens bacterial strains. Among these bacterial strains, S. flexneri and B. subtilis are most sensitive to copper oxide nanoparticles than the positive control (Penicillin G) and S. typhimurium strain shows the less sensitive. Results show that sensitivity is highly dependent on the concentrations of CuO nanoflakes. - Highlights: ► CuO nanoflakes are prepared through simple sol–gel method at room temperature. ► Bacterial strains are highly affected by CuO nanoflakes than the positive control. ► Zone of inhibition increases with an increase of CuO concentrations. ► Sensitivity is highly dependent on the concentrations of CuO nanoflakes.

  14. Copper Oxide (CuO) 2-D Nanosheets for Advanced Electronic and Optical Properties

    Science.gov (United States)

    2015-08-01

    supercritical CO2 reactor is in progress. The reactor is being machined and experiments will begin September 1. 5. Transport measurements on pellets made...for the upgrading of biodiesel . In a collaboration with Professor Kim at Yale we have decorated CuO nanosheets with nanodiamonds as a new catalytic...and transport electrons like a conduit. In order to maximize the photocatalytic activity of ND/photocatalyst composites, the electrical conductivity of

  15. Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles.

    Science.gov (United States)

    Cappello, Tiziana; Vitale, Valeria; Oliva, Sabrina; Villari, Valentina; Mauceri, Angela; Fasulo, Salvatore; Maisano, Maria

    2017-09-01

    The extensive use of copper oxide nanoparticles (CuO NPs) in many applications has raised concerns over their toxicity on environment and human health. Herein, the embryotoxicity of CuO NPs was assessed in the black sea urchin Arbacia lixula, an intertidal species commonly present in the Mediterranean. Fertilized eggs were exposed to 0.7, 10 and 20ppb of CuO NPs, until pluteus stage. Interferences with the normal neurotransmission pathways were observed in sea urchin embryos. In detail, evidence of cholinergic and serotoninergic systems affection was revealed by dose-dependent decreased levels of choline and N-acetyl serotonin, respectively, measured by nuclear magnetic resonance (NMR)-based metabolomics, applied for the first time to our knowledge on sea urchin embryos. The metabolic profile also highlighted a significant CuO NP dose-dependent increase of glycine, a component of matrix proteins involved in the biomineralization process, suggesting perturbed skeletogenesis accordingly to skeletal defects in spicule patterning observed previously in the same sea urchin embryos. However, the expression of skeletogenic genes, i.e. SM30 and msp130, did not differ among groups, and therefore altered primary mesenchyme cell (PMC) migration was hypothesized. Other unknown metabolites were detected from the NMR spectra, and their concentrations found to be reflective of the CuO NP exposure levels. Overall, these findings demonstrate the toxic potential of CuO NPs to interfere with neurotransmission and skeletogenesis of sea urchin embryos. The integrated use of embryotoxicity tests and metabolomics represents a highly sensitive and effective tool for assessing the impact of NPs on aquatic biota. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. A density functional theory study of partial oxidation of propylene on Cu2O(0 0 1) and CuO(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Düzenli, Derya; Atmaca, Deniz Onay; Gezer, Miray Gülbiter; Onal, Isik

    2015-01-01

    Graphical abstract: - Highlights: • Propylene epoxidation mechanism on Cu 2 O(0 0 1) and CuO(0 0 1) surfaces is investigated using DFT method. • Acrolein is found to be a thermodynamically more favorable product for both surfaces especially over CuO surface. • The more basic property of the surface oxygen increases the probability of acrolein formation over CuO(0 0 1) surface. - Abstract: This work theoretically investigates propylene epoxidation reaction on Cu 2 O(0 0 1) and CuO(0 0 1) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu 2 O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) and acetone are obtained through OMP and OB surface intermediates and acrolein generation is observed through allylic H-stripping reaction (AHS). The calculations revealed that the corresponding surface intermediates for epoxidation reaction need to overcome an activation barrier of 13 kcal/mol over CuO surface whereas they occur without an energy barrier over Cu 2 O surface indicating the higher activity of Cu + species. Acrolein is also found to be a thermodynamically more favorable product for both surfaces especially over CuO surface due to the presence of more surface oxygen atoms on which the basicity has been evaluated by the adsorption of sulfur dioxide. This indicates that the lattice oxygen inherent in both surface types does not participate in PO production.

  17. A density functional theory study of partial oxidation of propylene on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Düzenli, Derya [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey); Mineral Analysis and Technology, General Directorate of Mineral Research and Exploration, 06800 Ankara (Turkey); Atmaca, Deniz Onay; Gezer, Miray Gülbiter [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey); Onal, Isik, E-mail: ional@metu.edu.tr [Chemical Engineering Department, Middle East Technical University, 06800 Ankara (Turkey)

    2015-11-15

    Graphical abstract: - Highlights: • Propylene epoxidation mechanism on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces is investigated using DFT method. • Acrolein is found to be a thermodynamically more favorable product for both surfaces especially over CuO surface. • The more basic property of the surface oxygen increases the probability of acrolein formation over CuO(0 0 1) surface. - Abstract: This work theoretically investigates propylene epoxidation reaction on Cu{sub 2}O(0 0 1) and CuO(0 0 1) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu{sub 2}O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) and acetone are obtained through OMP and OB surface intermediates and acrolein generation is observed through allylic H-stripping reaction (AHS). The calculations revealed that the corresponding surface intermediates for epoxidation reaction need to overcome an activation barrier of 13 kcal/mol over CuO surface whereas they occur without an energy barrier over Cu{sub 2}O surface indicating the higher activity of Cu{sup +} species. Acrolein is also found to be a thermodynamically more favorable product for both surfaces especially over CuO surface due to the presence of more surface oxygen atoms on which the basicity has been evaluated by the adsorption of sulfur dioxide. This indicates that the lattice oxygen inherent in both surface types does not participate in PO production.

  18. Metabolomic effects of CeO2, SiO2 and CuO metal oxide nanomaterials on HepG2 cells

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data set is a matrix of cellular biochemical (metabolites) in HepG2 cells treated with various metal oxide nanomaterials composed of CeO2, SiO2 and CuO. This...

  19. In vitro effects of metal oxide nanoparticles on barley oxalate oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Nidhi [M. D. University, Department of Biochemistry (India); Hooda, Vinita [M. D. University, Department of Botany (India); Pundir, C. S., E-mail: pundircs@rediffmail.com [M. D. University, Department of Biochemistry (India)

    2013-03-15

    Barley oxalate oxidase (OxO), a manganese-containing protein, is largely employed for determination of oxalate in various biologic materials. The present report describes in vitro effects of nanoparticles (NPs) of three metal oxides, i.e., zinc oxide (ZnO), copper oxide (CuO), and manganese oxide (MnO{sub 2}), on the activity and stability of OxO purified from barley roots. The transmission electron microscopy and X-ray diffraction studies of these NPs revealed their very fine crystalline structure with the dimeter in the range 30-70, 50-60, and 20-60 nm for ZnO NPs, CuO NPs, and MnO{sub 2} NPs, respectively. The addition of suspension of these three NPs into assay mixture of enzyme individually, led to the adsorption of OxO over their surface, as confirmed by Fourier transform infrared spectra and UV-Vis spectroscopic studies. Compared to free enzyme, MnO{sub 2} NPs-bound enzyme showed improved activity (35 % stimulation at 2.5 mg/ml concentration), while ZnO NPs- and CuO NPs-bound enzyme had no substantial improvement. The kinetic properties of individually NPs-bound enzyme were studied and compared with those of free enzyme. The MnO{sub 2} NPs-bound enzyme also showed marked improvement in its storage and thermal stability compared to free enzyme.

  20. In vitro effects of metal oxide nanoparticles on barley oxalate oxidase

    Science.gov (United States)

    Chauhan, Nidhi; Hooda, Vinita; Pundir, C. S.

    2013-03-01

    Barley oxalate oxidase (OxO), a manganese-containing protein, is largely employed for determination of oxalate in various biologic materials. The present report describes in vitro effects of nanoparticles (NPs) of three metal oxides, i.e., zinc oxide (ZnO), copper oxide (CuO), and manganese oxide (MnO2), on the activity and stability of OxO purified from barley roots. The transmission electron microscopy and X-ray diffraction studies of these NPs revealed their very fine crystalline structure with the dimeter in the range 30-70, 50-60, and 20-60 nm for ZnO NPs, CuO NPs, and MnO2 NPs, respectively. The addition of suspension of these three NPs into assay mixture of enzyme individually, led to the adsorption of OxO over their surface, as confirmed by Fourier transform infrared spectra and UV-Vis spectroscopic studies. Compared to free enzyme, MnO2 NPs-bound enzyme showed improved activity (35 % stimulation at 2.5 mg/ml concentration), while ZnO NPs- and CuO NPs-bound enzyme had no substantial improvement. The kinetic properties of individually NPs-bound enzyme were studied and compared with those of free enzyme. The MnO2 NPs-bound enzyme also showed marked improvement in its storage and thermal stability compared to free enzyme.

  1. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  2. Synthesis and electrochemical properties of different sizes of the CuO particles

    International Nuclear Information System (INIS)

    Zhang Xiaojun; Zhang Dongen; Ni Xiaomin; Song Jimei; Zheng Huagui

    2008-01-01

    Well-dispersed cupric oxide (CuO) nanoparticles with the size from 10 to 100 nm were successfully synthesized by thermal decomposition of CuC 2 O 4 precursor at 400 deg. C. The prepared CuO nanoparticles of different sizes used as anode materials for Li ion battery all exhibit high electrochemical capacity at the first discharge. However, with the particles size changing, an interesting phenomenon appears. That is, the larger size of the particles is, the discharge capacity of the first time smaller is, while that of the second time is larger. At the same time, the mechanism of the above phenomenon is discussed in this paper. Surprisingly, we have synthesized the copper nanoparticles with different sizes by the CuO of different sizes as the electrodes

  3. Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates

    International Nuclear Information System (INIS)

    De Los Santos Valladares, L.; Salinas, D. Hurtado; Dominguez, A. Bustamante; Najarro, D. Acosta; Khondaker, S.I.; Mitrelias, T.; Barnes, C.H.W.; Aguiar, J. Albino; Majima, Y.

    2012-01-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO 2 /Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 °C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu → Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuOCuO was detected. Pure Cu 2 O films are obtained at 200 °C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300–550 °C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current–voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: ► The crystallization and electrical resistivity of oxides in a Cu films are studied. ► In annealing Cu films, the phase evolution Cu + Cu 2 O → Cu 2 O → Cu 2 O + CuOCuO occurs. ► A resistivity phase diagram, obtained from the current–voltage response, is presented. ► Some decreases in the resistivity may be related to the crystallization.

  4. Cerium and yttrium oxide nanoparticles are neuroprotective

    International Nuclear Information System (INIS)

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-01-01

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems

  5. CuO and Ag2O/CuO Catalyzed Oxidation of Aldehydes to the Corresponding Carboxylic Acids by Molecular Oxygen

    Directory of Open Access Journals (Sweden)

    Yaowu Sha

    2008-04-01

    Full Text Available Furfural was oxidized to furoic acid by molecular oxygen under catalysis by 150nm-sized Ag2O/CuO (92% or simply CuO (86.6%. When 30 nm-size catalyst was used,the main product was a furfural Diels-Alder adduct. Detailed reaction conditions andregeneration of catalysts were investigated. Under optimal conditions, a series of aromaticand aliphatic aldehydes were oxidized to the corresponding acids in good yields.

  6. Nitric oxide nanoparticles

    Science.gov (United States)

    Schairer, David O.; Martinez, Luis R.; Blecher, Karin; Chouake, Jason S.; Nacharaju, Parimala; Gialanella, Philip; Friedman, Joel M.; Nosanchuk, Joshua D.; Friedman, Adam J.

    2012-01-01

    Nitric oxide (NO) is a critical component of host defense against invading pathogens; however, its therapeutic utility is limited due to a lack of practical delivery systems. Recently, a NO-releasing nanoparticulate platform (NO-np) was shown to have in vitro broad-spectrum antimicrobial activity and in vivo pre-clinical efficacy in a dermal abscess model. To extend these findings, both topical (TP) and intralesional (IL) NO-np administration was evaluated in a MRSA intramuscular murine abscess model and compared with vancomycin. All treatment arms accelerated abscess clearance clinically, histologically, and by microbiological assays on both days 4 and 7 following infection. However, abscesses treated with NO-np via either route demonstrated a more substantial, statistically significant decrease in bacterial survival based on colony forming unit assays and histologically revealed less inflammatory cell infiltration and preserved muscular architecture. These data suggest that the NO-np may be an effective addition to our armament for deep soft tissue infections. PMID:22286699

  7. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    Science.gov (United States)

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  8. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-12-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 Mohammad Oves,3 Mohammad S Khan,3 Sami S Habib,1 Adnan Memic11Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Centre of Excellence in Materials Science (Nanomaterials, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria.Methods and results: Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3 were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa and Gram-positive (Staphylococcus aureus and Bacillus subtilis bacteria.Conclusion: Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3

  9. Removal of heavy metals from aqueous solutions using Fe{sub 3}O{sub 4}, ZnO, and CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Shahriar, E-mail: smahdaviha@yahoo.com; Jalali, Mohsen, E-mail: jalali@basu.ac.ir [College of Agriculture, Bu-Ali Sina University, Department of Soil Science (Iran, Islamic Republic of); Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [College of Chemistry, Bu-Ali Sina University, Department of Analytical Chemistry (Iran, Islamic Republic of)

    2012-08-15

    This study investigated the removal of Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Pb{sup 2+} from aqueous solutions with novel nanoparticle sorbents (Fe{sub 3}O{sub 4}, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe{sub 3}O{sub 4}, ZnO, and CuO particles had mean diameters of about 50 nm (spheroid), 25 nm (rod shape), and 75 nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0 mg g{sup -1}, for ZnO, CuO, and Fe{sub 3}O{sub 4}, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd{sup 2+} > Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+}, while the following order was determined in multiple component solutions: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd{sup 2+} and Pb{sup 2+} was adsorption, whereas both Cu{sup 2+} and Ni{sup 2+} sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.

  10. Synthesis of high-temperature superconducting oxides and chemical alloying in Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Green, L.H.; Mckinnon, W.R.; Hull, G.W.

    1988-01-01

    Some methods for synthesis permitting to fabricate dense superconducting ceramics are considered. The Zole-Hell method is the most perspective one among them. Effect of oxygen content in a sample and copper substitution for nickel and zinc on structural, transition and superconducting properties of samples of the La-Sr-Cu-O(1) and Y-Ba-Cu-O(2) systems is studied. Copper substitution is established to suppress superconductivity in system 1 and to decrease T c in system 2, and this effect doesn't depend on the fact whether the substituting 3d-metal is magnetic (nickel) or diamagnetic (zinc). Detailed study of YBa 2 Cu 3 O 7-y properties as a function of oxygen content has shown that superconductivty in this composition can be suppressed as a result of oxygen removal and it can be reduced with its interoduction. The possibility to prepare nonalloyed La 2 CuO 4 in superconducting state as a result of plasma treatment comprises a scientific interest. 27 refs.; 5 figs.; 1 tab

  11. A density functional theory study of partial oxidation of propylene on Cu2O(0 0 1) and CuO(0 0 1) surfaces

    Science.gov (United States)

    Düzenli, Derya; Atmaca, Deniz Onay; Gezer, Miray Gülbiter; Onal, Isik

    2015-11-01

    This work theoretically investigates propylene epoxidation reaction on Cu2O(0 0 1) and CuO(0 0 1) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu2O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) and acetone are obtained through OMP and OB surface intermediates and acrolein generation is observed through allylic H-stripping reaction (AHS). The calculations revealed that the corresponding surface intermediates for epoxidation reaction need to overcome an activation barrier of 13 kcal/mol over CuO surface whereas they occur without an energy barrier over Cu2O surface indicating the higher activity of Cu+ species. Acrolein is also found to be a thermodynamically more favorable product for both surfaces especially over CuO surface due to the presence of more surface oxygen atoms on which the basicity has been evaluated by the adsorption of sulfur dioxide. This indicates that the lattice oxygen inherent in both surface types does not participate in PO production.

  12. Biotests and Biosensors for Ecotoxicology of Metal Oxide Nanoparticles: A Minireview

    Directory of Open Access Journals (Sweden)

    Kaja Kasemets

    2008-08-01

    Full Text Available Nanotechnologies have become a significant priority worldwide. Several manufactured nanoparticles - particles with one dimension less than 100 nm - are increasingly used in consumer products. At nanosize range, the properties of materials differ substantially from bulk materials of the same composition, mostly due to the increased specific surface area and reactivity, which may lead to increased bioavailability and toxicity. Thus, for the assessment of sustainability of nanotechnologies, hazards of manufactured nanoparticles have to be studied. Despite all the above mentioned, the data on the potential environmental effects of nanoparticles are rare. This mini-review is summarizing the emerging information on different aspects of ecotoxicological hazard of metal oxide nanoparticles, focusing on TiO2, ZnO and CuO. Various biotests that have been successfully used for evaluation of ecotoxic properties of pollutants to invertebrates, algae and bacteria and now increasingly applied for evaluation of hazard of nanoparticles at different levels of the aquatic food-web are discussed. Knowing the benefits and potential drawbacks of these systems, a suite of tests for evaluation of environmental hazard of nanoparticles is proposed. Special attention is paid to the influence of particle solubility and to recombinant metal-sensing bacteria as powerful tools for quantification of metal bioavailability. Using recombinant metal-specific bacterial biosensors and multitrophic ecotoxicity assays in tandem will create new scientific knowledge on the respective role of ionic species and of particles in toxicity of metal oxide nanoparticles.

  13. Dissolution of metal and metal oxide nanoparticles in aqueous media

    International Nuclear Information System (INIS)

    Odzak, Niksa; Kistler, David; Behra, Renata; Sigg, Laura

    2014-01-01

    The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media. - Highlights: • Three different techniques used simultaneously to measure NPs dissolution. • ZnO-NPs are the most soluble, followed by CuO-NPs, carbon coated Cu-NPs and Ag-NPs. • Dissolution is an important process affecting the fate of nanoparticles. • Complementary techniques are needed to precisely determine dissolution of NPs. - Dissolution of several types of nanoparticles was examined in aqueous media using three complementary techniques

  14. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties

    Directory of Open Access Journals (Sweden)

    Slavica Stankic

    2016-10-01

    Full Text Available Abstract Th antibacterial activity of metal oxide nanoparticles has received marked global attention as they can be specifically synthesized to exhibit significant toxicity to bacteria. The importance of their application as antibacterial agents is evident keeping in mind the limited range and effectiveness of antibiotics, on one hand, and the plethora of metal oxides, on the other, along with the propensity of nanoparticles to induce resistance being much lower than that of antibiotics. Effective inhibition against a wide range of bacteria is well known for several nano oxides consisting of one metal (Fe3O4, TiO2, CuO, ZnO, whereas, research in the field of multi-metal oxides still demands extensive exploration. This is understandable given that the relationship between physicochemical properties and biological activity seems to be complex and difficult to generalize even for metal oxide nanoparticles consisting of only one metal component. Also, despite the broad scope that metal oxide nanoparticles have as antibacterial agents, there arise problems in practical applications taking into account the cytotoxic effects. In this respect, the consideration of polymetallic oxides for biological applications becomes even greater since these can provide synergetic effects and unify the best physicochemical properties of their components. For instance, strong antibacterial efficiency specific of one metal oxide can be complemented by non-cytotoxicity of another. This review presents the main methods and technological advances in fabrication of nanostructured metal oxides with a particular emphasis to multi-metal oxide nanoparticles, their antibacterial effects and cytotoxicity.

  15. Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values.

    Science.gov (United States)

    Foroughi, Faranak; Rahsepar, Mansour; Hadianfard, Mohammad Jafar; Kim, Hasuck

    2017-12-18

    The effect of graphene nanosheets on the glucose sensing performance of CuO powders was investigated. CuO and graphene-modified CuO nanoparticles (NPs) were fabricated by microwave-assisted synthesis and characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The material was placed on a glassy carbon electrode (GCE) which then was characterized by cyclic voltammetry and chronoamperometry with respect to the capability of sensing glucose both at pH 13 and pH 7.4. The results revealed that the modified GCE has a fast and selective linear response to glucose at pH 13 that covers the 0.21 μM to 12 mM concentration range, with a 0.21 μM low detection limit. The presence of graphene nanosheets results in an improved sensitivity which is to 700 μA mM -1  cm -2 . In solution of pH 7.4, the respective data are a linear analytical range from 5 to 14 mM; a 5 μM LOD and a sensitivity of 37.63 μA mM -1  cm -2 at working potential of -0.05 V (vs. Ag/AgCl) and scan rate of 50 mV s -1 . Ascorbic acid, dopamine, uric acid, sucrose, maltose and fructose do not interfere. Graphical abstract ᅟ.

  16. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  17. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    CdS nanoparticles prepared in reverse micellar system was incorporated into ... The molar ratio of various constituents of the hydrothermal gel was ... other synthesis techniques for the preparation of iron oxide nanocomposites using.

  18. Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli.

    Science.gov (United States)

    Mallakpour, Shadpour; Mansourzadeh, Soheila

    2018-05-01

    The aim of this paper was to blend the polymers, poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) to produce a novel composite materials possessing the benefits of both. CuO nanoparticles (NPs) were used as a suitable filler to fabricate the blend nanocomposites (NCs) with desired properties. First, the surface of NPs, was modified with vitamin B 1 (VB 1 ) as a bio-safe coupling agent. Then, the blend NCs with various ratios of modified CuO (3, 5, and 7 wt%) were fabricated under ultrasonic irradiations followed by casting/solvent evaporation method. These processes are fast and green way to disperse the NPs sufficiently. Several techniques were applied for the characterization of the obtained NCs. morphology examination demonstrated the morphology of NCs and compatibility of NPs with the blend polymer. EDX results indicated the weight and atomic percentage of the achieved materials. TGA analysis verified that the NCs show higher thermal properties than the neat blend polymer. Also embedding the modified NPs into the blend polymer had effected on optical absorbance of the obtained NCs. The contact angle measurements confirmed that the hydrophilicity decreased for different proportions of the modified NPs loaded in the blend polymer. Finally, NCs show better bactericidal effects against gram-positive than gram-negative bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Preparation of CuO nanoparticles by thermal decomposition of double-helical dinuclear copper(II Schiff-base complexes

    Directory of Open Access Journals (Sweden)

    Aliakbar Dehno Khalaji

    2015-12-01

    Full Text Available In this paper, two double helical dinuclear copper(II complexes of bis-N,O-bidentate Schiff base ligands bis(3-methoxy-N-salicylidene-4,4'-diaminodiphenylsulfone (L1 and bis(5-bromo-N-salicylidene-4,4'-diaminodiphenylsulfone (L2 were prepared and characterized by elemental analyses (CHN, as well as thermal analysis. Elemental analyses (CHN suggested that the reaction between ligands and copper salt has been occurred in 1:1 molar ratio. In these complexes the Schiff base ligands behaves as an anionic and bis-bidentate chelate and is coordinated to the copper(II ion via two phenolic oxygen and two iminic nitrogen atoms. In these double helical dinuclear complexes, each copper(II center has a pseudo-tetrahedral coordination sphere two-wrapped ligands. Thermal analysis of ligands and their complexes were studied in the range of room temperature to 750 °C with a heating rate of 10 °C min-1. TG plots show that the ligands and their complexes are thermally decomposed via 2 and 3 thermal steps, respectively. In addition, the complexes thermally decomposed in air at 520 °C for 3 h. The obtained solids characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray powder diffraction (XRD and transmission electron microscopy (TEM. The X-ray pattern result shows that the CuO nanoparticles are pure and single phase. The TEM result shows the as prepared CuO nanoparticles were very small and similar shape with particle size about

  20. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  1. Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Malcho, Phillip; Andersen, Jonas

    2014-01-01

    , it directed the growth of Cu2(OH)3Cl to provide pure clinoatacamite without the presence of related poly- morphs. The products were characterized by transmission electron microscopy, infrared spectroscopy, ultraviolet–visible light spectroscopy, X-ray powder diffraction (XRD), scanning transmission X......-ray microscopy and atomic force microscopy. Infrared spectroscopy was essential for characterization of closely related polymorphs of Cu2(OH)3Cl indistinguishable by XRD. A plausible mechanism has been proposed and discussed for the formation of the CuO and Cu2(OH)3Cl nanostructures....

  2. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis.

    Science.gov (United States)

    Singh, Ajey; Singh, N B; Hussain, Imtiyaz; Singh, Himani

    2017-11-20

    Study on the ecological effect of metal oxide nanomaterials (NMs) has quickly amplified over the precedent years because it is assumed that these NMs will sooner or later be released into the environment. The present study deals with biologically oriented process for the green synthesis of copper oxide nanoparticles (CuO NPs) by using Morus alba leaf extract as reducing agent. Powder X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis revealed the monoclinic phase and 20-40nm size respectively. The presence of reducing and capping agents revealed by Fourier transform infrared (FTIR) spectroscopy. The seedlings of Brassica oleracea var. botrytis and Solanum lycopersicum were exposed to 10, 50, 100, and 500mgL -1 concentrations of CuO NPs in the sand medium. Bioaccumulation of Cu was also investigated by atomic absorption spectroscopy (AAS). Plant exposure to 100 and 500mgL -1 of CuO NPs has resulted in significant reduction of total chlorophyll and sugar content in the two test plants while 10mgL -1 of NPs slightly increased the pigment and sugar content in tomato plants only. Augmentation of lipid peroxidation, electrolyte leakage, and antioxidant enzyme activity was observed in a dose dependent manner upon plants exposure to CuO NPs. Deposition of lignin in roots of both plants treated with the highest concentration of CuO NPs was observed. Histochemical analysis of leaves of treated plant with nitroblue tetrazolium and 3 ' 3 ' diaminobenzidine showed a concentration dependent increase in superoxide and hydrogen peroxide formation in leaves. The green synthesis of CuO NPs was carried out by using Morus alba leaf extract. Accumulation of NPs more actively by tomato plants as compared to cauliflower was possibly due to the difference in root morphology. The histochemical visualization highlights the spatial organization of oxidant biochemistry occurring in response to metal stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. High-temperature superconducting oxide synthesis and the chemical doping of the Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Greene, L.H.; McKinnon, W.R.; Hull, G.W.

    1987-01-01

    Different synthesis techniques for the preparation of dense superconducting ceramics are discussed, and a sol-gel process is shown to be very promising. The effect of oxygen content, and the effect of substitution of Ni and Zn for copper, on the structural, transport and superconducting properties of the La-Sr-Cu-O and Y-Ba-Cu-O systems are presented. The authors find that substitution on the copper sites destroys T/sub c/ in the La-Sr-Cu-O system and decreases it in the Y-Ba-Cu-O system, and this effect is insensitive as to whether the 3d metal is magnetic (Ni) or diamagnetic (Zn). A detailed study of the YBa/sub 2/Cu/sub 3/O/sub 7-y/ system as a function of oxygen content (y) shows that superconductivity can be destroyed in these materials by the removal of oxygen and restored by reinjecting oxygen; either thermally at 500 0 C or at temperatures (80 0 C) compatible with device processing by means of a novel plasma oxidation process. Of scientific interest, the plasma process induces bulk superconductivity in the undoped La/sub 2/CuO/sub 4/

  4. Assessing protein oxidation by inorganic nanoparticles with enzyme-linked immunosorbent assay (ELISA).

    Science.gov (United States)

    Sun, Wenjie; Luna-Velasco, Antonia; Sierra-Alvarez, Reyes; Field, Jim A

    2013-03-01

    Growth in the nanotechnology industry is leading to increased production of engineered nanoparticles (NPs). This has given rise to concerns about the potential adverse and toxic effects to biological system and the environment. An important mechanism of NP toxicity is oxidative stress caused by the formation of reactive oxygen species (ROS) or via direct oxidation of biomolecules. In this study, a protein oxidation assay was developed as an indicator of biomolecule oxidation by NPs. The oxidation of the protein, bovine serum albumin (BSA) was evaluated with an enzyme-linked immunosorbent assay (ELISA) to measure the protein carbonyl derivatives formed from protein oxidation. The results showed that some NPs such as Cu(0), CuO, Mn(2)O(3), and Fe(0) caused oxidation of BSA; whereas, many of the other NPs tested were not reactive or very slowly reactive with BSA. The mechanisms involved in the oxidation of BSA protein by the reactive NPs could be attributed to the combined effects of ROS-dependent and direct protein oxidation mechanisms. The ELISA assay is a promising method for the assessment of protein oxidation by NPs, which can provide insights on NP toxicity mechanisms. Copyright © 2012 Wiley Periodicals, Inc.

  5. Manganese oxide nanoparticles, methods and applications

    Science.gov (United States)

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  6. Synthesis of CuO nanoflower and its application as a H2O2 sensor

    Indian Academy of Sciences (India)

    Administrator

    CuO; nanoflowers; electrochemical; H2O2. 1. Introduction. Cupric oxide (CuO) is an important transition metal oxide ... several high temperature superconductors and giant mag- ... precipitate was washed with ethanol and distilled water.

  7. Acid monolayer functionalized iron oxide nanoparticle catalysts

    Science.gov (United States)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  8. Toxicity of iron oxide nanoparticles against osteoblasts

    International Nuclear Information System (INIS)

    Shi Sifeng; Jia Jingfu; Guo Xiaokui; Zhao Yaping; Liu Boyu; Chen Desheng; Guo Yongyuan; Zhang Xianlong

    2012-01-01

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 μg/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 μg/mL and 25.9 % in 500 μg/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 μg/mL, 23.40 % of apoptosis in a concentration of 300 μg/mL and 28.49 % in a concentration of 500 μg/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  9. Toxicity of iron oxide nanoparticles against osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Shi Sifeng [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China); Jia Jingfu [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Guo Xiaokui [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Zhao Yaping [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China); Liu Boyu [Shanghai Jiao Tong University School of Medicine, Department of Medical Microbiology and Parasitology, Institutes of Medical Sciences (China); Chen Desheng; Guo Yongyuan; Zhang Xianlong, E-mail: zhangxianlong20101@163.com [Shanghai Jiao Tong University, Department of Orthopaedic Surgery, Shanghai Sixth People' s Hospital (China)

    2012-09-15

    Magnetic nanoparticles have been widely used for tissue repair, magnetic resonance imaging, immunoassays and drug delivery. They are very promising in orthopaedic applications and several magnetic nanoparticles have been exploited for the treatment of orthopaedic disease. Here, we conducted an in vitro study to examine the interaction of magnetic iron oxide nanoparticles with human osteoblasts to evaluate the dose-related toxicity of the nanoparticles on osteoblasts. A transmission electron microscope was used to visualise the internalised magnetic nanoparticles in osteoblasts. The CCK-8 results revealed increased cell viability (107.5 % vitality compared with the control group) when co-cultured at a low concentration (20 {mu}g/mL) and decreased cell viability (59.5 % vitality in a concentration of 300 {mu}g/mL and 25.9 % in 500 {mu}g/mL) when co-cultured in high concentrations. The flow cytometric detection revealed similar results with 5.48 % of apoptosis in a concentration of 20 {mu}g/mL, 23.40 % of apoptosis in a concentration of 300 {mu}g/mL and 28.49 % in a concentration of 500 {mu}g/mL. The disrupted cytoskeleton of osteoblasts was also revealed using a laser scanning confocal microscope. We concluded that use of a low concentration of magnetic iron oxide nanoparticles is important to avoid damage to osteoblasts.

  10. Interaction effects in magnetic oxide nanoparticle systems

    Indian Academy of Sciences (India)

    The interaction effects in magnetic nanoparticle system were studied through a Monte Carlo simulation. The results of simulations were compared with two different magnetic systems, namely, iron oxide polymer nanocomposites prepared by polymerization over core and nanocrystalline cobalt ferrite thin films prepared by ...

  11. Dextran-modified iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Hradil, Jiří; Pisarev, A. G.; Babič, Michal; Horák, Daniel

    2007-01-01

    Roč. 5, 1-2 (2007), s. 162-168 ISSN 1672-2515 R&D Projects: GA ČR GA203/05/2256 Institutional research plan: CEZ:AV0Z40500505 Keywords : iron oxide * nanoparticles * dextran Subject RIV: CD - Macromolecular Chemistry

  12. CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition

    International Nuclear Information System (INIS)

    Dubal, Deepak P.; Gund, Girish S.; Lokhande, Chandrakant D.; Holze, Rudolf

    2013-01-01

    Graphical abstract: Schematic experimental setup used for the potentiodynamic mode of electrodeposition for the synthesis of CuO cauliflower onto stainless steel substrate. Highlights: ► Synthesis of CuO using potentiodynamic mode of electrodeposition. ► Uniformly spread cauliflower-like nanostructure. ► CuO cauliflowers provide high specific capacitance with good stability. ► CuO cauliflowers show high power and energy density values. -- Abstract: In present investigation, synthesis and characterization of novel cauliflower-like copper oxide (CuO) and its electrochemical properties have been performed. The utilized CuO cauliflowers were prepared by potentiodyanamic mode from an aqueous alkaline bath. X-ray diffraction pattern confirm the formation of monoclinic CuO cauliflowers. Scanning electron micrograph analysis reveals that CuO cauliflowers are uniformly spread all over the substrate surface with the surface area of 49 m 2 g −1 with bimodal pore size distribution. Electrochemical analysis shows that CuO cauliflower exhibits high specific capacitance of 179 Fg −1 in 1 M Na 2 SO 4 electrolyte with 81% capacity retention after 2000 cycles. The Ragone plot discovers better power and energy densities of cauliflowers-like CuO sample. Present investigation illustrates that the potentiodynamic approach for the direct growth of cauliflower-like CuO is simple and cost-effective and can be applied for synthesis of other metal oxides, polymers etc.

  13. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete, Part I

    DEFF Research Database (Denmark)

    Ramskov, Tina; Thit, Amalie; Croteau, Marie-Noelle

    2015-01-01

    Copper oxide (CuO) nanoparticles (NPs) are widely used, and likely released into the aquatic environment. Both aqueous (i.e., dissolved Cu) and particulate Cu can be taken up by organisms. However, how exposure routes influence the bioavailability and subsequent toxicity of Cu remains largely...... unknown. Here, we assess the importance of exposure routes (water and sediment) and Cu forms (aqueous and nanoparticulate) on Cu bioavailability and toxicity to the freshwater oligochaete, Lumbriculus variegatus, a head-down deposit-feeder. We characterize the bioaccumulation dynamics of Cu in L....... In nature, L. variegatus is potentially exposed to Cu via both water and sediment. However, sediment progressively becomes the predominant exposure route for Cu in L. variegatus as Cu partitioning to sediment increases...

  14. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available Effects of utilizing nanomaterial on the solar still productivity investigated experimentally. Cuprous oxides (CuO chosen as a nanoparticles material. The nanoparticles added to the black paint of the solar still walls to enhance the solar still performance. Experiments conducted with cuprous oxide nanoparticles weight concentrations ranged from 10% to 40%. It is found that adding nanoparticles to paint increase heat transfer rate and saline water temperature. Solar still productivity of the proposed system is higher than that for the conventional still. Results acquired that utilizing CuO nanoparticles boosted the distillate by 16% and 25% as compared to the conventional solar still (CSS at weight fraction concentration of 10% and 40%, respectively. Payback period of the distillation system for the modified still using CuO nanomaterials is about 96 days, at weight fraction 10%, which is considerable as compared by 89 days for CSS. Keywords: Nanomaterial, Solar still, Distillation, Nanoparticle

  15. Metal Oxide Nanoparticle Photoresists for EUV Patterning

    KAUST Repository

    Jiang, Jing

    2014-01-01

    © 2014SPST. Previous studies of methacrylate based nanoparticle have demonstrated the excellent pattern forming capability of these hybrid materials when used as photoresists under 13.5 nm EUV exposure. HfO2 and ZrO2 methacrylate resists have achieved high resolution (∼22 nm) at a very high EUV sensitivity (4.2 mJ/cm2). Further investigations into the patterning process suggests a ligand displacement mechanism, wherein, any combination of a metal oxide with the correct ligand could generate patterns in the presence of the suitable photoactive compound. The current investigation extends this study by developing new nanoparticle compositions with transdimethylacrylic acid and o-toluic acid ligands. This study describes their synthesis and patterning performance under 248 nm KrF laser (DUV) and also under 13.5 nm EUV exposures (dimethylacrylate nanoparticles) for the new resist compositions.

  16. Accumulation and Toxicity of Copper Oxide Engineered Nanoparticles in a Marine Mussel

    Directory of Open Access Journals (Sweden)

    Shannon K. Hanna

    2014-06-01

    Full Text Available Cu is an essential trace element but can be highly toxic to aquatic organisms at elevated concentrations. Greater use of CuO engineered nanoparticles (ENPs may lead to increased concentrations of CuO ENPs in aquatic environments causing potential ecological injury. We examined the toxicity of CuO ENPs to marine mussels and the influence of mussels on the fate and transport of CuO ENPs. We exposed marine mussels to 1, 2, or 3 mg L−1 CuO ENPs for four weeks, and measured clearance rate, rejection, excretion and accumulation of Cu, and mussel shell growth. Mussel clearance rate was 48% less, and growth was 68% less, in mussels exposed to 3 mg L−1 than in control animals. Previous studies show 100% mortality at 1 mg Cu L−1, suggesting that CuO ENPs are much less toxic than ionic Cu, probably due to the slow dissolution rate of the ENPs. Mussels rejected and excreted CuO ENPs in biodeposits containing as much as 110 mg Cu g−1, suggesting the potential for magnification in sediments. Mussels exposed to 3 mg L−1 CuO ENPs accumulated 79.14 ± 12.46 µg Cu g−1 dry weight, which was 60 times more Cu than in control animals. Our results suggest that mussels have the potential to influence the fate and transport of CuO ENPs and potentially cause magnification of CuO ENPs in mussel bed communities, creating a significant source of Cu to marine benthos.

  17. Magnetic behavior of iron oxide nanoparticle-biomolecule assembly

    International Nuclear Information System (INIS)

    Kim, Taegyun; Reis, Lynn; Rajan, Krishna; Shima, Mutsuhiro

    2005-01-01

    Iron oxide nanoparticles of 8-20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule-nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly

  18. Crystallization and electrical resistivity of Cu{sub 2}O and CuO obtained by thermal oxidation of Cu thin films on SiO{sub 2}/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    De Los Santos Valladares, L., E-mail: ld301@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Salinas, D. Hurtado [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Dominguez, A. Bustamante [Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas, Universidad Nacional Mayor de San Marcos, Ap. Postal 14-0149, Lima (Peru); Najarro, D. Acosta [Instituto de Fisica, Departamento de Materia Condensada, Universidad Nacional Autonoma de Mexico, Ap. Postal 20-364, CP 01000 (Mexico); Khondaker, S.I. [NanoScience Technology Centre and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Mitrelias, T.; Barnes, C.H.W. [Cavendish Laboratory, University of Cambridge, J.J Thomson Av., Cambridge CB3 0HE (United Kingdom); Aguiar, J. Albino [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901, Recife-Pe (Brazil); Majima, Y. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); CREST, Japan Science and Technology Agency (JST), 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2012-08-01

    In this work, we study the crystallization and electrical resistivity of the formed oxides in a Cu/SiO{sub 2}/Si thin film after thermal oxidation by ex-situ annealing at different temperatures up to 1000 Degree-Sign C. Upon increasing the annealing temperature, from the X ray diffractogram the phase evolution Cu {yields} Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO was detected. Pure Cu{sub 2}O films are obtained at 200 Degree-Sign C, whereas uniform CuO films without structural surface defects such as terraces, kinks, porosity or cracks are obtained in the temperature range 300-550 Degree-Sign C. In both oxides, crystallization improves with annealing temperature. A resistivity phase diagram, which is obtained from the current-voltage response, is presented here. The resistivity was expected to increase linearly as a function of the annealing temperature due to evolution of oxides. However, anomalous decreases are observed at different temperatures ranges, this may be related to the improvement of the crystallization and crystallite size when the temperature increases. - Highlights: Black-Right-Pointing-Pointer The crystallization and electrical resistivity of oxides in a Cu films are studied. Black-Right-Pointing-Pointer In annealing Cu films, the phase evolution Cu + Cu{sub 2}O {yields} Cu{sub 2}O {yields} Cu{sub 2}O + CuO {yields} CuO occurs. Black-Right-Pointing-Pointer A resistivity phase diagram, obtained from the current-voltage response, is presented. Black-Right-Pointing-Pointer Some decreases in the resistivity may be related to the crystallization.

  19. Synthesis of gold nanoparticles with graphene oxide.

    Science.gov (United States)

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  20. Chemical nature of catalysts of oxide nanoparticles in environment

    Indian Academy of Sciences (India)

    Carbon nanostructures (CNS) are often grown using oxide nanoparticles as catalyst in chemical vapour deposition and these oxides are not expected to survive as such during growth. In the present study, the catalysts of cobalt- and nickel oxide-based nanoparticles of sizes varying over a range have been reduced at 575 ...

  1. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    International Nuclear Information System (INIS)

    Karasenkov, Y; Frolov, G; Gusev, A; Kuznetsov, D; Leont'ev, V; Pogorelsky, I; Latuta, N

    2015-01-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse – condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO 2 ), iron oxide (Fe 2 O 3 ), tantalum oxide (TaO), vanadium oxide (VO 2 ), cobalt oxide (CoO), tantalum dioxide TaO 2 , zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe 2 O 3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity. (paper)

  2. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    Science.gov (United States)

    Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.

    2015-11-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.

  3. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    International Nuclear Information System (INIS)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes

    2016-01-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  4. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes, E-mail: rayssasouza.net@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  5. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

    International Nuclear Information System (INIS)

    Clark, Andrea; Zhu Aiping; Sun Kai; Petty, Howard R.

    2011-01-01

    Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.

  6. Ultrasmall lanthanide oxide nanoparticles for biomedical imaging and therapy

    CERN Document Server

    Lee, Gang Ho

    2014-01-01

    Most books discuss general and broad topics regarding molecular imagings. However, Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy, will mainly focus on lanthanide oxide nanoparticles for molecular imaging and therapeutics. Multi-modal imaging capabilities will discussed, along with up-converting FI by using lanthanide oxide nanoparticles. The synthesis will cover polyol synthesis of lanthanide oxide nanoparticles, Surface coatings with biocompatible and hydrophilic ligands will be discussed and TEM images and dynamic light scattering (DLS) patterns will be

  7. Silver Nanoparticles-graphene Oxide Nanocomposite for Antibacterial Purpose

    International Nuclear Information System (INIS)

    Chook, S.W.; Chia, C.H.; Sarani Zakaria; Mohd Khan Ayob; Chee, K.L.; Neoh, H.M.; Huang, N.M.

    2011-01-01

    Graphene oxide (GO) sheets, a single layer of carbon atoms which can be served as substrates for fabricating metallic nanoparticles-GO nano composites, have been used in this study The nanocomposite of silver nanoparticles and graphene oxide were produced via in-situ synthesis and with the aid of chitosan to investigate the formation of silver nanoparticles on the graphene oxide sheets. XRD and UV-Vis studies confirmed the formation of silver nanoparticles on GO sheets, while TEM and FESEM images presented the loading of silver nanoparticles on the GO sheets. The degree of loading and distribution of the silver nanoparticles on the graphene oxide were depended on the procedure during the formation of silver nanoparticles. The nano composites can be potentially used in food packaging and biomedical applications. (author)

  8. Synthesis and characterization of dextran-coated iron oxide nanoparticles

    Science.gov (United States)

    Predescu, Andra Mihaela; Matei, Ecaterina; Berbecaru, Andrei Constantin; Pantilimon, Cristian; Drăgan, Claudia; Vidu, Ruxandra; Predescu, Cristian; Kuncser, Victor

    2018-03-01

    Synthesis and characterization of iron oxide nanoparticles coated with a large molar weight dextran for environmental applications are reported. The first experiments involved the synthesis of iron oxide nanoparticles which were coated with dextran at different concentrations. The synthesis was performed by a co-precipitation technique, while the coating of iron oxide nanoparticles was carried out in solution. The obtained nanoparticles were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction spectrometry, Fourier transform infrared spectroscopy and superconducting quantum interference device magnetometry. The results demonstrated a successful coating of iron oxide nanoparticles with large molar weight dextran, of which agglomeration tendency depended on the amount of dextran in the coating solution. SEM and TEM observations have shown that the iron oxide nanoparticles are of about 7 nm in size.

  9. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    International Nuclear Information System (INIS)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss; Sadaiyandi, Karuppasamy; Mahendran, Manickam; Sagadevan, Suresh

    2016-01-01

    Cerium oxide (CeO 2 ) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  10. Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Prabaharan, Devadoss Mangalam Durai Manoharadoss [Department of Physics, NPR College of Engineering and Technology, Natham, Dindigul, Tamil Nadu (India); Sadaiyandi, Karuppasamy [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivaganga, Tamil Nadu (India); Mahendran, Manickam [Department of Physics, Thiagarajar College of Engineering, Madurai, Tamil Nadu (India); Sagadevan, Suresh, E-mail: duraiphysics2011@gmail.com [Department of Physics, AMET University (India)

    2016-03-15

    Cerium oxide (CeO{sub 2}) nanoparticles were prepared by the precipitation method. The average crystallite size of cerium oxide nanoparticles was calculated from the X-ray diffraction (XRD) pattern and found to be 11 nm. The FT-IR spectrum clearly indicated the strong presence of cerium oxide nanoparticles. Raman spectrum confirmed the cubic nature of the cerium oxide nanoparticles. The Scanning Electron Microscopy (SEM) analysis showed that the nanoparticles agglomerated forming spherical-shaped particles. The Transmission Electron Microscopic (TEM) analysis confirmed the prepared cerium oxide nanoparticles with the particle size being found to be 16 nm. The optical absorption spectrum showed a blue shift by the cerium oxide nanoparticles due to the quantum confinement effect. The dielectric properties of cerium oxide nanoparticles were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanoparticles decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature. (author)

  11. Washing effect on superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Laura-Karina Mireles

    2016-06-01

    Full Text Available Much recent research on nanoparticles has occurred in the biomedical area, particularly in the area of superparamagnetic iron oxide nanoparticles (SPIONs; one such area of research is in their use as magnetically directed prodrugs. It has been reported that nanoscale materials exhibit properties different from those of materials in bulk or on a macro scale [1]. Further, an understanding of the batch-to-batch reproducibility and uniformity of the SPION surface is essential to ensure safe biological applications, as noted in the accompanying article [2], because the surface is the first layer that affects the biological response of the human body. Here, we consider a comparison of the surface chemistries of a batch of SPIONs, before and after the supposedly gentle process of dialysis in water.

  12. Toxicokinetics of zinc oxide nanoparticles in rats

    International Nuclear Information System (INIS)

    Chung, H E; Yu, J; Baek, M; Lee, J A; Choi, S J; Kim, M S; Kim, S H; Maeng, E H; Lee, J K; Jeong, J

    2013-01-01

    Zinc oxide (ZnO) nanoparticle have been extensively applied to diverse industrial fields because they possess UV light absorption, catalytic, semi-conducting, and magnetic characteristics as well as antimicrobial property. However, up to date, toxicological effects of ZnO nanoparticles in animal models have not been completely determined. Moreover, little information is available about kinetic behaviors of ZnO nanoparticles in vivo, which will be crucial to predict their potential chronic toxicity after long-term exposure. The aim of this study was, therefore, to evaluate the pharmacokinetics and toxicokinetics of ZnO nanoparticles after single-dose and repeated dose 90-day oral administration in male and female rats, respectively. The blood samples were collected following administration of three different doses (125, 250, and 500 mg/kg) and ZnO concentration was assessed by measuring zinc level with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The result showed that the plasma ZnO concentration significantly increased in a dose-dependent manner, but decreased within 24 h after single-dose oral administration up to 500 mg/kg, without any significant difference between gender. However, when repeated dose 90-day oral toxicity study was performed, the elevated plasma concentrations did not return to normal control levels in all the cases, indicating their toxicity potential. These findings suggest that repeated oral exposure to ZnO nanoparticles up to the dose of 125 mg/kg could accumulate in the systemic circulation, thereby implying that the NOAEL values could be less than 125 mg/kg via oral intake.

  13. Weak ferromagnetism and exchange biasing in cobalt oxide nanoparticle systems

    NARCIS (Netherlands)

    Tomou, A; Gournis, D; Panagiotopoulos, [No Value; Huang, Y; Hadjipanayis, GC; Kooi, BJ; Panagiotopoulos, I.

    2006-01-01

    Cobalt oxide nanoparticle systems have been prepared by wet chemical processing involving the encapsulation of the nanoparticles by an organic ligand shell (oleic acid and oleylamine). CoO nanoparticles were easily prepared by this method, while the synthesis of the CoPt/CoO nanocomposites was

  14. Synthesis of iron oxide nanoparticles of narrow size distribution on ...

    Indian Academy of Sciences (India)

    WINTEC

    Abstract. We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharide templates. ... using different chemical methods viz. sonochemical, sol- .... 3.2 Characterization of iron oxide prepared by template assisted ...

  15. The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for Hg° oxidation in simulated flue gas

    Science.gov (United States)

    Chen, Chuanmin; Jia, Wenbo; Liu, Songtao; Cao, Yue

    2018-04-01

    CuO modified V2O5-WO3/TiO2 based SCR catalysts prepared by improved impregnation method were investigated to evaluate the catalytic activity for elemental mercury (Hg°) oxidation in simulated flue gas at 150-400 °C. Nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It was found that V0.8WTi-Cu3 catalyst exhibited the superior Hg° oxidation activity and wide operating temperature window at the gas hourly space velocity (GHSV) of 3 × 105 h-1. The BET and XRD results showed that CuO was well loaded and highly dispersed on the catalysts surface. The XPS results suggested that the addition of CuO generated abundant chemisorbed oxygen, which was due to the synergistic effect between CuO and V2O5. The existence of the redox cycle of V4+ + Cu2+ ↔ V5+ + Cu+ in V0.8WTi-Cu3 catalyst enhanced Hg° oxidation activity. The effects of flue gas components (O2, NO, SO2 and H2O) on Hg° oxidation over V0.8WTi-Cu3 catalyst were also explored. Moreover, the co-presence of NO and NH3 remarkably inhibited Hg° oxidation, which was due to the competitive adsorption and reduction effect of NH3 at SCR condition. Fortunately, this inhibiting effect was gradually scavenged with the decrease of GHSV. The mechanism of Hg° oxidation was also investigated.

  16. Synthesis and magnetic characterizations of uniform iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Jiang, FuYi; Li, XiaoYi; Zhu, Yuan; Tang, ZiKang

    2014-01-01

    Uniform iron oxide nanoparticles with a cubic shape were prepared by the decomposition of homemade iron oleate in 1-octadecene with the presence of oleic acid. The particle shape and size uniformity are sensitive to the quantity of oleic acid. XRD, HRTEM and SAED results indicated that the main phase content of as-prepared iron oxide nanoparticles is Fe 3 O 4 with an inverse spinel structure. Magnetic measurements revealed that the as-prepared iron oxide nanoparticles display a ferromagnetic behavior with a blocking temperature of 295 K. At low temperatures the magnetic anisotropy of the aligned nanoparticles caused the appearance of a hysteresis loop.

  17. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli ...

    African Journals Online (AJOL)

    To study the antibacterial mechanisms, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to observe morphological changes of E. coli K88 treated with 0.8 μg/ml zinc oxide nanoparticles. The results reveal that zinc oxide nanoparticles could damage cell membranes, lead to leakage of ...

  18. Investigation of carrier oil stabilized iron oxide nanoparticles and its ...

    African Journals Online (AJOL)

    Iron oxide nanoparticles were synthesized by co-precipitation method. The polyunsaturated carrier oil (flaxseed oil) is used as a stabilizing agent for iron oxide nanoparticles. Kirby Bauer method was used to investigate the antibiotic sensitivity of carrier oil stabilized and uncoated SPIONs at 10 and 20 μg/L on Gram-positive ...

  19. Enzymatic biosensors based on the use of metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Shi, Xinhao; Gu, Wei; Li, Bingyu; Chen, Ningning; Zhao, Kai; Xian, Yuezhong

    2014-01-01

    Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. (author)

  20. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  1. Effects of copper oxide nanoparticles and copper ions to zebrafish (Danio rerio) cells, embryos and fry

    DEFF Research Database (Denmark)

    Thit, Amalie; Skjolding, Lars Michael; Selck, Henriette

    2017-01-01

    The use of engineered metal nanoparticles (NPs) is continuously increasing and so is the need for information regarding their toxicity. This study compares the toxicity of CuO NPs with ionic Cu in three zebrafish model systems; zebrafish hepatoma cell line (ZFL), fish embryo toxicity test (FET) a...

  2. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    International Nuclear Information System (INIS)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  3. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India); Shivashangari, Kanchi Subramanian, E-mail: shivashangari@gmail.com [Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu (India); Ravikumar, Vilwanathan, E-mail: ravikumarbdu@gmail.com [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  4. Synthesis of magnetite nanoparticles using electrochemical oxidation

    Directory of Open Access Journals (Sweden)

    Ye. Ya. Levitin

    2014-08-01

    Full Text Available The monodisperse magnetite nanoparticles are promising for use in the biomedical industry for targeted drug delivery, cell separation and biochemical products, Magnetic Resonance Imaging, immunological studies, etc. Classic method for the synthesis of magnetite is the chemical condensation Elmore’s, it is simple and cheap, but it is complicated by the formation of side compounds which impair the magnetic properties of the final product. Biological and medical purposes require high purity magnetite nanoparticles. Electrochemical methods of producing nanoparticles of magnetite acquire significant spread. The kinetics of electrochemical processes are a function of a larger number of parameters than the kinetics of conventional chemical reaction, thus electrochemical reactions can be thinner and more completely adjusted to give a predetermined size nanoparticles. In the kinetics of the electrochemical oxidation and reduction the important role is played by the nature of the electrode. In many industrial processes, it is advisable to use lead dioxide anodes with titanium current lead. Purpose of the work To determine the optimum conditions of electrochemical oxidation of Fe2+ Fe3+to produce magnetite with high purity and improved magnetic characteristics. Materials and methods Electrochemical studies were carried out in a glass cell ЯСЭ-2 using a potentiostat ПИ-50-1.1 and a recording device ПДА1. Reference electrode - silver chloride ЭВЛ1М 3.1, potentials listed on the hydrogen scale. The test solution contained 80 g/ l FeSO4×7H2O and H2SO4(to pH 1. The pH of the solution was measured with a pH–meter « рН–150». Concentration ratio of Fe3+/Fe2+in the solution was measured by permanganometric method. Magnetite particle sizes were measured by an electron microscope computer ЭВМ-100Л, an increasing is 2×105. Saturation magnetization was evaluated by the magnetization curve, for the measured sample in the field with strength

  5. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Dimkpa, Christian O., E-mail: cdimkpa@usu.edu [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); Calder, Alyssa; Britt, David W. [Department of Biological Engineering, Utah State University, Logan, UT 84322 (United States); McLean, Joan E. [Utah Water Research Laboratory, Utah State University, Logan, UT 84322 (United States); Anderson, Anne J. [Department of Biology, Utah State University, Logan, UT 84322 (United States)

    2011-07-15

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: > Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). > Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. > The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. > Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. > The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  6. Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions

    International Nuclear Information System (INIS)

    Dimkpa, Christian O.; Calder, Alyssa; Britt, David W.; McLean, Joan E.; Anderson, Anne J.

    2011-01-01

    The toxicity of commercially-available CuO and ZnO nanoparticles (NPs) to pathogenic bacteria was compared for a beneficial rhizosphere isolate, Pseudomonas chlororaphis O6. The NPs aggregated, released ions to different extents under the conditions used for bacterial exposure, and associated with bacterial cell surface. Bacterial surface charge was neutralized by NPs, dependent on pH. The CuO NPs were more toxic than the ZnO NPs. The negative surface charge on colloids of extracellular polymeric substances (EPS) was reduced by Cu ions but not by CuO NPs; the EPS protected cells from CuO NPs-toxicity. CuO NPs-toxicity was eliminated by a Cu ion chelator, suggesting that ion release was involved. Neither NPs released alkaline phosphatase from the cells' periplasm, indicating minimal outer membrane damage. Accumulation of intracellular reactive oxygen species was correlated with CuO NPs lethality. Environmental deposition of NPs could create niches for ion release, with impacts on susceptible soil microbes. - Highlights: → Toxicity of metallic nanoparticles (NPs) was evaluated in a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6). → Aggregated commercial CuO and ZnO NPs released Cu and Zn ions and changed bacterial surface charge, depending on pH. → The NPs were toxic to PcO6 through NP-specific, but also ion release mechanisms. → Reactive oxygen species were produced by CuO NP and Cu ion at lethal concentrations, but bacterial EPS protected against Cu. → The periplasmic marker, alkaline phosphate, activity was increased by the NPs and ions. - Aggregated CuO and ZnO nanoparticles release ions and cause different toxicities in a beneficial soil bacterium.

  7. CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dubal, Deepak P., E-mail: deepak.dubal@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Institut für Chemie, AG Elektrochemie, D-09107 Chemnitz (Germany); Gund, Girish S.; Lokhande, Chandrakant D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, 416004 (M.S) (India); Holze, Rudolf, E-mail: rudolf.holze@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Institut für Chemie, AG Elektrochemie, D-09107 Chemnitz (Germany)

    2013-02-15

    Graphical abstract: Schematic experimental setup used for the potentiodynamic mode of electrodeposition for the synthesis of CuO cauliflower onto stainless steel substrate. Highlights: ► Synthesis of CuO using potentiodynamic mode of electrodeposition. ► Uniformly spread cauliflower-like nanostructure. ► CuO cauliflowers provide high specific capacitance with good stability. ► CuO cauliflowers show high power and energy density values. -- Abstract: In present investigation, synthesis and characterization of novel cauliflower-like copper oxide (CuO) and its electrochemical properties have been performed. The utilized CuO cauliflowers were prepared by potentiodyanamic mode from an aqueous alkaline bath. X-ray diffraction pattern confirm the formation of monoclinic CuO cauliflowers. Scanning electron micrograph analysis reveals that CuO cauliflowers are uniformly spread all over the substrate surface with the surface area of 49 m{sup 2} g{sup −1} with bimodal pore size distribution. Electrochemical analysis shows that CuO cauliflower exhibits high specific capacitance of 179 Fg{sup −1} in 1 M Na{sub 2}SO{sub 4} electrolyte with 81% capacity retention after 2000 cycles. The Ragone plot discovers better power and energy densities of cauliflowers-like CuO sample. Present investigation illustrates that the potentiodynamic approach for the direct growth of cauliflower-like CuO is simple and cost-effective and can be applied for synthesis of other metal oxides, polymers etc.

  8. Biosynthesis of Copper Oxide nanoparticles from Drypetes sepiaria Leaf extract and their catalytic activity to dye degradation

    Science.gov (United States)

    Narasaiah, Palajonna; Mandal, Badal Kumar; Sarada, N. C.

    2017-11-01

    The synthesis of metal nanoparticles through a green method is a rapid biogenic and offers few advantages over the common chemical and physical procedures, as it is an easy and fast, eco-friendly and does not involve any costly chemicals as well as hazardous chemicals. In this study, we report synthesis of CuO NPs by using Drypetes sepiaria Leaf extract (DSLE). The synthesized CuO NPs was characterization using different technique such as UV, IR, XRD, and TEM. The formation of CuO NPs was confirmed by Surface Plasmon Resonance (SRP) at 298 nm using UV-Vis spectroscopy. Crystallinity of CuO NPs was confirmed by powder XRD and the characteristic functional groups of synthesised CuO NPs were identified by FTIR spectroscopy. The size and shape of the synthesized CuO NPs was determined by transmission electron microscopy (TEM). In addition, we performed photocatalytic activity to examine the photocatalytic degradation efficiency of CuO NPs to Congo Red. The colloidal solutions of CuO NPs showed good catalytic activity.

  9. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    Science.gov (United States)

    Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural

  10. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    Science.gov (United States)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  11. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Saleh, Tawfik A.; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  12. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.

    2013-12-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  13. Titanium oxide nanoparticles as additives in engine oil

    Directory of Open Access Journals (Sweden)

    Meena Laad

    2018-04-01

    Full Text Available This research study investigates the tribological behaviour of titanium oxide (TiO2 nanoparticles as additives in mineral based multi-grade engine oil. All tests were performed under variable load and varying concentrations of nanoparticles in lubricating oil. The friction and wear experiments were performed using pin-on-disc tribotester. This study shows that mixing of TiO2 nanoparticles in engine oil significantly reduces the friction and wear rate and hence improves the lubricating properties of engine oil. The dispersion analysis of TiO2 nanoparticles in lubricating oil using UV spectrometer confirms that TiO2 nanoparticles possess good stability and solubility in the lubricant and improve the lubricating properties of the engine oil. Keywords: Titanium oxide, Nanoparticles, UV spectrometer, Tribotester, Engine oil

  14. Airborne Nanoparticle Release and Toxicological Risk from Metal-Oxide-Coated Textiles: Toward a Multiscale Safe-by-Design Approach.

    Science.gov (United States)

    Mantecca, Paride; Kasemets, Kaja; Deokar, Archana; Perelshtein, Ilana; Gedanken, Aharon; Bahk, Yeon Kyoung; Kianfar, Baharh; Wang, Jing

    2017-08-15

    Nano metal oxides have been proposed as alternatives to silver (Ag) nanoparticles (NPs) for antibacterial coatings. Here, cotton and polyester-cotton fabrics were sonochemically coated with zinc oxide (ZnO) and copper oxide (CuO) NPs. By varying the reaction solvent (water or ethanol), NPs with different sizes and shapes were synthesized. The cytotoxic and pro-inflammatory effects of studied NPs were investigated in vitro in human alveolar epithelial A549 and macrophage-like THP1 cells. To understand the potential respiratory impact of the NPs, the coated textiles were subjected to the abrasion tests, and the released airborne particles were measured. A very small amount of the studied metal oxides NPs was released from abrasion of the textiles coated by the ethanol-based sonochemical process. The release from the water-based coating was comparably higher. Lung and immune cells viability decreased after 24 h of exposure only at the highest studied NPs concentration (100 μg/mL). Different from the ZnO NPs, both formulations of CuO NPs induced IL-8 release in the lung epithelial cells already at subtoxic concentrations (1-10 μg/mL) but not in immune cells. All of the studied NPs did not induce IL-6 release by the lung and immune cells. Calculations revealed that the exposures of the NPs to human lung due to the abrasion of the textiles were lower or comparable to the minimum doses in the cell viability tests (0.1 μg/mL), at which acute cytotoxicity was not observed. The results alleviate the concerns regarding the potential risk of these metal oxide NPs in their applications for the textile coating and provide insight for the safe-by-design approach.

  15. Radiation-induced synthesis of gold, iron-oxide composite nanoparticles

    International Nuclear Information System (INIS)

    Seino, Satoshi; Yamamoto, Takao; Nakagawa, Takashi; Kinoshita, Takuya; Kojima, Takao; Taniguchi, Ryoichi; Okuda, Shuichi

    2007-01-01

    Composite nanoparticles consisting of magnetic iron oxide nanoparticles and gold nanoparticles were synthesized using gamma-rays or electron beam. Ionizing irradiation induces the generation of reducing species inside the aqueous solution, and gold ions are reduced to form metallic Au nanoparticles. The size of Au nanoparticles depended on the dose rate and the concentration of support iron oxide. The gold nanoparticles on iron oxide nanoparticles selectively adsorb biomolecules via Au-S bonding. By using magnetic property of the support iron oxide nanoparticles, the composite nanoparticles are expected as a new type of magnetic nanocarrier for biomedical applications. (author)

  16. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract

    Directory of Open Access Journals (Sweden)

    G. Manjari

    2017-07-01

    Full Text Available The phytogenic synthesis method to highly active, recoverable and recyclable heterogeneous copper oxide nanocatalyst and encapsulated within biomaterial that acts as a nontoxic and renewable source of reducing and stabilizing agent. The biosynthesized CuO NPs were characterized using UV–Vis absorption spectroscopy, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM and thermo gravimetric analysis-differential scanning calorimetry (TGA–DSC, techniques. The formation of CuO NPs with the size 20–45 nm range is shown in TEM image. Significantly, in aqueous phase CuO NPs have high catalytic activity for the reduction of Congo red (CR, methylene blue (MB and 4-nitrophenol (4-NP in the presence of the sodium borohydride (NaBH4 at room temperature. In addition, CuO NPs catalyst can be easily recovered by centrifugation and reused for 6 cycles with more than 90% conversion efficiency. CuO nanocatalyst, leaching after catalytic application was investigated by ICPAES (Inductively coupled plasma atomic emission spectroscopy. CuO NPs possess great prospects in reduction of pernicious dyes and nitro organic pollutants in water.

  17. Gold nanoparticles supported on magnesium oxide for CO oxidation

    Science.gov (United States)

    Carabineiro, Sónia Ac; Bogdanchikova, Nina; Pestryakov, Alexey; Tavares, Pedro B.; Fernandes, Lisete Sg; Figueiredo, José L.

    2011-06-01

    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  18. Gold nanoparticles supported on magnesium oxide for CO oxidation

    Directory of Open Access Journals (Sweden)

    Bogdanchikova Nina

    2011-01-01

    Full Text Available Abstract Au was loaded (1 wt% on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved. The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  19. Toxicity of metal oxide nanoparticles in Escherichia coli correlates with conduction band and hydration energies.

    Science.gov (United States)

    Kaweeteerawat, Chitrada; Ivask, Angela; Liu, Rong; Zhang, Haiyuan; Chang, Chong Hyun; Low-Kam, Cecile; Fischer, Heidi; Ji, Zhaoxia; Pokhrel, Suman; Cohen, Yoram; Telesca, Donatello; Zink, Jeffrey; Mädler, Lutz; Holden, Patricia A; Nel, Andre; Godwin, Hilary

    2015-01-20

    Metal oxide nanoparticles (MOx NPs) are used for a host of applications, such as electronics, cosmetics, construction, and medicine, and as a result, the safety of these materials to humans and the environment is of considerable interest. A prior study of 24 MOx NPs in mammalian cells revealed that some of these materials show hazard potential. Here, we report the growth inhibitory effects of the same series of MOx NPs in the bacterium Escherichia coli and show that toxicity trends observed in E. coli parallel those seen previously in mammalian cells. Of the 24 materials studied, only ZnO, CuO, CoO, Mn2O3, Co3O4, Ni2O3, and Cr2O3 were found to exert significant growth inhibitory effects; these effects were found to relate to membrane damage and oxidative stress responses in minimal trophic media. A correlation of the toxicological data with physicochemical parameters of MOx NPs revealed that the probability of a MOx NP being toxic increases as the hydration enthalpy becomes less negative and as the conduction band energy approaches those of biological molecules. These observations are consistent with prior results observed in mammalian cells, revealing that mechanisms of toxicity of MOx NPs are consistent across two very different taxa. These results suggest that studying nanotoxicity in E. coli may help to predict toxicity patterns in higher organisms.

  20. Copper(II) oxide nanoparticles augment antifilarial activity of Albendazole: In vitro synergistic apoptotic impact against filarial parasite Setaria cervi.

    Science.gov (United States)

    Zafar, Atif; Ahmad, Irshad; Ahmad, Ajaz; Ahmad, Masood

    2016-03-30

    Mass treatment of lymphatic filariasis with Albendazole (ABZ), a therapeutic benzimidazole, is fraught with serious limitations such as possible drug resistance and poor macrofilaricidal activity. Therefore, we need to develop new ABZ-based formulations to improve its antifilarial effectiveness. CuO nanoparticles were used as an adjuvant with ABZ to form ABZ-CuO nanocomposite, which was characterized by UV-vis spectroscopy, FT-IR, AFM and SEM. Antifilarial activity of nanocomposite was evaluated using relative motility assay and dye exclusion test in dark and under UV light. ROS generation, antioxidant levels, lipid peroxidation and DNA fragmentation in nanocomposite treated parasites were estimated. Biophysical techniques were employed to ascertain the mode of binding of nanocomposite to parasitic DNA. Nanocomposite increases parasite mortality as compared to ABZ in dark, and its antifilarial effect was increased further under UV light. Elevated ROS production and decline of parasitic-GST and GSH levels were observed in nanocomposite treated worms in dark, and these effects were pronounced further under UV light. Nanocomposite leads to higher DNA fragmentation as compared to ABZ alone. Further, we found that nanocomposite binds parasitic DNA in an intercalative manner where it generates ROS to induce DNA damage. Thus, oxidative stress production due to ROS generation and consequent DNA fragmentation leads to apoptosis in worms. This is the first report supporting CuO nanoparticles as a potential adjuvant with ABZ against filariasis along with enhanced antifilarial activity of nanocomposite under UV light. These findings, thus, indicate that development of ABZ-loaded nanoparticle compounds may serve as promising leads for filariasis treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Trends in the Catalytic CO Oxidation Activity of Nanoparticles

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Falsig, Hanne; Larsen, Britt Hvolbæk

    2008-01-01

    Going for gold: Density functional calculations show how gold nanoparticles are more active catalysts for CO oxidation than other metal nanoparticles. The high catalytic activity of nanosized gold clusters at low temperature is found to be related to the ability of low-coordinate metal atoms...

  2. Genotoxic effects of zinc oxide nanoparticles

    Science.gov (United States)

    Heim, Julia; Felder, Eva; Tahir, Muhammad Nawaz; Kaltbeitzel, Anke; Heinrich, Ulf Ruediger; Brochhausen, Christoph; Mailänder, Volker; Tremel, Wolfgang; Brieger, Juergen

    2015-05-01

    The potential toxicity of nanoparticles has currently provoked public and scientific discussions, and attempts to develop generally accepted handling procedures for nanoparticles are under way. The investigation of the impact of nanoparticles on human health is overdue and reliable test systems accounting for the special properties of nanomaterials must be developed. Nanoparticular zinc oxide (ZnO) may be internalised through ambient air or the topical application of cosmetics, only to name a few, with unpredictable health effects. Therefore, we analysed the determinants of ZnO nanoparticle (NP) genotoxicity. ZnO NPs (15-18 nm in diameter) were investigated at concentrations of 0.1, 10 and 100 μg mL-1 using the cell line A549. Internalised NPs were only infrequently detectable by TEM, but strongly increased Zn2+ levels in the cytoplasm and even more in the nuclear fraction, as measured by atom absorption spectroscopy, indicative of an internalised zinc and nuclear accumulation. We observed a time and dosage dependent reduction of cellular viability after ZnO NP exposure. ZnCl2 exposure to cells induced similar impairments of cellular viability. Complexation of Zn2+ with diethylene triamine pentaacetic acid (DTPA) resulted in the loss of toxicity of NPs, indicating the relevant role of Zn2+ for ZnO NP toxicity. Foci analyses showed the induction of DNA double strand breaks (DSBs) by ZnO NPs and increased intracellular reactive oxygen species (ROS) levels. Treatment of the cells with the ROS scavenger N-acetyl-l-cysteine (NAC) resulted in strongly decreased intracellular ROS levels and reduced DNA damage. However, a slow increase of ROS after ZnO NP exposure and reduced but not quashed DSBs after NAC-treatment suggest that Zn2+ may exert genotoxic activities without the necessity of preceding ROS-induction. Our data indicate that ZnO NP toxicity is a result of cellular Zn2+ intake. Subsequently increased ROS-levels cause DNA damage. However, we found evidence for

  3. Iron oxide and gold nanoparticles in cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Lozhkomoev, Aleksandr S. [Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2016-08-02

    Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

  4. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air

    DEFF Research Database (Denmark)

    Poreddy, Raju; Engelbrekt, Christian; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of alcohols to carbonyl compounds was studied using CuO nanoparticle catalysts prepared by solution synthesis in buffered media. CuO nanoparticles synthesized in N-cyclohexyl- 3-aminopropanesulfonic acid buffer showed high catalytic activity for the oxidation...... of benzylic, alicyclic and unsaturated alcohols to their corresponding carbonyl compounds with excellent selectivities. The observed trend in activity for conversion of substituted alcohols suggested a β-H elimination step to be involved, thus enabling a possible reaction mechanism for oxidative...... dehydrogenation of benzyl alcohols to be proposed. The use of CuO as an inexpensive and efficient heterogeneous catalyst under aerobic conditions provides a new noble metal-free and green reaction protocol for carbonyl compound synthesis....

  5. Effect of Magnesium Oxide Nanoparticles on Water Glass Structure

    Directory of Open Access Journals (Sweden)

    Bobrowski A.

    2012-09-01

    Full Text Available An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide on the structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgO in propanol and ethanol were introduced in the same mass content (5wt.% and structural changes were determined by measurement of the FT-IR absorption spectra.

  6. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    Science.gov (United States)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  7. Stem cell tracking using iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bull E

    2014-03-01

    Full Text Available Elizabeth Bull,1 Seyed Yazdan Madani,1 Roosey Sheth,1 Amelia Seifalian,1 Mark Green,2 Alexander M Seifalian1,31UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, 2Department of Physics, King’s College London, Strand Campus, London, UK; 3Royal Free London National Health Service Foundation Trust Hospital, London, UKAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.Keywords: stem cells, nanoparticle, magnetic

  8. Preparation and characterization of CuO nanowire arrays

    International Nuclear Information System (INIS)

    Yu Dongliang; Ge Chuannan; Du Youwei

    2009-01-01

    CuO nanowire arrays were prepared by oxidation of copper nanowires embedded in anodic aluminum oxide (AAO) membranes. The AAO was fabricated in an oxalic acid at a constant voltage. Copper nanowires were formed in the nanopores of the AAO membranes in an electrochemical deposition process. The oxidized copper nanowires at different temperatures were studied. X-ray diffraction patterns confirmed the formation of a CuO phase after calcining at 500 0 C in air for 30 h. A transmission electron microscopy was used to characterize the nanowire morphologies. Raman spectra were performed to study the CuO nanowire arrays. After measuring, we found that the current-voltage curve of the CuO nanowires is nonlinear.

  9. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  10. Effect of surfactant for magnetic properties of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haracz, S. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Hilgendorff, M. [Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany); Rybka, J.D. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Giersig, M. [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89B, 61-614 Poznań (Poland); Freie Universität Berlin, Fachbereich Physik, Arnimalle 14, 14195 Berlin (Germany)

    2015-12-01

    Highlights: • Dynamic behavior of magnetic nanoparticles. • Synthesis of iron oxide nanoparticles. • Effect of surfactant for magnetic properties. - Abstract: For different medical applications nanoparticles (NPs) with well-defined magnetic properties have to be used. Coating ligand can change the magnetic moment on the surface of nanostructures and therefore the magnetic behavior of the system. Here we investigated magnetic NPs in a size of 13 nm conjugated with four different kinds of surfactants. The surface anisotropy and the magnetic moment of the system were changed due to the presence of the surfactant on the surface of iron oxide NPs.

  11. Safety assessment of chronic oral exposure to iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Chamorro, Susana; Vaquero, María Pilar; Brenes, Agustín; Gutiérrez, Lucía; Salas, Gorka; Luengo, Yurena; Verdoy, Dolores; José Teran, Francisco

    2015-01-01

    Iron oxide nanoparticles with engineered physical and biochemical properties are finding a rapidly increasing number of biomedical applications. However, a wide variety of safety concerns, especially those related to oral exposure, still need to be addressed for iron oxide nanoparticles in order to reach clinical practice. Here, we report on the effects of chronic oral exposure to low doses of γ-Fe 2 O 3 nanoparticles in growing chickens. Animal observation, weight, and diet intake reveal no adverse signs, symptoms, or mortality. No nanoparticle accumulation was observed in liver, spleen, and duodenum, with feces as the main excretion route. Liver iron level and duodenal villi morphology reflect the bioavailability of the iron released from the partial transformation of γ-Fe 2 O 3 nanoparticles in the acid gastric environment. Duodenal gene expression studies related to the absorption of iron from γ-Fe 2 O 3 nanoparticles indicate the enhancement of a ferric over ferrous pathway supporting the role of mucins. Our findings reveal that oral administration of iron oxide nanoparticles is a safe route for drug delivery at low nanoparticle doses. (paper)

  12. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  13. Synthesis, Characterization, and Cytotoxicity of Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. Kanagesan

    2013-01-01

    Full Text Available In order to study the response of human breast cancer cells' exposure to nanoparticle, iron oxide (α-Fe2O3 nanoparticles were synthesized by a simple low temperature combustion method using Fe(NO33·9H2O as raw material. X-ray diffraction studies confirmed that the resultant powders are pure α-Fe2O3. Transmission electron microscopy study revealed the spherical shape of the primary particles, and the size of the iron oxide nanoparticles is in the range of 19 nm. The magnetic hysteresis loops demonstrated that the sample exposed ferromagnetic behaviors with a relatively low coercivity. The cytotoxicity of α-Fe2O3 nanoparticle was also evaluated on human breast cancer cells to address the current deficient knowledge of cellular response to nanoparticle exposure.

  14. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    International Nuclear Information System (INIS)

    Zhang, Dezhong; Tang, Yang; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-01-01

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  15. Electrodeposition of silver nanoparticle arrays on transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dezhong; Tang, Yang, E-mail: tangyang@nicenergy.com; Jiang, Fuguo; Han, Zhihua; Chen, Jie

    2016-04-30

    Highlights: • The sliver nanoparticles' size and the distance between nanoparticles are tunable. - Abstract: In this paper, we present a facile method for the preparation of silver nanoparticles on aluminum-doped zinc oxide (AZO) via electrodeposition techniques at room temperature. The morphology and structure of silver nanoparticles are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. Due to localized surface plasmon resonances, as-prepared silver nanoparticles on AZO glass exhibited different reflectivity in contrast with bare AZO glass. The weighted reflection of AZO substrate increased from 10.2% to 12.8%. The high reflection property of silver nanoparticle arrays on AZO substrate might be applicable for thin film solar cells and other optoelectronics applications.

  16. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles.

    Science.gov (United States)

    Lu, Xiaoyan; Miousse, Isabelle R; Pirela, Sandra V; Moore, Jodene K; Melnyk, Stepan; Koturbash, Igor; Demokritou, Philip

    2016-01-01

    Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is two-fold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs.

  17. In vitro toxicity of zinc oxide nanoparticles: a review

    International Nuclear Information System (INIS)

    Pandurangan, Muthuraman; Kim, Doo Hwan

    2015-01-01

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn 2+ ] level. The mechanism for increased intracellular [Zn 2+ ] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca 2+ ] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines

  18. In vitro toxicity of zinc oxide nanoparticles: a review

    Energy Technology Data Exchange (ETDEWEB)

    Pandurangan, Muthuraman; Kim, Doo Hwan, E-mail: frenzram1980@gmail.com [Konkuk University, Department of Bioresources and Food Sciences (Korea, Republic of)

    2015-03-15

    The toxic effect of ZnO nanoparticles is due to their solubility. ZnO nanoparticles dissolve in the extracellular region, which in turn increases the intracellular [Zn{sup 2+}] level. The mechanism for increased intracellular [Zn{sup 2+}] level and ZnO nanoparticles dissolution in the medium is still unclear. Cytotoxicity, increased oxidative stress, increased intracellular [Ca{sup 2+}] level, decreased mitochondrial membrane potential, and interleukin-8 productions occur in the BEAS-2B bronchial epithelial cells and A549 alveolar adenocarcinoma cells following the exposure of ZnO nanoparticles. Confluent C2C12 cells are more resistant to ZnO nanoparticles compared to the sparse monolayer. Loss of 3T3-L1 cell viability, membrane leakage, and morphological changes occurs due to exposure of ZnO nanoparticles. ZnO nanoparticle induces cytotoxicity and mitochondrial dysfunction in RKO colon carcinoma cells. The occurrence of apoptosis, increased ROS level, reduced mitochondrial activity and formation of tubular intracellular structures are reported following exposure of ZnO nanoparticles in skin cells. Macrophages, monocytes, and dendritic cells are affected by ZnO nanoparticles. In addition, genotoxicity is also induced. The present review summarizes the literature on in vitro toxicity of ZnO nanoparticles (10–100 nm) on various cell lines.

  19. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete

    DEFF Research Database (Denmark)

    Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noële Croteau

    2016-01-01

    the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically...

  20. Thermochemical properties of oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems

    International Nuclear Information System (INIS)

    Moiseev, G.K.; Vatolin, N.A.; Il'inykh, N.I.

    2000-01-01

    Thermochemical properties (ΔH 0 298 , S 0 298 , H 0 298 -H 0 0 , C p (T), C p at T>T melt ) of complex oxides in Y-Ba-Cu-O, Sr-Bi-O, Cu-Nb-O, Sr-Cu-O, Ca-Cu-O, Cu-O and Hg-Ba-Ca-Cu-O systems obtained with application of calculation methods are presented. Nonexperimental methods of estimation, revision and correction of standard formation enthalpies of inorganic compounds are described [ru

  1. Molecular Dynamics Simulations of Silica Nanoparticles Grafted with Poly(ethylene oxide) Oligomer Chains

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2012-01-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene

  2. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity

    Science.gov (United States)

    Yugandhar, Pulicherla; Vasavi, Thirumalanadhuni; Uma Maheswari Devi, Palempalli; Savithramma, Nataru

    2017-10-01

    In recent times, nanoparticles are attributed to green nanotechnology methods to know the synergistic biological activities. To accomplish this phenomenon, present study was aimed to synthesize copper oxide nanoparticles (CuO NPs) by using Syzygium alternifolium stem bark, characterized those NPs using expository tools and to elucidate high prioritized antimicrobial and anticancer activities. Synthesized particles exhibited a color change pattern upon synthesis and affirmed its respective broad peak at 285 nm which was analyzed through UV-vis spectroscopy. FT-IR study confirmed that phenols and primary amines were mainly involved in capping and stabilization of nanoparticles. DLS and Zeta potential studies revealed narrow size of particles with greater stability. XRD studies revealed the crystallographic nature of particles with 17.2 nm average size. Microscopic analysis by using TEM revealed that particle size range from 5-13 nm and most of them were spherical in shape, non-agglomerated and poly-dispersed in condition. Antimicrobial studies of particles showed highest inhibitory activity against E. coli and T. harzianum among bacterial and fungal strains, respectively. The scope of this study is extended by examining anticancer activity of CuO NPs. This study exhibited potential anticancer activity towards MDA-MB-231 human breast cancer lines. Overall, these examinations relate that the S. alternifolium is described as efficient well-being plant and probabilistically for the design and synthesis of nanoparticles for human health. This study paves a way to better understand antimicrobial and anticancer therapeutic drug potentials of nanoparticles to design and analysis of pharmaceuticals by in vivo and in vitro approaches.

  3. Interfacial bonding stabilizes rhodium and rhodium oxide nanoparticles on layered Nb oxide and Ta oxide supports.

    Science.gov (United States)

    Strayer, Megan E; Binz, Jason M; Tanase, Mihaela; Shahri, Seyed Mehdi Kamali; Sharma, Renu; Rioux, Robert M; Mallouk, Thomas E

    2014-04-16

    Metal nanoparticles are commonly supported on metal oxides, but their utility as catalysts is limited by coarsening at high temperatures. Rhodium oxide and rhodium metal nanoparticles on niobate and tantalate supports are anomalously stable. To understand this, the nanoparticle-support interaction was studied by isothermal titration calorimetry (ITC), environmental transmission electron microscopy (ETEM), and synchrotron X-ray absorption and scattering techniques. Nanosheets derived from the layered oxides KCa2Nb3O10, K4Nb6O17, and RbTaO3 were compared as supports to nanosheets of Na-TSM, a synthetic fluoromica (Na0.66Mg2.68(Si3.98Al0.02)O10.02F1.96), and α-Zr(HPO4)2·H2O. High surface area SiO2 and γ-Al2O3 supports were also used for comparison in the ITC experiments. A Born-Haber cycle analysis of ITC data revealed an exothermic interaction between Rh(OH)3 nanoparticles and the layered niobate and tantalate supports, with ΔH values in the range -32 kJ·mol(-1) Rh to -37 kJ·mol(-1) Rh. In contrast, the interaction enthalpy was positive with SiO2 and γ-Al2O3 supports. The strong interfacial bonding in the former case led to "reverse" ripening of micrometer-size Rh(OH)3, which dispersed as 0.5 to 2 nm particles on the niobate and tantalate supports. In contrast, particles grown on Na-TSM and α-Zr(HPO4)2·H2O nanosheets were larger and had a broad size distribution. ETEM, X-ray absorption spectroscopy, and pair distribution function analyses were used to study the growth of supported nanoparticles under oxidizing and reducing conditions, as well as the transformation from Rh(OH)3 to Rh nanoparticles. Interfacial covalent bonding, possibly strengthened by d-electron acid/base interactions, appear to stabilize Rh(OH)3, Rh2O3, and Rh nanoparticles on niobate and tantalate supports.

  4. Functionalization of fabrics with PANI/CuO nanoparticles by precipitation route for anti-bacterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Thampi, V. V. Anusha; Thanka Rajan, S.; Anupriya, K.; Subramanian, B., E-mail: subramanianb3@gmail.com, E-mail: bsmanian@cecri.res.in [CSIR-Central Electrochemical Research Institute (India)

    2015-01-15

    The present work aims at developing copper oxide nanocrystals immobilized onto the fabrics for the improvement of antimicrobial activity. The CuO nanocrytstals were deposited onto woven fabrics and non-woven fabrics through chemical precipitation route. The samples were characterized by XRD, Raman spectroscopy, FE-SEM, and TEM. The presence of CuO on the surface of the fabrics was confirmed by EDAX. The CuO nanoparticles were found to have grown to a size of 50 nm with a monoclinic structure. The antibacterial activities were assessed for the coated CuO samples by the agar diffusion plate method followed by FE-SEM. To promote the slow release of Cu ions into the medium from the fabric matrix, the synthesized nanoparticles were immobilized in polyaniline polymer matrix before being coated onto the fabric samples, and the results are discussed.Graphical Abstract.

  5. Functionalization of fabrics with PANI/CuO nanoparticles by precipitation route for anti-bacterial applications

    International Nuclear Information System (INIS)

    Thampi, V. V. Anusha; Thanka Rajan, S.; Anupriya, K.; Subramanian, B.

    2015-01-01

    The present work aims at developing copper oxide nanocrystals immobilized onto the fabrics for the improvement of antimicrobial activity. The CuO nanocrytstals were deposited onto woven fabrics and non-woven fabrics through chemical precipitation route. The samples were characterized by XRD, Raman spectroscopy, FE-SEM, and TEM. The presence of CuO on the surface of the fabrics was confirmed by EDAX. The CuO nanoparticles were found to have grown to a size of 50 nm with a monoclinic structure. The antibacterial activities were assessed for the coated CuO samples by the agar diffusion plate method followed by FE-SEM. To promote the slow release of Cu ions into the medium from the fabric matrix, the synthesized nanoparticles were immobilized in polyaniline polymer matrix before being coated onto the fabric samples, and the results are discussed.Graphical Abstract

  6. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?

    International Nuclear Information System (INIS)

    Marill, Julie; Anesary, Naeemunnisa Mohamed; Zhang, Ping; Vivet, Sonia; Borghi, Elsa; Levy, Laurent; Pottier, Agnes

    2014-01-01

    Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation

  7. In Situ Study of Reduction Process of CuO Paste and Its Effect on Bondability of Cu-to-Cu Joints

    Science.gov (United States)

    Yao, Takafumi; Matsuda, Tomoki; Sano, Tomokazu; Morikawa, Chiaki; Ohbuchi, Atsushi; Yashiro, Hisashi; Hirose, Akio

    2018-04-01

    A bonding method utilizing redox reactions of metallic oxide microparticles achieves metal-to-metal bonding in air, which can be alternative to lead-rich high-melting point solder. However, it is known that the degree of the reduction of metallic oxide microparticles have an influence on the joint strength using this bonding method. In this paper, the reduction behavior of CuO paste and its effect on Cu-to-Cu joints were investigated through simultaneous microstructure-related x-ray diffraction and differential scanning calorimetry measurements. The CuO microparticles in the paste were gradually reduced to submicron Cu2O particles at 210-250°C. Subsequently, Cu nanoparticles were generated instantaneously at 300-315°C. There was a marked difference in the strengths of the joints formed at 300°C and 350°C. Thus, the Cu nanoparticles play a critical role in sintering-based bonding using CuO paste. Furthermore, once the Cu nanoparticles have formed, the joint strength increases with higher bonding temperature (from 350°C to 500°C) and pressure (5-15 MPa), which can exceed the strength of Pb-5Sn solder at higher temperature and pressure.

  8. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Yan, Xiao-Yan; Tong, Xi-Li; Zhang, Yue-Fei; Han, Xiao-Dong; Wang, Ying-Yong; Jin, Guo-Qiang; Qin, Yong; Guo, Xiang-Yun

    2012-02-11

    Cuprous oxide (Cu(2)O) nanoparticles dispersed on reduced graphene oxide (RGO) were prepared by reducing copper acetate supported on graphite oxide using diethylene glycol as both solvent and reducing agent. The Cu(2)O/RGO composite exhibits excellent catalytic activity and remarkable tolerance to methanol and CO in the oxygen reduction reaction. This journal is © The Royal Society of Chemistry 2012

  9. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material

    Science.gov (United States)

    Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano; Basu, Sourav; Rosen, Evelyn; Holt, Jason; Thomsen, Scott

    2017-10-17

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.

  10. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  11. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: Central composite design, kinetic and isotherm study.

    Science.gov (United States)

    Dashamiri, Somayeh; Ghaedi, Mehrorang; Dashtian, Kheibar; Rahimi, Mahmood Reza; Goudarzi, Alireza; Jannesar, Ramin

    2016-07-01

    Copper oxide nanoparticles loaded on activated carbon (CuO-NPs-AC) were prepared and fully analyzed and characterized with FE-SEM, XRD and FT-IR. Subsequently, this novel material was used for simultaneous ultrasound-assisted adsorption of brilliant green (BG), auramine O (AO), methylene blue (MB) and eosin yellow (EY) dyes. Problems regard to dyes spectra overlap in quaternary solution of this dyes were omitted by derivative spectrophotometric method. The best pH in quaternary system was studied by using one at a time method to achieved maximum dyes removal percentage. Subsequently, sonication time, adsorbent dosage and initial dyes concentrations influence on dyes removal was optimized by central composite design (CCD) combined with desirability function approach (DFA). Desirability score of 0.978 show optimum conditions set at sonication time (4.2 min), adsorbent mass (0.029 g), initial dyes concentration (4.5 mg L(-1)). Under this optimum condition the removal percentage for MB, AO, EY and BG dyes 97.58, 94.66, 96.22 and 94.93, respectively. The adsorption rate well fitted by pseudo second-order while adsorption capacity according to the Langmuir model as best equilibrium isotherm model for BG, MB, AO and EY was 20.48, 21.26, 22.34 and 21.29 mg g(-1), respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Differential plasma protein binding to metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Deng, Zhou J; Mortimer, Gysell; Minchin, Rodney F; Schiller, Tara; Musumeci, Anthony; Martin, Darren

    2009-01-01

    Nanoparticles rapidly interact with the proteins present in biological fluids, such as blood. The proteins that are adsorbed onto the surface potentially dictate the biokinetics of the nanomaterials and their fate in vivo. Using nanoparticles with different sizes and surface characteristics, studies have reported the effects of physicochemical properties on the composition of adsorbed plasma proteins. However, to date, few studies have been conducted focusing on the nanoparticles that are commonly exposed to the general public, such as the metal oxides. Using previously established ultracentrifugation approaches, two-dimensional gel electrophoresis and mass spectrometry, the current study investigated the binding of human plasma proteins to commercially available titanium dioxide, silicon dioxide and zinc oxide nanoparticles. We found that, despite these particles having similar surface charges in buffer, they bound different plasma proteins. For TiO 2 , the shape of the nanoparticles was also an important determinant of protein binding. Agglomeration in water was observed for all of the nanoparticles and both TiO 2 and ZnO further agglomerated in biological media. This led to an increase in the amount and number of different proteins bound to these nanoparticles. Proteins with important biological functions were identified, including immunoglobulins, lipoproteins, acute-phase proteins and proteins involved in complement pathways and coagulation. These results provide important insights into which human plasma proteins bind to particular metal oxide nanoparticles. Because protein absorption to nanoparticles may determine their interaction with cells and tissues in vivo, understanding how and why plasma proteins are adsorbed to these particles may be important for understanding their biological responses.

  13. Application of liquid chromatography/electrospray ionization ion trap tandem mass spectrometry for the evaluation of global nucleic acids: methylation in garden cress under exposure to CuO nanoparticles.

    Science.gov (United States)

    Alcazar Magana, Armando; Wrobel, Kazimierz; Corrales Escobosa, Alma Rosa; Wrobel, Katarzyna

    2016-01-15

    A full understanding of the biological impact of nanomaterials demands analytical procedures suitable for the detection/quantification of epigenetic changes that occur in the exposed organisms. Here, the effect of CuO nanoparticles (NPs) on global methylation of nucleic acids in Lepidium sativum was evaluated by liquid chromatography/ion trap mass spectrometry. Enhanced selectivity toward cytosine-containing nucleosides was achieved by using their proton-bound dimers formed in positive electrospray ionization (ESI(+)) as precursor ions for multiple reaction monitoring (MRM) quantification based on one or two ion transitions. Plants were exposed to CuO NPs (0-1000 mg L(-1)); nucleic acid extracts were washed with bathocuproine disulfate; nucleosides were separated on a Luna C18 column coupled via ESI(+) to an AmaZon SL mass spectrometer (Bruker Daltonics). Cytidine, 2´-deoxycytidine, 5-methylcytidine, 5-methyl-2´-deoxycytidine and 5-hydroxymethyl-2´-deoxycytidine were quantified by MRM based on MS(3) ([2M+H](+)/[M+H](+)/[M+H-132](+) or [M+H-116](+)) and MS(2) ([2M+H](+)/[M+H](+) ). Bathocuproine disulfate, added as Cu(I) complexing agent, allowed for elimination of [2M+Cu](+) adducts from the mass spectra. Poorer instrumental detection limits were obtained for MS(3) (20-120 fmol) as compared to MS(2) (9.0-41 fmol); however, two ion transitions helped to eliminate matrix effects in plant extracts. The procedure was tested by analyzing salmon sperm DNA (Sigma) and applied for the evaluation of DNA and RNA methylation in plants; in the absence of NPs, 13.03% and 0.92% methylated cytosines were found in DNA and RNA, respectively; for NPs concentration >50 mg L(-1), DNA hypomethylation was observed with respect to unexposed plants. RNA methylation did not present significant changes upon plant exposure; 5-hydroxymethyl-2´-deoxycytidine was not detected in any sample. The MRM quantification proposed here of cytosine-containing nucleosides using their proton-bound homo

  14. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite-1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2-3nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50% conversion of ethanol with 98...

  15. Oxidation of Bioethanol using Zeolite-Encapsulated Gold Nanoparticles

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Abildstrøm, Jacob Oskar; Wang, Feng

    2014-01-01

    With the ongoing developments in biomass conversion, the oxidation of bioethanol to acetaldehyde may become a favorable and green alternative to the preparation from ethylene. Here, a simple and effective method to encapsulate gold nanoparticles in zeolite silicalite‐1 is reported and their high...... zeolite crystals comprise a broad range of mesopores and contain up to several hundred gold nanoparticles with a diameter of 2–3 nm that are distributed inside the zeolites rather than on the outer surface. The encapsulated nanoparticles have good stability and result in 50 % conversion of ethanol with 98...

  16. Single-cell nanotoxicity assays of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Eustaquio, Trisha; Leary, James F

    2012-01-01

    Properly evaluating the nanotoxicity of nanoparticles involves much more than bulk-cell assays of cell death by necrosis. Cells exposed to nanoparticles may undergo repairable oxidative stress and DNA damage or be induced into apoptosis. Exposure to nanoparticles may cause the cells to alter their proliferation or differentiation or their cell-cell signaling with neighboring cells in a tissue. Nanoparticles are usually more toxic to some cell subpopulations than others, and toxicity often varies with cell cycle. All of these facts dictate that any nanotoxicity assay must be at the single-cell level and must try whenever feasible and reasonable to include many of these other factors. Focusing on one type of quantitative measure of nanotoxicity, we describe flow and scanning image cytometry approaches to measuring nanotoxicity at the single-cell level by using a commonly used assay for distinguishing between necrotic and apoptotic causes of cell death by one type of nanoparticle. Flow cytometry is fast and quantitative, provided that the cells can be prepared into a single-cell suspension for analysis. But when cells cannot be put into suspension without altering nanotoxicity results, or if morphology, attachment, and stain location are important, a scanning image cytometry approach must be used. Both methods are described with application to a particular type of nanoparticle, a superparamagnetic iron oxide nanoparticle (SPION), as an example of how these assays may be applied to the more general problem of determining the effects of nanomaterial exposure to living cells.

  17. Magnetic irone oxide nanoparticles in photosynthetic systems

    International Nuclear Information System (INIS)

    Khalilov, R.I.; Nasibova, A.N.; Khomutov, G.B.

    2014-01-01

    Full text : It was found and studied the effect of biogenic formation of magnetic inclusions in photosynthetic systems - in various higher plants under the influence of some external stress factors (radiation impact, moisture deficit) and in a model system - a suspension of chloroplasts. For registration and characterization of magnetic nanoparticles in the samples used EPR spectrometer because superparamagnetic and ferromagnetic nanoparticles have a chcracteristic signals of electron magnetic resonance. For direct visualization of magnetic nanoparticles it was used the method of transmission electron microscopy

  18. Markers of oxidative stress in exhaled breath of workers exposed to iron oxide nanoparticles are elevated

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Fenclová, Z.; Navrátil, Tomáš; Vlčková, Š.; Syslová, K.; Kuzma, Marek; Ždímal, Vladimír; Schwarz, Jaroslav; Pušman, Jan; Zíková, Naděžda; Zakharov, S.; Machajová, M.; Kačer, P.

    2014-01-01

    Roč. 7, Suppl. 1 (2014), s. 69-70 ISSN 1337-6853 Institutional support: RVO:61388971 ; RVO:61388955 ; RVO:67985858 Keywords : oxidative stress * exhaled breath * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry

  19. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453 (Russian Federation); Kapralov, Alexandr A. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Michael, Zachary P.; Burkert, Seth C. [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shurin, Michael R. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Star, Alexander [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shvedova, Anna A., E-mail: ats@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-05-15

    Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells – myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase – to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and ‘unmasking’ of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. - Highlights: • Nanoparticles can be degraded by

  20. A comprehensive study on the photocatalytic activity of coupled copper oxide-cadmium sulfide nanoparticles

    Science.gov (United States)

    Senobari, Samaneh; Nezamzadeh-Ejhieh, Alireza

    2018-05-01

    Coupled CdS-CuO nanoparticles (NPs) subjected in the photocatalytic degradation of Methylene blue (MB) aqueous solution. The calcination temperature and the crystallite phase of CuO had a significant role on the photocatalytic activity of the coupled system and CuO200/2h-CdS catalyst (containing CuO calcined at 200 °C for 2 h) showed the best photocatalytic activity. The coupled system showed increased activity with respect to the monocomponent semiconductors. The prepared catalysts characterized by x-ray diffraction (XRD), scanning electron microscope equipped with energy dispersive X-ray (EDX) analyzer, x-ray mapping, Fourier transform infrared (FTIR) spectroscopy, diffuse reflectance spectroscopy (DRS) and electrochemical impedance spectroscopy (EIS) techniques. The best degradation extent of MB was obtained at: CMB: 1 mg L-1, pH 5, 80 min irradiation time and 0.8 g L-1 of the CuO200/2h-CdS catalyst. The chemical oxygen demand (COD) confirmed about 83% of MB molecules can be mineralized at the optimum conditions.

  1. Surface modification of promising cerium oxide nanoparticles for nanomedicine applications

    KAUST Repository

    Nanda, Himansu Sekhar

    2016-11-14

    Cerium oxide nanoparticles (CNPs) or nanoceria have emerged as a potential nanomedicine for the treatment of several diseases such as cancer. CNPs have a natural tendency to aggregate or agglomerate in their bare state, which leads to sedimentation in a biological environment. Since the natural biological environment is essentially aqueous, nanoparticle surface modification using suitable biocompatible hydrophilic chemical moieties is highly desirable to create effective aqueous dispersions. In this report, (6-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-hexyl)triethoxysilane was used as a functional, biocompatible organosilane to modify the surface of CNPs to produce promising nanoparticles which open substantial therapeutic avenues. The surface modified nanoparticles were produced in situ via an ammonia-induced ethylene glycol-assisted precipitation method and were characterized using complimentary characterization techniques. The interaction between the functional moiety and the nanoparticle was studied using powerful cross polarization/magic angle sample spinning solid state nuclear magnetic resonance spectroscopy. The surface-modified nanoparticles were extremely small and demonstrated a significant improvement in aqueous dispersibility. Moreover, the existence of a strong ionic coordination between the functional moiety and the surface of the nanoparticle was realised, indicating that the surface modified nanoceria are stable and that the nanoparticles should demonstrate an enhanced circulation time in a biological environment. The surface modification approach should be promising for the production of CNPs for nanomedicine applications. © The Royal Society of Chemistry.

  2. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.

    Science.gov (United States)

    Sarkar, Abhijit; Ghosh, Manoranjan; Sil, Parames Chandra

    2014-01-01

    Metal and metal oxide nanoparticles are often used as industrial catalysts or to improve product's functional properties. Recent advanced nanotechnology have been expected to be used in various fields, ranging from sensors, environmental remediation to biomedicine, medical biology and imaging, etc. However, the growing use of nanoparticles has led to their release into environment and increased levels of these particles at nearby sites or the surroundings of their manufacturing factories become obvious. The toxicity of metal and metal oxide nanoparticles on humans, animals, and certainly to the environment has become a major concern to our community. However, controversies still remain with respect to the toxic effects and the mechanisms of these nanoparticles. The scientific community now feels that an understanding of the toxic effects is necessary to handle these nanoparticles and their use. A new discipline, named nanotoxicology, has therefore been developed that basically refers to the study of the interactions of nanoparticles with biological systems and also measures the toxicity level related to human health. Nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signaling pathways. In this review, we mainly focus on the routes of exposure of some metal and metal oxide nanoparticles and how these nanoparticles affect us or broadly the cells of our organs. We would also like to discuss the responsible mechanism(s) of the nanoparticle-induced reactive oxygen species mediated organ pathophysiology. A brief introduction of the characterization and application of these nanoparticles has also been included in the article.

  3. Metabolomic effects of CeO2, SiO2 and CuO metal oxide nanomaterials on HepG2 cells

    Science.gov (United States)

    To better assess potential hepatotoxicity of nanomaterials, human liver HepG2 cells were exposed for 3 days to five different CeO2 (either 30 or 100 μg/ml), 3 SiO2 based (30 μg/ml) or 1 CuO (3 μg/ml) nanomaterials with dry primary particle sizes ranging from 15 to 213 nm. Metabol...

  4. Protein capped nanosilver free radical oxidation: role of biomolecule capping on nanoparticle colloidal stability and protein oxidation.

    Science.gov (United States)

    Ahumada, Manuel; Bohne, Cornelia; Oake, Jessy; Alarcon, Emilio I

    2018-05-03

    We studied the effect of human serum albumin protein capped spherical nanosilver on the nanoparticle stability upon peroxyl radical oxidation. The nanoparticle-protein composite is less prone to oxidation compared to the individual components. However, higher concentrations of hydrogen peroxide were formed in the nanoparticle-protein system.

  5. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    Science.gov (United States)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  6. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-01

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  7. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    Energy Technology Data Exchange (ETDEWEB)

    Reger, Nina A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Meng, Wilson S. [Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Gawalt, Ellen S., E-mail: gawalte@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219 (United States)

    2017-04-15

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  8. Surface modification of PLGA nanoparticles to deliver nitric oxide to inhibit Escherichia coli growth

    International Nuclear Information System (INIS)

    Reger, Nina A.; Meng, Wilson S.; Gawalt, Ellen S.

    2017-01-01

    Highlights: • Thin film functionalized PLGA nanoparticles were modified to release nitric oxide from an s-nitrosothiol donor. • The nitric oxide modified nanoparticles were bacteriostatic against Escherichia coli. • The nitric oxide modified nanoparticles increased the effectiveness of tetracycline against Escherichia coli. • The modified nitric oxide nanoparticles did not exhibit cytotoxic effects against fibroblasts. - Abstract: Polymer nanoparticles consisting of poly (DL-lactic-co-glycolic acid) were surface functionalized to deliver nitric oxide. These biodegradable and biocompatible nanoparticles were modified with an S-nitrosothiol molecule, S-nitrosocysteamine, as the nitric oxide delivery molecule. S-nitrosocysteamine was covalently immobilized on the nanoparticle surface using small organic molecule linkers and carbodiimide coupling. Nanoparticle size, zeta potential, and morphology were determined using dynamic light scattering and scanning electron microscopy, respectively. Subsequent attachment of the S-nitrosothiol resulted in a nitric oxide release of 37.1 ± 1.1 nmol per milligram of nanoparticles under physiological conditions. This low concentration of nitric oxide reduced Escherichia coli culture growth by 31.8%, indicating that the nitric oxide donor was effective at releasing nitric oxide even after attachment to the nanoparticle surface. Combining the nitric oxide modified nanoparticles with tetracycline, a commonly prescribed antibiotic for E. coli infections, increased the effectiveness of the antibiotic by 87.8%, which allows for lower doses of antibiotics to be used in order to achieve the same effect. The functionalized nanoparticles were not cytotoxic to mouse fibroblasts.

  9. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  10. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-01-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al 2 O 3 and Fe 3 O 4 , on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  11. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  12. Linear-chain assemblies of iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dhak, Prasanta; Kim, Min-Kwan; Lee, Jae Hyeok; Kim, Miyoung; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    2017-07-01

    Highlights: • Hydrothermal synthesis of pure phase 200 nm Fe{sub 3}O{sub 4} nanoparticles. • Studies of linear-chain assemblies of iron oxide nanosphere by FESEM. • Micromagnetic simulations showed the presence of 3D vortex states. • The B.E. for different numbers of particles in linear chain assemblies were calculated. - Abstract: We synthesized iron oxide nanoparticles using a simple hydrothermal approach and found several types of segments of their linear-chain self-assemblies as observed by field emission scanning electron microscopy. X-ray diffraction and transmission electron microscopy measurements confirm a well-defined single-phase FCC structure. Vibrating sample magnetometry measurements exhibit a ferromagnetic behavior. Micromagnetic numerical simulations show magnetic vortex states in the nanosphere model. Also, calculations of binding energies for different numbers of particles in the linear-chain assemblies explain a possible mechanism responsible for the self-assemblies of segments of the linear chains of nanoparticles. This work offers a step towards linear-chain self-assemblies of iron oxide nanoparticles and the effect of magnetic vortex states in individual nanoparticles on their binding energy.

  13. Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis

    International Nuclear Information System (INIS)

    Tedesco, Sara; Doyle, Hugh; Blasco, Julian; Redmond, Gareth; Sheehan, David

    2010-01-01

    Gold nanoparticles (AuNP) have potential applications in drug delivery, cancer diagnosis and therapy, food industry and environment remediation. However, little is known about their potential toxicity or fate in the environment. Mytilus edulis was exposed in tanks to750 ppb AuNP (average diameter 5.3 ± 1 nm) for 24 h to study in vivo biological effects of nanoparticles. Traditional biomarkers and an affinity procedure selective for thiol-containing proteins followed by two-dimensional electrophoresis (2DE) separations were used to study toxicity and oxidative stress responses. Results were compared to those obtained for treatment with cadmium chloride, a well known pro-oxidant. M. edulis mainly accumulated AuNP in digestive gland which also showed higher lipid peroxidation. One-dimensional SDS/PAGE (1DE) and 2DE analysis of digestive gland samples revealed decreased thiol-containing proteins for AuNP. Lysosomal membrane stability measured in haemolymph gave lower values for neutral red retention time (NRRT) in both treatments but was greater in AuNP. Oxidative stress occurred within 24 h of AuNP exposure in M. edulis. Previously we showed that larger diameter AuNP caused modest effects, indicating that nanoparticle size is a key factor in biological responses to nanoparticles. This study suggests that M. edulis is a suitable model animal for environmental toxicology studies of nanoparticles.

  14. Size characterization of metal oxide nanoparticles in commercial sunscreen products

    Science.gov (United States)

    Bairi, Venu Gopal; Lim, Jin-Hee; Fong, Andrew; Linder, Sean W.

    2017-07-01

    There is an increase in the usage of engineered metal oxide (TiO2 and ZnO) nanoparticles in commercial sunscreens due to their pleasing esthetics and greater sun protection efficiency. A number of studies have been done concerning the safety of nanoparticles in sunscreen products. In order to do the safety assessment, it is pertinent to develop novel analytical techniques to analyze these nanoparticles in commercial sunscreens. This study is focused on developing analytical techniques that can efficiently determine particle size of metal oxides present in the commercial sunscreens. To isolate the mineral UV filters from the organic matrices, specific procedures such as solvent extraction were identified. In addition, several solvents (hexane, chloroform, dichloromethane, and tetrahydrofuran) have been investigated. The solvent extraction using tetrahydrofuran worked well for all the samples investigated. The isolated nanoparticles were characterized by using several different techniques such as transmission electron microscopy, scanning electron microscopy, dynamic light scattering, differential centrifugal sedimentation, and x-ray diffraction. Elemental analysis mapping studies were performed to obtain individual chemical and morphological identities of the nanoparticles. Results from the electron microscopy techniques were compared against the bulk particle sizing techniques. All of the sunscreen products tested in this study were found to contain nanosized (≤100 nm) metal oxide particles with varied shapes and aspect ratios, and four among the 11 products were showed to have anatase TiO2.

  15. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    Science.gov (United States)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2017-11-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  16. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    Science.gov (United States)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2018-05-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  17. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.

    Science.gov (United States)

    Regier, Nicole; Cosio, Claudia; von Moos, Nadia; Slaveykova, Vera I

    2015-06-01

    In this study, the uptake and sub-toxic effects of CuO nanoparticles (CuO-NPs), dissolved Cu(II) alone or in combination with UV radiation on the aquatic macrophyte Elodea nuttallii were studied. Emphasis was on Cu accumulation, growth, photosynthesis and the oxidative stress related enzymes peroxidase (POD) and superoxide dismutase (SOD). The results showed stronger Cu accumulation in plants exposed to 10 mg L(-1) CuO-NPs, corresponding to 1.4-2 mg L(-1) dissolved Cu(II), than to 256 μg L(-1) Cu(II). However, the ratio between the accumulated Cu and dissolved Cu in CuO treatments was lower than in Cu(II) treatments. Additional UV exposure increased accumulation in both treatments, with the effect being stronger for Cu accumulation from CuO-NPs than for dissolved Cu(II). Photosynthetic capacity was strongly reduced by UV treatment, whereas remained unaffected by Cu(II) or CuO-NP treatments. Similarly, the increase of SOD activity was more pronounced in the UV treatments. On the other hand, POD activity enhancement was strongest in the plants exposed to CuO-NPs for 24 h. Expression of the copper transporter COPT1 as revealed by RT-qPCR was inhibited by Cu(II) and CuO-NP treatment, limiting the uptake of excess Cu into the cells. Overall, the combined exposure of E. nuttallii to UV radiation with CuO-NPs or Cu(II) has a higher impact than exposure to CuO-NPs or Cu(II) alone. The results imply that heavy pollution of natural water with CuO-NPs or dissolved Cu might have stronger effects in combination with natural UV irradiation on organisms in situ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells

    Directory of Open Access Journals (Sweden)

    Marina Pöttler

    2015-11-01

    Full Text Available Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5 were treated with SPIONs, either coated with lauric acid (SEONLA only, or additionally with a protein corona of bovine serum albumin (BSA; SEONLA-BSA, or with dextran (SEONDEX. Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEONLA-BSA, SEONDEX or SEONLA. Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.

  19. The development of latent fingerprints by zinc oxide and tin oxide nanoparticles prepared by precipitation technique

    Science.gov (United States)

    Luthra, Deepali; Kumar, Sacheen

    2018-05-01

    Fingerprints are the very important evidence at the crime scene which must be developed clearly with shortest duration of time to solve the case. Metal oxide nanoparticles could be the mean to develop the latent fingerprints. Zinc oxide and Tin Oxide Nanoparticles were prepared by using chemical precipitation technique which were dried and characterized by X-ray diffraction, UV-Visible spectroscopy and FTIR. The size of zinc oxide crystallite was found to be 14.75 nm with minimum reflectance at 360 nm whereas tin oxide have the size of 90 nm and reflectance at minimum level 321 nm. By using these powdered samples on glass, plastic and glossy cardboard, latent fingerprints were developed. Zinc oxide was found to be better candidate than tin oxide for the fingerprint development on all the three types of substrates.

  20. Evaluation of cytotoxicity of polypyrrole nanoparticles synthesized by oxidative polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkuviene, Aida [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Kaseta, Vytautas [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Voronovic, Jaroslav [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Ramanauskaite, Giedre; Biziuleviciene, Gene [Department of Stem Cell Biology, State Research Institute Center for Innovative Medicine, Zygimantu 9, LT-01102 Vilnius (Lithuania); Ramanaviciene, Almira [NanoTechnas–Center of Nanotechnology and Material Science at Department of Analytical and Environmental Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, 03225 Vilnius (Lithuania); Ramanavicius, Arunas, E-mail: Arunas.Ramanavicius@chf.vu.lt [Department of Physical Chemistry, Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania); Laboratory of BioNanoTechnology, Department of Materials Science and Electronics, Institute of Semiconductor Physics, State Scientific Research Institute Centre for Physical Sciences and Technology, A. Gostauto 11, LT-01108 Vilnius (Lithuania)

    2013-04-15

    Highlights: ► Polypyrrole nanoparticles synthesized by environmentally friendly polymerization at high concentrations are cytotoxic. ► Primary mouse embryonic fibroblast, mouse hepatoma and human T lymphocyte Jurkat cell lines were treated by Ppy nanoparticles. ► Polypyrrole nanoparticles at high concentrations inhibit cell proliferation. -- Abstract: Polypyrrole (Ppy) is known as biocompatible material, which is used in some diverse biomedical applications and seeming to be a very promising for advanced biotechnological applications. In order to increase our understanding about biocompatibility of Ppy, in this study pure Ppy nanoparticles (Ppy-NPs) of fixed size and morphology were prepared by one-step oxidative polymerization and their cyto-compatibility was evaluated. The impact of different concentration of Ppy nanoparticles on primary mouse embryonic fibroblasts (MEF), mouse hepatoma cell line (MH-22A), and human T lymphocyte Jurkat cell line was investigated. Cell morphology, viability/proliferation after the treatment by Ppy nanoparticles was evaluated. Obtained results showed that Ppy nanoparticles at low concentrations are biocompatible, while at high concentrations they became cytotoxic for Jurkat, MEF and MH-22A cells, and it was found that cytotoxic effect is dose-dependent.

  1. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  2. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  3. Nanoparticles of complex metal oxides synthesized using the ...

    Indian Academy of Sciences (India)

    ASHOK K GANGULI∗, TOKEER AHMAD, PADAM R ARYA and PIKA JHA ... nanoparticles of several dielectric oxides like BaTiO3, Ba2TiO4, SrTiO3, PbTiO3 .... reasonable stability till 150◦C. All the lead-doped phases (sintered at 900◦C) show.

  4. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  5. Chemical nature of catalysts of oxide nanoparticles in environment ...

    Indian Academy of Sciences (India)

    12

    Chemical nature of catalysts of oxide nanoparticles in environment prevailing during growth of carbon nanostructures by CCVD. M. Jana*, A. Sil and S. Ray. †. Department of Metallurgical and Materials Engineering. Indian Institute of Technology Roorkee. Roorkee 247 667, India. Present address: *School of Materials ...

  6. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  7. Thermosensitive liposomes entrapping iron oxide nanoparticles for controllable drug release

    International Nuclear Information System (INIS)

    Tai, L-A; Wang, Y-C; Wang, Y-J; Yang, C-S; Tsai, P-J; Lo, L-W

    2009-01-01

    Iron oxide nanoparticles can serve as a heating source upon alternative magnetic field (AMF) exposure. Iron oxide nanoparticles can be mixed with thermosensitive nanovehicles for hyperthermia-induced drug release, yet such a design and mechanism may not be suitable for controllable drug release applications in which the tissues are susceptible to environmental temperature change such as brain tissue. In the present study, iron oxide nanoparticles were entrapped inside of thermosensitive liposomes for AMF-induced drug release while the environmental temperature was maintained at a constant level. Carboxyfluorescein was co-entrapped with the iron oxide nanoparticles in the liposomes as a model compound for monitoring drug release and environmental temperature was maintained with a water circulator jacket. These experiments have been successfully performed in solution, in phantom and in anesthetized animals. Furthermore, the thermosensitive liposomes were administered into rat forearm skeletal muscle, and the release of carboxylfluorescein triggered by the external alternative magnetic field was monitored by an implanted microdialysis perfusion probe with an on-line laser-induced fluorescence detector. In the future such a device could be applied to simultaneous magnetic resonance imaging and non-invasive drug release in temperature-sensitive applications.

  8. Single step radiolytic synthesis of iridium nanoparticles onto graphene oxide

    International Nuclear Information System (INIS)

    Rojas, J.V.; Molina Higgins, M.C.; Toro Gonzalez, M.; Castano, C.E.

    2015-01-01

    Graphical abstract: - Highlights: • Ir nanoparticles were synthesized through a single step gamma irradiation process. • Homogeneously distributed Ir nanoparticles on graphene oxide are ∼2.3 nm in size. • Ir−O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: In this work a new approach to synthesize iridium nanoparticles on reduced graphene oxide is presented. The nanoparticles were directly deposited and grown on the surface of the carbon-based support using a single step reduction method through gamma irradiation. In this process, an aqueous isopropanol solution containing the iridium precursor, graphene oxide, and sodium dodecyl sulfate was initially prepared and sonicated thoroughly to obtain a homogeneous dispersion. The samples were irradiated with gamma rays with energies of 1.17 and 1.33 MeV emitted from the spontaneous decay of the 60 Co irradiator. The interaction of gamma rays with water in the presence of isopropanol generates highly reducing species homogeneously distributed in the solution that can reduce the Ir precursor down to a zero valence state. An absorbed dose of 60 kGy was used, which according to the yield of reducing species is sufficient to reduce the total amount of precursor present in the solution. This novel approach leads to the formation of 2.3 ± 0.5 nm Ir nanoparticles distributed along the surface of the support. The oxygenated functionalities of graphene oxide served as nucleation sites for the formation of Ir nuclei and their subsequent growth. XPS results revealed that the interaction of Ir with the support occurs through Ir−O bonds.

  9. Metal Oxide Nanoparticle Photoresists for EUV Patterning

    KAUST Repository

    Jiang, Jing; Chakrabarty, Souvik; Yu, Mufei; Ober, Christopher K.

    2014-01-01

    © 2014SPST. Previous studies of methacrylate based nanoparticle have demonstrated the excellent pattern forming capability of these hybrid materials when used as photoresists under 13.5 nm EUV exposure. HfO2 and ZrO2 methacrylate resists have

  10. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry

  11. Evaluation of nano-specific toxicity of zinc oxide, copper oxide, and silver nanoparticles through toxic ratio

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weicheng; Liu, Xiawei; Bao, Shaopan; Xiao, Bangding; Fang, Tao, E-mail: fangt@ihb.ac.cn [Chinese Academy of Sciences, Institute of Hydrobiology (China)

    2016-12-15

    For safety and environmental risk assessments of nanomaterials (NMs) and to provide essential toxicity data, nano-specific toxicities, or excess toxicities, of ZnO, CuO, and Ag nanoparticles (NPs) (20, 20, and 30 nm, respectively) to Escherichia coli and Saccharomyces cerevisiae in short-term (6 h) and long-term (48 h) bioassays were quantified based on a toxic ratio. ZnO NPs exhibited no nano-specific toxicities, reflecting similar toxicities as ZnO bulk particles (BPs) (as well as zinc salt). However, CuO and Ag NPs yielded distinctly nano-specific toxicities when compared with their BPs. According to their nano-specific toxicities, the capability of these NPs in eliciting hazardous effects on humans and the environment was as follows: CuO > Ag > ZnO NPs. Moreover, long-term bioassays were more sensitive to nano-specific toxicity than short-term bioassays. Overall, nano-specific toxicity is a meaningful measurement to evaluate the environmental risk of NPs. The log T{sub e}{sup particle} value is a useful parameter for quantifying NP nano-specific toxicity and enabling comparisons of international toxicological data. Furthermore, this value could be used to determine the environmental risk of NPs.

  12. Microwave, sonochemical and combustion synthesized CuO nanostructures and their electrical and bactericidal properties

    International Nuclear Information System (INIS)

    Karunakaran, C.; Manikandan, G.; Gomathisankar, P.

    2013-01-01

    Highlights: •CuO nanoleaves synthesized by CTAB-assisted hydrothermal method. •CuO nanodiscs synthesized by CTAB-assisted sonochemical method. •Combustion synthesized CuO is highly porous. •Synthetic method and morphology influence CuO bactericidal activity. -- Abstract: Cetyltrimethylammonium bromide (CTAB)-assisted microwave synthesis of CuO provides nanoleaves and in the absence of CTAB the shape of CuO is irregular. Sonochemical synthesis of CuO using CTAB gives nanodiscs whereas irregularly shaped flake-like structure is obtained without CTAB. Combustion synthesized CuO is highly porous with innumerable large holes. CTAB does not provide any structure in combustion synthesis. Transmission electron micrographs (TEM) display the constituent nanoparticles of microwave and sonochemically synthesized CuO. The powder X-ray diffractogram (XRD) shows the sample obtained by sonochemical method in the absence of CTAB as a mixture of monoclinic CuO, cubic Cu 2 O, and orthorhombic Cu(OH) 2 . But the rest of the samples are pure CuO in monoclinic phase. The selected area electron diffractograms (SAED) of the microwave and sonochemically synthesized samples, in the presence as well as in the absence of CTAB, confirm the monoclinic phase of CuO and indicates the presence of amorphous CuO in traces. All the samples are characteristic of Fourier Transform infrared (FT-IR) Cu–O stretching frequencies. The method of synthesis and also the morphology influence the electrical properties as well as the bactericidal activity of CuO

  13. CHEMISTRY OF SO2 AND DESOX PROCESSES ON OXIDE NANOPARTICLES.

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ, J.A.

    2006-06-30

    On bulk stoichiometric oxides, SO{sub 2} mainly reacts with the O centers to form SO{sub 3} or SO{sub 4} species that decompose at elevated temperatures. Adsorption on the metal cations occurs below 300 K and does not lead to cleavage of the S-O bonds. In bulk oxides, the occupied cation bands are too stable for effective bonding interactions with the LUMO of SO{sub 2}. The effects of quantum confinement on the electronic properties of oxide nanoparticles and the structural defects that usually accompany these systems in general favor the bonding and dissociation of SO{sub 2}. Thus, nanoparticles of MgO, CaO, SrO, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3} and CeO{sub 2} are all more efficient for sequestering SO{sub 2} than the corresponding bulk oxides. Structural imperfections in pure or metal-doped ceria nanoparticles accelerate the reduction of SO{sub 2} by CO by facilitating the formation and migration of O vacancies in the oxide surface.

  14. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Radu, T., E-mail: Teodora.Radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania); Iacovita, C. [Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349, Cluj-Napoca (Romania); Benea, D. [Faculty of Physics, Babes Bolyai University, 400271, Cluj-Napoca (Romania); Turcu, R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania)

    2017-05-31

    Highlights: • Characterization of three types of iron oxides magnetic nanoparticles. • A correlation between valence band XPS and the degree of iron oxidation is proposed. • Theoretical contributions of Fe in tetragonal and octahedral environment are shown. - Abstract: We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe{sub 3}O{sub 4}) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe{sub 2}O{sub 3} (by oxygen dissociation) which in turn was transformed into α-Fe{sub 2}O{sub 3}. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  15. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ramimoghadam, Donya; Bagheri, Samira; Hamid, Sharifah Bee Abd

    2014-01-01

    Recently, magnetic iron oxide particles have been emerged as significant nanomaterials due to its extensive range of application in various fields. In this regard, synthesis of iron oxide nanoparticles with desirable properties and high potential applications are greatly demanded. Therefore, investigation on different iron oxide phases and their magnetic properties along with various commonly used synthetic techniques are remarked and thoroughly described in this review. Electrochemical synthesis as a newfound method with unique advantages is elaborated, followed by design approaches and key parameters to control the properties of the iron oxide nanoparticles. Additionally, since the dispersion of iron oxide nanoparticles is as important as its preparation, surface modification issue has been a serious challenge which is comprehensively discussed using different surfactants. Despite the advantages of the electrochemical synthesis method, this technique has been poorly studied and requires deep investigations on effectual parameters such as current density, pH, electrolyte concentration etc. - Highlights: • IONPs are applied in chemical industries, medicine, magnetic storage etc. • Electrochemical synthesis (EC) is convenient, eco-friendly, selective and low-cost. • EC key factors are current density, pH, electrolyte concentration, electrode type. • Organic, inorganic and biological materials can be used to modify IONPs’ surface. • The physicochemical properties of IONPs can be controlled by adding surfactants

  16. Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Abrikossova, Natalia; Skoglund, Caroline; Ahrén, Maria; Uvdal, Kajsa; Bengtsson, Torbjörn

    2012-01-01

    We have previously shown that gadolinium oxide (Gd 2 O 3 ) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd 2 O 3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd 2 O 3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd 2 O 3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd 2 O 3 nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes. (paper)

  17. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    DEFF Research Database (Denmark)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-01-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were...

  18. Effect of ionization on the oxidation kinetics of aluminum nanoparticles

    Science.gov (United States)

    Zheng, Yao-Ting; He, Min; Cheng, Guang-xu; Zhang, Zaoxiao; Xuan, Fu-Zhen; Wang, Zhengdong

    2018-03-01

    Molecular dynamics simulation (MD) of the observed stepwise oxidation of core-shell structured Al/Al2O3 nanoparticles is presented. Different from the metal ion hopping process in the Cabrera-Mott model, which is assumed to occur only at a certain distance from the oxide layer, the MD simulation shows that Al atoms jump over various interfacial gaps directly under the thermal driving force. The energy barrier for Al ionization is found to be increased along with the enlargement of interfacial gap. A mechanism of competition between thermal driving force and ionization potential barrier is proposed in the interpretation of stepwise oxidation behavior.

  19. Generation and oxidation of aerosol deposited PdAg nanoparticles

    Science.gov (United States)

    Blomberg, S.; Gustafson, J.; Martin, N. M.; Messing, M. E.; Deppert, K.; Liu, Z.; Chang, R.; Fernandes, V. R.; Borg, A.; Grönbeck, H.; Lundgren, E.

    2013-10-01

    PdAg nanoparticles with a diameter of 10 nm have been generated by an aerosol particle method, and supported on a silica substrate. By using a combination of X-ray Energy Dispersive Spectroscopy and X-ray Photoelectron Spectroscopy it is shown that the size distribution of the particles is narrow and that the two metals form an alloy with a mixture of 75% Pd and 25% Ag. Under oxidizing conditions, Pd is found to segregate to the surface and a thin PdO like oxide is formed similar to the surface oxide previously reported on extended PdAg and pure Pd surfaces.

  20. Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy

    Directory of Open Access Journals (Sweden)

    Xiang-Hong Peng

    2008-10-01

    Full Text Available Xiang-Hong Peng1,4, Ximei Qian2,4, Hui Mao3,4, Andrew Y Wang5, Zhuo (Georgia Chen1,4, Shuming Nie2,4, Dong M Shin1,4*1Department of Medical Oncology/Hematology; 2Department of Biomedical Engineering; 3Department of Radiology; 4Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA; 5Ocean Nanotech, LLC, Fayetteville, AR, USAAbstract: Magnetic iron oxide (IO nanoparticles with a long blood retention time, biodegradability and low toxicity have emerged as one of the primary nanomaterials for biomedical applications in vitro and in vivo. IO nanoparticles have a large surface area and can be engineered to provide a large number of functional groups for cross-linking to tumor-targeting ligands such as monoclonal antibodies, peptides, or small molecules for diagnostic imaging or delivery of therapeutic agents. IO nanoparticles possess unique paramagnetic properties, which generate significant susceptibility effects resulting in strong T2 and T*2 contrast, as well as T1 effects at very low concentrations for magnetic resonance imaging (MRI, which is widely used for clinical oncology imaging. We review recent advances in the development of targeted IO nanoparticles for tumor imaging and therapy.Keywords: iron oxide nanoparticles, tumor imaging, MRI, therapy

  1. Mercury removal in wastewater by iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Vélez, E; Campillo, G E; Morales, G; Hincapié, C; Osorio, J; Arnache, O; Uribe, J I; Jaramillo, F

    2016-01-01

    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe 3 O 4 and γ-Fe 2 O 3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λ max ∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements. (paper)

  2. Oxidation effect on templating of metal oxide nanoparticles within block copolymers

    International Nuclear Information System (INIS)

    Akcora, Pinar; Briber, Robert M.; Kofinas, Peter

    2009-01-01

    Amphiphilic norbornene-b-(norbornene dicarboxylic acid) diblock copolymers with different block ratios were prepared as templates for the incorporation of iron ions using an ion exchange protocol. The disordered arrangement of iron oxide particles within these copolymers was attributed to the oxidation of the iron ions and the strong interactions between iron oxide nanoparticles, particularly at high iron ion concentrations, which was found to affect the self-assembly of the block copolymer morphologies.

  3. Effects of aluminium oxide nanoparticles on bacterial growth

    Directory of Open Access Journals (Sweden)

    Doskocz Nina

    2017-01-01

    Full Text Available Production and wide application of nanomaterials have led to nanotechnology development but their release to environment and the induction of toxic reactions, affects the natural microbial communities. Therefore, studies on the impact of nanoparticles on microorganisms and environment are required and needed. The aim of this study was to assess the impact of aluminium oxide nanoparticles on the growth of Pseudomonas putida. To compare the harmfulness of different forms of aluminium oxide, the ecotoxicity of its macro-forms was also evaluated in the study. Research showed that the exposure to nanoparticles can negatively influence microorganisms. The EC50-16h determined in this study was 0.5 mg/l, and NOEC equaled 0.19 mg/l. Nano-Al2O3 proved to be more toxic to P. putida than aluminium oxide. This indicates that the nano-form of a given substance demonstrates different properties and may constitute a far greater danger for the environment than the same substance in the large form. According to EU and US EPA criteria, nano-Al2O3 proved to be very toxic and highly toxic, respectively. Changes in bacterial communities caused by nanoparticles may affect the normal biological, chemical and nutrient cycle in the ecosystem and the effect triggered by nanomaterials in relation to other organisms is unpredictable.

  4. Cerium fluoride nanoparticles protect cells against oxidative stress

    International Nuclear Information System (INIS)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M.; Baranchikov, Alexander E.; Ryabova, Anastasia V.; Ivanov, Vladimir K.

    2015-01-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF 3 :Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF 3 nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF 3 and CeF 3 :Tb stable aqueous sols synthesis is proposed. • Naked CeF 3 nanoparticles are shown to be non-toxic and to protect cells from the action of H 2 O 2 . • CeF 3 and CeF 3 :Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus

  5. Cerium fluoride nanoparticles protect cells against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbakov, Alexander B.; Zholobak, Nadezhda M. [Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv D0368 (Ukraine); Baranchikov, Alexander E. [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Ryabova, Anastasia V. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409 (Russian Federation); Ivanov, Vladimir K., E-mail: van@igic.ras.ru [Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); National Research Tomsk State University, Tomsk 634050 (Russian Federation)

    2015-05-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF{sub 3}:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF{sub 3} nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. - Highlights: • Facile method of CeF{sub 3} and CeF{sub 3}:Tb stable aqueous sols synthesis is proposed. • Naked CeF{sub 3} nanoparticles are shown to be non-toxic and to protect cells from the action of H{sub 2}O{sub 2}. • CeF{sub 3} and CeF{sub 3}:Tb nanoparticles are shown to protect living cells against the vesicular stomatitis virus.

  6. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thit, Amalie, E-mail: athitj@ruc.dk [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Ramskov, Tina, E-mail: tramskov@hotmail.com [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Croteau, Marie-Noële, E-mail: mcroteau@usgs.gov [Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Selck, Henriette [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark)

    2016-11-15

    Highlights: • L. variegatus was exposed to sediment spiked with either aqueous Cu or nanoparticulate CuO. • Both aqueous and nanoparticulate Cu were marginally accumulated by L. variegatus. • Elimination of Cu accumulated from both forms was limited. • The subcellular distribution of accumulated Cu varied between Cu forms. • The use of a tracer, greater exposure concentration and duration are recommended. - Abstract: The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched {sup 65}Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus

  7. Tetragonal CuO: End member of the 3d transition metal monoxides

    NARCIS (Netherlands)

    Siemons, W.; Koster, Gertjan; Blank, David H.A.; Hammond, Robert H.; Geballe, Theodore H.; Beasley, Malcolm R.

    2009-01-01

    Monoclinic CuO is anomalous both structurally as well as electronically in the 3d transition metal oxide series. All the others have the cubic rocksalt structure. Here we report the synthesis and electronic property determination of a tetragonal (elongated rocksalt) form of CuO created using an

  8. Photo-induced changes in nano-copper oxide for optoelectronic applications

    Science.gov (United States)

    Hendi, A. A.; Rashad, M.

    2018-06-01

    Copper oxide (CuO) nanoparticles (NPs) have been prepared using microwave irradiation. A mother material was copper nitrate in distilled water. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for characterizing the NPs powders. Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) were measured for as-prepared CuO NPs. The obtained oxides NPs were confirmed produced during chemical precipitation by these characterizions. These NPs were dropped on top of glass substrate for measuring the optical characterizions. Both linear and nonlinear optical properties of the as-prepared CuO NP films were studied. The optical energy gap of the as-prepared CuO NP films is equal to 3.98 eV, which is higher than that of the bulk material. The effect of ultraviolet (UV) light irradiation on the CuO NP films was investigated at 2 and 5 h for study the photo-induced effect. The optical properties of CuO NP films were measured as a function of these UV irradiation time. The optical constants for as-prepared and irradiated CuO NP films were calculated which reflect the affect of UV irradiation time. As observed from these optical results, a highly forced for optoelectronic applications.

  9. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  10. Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jae-Hwan Kim

    2016-02-01

    Full Text Available Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS. The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549 against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value compared to trolox and vitamin E since the concentration of resveratrol was more than 50 μM. Nanoparticles prepared from β-lactoglobulin (β-lg were successfully developed. The β-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with β-lg nanoparticles. Fluorescein isothiocynate-conjugated β-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored H2O2-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1 signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.

  11. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  12. CuO mesostructures as ammonia sensors

    Science.gov (United States)

    Bhuvaneshwari, S.; Gopalakrishnan, N.

    2018-04-01

    The emission threshold of NH3 in air is 1000 kg/yr which is now about 20 Tg/yr according to environmental protection agencies. Hence, there is a rapid increase in need of NH3 sensors to timely detect and control NH3 emissions. Metal oxide nanostructures such as CuO with special features are potential candidates for NH3 sensing. In the present study, morphology controlled 3-dimensional CuO mesostructures were synthesized by surfactant-free hydrothermal method. A modified approach using a mixture of water and ethylene glycol (EG) was used as solvent to control the growth process. Hierarchical mesostructures namely, hollow-sphere-like and urchin-like feature with particle dimensions ranging from 0.3-1 µm were obtained by varying water/EG ratio. The room temperature ammonia sensing behavior of all samples was studied using an indigenous gas sensing set-up. It was found that hollow-sphere like CuO nanostructures showed a maximum response of 2 towards 300 ppm ammonia with a response and recovery time of 5 and 15 min. The hydrothermal synthesis strategy reported here has the advantage of producing shape controlled hierarchical materials are highly suitable for various technological applications.

  13. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route

    International Nuclear Information System (INIS)

    Aslani, Alireza; Oroojpour, Vahid

    2011-01-01

    CuO nanostructures with different morphologies and sizes were grown in a controlled manner using a simple low-temperature hydrothermal technique. By controlling the pH of reaction mixture, spherical nanoparticles and cloudlike CuO structures were synthesized at 100-150 o C with excellent efficiency. These CuO nanostructures have been tested for CO gas monitoring by depositing them as thick films on an interdigitated alumina substrate and evaluated the surface resistance of the deposited layer as a function of operating temperature and CO concentrations. The gas sensitivity tests have demonstrated that the CuO nanostructures, especially cloudlike morphology, exhibit high sensitivity to CO proving their applicability in gas sensors. The role of the nanostructure on the sensing properties of CuO is also discussed.

  14. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: Catalytic disproportionation of hypobromous acid

    KAUST Repository

    Liu, Chao; von Gunten, Urs; Croue, Jean-Philippe

    2012-01-01

    of bromide-containing waters in the presence of cupric oxide (CuO). CuO was effective to catalyze hypochlorous acid (HOCl) or hypobromous acid (HOBr) decay (e.g., at least 104 times enhancement for HOBr at pH 8.6 by 0.2 g L-1 CuO). Significant halate

  15. Characterization of tin oxide nanoparticles synthesized via oxidation from metal

    International Nuclear Information System (INIS)

    Abruzzi, R.C.; Dedavid, B.A.; Pires, M.J.R.; Streicher, M.

    2014-01-01

    The tin oxide (SnO_2) is a promising material with great potential for applications such as gas sensors and catalysts. This oxide nanostructures show higher activation efficiency due to its larger effective surface. This paper presents the synthesis and characterization of the tin oxide in different conditions, via oxidation of pure tin with nitric acid. Results obtained from the characterization of SnO_2 powder by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Particle size by Dynamic Light Scattering (DLS) and Infrared Spectroscopy (FTIR) indicated that the conditions were suitable for the synthesis to obtain manometric tin oxide granules with crystalline structure of rutile. (author)

  16. Investigations of white light emitting europium doped zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Ashtaputre, S S; Nojima, A; Marathe, S K; Matsumura, D; Ohta, T; Tiwari, R; Dey, G K; Kulkarni, S K

    2008-01-01

    Europium doped zinc oxide nanoparticles have been synthesized using a chemical route. The amount of doped europium was varied which shows the changes in the photoluminescence (PL) intensity. The post synthesis annealing effect on the properties of ZnO nanoparticles has also been investigated. In general, PL is broad and a white light is emitted which originates from ZnO and the intra-4f transitions of Eu 3+ ions. The x-ray diffraction patterns do not show any Eu-related peaks for as-synthesized ZnO nanoparticles as well as for annealed samples. X-ray absorption spectroscopy reveals that europium ions are present on the surface of the core of ZnO and inside the shell of zinc hydroxide [Zn(OH 2 )] after annealing

  17. Ca alginate as scaffold for iron oxide nanoparticles synthesis

    Directory of Open Access Journals (Sweden)

    P. V. Finotelli

    2008-12-01

    Full Text Available Recently, nanotechnology has developed to a stage that makes it possible to process magnetic nanoparticles for the site-specific delivery of drugs. To this end, it has been proposed as biomaterial for drug delivery system in which the drug release rates would be activated by a magnetic external stimuli. Alginate has been used extensively in the food, pharmaceutical and biomedical industries for their gel forming properties in the presence of multivalent cations. In this study, we produced iron oxide nanoparticles by coprecipitation of Fe(III and Fe(II. The nanoparticles were entrapped in Ca alginate beads before and after alginate gelation. XRD analysis showed that particles should be associated to magnetite or maghemite with crystal size of 9.5 and 4.3 nm, respectively. Studies using Mössbauer spectroscopy corroborate the superparamagnetic behavior. The combination of magnetic properties and the biocompatibility of alginate suggest that this biomaterial may be used as biomimetic system.

  18. Improvement of the oxidation stability of cobalt nanoparticles

    Directory of Open Access Journals (Sweden)

    Celin Dobbrow

    2012-01-01

    Full Text Available In order to enhance the resistance of cobalt nanoparticles to oxidation in air, the impact of different stabilization strategies on the isothermal oxidation of particle dispersions and powders was kinetically investigated and compared to as-prepared particle preparations. A post-synthesis treatment with different alcohols was employed, and we also investigate the influence of two different polymer shells on the oxidation process. We found a parabolic decrease of the magnetization for all particle charges, indicating that the process is dominated by a diffusion of oxygen to the cobalt core and a radial growth of the oxide layer from the particle surface to the core. A significant deceleration of the oxidation process was observed for all alcohol-passivated particle preparations, and this resulted finally in a stagnation effect. The stabilizing effect increases in the sequence Co@OA/MeOH < Co@OA/EtOH < Co@OA/iPrOH. For polymer-coated particle preparations Co@PCL and Co@PS, the deceleration was even more pronounced. The results demonstrate that cobalt nanoparticles can effectively be protected against oxidation in order to improve their mid- to longterm stability.

  19. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Science.gov (United States)

    Pemartin-Biernath, Kelly; Vela-González, Andrea V.; Moreno-Trejo, Maira B.; Leyva-Porras, César; Castañeda-Reyna, Iván E.; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita

    2016-01-01

    Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications. PMID:28773602

  20. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Kelly Pemartin-Biernath

    2016-06-01

    Full Text Available Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD, below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM. Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

  1. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  2. Tuning the reactivity of Ru nanoparticles by defect engineering of the reduced graphene oxide support

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Meng, Changgong; Han, Yu

    2014-01-01

    We systematically investigated the electronic structure of Ru nanoparticles supported on various local structures on reduced graphene oxide (rGO) by first-principles-based calculations. We showed that Ru nanoparticles prefer to nucleate

  3. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION

    Directory of Open Access Journals (Sweden)

    Neenu Singh

    2010-09-01

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPION are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these nanoparticles. Besides focussing on cytotoxicity, the most commonly used determinant of toxicity as a result of exposure to SPION, this review also mentions the importance of studying the subtle cellular alterations in the form of DNA damage and oxidative stress. We review current studies and discuss how SPION, with or without different surface coating, may cause cellular perturbations including modulation of actin cytoskeleton, alteration in gene expression profiles, disturbance in iron homeostasis and altered cellular responses such as activation of signalling pathways and impairment of cell cycle regulation. The importance of protein–SPION interaction and various safety considerations relating to SPION exposure are also addressed.

  4. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  5. Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Lobaz, Volodymyr; Rabyk, Mariia; Pánek, Jiří; Doris, E.; Nallet, F.; Štěpánek, Petr; Hrubý, Martin

    2016-01-01

    Roč. 294, č. 7 (2016), s. 1225-1235 ISSN 0303-402X R&D Projects: GA MŠk(CZ) 7AMB14FR027; GA ČR(CZ) GA13-08336S; GA MZd(CZ) NV15-25781A Institutional support: RVO:61389013 Keywords : germanium oxide nanoparticles * polysaccharide coating * photoluminescent label Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2016

  6. Synthesis and Oxidation of Silver Nano-particles

    Science.gov (United States)

    2011-01-01

    solution (20%wt propyl alcohol, 5%wt hydrochloric acid and 5%wt stannous chloride in water). Scheme 1b and c illustrate the sensitization and silver... Synthesis and Oxidation of Silver Nano-particles Hua Qi*, D. A. Alexson, O.J. Glembocki and S. M. Prokes* Electronics Science and Technology...energy dispersive x-ray (EDX) techniques. The results Quantum Dots and Nanostructures: Synthesis , Characterization, and Modeling VIII, edited by Kurt

  7. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  8. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  9. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by ...

  10. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage ...

    Indian Academy of Sciences (India)

    ZNP were small in size with particle size distribution 18–20 nm as obtained ... of zinc oxide and ciprofloxacin is effective against bacterial system. However, no reports are still available on antibacte- ... 20% aqueous TRIS solution was added drop wise to 25 ml .... Phillips CM 200 (Netherlands) at an operational voltage of.

  11. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing; Wu, Wei-Te; Liao, Hui-Yi [National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China); Chen, Chao-Yu; Tsai, Cheng-Yen; Jung, Wei-Ting [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China); Lee, Hui-Ling, E-mail: huilinglee3573@gmail.com [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China)

    2017-06-05

    Highlights: • Global methylation and oxidative DNA damage levels in nanomaterial handling workers were assessed. • 8-isoprostane in exhaled breath condensate of workers exposed to nanoparticles was higher. • 8-OHdG was negatively correlated with global methylation. • Exposure to metal oxide nanoparticles may lead to global methylation and DNA oxidative damage. - Abstract: This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO{sub 2}, SiO{sub 2,} and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r = 0.256, p = 0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r = −0.272, p = 0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

  12. A comprehensive study of the electrically conducting water based CuO and Al2O3 nanoparticles over coupled nanofluid-sheet interface

    International Nuclear Information System (INIS)

    Ahmad, R

    2016-01-01

    Many studies on nanofluid flow over a permeable/impermeable sheet prescribe the kinematics of the sheet and disregard the sheet’s mechanics. However, the current study is one of the infrequent contributions that anticipate the mechanics of both the electrically conducting nanofluid (a homogeneous mixture of nanoparticles and base fluid) and the sheet. Two types of nanoparticles, alumina and copper, with water as a base fluid over the sheet are considered. With the help of the similarity transformations, the corresponding partial differential equations for the coupled nanofluid-sheet interface are transformed into a system of ordinary differential equations. The simulations are done by using the experimentally verified results from the previous studies for viscosity and thermal conductivity. Self-similar solutions are attained by considering both analytical and numerical techniques. Dual skin friction coefficients are attained with different copper and alumina nanoparticles over both the stretching and viscous sheets. The influence of the Eckert number, magnetic and mass suction/blowing parameters on the dimensionless velocity, temperature, skin friction and heat transfer rates over the nanofluid-sheet interface are presented graphically as well as numerically. The obtained results are of potential benefit for studying nanofluid flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations. (paper)

  13. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles

    Science.gov (United States)

    Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A.

    2017-11-01

    This work presents a study of the effects on the photocatalytic capabilities of zinc oxide nanoparticles when prepared via green synthesis using different fruit peel extracts as reducing agents. Zinc nitrate was used as a source of the zinc ions, while Lycopersicon esculentum (tomato), Citrus sinensis (orange), Citrus paradisi (grapefruit) and Citrus aurantifolia (lemon) contributed their peels for extracts. The Synthesized Samples were studied and characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and High Resolution Transmission Electron Microscopy (HRTEM). All samples presented a band at 618 cm-1, indicating the presence of the Znsbnd O bond. The different samples all presented the same hexagonal crystal growth in their structure, the Wurtzite phase. The surface morphology of the nanoparticles showed that, depending on the extract used, the samples vary in size and shape distribution due to the chemical composition of the extracts. The photocatalytic properties of the zinc oxide samples were tested through UV light aided degradation of methylene blue. Most samples exhibited degradation rates at 180 min of around 97%, a major improvement when compared to chemically synthesized commercially available zinc oxide nanoparticles.

  14. Viscous properties of aluminum oxide nanotubes and aluminium oxide nanoparticles - silicone oil suspensions

    Science.gov (United States)

    Thapa, Ram; French, Steven; Delgado, Adrian; Ramos, Carlos; Gutierrez, Jose; Chipara, Mircea; Lozano, Karen

    2010-03-01

    Electrorheological (ER) fluids consisting of γ-aluminum oxide nanotubes and γ-aluminum oxide nanoparticles dispersed within silicone oil were prepared. The relationship between shear stress and shear rate was measured and theoretically simulated by using an extended Bingham model for both the rheological and electrorheological features of these systems. Shear stress and viscosity showed a sharp increase for the aluminum oxide nanotubes suspensions subjected to applied electric fields whereas aluminum oxide nanoparticles suspensions showed a moderate change. It was found that the transition from liquid to solid state (mediated by the applied electric field) can be described by a power law and that for low applied voltages the relationship is almost linear.

  15. Magnetic properties of Fe-oxide and (Fe, Co) oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Rodak, D.; Kroll, E.; Tsoi, G. M.; Vaishnava, P. P.; Naik, R.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Boolchand, P.

    2003-03-01

    Magnetic nanoparticles have potential applications ranging from drug delivery and imaging in the medical field to sensing and memory storage in technology. The preparation, structure, and physical properties of iron oxide-based nanoparticles synthesized by ion exchange in a polystyrene resin matrix have been investigated. Employing a synthesis method developed originally by Ziolo, et. al^1, nanoparticles were prepared in a sulfonated divinyl benzene polystyrene resin matrix using various aqueous solutions of (1) FeCl_2, (2) FeCl_3, (3) FeCl2 : 2FeCl3 , (4) 9FeCl2 : CoCl_2, and (5) 4FeCl2 : CoCl_2. Powder x-ray diffraction measurements were used to identify the phases present while transmission electron microscopy was used for particle size distribution determinations. SQUID magnetization measurements (field-cooled and zero-field-cooled) and Fe^57 Mössbauer effect measurements indicate the presence of ferromagnetic iron oxide phases and a superparamagnetic behavior with blocking temperatures (T_B) varying from 50 K to room temperature. Nanoparticles synthesized using a stoichiometric mixture of FeCl2 and FeCl3 exhibit the lowest TB and smallest particle size distribution. The Mössbauer effect measurements have also been used to identify the iron oxides phases present and their relative amounts in the nanoparticles ^1R.F. Ziolo, et al., Science 207, 219 (1992). *Permanent address: Kettering University, Flint, MI 48504

  16. Environment friendly route of iron oxide nanoparticles from Zingiber officinale (ginger) root extract

    Science.gov (United States)

    Xin Hui, Yau; Yi Peng, Teoh; Wei Wen, Liu; Zhong Xian, Ooi; Peck Loo, Kiew

    2016-11-01

    Iron oxide nanoparticles were prepared from the reaction between the Zingiber officinale (ginger) root extracts and ferric chloride solution at 50°C for 2 h in mild stirring condition. The synthesized powder forms of nanoparticles were further characterized by using UV-Vis spectroscopy and X-ray Diffraction spectrometry. UV-Vis analysis shows the absorption peak of iron oxide nanoparticles is appeared at 370 nm. The calculation of crystallite size from the XRD showed that the average particle size of iron oxide nanoparticles was 68.43 nm. Therefore, this eco-friendly technique is low cost and large scale nanoparticles synthesis to fulfill the demand of various applications.

  17. Nanostructured Metal Oxides And Mixed Metal Oxides, Methods Of Making These Nanoparticles, And Methods Of Their Use

    KAUST Repository

    Polshettiwar, Vivek

    2013-04-11

    Embodiments of the present disclosure provide for nanoparticles, methods of making nanoparticles, methods of using the nanoparticles, and the like. Nanoparticles of the present disclosure can have a variety of morphologies, which may lead to their use in a variety of technologies and processes. Nanoparticles of the present may be used in sensors, optics, mechanics, circuits, and the like. In addition, nanoparticles of the present disclosure may be used in catalytic reactions, for CO oxidation, as super-capacitors, in hydrogen storage, and the like.

  18. Nanostructured Metal Oxides And Mixed Metal Oxides, Methods Of Making These Nanoparticles, And Methods Of Their Use

    KAUST Repository

    Polshettiwar, Vivek; Fihri, Aziz

    2013-01-01

    Embodiments of the present disclosure provide for nanoparticles, methods of making nanoparticles, methods of using the nanoparticles, and the like. Nanoparticles of the present disclosure can have a variety of morphologies, which may lead to their use in a variety of technologies and processes. Nanoparticles of the present may be used in sensors, optics, mechanics, circuits, and the like. In addition, nanoparticles of the present disclosure may be used in catalytic reactions, for CO oxidation, as super-capacitors, in hydrogen storage, and the like.

  19. The Green Synthesis and Evaluation of Silver Nanoparticles and Zinc Oxide Nanoparticles

    Science.gov (United States)

    Gebear-Eigzabher, Bellsabel

    Nanoparticle (NP) research has received exceptional attention as the field of study that contributes to transforming the world of materials science. When implementing NPs in consumer and industrial products, their unique properties improve technologies to the extent of significant game-changing breakthroughs. Conversely, the increased production of NPs, their use, their disposal or inadvertent release in the environment drove the need for processes and policies that ensures consumer and environmental safety. Mitigation of any harmful effects that NPs could potentially have combines methods of safe preparation, safe handling and safe disposal as well as containment of any inadvertent release. Our focus is in safe preparation of nanomaterials and we report green and energy efficient synthesis methods for metal NPs and metal oxide NPs of two popular materials: silver (Ag) and zinc oxide (ZnO). The thesis explained: 1) The impact of NPs in nowadays' world; 2) Synthesis methods that were designed to include environmentally-friendly staring materials and energy-saving fabrication processes, with emphasis on maintaining NPs final size and morphology when compared with existing methods; and 3) Nanoparticles characterization and data collection which allowed us to determine and/or validate their properties. Nanoparticles were studied using transmission electron microscope (TEM), X-Ray powder diffraction (XRD), low-voltage (5 keV) transmission electron microscopy (LV EM 5), Fourier-Transform Infrared Spectroscopy (FT-IR), and Ultraviolet-Visible (UV-Vis) spectroscopy. We developed an aqueous-based preparation of zinc oxide nanoparticles (ZnO NPs) using microwave-assisted chemistry to render a well-controlled particle size distribution within each set of reaction conditions in the range of 15 nm to 75 nm. We developed a scalable silver nanoparticles synthesis by chemical reduction methods. The NPs could be used in consumer products. The measurement tools for consumer products

  20. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress

    Directory of Open Access Journals (Sweden)

    Saba Naqvi

    2010-11-01

    Full Text Available Saba Naqvi1, Mohammad Samim2, MZ Abdin3, Farhan Jalees Ahmed4, AN Maitra5, CK Prashant6, Amit K Dinda61Faculty of Engineering and Interdisciplinary Sciences, 2Department of Chemistry, 3Department of Biotechnology, Faculty of Science, 4Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard University, 5Department of Chemistry, University of Delhi, 6Department of Pathology, All India Institute of Medical Sciences, New Delhi, IndiaAbstract: Iron oxide nanoparticles with unique magnetic properties have a high potential for use in several biomedical, bioengineering and in vivo applications, including tissue repair, magnetic resonance imaging, immunoassay, drug delivery, detoxification of biologic fluids, cell sorting, and hyperthermia. Although various surface modifications are being done for making these nonbiodegradable nanoparticles more biocompatible, their toxic potential is still a major concern. The current in vitro study of the interaction of superparamagnetic iron oxide nanoparticles of mean diameter 30 nm coated with Tween 80 and murine macrophage (J774 cells was undertaken to evaluate the dose- and time-dependent toxic potential, as well as investigate the role of oxidative stress in the toxicity. A 15–30 nm size range of spherical nanoparticles were characterized by transmission electron microscopy and zeta sizer. MTT assay showed >95% viability of cells in lower concentrations (25–200 µg/mL and up to three hours of exposure, whereas at higher concentrations (300–500 µg/mL and prolonged (six hours exposure viability reduced to 55%–65%. Necrosis-apoptosis assay by propidium iodide and Hoechst-33342 staining revealed loss of the majority of the cells by apoptosis. H2DCFDDA assay to quantify generation of intracellular reactive oxygen species (ROS indicated that exposure to a higher concentration of nanoparticles resulted in enhanced ROS generation, leading to cell injury and death. The cell membrane injury

  1. Gold nanoparticle catalyzed oxidation of alcohols - From biomass to commodity chemicals

    DEFF Research Database (Denmark)

    Taarning, Esben; Christensen, Claus H.

    2007-01-01

    and glycerol are rich in alcohol functionalities. Thus, a key step in utilizing these resources lies in the conversion of this functional group. Benign oxidations involving oxygen as the stoichiometric oxidant are important from both an environmental and economical perspective. Recently, it has become clear...... that supported gold nanoparticles are highly active catalysts for oxidizing alcohols and aldehydes using oxygen as the oxidant. This perspective will focus on the use of gold nanoparticles in the oxidation of renewables....

  2. From iron coordination compounds to metal oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihail Iacob

    2016-12-01

    Full Text Available Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO6(H2O3]·2H2O (FeAc1, μ3-oxo trinuclear iron(III acetate, [Fe3O(CH3COO6(H2O3]NO3∙4H2O (FeAc2, iron furoate, [Fe3O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeF, iron chromium furoate, FeCr2O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeCrF, and an iron complex with an original macromolecular ligand (FePAZ were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination or using a nonconventional energy source (i.e., microwave or ultrasonic treatment to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  3. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  4. Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Nomura, Shinfuku; Mukasa, Shinobu; Toyota, Hiromichi; Inoue, Toru; Usui, Tomoya

    2013-01-01

    Highlights: •RF plasma in water was used for nanoparticle synthesis. •Nanoparticles were produced from erosion of metallic electrode. •Rectangular and spherical tungsten oxide nanoparticles were produced. •No oxidations of the silver and gold spherical nanoparticles were produced. -- Abstract: A process for synthesis of nanoparticles using plasma in water generated by a radio frequency of 27.12 MHz is proposed. Tungsten oxide, silver, and gold nanoparticles were produced at 20 kPa through erosion of a metallic electrode exposed to plasma. Characterization of the produced nanoparticles was carried out by XRD, absorption spectrum, and TEM. The nanoparticle sizes were compared with those produced by a similar technique using plasma in liquid

  5. Altering the structure and properties of iron oxide nanoparticles and graphene oxide/iron oxide composites by urea

    Energy Technology Data Exchange (ETDEWEB)

    Naghdi, Samira [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Jaleh, Babak [Physics department, Bu-Ali Sina University, 65174 Hamedan (Iran, Islamic Republic of); Park, Soo Jin [Chemistry, Colloge of Natural Science, Inha University, 402-751 Incheon (Korea, Republic of)

    2016-02-28

    Graphical abstract: - Highlights: • Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were directly grown on graphene oxide (GO) using a facile microwave assistant method. • The effect of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite was examined. • Increasing urea concentration altered the morphology and decreased the particle size. • The increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. • The increase in urea concentration led to decreased thermal stability of the Fe{sub 2}O{sub 3} nanoparticles. - Abstract: Iron oxide (Fe{sub 2}O{sub 3}) nanoparticles were grown on graphene oxide (GO) using a simple microwave-assisted method. The effects of urea concentration on Fe{sub 2}O{sub 3} nanoparticles and GO/Fe{sub 2}O{sub 3} composite were examined. The as-prepared samples were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The Fe{sub 2}O{sub 3} nanoparticles were uniformly developed on GO sheets. The results showed that urea affects both Fe{sub 2}O{sub 3} morphology and particle size. In the absence of urea, the Fe{sub 2}O{sub 3} nanostructures exhibited a rod-like morphology. However, increasing urea concentration altered the morphology and decreased the particle size. The Raman results of GO/Fe{sub 2}O{sub 3} showed that the intensity ratio of D band to G band (I{sub D}/I{sub G}) was decreased by addition of urea, indicating that urea can preserve the GO sheets during synthesis of the composite from exposing more defects. The surface area and thermal stability of GO/Fe{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} were compared using the Brunauer–Emmett–Teller method and thermal gravimetric analysis, respectively. The results showed that the increased concentration of urea induced a larger surface area with more active sites in the Fe{sub 2}O{sub 3} nanoparticles. However, the increase in urea

  6. In vitro cytotoxicity of iron oxide nanoparticles: effects of chitosan and polyvinyl alcohol as stabilizing agents

    Science.gov (United States)

    Tran, Phong A.; Nguyen, Hiep T.; Fox, Kate; Tran, Nhiem

    2018-03-01

    Iron oxide magnetic nanoparticles have significant potential in biomedical applications such as in diagnosis, imaging and therapeutic agent delivery. The choice of stabilizers and surface functionalization is important as it is known to strongly influence the cytotoxicity of the nanoparticles. The present study aimed at investigating the effects of surface charges on the cytotoxicity of iron oxide nanoparticles. We used a co-precipitation method to synthesize iron oxide nanoparticles which were then stabilized with either chitosan (CS) or polyvinyl alcohol (PVA) which have net positive charge and zero charge at physiological pH, respectively. The nanoparticles were characterized in terms of size, charges and chemical oxidation state. Cytotoxicity of the nanoparticles was assessed using mouse fibroblast cells and was correlated with surface charges of the nanoparticles and their aggregation.

  7. Thermal processing and native oxidation of silicon nanoparticles

    International Nuclear Information System (INIS)

    Winters, Brandon J.; Holm, Jason; Roberts, Jeffrey T.

    2011-01-01

    In this study, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS) were used to investigate in-air oxidation of silicon nanoparticles ca. 11 nm in diameter. Particle samples were prepared first by extracting them from an RF plasma synthesis reactor, and then heating them in an inert carrier gas stream. The resulting particles had varying surface hydrogen coverages and relative amounts of SiH x (x = 1, 2, and 3), depending on the temperature to which they had been heated. The particles were allowed to oxidize in-air for several weeks. FTIR, XPS, and EELS analyses that were performed during this period clearly establish that adsorbed hydrogen retards oxidation, although in complex ways. In particular, particles that have been heated to intermediate hydrogen coverages oxidize more slowly in air than do freshly generated particles that have a much higher hydrogen content. In addition, the loss of surface hydride species at high processing temperatures results in fast initial oxidation and the formation of a self-limiting oxide layer. Analogous measurements made on deuterium-covered particles show broadly similar behavior; i.e., that oxidation is the slowest at some intermediate coverage of adsorbed deuterium.

  8. Synthesis, characterization and biological studies of copper oxide nanostructures

    Science.gov (United States)

    Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad

    2018-04-01

    The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.

  9. Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Ayesha Naveed Ul Haq

    2017-01-01

    Full Text Available Human’s quest for innovation, finding solutions of problems, and upgrading the industrial yield with energy efficient and cost-effective materials has opened the avenues of nanotechnology. Among a variety of nanoparticles, zinc oxide nanoparticles (ZnO have advantages because of the extraordinary physical and chemical properties. It is one of the cheap materials in cosmetic industry, nanofertilizers, and electrical devices and also a suitable agent for bioimaging and targeted drug and gene delivery and an excellent sensor for detecting ecological pollutants and environmental remediation. Despite inherent toxicity of nanoparticles, synthetic routes are making use of large amount of chemical and stringent reactions conditions that are contributing as environmental contaminants in the form of high energy consumption, heat generation, water consumption, and chemical waste. Further, it is also adding to the innate toxicity of nanoparticles (NPs that is either entirely ignored or poorly investigated. The current review illustrates a comparison between pollutants and hazards spawned from chemical, physical, and biological methods used for the synthesis of ZnO. Further, the emphasis is on devising eco-friendly techniques for the synthesis of ZnO especially biological methods which are comparatively less hazardous and need to be optimized by controlling the reaction conditions in order to get desired yield and characteristics.

  10. Effect of the number of iron oxide nanoparticle layers on the magnetic properties of nanocomposite LbL assemblies

    International Nuclear Information System (INIS)

    Dincer, Ilker; Tozkoparan, Onur; German, Sergey V.; Markin, Alexey V.; Yildirim, Oguz; Khomutov, Gennady B.; Gorin, Dmitry A.; Venig, Sergey B.; Elerman, Yalcin

    2012-01-01

    Aqueous colloidal suspension of iron oxide nanoparticles has been synthesized. Z-potential of iron oxide nanoparticles stabilized by citric acid was −35±3 mV. Iron oxide nanoparticles have been characterized by the light scattering method and transmission electron microscopy. The polyelectrolyte/iron oxide nanoparticle thin films with different numbers of iron oxide nanoparticle layers have been prepared on the surface of silicon substrates via the layer-by-layer assembly technique. The physical properties and chemical composition of nanocomposite thin films have been studied by atomic force microscopy, magnetic force microscopy, magnetization measurements, Raman spectroscopy. Using the analysis of experimental data it was established, that the magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers, the size of iron oxide nanoparticle aggregates, the distance between aggregates, and the chemical composition of iron oxide nanoparticles embedded into the nanocomposite films. The magnetic permeability of nanocomposite coatings has been calculated. The magnetic permeability values depend on the number of iron oxide nanoparticle layers in nanocomposite film. - Highlights: ► The magnetic properties of nanocomposite films depended on the number of iron oxide nanoparticle layers. ► The iron oxide nanoparticle phase in nanocomposite coatings is a mixture of magnetite and maghemite phases. ► The magnetite and maghemite phases depend on a number of iron oxide nanoparticle layers because the iron oxide nanoparticles are oxidized from magnetite to maghemite.

  11. Impacts of metal and metal oxide nanoparticles on marine organisms

    International Nuclear Information System (INIS)

    Baker, Tony J.; Tyler, Charles R.; Galloway, Tamara S.

    2014-01-01

    Increasing use of metal and metal oxide nanoparticles [Me(O)NPs] in products means many will inevitably find their way into marine systems. Their likely fate here is sedimentation following hetero-aggregation with natural organic matter and/or free anions, putting benthic, sediment-dwelling and filter feeding organisms most at risk. In marine systems, Me(O)NPs can absorb to micro-organisms with potential for trophic transfer following consumption. Filter feeders, especially bivalves, accumulate Me(O)NPs through trapping them in mucus prior to ingestion. Benthic in-fauna may directly ingest sedimented Me(O)NPs. In fish, uptake is principally via the gut following drinking, whilst Me(O)NPs caught in gill mucus may affect respiratory processes and ion transport. Currently, environmentally-realistic Me(O)NP concentrations are unlikely to cause significant adverse acute health problems, however sub-lethal effects e.g. oxidative stresses have been noted in many organisms, often deriving from dissolution of Ag, Cu or Zn ions, and this could result in chronic health impacts. -- Highlights: • Nanoparticle (NP) use increasing, and NPs ultimately discharged to marine systems. • Metal ion dissolution from NPs causes oxidative stress at relevant concentrations. • Bioaccumulation and trophic transfer of NPs likely at all levels of marine food webs. • Biofilms and filter feeders are major NP accumulators, but many Classes lack study. • Current release levels unlikely to cause chronic damage, but may be a future issue. -- Exposure to metal (oxide) nanoparticles causes sub-lethal effects in marine organisms, the extent of which is related principally to the organisms' feeding regime, habitat and lifestyle

  12. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  13. Functional CuO Microstructures for Glucose Sensing

    Science.gov (United States)

    Ali, Gulzar; Tahira, Aneela; Mallah, Arfana Begum; Mallah, Sarfraz Ahmed; Ibupoto, Akila; Khand, Aftab Ahmed; Baradi, Waryani; Willander, Magnus; Yu, Cong; Ibupoto, Zafar Hussain

    2018-02-01

    CuO microstructures are produced in the presence of water-soluble amino acids by hydrothermal method. The used amino acids include isoleucine, alpha alanine, and arginine as a soft template and are used for tuning the morphology of CuO nanostructures. The crystalline and morphological investigations were carried out by x-ray diffraction (XRD) and scanning electron microscopy techniques. The XRD study has shown that CuO material obtained in the presence of different amino acids is of high purity and all have the same crystal phase. The CuO microstructures prepared in the presence of arginine were used for the development of sensitive and selective glucose biosensor. The linear range for the glucose detection are from 0.001 mM to 30 mM and limit of detection was found to be 0.0005 mM. The sensitivity was estimated around 77 mV/decade. The developed biosensor is highly selective, sensitive, stable and reproducible. The glucose biosensor was used for the determination of real human blood samples and the obtained results are satisfactory. The CuO material is functional therefore can be capitalized in wide range of applications such as lithium ion batteries, all oxide solar cells and supercapacitors.

  14. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    International Nuclear Information System (INIS)

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-01-01

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain

  15. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    Energy Technology Data Exchange (ETDEWEB)

    Laha, Dipranjan; Pramanik, Arindam [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Laskar, Aparna [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Jana, Madhurya [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India)

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  16. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis.

    Science.gov (United States)

    Taranath, Tarikere C; Patil, Bheemanagouda N

    2016-06-01

    The present investigation was undertaken to synthesize zinc oxide nanoparticles using Limonia acidissima L. and to test their efficacy against the growth of Mycobacterium tuberculosis. The formation of zinc oxide nanoparticles was confirmed with UV-visible spectrophotometry. Fourier transform infrared spectroscopy shows the presence of bio-molecules involved in the stabilization of zinc oxide nanoparticles. The shape and size was confirmed with atomic force microscope, X-ray diffraction, and high resolution transmission electron microscope. These nanoparticles were tested for their effect on the growth of M. tuberculosis through the microplate alamar blue assay technique. The UV-visible data reveal that an absorbance peak at 374nm confirms formation of zinc oxide nanoparticles and they are spherical in shape with sizes between 12nm and 53nm. These nanoparticles control the growth of M. tuberculosis at 12.5μg/mL. Phytosynthesis of zinc oxide nanoparticles is a green, eco-friendly technology because it is inexpensive and pollution free. In the present investigation, based on our results we conclude that the aqueous extract of leaves of L. acidissima can be used for the synthesis of zinc oxide nanoparticles. These nanoparticles control the growth of M. tuberculosis and this was confirmed with the microplate alamar blue method. The potential of biogenic zinc oxide nanoparticles may be harnessed as a novel medicine ingredient to combat tuberculosis disease. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  17. Structural and optical studies of CuO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Chand, Prakash, E-mail: KK-PC2006@yahoo.com; Gaur, Anurag, E-mail: KK-PC2006@yahoo.com; Kumar, Ashavani, E-mail: KK-PC2006@yahoo.com [Department of Physics, National Institute of Technology, Kurukshetra-136119 (India)

    2014-04-24

    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively.

  18. Structural and optical studies of CuO nanostructures

    International Nuclear Information System (INIS)

    Chand, Prakash; Gaur, Anurag; Kumar, Ashavani

    2014-01-01

    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively

  19. Structural and optical studies of CuO nanostructures

    Science.gov (United States)

    Chand, Prakash; Gaur, Anurag; Kumar, Ashavani

    2014-04-01

    In the present study, copper oxide (CuO) nanostructures have been synthesized at 140 °C for different aging periods, 1, 24, 48 and 96 hrs by hydrothermal method to investigate their effects on structural and optical properties. The X-ray diffractometer (XRD) pattern indicates the pure phase formation of CuO and the particle size, calculated from XRD data, has been found to be increasing from 21 to 36 nm for the samples synthesized at different aging periods. Field emission scanning electron microscope (FESEM) analysis also shows that the average diameter and length of these rectangular nano flakes increases with increasing the aging periods. Moreover Raman spectrums also confirm the phase formation of CuO. The optical band gaps calculated through UV-visible spectroscopy are found to be decreasing from 2.92 to 2.69 eV with increase in aging periods, 1 to 96 hrs, respectively.

  20. Structure of Oxide Nanoparticles in Fe-16Cr MA/ODS Ferritic Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Kimura, A

    2010-04-06

    Oxide nanoparticles in Fe-16Cr ODS ferritic steel fabricated by mechanical alloying (MA) method have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. A partial crystallization of oxide nanoparticles was frequently observed in as-fabricated ODS steel. The crystal structure of crystalline oxide particles is identified to be mainly Y{sub 4}Al{sub 2}O{sub 9} (YAM) with a monoclinic structure. Large nanoparticles with a diameter larger than 20 nm tend to be incoherent and have a nearly spherical shape, whereas small nanoparticles with a diameter smaller than 10 nm tend to be coherent or semi-coherent and have faceted boundaries. The oxide nanoparticles become fully crystallized after prolonged annealing at 900 C. These results lead us to propose a three-stage formation mechanism of oxide nanoparticles in MA/ODS steels.

  1. Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential.

    Science.gov (United States)

    Maqbool, Qaisar; Iftikhar, Sidra; Nazar, Mudassar; Abbas, Fazal; Saleem, Asif; Hussain, Talib; Kausar, Rizwan; Anwaar, Sadaf; Jabeen, Nyla

    2017-06-01

    In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.

  2. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    Science.gov (United States)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  3. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere

    KAUST Repository

    Li, Hailong

    2016-07-19

    Synergy for low temperature Hg0 oxidation under selective catalytic reduction (SCR) atmosphere was achieved when copper oxides and cerium oxides were combined in a CuO-CeO2/TiO2 (CuCeTi) catalyst. Hg0 oxidation efficiency as high as 99.0% was observed on the CuCeTi catalyst at 200 °C, even the gas hourly space velocity was extremely high. To analyze the synergistic effect, comparisons of catalyst performance in the presence of different SCR reaction gases were systematically conducted over CuO/TiO2 (CuTi), CeO2/TiO2 (CeTi) and CuCeTi catalysts prepared by sol-gel method. The interactions between copper oxides and cerium oxides in CuCeTi catalyst yielded more surface chemisorbed oxygen, and facilitated the conversion of gas-phase O2 to surface oxygen, which are favorable for Hg0 oxidation. Copper oxides in the combination interacted with NO forming more chemisorbed oxygen for Hg0 oxidation in the absence of gas-phase O2. Cerium oxides in the combination promoted Hg0 oxidation through enhancing the transformations of NO to NO2. In the absence of NO, NH3 exhibited no inhibitive effect on Hg0 oxidation, because enough Lewis acid sites due to the combination of copper oxides and cerium oxides scavenged the competitive adsorption between NH3 and Hg0. In the presence of NO, although NH3 lowered Hg0 oxidation rate through inducing reduction of oxidized mercury, complete recovery of Hg0 oxidation activity over the CuCeTi catalyst was quickly achieved after cutting off NH3. This study revealed the synergistic effect of the combination of copper oxides and cerium oxides on Hg0 oxidation, and explored the involved mechanisms. Such knowledge would help obtaining maximum Hg0 oxidation co-benefit from SCR units in coal-fired power plants.

  4. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    Science.gov (United States)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  5. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles

    International Nuclear Information System (INIS)

    Arrabal, R.; Matykina, E.; Viejo, F.; Skeldon, P.; Thompson, G.E.; Merino, M.C.

    2008-01-01

    The incorporation of monoclinic zirconia nanoparticles and their subsequent transformation is examined for coatings formed on magnesium by plasma electrolytic oxidation under AC conditions in silicate electrolyte. The coatings are shown to comprise two main layers, with nanoparticles entering the coating at the coating surface and through short-circuit paths to the region of the interface between the inner and outer coating layers. Under local heating of microdischarges, the zirconia reacts with magnesium species to form Mg 2 Zr 5 O 12 in the outer coating layer. Relatively little zirconium is present in the inner coating layer. In contrast, silicon species are present in both coating layers, with reduced amounts in the inner layer

  6. Green approach for fabrication and applications of zinc oxide nanoparticles.

    Science.gov (United States)

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Debut, Alexis

    2014-01-01

    Zinc oxide nanoparticles (ZnO-NPs) are known to be one of the multifunctional inorganic compounds which are widely used in everyday applications. This study aims to fabricate ZnO-NPs using grapefruit (Citrus paradisi) peel extract with particle size ranging from 12 to 72 nm. Structural, morphological, and optical properties of the synthesized nanoparticles have been characterized by using UV-Vis spectrophotometer, TEM, DLS, and FTIR analysis. They show the significant photocatalytic degradation efficiency (>56%, 10 mg/L, 6 h) against methylene blue and antioxidant efficacy (≥80% for 1.2 mM) against 1,1-diphenyl-2-picrylhydrazyl. From the results obtained it is suggested that green ZnO-NPs could be used effectively in environmental safety applications and also can address future medical concerns.

  7. Safety assessment of silica and zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    An SSA

    2014-12-01

    Full Text Available Seong Soo A An,1 Meyoung-Kon Kim2 1Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University, Seongnam, Gyeonggi, Korea; 2Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seoul, KoreaThe current volume is a special issue focusing on a safety assessment of nanoparticles, from their physicochemical properties to government regulations. It features twenty-five papers, discussing general issues with the possible harmfulness of two different types of nanoparticles (NPs; silica (SiO2 and zinc oxide (ZnO. Six papers describe detailed analyses from 90-day repeated administrations of NPs, and finally there is a series of technical reports, formatted by the National Toxicology Program (NTP, dealing with safety issues regarding international cooperation with the OECD (Organisation for Economic Co-operation and Development Working Party on Manufactured Nanomaterials (WPMN.

  8. Iron oxide nanoparticle hyperthermia and chemotherapy cancer treatment

    Science.gov (United States)

    Petryk, A. A.; Giustini, A. J.; Ryan, P.; Strawbridge, R. R.; Hoopes, P. J.

    2009-02-01

    The benefit of combining hyperthermia and chemotherapy to treat cancer is well established. However, combined therapy has not yet achieved standard of care status. The reasons are numerous and varied, however the lack of significantly greater tumor cell sensitivity to heat (as compared to normal cells) and the inability to deliver heat to the tumor in a precise manner have been major factors. Iron oxide nanoparticle (IONP) hyperthermia, alone and combined with other modalities, offers a new direction in hyperthermia cancer therapy via improved tumor targeting and an improved therapeutic ratio. Our preliminary studies have demonstrated tumor cell cytotoxicity (in vitro and in vivo) with IONP heat and cisplatinum (CDDP) doses lower than those necessary when using conventional heating techniques or cisplatinum alone. Ongoing studies suggest such treatment could be further improved through the use of targeted nanoparticles.

  9. Oxide nanoparticles in an Al-alloyed oxide dispersion strengthened steel: crystallographic structure and interface with ferrite matrix

    Science.gov (United States)

    Zhang, Zhenbo; Pantleon, Wolfgang

    2017-07-01

    Oxide nanoparticles are quintessential for ensuring the extraordinary properties of oxide dispersion strengthened (ODS) steels. In this study, the crystallographic structure of oxide nanoparticles, and their interface with the ferritic steel matrix in an Al-alloyed ODS steel, i.e. PM2000, were systematically investigated by high-resolution transmission electron microscopy. The majority of oxide nanoparticles were identified to be orthorhombic YAlO3. During hot consolidation and extrusion, they develop a coherent interface and a near cuboid-on-cube orientation relationship with the ferrite matrix in the material. After annealing at 1200 °C for 1 h, however, the orientation relationship between the oxide nanoparticles and the matrix becomes arbitrary, and their interface mostly incoherent. Annealing at 1300 °C leads to considerable coarsening of oxide nanoparticles, and a new orientation relationship of pseudo-cube-on-cube between oxide nanoparticles and ferrite matrix develops. The reason for the developing interfaces and orientation relationships between oxide nanoparticles and ferrite matrix under different conditions is discussed.

  10. Effects of Cerium Oxide Nanoparticles on Sorghum Plant Traits

    Science.gov (United States)

    Mu, L.; Chen, Y.; Darnault, C. J. G.; Rauh, B.; Kresovich, S.; Korte, C.

    2015-12-01

    Nanotechnology and nanomaterials are considered as the development of the modern science. However, besides with that wide application, nanoparticles arouse to the side effects on the environment and human health. As the catalyst of ceramics and fuel industry, Cerium (IV) oxide nanoparticles (CeO2 NPs) can be found in the environment following their use and life-cycle. Therefore, it is critical to assess the potential effects that CeO2 NPs found in soils may have on plants. In this study, CeO2 NPs were analyzed for the potential influence on the sorghum [Sorghum bicolor (L.) Moench] (Reg. no. 126) (PI 154844) growth and traits. The objectives of this research were to determine whether CeO2 NPs impact the sorghum germination and growth characteristics. The sorghum was grown in the greenhouse located at Biosystems Research Complex, Clemson University under different CeO2 NPs treatments (0mg; 100mg; 500mg; 1000mg CeO2 NPs/Kg soil) and harvested around each month. At the end of the each growing period, above ground vegetative tissue was air-dried, ground to 2mm particle size and compositional traits estimated using near-infrared spectroscopy. Also, the NPK value of the sorghum tissue was tested by Clemson Agriculture Center. After the first harvest, the result showed that the height of above ground biomass under the nanoparticles stress was higher than that of control group. This difference between the control and the nanoparticles treatments was significant (F>F0.05; LSD). Our results also indicated that some of the compositional traits were impacted by the different treatments, including the presence and/or concentrations of the nanoparticles.

  11. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands

    NARCIS (Netherlands)

    Neouze, M.A.; Schubert, U.S.

    2008-01-01

    Metal or metal oxide nanoparticles possess unique features compared to equivalent larger-scale materials. For applications, it is often necessary to stabilize or functionalize such nanoparticles. Thus, modification of the surface of nanoparticles is an important chemical challenge. In this survey,

  12. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue; Gao, Jinhao; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2010-01-01

    nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X

  13. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    Science.gov (United States)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-09-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO2 NPs (size range 4-33 nm), two preparations of CeO2 NPs (9-36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15-240 μg/cm2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm2, in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO2 and CeO2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured nanomaterials.

  14. Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages

    International Nuclear Information System (INIS)

    Rotoli, Bianca Maria; Bussolati, Ovidio; Costa, Anna Luisa; Blosi, Magda; Di Cristo, Luisana; Zanello, Pier Paolo; Bianchi, Massimiliano G.; Visigalli, Rossana; Bergamaschi, Enrico

    2012-01-01

    Among nanomaterials of industrial relevance, metal-based nanoparticles (NPs) are widely used, but their effects on airway cells are relatively poorly characterized. To compare the effects of metal NPs on cells representative of the lung-blood barrier, Calu-3 epithelial cells and Raw264.7 macrophages were incubated with three industrially relevant preparations of TiO 2 NPs (size range 4–33 nm), two preparations of CeO 2 NPs (9–36 nm) and CuO NPs (25 nm). While Raw264.7 were grown on standard plasticware, Calu-3 cells were seeded on permeable filters, where they form a high-resistance monolayer, providing an in vitro model of the airway barrier. Metal NPs, obtained from industrial sources, were characterized under the conditions adopted for the biological tests. Cytotoxicity was assessed with resazurin method in both epithelial and macrophage cells, while epithelial barrier permeability was monitored measuring the trans-epithelial electrical resistance (TEER). In macrophages, titania and ceria had no significant effect on viability in the whole range of nominal doses tested (15–240 μg/cm 2 of monolayer), while CuO NPs produced a marked viability loss. Moreover, only CuO NPs, but not the other NPs, lowered TEER of Calu-3 monolayers, pointing to the impairment of the epithelial barrier. TEER decreased by 30 % at the dose of 10 μg/cm 2 of CuO NPs, compared to untreated control, and was abolished at doses ≥80 μg/cm 2 , in strict correlation with changes in cell viability. These results indicate that (1) CuO NPs increase airway epithelium permeability even at relatively low doses and are significantly toxic for macrophages and airway epithelial cells, likely through the release of Cu ions in the medium; (2) TiO 2 and CeO 2 NPs do not affect TEER and exhibit little acute toxicity for airway epithelial cells and macrophages; and (3) TEER measurement can provide a simple method to assess the impairment of in vitro airway epithelial barrier model by manufactured

  15. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    Science.gov (United States)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  16. Synthesis of tin oxide nanoparticle film by cathodic electrodeposition.

    Science.gov (United States)

    Kim, Seok; Lee, Hochun; Park, Chang Min; Jung, Yongju

    2012-02-01

    Three-dimensional SnO2 nanoparticle films were deposited onto a copper substrate by cathodic electrodeposition in a nitric acid solution. A new formation mechanism for SnO2 films is proposed based on the oxidation of Sn2+ ion to Sn4+ ion by NO+ ion and the hydrolysis of Sn4+. The particle size of SnO2 was controlled by deposition potential. The SnO2 showed excellent charge capacity (729 mAh/g) at a 0.2 C rate and high rate capability (460 mAh/g) at a 5 C rate.

  17. Synthesis and Characterization of Holmium-Doped Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maarten Bloemen

    2014-02-01

    Full Text Available Rare earth atoms exhibit several interesting properties, for example, large magnetic moments and luminescence. Introducing these atoms into a different matrix can lead to a material that shows multiple interesting effects. Holmium atoms were incorporated into an iron oxide nanoparticle and the concentration of the dopant atom was changed in order to determine its influence on the host crystal. Its magnetic and magneto-optical properties were investigated by vibrating sample magnetometry and Faraday rotation measurements. The luminescent characteristics of the material, in solution and incorporated in a polymer thin film, were probed by fluorescence experiments.

  18. Synthesis and heating effect of iron/iron oxide composite and iron oxide nanoparticles.

    Science.gov (United States)

    Zeng, Q; Baker, I; Loudis, J A; Liao, Y F; Hoopes, P J

    2007-02-09

    Fe/Fe oxide nanoparticles, in which the core consists of metallic Fe and the shell is composed of Fe oxides, were obtained by reduction of an aqueous solution of FeCl 3 within a NaBH 4 solution, or, using a water-in-oil micro-emulsion with CTAB as the surfactant. The reduction was performed either in an inert atmosphere or in air, and passivation with air was performed to produce the Fe/Fe 3 O 4 core/shell composite. Phase identification and particle size were determined by X-ray diffraction and TEM. Thermal analysis was performed using a differential scanning calorimeter. The quasistatic magnetic properties were measured using a VSM, and the specific absorption rates (SARs) of both Fe oxide and Fe/Fe 3 O 4 composite nanoparticles either dispersed in methanol or in an epoxy resin were measured by Luxtron fiber temperature sensors in an alternating magnetic field of 150 Oe at 250 kHz. It was found that the preparation conditions, including the concentrations of solutions, the mixing procedure and the heat treatment, influence the particle size, the crystal structure and consequently the magnetic properties of the particles. Compared with Fe oxides, the saturation magnetization ( M S ) of Fe/Fe 3 O 4 particles (100-190 emu/g) can be twice as high, and the coercivity ( H C ) can be tunable from several Oe to several hundred Oe. Hence, the SAR of Fe/Fe 3 O 4 composite nanoparticles can be much higher than that of Fe oxides, with a maximum SAR of 345 W/g. The heating behavior is related to the magnetic behavior of the nanoparticles.

  19. Chromium Elimination from Water by use of Iron Oxide Nanoparticles Absorbents

    Directory of Open Access Journals (Sweden)

    S Shokraei

    2014-09-01

    Results: results showed that best absorbent is soil absorbent and iron oxide nanoparticles, with maximum removal percent equal to 96.2%. Also best turnover was obtained from 8837 ppm of primary concentration of heavy metal. In other hand, in other experiments that used from iron oxide nanoparticles, adding of nanoparticles caused to increase in chrome absorption and conversion of Cr6+ to Cr3+. Conclusion: with use of the results of this study can be said that Combining of iron oxide nanoparticles with chrome removal filters can be convert Cr6+ to Cr3+, and process turnover will increased.

  20. Electronic structure of nanoparticles of substoichometric hexagonal tungsten oxides

    International Nuclear Information System (INIS)

    Khyzhun, O Y; Solonin, Y M

    2007-01-01

    X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) methods were used to study the electronic structure of hexagonal h-WO 3 and h-WO 2.8 nanoparticles. For comparison, nanopowder substoichiometric monoclinic tungsten oxides with close content of oxygen atoms, namely m-WO 3 and m-WO 2.77 compounds, were also investigated. For the mentioned oxides, XPS valence-band and corelevel spectra, XES O Kα bands and XAS W L III and O 1s edges were derived. The XPS valence-band spectra and O Kα emission bands in the mentioned hexagonal and monoclinic tungsten oxides were compared on a common energy scale. Both the O Kα bands and XPS valence-band spectra broaden somewhat in the sequences h-WO 3 → h-WO 2.8 and m-WO 3 → m-WO 2.77 , with the half-widths of the spectra being somewhat higher for the hexagonal oxides as compared with those for the monoclinic compounds. The effective positive charge state of tungsten atoms in h-WO 2.8 is very close to that in m-WO 2.77 , but the negative charge states of oxygen atoms are close to each other for all the tungsten oxides under consideration

  1. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  2. How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions

    NARCIS (Netherlands)

    Fraters, B.D.; Amrollahi Buky, Rezvaneh; Mul, Guido

    2015-01-01

    The effect of Pt nanoparticles on the gas-phase photocatalytic oxidation activity of TiO2 is shown to be largely dependent on the molecular functionality of the substrate. We demonstrate that Pt nanoparticles decrease rates in photocatalytic oxidation of propane, whereas a strong beneficial effect

  3. Iron oxide nanoparticles in modern microbiology and biotechnology.

    Science.gov (United States)

    Dinali, Ranmadugala; Ebrahiminezhad, Alireza; Manley-Harris, Merilyn; Ghasemi, Younes; Berenjian, Aydin

    2017-08-01

    Iron oxide nanoparticles (IONs) are one of the most developed and used nanomaterials in biotechnology and microbiology. These particles have unique physicochemical properties, which make them unique among nanomaterials. Therefore, many experiments have been conducted to develop facile synthesis methods for these particles and to make them biocompatible. Various effects of IONs on microorganisms have been reported. Depending on the microbial strain and nanoparticle (NP) concentration, IONs can stimulate or inhibit microbial growth. Due to the superparamagnetic properties of IONs, these NPs have used as nano sources of heat for hyperthermia in infected tissues. Antibiotic-loaded IONs are used for targeted delivery of chemical therapy direct to the infected organ and IONs have been used as a dirigible carrier for more potent antimicrobial nanomaterials such as silver nanoparticles. Magnetic NPs have been used for specific separation of pathogen and non-pathogen bacterial strains. Very recently, IONs were used as a novel tool for magnetic immobilization of microbial cells and process intensification in a biotechnological process. This review provides an overview of application of IONs in different microbial processes. Recommendations are also given for areas of future research.

  4. Effect of particle size on iron nanoparticle oxidation state

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Lysaght, Andrew C.; Goberman, Daniel G.; Chiu, Wilson K.S.

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  5. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huiliang, E-mail: hlc@mail.sic.ac.cn; Meng, Fanhao; Liu, Xuanyong, E-mail: xyliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-07-15

    Silver plasma immersion ion implantation was used to decorate silver nanoparticles (Ag NPs) on tantalum oxide (TO) coatings. The coatings acted against bacterial cells (Staphylococcus epidermidis) in the dark by disrupting their integrity. The action was independent of silver release and likely driven by the electron storage capability of the Schottky barriers established at the interfaces between Ag NPs and the TO support. Moreover, no apparent side effect on the adhesion and differentiation of rat bone mesenchymal stem cells was detected when using Ag NPs-modified TO coatings. These results demonstrate that decoration of tantalum oxide using Ag NPs could be a promising procedure for improving the antibacterial properties for orthopedic and dental implants.

  6. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications

    Science.gov (United States)

    Amstad, Esther; Textor, Marcus; Reimhult, Erik

    2011-07-01

    Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface presentation of functionalities. This review is focused on different aspects of the stability of superparamagnetic iron oxide NPs, from its practical definition to its implementation by molecular design of the dispersant shell around the iron oxide core and further on to its influence on the magnetic properties of the superparamagnetic iron oxide NPs. Special attention is given to the selection of molecular anchors for the dispersant shell, because of their importance to ensure colloidal and functional stability of sterically stabilized superparamagnetic iron oxide NPs. We further detail how dispersants have been optimized to gain close control over iron oxide NP stability, size and functionalities by independently considering the influences of anchors and the attached sterically repulsive polymer brushes. A critical evaluation of different strategies to stabilize and functionalize core-shell superparamagnetic iron oxide NPs as well as a brief introduction to characterization methods to compare those strategies is given.Superparamagnetic iron oxide nanoparticles (NPs) are used in a rapidly expanding number of research and practical applications in the biomedical field, including magnetic cell labeling separation and tracking, for therapeutic purposes in hyperthermia and drug delivery, and for diagnostic purposes, e.g., as contrast agents for magnetic resonance imaging. These applications require good NP stability at physiological conditions, close control over NP size and controlled surface

  7. Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis

    Science.gov (United States)

    Nava, O. J.; Luque, P. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Mota-González, M. L.; Olivas, A.

    2017-04-01

    This work addresses low cost, non-toxic green synthesis of Zinc Oxide nanoparticles prepared using different amounts of Camellia sinensis extract. The Synthesized material was studied and characterized through Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), transmission electron microscopy (TEM). The Zinc Oxide nanoparticles presented the desired Znsbnd O bond at 618 cm-1, demonstrated growth in a purely hexagonal Wurtzite crystal structure, and, depending on the amount of extract used, they presented different size and shape homogeneity. The photocatalytic activity of the obtained Zinc Oxide nanoparticles was studied. The photocatalytic degradation studies were done at a 1:1 M ratio of methylene blue to Zinc Oxide nanoparticles under UV light. The obtained results presented a better degradation rate than commercially available Zinc Oxide nanoparticles.

  8. Precipitation of Zinc Oxide Nanoparticles in Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    Liliana E. Romo

    2011-01-01

    Full Text Available Zinc oxide nanoparticles were obtained directly, avoiding the calcination step, by precipitation at 70°C in bicontinuous microemulsions stabilized with a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, wt./wt. containing 0.7 M zinc nitrate aqueous solution. Two concentrations of aqueous solution of precipitating agent sodium hydroxide were used under different dosing times on microemulsion. Characterization by X-ray diffraction and electron microscopy allowed us to identify particles with an acicular rod-like morphology and a hexagonal wurtzite crystal structure as small as 8.5 and 30 nm in average diameter and length, respectively. Productivities much higher than those typical in the preparation of zinc oxide nanoparticles via reverse microemulsions were obtained. Particle size was the same at the two studied sodium hydroxide concentrations, while it increases as dosing time of the precipitant agent increases. It is believed that the surfactant film on the microemulsion channels restricts the particle diameter growth.

  9. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy

    International Nuclear Information System (INIS)

    Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol

    2009-01-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd 2 O 3 ) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  10. Stable graphene oxide-gold nanoparticle platforms for biosensing applications.

    Science.gov (United States)

    Hernández-Sánchez, Dania; Villabona-Leal, Giovanny; Saucedo-Orozco, Izcoatl; Bracamonte, Victoria; Pérez, Elías; Bittencourt, Carla; Quintana, Mildred

    2018-01-17

    Graphene oxide-gold nanoparticle (AuNPs@GO) hybrids were fabricated in water dispersions of graphene oxide (GO) and Au precursor completely free of stabilizing agents by UV-light irradiation. Gold nanoparticle (AuNP) nucleation, growth, and stabilization mechanisms at the surface of GO are discussed on the basis of UV-Vis, Raman, IR, and X-Ray photo-spectroscopy studies. The analyses of AuNPs@GO hybrids by transmission electron microscopy (TEM), thermogravimetric (TGA) and electrochemical tests show that they exhibit outstanding chemical, thermal and electrochemical stabilities. Thus, AuNPs@GO biosensing platforms were fabricated for surface enhanced Raman spectroscopy (SERS) detection of crystal violet (CV), a SERS standard molecule, and in a different set of experiments, for flavin adenine dinucleotide (FAD), a flavoprotein coenzyme that plays an important role in many oxidoreductase and reversible redox conversions in biochemical reactions. AuNPs@GO hybrids synthesized by using UV light irradiation show exceptional stability and high intensification of the Raman signals showing that they have high potential for use as biomedical probes for the detection, monitoring, and diagnosis of medical diseases.

  11. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Directory of Open Access Journals (Sweden)

    Wang Y

    2012-05-01

    Full Text Available Ye Wang,1,2,* Xiao-Yuan Zi,1,* Juan Su,1 Hong-Xia Zhang,1 Xin-Rong Zhang,3 Hai-Ying Zhu,1 Jian-Xiu Li,1 Meng Yin,3 Feng Yang,3 Yi-Ping Hu,11Department of Cell Biology, 2School of Clinical Medicine, 3Department of Pharmaceuticals, Second Military Medical University, Shanghai, People's Republic of China*Authors contributed equally.Abstract: In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy.Keywords: nanomedicine, selective cytotoxicity, apoptosis, cell cycle arrest, mitochondrion-targeted nanomaterials

  12. Crystallization process and magnetic properties of amorphous iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Phu, N D; Luong, N H; Chau, N; Hai, N H; Ngo, D T; Hoang, L H

    2011-01-01

    This paper studied the crystallization process, phase transition and magnetic properties of amorphous iron oxide nanoparticles prepared by the microwave heating technique. Thermal analysis and magnetodynamics studies revealed many interesting aspects of the amorphous iron oxide nanoparticles. The as-prepared sample was amorphous. Crystallization of the maghemite γ-Fe 2 O 3 (with an activation energy of 0.71 eV) and the hematite α-Fe 2 O 3 (with an activation energy of 0.97 eV) phase occurred at around 300 deg. C and 350 deg. C, respectively. A transition from the maghemite to the hematite occurred at 500 deg. C with an activation energy of 1.32 eV. A study of the temperature dependence of magnetization supported the crystallization and the phase transformation. Raman shift at 660 cm -1 and absorption band in the infrared spectra at 690 cm -1 showed the presence of disorder in the hematite phase on the nanoscale which is supposed to be the origin of the ferromagnetic behaviour of that antiferromagnetic phase.

  13. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)

    Science.gov (United States)

    Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk

    2009-04-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  14. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    International Nuclear Information System (INIS)

    Sharma, Anshu; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B; Baral, Dinesh

    2015-01-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe 3 O 4 )) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe 3 O 4 and CA-Fe 3 O 4 /ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe 3 O 4 , CA-Fe 3 O 4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe 3 O 4 ) and 189.51 nm (CA-Fe 3 O 4 ) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe 2 O 3 /ITO immunosensor exhibits a good detection range of 12.5–500 ng mL −1 with a low detection limit of 0.32 ng mL −1 , sensitivity 0.03 Ω/ng ml −1 cm −2 , and reproducibility more than 11 times. (paper)

  15. Silver nanoparticles anchored reduced graphene oxide for enhanced electrocatalytic activity towards methanol oxidation

    Science.gov (United States)

    Kumar, Sanjeev; Mahajan, Mani; Singh, Rajinder; Mahajan, Aman

    2018-02-01

    In this report, silver nanoparticles (Ag NPs) anchored reduced graphene oxide (rGO) sheets (rGO/Ag) nanohybrid has been explored as anode material in direct methanol fuel cells (DMFCs). The synthesized rGO/Ag nanohybrid is characterized by XRD, XPS, FTIR spectroscopy and HRTEM techniques. Cyclic voltammograms demonstrate that the rGO/Ag nanohybrid exhibits higher electrocatalytic activity in comparison to rGO sheets for methanol oxidation reaction (MOR). This enhancement is attributed to the synergetic effect produced by the presence of more active sites provided by Ag NPs anchored on a conducting network of large surface area rGO sheets.

  16. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    International Nuclear Information System (INIS)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A.; Shaji, S.

    2015-01-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al 2 O 3 and Fe 2 O 3 . • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe 2 O 3 , 20–40 nm) and aluminum oxide (Al 2 O 3 , 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm 2 with a concentration of 5 and 7 wt% of Fe 2 O 3 presented the MgFe 2 O 4 spinel-type phase. With the addition of Al 2 O 3 nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm 2 , there were the formations of MgAl 2 O 4 spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed

  17. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization

    Institute of Scientific and Technical Information of China (English)

    Amir Hassanjani-Roshan; Mohammad Reza Vaezi; Ali Shokuhfar; Zohreh Rajabali

    2011-01-01

    Preparation of iron oxide (α-Fe2O3) nanoparticles was carried out via a sonochemical process. The process parameters such as temperature,sonication time and power of ultrasonication play important roles in the size and morphology of the final products. The iron oxide nanoparticles were characterized by transmission electron microscopy,X-ray powder diffraction,and thermogravimetric and differential thermal analyses. From transmission electron microscopy observations,the size of the iron oxide nanoparticles is estimated to be significantly smaller than 19 nm. X-ray diffraction data of the powder after annealing provide direct evidence that the iron oxide was formed during the sonochemical process.

  18. Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silwana, Bongiwe; Horst, Charlton van der [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa); SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Iwuoha, Emmanuel [SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Somerset, Vernon, E-mail: vsomerset@csir.co.za [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa)

    2015-10-01

    This paper demonstrates some aspects on the synthesis and characterisation of nanoparticles of metallic alloys using polyvinyl alcohol as a stabiliser, which combines high surface area and superior hybrid properties. The present experimental design was to synthesise a nanocomposite of reduced graphene oxide and antimony nanoparticles to be used as thin films for macro- and micro-carbon electrodes for enhancing sensing of different toxic metal pollutants in the environment. The synthetic process of reduced graphene oxide was done using the modified Hummers method while antimony pentachloride was reduced with sodium borohydride into nanoparticles of antimony using polyvinyl-alcohol as a stabiliser. The systematic investigation of morphology was done by scanning electron microscopy and high resolution-transmission electron microscope, which revealed the synthesis of a product, consists of reduced graphene oxide antimony nanoparticles. The electrochemical behaviour of the reduced graphene oxide antimony nanoparticles coated on a glassy carbon electrode was performed using voltammetric and impedance techniques. Electrochemical impedance measurements showed that the overall resistance, including the charge–transfer resistance, was smaller with reduced graphene oxide antimony nanoparticles than reduced graphene oxide and antimony nanoparticles, on their own. Evaluation of the reduced graphene oxide antimony nanoparticle sensor in the stripping voltammetry has shown a linear working range for concentration of platinum (II) between 6.0 × 10{sup −6}–5.4 × 10{sup −5} μg L{sup −1} with limit of detection of 6 × 10{sup −6} μg L{sup −1} (signal-to-noise ratio = 3), which is below the World Health Organisation guidelines for freshwater. - Highlights: • Reduced graphene oxide modified antimony nanoparticles were chemically synthesised. • TEM results show rGO-Sb nanoparticles with a diameter range of between 2 and 20 nm. • Impedance results confirm

  19. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    Science.gov (United States)

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  20. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong

    2015-01-01

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  1. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  2. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  3. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  4. Impact of metal and metal oxide nanoparticles on plant: A critical review

    Science.gov (United States)

    Rastogi, Anshu; Zivcak, Marek; Sytar, Oksana; Kalaji, Hazem M.; He, Xiaolan; Mbarki, Sonia; Brestic, Marian

    2017-10-01

    An increasing need of nanotechnology in various industries may cause a huge environment dispersion of nanoparticles in coming years. A concern about nanoparticles interaction with flora and fauna is raised due to a growing load of it in the environment. In recent years, several investigators have shown impact of nanoparticles on plant growth and its accumulation in food source. This review examines the research performed in the last decade to show how metal and metal oxide nanoparticles are influencing the plant metabolisms. We addressed here, the impact of nanoparticle on plant in relation to its size, concentration, and exposure methodology. Based on the available reports, we proposed oxidative burst as a general mechanism through which the toxic effects of nanoparticles are spread in plants. This review summarises the current understanding and the future possibilities of plant-nanoparticle research.

  5. Optical excitations in CuO2-sheets doped and undoped with electrons

    International Nuclear Information System (INIS)

    Tokura, Y.; Arima, T.; Koshihara, S.; Takagi, H.; Ido, T.; Ishibashi, S.; Uchida, S.

    1989-01-01

    This paper reports optical reflectance spectra measured on single crystals of parent families of high T c copper oxide compounds with single-layered CuO 2 -sheets, which clearly show the strong transitons across the charge-transfer (CT) gaps at 1.5-2.0 eV in various types of CuO 2 -sheets. The carrier-doping effects on the CT excitations have been investigated on the Sr-doped La 2 CuO 4 and Ce-doped Nd 2 O 4 crystals

  6. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen

    Science.gov (United States)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.

    2014-12-01

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).

  7. HIGHLY MICROBIAL RESISTANT GRAPHEME OXIDE NANOPARTICLES: SYNTHESIS, CHARACTERIZATION AND ITS ANTIBACTERIAL ACTIVITY

    OpenAIRE

    Vijaylaxmee Mishra; Richa Sharma

    2014-01-01

    The present work deigned to prepare graphene oxide nanoparticles and their antimicrobial activity has been evaluated. Graphene oxide is a singal layer of carbon arranged in a hexagonal pattern the basal planes and the edges of graphene oxide nanoparticles contain functional exogenous groups such as hydroxyl, carbonyl and epoxy group, which not only expand the interlayer distance but also make the atomic thick layer hydrophilic. Most important application in area related to transparent conduct...

  8. Synthesis and functionalisation of metal and metal oxide nanoparticles for theranostics

    OpenAIRE

    Mundell, VJ

    2013-01-01

    Metal and metal oxide nanoparticles including calcium oxide, gold, and superparamagnetic iron oxide nanoparticles (SPIOs) were synthesised using a range of techniques including reduction, co-precipitation and spinning disc technology. SPIOs were primarily synthesised via a co-precipitation method using iron (II) chloride, iron (III) chloride and ammonia; a spinning disc reactor and gaseous ammonia were trialled successfully for scale up, producing spherical particles of 10-40 nm in diameter a...

  9. Cytotoxic Effect of Iron Oxide Nanoparticles on Mouse Embryonic Stem Cells by MTT Assay

    Directory of Open Access Journals (Sweden)

    Homa Mohseni Kouchesfehani

    2016-07-01

    Full Text Available Background: Despite the wide range of applications, there is a serious lack of information on the impact of the nanoparticles on human health and the environment. The present study was done to determine the range of dangerous concentrations of iron oxide nanoparticle and their effects on mouse embryonic stem cells. Methods: Iron oxide nanoparticles with less than 20 nanometers diameter were encapsulated by a PEG-phospholipid. The suspension of iron oxide nanoparticles was prepared using the culture media and cell viability was determined by MTT assay. Results: MTT assay was used to examine the cytotoxicity of iron oxide nanoparticle s. Royan B1 cells were treated with medium containing different concentrations (10, 20, 30, 40, 50, and 60µg/ml of the iron oxide nanoparticle. Cell viability was determined at 12 and 24 hours after treatment which showed significant decreases when concentration and time period increased. Conclusion: The main mechanism of nanoparticles action is still unknown, but in vivo and in vitro studies in different environments suggest that they are capable of producing reactive oxygen species (ROS. Therefore, they may have an effect on the concentration of intracellular calcium, activation of transcription factors, and changes in cytokine. The results of this study show that the higher concentration and duration of treatment of cells with iron oxide nanoparticles increase the rate of cell death.

  10. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  11. Colloidosome-based synthesis of a multifunctional nanostructure of silver and hollow iron oxide nanoparticles

    KAUST Repository

    Pan, Yue

    2010-03-16

    Nanoparticles that self-assemble on a liquid-liquid interface serve as the building block for making heterodimeric nanostructures. Specifically, hollow iron oxide nanoparticles within hexane form colloidosomes in the aqueous solution of silver nitrate, and iron oxide exposed to the aqueous phase catalyzes the reduction of silver ions to afford a heterodimer of silver and hollow iron oxide nanoparticles. Transmission electron microscopy, selected area electron diffraction, energy-dispersive X-ray spectrometry, X-ray diffraction, UV-vis spectroscopy, and SQUID were used to characterize the heterodimers. Interestingly, the formation of silver nanoparticles helps the removal of spinglass layer on the hollow iron oxide nanoparticles. This work demonstrates a powerful yet convenient strategy for producing sophisticated, multifunctional nanostructures. © 2010 American Chemical Society.

  12. Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose

    This thesis presents a fundamental study of the sintering of supported nanoparticles in relation to diesel oxidation catalysts. The sintering of supported nanoparticles is an important challenge in relation to this catalyst, as well as many other catalyst systems, and a fundamental understanding...... of Pt, Pd and bimetallic Pt-Pd nanoparticles supported on a flat and homogeneous Al2O3 or SiO2 surface. By using in situ TEM on the planar model catalysts it was possible to directly monitor the detailed dynamical changes of the individual nanoparticles during exposure to oxidizing conditions...

  13. Characterization of injected aluminum oxide nanoparticle clouds in an rf discharge

    Science.gov (United States)

    Krüger, Harald; Killer, Carsten; Schütt, Stefan; Melzer, André

    2018-02-01

    An experimental setup to deagglomerate and insert nanoparticles into a radio frequency discharge has been developed to confine defined aluminum oxide nanoparticles in a dusty plasma. For the confined particle clouds we have measured the spatially resolved in situ size and density distributions. Implementing the whole plasma chamber into the sample volume of an FTIR spectrometer the infrared spectrum of the confined aluminum oxide nanoparticles has been obtained. We have investigated the dependency of the absorbance of the nanoparticles in terms of plasma power, pressure and cloud shape. The particles’ infrared phonon resonance has been identified.

  14. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  15. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  16. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    Science.gov (United States)

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  17. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    Directory of Open Access Journals (Sweden)

    Mathieu Lasfargues

    2017-05-01

    Full Text Available Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  18. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook, E-mail: jaekook@chonnam.ac.kr

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K{sup +})-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K{sup +} ion doping caused no change in the phase structure, and highly crystalline K{sub x}Cu{sub 1−x}O{sub 1−δ} (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K{sup +}-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g{sup −1} for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g{sup −1} at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g{sup −1} at 0.1 C and 68.9 mA h g{sup −1} at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K{sup +} ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  19. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    International Nuclear Information System (INIS)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-01-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K + )-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K + ion doping caused no change in the phase structure, and highly crystalline K x Cu 1−x O 1−δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K + -doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g −1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g −1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g −1 at 0.1 C and 68.9 mA h g −1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K + ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  20. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Science.gov (United States)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K+)-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K+ ion doping caused no change in the phase structure, and highly crystalline KxCu1-xO1-δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K+-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g-1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g-1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g-1 at 0.1 C and 68.9 mA h g-1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K+ ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  1. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Gui Minghui; Smuleac, Vasile [University of Kentucky, Department of Chemical and Materials Engineering (United States); Ormsbee, Lindell E. [University of Kentucky, Department of Civil Engineering (United States); Sedlak, David L. [University of California at Berkeley, Department of Civil and Environmental Engineering (United States); Bhattacharyya, Dibakar, E-mail: db@engr.uky.edu [University of Kentucky, Department of Chemical and Materials Engineering (United States)

    2012-05-15

    The potential for using hydroxyl radical (OH{sup Bullet }) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H{sub 2}O{sub 2} addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Moessbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H{sub 2}O{sub 2} by NP surface generated OH{sup Bullet} were investigated. Depending on the ratio of iron and H{sub 2}O{sub 2}, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  2. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    International Nuclear Information System (INIS)

    Gui Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-01-01

    The potential for using hydroxyl radical (OH • ) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H 2 O 2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H 2 O 2 by NP surface generated OH • were investigated. Depending on the ratio of iron and H 2 O 2 , TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  3. Genotoxic effects of bismuth (III oxide nanoparticles by comet assay

    Directory of Open Access Journals (Sweden)

    Reecep Liman

    2015-06-01

    Full Text Available Bismuth oxide is one of the important transition metal oxides and it has been intensively studied due to their peculiar characteristics (semiconductor band gap, high refractive index, high dielectric permittivity, high oxygen conductivity, resistivity, photoconductivity and photoluminescence etc.. Therefore, it is used such as microelectronics, sensor technology, optical coatings, transparent ceramic glass manufacturing, nanoenergetic gas generator, biosensor for DNA hybridization, potential immobilizing platforms for glucose oxidase and polyphenol oxidase, fuel cells, a additive in paints, an astringent in a variety of medical creams and topical ointments, and for the determination of heavy metal ions in drinking water, mineral water and urine. In addition this, Bismuth (III oxide nanoparticles (BONPs are favorable for the biomolecules adsorption than regular sized particles because of their greater advantages and novel characteristics (much higher specific surface, greater surface free energy, and good electrochemical stability etc.. Genotoxic effects of BONPs were investigated on the root cells of Allium cepa by Comet assay. A. cepa roots were treated with the aqueous dispersions of BONPs at 5 different concentrations (12.5, 25, 50, 75, and 100 ppm for 4 h. A significant increase in DNA damage was also observed at all concentrations of BONPs except 12.5 ppm by Comet assay. The results were also analyzed statistically by using SPSS for Windows; Duncan’s multiple range test was performed. These result indicate that BONPs exhibit genotoxic activity in A. cepa root meristematic cells.

  4. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles

    Science.gov (United States)

    Ali, Attarad; Zafar, Hira; Zia, Muhammad; ul Haq, Ihsan; Phull, Abdul Rehman; Ali, Joham Sarfraz; Hussain, Altaf

    2016-01-01

    Recently, iron oxide nanoparticles (NPs) have attracted much consideration due to their unique properties, such as superparamagnetism, surface-to-volume ratio, greater surface area, and easy separation methodology. Various physical, chemical, and biological methods have been adopted to synthesize magnetic NPs with suitable surface chemistry. This review summarizes the methods for the preparation of iron oxide NPs, size and morphology control, and magnetic properties with recent bioengineering, commercial, and industrial applications. Iron oxides exhibit great potential in the fields of life sciences such as biomedicine, agriculture, and environment. Nontoxic conduct and biocompatible applications of magnetic NPs can be enriched further by special surface coating with organic or inorganic molecules, including surfactants, drugs, proteins, starches, enzymes, antibodies, nucleotides, nonionic detergents, and polyelectrolytes. Magnetic NPs can also be directed to an organ, tissue, or tumor using an external magnetic field for hyperthermic treatment of patients. Keeping in mind the current interest in iron NPs, this review is designed to report recent information from synthesis to characterization, and applications of iron NPs. PMID:27578966

  5. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete: Part I: relative importance of water and sediment as exposure routes

    Science.gov (United States)

    Ramskov, Tina; Thit, Amalie; Croteau, Marie-Noele; Selck, Henriette

    2015-01-01

    Copper oxide (CuO) nanoparticles (NPs) are widely used, and likely released into the aquatic environment. Both aqueous (i.e., dissolved Cu) and particulate Cu can be taken up by organisms. However, how exposure routes influence the bioavailability and subsequent toxicity of Cu remains largely unknown. Here, we assess the importance of exposure routes (water and sediment) and Cu forms (aqueous and nanoparticulate) on Cu bioavailability and toxicity to the freshwater oligochaete, Lumbriculus variegatus, a head-down deposit-feeder. We characterize the bioaccumulation dynamics of Cu in L. variegatus across a range of exposure concentrations, covering both realistic and worst-case levels of Cu contamination in the environment. Both aqueous Cu (Cu-Aq; administered as Cu(NO3)2) and nanoparticulate Cu (CuO NPs), whether dispersed in artificial moderately hard freshwater or mixed into sediment, were weakly accumulated by L. variegatus. Once incorporated into tissues, Cu elimination was negligible, i.e., elimination rate constants were in general not different from zero for either exposure route or either Cu form. Toxicity was only observed after waterborne exposure to Cu-Aq at very high concentration (305 µgL-1), where all worms died. There was no relationship between exposure route, Cu form or Cu exposure concentration on either worm survival or growth. Slow feeding rates and low Cu assimilation efficiency (approximately 30%) characterized the uptake of Cu from the sediment for both Cu forms. In nature, L. variegatus is potentially exposed to Cu via both water and sediment. However, sediment progressively becomes the predominant exposure route for Cu in L. variegatus as Cu partitioning to sediment increases.

  6. Dependence of CuO particle size and diameter of reaction tubing on tritium recovery for tritium safety operation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Cui, E-mail: cdxohc10000@163.com [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Uemura, Yuki; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Azuma, Keisuke [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Taguchi, Akira; Hara, Masanori; Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Chikada, Takumi; Oya, Yasuhisa [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan)

    2016-12-15

    Highlights: • Influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. • Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. • Dependence of reaction tubing length on tritium conversion ratio has been explored. - Abstract: Usage of CuO and water bubbler is one of the conventional and convenient methods for tritium recovery. In present work, influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. Then, these results were applied for exploring the dependence of reaction tubing length on tritium conversion ratio. The results showed that the surface area of CuO has a great influence on the oxidation rate constant. The frequency factor of the reaction would be approximately doubled by reducing the CuO particle size from 1.0 mm to 0.2 mm. Cross section of reaction tubing mainly affected on the duration of tritium at the temperature below 600 K. Reaction tubing with length of 1 m at temperature of 600 K would be suitable for keeping the tritium conversion ratio above 99.9%. The length of reaction tubing can be reduced by using the smaller CuO particle or increasing the CuO temperature.

  7. Facile synthesis of Fe-incorporated CuO nanoarrays with enhanced electrochemical performance for lithium ion full batteries

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Bojun [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Department of Applied Physics, Wuhan University of Science and Technology, Wuhan, 430065 (China); Qing, Chen; Wang, Hai; Sun, Daming; Wang, Bixiao [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China); Tang, Yiwen, E-mail: ywtang@phy.ccnu.edu.cn [Institute of Nano-science and Technology, Central-China Normal University, Wuhan, 430079 (China)

    2015-11-15

    CuO nanoarrays (CNAs) and Fe-incorporated CuO nanoarrays (FCNAs) were fabricated by hydrothermal method. Addition of Fe salt to the reaction mixture allowed the introduction of iron oxide onto the CNAs surface, which was characterized by XPS and HRTEM. Introducing Fe ion into reaction precursor significantly affected not only the morphologies of as-prepared products but also their electrochemical performance as anode for lithium ion full battery. The FCNAs electrodes showed higher specific capacity and better capacity retention at different current densities than that of CNAs. - Highlights: • Fe-incorporated CuO nanoarrays were fabricated by hydrothermal method. • Fe salt in reaction mixture leads to iron oxides forming on the surface of CuO. • Fe-incorporating improves the lithium ion battery performance of CuO anodes.

  8. Are iron oxide nanoparticles safe? Current knowledge and future perspectives.

    Science.gov (United States)

    Valdiglesias, Vanessa; Fernández-Bertólez, Natalia; Kiliç, Gözde; Costa, Carla; Costa, Solange; Fraga, Sonia; Bessa, Maria Joao; Pásaro, Eduardo; Teixeira, João Paulo; Laffon, Blanca

    2016-12-01

    Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Synthesis and Characterization of Some Alkaline-Earth-Oxide Nanoparticles

    Science.gov (United States)

    Singh, Jitendra Pal; Lim, Weon Cheol; Won, Sung Ok; Song, Jonghan; Chae, Keun Hwa

    2018-04-01

    The present work reports the synthesis of MgO and CaO nanoparticles by using the sol-gel autocombustion method. The annealing of the precursor at 1200 °C was observed to lead the formation of MgO nanoparticles having average crystallite size of 31 nm. Annealing the precursor at same temperature produced materials having a CaO phase with a minor impure phase of calcium carbonate ( 3%). The crystallite size corresponding to the CaO phase was 38 nm. A change of thermal history in the precursor was observed not to result in an improvement of the CaO phase. The change of thermal history in the precursor gave rise to mixed phases of CaCO3 and Ca(OH)2 rather than the phase of CaO. Further, annealing at 1200 °C for 12 h resulted in the formation of the CaO phase along with almost 1 - 5% of calcium hydroxide as an impurity phase. X-ray absorption spectroscopic measurements carried out on these materials revealed that the local electronic/atomic structure of these oxides was not only affected by the impurity phases but also influenced by the carbaneous impurities attached to the crystallites.

  10. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.; Das, Soumen C.; Seal, Sudipta; Erlichman, Joseph S.; Heckman, Karin L.; Ghibelli, Lina; Traversa, Enrico; McGinnis, James F.; Self, William Thomas

    2014-01-01

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  11. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  12. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    International Nuclear Information System (INIS)

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Darroudi, Majid; Zak, Ali Khorsand; Drummen, Gregor P.C.

    2012-01-01

    Highlights: ► Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. ► Nanoparticles of ±15 nm are produced with a narrow size distribution. ► Starch can be used as a template to control nanoparticle size. ► Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength (λ = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or flocculation, which was reflected in no significant change in the ZnO nanoparticle size and size distribution. Overall

  13. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications

    International Nuclear Information System (INIS)

    Sarkar, Sudipta; Guibal, E.; Quignard, F.; SenGupta, A. K.

    2012-01-01

    Metal and metal oxide nanoparticles exhibit unique properties in regard to sorption behaviors, magnetic activity, chemical reduction, ligand sequestration among others. To this end, attempts are being continuously made to take advantage of them in multitude of applications including separation, catalysis, environmental remediation, sensing, biomedical applications and others. However, metal and metal oxide nanoparticles lack chemical stability and mechanical strength. They exhibit extremely high pressure drop or head loss in fixed-bed column operation and are not suitable for any flow-through systems. Also, nanoparticles tend to aggregate; this phenomenon reduces their high surface area to volume ratio and subsequently reduces effectiveness. By appropriately dispersing metal and metal oxide nanoparticles into synthetic and naturally occurring polymers, many of the shortcomings can be overcome without compromising the parent properties of the nanoparticles. Furthermore, the appropriate choice of the polymer host with specific functional groups may even lead to the enhancement of the properties of nanoparticles. The synthesis of hybrid materials involves two broad pathways: dispersing the nanoparticles (i) within pre-formed or commercially available polymers; and (ii) during the polymerization process. This review presents a broad coverage of nanoparticles and polymeric/biopolymeric host materials and the resulting properties of the hybrid composites. In addition, the review discusses the role of the Donnan membrane effect exerted by the host functionalized polymer in harnessing the desirable properties of metal and metal oxide nanoparticles for intended applications.

  14. Chemical synthesis and characterization of hollow dopamine coated, pentagonal and flower shaped magnetic iron oxide nanoparticles

    Science.gov (United States)

    Riasat, Rabia; Kaynat, Sumbal

    2018-04-01

    Iron oxide nanoparticles have gained attention recently in the field of nanoscience and technology due to their unique physicochemical properties. We hereby chemically synthesized novel pentagonal flower shaped iron oxide nanoparticles by thermal decomposition of iron penta-carbonyl in a two way annealing process. Controlled oxidation by acid etching was performed for these nanoparticles. At first 13 nm core shell nanoparticles of iron oxide (Fe/Fe3O4) were synthesized at 120°C annealing temperature that act as template material. The core shell nanoparticles then converted into porous hollow core shell nanoparticles (PH Fe/ Fe3O4) in a two way annealing process of heating, first at 100°C then at 250°C and heating rate of 5°C was kept constant throughout the reaction time. X-Ray diffraction (XRD) was done for the phase confirmation of as synthesized nanoparticles. Transmission electron microscopy (TEM) and higher resolution transmission electron microscopy (HRTEM) clearly shows the flower like nanoparticles that are approx. 16 nm-18 nm in size having the 4-5 nm core of Fe and 1-2 nm of the pores in the shell while the cavity between the shell and core is about 2 nm and the shell is 4-5 nm in diameter according to the TEM micrographs. The as prepared nanoparticles were then surface functionalized by dopamine polymer to make them water dispersible. Fourier transform Infrared spectroscopy confirmed the dopamine coating on the nanoparticles and the magnetic saturation of 38 emu/g of nanoparticles was analyzed by vibrating sample magnetometer (VSM). Magnetic saturation persists in the dopamine coated nanoparticles. These nanoparticles were surface functionalized with dopamine and show dispersity in the aqueous media and can further be exploited in many nano-biotechnological applications including target specific therapeutic applications for several diseases.

  15. Superparamagnetic iron oxide nanoparticles (SPIONs) for targeted drug delivery

    Science.gov (United States)

    Garg, Vijayendra K.; Kuzmann, Erno; Sharma, Virender K.; Kumar, Arun; Oliveira, Aderbal C.

    2016-10-01

    Studies of superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively carried out. Since the earlier work on Mössbauer studies on SPIONs in 1970s, many biomedical applications and their uses in innovative methods to produce new materials with improved performance have appeared. Applications of SPIONs in environmental remediation are also forthcoming. Several different methods of synthesis and coating of the magnetic particles have been described in the literature, and Mössbauer spectroscopy has been an important tool in the characterization of these materials. It is quite possible that the interpretation of the Mössbauer spectra might not be entirely correct because the possible presence of maghemite in the end product of SPIONs might not have been taken into consideration. Nanotechnology is an emerging field that covers a wide range of new technologies under development in nanoscale (1 to 100 nano meters) to produce new products and methodology.

  16. Cu-Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics

    International Nuclear Information System (INIS)

    Lee, Changsoo; Kim, Na Rae; Koo, Jahyun; Lee, Yung Jong; Lee, Hyuck Mo

    2015-01-01

    In this work, we synthesized uniform Cu–Ag core–shell nanoparticles using a facile two-step process that consists of thermal decomposition and galvanic displacement methods. The core–shell structure of these nanoparticles was confirmed through characterization using transmission electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction. Furthermore, we investigated the oxidation stability of the Cu–Ag core–shell nanoparticles in detail. Both qualitative and quantitative x-ray photoelectron spectroscopy analyses confirm that the Cu–Ag core–shell nanoparticles have considerably higher oxidation stability than Cu nanoparticles. Finally, we formulated a conductive ink using the synthesized nanoparticles and coated it onto glass substrates. Following the sintering process, we compared the resistivity of the Cu–Ag core–shell nanoparticles with that of the Cu nanoparticles. The results of this study clearly show that the Cu–Ag core–shell nanoparticles can potentially be used as an alternative to Ag nanoparticles because of their superior oxidation stability and electrical properties. (paper)

  17. Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    International Nuclear Information System (INIS)

    Tahmasebi, Nemat; Mahdavi, Seyed Mohammad

    2015-01-01

    Highlights: • Tungsten oxide nanoparticles were prepared by pulsed laser ablation (PLA). • A very fine metallic Au particles or coating are decorated on the surface of tungsten oxide nanoparticles. • UV–Vis spectroscopy shows an absorption peak at ∼530 nm which is due to SPR effect of gold. • After exposing to hydrogen gas, Au/WO_3 colloidal nanoparticles show excellent gasochromic coloring. - Abstract: In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl_4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au"3"+ ions were reduced to decorate gold metallic state (Au"0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV–Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms formation of gold state. Moreover, X-ray photoelectron spectroscopy reveals that Au ions’ reduction happens after adding HAuCl_4 solution into as-prepared colloidal tungsten oxide nanoparticles. Transmission electron microscope shows that an Au shell has been decorated onto colloidal WO_3 nanoparticles. Noble metal decorated tungsten oxide nanostructure could be an excellent candidate for photocatalysis, gas sensing and gasochromic applications. Finally, the gasochromic behavior of the synthesized samples was investigated by H_2 and O_2 gases bubbling into the produced colloidal Au/WO_3 nanoparticles. Synthesized colloidal nanoparticles show excellent coloration contrast (∼80%) through NIR spectra.

  18. Scalable fractionation of iron oxide nanoparticles using a CO2 gas-expanded liquid system

    International Nuclear Information System (INIS)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B.

    2015-01-01

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO 2 gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  19. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    Science.gov (United States)

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  20. Antibacterial activity of nitric oxide releasing silver nanoparticles

    Science.gov (United States)

    Seabra, Amedea B.; Manosalva, Nixson; de Araujo Lima, Bruna; Pelegrino, Milena T.; Brocchi, Marcelo; Rubilar, Olga; Duran, Nelson

    2017-06-01

    Silver nanoparticles (AgNPs) are well known potent antimicrobial agents. Similarly, the free radical nitric oxide (NO) has important antibacterial activity, and due to its instability, the combination of NO and nanomaterials has been applied in several biomedical applications. The aim of this work was to synthesize, characterize and evaluate the antibacterial activity of a new NO-releasing AgNPs. Herein, AgNPs were synthesized by the reduction of silver ions (Ag+) by catechin, a natural polyphenol and potent antioxidant agent, derived from green tea extract. Catechin acts as a reducing agent and as a capping molecule on the surface of AgNPs, minimizing particle agglomeration. The as-synthesized nanoparticles were characterized by different techniques. The results showed the formation of AgNPs with average hydrodynamic size of 44 nm, polydispersity index of 0.21, and zeta potential of -35.9 mV. X-ray diffraction and Fourier transform infrared spectroscopy revealed the presence of the AgNP core and cathecin as capping agent. The low molecular weight mercaptosuccinic acid (MSA), which contain free thiol group, was added on the surface of catechin-AgNPs, leading to the formation of MSA-catechin-AgNPs (the NO precursor nanoparticle). Free thiol groups of MSA-catechin-AgNPs were nitrosated leading to the formation of S-nitroso-mercaptosuccinic acid (S-nitroso-MSA), the NO donor. The amount of 342 ± 16 µmol of NO was released per gram of S-nitroso-MSA-catechin-AgNPs. The antibacterial activities of catechin-AgNPs, MSA-catechin-AgNPs, and S-nitroso-MSA-catechin-AgNPs were evaluated towards different resistant bacterial strains. The results demonstrated an enhanced antibacterial activity of the NO-releasing AgNP. For instance, the minimal inhibitory concentration values for Pseudomonas aeruginosa (ATCC 27853) incubated with AgNPs-catechin, AgNPs-catechin-MSA, and AgNPs-catechin-S-nitroso-MSA were found to be 62, 125 and 3 µg/mL, respectively. While in the case of

  1. Physiological effects of magnetic iron oxide nanoparticles towards watermelon.

    Science.gov (United States)

    Li, Junli; Chang, Peter R; Huang, Jin; Wang, Yunqiang; Yuan, Hong; Ren, Hongxuan

    2013-08-01

    Nanoparticles (NPs) have been exploited in a diverse range of products in the past decade or so. However, the biosafety/environmental impact or legislation pertaining to this newly created, highly functional composites containing NPs (otherwise called nanomaterials) is generally lagging behind their technological innovation. To advance the agenda in this area, our current primary interest is focused on using crops as model systems as they have very close relationship with us. Thus, the objective of the present study was to evaluate the biological effects of magnetic iron oxide nanoparticles towards watermelon seedlings. We have systematically studied the physiological effects of Fe2O3 nanoparticles (nano-Fe2O3) on watermelon, and present the first evidence that a significant amount of Fe2O3 nanoparticles suspended in a liquid medium can be taken up by watermelon plants and translocated throughout the plant tissues. Changes in important physiological indicators, such as root activity, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD), chlorophyll and malondialdehyde (MDA) contents, ferric reductase activity, root apoplastic iron content were clearly presented. Different concentrations of nano-Fe2O3 all increased seed germination, seedling growth, and enhanced physiological function to some degree; and the positive effects increased quickly and then slowed with an increase in the treatment concentrations. Changes in CAT, SOD and POD activities due to nano-Fe2O3 were significantly larger than that of the control. The 20 mg/L treatment had the most obvious effect on the increase of root activity. Ferric reductase activity, root apoplastic iron content, and watermelon biomass were significantly affected by exposure to nano-Fe2O3. Results of statistical analysis showed that there were significant differences in all the above indexes between the treatment at optimal concentration and the control. This proved that the proper concentration of nano

  2. Curcumin Attenuates Hepatotoxicity Induced by Zinc Oxide Nanoparticles in Rats

    Directory of Open Access Journals (Sweden)

    Layasadat Khorsandi

    2016-06-01

    Full Text Available Background: Zinc oxide nanoparticles (NZnO are increasingly used in modern life. Most metal nanoparticles have adverse effects on the liver. Aims: To explore the protective action of curcumin (Cur against hepatotoxicity induced by NZnO in rats. Study Design: Animal experimentation. Methods: Control group animals received normal saline, while the Cur group animals were treated with 200 mg/kg of Cur orally for 21 days. NZnO-intoxicated rats received 50 mg/kg of NZnO for 14 days by gavage method. In the NZnO+Cur group, rats were pretreated with Cur for 7 days before NZnO administration. Plasma activities of Alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP were measured as biomarkers of hepatotoxicity. Hepatic levels of malondialdehyde (MDA and superoxide dismutase (SOD and glutathione peroxidase (GPx activities were measured for detection of oxidative stress in liver tissue. Histological changes and apoptosis in liver tissue were studied by using Hematoxylin-eosin staining and the transferase dUTP nick end labeling (TUNEL method. Results: NZnO induced a significant increase in plasma AST (2.8-fold, ALT (2.7-fold and ALP (1.97-fold activity in comparison to the control group (p<0.01. NZnO increased MDA content and reduced SOD and GPx activities. NZnO caused liver damage including centrilobular necrosis and microvesicular steatosis. The percentage of apoptosis in hepatocytes was increased in NZnO-treated rats (p<0.01. Pre-treatment of Cur significantly reduced lipid peroxidation (39%, increased SOD (156% and GPx (26% activities, and attenuated ALT (47%, AST (41% and ALP (30% activities. Pre-treatment with Cur also decreased the histology changes and apoptotic index of hepatocytes (p<0.05. Conclusion: These findings indicate that Cur effectively protects against NZnO-induced hepatotoxicity in rats. However, future studies are required to propose Cur as a potential protective agent against hepatotoxicity

  3. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    Science.gov (United States)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  4. Green Synthesis of Formulated Zinc Oxide Nanoparticles for Chemical Protection of Skin Care and Related Applications

    Science.gov (United States)

    Koppolu, Ramya

    Nanomaterials have diversified applications based on the unique properties. These nanoparticles and functionalized nanocomposites have been studied in the health care filed. Nanoparticles are mostly used in sunscreens which are a part of human life. These sunscreens consist of titanium dioxide and zinc oxide nanoparticles. Due to the higher band crevices, they help the skin to protect from ultraviolet rays, for instance, ultraviolet B and ultraviolet A. A series of nanostructured zinc oxide nanoparticles were prepared by cost-effective chemical and bioinspired methods and variables were optimized. Highly stable and spherical zinc oxide nanoparticles were formulated by aloe vera ( Aloe barbadensis) plant extract and avocado (Persea americana Mill) fruit extract. The state-of-the-art instrumentation was used to characterize the morphology, elemental composition, and particle size distribution. X-ray diffraction data indicated highly crystalline and ultrafine nanoparticles were obtained from the colloidal methods. The X-ray photoelectron spectroscopy results showed the chemical state of zinc, carbon, and oxygen atoms were well-indexed and are used as fingerprint identification of the elements. Transmission electron microscopy images show the shape of particles were cubic and fiber shape contingent upon the protecting operators and heat treatment conditions. The toxicity studies of zinc oxide nanoparticles were found to cause an increase in nitric oxide, which is protecting against further oxidative stress and appears to be nontoxic.

  5. The interfacial orientation relationship of oxide nanoparticles in a hafnium-containing oxide dispersion-strengthened austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin, E-mail: miao2@illinois.edu [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Mo, Kun [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Cui, Bai [Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Chen, Wei-Ying [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Miller, Michael K.; Powers, Kathy A. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); McCreary, Virginia; Gross, David [Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Almer, Jonathan [X-ray Science Division, Argonne National Laboratory, Lemont, IL 60493 (United States); Robertson, Ian M. [Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WA 53706 (United States); Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Stubbins, James F. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)

    2015-03-15

    This work reports comprehensive investigations on the orientation relationship of the oxide nanoparticles in a hafnium-containing austenitic oxide dispersion-strengthened 316 stainless steel. The phases of the oxide nanoparticles were determined by a combination of scanning transmission electron microscopy–electron dispersive X-ray spectroscopy, atom probe tomography and synchrotron X-ray diffraction to be complex Y–Ti–Hf–O compounds with similar crystal structures, including bixbyite Y{sub 2}O{sub 3}, fluorite Y{sub 2}O{sub 3}–HfO{sub 2} solid solution and pyrochlore (or fluorite) Y{sub 2}(Ti,Hf){sub 2−x}O{sub 7−x}. High resolution transmission electron microscopy was used to characterize the particle–matrix interfaces. Two different coherency relationships along with one axis-parallel relation between the oxide nanoparticles and the steel matrix were found. The size of the nanoparticles significantly influences the orientation relationship. The results provide insight into the relationship of these nanoparticles with the matrix, which has implications for interpreting material properties as well as responses to radiation. - Highlights: • The oxide nanoparticles in a hafnium-containing austenitic ODS were characterized. • The nanoparticles are Y–Hf–Ti–O enriched phases according to APT and STEM–EDS. • Two coherency and an axis-parallel orientation relationships were found by HR-TEM. • Particle size has a prominent effect on the orientation relationship (OR). • Formation mechanism of the oxide nanoparticles was discussed based on the ORs.

  6. Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2016-01-01

    The coarsening of supported palladium nanoparticles in an oxidizing atmosphere was studied in situ by means of transmission electron microscopy (TEM). Specifically, the Pd nanoparticles were dispersed on a planar and amorphous Al2O3 support and were observed during the exposure to 10 mbar technical...... for the Ostwald ripening process indicates that the observed change in the particle size distribution can be accounted for by wetting of the Al2O3 support by the larger Pd nanoparticles....

  7. Synthesis of Nickel Oxide Nanoparticles Using Gelatine as a Green Template for Photocatalytic Degradation of Dye

    OpenAIRE

    JAY YANG LEE

    2018-01-01

    Nickel oxide (NiO) nanoparticles were synthesized through sol-gel method with an environmentally friendly templating agent, which is gelatin. The synthesized NiO were characterized to determine the chemical and physical properties of the nanoparticles. The optimum synthesis parameters were used in photocatalytic degradation of Reactive Black 5 and Acid Yellow 25 dye to determine the catalytic activity of the nanoparticles.

  8. Laser sintering of magnesia with nanoparticles of iron oxide and aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    García, L.V.; Mendivil, M.I.; Roy, T.K. Das; Castillo, G.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Cd. Universitaria, San Nicolas de los Garza, Nuevo Leon 66451 (Mexico); CIIDIT, Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • Laser sintered MgO pellets with nanoparticles of Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}. • Characterized these pellets by XRD, SEM and XPS. • Spinel formations were observed in both cases. • Changes in morphology and structure were analyzed. - Abstract: Nanoparticles of iron oxide (Fe{sub 2}O{sub 3}, 20–40 nm) and aluminum oxide (Al{sub 2}O{sub 3}, 50 nm) were mixed in different concentrations (3, 5 and 7 wt%) in a magnesium oxide (MgO) matrix. The mixture pellet was irradiated with 532 nm output from a Q-switched Nd:YAG laser using different laser fluence and translation speed for sintering. The refractory samples obtained were analyzed using X-ray diffraction technique, scanning electron microscopy and X-ray photoelectron spectroscopy. The results showed that the samples irradiated at translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2} with a concentration of 5 and 7 wt% of Fe{sub 2}O{sub 3} presented the MgFe{sub 2}O{sub 4} spinel-type phase. With the addition of Al{sub 2}O{sub 3} nanoparticles, at a translation speed of 110 μm/s and energy fluence of 1.7 J/cm{sup 2}, there were the formations of MgAl{sub 2}O{sub 4} spinel phase. The changes in morphologies and microstructure due to laser irradiation were analyzed.

  9. Photoluminescence study on amino functionalized dysprosium oxide-zinc oxide composite bifunctional nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Aswathy; Praveen, G.L; Abha, K.; Lekha, G.M [Department of Chemistry, University of Kerala, Kariavattom, Kerala 695581 (India); George, Sony, E-mail: emailtosony@gmail.com [Department of Chemistry, University of Kerala, Kariavattom, Kerala 695581 (India)

    2012-08-15

    An organic dispersion of 9-15 nm size stable dysprosium oxide incorporated zinc oxide nanocomposites exhibiting luminescence in the visible region has been synthesised by a wet chemical precipitation technique at room temperature. Tetraethoxysilane TEOS [(C{sub 2}H{sub 5}O){sub 4}Si], (3-aminopropyl) trimethoxysilane (APTS) and a 1:1 mixture of TEOS-APTS have been used as capping agents to control the particle size as well as to achieve uniform dispersion of composite nanoparticles in methanol medium. X-ray diffractometer (XRD) analysis reveals the formation phase of amino-functionalised colloidal dysprosium oxide incorporated ZnO composite nanoparticles to be of zincite structure. The Transmission Electron Microscopy (TEM) images show that the particles are spheroids in shape, having average crystalline sizes ranging from 9 to 15 nm. The photoluminescence (PL) observed in these composites has been attributed to the presence of near band edge excitonic emission and existence of defect centres. The time correlated single photon counting studies of the composite nanoparticles exhibited three decay pathways. The enhanced PL emission intensity of solid state fluorescence spectra of samples is attributed to the absence of vibrational relaxation process. - Highlights: Black-Right-Pointing-Pointer Nano-composites are synthesised using a one step wet chemical precipitation method. Black-Right-Pointing-Pointer A significant fluorescence life time of 8.25 ns is obtained for the nano-composite. Black-Right-Pointing-Pointer Nano-composite particles exhibited pale yellow fluorescence rather than blue. Black-Right-Pointing-Pointer Vibrational cascade free enhanced fluorescence is obtained for the dry sample.

  10. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe.

    Science.gov (United States)

    Jiang, Jia; Tian, Sizhu; Wang, Kun; Wang, Yang; Zang, Shuang; Yu, Aimin; Zhang, Ziwei

    2018-02-01

    With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe 3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe 3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL -1 , and the analytical sensitivity was 1.81 μg mL -1 . When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL -1 , and the sensitivity was 0.014 and 0.13 μg mL -1 depending on the ratio of nanoparticle to antibody. Graphical abstract Schematic diagram of procedure and ESR spectra.

  11. HRTEM Study of Oxide Nanoparticles in K3-ODS Ferritic Steel Developed for Radiation Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; Fluss, M; Tumey, S; Kuntz, J; El-Dasher, B; Wall, M; Choi, W; Kimura, A; Willaime, F; Serruys, Y

    2009-11-02

    Crystal and interfacial structures of oxide nanoparticles and radiation damage in 16Cr-4.5Al-0.3Ti-2W-0.37 Y{sub 2}O{sub 3} ODS ferritic steel have been examined using high-resolution transmission electron microscopy (HRTEM) techniques. Oxide nanoparticles with a complex-oxide core and an amorphous shell were frequently observed. The crystal structure of complex-oxide core is identified to be mainly monoclinic Y{sub 4}Al{sub 2}O{sub 9} (YAM) oxide compound. Orientation relationships between the oxide and the matrix are found to be dependent on the particle size. Large particles (> 20 nm) tend to be incoherent and have a spherical shape, whereas small particles (< 10 nm) tend to be coherent or semi-coherent and have a faceted interface. The observations of partially amorphous nanoparticles and multiple crystalline domains formed within a nanoparticle lead us to propose a three-stage mechanism to rationalize the formation of oxide nanoparticles containing core/shell structures in as-fabricated ODS steels. Effects of nanoparticle size and density on cavity formation induced by (Fe{sup 8+} + He{sup +}) dual-beam irradiation are briefly addressed.

  12. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  13. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    Science.gov (United States)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  14. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin

    Science.gov (United States)

    Olsen, Cameron R.; Smith, Trevor J.; Embley, Jacob S.; Maxfield, Jake H.; Hansen, Kameron R.; Peterson, J. Ryan; Henrichsen, Andrew M.; Erickson, Stephen D.; Buck, David C.; Colton, John S.; Watt, Richard K.

    2017-05-01

    This paper investigates the comproportionation reaction of MnII with {{{{MnO}}}4}- as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that {{{{MnO}}}4}- serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.

  15. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles

    Science.gov (United States)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2013-12-01

    Brominated flame retardants (BFRs) have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use which may lead to contamination of water resources. In this work we present the catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) in aqueous solution. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis are compared to Fenton oxidation and to reduction by nano zero-valent iron (nZVI). The two studied BFRs are shown to degrade fully by the nCuO system within hours to days. Shorter reaction times showed differences in reaction pathways and kinetics for the two compounds. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24 h, while the TBNPA was degraded by 85% within 12 hours. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  16. Engineered nickel oxide nanoparticle causes substantial physicochemical perturbation in plants

    Science.gov (United States)

    Manna, Indrani; Bandyopadhyay, Maumita

    2017-11-01

    Concentration of engineered NiO-NP in nature is on the rise, owing to large scale industrial uses and human interventions, which have accreted the scope of exposure especially at the primary trophic levels of the ecosystem. Nickel content in air, drinking water and soil is already above permissible limits in most parts of the developed world. Though nickel oxide is an essential micronutrient in the animal system, it has already been graded as a human carcinogen by WHO, and numerous studies have established the toxic nature of nickel in higher dosage in the animal system. Though studies depicting toxicity and bioaccumulation of nickel in plants is documented, the interaction of nickel oxide nanoparticle with plants is not fully a well-studied, well elucidated topic. What is known is that, exposure to nickel oxide nanoparticle, arouses stress response and leads to cytotoxicity and growth retardation in a handful of plants, a defined work on the intricate physicochemical cellular responses and genotoxic challenges has been so far absent. We have tried to fill in such gaps with this study. We planned the work around pertinent hypotheses like: whether NiO-NP cause cytotoxicity in a model plant system (Allium cepa L.)?If so, does internalization of nickel ion (the potent toxic) take place in the tissue? Does internalized NiO-NP create furore in the antioxidant enzyme system of the plant leading to cytotoxicity? In that case, whether the ENP causes genotoxicity and leads to pycknosis of the cell. The study has been designed to assess the change in biochemical profile and genotoxicity potential of NiO-NP at a wide range of concentrations using root tips of Allium cepa L., the model system for study of cytotoxicity and genotoxicity, and four of its closest relatives, Allium sativum L., Allium schoenoprasum L., Allium porrum L., Allium fistulosum L., chosen for their immense economic importance. Growing root tips were treated with seven different concentrations of Ni

  17. Samarium oxide as a radiotracer to evaluate the in vivo biodistribution of PLGA nanoparticles

    CSIR Research Space (South Africa)

    Mandiwana, V

    2015-09-01

    Full Text Available the biodistribution of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing samarium-153 oxide ([(sup153)Sm]Sm(sub2)O(sub3)) in vivo to prove that orally administered nanoparticles alter the biodistribution of a drug. These were then activated in a nuclear...

  18. Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles

    CSIR Research Space (South Africa)

    Motlatle, Abesach M

    2016-10-01

    Full Text Available of Nanoparticle Research, vol. 18: DOI: 10.1007/s11051-016-3614-8 Chemical synthesis, characterization and evaluation of antimicrobial properties of Cu and its oxide nanoparticles Motlatle AM Kesevan Pillai S Scriba MR Ray SS ABSTRACT: Cu...

  19. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  20. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants.

    Science.gov (United States)

    Hagerty, Samantha; Daniels, Yasmine; Singletary, Melissa; Pustovyy, Oleg; Globa, Ludmila; MacCrehan, William A; Muramoto, Shin; Stan, Gheorghe; Lau, June W; Morrison, Edward E; Sorokulova, Iryna; Vodyanoy, Vitaly

    2016-12-01

    Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.

  1. Trophic transfer of differently coated zinc oxide nanoparticles using crustaceans (Daphnia magna) and zebrafish (Danio rerio)

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Winther-Nielsen, M.; Baun, Anders

    During the last couple of years the use of nanoparticles (NP) has dramatically increased. Zinc oxide nanoparticles (ZnO NP) have a wide range of applications e.g. in personal care products, paints and semi conductors. However, only a limited number of studies have so far investigated...

  2. Uptake and depuration of three differently functionalized zinc oxide nanoparticles to Daphnia magna

    DEFF Research Database (Denmark)

    Skjolding, Lars Michael; Winther-Nielsen, Margrete; Baun, Anders

    During the last couple of years the use of nanoparticles (NP) has dramatically increased. Zinc oxide nanoparticles (ZnO NP) have a wide range of applications e.g. in personal care products, paints and semi conductors. However, few studies have so far investigated the ecotoxicity of ZnO NP...

  3. Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Kolchina, L.M.; Lyskov, N.V.; Petukhov, D.I.; Mazo, G.N.

    2014-01-01

    Highlights: • PCO–GDC composites are studied as a cathode for SOFCs. • The rate-determined step of the overall electrode process vs. temperature was defined. • PCO–GDC33 composite gave the lowest area surface resistance of 0.41 Ω cm 2 at 700 °C. • PCO–GDC33 is preferred to use as a cathode material for IT-SOFCs. - Abstract: Pr 2 CuO 4 –Ce 0.9 Gd 0.1 O 1.95 (PCO–GDC) composites screen printed on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte were considered as a cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). Phase composition, microstructure and electrochemical properties were investigated by X-ray powder diffraction (XRD), scanning electron microscopy and AC impedance spectroscopy, respectively. The oxygen reduction on porous PCO–GDC electrode applied on CGO electrolyte was studied in a symmetrical cell configuration by AC impedance spectroscopy at OCV conditions at 670–730 °C and p O 2 =10 -2 -0.21atm. The charge transfer process and the dissociation of adsorbed molecular oxygen were found to be rate-determining steps of the oxygen reduction reaction. Results reveal that both GDC addition and electrode morphology have strong influence on area specific resistance (ASR) of the electrode/electrolyte interface. The lowest ASR value of 0.41 Ω cm 2 was achieved for the composition containing 33 wt.% GDC at 700 °S in air. The data obtained allow to consider the PCO–GDC33 composite as a promising cathode material for IT-SOFCs

  4. Adsorption of polar, nonpolar, and substituted aromatics to colloidal graphene oxide nanoparticles

    NARCIS (Netherlands)

    Wang, Fang; Haftka, Joris J H; Sinnige, Theo L.; Hermens, Joop L M; Chen, Wei

    2014-01-01

    We conducted batch adsorption experiments to understand the adsorptive properties of colloidal graphene oxide nanoparticles (GONPs) for a range of environmentally relevant aromatics and substituted aromatics, including model nonpolar compounds (pyrene, phenanthrene, naphthalene, and

  5. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad; Ghaffar, Farhan A.; Farooqui, Muhammad Fahad; Shamim, Atif

    2018-01-01

    . Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna

  6. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    International Nuclear Information System (INIS)

    Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J.; Vaitkus, R.; Norkus, E.

    2016-01-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  7. In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data describe the effects of metal oxide nanoparticles on total spikes and active electrodes after exposure to various concentrations for 1, 24 and 48 hrs, or after...

  8. Synthesis of yttrium oxide nanoparticles via a facile microplasma-assisted process

    NARCIS (Netherlands)

    Lin, Liangliang; Starostin, Sergey A.; Li, Sirui; Khan, Saif A.; Hessel, Volker

    2018-01-01

    Plasma electrochemistry is an emerging technique for nanomaterial synthesis. The present study reports the preparation of yttrium oxide nanoparticles via a simple, environmentally benign, microplasma-assisted process operated in pin-to-liquid configuration under ambient atmospheric conditions using

  9. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kepenienė, V., E-mail: virginalisk@gmail.com [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Vaitkus, R. [Faculty of Chemistry, Vilnius University, Vilnius LT 03225 (Lithuania); Norkus, E. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania)

    2016-03-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  10. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis

    Science.gov (United States)

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  11. Evaluation of the sonosensitizing properties of nano-graphene oxide in comparison with iron oxide and gold nanoparticles

    Science.gov (United States)

    Beik, Jaber; Abed, Ziaeddin; Shakeri-Zadeh, Ali; Nourbakhsh, Mitra; Shiran, Mohammad Bagher

    2016-07-01

    In cancer hyperthermia, ultrasound is considered as an appropriate source of energy to achieve desired therapeutic levels of heating. It is assumed that such a heating is targeted to cancer cells by using nanoparticles as sonosensitization agents. Here, we report the sonosensitizing effects of Nano-Graphene Oxide (NGO) and compare them with gold nanoparticles (AuNPs), Iron Oxide nanoparticles (IONPs). Experiments were conducted to explore the effects of nanoparticle type and concentration, as well as ultrasound power, on transient heating up of the solutions exposed by 1 MHz ultrasound. Nanoparticles concentration was selected from 0.25 to 2.5 mg/ml and the solutions were exposed by ultrasound powers from 1 to 8 W. Real time temperature monitoring was done by a thermocouple and obtained data was analyzed. Temperature profiles of various nanoparticle solutions showed the higher heating rates, in comparison to water. Heating rise was strongly depended on nanoparticles concentration and ultrasound power. AuNPs showed a superior efficiency in heat generation enhancement in comparison to IONPs and NGO. Our result supports the idea of sonosensitizing capabilities of AuNPs, IONPs, and NGO. Targeted hyperthermia may be achievable by preferential loading of tumor with nanoparticles and subsequent ultrasound irradiation.

  12. Novel lanthanide-labeled metal oxide nanoparticles improve the measurement of in vivo clearance and translocation

    Directory of Open Access Journals (Sweden)

    Abid Aamir D

    2013-01-01

    Full Text Available Abstract The deposition, clearance and translocation of europium-doped gadolinium oxide nanoparticles in a mouse lung were investigated experimentally. Nanoparticles were synthesized by spray flame pyrolysis. The particle size, crystallinity and surface properties were characterized. Following instillation, the concentrations of particles in organs were determined with inductively coupled plasma mass spectrometry. The protein corona coating the nanoparticles was found to be similar to the coating on more environmentally relevant nanoparticles such as iron oxide. Measurements of the solubility of the nanoparticles in surrogates of biological fluids indicated very little propensity for dissolution, and the elemental ratio of particle constituents did not change, adding further support to the contention that intact nanoparticles were measured. The particles were intratracheally instilled into the mouse lung. After 24 hours, the target organs were harvested, acid digested and the nanoparticle mass in each organ was measured by inductively coupled plasma mass spectrometry (ICP-MS. The nanoparticles were detected in all the studied organs at low ppb levels; 59% of the particles remained in the lung. A significant amount of particles was also detected in the feces, suggesting fast clearance mechanisms. The nanoparticle system used in this work is highly suitable for quantitatively determining deposition, transport and clearance of nanoparticles from the lung, providing a quantified measure of delivered dose.

  13. in vivo EFFECTS OF RARE-EARTH BASED NANOPARTICLES ON OXIDATIVE BALANCE IN RATS

    Directory of Open Access Journals (Sweden)

    V. K. Klochkov

    2016-12-01

    Full Text Available The purpose of the research was to find the influence of rare-earth based nanoparticles (CeO2, GdVO2: Eu3+ on the oxidative balance in rats. We analyzed biochemical markers of oxidative stress (lipid peroxidation level, nitric oxide metabolites, sulfhydryl groups content and enzyme activities (superoxide dismutase, catalase in tissues of rats. It has been found that administration of both types of the nanoparticles increased nitric oxide metabolites and products of lipid peroxidation in liver and spleen within 5 days. At injections of GdVO2: Eu3+ lipid peroxidation products, nitric oxide metabolites in serum at 5, 10 and 15 days of the experiment was also increased whereas the level of sulfhydryl groups decreased compared to the intact state and the control. In contrast, under the influence of nanoparticle CeO2 level diene conjugates were not significantly changed and the level of nitric oxide metabolites within 15 day even decreased. During this period, under the influence of both types of nanoparticles the activity of superoxide dismutase was increased, catalase activity was not changed. Oxidative stress coefficient showed the less pronounced CeO2 prooxidant effect (2.04 in comparison to GdVO2: Eu3+ (6.89. However, after-effect of both types of nanoparticles showed complete restoration of oxidative balance values.

  14. Synthesis, characterization and antibacterial activity of hybrid chitosan-cerium oxide nanoparticles: As a bionanomaterials.

    Science.gov (United States)

    Senthilkumar, R P; Bhuvaneshwari, V; Ranjithkumar, R; Sathiyavimal, S; Malayaman, V; Chandarshekar, B

    2017-11-01

    The hybrid chitosan cerium oxide nanoparticles were prepared for the first time by green chemistry approach using plant leaf extract. The intense peak observed around 292nm in the UV-vis spectrum indicate the formation of cerium oxide nanoparticles. The XRD pattern revealed that the hybrid chitosan-cerium oxide nanoparticles have a polycrystalline structure with cubic fluorite phase. The FTIR spectrum of prepared samples showed the formation of Ce-O bonds and chitosan main chains COC and CO. The FESEM image of hybrid chitosan cerium oxide nanoparticles revealed that the particles are spherical in shape with grains size varying from 23.12nm to 89.91nm. EDAX analysis confirmed the presence of Ce, O, C and N elements in the prepared sample. TEM images showed that the prepared hybrid chitosan-cerium oxide nanoparticles are predominantly uniform in size and most of the particles are spherical in shape with less agglomeration and the particles size varies from 3.61nm to 24.40nm. The prepared chitosan cerium oxide nanoparticles of 50μL concentration showed good antibacterial properties against test pathogens, which was confirmed by the FESEM analysis. The prepared small particle size facilitate that these hybrid ChiCO 2 NPs could effectively be used in biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles for humidity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Popa, A., E-mail: popa@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Stan, M.; Socaci, C.; Biris, A.R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Katona, G. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania); Tudorache, F. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Petrila, I. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 27 Dimitrie Mangeron Street, 700050 Iasi (Romania); Iacomi, F. [Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania)

    2017-04-30

    Highlights: • Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles were synthesized. • The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM. • The reduction of graphene oxide was evidenced using XRD and FT-IR. • Sensitivity tests for relative humidity (RH) were carried out. • The composite sensor exhibited enhanced sensing response as compared with Fe:SnO{sub 2}. - Abstract: Reduced graphene oxide (rGO) decorated with Fe doped SnO{sub 2} nanoparticles were fabricated via the electrostatic interaction between positively charged modified Fe-doped SnO{sub 2} oxide and negatively charged graphene oxide (GO) in the presence of poly(allylamine) hydrochloride (PAH). The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM microsopy. For composite sample the diffraction patterns coincide well with those of SnO{sub 2}:Fe nanoparticles. The reduction of graphene oxide was evidenced using XRD and FT-IR spectroscopy. The formation of SnO{sub 2}:Fe-PAH-graphene composites was confirmed by FT-IR, Raman and EPR spectroscopy. Sensitivity tests for relative humidity (RH) measurements were carried out at five different concentrations of humid air at room temperature. The prepared composite sensor exhibited a higher sensing response as compared with Fe:SnO{sub 2} nanoparticles.

  16. Chlorination of iodide-containing waters in the presence of CuO: Formation of periodate

    KAUST Repository

    Liu, Chao; Salhi, Elisabeth; Croue, Jean-Philippe; von Gunten, Urs

    2014-01-01

    It has been shown previously that the disproportionation of halogen-containing oxidants (e.g., HOCl, HOBr, and ClO2) is enhanced by a CuO-catalyzed process. In this study, the transformation of iodine during chlorination in the presence of CuO was investigated. There is no significant enhancement of the disproportionation of hypoiodous acid (HOI) in the presence of CuO. The formation rate of iodate (IO3 -) in the CuO-HOCl-I- system significantly increased when compared to homogeneous solutions, which was ascribed to the activation of HOCl by CuO enhancing its reactivity toward HOI. In this reaction system, iodate formation rates increase with increasing CuO (0-0.5 g L-1) and bromide (0-2 μM) doses and with decreasing pH (9.6-6.6). Iodate does not adsorb to the CuO surfaces used in this study. Nevertheless, iodate concentrations decreased after a maximum was reached in the CuO-HOCl-I-(-Br-) systems. Similarly, the iodate concentrations decrease as a function of time in the CuO-HOCl-IO3 - or CuO-HOBr-IO3 - system, and the rates increase with decreasing pH (9.6-6.6) due to the enhanced reactivity of HOCl or HOBr in the presence of CuO. It could be demonstrated that iodate is oxidized to periodate by a CuO-activated hypohalous acid, which is adsorbed on the CuO surface. No periodate could be measured in filtered solutions because it was mainly adsorbed to CuO. The adsorbed periodate was identified by scanning electron microscopy plus energy dispersive spectroscopy and X-ray photoelectron spectroscopy.