WorldWideScience

Sample records for oxide nanocluster drivenby

  1. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  2. Iron/iron oxide core-shell nanoclusters for biomedical applications

    International Nuclear Information System (INIS)

    Qiang You; Antony, Jiji; Sharma, Amit; Nutting, Joseph; Sikes, Daniel; Meyer, Daniel

    2006-01-01

    Biocompatible magnetic nanoparticles have been found promising in several biomedical applications for tagging, imaging, sensing and separation in recent years. Most magnetic particles or beads currently used in biomedical applications are based on ferromagnetic iron oxides with very low specific magnetic moments of about 20-30 emu/g. Here we report a new approach to synthesize monodispersed core-shell nanostructured clusters with high specific magnetic moments above 200 emu/g. Iron nanoclusters with monodispersive size of diameters from 2 nm to 100 nm are produced by our newly developed nanocluster source and go to a deposition chamber, where a chemical reaction starts, and the nanoclusters are coated with iron oxides. HRTEM Images show the coatings are very uniform and stable. The core-shell nanoclusters are superparamagnetic at room temperature for sizes less than 15 nm, and then become ferromagnetic when the cluster size increases. The specific magnetic moment of core-shell nanoclusters is size dependent, and increases rapidly from about 80 emu/g at the cluster size of around 3 nm to over 200 emu/g up to the size of 100 nm. The use of high magnetic moment nanoclusters for biomedical applications could dramatically enhance the contrast for MRI, reduce the concentration of magnetic particle needs for cell separation, or make drug delivery possible with much lower magnetic field gradients

  3. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, Kei; Yanagida, Shozo [Osaka Univ. (Japan). Graduate School of Engineering; Capel, M. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1997-06-01

    The authors have prepared and characterized photosensitized zinc oxide (ZnO) nanoclusters, dispersed in methanol, using carboxylated coumarin dyes for surface adsorption. Femtosecond time-resolved emission spectroscopy allows the authors to measure the photo-induced charge carrier injection rate constant from the adsorbed photosensitizer to the n-type semiconductor nanocluster. These results are compared with other photosensitized semiconductors.

  4. Relaxation path of metastable nanoclusters in oxide dispersion strengthened materials

    Energy Technology Data Exchange (ETDEWEB)

    Ribis, J., E-mail: joel.ribis@cea.fr [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Thual, M.A. [LLB, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette (France); Guilbert, T.; Carlan, Y. de [DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legris, A. [UMET, CNRS/UMR 8207, Bât. C6, Univ. Lille 1, 59655 Villeneuve d’Ascq (France)

    2017-02-15

    ODS steels are a promising class of structural materials for sodium cooled fast reactor application. The ultra-high density of the strengthening nanoclusters dispersed within the ferritic matrix is responsible of the excellent creep properties of the alloy. Fine characterization of the nanoclusters has been conducted on a Fe-14Cr-0.3Ti-0.3Y{sub 2}O{sub 3} ODS material using High Resolution and Energy Filtered Transmission Electron Microscopy. The nanoclusters exhibit a cubic symmetry possibly identified as f.c.c and display a non-equilibrium YTiCrO chemical composition thought to be stabilized by a vacancy supersaturation. These nanoclusters undergo relaxation towards the Y{sub 2}Ti{sub 2}O{sub 7}-like state as they grow. A Cr shell is observed around the relaxed nano-oxides, this size-dependent shell may form after the release of Cr by the particles. The relaxation energy barrier appears to be higher for the smaller particles probably owing to a volume/surface ratio effect in reason to the full coherency of the nanoclusters. - Highlights: • The nanoclusters display a f.c.c. cubic symmetry and a non-equilibrium YTiCrO chemical composition. • During thermal annealing the coherent nanocluster transform into semi-coherent pyrochlore particles. • A Cr ring is observed around the relaxed pyrochlore type particles.

  5. Layered double hydroxide supported gold nanoclusters by glutathione-capped Au nanoclusters precursor method for highly efficient aerobic oxidation of alcohols

    Science.gov (United States)

    Li, Lun; Dou, Liguang; Zhang, Hui

    2014-03-01

    M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity

  6. Enhanced electrochemical water oxidation: the impact of nanoclusters and nanocavities

    NARCIS (Netherlands)

    Zhang, X.; Cao, C.; Bieberle, A.

    2017-01-01

    The structures of transition metal surfaces and metal oxides are commonly believed to have a significant effect on the catalytic reactions. Density functional theory calculations are therefore used in this study to investigate the oxygen evolution reaction (OER) over nanostructured, i.e. nanocluster

  7. Gold nanoclusters confined in a supercage of Y zeolite for aerobic oxidation of HMF under mild conditions.

    Science.gov (United States)

    Cai, Jiaying; Ma, Hong; Zhang, Junjie; Song, Qi; Du, Zhongtian; Huang, Yizheng; Xu, Jie

    2013-10-11

    Au nanoclusters with an average size of approximately 1 nm size supported on HY zeolite exhibit a superior catalytic performance for the selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furandicarboxylic acid (FDCA). It achieved >99 % yield of 2,5-furandicarboxylic acid in water under mild conditions (60 °C, 0.3 MPa oxygen), which is much higher than that of Au supported on metal oxides/hydroxide (TiO2 , CeO2 , and Mg(OH)2 ) and channel-type zeolites (ZSM-5 and H-MOR). Detailed characterizations, such as X-ray diffraction, transmission electron microscopy, N2 -physisorption, and H2 -temperature-programmed reduction (TPR), revealed that the Au nanoclusters are well encapsulated in the HY zeolite supercage, which is considered to restrict and avoid further growing of the Au nanoclusters into large particles. The acidic hydroxyl groups of the supercage were proven to be responsible for the formation and stabilization of the gold nanoclusters. Moreover, the interaction between the hydroxyl groups in the supercage and the Au nanoclusters leads to electronic modification of the Au nanoparticles, which is supposed to contribute to the high efficiency in the catalytic oxidation of HMF to FDCA. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Platinum nano-cluster thin film formed on glassy carbon and the application for methanol oxidation

    International Nuclear Information System (INIS)

    Chang, Gang; Oyama, Munetaka; Hirao, Kazuyuki

    2007-01-01

    As an interesting platinum nanostructured material, a Pt nano-cluster film (PtNCF) attached on glassy carbon (GC) is reported. Through the reduction of PtCl 4 2- by ascorbic acid in the presence of GC substrate, a Pt thin continuous film composed of small nano-clusters which had a further agglomerated nanostructure of small grains could be attached on the GC surface. It was found that the electrocatalytic ability of PtNCF for the methanol oxidation was apparently higher than those of the Pt nano-clusters dispersedly attached on GC or indium in oxides. In addition, the electrocatalytic performance of PtNCF per Pt amount was superior to that of Pt black on GC. These results indicate that, in spite of the continuous nanostructures, nano-grains of PtNCF worked effectively for the catalytic electrolysis. The present PtNCF can be regarded as an interesting thin film material, which can be easily prepared by one-step chemical reduction

  9. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    Science.gov (United States)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  10. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    International Nuclear Information System (INIS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; Carlan, Y. de; Legris, A.

    2015-01-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe–Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  11. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels

    International Nuclear Information System (INIS)

    Certain, Alicia G.; Kuchibhatla, Satyanarayana; Shutthanandan, V.; Allen, T. R.

    2013-01-01

    Nanostructured oxide dispersion strengthened (ODS) steels are considered candidates for nuclear fission and fusion applications at high temperature and dose. The complex oxide nanoclusters in these alloys provide high-temperature strength and are expected to afford better radiation resistance. Proton, heavy ion, and neutron irradiations have been performed to evaluate cluster stability in 14YWT and 9CrODS steel under a range of irradiation conditions. Energy-filtered transmission electron microscopy and atom probe tomography were used in this work to analyze the evolution of the oxide population.

  12. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    Science.gov (United States)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  13. Reductive Deprotection of Monolayer Protected Nanoclusters: An Efficient Route to Supported Ultrasmall Au Nanocatalysts for Selective Oxidation

    Czech Academy of Sciences Publication Activity Database

    Das, S.; Goswami, A.; Hesari, M.; Al-Sharab, J. F.; Mikmeková, Eliška; Maran, F.; Asefa, T.

    2014-01-01

    Roč. 10, č. 8 (2014), s. 1473-1478 ISSN 1613-6810 R&D Projects: GA MŠk(CZ) LO1212 Keywords : gold nanoclusters * selective oxidation * heterogeneous nanocatalysis * styrene oxidation * borohydride reduction Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 8.368, year: 2014

  14. Faceted titania nanocrystals doped with indium oxide nanoclusters as a superior candidate for sacrificial hydrogen evolution without any noble-metal cocatalyst under solar irradiation.

    Science.gov (United States)

    Amoli, Vipin; Sibi, Malayil Gopalan; Banerjee, Biplab; Anand, Mohit; Maurya, Abhayankar; Farooqui, Saleem Akhtar; Bhaumik, Asim; Sinha, Anil Kumar

    2015-01-14

    Development of unique nanoheterostructures consisting of indium oxide nanoclusters like species doped on the TiO2 nanocrystals surfaces with {101} and {001} exposed facets, resulted in unprecedented sacrificial hydrogen production (5.3 mmol h(-1) g(-1)) from water using methanol as a sacrificial agent, under visible light LED source and AM 1.5G solar simulator (10.3 mmol h(-1) g(-1)), which is the highest H2 production rate ever reported for titania based photocatalysts, without using any noble metal cocatalyst. X-ray photoelectron spectroscopy (XPS) analysis of the nanostructures reveals the presence of Ti-O-In and In-O-In like species on the surface of nanostructures. Electron energy-loss spectroscopy (EELS) elemental mapping and EDX spectroscopy techniques combined with transmission electron microscope evidenced the existence of nanoheterostructures. XPS, EELS, EDX, and HAADF-STEM tools collectively suggest the presence of indium oxide nanoclusters like species on the surface of TiO2 nanostructures. These indium oxide nanocluster doped TiO2 (In2O3/T{001}) single crystals with {101} and {001} exposed facets exhibited 1.3 times higher visible light photocatalytic H2 production than indium oxide nanocluster doped TiO2 nanocrystals with only {101}facets (In2O3/T{101}) exposed. The remarkable photocatalytic activity of the obtained nanoheterostructures is attributed to the combined synergetic effect of indium oxide nanoclusters interacting with the titania surface, enhanced visible light response, high crystallinity, and unique structural features.

  15. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    Science.gov (United States)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  16. In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters.

    Science.gov (United States)

    Lai, Lanmei; Zhao, Chunqiu; Su, Meina; Li, Xiaoqi; Liu, Xiaoli; Jiang, Hui; Amatore, Christian; Wang, Xuemei

    2016-07-21

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease which is difficult to cure. When Alzheimer's disease occurs, the level of zinc ions in the brain changes, and the relevant amount of zinc ions continue decreasing in the cerebrospinal fluid and plasma of Alzheimer's patients with disease exacerbation. In view of these considerations, we have explored a new strategy for the in vivo rapid fluorescence imaging of Alzheimer's disease through target bio-labeling of zinc oxide nanoclusters which were biosynthesized in vivo in the Alzheimer's brain via intravenous injection of zinc gluconate solution. By using three-month-old and six-month-old Alzheimer's model mice as models, our observations demonstrate that biocompatible zinc ions could pass through the blood-brain barrier of the Alzheimer's disease mice and generate fluorescent zinc oxide nanoclusters (ZnO NCs) through biosynthesis, and then the bio-synthesized ZnO NCs could readily accumulate in situ on the hippocampus specific region for the in vivo fluorescent labeling of the affected sites. This study provides a new way for the rapid diagnosis of Alzheimer's disease and may have promising prospects in the effective diagnosis of Alzheimer's disease.

  17. Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Lepeshkin, Sergey; Baturin, Vladimir; Tikhonov, Evgeny; Matsko, Nikita; Uspenskii, Yurii; Naumova, Anastasia; Feya, Oleg; Schoonen, Martin A.; Oganov, Artem R.

    2016-01-01

    Oxidation of silicon nanoclusters depending on the temperature and oxygen pressure is explored from first principles using the evolutionary algorithm, and structural and thermodynamic analysis. From our calculations of 90 SinOm clusters we found that under normal conditions oxidation does not stop at the stoichiometric SiO2 composition, as it does in bulk silicon, but goes further placing extra oxygen atoms on the cluster surface. These extra atoms are responsible for light emission, relevant to reactive oxygen species and many of them are magnetic. We argue that the super-oxidation effect is size-independent and discuss its relevance to nanotechnology and miscellaneous applications, including biomedical ones.

  18. Dynamics of Oxidation of Aluminum Nanoclusters using Variable Charge Molecular-Dynamics Simulations on Parallel Computers

    Science.gov (United States)

    Campbell, Timothy; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Ogata, Shuji; Rodgers, Stephen

    1999-06-01

    Oxidation of aluminum nanoclusters is investigated with a parallel molecular-dynamics approach based on dynamic charge transfer among atoms. Structural and dynamic correlations reveal that significant charge transfer gives rise to large negative pressure in the oxide which dominates the positive pressure due to steric forces. As a result, aluminum moves outward and oxygen moves towards the interior of the cluster with the aluminum diffusivity 60% higher than that of oxygen. A stable 40 Å thick amorphous oxide is formed; this is in excellent agreement with experiments.

  19. Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level

    Directory of Open Access Journals (Sweden)

    Athanasia Kostopoulou

    2018-05-01

    Full Text Available Advances in surfactant-assisted chemical approaches have led the way for the exploitation of nanoscale inorganic particles in medical diagnosis and treatment. In this field, magnetically-driven multimodal nanotools that perform both detection and therapy, well-designed in size, shape and composition, are highly advantageous. Such a theranostic material—which entails the controlled assembly of smaller (maghemite nanocrystals in a secondary motif that is highly dispersible in aqueous media—is discussed here. These surface functionalized, pomegranate-like ferrimagnetic nanoclusters (40–85 nm are made of nanocrystal subunits that show a remarkable magnetic resonance imaging contrast efficiency, which is better than that of the superparamagnetic contrast agent Endorem©. Going beyond this attribute and with their demonstrated low cytotoxicity in hand, we examine the critical interaction of such nanoprobes with cells at different physiological environments. The time-dependent in vivo scintigraphic imaging of mice experimental models, combined with a biodistribution study, revealed the accumulation of nanoclusters in the spleen and liver. Moreover, the in vitro proliferation of spleen cells and cytokine production witnessed a size-selective regulation of immune system cells, inferring that smaller clusters induce mainly inflammatory activities, while larger ones induce anti-inflammatory actions. The preliminary findings corroborate that the modular chemistry of magnetic iron oxide nanoclusters stimulates unexplored pathways that could be driven to alter their function in favor of healthcare.

  20. Iron Oxide Colloidal Nanoclusters as Theranostic Vehicles and Their Interactions at the Cellular Level.

    Science.gov (United States)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Fragogeorgi, Eirini; Anthousi, Amalia; Manna, Liberato; Begin-Colin, Sylvie; Billotey, Claire; Ranella, Anthi; Loudos, George; Athanassakis, Irene; Lappas, Alexandros

    2018-05-09

    Advances in surfactant-assisted chemical approaches have led the way for the exploitation of nanoscale inorganic particles in medical diagnosis and treatment. In this field, magnetically-driven multimodal nanotools that perform both detection and therapy, well-designed in size, shape and composition, are highly advantageous. Such a theranostic material—which entails the controlled assembly of smaller (maghemite) nanocrystals in a secondary motif that is highly dispersible in aqueous media—is discussed here. These surface functionalized, pomegranate-like ferrimagnetic nanoclusters (40⁻85 nm) are made of nanocrystal subunits that show a remarkable magnetic resonance imaging contrast efficiency, which is better than that of the superparamagnetic contrast agent Endorem © . Going beyond this attribute and with their demonstrated low cytotoxicity in hand, we examine the critical interaction of such nanoprobes with cells at different physiological environments. The time-dependent in vivo scintigraphic imaging of mice experimental models, combined with a biodistribution study, revealed the accumulation of nanoclusters in the spleen and liver. Moreover, the in vitro proliferation of spleen cells and cytokine production witnessed a size-selective regulation of immune system cells, inferring that smaller clusters induce mainly inflammatory activities, while larger ones induce anti-inflammatory actions. The preliminary findings corroborate that the modular chemistry of magnetic iron oxide nanoclusters stimulates unexplored pathways that could be driven to alter their function in favor of healthcare.

  1. Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2001-02-01

    The electroactivity of surfactant-templated mesoporous yttria stabilized zirconia, containing nanoclusters of platinum or nickel oxide, is explored by alternating current (AC) complex impedance spectroscopy. The observed oxygen ion and mixed oxygen ion-electron charge-transport behavior for these materials, compared to the sintered-densified non-porous crystalline versions, is ascribed to the unique integration of mesoporosity and nanocrystallinity within the binary and ternary solid solution microstructure. These attributes inspire interest in this new class of materials as candidates for the development of improved performance solid oxide fuel cell electrodes. (orig.)

  2. Passivation of cobalt nanocluster assembled thin films with hydrogen

    DEFF Research Database (Denmark)

    Romero, C.P.; Volodin, A.; Di Vece, M.

    2012-01-01

    The effect of hydrogen passivation on bare and Pd capped cobalt nanocluster assembled thin films was studied with Rutherford backscattering spectrometry (RBS) and magnetic force microscopy (MFM) after exposure to ambient conditions. The nanoclusters are produced in a laser vaporization cluster...... source in which the helium carrier gas was mixed with hydrogen. RBS revealed that oxidation of the Co nanoclusters is considerably reduced by the presence of hydrogen during cluster formation. The capping did not modify the influence of the passivation. The hydrogen passivation method is especially...... effective in cases when capping of the films is not desirable, for example for magnetic studies. Clear differences in the magnetic domain structures between hydrogen passivated and non-passivated Co nanocluster films were demonstrated by MFM and are attributed to a difference in inter-cluster magnetic...

  3. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    International Nuclear Information System (INIS)

    Torres-Torres, C.; García-Cruz, M.L.; Castañeda, L.; Rangel Rojo, R.; Tamayo-Rivera, L.; Maldonado, A.; Avendaño-Alejo, M.

    2012-01-01

    Chromium doped zinc oxide thin solid films were deposited on soda–lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol–gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: ► Enhancement in photoluminescence for chromium doped zinc oxide films is presented. ► A strong and ultrafast optical Kerr effect seems to result from quantum confinement. ► Photoconductive properties for optical and optoelectronic functions were observed.

  4. Photoconductivity, photoluminescence and optical Kerr nonlinear effects in zinc oxide films containing chromium nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Torres, C., E-mail: crstorres@yahoo.com.mx [Seccion de Estudios de Posgrado e Investigacion, ESIME-Z, Instituto Politecnico Nacional, Mexico, DF 07738 (Mexico); Garcia-Cruz, M.L. [Centro de Investigacion en Dispositivos Semiconductores, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Castaneda, L., E-mail: luisca@sirio.ifuap.buap.mx [Instituto de Fisica, Benemerita Universidad Autonoma de Puebla, A. P. J-48, Puebla 72570, Mexico (Mexico); Rangel Rojo, R. [CICESE/Depto. de Optica, A. P. 360, Ensenada, BC 22860 (Mexico); Tamayo-Rivera, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, DF 01000 (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN-SEES, A. P. 14740, Mexico DF 07000 (Mexico); Avendano-Alejo, M., E-mail: imax_aa@yahoo.com.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, A. P. 70-186, 04510, DF (Mexico); and others

    2012-04-15

    Chromium doped zinc oxide thin solid films were deposited on soda-lime glass substrates. The photoconductivity of the material and its influence on the optical behavior was evaluated. A non-alkoxide sol-gel synthesis approach was used for the preparation of the samples. An enhancement of the photoluminescence response exhibited by the resulting photoconductive films with embedded chromium nanoclusters is presented. The modification in the photoconduction induced by a 445 nm wavelength was measured and then associated with the participation of the optical absorptive response. In order to investigate the third order optical nonlinearities of the samples, a standard time-resolved Optical Kerr Gate configuration with 80 fs pulses at 830 nm was used and a quasi-instantaneous pure electronic nonlinearity without the contribution of nonlinear optical absorption was observed. We estimate that from the inclusion of Cr nanoclusters into the sample results a strong optical Kerr effect originated by quantum confinement. The large photoluminescence response and the important refractive nonlinearity of the photoconductive samples seem to promise potential applications for the development of multifunctional all-optical nanodevices. - Highlights: Black-Right-Pointing-Pointer Enhancement in photoluminescence for chromium doped zinc oxide films is presented. Black-Right-Pointing-Pointer A strong and ultrafast optical Kerr effect seems to result from quantum confinement. Black-Right-Pointing-Pointer Photoconductive properties for optical and optoelectronic functions were observed.

  5. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  6. Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy

    Science.gov (United States)

    Kostopoulou, Athanasia; Brintakis, Konstantinos; Lascialfari, Alessandro; Angelakeris, Mavroeidis; Vasilakaki, Marianna; Trohidou, Kalliopi; Douvalis, Alexios P.; Psycharakis, Stylianos; Ranella, Anthi; Manna, Liberato; Lappas, Alexandros

    2014-03-01

    Research on magnetic nanocrystals attracts wide-spread interest because of their challenging fundamental properties, but it is also driven by problems of practical importance to the society, ranging from electronics (e.g. magnetic recording) to biomedicine. In that respect, iron oxides are model functional materials as they adopt a variety of oxidation states and coordinations that facilitate their use. We show that a promising way to engineer further their technological potential in diagnosis and therapy is the assembly of primary nanocrystals into larger colloidal entities, possibly with increased structural complexity. In this context, elevated-temperature nanochemistry (c.f. based on a polyol approach) permitted us to develop size-tunable, low-cytotoxicity iron-oxide nanoclusters, entailing iso-oriented nanocrystals, with enhanced magnetization. Experimental (magnetometry, electron microscopy, Mössbauer and NMR spectroscopies) results supported by Monte Carlo simulations are reviewed to show that such assemblies of surface-functionalized iron oxide nanocrystals have a strong potential for innovation. The clusters' optimized magnetic anisotropy (including microscopic surface spin disorder) and weak ferrimagnetism at room temperature, while they do not undermine colloidal stability, endow them a profound advantage as efficient MRI contrast agents and hyperthermic mediators with important biomedical potential.

  7. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles.

    Science.gov (United States)

    Liu, Lichen; Corma, Avelino

    2018-05-23

    Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal-support interaction, and metal-reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles) in a unifying manner.

  8. Cluster-to-cluster transformation among Au6, Au8 and Au11 nanoclusters.

    Science.gov (United States)

    Ren, Xiuqing; Fu, Junhong; Lin, Xinzhang; Fu, Xuemei; Yan, Jinghui; Wu, Ren'an; Liu, Chao; Huang, Jiahui

    2018-05-22

    We present the cluster-to-cluster transformations among three gold nanoclusters, [Au6(dppp)4]2+ (Au6), [Au8(dppp)4Cl2]2+ (Au8) and [Au11(dppp)5]3+ (Au11). The conversion process follows a rule that states that the transformation of a small cluster to a large cluster is achieved through an oxidation process with an oxidizing agent (H2O2) or with heating, while the conversion of a large cluster to a small one occurs through a reduction process with a reducing agent (NaBH4). All the reactions were monitored using UV-Vis spectroscopy and ESI-MS. This work may provide an alternative approach to the synthesis of novel gold nanoclusters and a further understanding of the structural transformation relationship of gold nanoclusters.

  9. The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes

    Science.gov (United States)

    Dabaghmanesh, Samira; Neek-Amal, Mehdi; Partoens, Bart; Neyts, Erik C.

    2017-11-01

    Carbon supported metal oxide nanoparticles hold promise for various future applications in diverse areas including spintronics, catalysis and biomedicine. These applications, however, typically depend on the structure and morphology of the nanoparticles. In this contribution, we employ classical molecular dynamic simulations based on a recently developed force field to study the structural properties of Cr2O3 nanoclusters over graphene and carbon nanotubes. We observe that Cr2O3 nanoclusters tend to aggregate over both freestanding graphene and carbon nanotubes and form larger nanoclusters. These large nanoclusters are characterized by their worm-like shape with a lattice constant similar to that of bulk Cr2O3. We also investigate the structural deformation induced in graphene due to the presence of Cr2O3 nanoclusters.

  10. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    Science.gov (United States)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for

  11. Deposition and characterization of Pt nanocluster films by means of gas aggregation cluster source

    Energy Technology Data Exchange (ETDEWEB)

    Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Prokeš, Jan; Polonskyi, Oleksandr; Čechvala, Juraj; Kousal, Jaroslav; Pešička, Josef; Hanuš, Jan; Biederman, Hynek

    2014-11-28

    In this study we report on the deposition of Pt nanocluster films prepared by gas aggregation source that was operated with argon as working gas. The aim of this study was optimization of deposition process as well as determination of properties of deposited nanocluster films and their temporal stability. It was found that the production of Pt nanoclusters reached maximum value for pressure of 100 Pa and increases monotonously with magnetron current. The deposition rate at optimized deposition conditions was 0.7 nm of the Pt nanocluster film per second. Deposited films were porous and composed of 4 nm Pt nanoclusters. The nanoclusters were metallic and no sights of their oxidation were observed after 1 year on open air as witnessed by X-ray photoelectron spectroscopy. Regarding the electrical properties, a dramatic decrease of the resistivity was observed with increasing amount of deposited nanoclusters. This decrease saturated for the films approximately 50 nm thick. Such behavior indicates transition between different mechanisms of electrical conductivity: charge hopping for thin discontinuous films and current conduction through conducting path formed when higher amount of nanoclusters is deposited. Different mechanisms of electrical conduction for thin and thick layers of Pt were confirmed by subsequent investigation of temperature dependence of resistivity. In addition, no changes in resistivity were observed after one year on open air that confirms stability of produced Pt nanocluster films. - Highlights: • Pt nanocluster films were deposited by gas aggregation nanocluster source. • Conditions leading to effective deposition of Pt nanocluster films were found. • Deposited nanocluster films have good temporal stability. • Electrical properties of Pt films were found to depend on their thickness.

  12. Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters

    International Nuclear Information System (INIS)

    Mehrmohammadi, M; Qu, M; Emelianov, S Y; Yoon, K Y; Johnston, K P

    2011-01-01

    Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.

  13. Nanocluster production for solar cell applications

    International Nuclear Information System (INIS)

    Al Dosari, Haila M.; Ayesh, Ahmad I.

    2013-01-01

    This research focuses on the fabrication and characterization of silver (Ag) and silicon (Si) nanoclusters that might be used for solar cell applications. Silver and silicon nanoclusters have been synthesized by means of dc magnetron sputtering and inert gas condensation inside an ultra-high vacuum compatible system. We have found that nanocluster size distributions can be tuned by various source parameters, such as the sputtering discharge power, flow rate of argon inert gas, and aggregation length. Quadrupole mass filter and transmission electron microscopy were used to evaluate the size distribution of Ag and Si nanoclusters. Ag nanoclusters with average size in the range of 3.6–8.3 nm were synthesized (herein size refers to the nanocluster diameter), whereas Si nanoclusters' average size was controlled to range between 2.9 and 7.4 nm by controlling the source parameters. This work illustrates the ability of controlling the Si and Ag nanoclusters' sizes by proper optimization of the operation conditions. By controlling nanoclusters' sizes, one can alter their surface properties to suit the need to enhance solar cell efficiency. Herein, Ag nanoclusters were deposited on commercial polycrystalline solar cells. Short circuit current (I SC ), open circuit voltage (V OC ), fill factor, and efficiency (η) were obtained under light source with an intensity of 30 mW/cm 2 . A 22.7% enhancement in solar cell efficiency could be measured after deposition of Ag nanoclusters, which demonstrates that Ag nanoclusters generated in this work are useful to enhance solar cell efficiency

  14. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    Directory of Open Access Journals (Sweden)

    Jiji Antony

    2006-01-01

    Full Text Available Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7∘C. Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM. The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET process are size-dependent and compared with the calculated data.

  15. Atomically Monodisperse Nickel Nanoclusters as Highly Active Electrocatalysts for Water Oxidation

    KAUST Repository

    Joya, Khurram

    2016-04-08

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 and initiate the oxygen evolution at an amazingly low overpotential of ~1.51 V (vs RHE; η ≈ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm–2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec–1 is observed using Ni4(PET)8. These results are comparable to the state-of-the art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm–2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.

  16. Polyoxotungstate nanoclusters supported on silica as an efficient solid-phase microextraction fiber of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Abolghasemi, Mir Mahdi; Yousefi, Vahid; Rafiee, Ezzat

    2014-01-01

    A highly porous silica-supported tungstophosphoric acid (PW) nanocluster was prepared for use in solid-phase microextraction (SPME) of polycyclic aromatic hydrocarbons (PAHs). The PWs represent a class of discrete transition metal-oxide nanoclusters and their structures resemble discrete fragments of metal-oxide structures of definite size and shape. Transition metal-oxide nanoclusters display large structural diversity, and their monodisperse sizes can be tuned from several Ångstroms up to 10 nm. The highly porous silica-supported tungstophosphoric acid nanocluster material is found to be capable of efficiently extracting PAHs from aqueous sample solutions. The nanomaterial was immobilized on a stainless steel wire for fabrication of the SPME fiber. Following thermal desorption, the PAHs were quantified by GC-MS. Analytical merits include limits of detection that range from 0.02 to 0.1 pg mL −1 and a dynamic range as wide as from 0.001 to 100 ng mL −1 . Under optimum conditions, the repeatability for one fiber (n = 3), expressed as the relative standard deviation, is between 4.3 % and 8.6 %. The method is simple, rapid, and inexpensive. The thermal stability of the fiber and the high relative recovery make this method superior to conventional methods of extraction. (author)

  17. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO2–Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors

    International Nuclear Information System (INIS)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-01-01

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO 2 ) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO 2 and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO 2 –Pt) nanowire–nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO 2 sensors. The GaN/TiO 2 NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO 2 sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO 2 –Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol −1 (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol −1 (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential

  18. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo, E-mail: wushuo@dlut.edu.cn; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-04

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H{sub 2}O{sub 2}. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL{sup −1} to 100 ng mL{sup −1} and a low limit of detection of 0.037 pg mL{sup −1}. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. - Highlights: • An enzyme-free electrochemical immunosensor is reported for detecting proteins. • A silver nanocluster/graphene oxide composite is synthesized as nanotag. • The nanotags exhibit highly catalytic activity to the electro-reduction of H{sub 2}O{sub 2}. • The as-fabricated immunosensor could detect protein in serum samples.

  19. Formation and growth of embedded indium nanoclusters by In2+ implantation in silica

    International Nuclear Information System (INIS)

    Santhana Raman, P.; Nair, K.G.M.; Kesavamoorthy, R.; Panigrahi, B.K.; Dhara, S.; Ravichandran, V.

    2007-01-01

    Indium nanoclusters are synthesized in an amorphous silica matrix using an ion-implantation technique. Indium ions (In 2+ ) with energy of 890 keV are implanted on silica to fluences in the range of 3 x 10 16 -3 x 10 17 cm -2 . The formation of indium nanoclusters is confirmed by optical absorption spectrometry and glancing incidence X-ray diffraction studies. A low frequency Raman scattering technique is used to study the growth of embedded indium nanoclusters in the silica matrix as a function of fluence and post-implantation annealing duration. Rutherford backscattering spectrometry studies show the surface segregation of implanted indium. Photoluminescence studies indicate the formation of a small quantity of indium oxide phase in the ion-implanted samples. (orig.)

  20. Discovery of a metalloenzyme-like cooperative catalytic system of metal nanoclusters and catechol derivatives for the aerobic oxidation of amines.

    Science.gov (United States)

    Yuan, Hao; Yoo, Woo-Jin; Miyamura, Hiroyuki; Kobayashi, Shū

    2012-08-29

    We have discovered a new class of cooperative catalytic system, consisting of heterogeneous polymer-immobilized bimetallic Pt/Ir alloyed nanoclusters (NCs) and 4-tert-butylcatechol, for the aerobic oxidation of amines to imines under ambient conditions. After optimization, the desired imines were obtained in good to excellent yields with broad substrate scope. The reaction rate was determined to be first-order with respect to the substrate and catechol and zero-order for the alloyed Pt/Ir NC catalyst. Control studies revealed that both the heterogeneous NC catalyst and 4-tert-butylcatechol are essential and act cooperatively to facilitate the aerobic oxidation under mild conditions.

  1. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhibo [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Liu, Ning [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chen, Biaohua [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Li, Jianwei [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2018-01-25

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology and exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further

  2. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Science.gov (United States)

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  3. Possibility of superradiance by magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V I; Yukalova, E P

    2011-01-01

    The possibility of realizing spin superradiance by an assembly of magnetic nanoclusters is analyzed. The known obstacles for realizing such a coherent radiation by magnetic nanoclusters are their large magnetic anisotropy, strong dephasing dipole interactions, and an essential nonuniformity of their sizes. In order to give a persuasive conclusion, a microscopic theory is developed, providing an accurate description of nanocluster spin dynamics. It is shown that, despite the obstacles, it is feasible to organize such a setup that magnetic nanoclusters would produce strong superradiant emission

  4. Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution

    International Nuclear Information System (INIS)

    Zhang, Jian Rong; Zeng, Ai Lian; Luo, Hong Qun; Li, Nian Bing

    2016-01-01

    Highlights: • Fluorescent Ag nanoclusters were first applied to Cr(VI) detection. • The proposed method is simple, rapid, and environmentally friendly. • The sensor shows a wide linear range, low detection limit, and good selectivity. • The system can also be used for the indirect assay of total chromium and Cr(III). • The analyses in real water samples are satisfactory. - Abstract: In this work, a simple and sensitive Cr(VI) sensor is proposed based on fluorescent polyethyleneimine-stabilized Ag nanoclusters, which allows the determination over a wide concentration range of 0.1 nM–3.0 μM and with a detection limit as low as 0.04 nΜ and a good selectivity. The quenching mechanism was discussed in terms of the absorption and fluorescence spectra, suggesting that Cr(VI) is connected to Ag nanoclusters by hydrogen bond between the oxygen atom at the vertex of tetrahedron structure of Cr(VI) and the amino nitrogen of polyethyleneimine that surrounded Ag nanoclusters and electron transfer from Ag nanoclusters to highly electron-deficient Cr(VI) results in fluorescence quenching. Despite the failure to quench the fluorescence efficiently, Cr(III) can also be measured using the proposed Ag nanoclusters by being oxidized to Cr(VI) in alkaline solution (pH ∼9) containing H 2 O 2 . Therefore, our approach could be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution. In addition, Cr(VI) analysis in real water samples were satisfactory, indicating this method could be practically promising for chromium measurements.

  5. The role of minor alloying elements on the stability and dispersion of yttria nanoclusters in nanostructured ferritic alloys: An ab initio study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharat; Sundar, C.S.; Raj, Baldev

    2010-01-01

    Nanostructured ferritic alloys derive their strength from the dispersion of oxide nanoclusters in the ferritic matrix. We have explored the relative role of minor alloying elements like Ti and Zr on the stability of nanoclusters of vacancy-Y-Ti-O by density functional theory calculations and shown that the binding energy of these clusters increases when we replace Ti with Zr. This could imply faster nucleation of the nanoclusters which, in turn, may lead to finer dispersion of nanoclusters resulting in improved performance of ferritic alloys. Further, we show a core/shell structure for these nanoclusters in which the core is enriched in Y, O, Ti while the shell is enriched in Cr.

  6. The comparison of microstructure and nanocluster evolution in proton and neutron irradiated Fe–9%Cr ODS steel to 3 dpa at 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, M.J., E-mail: matthewswenson1@u.boisestate.edu; Wharry, J.P.

    2015-12-15

    A model Fe–9%Cr oxide dispersion strengthened (ODS) steel was irradiated with protons or neutrons to a dose of 3 displacements per atom (dpa) at a temperature of 500 °C, enabling a direct comparison of ion to neutron irradiation effects at otherwise fixed irradiation conditions. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography including cluster analysis. Both proton and neutron irradiations produced a comparable void and dislocation loop microstructure. However, the irradiation response of the Ti–Y–O oxide nanoclusters varied. Oxides remained stable under proton irradiation, but exhibited dissolution and an increase in Y:Ti composition ratio under neutron irradiation. Both proton and neutron irradiation also induced varying extents of Si, Ni, and Mn clustering at existing oxide nanoclusters. Protons are able to reproduce the void and loop microstructure of neutron irradiation carried out to the same dose and temperature. However, since nanocluster evolution is controlled by both diffusion and ballistic impacts, protons are rendered unable to reproduce the nanocluster evolution of neutron irradiation at the same dose and temperature. - Highlights: • Fe–9% Cr ODS was irradiated with protons and neutrons to 3 dpa at 500 °C. • Dislocation loop size and density were similar upon proton and neutron irradiation. • Oxide nanocluster size and density decreased more with neutron irradiation. • Oxide Y:Ti ratio increased from 0.54 to 0.97 upon neutron irradiation. • Irradiation induced enrichment of Si, Mn, and Ni at oxide locations.

  7. Surface mediated assembly of small, metastable gold nanoclusters

    Science.gov (United States)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  8. Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution

    Science.gov (United States)

    Zhang, Jiao; Hao, Jinghao; Ma, Qianli; Li, Chuanqi; Liu, Yushan; Li, Baojun; Liu, Zhongyi

    2017-06-01

    Ruthenium/reduced graphene oxide nanocomposites (Ru/rGO NCs) were synthesized via an electrostatic self-assembly approach. Polyvinylpyrrolidone (PVP) stabilized and positively charged metallic ruthenium nanoclusters about 1.2 nm were synthesized and uniformly loaded onto negatively charged graphene oxide (GO) sheets via strong electrostatic interactions. The as-prepared Ru/rGO NCs exhibited superior performance in catalytic hydrolysis of sodium borohydride (NaBH4) to generate H2. The hydrogen generation rate was up to 14.87 L H2 min-1 gcat -1 at 318 K with relatively low activation energy of 38.12 kJ mol-1. Kinetics study confirmed that the hydrolysis of NaBH4 was first order with respect to concentration of catalysts. Besides, the conversion of NaBH4 remained at 97% and catalytic activity retained more than 70% after 5 reaction cycles at room temperature. These results suggested that the Ru/rGO NCs have a promising prospect in the field of clean energy.

  9. Positron confinement in embedded lithium nanoclusters

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  10. {Fe6O2}-Based Assembly of a Tetradecanuclear Iron Nanocluster

    Directory of Open Access Journals (Sweden)

    Svetlana G. Baca

    2011-01-01

    Full Text Available The tetradecanuclear FeIII pivalate nanocluster [Fe14O10(OH4(Piv18], comprising a new type of metal oxide framework, has been solvothermally synthesized from a hexanuclear iron pivalate precursor in dichlormethane/acetonitrile solution. Magnetic measurements indicate the presence of very strong antiferromagnetic interactions in the cluster core.

  11. Experimental measurements of U60 nanocluster stability in aqueous solution

    Science.gov (United States)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the

  12. Phenomenological model of nanocluster in polymer matrix

    International Nuclear Information System (INIS)

    Oksengendler, B.L.; Turaeva, N.N.; Azimov, J.; Rashidova, S.Sh.

    2010-01-01

    The phenomenological model of matrix nanoclusters is presented based on the Wood-Saxon potential used in nuclear physics. In frame of this model the following problems have been considered: calculation of width of diffusive layer between nanocluster and matrix, definition of Tamm surface electronic state taking into account the diffusive layer width, receiving the expression for specific magnetic moment of nanoclusters taking into account the interface width. (authors)

  13. Molecular interactions in particular Van der Waals nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Jungclas, Hartmut; Schmidt, Lothar [Marburg Univ. (Germany). Chemistry Dept.; Komarov, Viacheslav V.; Popova, Anna M. [Marburg Univ. (Germany). Chemistry Dept.; Lomonosov Moscow State Univ. (Russian Federation). Skobeltzin Inst. of Nuclear Physics

    2017-04-01

    A method is presented to analyse the interaction energies in a nanocluster, which is consisting of three neutral molecules bound by non-covalent long range Van der Waals forces. One of the molecules (M{sub 0}) in the nanocluster has a permanent dipole moment, whereas the two other molecules (M{sub 1} and M{sub 2}) are non-polar. Analytical expressions are obtained for the numerical calculation of the dispersion and induction energies of the molecules in the considered nanocluster. The repulsive forces at short intermolecular distances are taken into account by introduction of damping functions. Dispersion and induction energies are calculated for a nanocluster with a definite geometry, in which the polar molecule M{sub 0} is a linear hydrocarbon molecule C{sub 5}H{sub 10} and M{sub 1} and M{sub 2} are pyrene molecules. The calculations are done for fixed distances between the two pyrene molecules. The results show that the induction energies in the considered three-molecular nanocluster are comparable with the dispersion energies. Furthermore, the sum of induction energies in the substructure (M{sub 0}, M{sub 1}) of the considered nanocluster is much higher than the sum of induction energies in a two-molecular nanocluster with similar molecules (M{sub 0}, M{sub 1}) because of the absence of an electrostatic field in the latter case. This effect can be explained by the essential intermolecular induction in the three-molecular nanocluster.

  14. Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function▿

    Science.gov (United States)

    Plowman, Sarah J.; Ariotti, Nicholas; Goodall, Andrew; Parton, Robert G.; Hancock, John F.

    2008-01-01

    The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale enviroments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades. PMID:18458061

  15. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  16. Tailoring the magnetic properties of cobalt-ferrite nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Vega, A. Estrada de la; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; Durán-Guerrero, J. G.; Moreno Cortez, I. E.; Lucio-Porto, R.; González-González, V. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2016-01-15

    In this contribution, we report on the tuning of magnetic properties of cobalt-ferrite nanoclusters. The cobalt-ferrite nanoclusters were synthesized from a two-step approach that consists of the synthesis of cobalt-ferrite nanoparticles in organic media, followed by their dispersion into aqueous dissolution to form an oil-in-water emulsion. These emulsions were prepared at three different concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB), in order to control the size and clustering density of the nanoparticles in the nanoclusters. The synthesized samples were characterized by transmission electron microscopy and their related techniques, such as bright-field and Z-contrast imaging, electron diffraction and energy-dispersive X-ray spectrometry; as well as static magnetic measures. The experimental evidence indicates that the size, morphology, and nanoparticles clustering density in the nanoclusters is highly dependent of the cobalt-ferrite:CTAB molar ratio that is used in their synthesis. In addition, due to the clustering of the nanoparticles into the nanoclusters, their magnetic moments are blocked to relax cooperatively. Hence, the magnetic response of the nanoclusters can be tailored by controlling the size and nanoparticles clustering density.

  17. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You, E-mail: youqiang@uidaho.edu [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Dai, Qilin; Tang, Jinke [Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071 (United States); Bowden, Mark; Engelhard, Mark [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Wu, Yaqiao [Department of Materials Science and Engineering, Boise State University, Boise, Idaho 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, Idaho 83401 (United States)

    2013-11-11

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr{sub 2}O{sub 3} and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs.

  18. Fluorescent Pressure Response of Protein-Nanocluster Polymer Composites

    Science.gov (United States)

    2016-05-01

    composites as pressure sensitive indicators of brain damage. The PNC composites are made up of protein coated gold nanoclusters and a styrene-ethylene...enhancement of the BSA- protected gold nanoclusters and the corresponding conformational changes of protein, J Phys Chem C. 2013;117:639–647...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This research focuses on the uses of polymer gold nanocluster (PNC

  19. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    International Nuclear Information System (INIS)

    Kaur, Maninder; Qiang, You; Dai, Qilin; Tang, Jinke; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr ( 2 O 3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (∼25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of σ-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs

  20. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microwave-heating synthesis and sensing applications of bright gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    He, Ding-Fei; Xiang, Yang; Wang, Xu [Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yu, Xue-Feng, E-mail: yxf@whu.edu.cn [Department of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We establish a microwave-heating method to synthesize protein-stabilized Au nanoclusters. Black-Right-Pointing-Pointer The obtained Au nanoclusters show bright red fluorescence. Black-Right-Pointing-Pointer The Au nanoclusters can be used as efficient fluorescence probe for Cu{sup 2+} ion sensing. -- Abstract: A rapid microwave-heating method has been developed for the synthesis of bright Au nanoclusters by using bull serum albumin as the template in an aqueous environment. The reaction time needed is only 7.0 min, and the weight of the products at one batch can reach 15 g. The Au nanoclusters exhibit bright fluorescence at {approx}613 nm with quantum yield of {approx}6.0%. By adjusting the pH value, the products can be controlled to precipitate or re-disperse in aqueous solution. Furthermore, the Au nanoclusters have exhibited high sensitivity and selectivity in the determination of Cu{sup 2+} ions in water. These results suggest an efficient method for obtaining metal nanoclusters for the detection and sensing applications.

  2. Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters

    International Nuclear Information System (INIS)

    Mattei, G.; De Marchi, G.; Maurizio, C.; Mazzoldi, P.; Sada, C.; Bello, V.; Battaglin, G.

    2003-01-01

    A selective dealloying in bimetallic nanoclusters prepared by ion implantation has been found upon thermal annealing in oxidizing atmosphere or irradiation with light ions. In the first process, the incoming oxygen interacts preferentially with copper promoting Cu 2 O formation, therefore extracting copper from the alloy. In the second process the irradiation with Ne ions promotes a preferential extraction of Au from the alloy, resulting in the formation of Au-enriched 'satellite' nanoparticles around the original Au x Cu 1-x cluster

  3. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  4. Experimental measurements of U24Py nanocluster behavior in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Shannon L.; Szymanowski, Jennifer E.S.; Fein, Jeremy B. [Univ. of Notre Dame, IN (United States). Department of Civil and Environmental Engineering and Earth Sciences; Dembowski, Mateusz [Univ. of Notre Dame, IN (United States). Department of Chemistry and Biochemistry; Burns, Peter C. [Univ. of Notre Dame, IN (United States). Department of Civil and Environmental Engineering and Earth Sciences; Univ. of Notre Dame, IN (United States). Department of Chemistry and Biochemistry

    2016-07-01

    Uranyl peroxide nanoclusters may impact the mobility and partitioning of uranium at contaminated sites and could be used in the isolation of uranium during the reprocessing of nuclear waste. Their behavior in aqueous systems must be better understood to predict the environmental fate of uranyl peroxide nanoclusters and for their use in engineered systems. The aqueous stability of only one uranyl peroxide nanocluster, U60 (K{sub 16}Li{sub 44}[UO{sub 2}(O{sub 2})OH]{sub 60}), has been studied to date [Flynn, S. L., Szymanowski, J. E. S., Gao, Y., Liu, T., Burns, P. C., Fein, J. B.: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochemica et Cosmochimica Acta 156, 94-105 (2015)]. In this study, we measured the aqueous stability of a second uranyl peroxide nanocluster, U24Py (Na{sub 30}[(UO{sub 2}){sub 24}(O{sub 2}){sub 24}(HP{sub 2}O{sub 7}){sub 6}(H{sub 2}P{sub 2}O{sub 7}){sub 6}]), in batch systems as a function of time, pH, and nanocluster concentration, and then compared the aqueous behavior of U24Py to U60 to determine whether the size and morphology differences result in differences in their aqueous behaviors. Systems containing U24Py nanoclusters took over 30 days to achieve steady-state concentrations of monomeric U, Na, and P, illustrating slower reaction kinetics than parallel U60 systems. Furthermore, U24Py exhibited lower stability in solution than U60, with an average of 72% of the total mass in each nanocluster suspension being associated with the U24Py nanocluster, whereas 97% was associated with the U60 nanocluster in parallel experiments [Flynn, S. L., Szymanowski, J. E. S., Gao, Y., Liu, T., Burns, P. C., Fein, J. B.: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochemica et Cosmochimica Acta 156, 94-105 (2015)]. The measurements from the batch experiments were used to calculate ion activity product (IAP) values for the reaction between the U24Py nanocluster and its constituent monomeric

  5. Hydrophilic magnetic nanoclusters with thermo-responsive properties and their drug controlled release

    International Nuclear Information System (INIS)

    Meerod, Siraprapa; Rutnakornpituk, Boonjira; Wichai, Uthai; Rutnakornpituk, Metha

    2015-01-01

    Synthesis and drug controlled release properties of thermo-responsive magnetic nanoclusters grafted with poly(N-isopropylacrylamide) (poly(NIPAAm)) and poly(NIPAAm-co-poly(ethylene glycol) methyl ether methacrylate) (PEGMA) copolymers were described. These magnetic nanoclusters were synthesized via an in situ radical polymerization in the presence of acrylamide-grafted magnetic nanoparticles (MNPs). Poly(NIPAAm) provided thermo-responsive properties, while PEGMA played a role in good water dispersibility to the nanoclusters. The ratios of PEGMA to NIPAAm in the (co)polymerization in the presence of the MNPs were fine-tuned such that the nanoclusters with good water dispersibility, good magnetic sensitivity and thermo responsiveness were obtained. The size of the nanoclusters was in the range of 50–100 nm in diameter with about 100–200 particles/cluster. The nanoclusters were well dispersible in water at room temperature and can be suddenly agglomerated when temperature was increased beyond the lower critical solution temperature (LCST) (32 °C). The release behavior of an indomethacin model drug from the nanoclusters was also investigated. These novel magnetic nanoclusters with good dispersibility in water and reversible thermo-responsive properties might be good candidates for the targeting drug controlled release applications. - Highlights: • Nanoclusters with good water dispersibility and magnetic response were prepared. • They were grafted with thermo-responsive poly(NIPAAm) and/or poly(PEGMA). • Poly(NIPAAm) provided thermo-responsive properties to the nanoclusters. • Poly(PEGMA) provided good water dispersibilityto the nanoclusters. • Accelerated and controllable releases of a drug from the nanoclusters were shown

  6. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    are -0.72 V or lower for all oxygen coverages studied, and it is thus possible to (re)activate (partially) oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface...... and electrochemical ammonia production via the associative mechanism is possible at potentials as low as -0.45 V to -0.7 V. © 2014 Howalt and Vegge........ In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...

  7. A Comparative XAFS Study of Gold-thiolate Nanoparticles and Nanoclusters

    International Nuclear Information System (INIS)

    Chevrier, D M; Chatt, A; Zhang, P; Sham, T K

    2013-01-01

    Tiopronin-capped gold nanoparticles and gold nanoclusters of sizes 3.0 and 1.5 nm, respectively, were investigated with XAFS at the gold L 3 -edge. The specific EXAFS fitting procedure is discussed for obtaining reliable fit parameters for each system. The difficulties and challenges faced when analysing EXAFS data for gold nanoparticles and nanoclusters are also mentioned. Fitting results for gold nanoparticles reveal a small amount of surface Au-thiolate interactions with a large Au-Au metal core. For gold nanoclusters, only a one-shell fit was obtainable. Instead of Au-Au metal core, long-range interactions are expected for gold nanoclusters. Tiopronin-capped gold nanoclusters are proposed to be polymeric in nature, which helps explain the observed red luminescence.

  8. Ultrafast, 2 min synthesis of monolayer-protected gold nanoclusters (d < 2 nm)

    Science.gov (United States)

    Martin, Matthew N.; Li, Dawei; Dass, Amala; Eah, Sang-Kee

    2012-06-01

    An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning.An ultrafast synthesis method is presented for hexanethiolate-coated gold nanoclusters (d gold nanoclusters are separated from the reaction byproducts fast and easily without any need for post-synthesis cleaning. Electronic supplementary information (ESI) available: Experimental details of gold nanocluster synthesis and mass-spectrometry. See DOI: 10.1039/c2nr30890h

  9. Waveguiding properties of Er-implanted silicon-rich oxides

    International Nuclear Information System (INIS)

    Elliman, R.G.; Forcales, M.; Wilkinson, A.R.; Smith, N.J.

    2007-01-01

    The optical properties of erbium-doped silicon-rich silicon-oxide waveguides containing amorphous silicon nanoclusters and/or silicon nanocrystals are reported. Both amorphous nanoclusters and nanocrystals are shown to act as effective sensitizers for Er, with nanocrystals being more effective at low pump powers and nanoclusters being more effective at higher pump powers. All samples are shown to exhibit photo-induced absorption, as measured for a guided 1.5 μm probe beam while the waveguide was illuminated from above with a 477 nm pump beam. At a given pump power samples containing silicon nanocrystals exhibited greater attenuation than samples containing amorphous nanoclusters. The absorption is shown to be consistent with confined-carrier absorption due to photoexcited carriers in the nanocrystals and/or nanoclusters

  10. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  11. Preparation of Au Nanoclusters-Modified Polylactic Acid Fiber with Bright Red Fluorescence and its Use as Sensing Probe.

    Science.gov (United States)

    Zhu, Wenli; Li, Huili; Wan, Ajun; Liu, Lanbo

    2017-01-01

    In present work, the Au nanoclusters-modified polylactic acid fiber (PLA-Au NCs) with bright red fluorescence were fabricated by the encapsulation of Au nanoclusters (Au NCs) in the PLA fiber treated with H 2 O 2 . The Au 25 nanoclusters stabilized by bovine serum albumin (BSA-Au NCs) were prepared via an improved "green" synthetic routine. With pretreatment of the PLA fiber in H 2 O 2 concentration of 12 and 18 %, the as-prepared PLA-Au NCs exhibited brighter red emission with a strong peak centered at ~640 nm than BSA-Au NCs. The fluorescence can be quenched by nitric oxide (NO). A good linear relationship between the relative fluorescence quenching intensity of the as-prepared PLA-Au NCs and the concentration of NO can be obtained in the range of 0.0732 to 0.7320 mM, and the detection limit was 0.0070 mM.

  12. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-05-01

    Rapidly expanding research in nanotechnology has led to exciting progress in a versatile array of applications from medical diagnostics to catalysis. This success resulted from the manipulation of the desired properties of nanomaterials by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal nanoclusters, such as doped Ag29 with five gold (Au) atoms leading to enhance its quantum yield with remarkable stability. We also developed half-doped (alloyed) cluster of Ni6 nanocluster with molybdenum (Mo). This enabled enhanced stability and better catalytic activity. The third metal nanocluster that we synthesized was Au28 nanocluster by using di-thiolate as the ligand stabilizer instead of mono-thiolate. The new metal clusters obtained have been characterized by spectroscopic, electrochemical and crystallographic methods.

  13. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.

    Science.gov (United States)

    Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W

    2016-09-14

    The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.

  14. Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C-H bond activation

    Science.gov (United States)

    Wang, Zhe-Chen; Yin, Shi; Bernstein, Elliot R.

    2013-11-01

    Both ceria (CeO2) and alumina (Al2O3) are very important catalyst support materials. Neutral binary oxide nanoclusters (NBONCs), CexAlyOz, are generated and detected in the gas phase and their reactivity with carbon monoxide (CO) and butane (C4H10) is studied. The very active species CeAlO4• can react with CO and butane via O atom transfer (OAT) and H atom transfer (HAT), respectively. Other CexAlyOz NBONCs do not show reactivities toward CO and C4H10. The structures, as well as the reactivities, of CexAlyOz NBONCs are studied theoretically employing density functional theory (DFT) calculations. The ground state CeAlO4• NBONC possesses a kite-shaped structure with an OtCeObObAlOt configuration (Ot, terminal oxygen; Ob, bridging oxygen). An unpaired electron is localized on the Ot atom of the AlOt moiety rather than the CeOt moiety: this Ot centered radical moiety plays a very important role for the reactivity of the CeAlO4• NBONC. The reactivities of Ce2O4, CeAlO4•, and Al2O4 toward CO are compared, emphasizing the importance of a spin-localized terminal oxygen for these reactions. Intramolecular charge distributions do not appear to play a role in the reactivities of these neutral clusters, but could be important for charged isoelectronic BONCs. DFT studies show that the reaction of CeAlO4• with C4H10 to form the CeAlO4H•C4H9• encounter complex is barrierless. While HAT processes have been previously characterized for cationic and anionic oxide clusters, the reported study is the first observation of a HAT process supported by a ground state neutral oxide cluster. Mechanisms for catalytic oxidation of CO over surfaces of AlxOy/MmOn or MmOn/AlxOy materials are proposed consistent with the presented experimental and theoretical results.

  15. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    Directory of Open Access Journals (Sweden)

    Jakob G. Howalt

    2014-01-01

    Full Text Available The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen off the surface are −0.72 V or lower for all oxygen coverages studied, and it is thus possible to (reactivate (partially oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface and electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V.

  16. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2013-09-01

    Full Text Available Cetyltrimethyl ammonium bromide cationic (CTAB surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD, scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS. This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  17. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  18. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  19. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  20. Solventless acid-free synthesis of mesostructured titania: Nanovessels for metal complexes and metal nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Dag, Oe.; Celik, Oe.; Ozin, G.A. [Department of Chemistry, Bilkent University, 06533 Ankara (Turkey); Soten, I.; Polarz, S.; Coombs, N. [Materials Chemistry Research Group, Chemistry Department, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada)

    2003-01-01

    A new and highly reproducible method to obtain mesostructured titania materials is introduced in this contribution. The mesostructured titania is obtained by employing self-assembled structures of non-ionic alkyl-poly(ethylene oxide) surfactants as templates. The materials are produced without additional solvents such as alcohols, or even water. Only the titanium(IV) ethoxide and the surfactant (C{sub 12}EO{sub 10}) are needed. Water, in the form of that attached to the surfactant and from the atmosphere, induces growth of titania nanoclusters in the synthesis sol. It is indicated that these nanoclusters interact with the surfactant EO-head groups to form a new titanotropic amphiphile. The new amphiphiles self-assemble into titanium nanocluster-surfactant hybrid lyotropic phases, which are transformed to the final mesostructured materials by further condensation of the titania network. The titania materials can be obtained also with noble-metal particles immobilized in the mesostructured framework. It is seen that when different metal salts are used as the metal precursors, different interactions with the titania walls are found. The materials are characterized by X-ray diffraction (XRD), polarization optical microscopy (POM), transmission electron microscopy (TEM), UV-vis spectroscopy, and micro-Raman analysis. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Cluster perturbation theory for calculation of electronic properties of ensembles of metal nanoclusters

    Science.gov (United States)

    Zhumagulov, Yaroslav V.; Krasavin, Andrey V.; Kashurnikov, Vladimir A.

    2018-05-01

    The method is developed for calculation of electronic properties of an ensemble of metal nanoclusters with the use of cluster perturbation theory. This method is applied to the system of gold nanoclusters. The Greens function of single nanocluster is obtained by ab initio calculations within the framework of the density functional theory, and then is used in Dyson equation to group nanoclusters together and to compute the Greens function as well as the electron density of states of the whole ensemble. The transition from insulator state of a single nanocluster to metallic state of bulk gold is observed.

  2. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    Science.gov (United States)

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  3. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Wang Xiaohua

    2009-01-01

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  4. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang; Zhao Dongxu; Shen Dezhen; Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Wang Xiaohua, E-mail: dxzhao2000@yahoo.com.c [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, 7089 WeiXing Road, ChangChun 130022 (China)

    2009-12-09

    The ZnO nanorods were used as a template to fabricate nickel nanoclusters by electrodeposition. The ZnO nanorod arrays act as a nano-semiconductor electrode for depositing metallic and magnetic nickel nanoclusters. The growth sites of Ni nanoclusters could be controlled by adjusting the applied potential. Under -1.15 V the Ni nanoclusters could be grown on the tips of ZnO nanorods. On increasing the potential to be more negative the ZnO nanorods were covered by Ni nanoclusters. The magnetic properties of the electrodeposited Ni nanoclusters also evolved with the applied potentials.

  5. Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    WILCOXON,JESS P.

    2000-04-17

    Pentachlorophenol (PCP) is a toxic chlorinated aromatic molecule widely used as fungicide, a bactericide and a wood preservation, and thus ubiquitous in the environment. The authors report photo-oxidation of PCP using a variety of nanosize semiconductor metal oxides and sulfides in both aqueous and polar organic solvents and compare the photo-oxidation kinetics of these nanoclusters to widely studied bulk powders like Degussa P-25 TiO{sub 2} and CdS. They study both the light intensity dependence of PCP photooxidation for nanosize SnO{sub 2} and the size dependence of PCP photooxidation for both nanosize SnO{sub 2} and MoS{sub 2}. They find an extremely strong size dependence for the latter which they attribute to its size-dependent band gap and the associated change in redox potentials due to quantum confinement of the hole-electron pair. The authors show that nanosize MoS{sub 2} with a diameter of d=3.0 nm and an absorbance edge of {approximately}450 nm is a very effective photooxidation catalyst for complete PCP mineralization, even when using only visible light irradiation.

  6. Size effect on the adsorption and dissociation of CO{sub 2} on Co nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haiyan; Cao, Dapeng; Fisher, Adrian [International Research Center for Soft Matter, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Johnston, Roy L. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Cheng, Daojian, E-mail: chengdj@mail.buct.edu.cn [International Research Center for Soft Matter, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2017-02-28

    Highlights: • Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters were predicted as the high-symmetry structures. • CO{sub 2} dissociation on the size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters was studied. • Co{sub 55} nanocluster possesses the highest activity relevant to CO{sub 2} dissociation. • A non-monotonous behavior of the dissociation barrier of CO{sub 2} with the size was found. - Abstract: Spin-polarized density functional theory calculations were carried out to study the adsorption and dissociation properties of CO{sub 2} on size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters. Based on genetic algorithm method, Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters were predicted as the most stable high-symmetry structures among these Co{sub n} (n = 2–58) nanoclusters from the Gupta potential. For the adsorption of CO{sub 2}, CO and O on size-selected Co{sub 13}, Co{sub 38} and Co{sub 55} nanoclusters, the lowest adsorption strength is found for all the different adsorbates on Co{sub 55} nanocluster. For the dissociation of CO{sub 2} on these size-selected Co nanoclusters, the largest Co{sub 55} nanocluster possesses the greatest catalytic activity for the dissociation of CO{sub 2}, with the smallest reaction barrier of 0.38 eV. Our results reveal a non-monotonous behavior of the catalytic activities of Co nanoclusters on size, which is of fundamental interest for the design of new Co catalysts for the conversion of CO{sub 2}.

  7. Evolution of embedded lithium nanoclusters in lithium implanted alumina

    International Nuclear Information System (INIS)

    Gaikwad, P.V.; Sharma, S.K.; Mukherjee, S.; Sudarshan, K.; Kshirsagar, A.; Pujari, P.K.

    2016-01-01

    High dose of ion implantation followed by annealing is considered a feasible way to generate thermally stable nanoclusters inside a transparent host matrix. Low energy (50 keV) Li ions have been implanted into single crystals of alumina with different fluence (1 × 10"1"5–1 × 10"1"7 ions/cm"2). The samples have been annealed at temperatures ranging from 500 to 1100 °C in air in step of 100 °C. Depth dependent Doppler broadening measurements have been carried out using high purity germanium detector coupled to a variable energy slow positron beam. Fractional area in the central and wing regions of Doppler broadened annihilation radiation spectrum, namely, S- and W- parameters, were evaluated from each spectrum. Any variation in positron annihilation probability with valence and core electrons which occurs on trapping of positrons at a defect site is reflected in these parameters. The effect of ion fluence and annealing temperature on evolution of defects and formation of embedded Li nanoclusters have been studied by indexing the variation in line shape S- (W-) parameter as a function of positron implantation depth. These studies supplemented by theoretical calculations confirm that with annealing up to 700 °C, vacancy clusters are created due to the aggregation of vacancies wherein Li nanoclusters are formed. On annealing at higher temperature, there is evidence for the breakdown of these Li clusters leaving behind vacancy clusters in the samples. - Highlights: • Embedded Li nanoclusters are efficiently created by annealing Li implanted Al_2O_3 crystal. • Depth dependent DBAR is a suitable method to characterize embedded nanoclusters. • The formation of Li nanoclusters is assisted by vacancy migration to form clusters. • At very high annealing temperature (>1000 °C), Li nanoclusters undergo breakdown. • e"+ annihilation at V_A_l site shows a unique observation i.e. a reduction in S-parameter.

  8. Fluorescence enhancement of DNA-silver nanoclusters from guanine proximity

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsin-chih [Los Alamos National Laboratory; Sharma, Jaswinder [Los Alamos National Laboratory; Yoo, Hyojong [Los Alamos National Laboratory; Martinez, Jennifer S [Los Alamos National Laboratory

    2010-01-01

    Oligonucleotide-templated, silver nanoclusters (DNA/Ag NCs) are a versatile set of fluorophores and have already been used for live cell imaging, detection of specific metal ions, and single-nucleotide variation identification. Compared to commonly used organic dyes, these fluorescent nanoclusters have much better photostability and are often a few times brighter. Owing to their small size, simple preparation, and biocompatibility (i.e. made of nontoxic metals), DNA/Ag NCs should find more applications in biological imaging and chemical detection in the years to come. While clearly promising as new fluorophores, DNA/Ag NCs possess a unique and poorly understood dynamic process not shared by organic dyes or photoluminescent nanocrystals - the conversion among different NC species due to silver oxidation/reduction or NC regrouping. While this environmental sensitivity can be viewed as a drawback, in the appropriate context, it can be used as a sensor or reporter. Often reversible, conversions among different NC species have been found to depend upon a number of factors, including time, temperature, oxygen and salt content. In this communication, we report significant fluorescence enhancement of DNA/Ag NCs via interactions with guanine-rich DNA sequences. Moreover, we demonstrated this property can be used for sensitive detection of specific target DNA from a human oncogene (i.e. Braf gene).

  9. Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Chang, Gang; Shu, Honghui; Huang, Qiwei; Oyama, Munetaka; Ji, Kai; Liu, Xiong; He, Yunbin

    2015-01-01

    Highlights: • PtNCs/graphene (PVP) composites were obtained by a clean and facile method. • The addition of graphene effectively promotes the catalytic performance of composites. • The highly dispersed PtNCs show superior electrocatalytic activity to glucose oxidation. • PtNCs/graphene (PVP) composites exhibit excellent stability and selectivity for nonenzymatic glucose detection. - Abstract: A facile and clean method by using ascorbic acid as mild reductant was developed to synthesize nanocomposites of graphene and platinum nanoclusters (PtNCs/graphene), in which Polyvinyl-Pyrrolidone (PVP) was added during the one-step reductive process so as to improve the dispersity of PtNCs on the graphene and decrease the size of PtNCs. By several characterization methods such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), we demonstrated that Pt nanoclusters have successfully anchored on the surface of graphene sheets with average diameter of 22 nm. It was found that with the assistant of PVP, Pt nanoclusters appeared with smaller particle size and narrower particle size distribution. Cyclic voltammetry and amperometric methods were used to evaluate the electro-catalytic activity of the synthesized nanocomposites toward the oxidation of glucose in neutral media (0.1 M PBS, pH 7.4). The PtNCs/graphene exhibited a rapid response time (about 3 s), a broad linear range (1 mM to 25 mM), good stability, and sensitivity estimated to be 1.21 μA cm −2 mM −1 (R = 0.995, 71.9 μA cm −2 mM −1 vs. geometric area). Additionally, the impact from the oxidation of interferences can be effectively limited by choosing the appropriate detection potential. These results indicated a great potential of PtNCs/graphene in fabricating novel non-enzymatic glucose sensors with high performance

  10. Catalytic hydrolysis of ammonia borane for hydrogen generation using cobalt nanocluster catalyst supported on polydopamine functionalized multiwalled carbon nanotube

    International Nuclear Information System (INIS)

    Arthur, Ernest Evans; Li, Fang; Momade, Francis W.Y.; Kim, Hern

    2014-01-01

    Hydrogen was generated from ammonia borane complex by hydrolysis using cobalt nanocluster catalyst supported on polydopamine functionalized MWCNTs (multi-walled carbon nanotubes). The impregnation-chemical reduction method was used for the preparation of the supported catalyst. The nanocluster catalyst support was formed by in-situ oxidative polymerization of dopamine on the MWCNTs in alkaline solution at room temperature. The structural and physical–chemical properties of the nanocluster catalyst were characterized by FT-IR (Fourier transform infrared spectroscopy), EDX (energy-dispersive X-ray spectroscopy), SEM (scanning electron microscope), XRD (X-ray diffraction) and TEM (transmission electron microscopy). The nanocluster catalyst showed good catalytic activity for the hydrogen generation from aqueous ammonia borane complex. A reusability test to determine the practical usage of the catalyst was also investigated. The result revealed that the catalyst maintained an appreciable catalytic performance and stability in terms of its reusability after three cycle of reuse for the hydrolysis reaction. Also, the activation energy for the hydrolysis of ammonia borane complex was estimated to be 50.41 kJmol −1 , which is lower than the values of some of the reported catalyst. The catalyst can be considered as a promising candidate in developing highly efficient portable hydrogen generation systems such as PEMFC (proton exchange membrane fuel cells). - Highlights: • Co/Pdop-o-MWCNT (Pdop functionalized MWCNT supported cobalt nanocluster) catalyst was synthesized for hydrogen generation. • It is an active catalyst for hydrogen generation via hydrolysis of ammonia borane. • It showed good stability in terms of reusability for the hydrogen generation

  11. Generalized rate-equation analysis of excitation exchange between silicon nanoclusters and erbium ions

    International Nuclear Information System (INIS)

    Kenyon, A. J.; Wojdak, M.; Ahmad, I.; Loh, W. H.; Oton, C. J.

    2008-01-01

    We discuss the use of rate equations to analyze the sensitization of erbium luminescence by silicon nanoclusters. In applying the general form of second-order coupled rate-equations to the Si nanocluster-erbium system, we find that the photoluminescence dynamics cannot be described using a simple rate equation model. Both rise and fall times exhibit a stretched exponential behavior, which we propose arises from a combination of a strongly distance-dependent nanocluster-erbium interaction, along with the finite size distribution and indirect band gap of the silicon nanoclusters. Furthermore, the low fraction of erbium ions that can be excited nonresonantly is a result of the small number of ions coupled to nanoclusters

  12. Study of nanocluster-assembled ZnO thin films by nanocluster-beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhiwei; Lei, Wei; Zhang, Xiaobing [School of Electronic Science and Engieering, Southeast University, Nanjing (China); Tay, Beng Kang [School of Electronical and Electronic Engineering, Nanyang Technological University, Nanyang (Singapore)

    2012-01-15

    Nanocluster-assembled ZnO thin films were obtained by nanocluster-beam deposition, in which nanoclusters were produced by a magnetron sputtering gas aggregation source. Two kinds of ZnO thin films were obtained using this method with the one grown under the on-line heating temperature of 700 C, and the other grown without on-line heating. Film microstructure and optical properties are investigated by various diagnostic techniques. It was found that both of film microstructure of ZnO thin films keep wurtzite structure as that of ZnO bulk materials. The averaged particle size for the film grown without on-line heating is around 6 nm, which is a little lower than that grown with the on-line heating. It was also found that as increasing the wavelength, both of the absorbance spectra for the films decrease sharply near ultra-visible to extend slowly to the visible and infrared wavelength range. For the film grown without on-line heating, the bandgap energy was estimated to 3.77 eV, while for the film grown with on-line heating, the bandgap energy was redshift to 3.71 eV. Similar behavior was also found for PL spectra analysis, where PL spectrum exhibited a peak centered at 3.31 eV without on-line heating, while it redshift to 3.20 eV with on-line heating. The mechanisms behind these behaviors were presented in this article. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Electrical transport properties in Fe-Cr nanocluster-assembled granular films

    Science.gov (United States)

    Wang, Xiong-Zhi; Wang, Lai-Sen; Zhang, Qin-Fu; Liu, Xiang; Xie, Jia; Su, A.-Mei; Zheng, Hong-Fei; Peng, Dong-Liang

    2017-09-01

    The Fe100-xCrx nanocluster-assembled granular films with Cr atomic fraction (x) ranging from 0 to 100 were fabricated by using a plasma-gas-condensation cluster deposition system. The TEM characterization revealed that the uniform Fe clusters were coated with a Cr layer to form a Fe-Cr core-shell structure. Then, the as-prepared Fe100-xCrx nanoclusters were randomly assembled into a granular film in vacuum environments with increasing the deposition time. Because of the competition between interfacial resistance and shunting effect of Cr layer, the room temperature resistivity of the Fe100-xCrx nanocluster-assembled granular films first increased and then decreased with increasing the Cr atomic fraction (x), and revealed a maximum of 2 × 104 μΩ cm at x = 26 at.%. The temperature-dependent longitudinal resistivity (ρxx), magnetoresistance (MR) effect and anomalous Hall effect (AHE) of these Fe100-xCrx nanocluster-assembled granular films were also studied systematically. As the x increased from 0 to 100, the ρxx of all samples firstly decreased and then increased with increasing the measuring temperature. The dependence of ρxx on temperature could be well addressed by a mechanism incorporated for the fluctuation-induced-tunneling (FIT) conduction process and temperature-dependent scattering effect. It was found that the anomalous Hall effect (AHE) had no legible scaling relation in Fe100-xCrx nanocluster-assembled granular films. However, after deducting the contribution of tunneling effect, the scaling relation was unambiguous. Additionally, the Fe100-xCrx nanocluster-assembled granular films revealed a small negative magnetoresistance (MR), which decreased with the increase of x. The detailed physical mechanism of the electrical transport properties in these Fe100-xCrx nanocluster-assembled granular films was also studied.

  14. Self-organization of nanocluster δ-layers at ion-beam-mixed Si-SiO2 interfaces

    International Nuclear Information System (INIS)

    Roentzsch, L.

    2003-11-01

    This diploma thesis presents experimental evidence of a theoretical concept which predicts the self-organization of δ-layers of silicon nanoclusters in the buried oxide of a MOS-like structure. This approach of ''bottom-up'' structuring might be of eminent importance in view of future semiconductor memory devices. Unconventionally, a 15 nm thin SiO 2 layer, which is enclosed by a 50 nm poly-Si capping layer and the Si substrate, is irradiated with Si + ions. Ion impact drives the system to a state far from thermodynamic equilibrium, i.e. the local composition of the target is modified to a degree unattainable in common processes. A region of SiO x (x 2 matrix at a distance of ∼3 nm from the Si substrate. The physical mechanisms of ion mixing of the two Si-SiO 2 interfaces and subsequent phase separation, which result in the desired sample structure, are elucidated from the viewpoint of computer simulations. In addition, experimental evidence is presented based on various methods, including TEM, RBS, and SIMS. A novel method of Si nanocluster decoration is of particular importance which applies Ge as contrast enhancing element in TEM studies of tiny Si nanoclusters. (orig.)

  15. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, L.; Mandal, A.R. [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India); Mandal, S.K., E-mail: sk_mandal@hotmail.co [Department of Physics, Visva-Bharati, Santiniketan-731 235 (India)

    2010-04-15

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni{sup 2+} clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni{sup 2+} clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  16. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    Science.gov (United States)

    Kabir, L.; Mandal, A. R.; Mandal, S. K.

    2010-04-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  17. Polymer stabilized Ni-Ag and Ni-Fe alloy nanoclusters: Structural and magnetic properties

    International Nuclear Information System (INIS)

    Kabir, L.; Mandal, A.R.; Mandal, S.K.

    2010-01-01

    We report here the structural and magnetic behaviors of nickel-silver (Ni-Ag) and nickel-iron (Ni-Fe) nanoclusters stabilized with polymer (polypyrrole). High resolution transmission electron microscopy (HRTEM) indicates Ni-Ag nanoclusters to stabilize in core-shell configuration while that of Ni-Fe nanoclusters in a mixed type of geometry. Structural characterizations by X-ray diffraction (XRD) reveal the possibility of alloying in such bimetallic nanoclusters to some extent even at temperatures much lower than that of bulk alloying. Electron paramagnetic resonance (EPR) spectra clearly reveal two different absorption behaviors: one is ascribed to non-isolated Ni 2+ clusters surrounded by either silver or iron giving rise to a broad signal, other (very narrow signal) being due to the isolated superparamagnetic Ni 2+ clusters or bimetallic alloy nanoclusters. Results obtained for Ni-Ag and Ni-Fe nanoclusters have been further compared with the behavior exhibited by pure Ni nanoclusters in polypyrrole host. Temperature dependent studies (at 300 and 77 K) of EPR parameters, e.g. linewidth, g-value, line shape and signal intensity indicating the significant influence of surrounding paramagnetic silver or ferromagnetic iron within polymer host on the EPR spectra have been presented.

  18. Synthesis of crystalline Ge nanoclusters in PE-CVD-deposited SiO2 films

    DEFF Research Database (Denmark)

    Leervad Pedersen, T.P.; Skov Jensen, J.; Chevallier, J.

    2005-01-01

    The synthesis of evenly distributed Ge nanoclusters in plasma-enhanced chemical-vapour-deposited (PE-CVD) SiO2 thin films containing 8 at. % Ge is reported. This is of importance for the application of nanoclusters in semiconductor technology. The average diameter of the Ge nanoclusters can...

  19. Seed-mediated direct growth of CdSe nanoclusters on substrates

    International Nuclear Information System (INIS)

    Pan Shangke; Ebrahim, Shaker; Soliman, Moataz; Qiao Qiquan

    2013-01-01

    Different shapes of CdSe nanostructures were obtained by hydrothermal method with varied Se sources and buffer layers. Hexagonal nanoparticles of CdSe with Wurtzite structure were synthesized from Se powder resource, while CdSe nanoclusters with Wurtzite structure were grown from Na 2 SeO 3 aqueous solution resources at 165 °C using cetyltrimethylammonium bromide as surfactant. Using ZnO nanoparticles as a seed layer, CdSe nanostructures only partially covered the indium tin oxide (ITO) substrates. With ZnO/CdSe quantum dots composite seed layer, CdSe nanostructures fully covered the ITO substrates.

  20. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  1. High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ruquan; Liu, Yuanyue; Peng, Zhiwei; Wang, Tuo; Jalilov, Almaz S.; Yakobson, Boris I.; Wei, Su-Huai; Tour, James M.

    2017-01-18

    The development of catalytic materials for the hydrogen oxidation, hydrogen evolution, oxygen reduction or oxygen evolution reactions with high reaction rates and low overpotentials are key goals for the development of renewable energy. We report here Ru(0) nanoclusters supported on nitrogen-doped graphene as high-performance multifunctional catalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR), showing activities similar to that of commercial Pt/C in alkaline solution. For HER performance in alkaline media, sample Ru/NG-750 reaches 10 mA cm-2 at an overpotential of 8 mV with a Tafel slope of 30 mV dec-1. The high HER performance in alkaline solution is advantageous because most catalysts for ORR and oxygen evolution reaction (OER) also prefer alkaline solution environment whereas degrade in acidic electrolytes. For ORR performance, Ru/NG effectively catalyzes the conversion of O2 into OH- via a 4e process at a current density comparable to that of Pt/C. The unusual catalytic activities of Ru(0) nanoclusters reported here are important discoveries for the advancement of renewable energy conversion reactions.

  2. pH-Induced transformation of ligated Au25 to brighter Au23 nanoclusters.

    Science.gov (United States)

    Waszkielewicz, Magdalena; Olesiak-Banska, Joanna; Comby-Zerbino, Clothilde; Bertorelle, Franck; Dagany, Xavier; Bansal, Ashu K; Sajjad, Muhammad T; Samuel, Ifor D W; Sanader, Zeljka; Rozycka, Miroslawa; Wojtas, Magdalena; Matczyszyn, Katarzyna; Bonacic-Koutecky, Vlasta; Antoine, Rodolphe; Ozyhar, Andrzej; Samoc, Marek

    2018-05-01

    Thiolate-protected gold nanoclusters have recently attracted considerable attention due to their size-dependent luminescence characterized by a long lifetime and large Stokes shift. However, the optimization of nanocluster properties such as the luminescence quantum yield is still a challenge. We report here the transformation of Au25Capt18 (Capt labels captopril) nanoclusters occurring at low pH and yielding a product with a much increased luminescence quantum yield which we have identified as Au23Capt17. We applied a simple method of treatment with HCl to accomplish this transformation and we characterized the absorption and emission of the newly created ligated nanoclusters as well as their morphology. Based on DFT calculations we show which Au nanocluster size transformations can lead to highly luminescent species such as Au23Capt17.

  3. Mechanical stability of titanium and plasma polymer nanoclusters in nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Palesch, E. [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic); Marek, A. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Solar, P.; Kylian, O. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Vyskocil, J. [HVM Plasma, spol. s r.o., Prague (Czech Republic); Biederman, H. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Cech, V., E-mail: cech@fch.vutbr.cz [Institute of Materials Chemistry, Brno University of Technology, Brno (Czech Republic)

    2013-10-01

    The mechanical stability of nanoclusters embedded in nanocomposite coatings was investigated by scratch and wear tests supported by atomic force microscopy using surface topography mode. Titanium and plasma polymer nanoclusters were deposited on planar substrates (glass, titanium) using a magnetron-based gas aggregation cluster source. The deposited clusters were overcoated with a thin titanium film of different thicknesses to stabilize the position of the clusters in the nanocomposite coating. Nanotribological measurements were carried out to optimize the thickness of the overcoating film for sufficient interfacial adhesion of the cluster/film system. - Highlights: ► Titanium and plasma polymer nanoclusters were overcoated with thin titanium film. ► The mechanical stability of nanoclusters was characterized by nanotribological tests. ► The film thickness was optimized to stabilize the position of the clusters in coating.

  4. Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition

    Directory of Open Access Journals (Sweden)

    J. F. Sánchez-Ramírez

    2008-01-01

    Full Text Available Colloidal solid-solution-like Au-Ag alloy nanoclusters of different compositions were synthesized through citrate reduction of mixed metal ions of low concentrations, without using any other protective or capping agents. Optical absorption of the alloy nanoclusters was studied both theoretically and experimentally. The position of the surface plasmon resonance (SPR absorption band of the nanoclusters could be tuned from 419 nm to 521 nm through the variation of their composition. Considering effective dielectric constant of the alloy, optical absorption spectra for the nanoclusters were calculated using Mie theory, and compared with the experimentally obtained spectra. Theoretically obtained optical spectra well resembled the experimental spectra when the true size distribution of the nanoparticles was considered. High-resolution transmission electron microscopy (HREM, high-angle annular dark field (HAADF imaging, and energy dispersive spectroscopy (EDS revealed the true alloy nature of the nanoparticles with nominal composition being preserved. The synthesis technique can be extended to other bimetallic alloy nanoclusters containing Ag.

  5. Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Chib, Rahul, E-mail: Rahul.chib@live.unthsc.edu [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Butler, Susan [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Raut, Sangram [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Shah, Sunil; Borejdo, Julian [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Gryczynski, Zygmunt [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Gryczynski, Ignacy, E-mail: ignacy.gryczynski@unthsc.edu [Department of Cell Biology and Immunology, Center for Fluorescence Technologies and Nanomedicine, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2015-12-15

    In this paper, we have synthesized BSA protected gold nanoclusters (BSA Au nanocluster) and studied the effect of quencher, protein denaturant, pH and temperature on the fluorescence properties of the tryptophan molecule of the BSA Au nanocluster and native BSA. We have also studied their effect on the peak emission of BSA Au nanoclusters (650 nm). The photophysical characterization of a newly developed fluorophore in different environments is absolutely necessary to futher develop their biomedical and analytical applications. It was observed from our experiments that the tryptophan in BSA Au nanoclusters is better shielded from the polar environment. Tryptophan in native BSA showed a red shift in its peak emission wavelength position. Tryptophan is a highly polarity sensitive dye and a minimal change in its microenvironment can be easily observed in its photophysical properties. - Highlights: • Tryptophan is easily accessible in native BSA compared to BSA Au nanoclusters. • Guanidine HCL denatures native BSA more compared to BSA Au nanoclusters. • High temperature decreases the quantum yield of tryptophan and BSA Au nanocluster. • Emission wavelength of BSA Au nanoclusters remains constant with increasing pH. • BSA Au nanoclusters are robust to the changes in their environments.

  6. Effect of quencher, denaturants, temperature and pH on the fluorescent properties of BSA protected gold nanoclusters

    International Nuclear Information System (INIS)

    Chib, Rahul; Butler, Susan; Raut, Sangram; Shah, Sunil; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2015-01-01

    In this paper, we have synthesized BSA protected gold nanoclusters (BSA Au nanocluster) and studied the effect of quencher, protein denaturant, pH and temperature on the fluorescence properties of the tryptophan molecule of the BSA Au nanocluster and native BSA. We have also studied their effect on the peak emission of BSA Au nanoclusters (650 nm). The photophysical characterization of a newly developed fluorophore in different environments is absolutely necessary to futher develop their biomedical and analytical applications. It was observed from our experiments that the tryptophan in BSA Au nanoclusters is better shielded from the polar environment. Tryptophan in native BSA showed a red shift in its peak emission wavelength position. Tryptophan is a highly polarity sensitive dye and a minimal change in its microenvironment can be easily observed in its photophysical properties. - Highlights: • Tryptophan is easily accessible in native BSA compared to BSA Au nanoclusters. • Guanidine HCL denatures native BSA more compared to BSA Au nanoclusters. • High temperature decreases the quantum yield of tryptophan and BSA Au nanocluster. • Emission wavelength of BSA Au nanoclusters remains constant with increasing pH. • BSA Au nanoclusters are robust to the changes in their environments.

  7. Protein mediated synthesis of fluorescent Au-nanoclusters for metal sensory coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Manja; Raff, Johannes [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry

    2017-06-01

    Fluorescent Au-nanocluster were successfully synthesized and used for the selective detection of Cu{sup 2} {sup +}. The synthesized Au-BSA-nanoclusters remain functional also after immobilization and show high thermal stability. Additionally, the transfer of the protein mediated Au-nanocluster synthesis route to S-layer proteins was achieved. (The presented work is part of the project BIONEWS dealing with long-term stable cells for the set-up and regeneration of sensor and actor materials for strategic relevant metals, in particular rare earth elements).

  8. Hierarchical self-assembly of magnetic nanoclusters for theranostics: Tunable size, enhanced magnetic resonance imagability, and controlled and targeted drug delivery.

    Science.gov (United States)

    Nguyen, Dai Hai; Lee, Jung Seok; Choi, Jong Hoon; Park, Kyung Min; Lee, Yunki; Park, Ki Dong

    2016-04-15

    Nanoparticle-based imaging and therapy are of interest for theranostic nanomedicine. In particular, superparamagnetic iron oxide (SPIO) nanoparticles (NPs) have attracted much attention in cancer imaging, diagnostics, and treatment because of their superior imagability and biocompatibility (approved by the Food and Drug Administration). Here, we developed SPIO nanoparticles (NPs) that self-assembled into magnetic nanoclusters (SAMNs) in aqueous environments as a theranostic nano-system. To generate multi-functional SPIO NPs, we covalently conjugated β-cyclodextrin (β-CD) to SPIO NPs using metal-adhesive dopamine groups. Polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. The core-shell structure of the magnetic nanoclusters was elucidated based on the condensed SPIO core and a PEG shell using electron microscopy and the composition was analyzed by thermogravimetric analysis (TGA). Our results indicate that nanocluster size could be readily controlled by changing the SPIO/PEG ratio in the assemblies. Interestingly, we observed a significant enhancement in magnetic resonance contrast due to the large cluster size and dense iron oxide core. In addition, tethering a tumor-targeting peptide to the SAMNs enhanced their uptake into tumor cells. PTX was efficiently loaded into β-CDs and released in a controlled manner when exposed to competitive guest molecules. These results strongly indicate that the SAMNs developed in this study possess great potential for application in image-guided cancer chemotherapy. In this study, we developed multi-functional SPIO NPs that self-assembled into magnetic nanoclusters (SAMNs) in aqueous conditions as a theranostic nano-system. The beta-cyclodextrin (β-CD) was immobilized on the surfaces of SPIO NPs and RGD-conjugated polyethylene glycol (PEG) and paclitaxel (PTX) were hosted in the β-CD cavity through high affinity complexation. We found that nanocluster size could be

  9. Formation of ring-patterned nanoclusters by laser–plume interaction

    International Nuclear Information System (INIS)

    Sivayoganathan, Mugunthan; Tan Bo; Venkatakrishnan, Krishnan

    2013-01-01

    This article reports for the first time a unique study performed to regulate the ring diameter of nanoclusters fabricated during femtosecond laser ablation of solids and a mechanism is proposed for the formation of those ring clusters. The ring nanoclusters are made out of nanoparticles with a range of 10–30 nm. Our experimental studies showed the synthesis of ring nanoclusters with random diameter distribution on metals, nonmetals, and semiconductors, such as titanium, aluminum, glasses, ceramics, graphite, and silicon. To regulate the ring size, the effects of laser parameters, such as wavelength, pulse duration, pulse energy, and repetition rate on the ring diameter are analyzed. The influence of ablated materials and the background gas on ring size is also elaborated in this article. The motion of plume species under the influence of ponderomotive force on free electrons possibly played a key role in the formation of the ring-patterned nanoclusters. This study could help to understand the fundamentals in laser ablative nanosynthesis as well as to produce nanostructures with organized ring diameter that controls the density and porosity of those 3D nanostructures.

  10. A DFT study for the structural and electronic properties of Zn m Se n nanoclusters

    Science.gov (United States)

    Yadav, Phool Singh; Pandey, Dheeraj Kumar

    2012-09-01

    An ab initio study has been performed for the stability, structural and electronic properties of 19 small zinc selenide Zn m Se n ( m + n = 2-4) nanoclusters. Out of these nanoclusters, one nanocluster is found to be unstable due to its imaginary vibrational frequency. A B3LYP-DFT/6-311G(3df) method is used in the optimization of the geometries of the nanoclusters. We have calculated the zero point energy (ZPE), which is ignored by the other workers. The binding energies (BE), HOMO-LUMO gaps and bond lengths have been obtained for all the optimized nanoclusters. For the same value of ` m' and ` n', we designate the most stable structure the one, which has maximum final binding energy (FBE) per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), dipole moments and charge on atoms have been investigated for the most stable nanoclusters. For the same value of ` m' and ` n', the nanocluster containing maximum number of Se atoms is found to be most stable.

  11. Kernel Tuning and Nonuniform Influence on Optical and Electrochemical Gaps of Bimetal Nanoclusters.

    Science.gov (United States)

    He, Lizhong; Yuan, Jinyun; Xia, Nan; Liao, Lingwen; Liu, Xu; Gan, Zibao; Wang, Chengming; Yang, Jinlong; Wu, Zhikun

    2018-03-14

    Fine tuning nanoparticles with atomic precision is exciting and challenging and is critical for tuning the properties, understanding the structure-property correlation and determining the practical applications of nanoparticles. Some ultrasmall thiolated metal nanoparticles (metal nanoclusters) have been shown to be precisely doped, and even the protecting staple metal atom could be precisely reduced. However, the precise addition or reduction of the kernel atom while the other metal atoms in the nanocluster remain the same has not been successful until now, to the best of our knowledge. Here, by carefully selecting the protecting ligand with adequate steric hindrance, we synthesized a novel nanocluster in which the kernel can be regarded as that formed by the addition of two silver atoms to both ends of the Pt@Ag 12 icosohedral kernel of the Ag 24 Pt(SR) 18 (SR: thiolate) nanocluster, as revealed by single crystal X-ray crystallography. Interestingly, compared with the previously reported Ag 24 Pt(SR) 18 nanocluster, the as-obtained novel bimetal nanocluster exhibits a similar absorption but a different electrochemical gap. One possible explanation for this result is that the kernel tuning does not essentially change the electronic structure, but obviously influences the charge on the Pt@Ag 12 kernel, as demonstrated by natural population analysis, thus possibly resulting in the large electrochemical gap difference between the two nanoclusters. This work not only provides a novel strategy to tune metal nanoclusters but also reveals that the kernel change does not necessarily alter the optical and electrochemical gaps in a uniform manner, which has important implications for the structure-property correlation of nanoparticles.

  12. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    NARCIS (Netherlands)

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were

  13. Pressurized polyol synthesis of Al-doped ZnO nanoclusters with high electrical conductivity and low near-infrared transmittance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho-Nyun; Shin, Chi-Ho [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of); Hwang, Duck Kun [Department of Corporate Diagnosis, Small and Medium Business Corporation, Seoul 150-718 (Korea, Republic of); Kim, Haekyoung [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Oh, Kyeongseok [Department of Chemical and Environmental Technology, Inha Technical College, Incheon 402-752 (Korea, Republic of); Kim, Hyun-Jong, E-mail: hjkim23@kitech.re.kr [Surface Technology R& BD Group, Korea Institute of Industrial Technology (KITECH), Incheon 406-840 (Korea, Republic of)

    2015-09-25

    Highlights: • Low-temperature pressurized polyol method synthesized Al-doped ZnO nanoclusters. • Reaction time affected the doping efficiency, resistivity, and NIR transmittance. • The near-IR blocking efficiency of Al-doped ZnO (AZO) nanoclusters reached 85%. • AZO nanocluster coatings could be used for heat reflectors or artificial glasses. - Abstract: In this study, a novel pressurized polyol method is proposed to synthesize aluminum-doped ZnO (AZO) nanoclusters without utilizing additional thermal treatment to avoid the merging of nanoclusters. The size of the AZO nanoclusters range from 100 to 150 nm with a resistivity of 204 Ω cm. The AZO nanoclusters primarily consist of approximately 10-nm nanocrystals that form a spherically clustered morphology. A two-stage growth model has been proposed based on the results of scanning electron microscopy and transmission electron microscopy images, nanocluster sizes, and X-ray diffraction patterns. The primary AZO nanocrystals first nucleate under pressurized conditions and then spontaneously aggregate into larger nanoclusters. Optically, the AZO nanoclusters exhibit a significant decrease in the near-infrared (NIR) transmittance compared to pure ZnO nanoparticles. The NIR blocking efficiency of AZO nanoclusters reached 85%. Moreover, the doping efficiency, resistivity, and NIR transmittance of AZO nanoclusters are influenced by the reaction time in the pressurized polyol solution. On the other hand, the reaction time has no effect on the particle size and crystallinity. An optically transparent coating for the AZO nanoclusters, which consisted of iso-propanol solvent and ultraviolet-curable acrylic binder, was also demonstrated.

  14. Magnetic interaction reversal in watermelon nanostructured Cr-doped Fe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Dai, Qilin; Bowden, Mark; Engelhard, Mark; Wu, Yaqiao; Tang, Jinke; Qiang, You

    2013-01-01

    Cr-doped core-shell Fe/Fe-oxide nanoclusters (NCs) were synthesized at varied atomic percentages of Cr from 0 at. % to 8 at. %. The low concentrations of Cr (<10 at. %) were selected in order to inhibit the complete conversion of the Fe-oxide shell to Cr2O3 and the Fe core to FeCr alloy. The magnetic interaction in Fe/Fe-oxide NCs (rv25 nm) can be controlled by antiferromagnetic Cr-dopant. We report the origin of r-FeCr phase at very low Cr concentration (2 at. %) unlike in previous studies, and the interaction reversal from dipolar to exchange interaction in watermelon-like Cr-doped core-shell NCs. The giant magnetoresistance (GMR) effect,1,2 where an antiferromagnetic (AFM) exchange coupling exists between two ferromagnetic (FM) layers separated by a certain type of magnetic or non-magnetic spacer,3 has significant potential for application in the magnetic recording industry. Soon after the discovery of the GMR, the magnetic properties of multilayer systems (FeCr) became a subject of intensive study. The application of bulk iron-chromium (Fe-Cr) alloys has been of great interest, as these alloys exhibit favorable prop- erties including corrosion resistance, high strength, hardness, low oxidation rate, and strength retention at elevated temper- ature. However, the structural and magnetic properties of Cr-doped Fe nanoclusters (NCs) have not been investigated in-depth. Of all NCs, Fe-based clusters have unique magnetic properties as well as favorable catalytic characteristics in reactivity, selectivity, and durability.4 The incorporation of dopant of varied type and concentration in Fe can modify its chemical ordering, thereby optimizing its electrical, optical, and magnetic properties and opening up many new applications. The substitution of an Fe atom (1.24 A°) by a Cr atom (1.25 A° ) can easily modify the magnetic properties, since (i) the curie temperature (Tc ) of Fe is 1043 K, while Cr is an itinerant AFM with a bulk Neel temperature TN =311 K, and (ii) Fe

  15. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection.

    Science.gov (United States)

    Wang, Mengke; Lin, Zihan; Liu, Qing; Jiang, Shan; Liu, Hua; Su, Xingguang

    2018-07-05

    A novel fluorescent biosensor for protein kinase activity (PKA) detection was designed by applying double-strands DNA-hosted copper nanoclusters (dsDNA-CuNCs) and graphene oxide (GO). One DNA strand of the dsDNA consisted of two domains, one domain can hybridize with another complementary DNA strand to stabilize the fluorescent CuNCs and another domain was adenosine 5'-triphosphate (ATP) aptamer. ATP aptamer of the dsDNA-CuNCs would be spontaneously absorbed onto the GO surface through π-π stacking interactions. Thus GO can efficiently quench the fluorescence (FL) of dsDNA-CuNCs through fluorescence resonance energy transfer (FRET). In the present of ATP, ATP specifically combined with ATP aptamer to form ATP-ATP aptamer binding complexes, which had much less affinity to GO, resulting in the fluorescence recovery of the system. Nevertheless, in the presence of PKA, ATP could be translated into ADP and ADP could not combine with ATP aptamer resulting in the fluorescence quenching of dsDNA-CuNCs again. According to the change of the fluorescence signal, PKA activity could be successfully monitored in the range of 0.1-5.0 U mL -1 with a detection limit (LOD) of 0.039 U mL -1 . Besides, the inhibitory effect of H-89 on PKA activity was studied. The sensor was performed for PKA activity detection in cell lysates with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Ge nanoclusters in PECVD-deposited glass caused only by heat treatment

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2008-01-01

    This paper reports the formation of Ge nanoclusters in a multi-layer structure consisting of alternating thin films of Ge-doped silica glass and SiGe, deposited by plasma-enhanced chemical vapor deposition (PECVD) and post annealed at 1100 °C in N2 atmosphere. We studied the annealed samples...... embedded with Ge nanoclusters after annealing. These nanoclusters are crystalline and varied in size. There were no clusters in the Ge-doped glass layer. Raman spectra verified the existence of crystalline Ge clusters. The positional shift of the Ge vibrational peak with the change of the focus depth...

  17. UV luminescence of dendrimer-encapsulated gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyeong Seop; Kim, Jun Myung; Sohn, So Hyeong; Han, Noh Soo; Park, Seung Min [Dept. of Chemistry, Kyung Hee University, Seoul (Korea, Republic of)

    2016-10-15

    Size-dependent luminescence color is one of the interesting properties of metal nanocrystals, whose sizes are in the dimension of the Fermi wavelength of an electron. Despite the short Fermi wavelength of electrons in gold (-0.7 nm), luminescence of gold nanoclusters has been reported to range from the near-infrared to near-ultraviolet, depending on the number of atoms in the nanoclusters. The photoluminescence of G4-OH (Au) obtained by the excitation of 266 nm showed UV emission in addition to the well-known blue emission. The higher intensity and red-shifted emission of the gold nanoclusters was distinguished from the emission of dendrimers. The UV emission at 352 nm matched the emission energy of Au{sub 4} in the spherical jellium model, rather than the planar Au{sub 8}, which supported the emission of Au{sub 4} formed in G4-OH. Despite the change of [HAuCl{sub 4} ]/[G4-OH], the relative population between Au{sub 4} and Au{sub 8} was similar in G4-OH(Au), which indicated that the closed electronic and geometric structures stabilized the magic number of Au{sub 4}.

  18. Magnetic properties of MnAs nanoclusters embedded in a GaAs semiconductor matrix

    International Nuclear Information System (INIS)

    Hai, Pham Nam; Takahashi, Keisuke; Yokoyama, Masafumi; Ohya, Shinobu; Tanaka, Masaaki

    2007-01-01

    We have clarified fundamental magnetic properties of MnAs nanoclusters (10 nm in diameter) embedded in a thin GaAs matrix (referred to as GaAs:MnAs) through tunneling magnetoresistance (TMR) characteristics of magnetic tunnel junctions (MTJs) consisting of a GaAs:MnAs thin film and a MnAs metal thin film as ferromagnetic electrodes. Although MnAs nanoclusters have coercive forces as small as 150 Oe at 7 K, they show unusually high blocking temperature, which is as large as 300 K. The remanent magnetization of the MnAs nanocluster system linearly decreases with increasing temperature. Those magnetic behaviors cannot be explained by the non-interacting particle model, revealing the important existence of dipolar interactions in MnAs nanocluster system

  19. Crossover from disordered to core-shell structures of nano-oxide Y{sub 2}O{sub 3} dispersed particles in Fe

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, M. P.; Wang, L. M.; Gao, F., E-mail: gaofeium@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Lu, C. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Lu, Z. [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang, Liaoning 110819 (China); Shao, L. [Department of Nuclear Engineering, Texas A& M University, College Station, Texas 77843 (United States)

    2016-07-18

    Molecular dynamic simulations of Y{sub 2}O{sub 3} in bcc Fe and transmission electron microscopy (TEM) observations were used to understand the structure of Y{sub 2}O{sub 3} nano-clusters in an oxide dispersion strengthened steel matrix. The study showed that Y{sub 2}O{sub 3} nano-clusters below 2 nm were completely disordered. Y{sub 2}O{sub 3} nano-clusters above 2 nm, however, form a core-shell structure, with a shell thickness of 0.5–0.7 nm that is independent of nano-cluster size. Y{sub 2}O{sub 3} nano-clusters were surrounded by off-lattice Fe atoms, further increasing the stability of these nano-clusters. TEM was used to corroborate our simulation results and showed a crossover from a disordered nano-cluster to a core-shell structure.

  20. Peptide-stabilized, fluorescent silver nanoclusters

    DEFF Research Database (Denmark)

    Gregersen, Simon; Vosch, Tom André Jos; Jensen, Knud Jørgen

    2016-01-01

    Few-atom silver nanoclusters (AgNCs) can exhibit strong fluorescence; however, they require ligands to prevent aggregation into larger nanoparticles. Fluorescent AgNCs in biopolymer scaffolds have so far mainly been synthesized in solution, and peptides have only found limited use compared to DNA...

  1. Ge nanoclusters in PECVD-deposited glass after heat treating and electron irradiation

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rørdam, Troels Peter; Rottwitt, Karsten

    2007-01-01

    This paper reports the formation of Ge nanoclusters in silica glass thin films deposited by plasma-enhanced chemical vapor deposition (PECVD). We studied the samples by transmission electron microscopy (TEM) and Raman spectroscopy after annealing. TEM investigation shows that the Ge nanoclusters...... at two areaswere formed by different mechanisms. The Ge nanoclusters formed in a single row along the interface of a silicon substrate and the silica glass film by annealing during high-temperature heat treatment. Ge nanoclusters did not initially form in the bulk of the film but could be subsequently...... formed by the electron-beam irradiation. The interface between the silicon substrate and the silica glass film was investigated by Raman spectroscopy. The shift of the Raman peaks around 286.8 cm−1 and 495 cm−1 suggests that the interface is a Si1−xGex alloy film and that the composition x varies along...

  2. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    International Nuclear Information System (INIS)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-01-01

    In this paper, a facile approach for preparation of AuAgS/Ag 2 S nanoclusters was developed. The unique AuAgS/Ag 2 S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag 2 S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag 2 S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg 2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag 2 S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.Graphical Abstract

  3. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing.

    Science.gov (United States)

    Dass, Amala

    2009-08-26

    The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).

  4. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    OpenAIRE

    Marija Matulionyte; Dominyka Dapkute; Laima Budenaite; Greta Jarockyte; Ricardas Rotomskis

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. The...

  5. Microscopic Fuel Particles Produced by Self-Assembly of Actinide Nanoclusters on Carbon Nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Na, Chongzheng [Univ. of Notre Dame, IN (United States)

    2016-10-17

    Many consider further development of nuclear power to be essential for sustained development of society; however, the fuel forms currently used are expensive to recycle. In this project, we sought to create the knowledge and knowhow that are needed to produce nanocomposite materials by directly depositing uranium nanoclusters on networks of carbon-­ based nanomaterials. The objectives of the proposed work were to (1) determine the control of uranium nanocluster surface chemistry on nanocomposite formation, (2) determine the control of carbon nanomaterial surface chemistry on nanocomposite formation, and (3) develop protocols for synthesizing uranium-­carbon nanomaterials. After examining a wide variety of synthetic methods, we show that synthesizing graphene-­supported UO2 nanocrystals in polar ethylene glycol compounds by polyol reduction under boiling reflux can enable the use of an inexpensive graphene precursor graphene oxide in the production of uranium-carbon nanocomposites in a one-­pot process. We further show that triethylene glycol is the most suitable solvent for producing nanometer-­sized UO2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-­supported UO2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, preventing oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO nanocrystals for further investigation and development under ambient conditions.

  6. Spectroscopy of metal "superatom" nanoclusters and high-Tc superconducting pairing

    Science.gov (United States)

    Halder, Avik; Kresin, Vitaly V.

    2015-12-01

    A unique property of metal nanoclusters is the "superatom" shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally strong electron pairing in certain clusters composed of tens to hundreds of atoms. In a finite system, such as a free nanocluster or a nucleus, pairing is observed most clearly via its effect on the energy spectrum of the constituent fermions. Accordingly, we performed a photoionization spectroscopy study of size-resolved aluminum nanoclusters and observed a rapid rise in the near-threshold density of states of several clusters (A l37 ,44 ,66 ,68 ) with decreasing temperature. The characteristics of this behavior are consistent with compression of the density of states by a pairing transition into a high-temperature superconducting state with Tc≳100 K. This value exceeds that of bulk aluminum by two orders of magnitude. These results highlight the potential of novel pairing effects in size-quantized systems and the possibility to attain even higher critical temperatures by optimizing the particles' size and composition. As a new class of high-temperature superconductors, such metal nanocluster particles are promising building blocks for high-Tc materials, devices, and networks.

  7. A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption

    Science.gov (United States)

    Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei

    2015-10-01

    A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c5nr05800g

  8. Encapsulation of nanoclusters in dried gel materials via an inverse micelle/sol gel synthesis

    Science.gov (United States)

    Martino, Anthony; Yamanaka, Stacey A.; Kawola, Jeffrey S.; Showalter, Steven K.; Loy, Douglas A.

    1998-01-01

    A dried gel material sterically entrapping nanoclusters of a catalytically active material and a process to make the material via an inverse micelle/sol-gel synthesis. A surfactant is mixed with an apolar solvent to form an inverse micelle solution. A salt of a catalytically active material, such as gold chloride, is added along with a silica gel precursor to the solution to form a mixture. To the mixture are then added a reducing agent for the purpose of reducing the gold in the gold chloride to atomic gold to form the nanoclusters and a condensing agent to form the gel which sterically entraps the nanoclusters. The nanoclusters are normally in the average size range of from 5-10 nm in diameter with a monodisperse size distribution.

  9. XAFS studies of monodisperse Au nanoclusters formation in the etching process

    International Nuclear Information System (INIS)

    Yang, Lina; Huang, Ting; Liu, Wei; Bao, Jie; Huang, Yuanyuan; Cao, Yuanjie; Yao, Tao; Sun, Zhihu; Wei, Shiqiang

    2016-01-01

    Understanding the formation mechanism of gold nanoclusters is essential to the development of their synthetic chemistry. Here, by using x-ray absorption fine-structure (XAFS) spectroscopy, UV-Vis and MS spectra, the formation process of monodisperse Au 13 nanoclusters is investigated. We find that a critical step involving the formation of smaller Au 8 -Au 11 metastable intermediate clusters induced by the HCl + HSR etching of the polydisperse Au n precursor clusters occurs firstly. Then these intermediate species undergo a size-growth to Au 13 cores, followed by a slow structure rearrangement to reach the final stable structure. This work enriches the understanding of cluster formation chemistry and may guide the way towards the design and the controllable synthesis of nanoclusters. (paper)

  10. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    OpenAIRE

    van Huis, MA; van Veen, A; Schut, H; Eijt, SWH; Kooi, BJ; De Hosson, JTM

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5...

  11. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  12. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    International Nuclear Information System (INIS)

    Borisyuk, P.V.; Krasavin, A.V.; Tkalya, E.V.; Lebedinskii, Yu.Yu.; Vasiliev, O.S.; Yakovlev, V.P.; Kozlova, T.I.; Fetisov, V.V.

    2016-01-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters’ tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  13. Effect of cold rolling on the formation and distribution of nanoclusters during pre-aging in an Al–Mg–Si alloy

    International Nuclear Information System (INIS)

    Serizawa, A.; Sato, T.; Miller, M.K.

    2013-01-01

    The effect of high densities of dislocations on the formation behavior of two types of nano-scale clusters (nanoclusters), which are formed at room temperature or during pre-aging at ∼373 K in an Al–Mg–Si alloy, was investigated by atom probe tomography. Cold rolling was applied to modify the formation behavior and/or the characteristics of the nanoclusters and also the precipitation sequence, which involve both nanoclusters and a strengthening phase to improve the bake-hardening response. Nanoclusters formed during pre-aging tended to form along the dislocations. Cold rolling accelerated the preferential formation of the nanoclusters, whereas the number density of the nanoclusters decreased by cold rolling before pre-aging. However, the number density of the nanoclusters was considerably higher than that of the β″ phase. Cold rolling before pre-aging enhanced the age-hardenability the most compared with other processes such as the contemporary pre-aging process. It is considered that the nanoclusters along dislocations lead to the preferential transformation to the β″ phase and then the rapid growth of the β″ phase. The nanoclusters formed on dislocations are effective in improving the bake-hardening response for the duration of the bake-hardening process. The kinetics and the distribution of the nanoclusters were found to be affected by the dislocations which were induced by cold rolling.

  14. Energy of the Isolated Metastable Iron-Nickel FCC Nanocluster with a Carbon Atom in the Tetragonal Interstice.

    Science.gov (United States)

    Bondarenko, Natalya V; Nedolya, Anatoliy V

    2017-12-01

    The energy of the isolated iron-nickel nanocluster was calculated by molecular mechanics method using Lennard-Jones potential. The cluster included a carbon atom that drifted from an inside octahedral interstice to a tetrahedral interstice in [Formula: see text] direction and after that in direction to the surface. In addition, one of 14 iron atoms was replaced by a nickel atom, the position of which was changing during simulation.The energy of the nanocluster was estimated at the different interatomic distances. As a result of simulation, the optimal interatomic distances of Fe-Ni-C nanocluster was chosen for the simulation, in which height of the potential barrier was maximal and face-centered cubic (FCC) nanocluster was the most stable.It is shown that there were three main positions of a nickel atom that significantly affected nanocluster's energy.The calculation results indicated that position of the carbon atom in the octahedral interstice was more energetically favorable than tetrahedral interstice in the case of FCC nanocluster. On the other side, the potential barrier was smaller in the direction [Formula: see text] than in the direction .This indicates that there are two ways for carbon atom to drift to the surface of the nanocluster.

  15. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins.

    Science.gov (United States)

    Rodríguez, Henry A; Giraldo, Luis F; Casanova, Herley

    2015-07-01

    The aim of this work was to study the effect of silica nanoclusters (SiNC), obtained by a solvent evaporation method and functionalized by 3-methacryloxypropyltrimethoxysilane (MPS) and MPS+octyltrimethoxysilane (OTMS) (50/50wt/wt), on the rheological, mechanical and sorption properties of urethane dimethylacrylate (UDMA)/triethylenglycol dimethacrylate (TEGDMA) (80/20wt/wt) resins blend. Silica nanoparticles (SiNP) were silanized with MPS or MPS+OTMS (50/50wt/wt) and incorporated in an UDMA-isopropanol mix to produce functionalized silica nanoclusters after evaporating the isopropanol. The effect of functionalized SiNC on resins rheological properties was determined by large and small deformation tests. Mechanical, thermal, sorption and solubility properties were evaluated for composite materials. The UDMA/TEGDMA (80/20wt/wt) resins blend with added SiNC (ca. 350nm) and functionalized with MPS showed a Newtonian flow behavior associated to their spheroidal shape, whereas the resins blend with nanoclusters silanized with MPS+OTMS (50/50wt/wt) (ca. 400nm) showed a shear-thinning behavior due to nanoclusters irregular shape. Composite materials prepared with bare silica nanoclusters showed lower compressive strength than functionalized silica nanoclusters. MPS functionalized nanoclusters showed better mechanical properties but higher water sorption than functionalized nanoclusters with both silane coupling agents, MPS and OTMS. The solvent evaporation method applied to functionalized nanoparticles showed to be an alternative way to the sinterization method for producing nanoclusters, which improved some dental composite mechanical properties and reduced water sorption. The shape of functionalized silica nanoclusters showed to have influence on the rheological properties of SiNC resin suspensions and the mechanical and sorption properties of light cured composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. A scalable synthesis of highly stable and water dispersible Ag 44(SR)30 nanoclusters

    KAUST Repository

    AbdulHalim, Lina G.; Ashraf, Sumaira; Katsiev, Khabiboulakh; Kirmani, Ahmad R.; Kothalawala, Nuwan; Anjum, Dalaver H.; Abbas, Sikandar Zameer; Amassian, Aram; Stellacci, Francesco; Dass, Amala; Hussain, Irshad; Bakr, Osman

    2013-01-01

    We report the synthesis of atomically monodisperse thiol-protected silver nanoclusters [Ag44(SR)30] m, (SR = 5-mercapto-2-nitrobenzoic acid) in which the product nanocluster is highly stable in contrast to previous preparation methods. The method is one-pot, scalable, and produces nanoclusters that are stable in aqueous solution for at least 9 months at room temperature under ambient conditions, with very little degradation to their unique UV-Vis optical absorption spectrum. The composition, size, and monodispersity were determined by electrospray ionization mass spectrometry and analytical ultracentrifugation. The produced nanoclusters are likely to be in a superatom charge-state of m = 4-, due to the fact that their optical absorption spectrum shares most of the unique features of the intense and broadly absorbing nanoparticles identified as [Ag44(SR) 30]4- by Harkness et al. (Nanoscale, 2012, 4, 4269). A protocol to transfer the nanoclusters to organic solvents is also described. Using the disperse nanoclusters in organic media, we fabricated solid-state films of [Ag44(SR)30]m that retained all the distinct features of the optical absorption spectrum of the nanoclusters in solution. The films were studied by X-ray diffraction and photoelectron spectroscopy in order to investigate their crystallinity, atomic composition and valence band structure. The stability, scalability, and the film fabrication method demonstrated in this work pave the way towards the crystallization of [Ag44(SR)30]m and its full structural determination by single crystal X-ray diffraction. Moreover, due to their unique and attractive optical properties with multiple optical transitions, we anticipate these clusters to find practical applications in light-harvesting, such as photovoltaics and photocatalysis, which have been hindered so far by the instability of previous generations of the cluster. © 2013 The Royal Society of Chemistry.

  17. Theoretical Studies of Nanoclusters (Briefing Charts)

    Science.gov (United States)

    2015-07-23

    nanoclusters. However, scanning transmission electron microscopy ( STEM ) measures show cluster inversion occurred to produce MgyCux(!) a) copper atoms b...methane (née CLL -1) as a potential explosive ingredient: a theoretical study”, Propellants, Explosives, Pyrotechnics 38, 9-13 (2013). Jesus Paulo L

  18. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    Science.gov (United States)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  19. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    Energy Technology Data Exchange (ETDEWEB)

    Boutard, J.-L., E-mail: jean-louis.boutard@cea.fr [Cabinet du Haut-Commissaire, CEA/Saclay, 91191 Gif sur Yvette Cedex (France); Badjeck, V. [LPS, UMR CNRS 8502, Building 510, Université Paris-Sud 11, 91405 Orsay Cedex (France); Barguet, L. [LAUM, UMR CNRS 6613, Building IAM – UFR Sciences, Avenue O. Messiaen, 72085 Le Mans Cedex 9 (France); Barouh, C. [DMN/SRMP, CEA/Saclay, Building 520, 91191 Gif sur Yvette Cedex (France); Bhattacharya, A. [DMN/SRMP, CEA/Saclay, Building 520, 91191 Gif sur Yvette Cedex (France); CSNSM, UMR CNRS 8609, Université Paris-Sud 11, Buildings 104 and 108, 91405 Orsay Campus (France); Colignon, Y. [IM2NP, UMR CNRS 7334, Case 142, Faculté des Sciences, Campus de Saint Jérôme, Aix Marseille Université, 13397 Marseille Cedex 20 (France); Hatzoglou, C. [GPM, UMR CNRS 6634, Technopôle du Madrillet, Avenue de l’Université, BP12, 76801 Saint Etienne du Rouvray Cedex (France); Loyer-Prost, M. [DMN/SRMP, CEA/Saclay, Building 520, 91191 Gif sur Yvette Cedex (France); Rouffié, A.L. [DMN/SRMA, CEA/Saclay, Building 455, 91191 Gif sur Yvette Cedex (France); Sallez, N. [SIMAP, UMR CNRS 5266, INPG, Domaine Universitaire, 1130 rue de la Piscine, BP75, 38402 Saint Martin d’Hères Cedex (France); Salmon-Legagneur, H. [DMN/SRMA, CEA/Saclay, Building 455, 91191 Gif sur Yvette Cedex (France); Schuler, T. [DMN/SRMP, CEA/Saclay, Building 520, 91191 Gif sur Yvette Cedex (France)

    2014-12-15

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9–14% Cr ferritic–martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical–chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α′ unmixing.

  20. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    International Nuclear Information System (INIS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A.L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-01-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9–14% Cr ferritic–martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical–chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α′ unmixing

  1. Optical properties of multicomponent antimony-silver nanoclusters formed in silica by sequential ion implantation

    International Nuclear Information System (INIS)

    Zuhr, R.A.

    1995-11-01

    The linear and nonlinear optical properties of nanometer dimension metal colloids embedded in a dielectric depend explicitly on the electronic structure of the metal nanoclusters. The ability to control the electronic structure of the nanoclusters may make it possible to tailor the optical properties for enhanced performance. By sequential implantation of different metal ion species multi-component nanoclusters can be formed with significantly different optical properties than single element metal nanoclusters. The authors report the formation of multi-component Sb/Ag nanoclusters in silica by sequential implantation of Sb and Ag. Samples were implanted with relative ratios of Sb to Ag of 1:1 and 3:1. A second set of samples was made by single element implantations of Ag and Sb at the same energies and doses used to make the sequentially implanted samples. All samples were characterized using RBS and both linear and nonlinear optical measurements. The presence of both ions significantly modifies the optical properties of the composites compared to the single element nanocluster glass composites. In the sequentially implanted samples the optical density is lower, and the strong surface plasmon resonance absorption observed in the Ag implanted samples is not present. At the same time the nonlinear response of the these samples is larger than for the samples implanted with Sb alone, suggesting that the addition of Ag can increase the nonlinear response of the Sb particles formed. The results are consistent with the formation of multi-component Sb/Ag colloids

  2. Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Jin, Shi; Chen, Man; Dong, Haifeng; He, Bingyu; Lu, Huiting; Su, Lei; Dai, Wenhao; Zhang, Qiaochu; Zhang, Xueji

    2015-01-01

    Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter , which is vital in high performance fuel cells, batteries and nanodevices.

  3. Real-time transmission electron microscope observation of gold nanoclusters diffusing into silicon at room temperature

    International Nuclear Information System (INIS)

    Ishida, Tadashi; Nakajima, Yuuki; Fujita, Hiroyuki; Endo, Junji; Collard, Dominique

    2009-01-01

    Gold diffusion into silicon at room temperature was observed in real time with atomic resolution. Gold nanoclusters were formed on a silicon surface by an electrical discharge between a silicon tip and a gold coated tip inside an ultrahigh-vacuum transmission electron microscope (TEM) specimen chamber. At the moment of the gold nanocluster deposition, the gold nanoclusters had a crystalline structure. The crystalline structure gradually disappeared due to the interdiffusion between silicon and gold as observed after the deposition of gold nanoclusters. The shape of the nanocluster gradually changed due to the gold diffusion into the damaged silicon. The diffusion front between silicon and gold moved toward the silicon side. From the observations of the diffusion front, the gold diffusivity at room temperature was extracted. The extracted activation energy, 0.21 eV, matched the activation energy in bulk diffusion between damaged silicon and gold. This information is useful for optimizing the hybridization between solid-state and biological nanodevices in which gold is used as an adhesive layer between the two devices.

  4. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  5. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Marija Matulionyte

    2017-02-01

    Full Text Available In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS of bovine serum albumin-encapsulated (BSA-Au NCs and 2-(N-morpholino ethanesulfonic acid (MEScapped photoluminescent gold nanoclusters (Au-MES NCs were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  6. Fabrication and modification of metal nanocluster composites using ion and laser beams

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Osborne, D.H. Jr.; Magruder, R.H. III; White, C.W.; Zuhr, R.A.; Townsend, P.D.; Hole, D.E.; Leuchtner, R.E.

    1994-12-01

    Metal nanocluster composites have attractive properties for applications in nonlinear optics. However, traditional fabrication techniques -- using melt-glass substrates -- are severely constrained by equilibrium thermodynamics and kinetics. This paper describes the fabrication of metal nanoclusters in both crystalline and glassy hosts by ion implantation and pulsed laser deposition. The size and size distribution of the metal nanoclusters can be modified by controlling substrate temperature during implantation, by subsequent thermal annealing, or by laser irradiation. The authors have characterized the optical response of the composites by absorption and third-order nonlinear-optical spectroscopies; electron and scanning-probe microscopies have been used to benchmark the physical characteristics of the composites. The outlook for controlling the structure and nonlinear optical response properties of these nanophase materials appears increasingly promising

  7. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    Science.gov (United States)

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Protein-templated gold nanoclusters based sensor for off-on detection of ciprofloxacin with a high selectivity.

    Science.gov (United States)

    Chen, Zhanguang; Qian, Sihua; Chen, Junhui; Cai, Jie; Wu, Shuyan; Cai, Ziping

    2012-05-30

    In this contribution, bovine serum albumin stabilized gold nanoclusters as novel fluorescent probes were successfully utilized for the detection of ciprofloxacin for the first time. Our prepared gold nanoclusters exhibited strong emission with peak maximum at 635 nm. Cu(2+) was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of ciprofloxacin caused the fluorescence intensity restoration of the Cu(2+)-gold nanoclusters system. The increase in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by ciprofloxacin allows the sensitive detection of ciprofloxacin in the range of 0.4 ng mL(-1) to 50 ng mL(-1). The detection limit for ciprofloxacin is 0.3 ng mL(-1) at a signal-to-noise ratio of 3. The present sensor for ciprofloxacin detection possesses a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters

    Science.gov (United States)

    2016-01-13

    affected by the environment of the stabilizing protein, allowing these hybrid systems to act as sensors in many applications.2,9,14–19 This has led...Biosens Bioelectron. 2012;32:297–299. 8. Joseph D, Geckeler KE. Synthesis of highly fluorescent gold nanoclusters using egg white proteins. Colloids Surf...Chang HW, Chien YC, Hsiao JK, Cheng JT, Chou PT. Insulin -directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and

  10. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  11. Platinum-gold nanoclusters as catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Giorgi, L; Giorgi, R; Gagliardi, S; Serra, E; Alvisi, M; Signore, M A; Piscopiello, E

    2011-10-01

    Nanosized platinum-gold alloys clusters have been deposited on gas diffusion electrode by sputter deposition. The deposits were characterized by FE-SEM, TEM and XPS in order to verify the formation of alloy nanoparticles and to study the influence of deposition technique on the nanomorphology. The deposition by sputtering process allowed a uniform distribution of metal particles on porous surface of carbon supports. Typical island growth mode was observed with the formation of a dispersed metal nanoclusters (mean size about 5 nm). Cyclic voltammetry was used to determine the electrochemical active surface and the electrocatalytic performance of the PtAu electrocatalysts for methanol oxidation reaction. The data were re-calculated in the form of mass specific activity (MSA). The sputter-catalyzed electrodes showed higher performance and stability compared to commercial catalysts.

  12. Synthesis of indium nanoclusters and formation of thin film contacts on plastic substrates for organic and flexible electronics applications

    International Nuclear Information System (INIS)

    Shi, Frank F; Bulkowski, Michal; Hsieh, K C

    2007-01-01

    In this work, we described the processes of synthesizing free-standing indium nanoclusters using inverse micelles and microemulsions as well as synthesizing organic-encapsulated indium nanoclusters using alkanethiols as the organic encapsulants. The synthesized organic-encapsulated indium nanoclusters have demonstrated the feasibilities to be used as plastic compatible soft metal contacts for emerging organic devices. The homogeneously distributed indium nanoclusters with sizes of 10-30 nm have been fabricated on a few different plastic substrates. By changing the alkanethiol carbon chain length and the sizes of the indium nanoclusters, the annealing temperature required to form low-resistance indium thin film conductors has been reduced to 80-100 deg. C, which is acceptable for a variety of organic thin films

  13. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-01-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10 16 Cd ions cm -2 and 210 keV, 1 x 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions

  14. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Science.gov (United States)

    van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  15. Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media

    Directory of Open Access Journals (Sweden)

    Daisuke Kino

    2017-12-01

    Full Text Available Layered double hydroxides (LDHs have attracted attention as green materials due to their catalytic ability in benign aqueous solvents. We here demonstrate the synthesis of colloidal Co–Al LDH nanoclusters with an average size of <10 nm via a facile liquid-phase reaction for the enhancement of the catalytic activity. To the best of our knowledge, the present LDH is the smallest Co–Al LDH with an extremely large surface area and stability in an aqueous solvent, forming a stable and concentrated colloidal solution as high as 40 g/L. We investigated the formation mechanism, and the catalytic activity of Co–Al LDH nanoclusters. The Co–Al LDH nanoclusters showed 47 times higher rate of the reduction of dye molecules in the aqueous media than standard Co–Al LDH particles with a micrometer size. LDH nanoclusters demonstrated here are promising green nanocatalysts for the aqueous reaction processes.

  16. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    Science.gov (United States)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  17. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    Science.gov (United States)

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  18. Self-trapping nature of Tl nanoclusters on the Si(111)-7x7 surface

    International Nuclear Information System (INIS)

    Hwang, C G; Kim, N D; Lee, G; Shin, S Y; Kim, J S; Chung, J W

    2008-01-01

    We have studied properties of thallium (Tl) nanoclusters formed on the Si(111)-7x7 surface at room temperature (RT) by utilizing photoemission spectroscopy (PES) and high-resolution electron-energy-loss spectroscopy (HREELS) combined with first principles calculations. Our PES data reveal that the surface states stemming from the Si substrate remain quite inert with Tl adsorption producing no Tl-induced state until saturation at Tl coverage θ=0.21 monolayers. Such a behavior, in sharp contrast with the extremely reactive surface states upon the formation of Na or Li nanoclusters, together with the presence of a unique Tl-induced loss peak in HREELS spectra suggests no strong Si-Tl bonding, and is well understood in terms of gradual filling of Si dangling bonds with increasing θ. Our calculation further indicates the presence of several metastable atomic structures of Tl nanoclusters at RT rapidly transforming from one to another faster than 10 10 flippings per second. We thus conclude that the highly mobile Tl atoms form self-trapped nanoclusters within the attractive basins of the Si substrate at RT with several metastable phases. The mobile and multi-phased nature of Tl nanoclusters not only accounts for all the existing experimental observations available at present, but also provides an example of self-trapping of atoms in a nanometre-scale region

  19. Extension of the radiative lifetime of Wannier-Mott excitons in semiconductor nanoclusters

    International Nuclear Information System (INIS)

    Kukushkin, V. A.

    2015-01-01

    The purpose of the study is to calculate the radiative lifetime of Wannier-Mott excitons in three-dimensional potential wells formed of direct-gap narrow-gap semiconductor nanoclusters in wide-gap semiconductors and assumed to be large compared to the exciton radius. Calculations are carried out for the InAs/GaAs heterosystem. It is shown that, as the nanocluster dimensions are reduced to values on the order of the exciton radius, the exciton radiative lifetime becomes several times longer compared to that in a homogeneous semiconductor. The increase in the radiative lifetime is more pronounced at low temperatures. Thus, it is established that the placement of Wannier-Mott excitons into direct-gap semiconductor nanoclusters, whose dimensions are of the order of the exciton radius, can be used for considerable extension of the exciton radiative lifetime

  20. Spiral patterns of gold nanoclusters in silicon (100) produced by metal vapour vacuum arc implantation of gold ions

    International Nuclear Information System (INIS)

    Venkatachalam, Dinesh Kumar; Sood, Dinesh Kumar; Bhargava, Suresh Kumar

    2008-01-01

    Self-assembled gold nanoclusters are attractive building blocks for future nanoscale sensors and optical devices due to their exciting catalytic properties. In this work, we report direct bottom-up synthesis of spiral patterns of gold nanoclusters in silicon (100) substrates by Au ion implantation followed by thermal annealing. This unique phenomenon is observed only above a critical threshold implantation dose and annealing temperature. Systematic study by electron microscopy, analytical x-ray diffraction and atomic force microscopy shows the temperature- and time-dependent nucleation, growth of Au nanoclusters and evolution of the spiral patterns. The observed patterns of gold nanoclusters bear a resemblance to the spiral growth prevalent in some directionally solidified eutectic alloys. Based on this systematic study of the growth and morphology of nanoclusters, a tentative model has been proposed for the formation mechanism of this unusual self-assembled pattern in an amorphous Si/Au system. This model shows that melting of the implanted layer is essential and without which no spiral patterns are observed. A better understanding of this self-assembly process will open up new ways to fabricate ordered arrays of gold nanoclusters in silicon substrates for seeding selective growth of one-dimensional nanostructures

  1. Enzymatic reduction of U60 nanoclusters by Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qiang; Fein, Jeremy B. [Notre Dame Univ., IN (United States). Dept. of Civil and Environmental Engineering and Earth Sciences

    2018-04-01

    In this study, a series of reduction experiments were conducted using a representative uranyl peroxide nanocluster, U60 (K{sub 16}Li{sub 44}[UO{sub 2}(O{sub 2})OH]{sub 60}) and a bacterial species, Shewanella oneidensis MR-1, that is capable of enzymatic U(VI) reduction. U60 was reduced by S. oneidensis in the absence of O{sub 2}, but the reduction kinetics for U60 were significantly slower than was observed in this study for aqueous uranyl acetate, and were faster than was reported in previous studies for solid phase U(VI). Our results indicate that U60 aggregates bigger than 0.2 μm formed immediately upon mixing with the bacterial growth medium, and that these aggregates were gradually broken down during the process of reduction. Neither reduction nor dissolution of U60 was observed during 72 h of control experiments open to the atmosphere, indicating that the breakdown and dissolution of U60 aggregates is caused by the reduction of U60, and that S. oneidensis is capable of direct reduction of the U(VI) within the U60 nanoclusters, likely due to the adsorption of U60 aggregates onto bacterial cells. This study is first to show the reduction capacity of bacteria for uranyl peroxide nanoclusters, and the results yield a better understanding of the long term fate of uranium in environmental systems in which uranyl peroxide nanoclusters are present.

  2. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    Energy Technology Data Exchange (ETDEWEB)

    Huis, M.A. van E-mail: vanhuis@iri.tudelft.nl; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10{sup 16} Cd ions cm{sup -2} and 210 keV, 1 x 10{sup 16} Se ions cm{sup -2} in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  3. Stabilizing and Organizing Bi3 Cu4 and Bi7 Cu12 Nanoclusters in Two-Dimensional Metal-Organic Networks.

    Science.gov (United States)

    Yan, Linghao; Xia, Bowen; Zhang, Qiushi; Kuang, Guowen; Xu, Hu; Liu, Jun; Liu, Pei Nian; Lin, Nian

    2018-04-16

    Multinuclear heterometallic nanoclusters with controllable stoichiometry and structure are anticipated to possess promising catalytic, magnetic, and optical properties. Heterometallic nanoclusters with precise stoichiometry of Bi 3 Cu 4 and Bi 7 Cu 12 can be stabilized in the scaffold of two-dimensional metal-organic networks on a Cu(111) surface through on-surface metallosupramolecular self-assembly processes. The atomic structures of the nanoclusters were resolved using scanning tunneling microscopy and density functional theory calculations. The nanoclusters feature highly symmetric planar hexagonal shapes and core-shell charge modulation. The clusters are arranged as triangular lattices with a periodicity that can be tuned by choosing molecules of different size. This work shows that on-surface metallosupramolecular self-assembly creates unique possibilities for the design and synthesis of multinuclear heterometallic nanoclusters. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n.

    Science.gov (United States)

    Lahtinen, Tanja; Hulkko, Eero; Sokołowska, Karolina; Tero, Tiia-Riikka; Saarnio, Ville; Lindgren, Johan; Pettersson, Mika; Häkkinen, Hannu; Lehtovaara, Lauri

    2016-11-10

    We present the synthesis, separation, and characterization of covalently-bound multimers of para-mercaptobenzoic acid (p-MBA) protected gold nanoclusters. The multimers were synthesized by performing a ligand-exchange reaction of a pre-characterized Au 102 (p-MBA) 44 nanocluster with biphenyl-4,4'-dithiol (BPDT). The reaction products were separated using gel electrophoresis yielding several distinct bands. The bands were analyzed by transmission electron microscopy (TEM) revealing monomer, dimer, and trimer fractions of the nanocluster. TEM analysis of dimers in combination with molecular dynamics simulations suggest that the nanoclusters are covalently bound via a disulfide bridge between BPDT molecules. The linking chemistry is not specific to Au 102 (p-MBA) 44 . The same approach yields multimers also for a larger monodisperse p-MBA-protected cluster of approximately 250 gold atoms, Au ∼250 (p-MBA) n . While the Au 102 (p-MBA) 44 is not plasmonic, the Au ∼250 (p-MBA) n nanocluster supports localized surface plasmon resonance (LSPR) at 530 nm. Multimers of the Au ∼250 (p-MBA) n exhibit additional transitions in their UV-vis spectrum at 630 nm and 810 nm, indicating the presence of hybridized LSPR modes. Well-defined structures and relatively small sizes make these systems excellent candidates for connecting ab initio theoretical studies and experimental quantum plasmonics. Moreover, our work opens new possibilities in the controlled synthesis of advanced monodisperse nanocluster superstructures.

  5. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Joshi, Chakra Prasad; Alhilaly, Mohammad J.; Bakr, Osman

    2016-01-01

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed

  6. Size-dependent structure of CdSe nanoclusters formed after ion implantation in MgO

    International Nuclear Information System (INIS)

    Huis, M.A. van; Veen, A. van; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; Hosson, J.Th.M. de

    2005-01-01

    The band gap as well as the optical and structural properties of semiconductor CdSe nanoclusters change as a function of the nanocluster size. Embedded CdSe nanoclusters in MgO were created by means of sequential Cd and Se ion implantation followed by thermal annealing. Changes during annealing were monitored using optical absorption and positron annihilation spectroscopy. High-resolution TEM on cross-sections after annealing at a temperature of 1300 K showed that clusters with a size below 5 nm have the high-pressure rock-salt structure and are in a cube-on-cube orientation relation with MgO, whereas clusters larger than 5 nm adopt the stable wurtzite crystal structure and were observed in two different orientation relations with MgO

  7. "light-on" sensing of antioxidants using gold nanoclusters

    KAUST Repository

    Hu, Lianzhe; Deng, Lin; Alsaiari, Shahad K.; Zhang, Dingyuan; Khashab, Niveen M.

    2014-01-01

    preservatives, and cosmetics has proved to be very vital. Gold nanoclusters (Au-NCs) have a core size below 2 nm and contain several metal atoms. They have interesting photophysical properties, are readily functionalized, and are safe to use in various

  8. High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer

    International Nuclear Information System (INIS)

    Jin, Hyung Dae; Chang, Chih-Hung; Garrison, Anna; Tseng, T; Paul, Brian K

    2010-01-01

    Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 μm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s -1 ) was achieved using a microreactor with a size of 1.687 cm 3 . This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.

  9. The Impact of the Polymer Chain Length on the Catalytic Activity of Poly(N-vinyl-2-pyrrolidone)-supported Gold Nanoclusters

    OpenAIRE

    Haesuwannakij, Setsiri; Kimura, Tetsunari; Furutani, Yuji; Okumura, Kazu; Kokubo, Ken; Sakata, Takao; Yasuda, Hidehiro; Yakiyama, Yumi; Sakurai, Hidehiro

    2017-01-01

    Poly(N-vinyl-2-pyrrolidone) (PVP) of varying molecular weight (M w ?=?40-360?kDa) were employed to stabilize gold nanoclusters of varying size. The resulting Au:PVP clusters were subsequently used as catalysts for a kinetic study on the sized-dependent aerobic oxidation of 1-indanol, which was monitored by time-resolved in situ infrared spectroscopy. The obtained results suggest that the catalytic behaviour is intimately correlated to the size of the clusters, which in turn depends on the mol...

  10. Growth and structure of Si and Ge in vanadium oxide nanomesh on Pd(1 1 1) studied by STM and DFT

    International Nuclear Information System (INIS)

    Chan, Lap Hong; Hayazaki, Shinji; Ogawa, Kokushi; Yuhara, Junji

    2013-01-01

    Highlights: ► We studied the growth and structure of Si and Ge in vanadium oxide nanomesh on Pd(1 1 1) by STM and DFT calculations. ► All the Si atoms formed isolated Si nanoclusters. ► Some Ge atoms formed monomer Ge nanodots on Pd(1 1 1), while the others formed isolated Ge nanoclusters. - Abstract: The growth of silicon (Si)/germanium (Ge) atoms in a well ordered (4 × 4) vanadium (V) oxide nanomesh on Pd(1 1 1) prepared by ultra-high-vacuum evaporation has been studied by scanning tunneling microscopy (STM) and ab initio density functional theory (DFT) calculations. At the very beginning of the Si deposition, all of the Si atoms deposited were adsorbed on top of the V-oxide nanomesh, forming Si nanoclusters, and each Si atom formed was isolated other Si atoms. Two different adsorption sites for Si atoms were observed by STM. In the case of Ge deposition, some Ge atoms filled the vanadium oxide nanoholes, forming Ge nanodots on Pd(1 1 1), while the others were adsorbed on top of the V-oxide nanomesh, forming isolated Ge nanoclusters. The ab initio DFT total-energy calculations indicated that the Ge atoms occupying the nanohole were more stable than those adsorbed on the nanomesh. The simulated images were highly consistent with the experimental STM images with the exception of the Ge nanodots, which exhibited a large, uniform protrusion in the STM images. Therefore, the adsorbed atom might be mobile in the nanohole at room temperature, possibly as a result of interaction with the STM tip.

  11. Tetrahedral 1B4Sb nanoclusters in GaP:(B, Sb)

    Energy Technology Data Exchange (ETDEWEB)

    Elyukhin, V A, E-mail: elyukhin@cinvestav.m [Departamento de Ingenieria Electrica-SEES, CINVESTAV-IPN, Avenida IPN 2508, Col. San Pedro Zacatenco, C. P. 07360, Mexico, D. F. (Mexico)

    2009-05-01

    Self-assembling conditions of 1B4Sb tetrahedral nanoclusters in GaP doped with boron and Sb isoelectronic impurities are represented in the ultradilute and dilute limits of the boron and Sb contents, respectively. The fulfilled estimates demonstrated the preferential complete or almost complete allocation of boron atoms in 1B4Sb nanoclusters at temperatures of 500 {sup 0}C and 900 {sup 0}C, respectively. The significant decrease of the sum of the free energies of the constituent compounds is the main origin of self-assembling. The reduction of the strain energy is the additional cause of this phenomenon.

  12. Silver and copper nanoclusters in the lustre decoration of Italian Renaissance pottery: an EXAFS study

    Science.gov (United States)

    Padovani, S.; Borgia, I.; Brunetti, B.; Sgamellotti, A.; Giulivi, A.; D'Acapito, F.; Mazzoldi, P.; Sada, C.; Battaglin, G.

    Lustre is one of the most important decorative techniques of the Medieval and Renaissance pottery of the Mediterranean basin, capable of producing brilliant metallic reflections and iridescence. Following the recent finding that the colour of lustre decorations is mainly determined by copper and silver nanoclusters dispersed in the glaze layer, the local environment of copper and silver atoms has been studied by extended X-ray absorption fine structure (EXAFS) spectroscopy on original samples of gold and red lustre. It has been found that, in gold lustre, whose colour is attributed mainly to the silver nanocluster dispersion, silver is only partially present in the metallic form and copper is almost completely oxidised. In the red lustre, whose colour is attributed mainly to the copper nanocluster dispersion, only a fraction of copper is present in the metallic form. EXAFS measurements on red lustre, carried out in the total electron yield mode to probe only the first 150 nm of the glaze layer, indicated that in some cases lustre nanoclusters may be confined in a very thin layer close to the surface.

  13. Characterization of submonolayer film composed of soft-landed copper nanoclusters on HOPG

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Shyamal, E-mail: shyamal.mondal@saha.ac.in; Das, Pabitra; Chowdhury, Debasree; Bhattacharyya, S. R. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700 064 (India)

    2015-06-24

    Preformed Copper nanoclusters are deposited on highly oriented pyrolytic graphite (HOPG) at very low energy. For the study of chemical composition X-ray Photoelectron Spectroscopy (XPS) is performed for a wide range of binding energy without exposing the sample in the ambient. Morphological aspects of the supported clusters are characterized employing high resolution scanning electron microscope (SEM). Different types of morphology are observed depending on the nature of the substrate surface. Big fractal islands are formed on terraces while at the step edges small islands are found to form. Ex-situ cathodoluminescence (CL) measurement shows peak at 558 nm wavelength which corresponds to the band gap of 2.22 eV which is due to Cu{sub 2}O nanocrystals formed due to oxidation of the deposited film in ambient.

  14. Tailoring Enzyme-Like Activities of Gold Nanoclusters by Polymeric Tertiary Amines for Protecting Neurons Against Oxidative Stress.

    Science.gov (United States)

    Liu, Ching-Ping; Wu, Te-Haw; Lin, Yu-Lung; Liu, Chia-Yeh; Wang, Sabrina; Lin, Shu-Yi

    2016-08-01

    The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase-like activity can decompose hydrogen peroxide (H2 O2 ) to produce highly toxic hydroxyl radicals (•OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating-mediated enzyme-like activities. Herein, it is reported for the first time that amine-terminated PAMAM dendrimer-entrapped gold nanoclusters (AuNCs-NH2 ) unexpectedly lose their peroxidase-like activity while still retaining their catalase-like activity in physiological conditions. Surprisingly, the methylated form of AuNCs-NH2 (i.e., MAuNCs-N(+) R3 , where R = H or CH3 ) results in a dramatic recovery of the intrinsic peroxidase-like activity while blocking most primary and tertiary amines (1°- and 3°-amines) of dendrimers to form quaternary ammonium ions (4°-amines). However, the hidden peroxidase-like activity is also found in hydroxyl-terminated dendrimer-encapsulated AuNCs (AuNCs-OH, inside backbone with 3°-amines), indicating that 3°-amines are dominant in mediating the peroxidase-like activity. The possible mechanism is further confirmed that the enrichment of polymeric 3°-amines on the surface of dendrimer-encapsulated AuNCs provides sufficient suppression of the critical mediator •OH for the peroxidase-like activity. Finally, it is demonstrated that AuNCs-NH2 with diminished cytotoxicity have great potential for use in primary neuronal protection against oxidative damage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Phosphatidylserine and GTPase activation control Cdc42 nanoclustering to counter dissipative diffusion.

    Science.gov (United States)

    Sartorel, Elodie; Ünlü, Caner; Jose, Mini; Massoni-Laporte, Aurélie; Meca, Julien; Sibarita, Jean-Baptiste; McCusker, Derek

    2018-04-18

    The anisotropic organization of plasma membrane constituents is indicative of mechanisms that drive the membrane away from equilibrium. However, defining these mechanisms is challenging due to the short spatio-temporal scales at which diffusion operates. Here, we use high-density single protein tracking combined with photoactivation localization microscopy (sptPALM) to monitor Cdc42 in budding yeast, a system in which Cdc42 exhibits anisotropic organization. Cdc42 exhibited reduced mobility at the cell pole, where it was organized in nanoclusters. The Cdc42 nanoclusters were larger at the cell pole than those observed elsewhere in the cell. These features were exacerbated in cells expressing Cdc42-GTP, and were dependent on the scaffold Bem1, which contributed to the range of mobility and nanocluster size exhibited by Cdc42. The lipid environment, in particular phosphatidylserine levels, also played a role in regulating Cdc42 nanoclustering. These studies reveal how the mobility of a Rho GTPase is controlled to counter the depletive effects of diffusion, thus stabilizing Cdc42 on the plasma membrane and sustaining cell polarity. Movie S1 Movie S1 sptPALM imaging of live yeast expressing Pil1-mEOS expressed at the genomic locus. Pil1-mEOS was simultaneously photo-converted with a 405 nm laser and imaged with a 561 nm laser using HiLo illumination. Images were acquired at 20 ms intervals, of which 300 frames are shown at 7 frames per second.

  16. Fabrication and in vitro characterization of gadolinium-based nanoclusters for simultaneous drug delivery and radiation enhancement

    Science.gov (United States)

    Yoo, Shannon S.; Guo, Linghong; Sun, Xuejun; Shaw, Andrew R.; Yuan, Zhipeng; Löbenberg, Raimar; Roa, Wilson H.

    2016-09-01

    We report the synthesis of a gadolinium hydroxide (Gd(OH)3) nanorod based doxorubicin (Dox) delivery system that can enhance both magnetic resonance imaging contrast and radiation sensitivity. A simple and cost effective wet-chemical method was utilized in the presence of manganese (Mn) ions and Dox to produce the Gd(OH)3:Mn·Dox nanocluster structure. The Gd(OH)3:Mn·Dox nanocluster was composed of Mn-doped Gd(OH)3 nanorods arranged in parallel with Dox as a linker molecule between the adjacent nanorods. No other studies have utilized Dox as both the linker and therapeutic molecule in a nanostructure to date. The Gd(OH)3 nanorod is reported to have no significant cellular or in vivo toxicity, which makes it an ideal base material for this biomedical application. The Gd(OH)3:Mn·Dox nanocluster exhibited paramagnetic behavior and was stable in a colloidal solution. The nanocluster also enabled high Dox loading capacity and specifically released Dox in a sustained and pH-dependent manner. The positively charged Gd(OH)3:Mn·Dox nanoclusters were readily internalized into MDA-MB-231 breast cancer cells via endocytosis, which resulted in intracellular release of Dox. The released Dox in cells was effective in conferring cytotoxicity and inhibiting proliferation of cancer cells. Furthermore, a synergistic anticancer effect could be observed with radiation treatment. Overall, the Gd(OH)3:Mn·Dox nanocluster drug delivery system described herein may have potential utility in clinics as a multifunctional theranostic nanoparticle with combined benefits in both diagnosis and therapy in the management of cancer.

  17. Synthesis of hydrophobic gold nanoclusters: growth mechanism study, luminescence property and catalytic application

    International Nuclear Information System (INIS)

    Selvam, Tamil Selvi; Chi, Kai-Ming

    2011-01-01

    One-pot synthesis of well dispersed, size-controlled gold nanoparticles with the average size of 10–15 nm and luminescent gold nanoclusters with average size of 1.7–2.0 nm were successfully achieved by thermal decomposition of gold organometallic precursor CH 3 AuPPh 3 in the presence of thiol surfactants in o-xylene. Only difference between the preparations of two types of Au nanoparticles is the amount of thiol surfactant employed. The mechanistic study of formation of gold nanoparticles was carried out by analyzing the samples at different reaction time intervals and revealed that two-staged growth process was involved. The nanoclusters showed strong red emission with the maximum intensity at about 600 nm. The maximum room temperature photoluminescence quantum yield was measured as 1.2%. The catalytic ability of the Au nanoclusters to promote Suzuki–Miyaura coupling involving the C–C bond formation was also investigated.

  18. Organization of copper nanoclusters in Langmuir–Blodgett films

    Indian Academy of Sciences (India)

    Stable nanoclusters of Cu were synthesized using Langmuir–Blodgett films of octadecylsuccinic acid (ODSA) as template. The Langmuir–Blodgett films of ODSA formed from subphase containing copper ions were first subjected to sulphidation (S) using sodium sulphide and then hydrogenated (H) using hydrogen gas.

  19. In-vitro Synthesis of Gold Nanoclusters in Neurons

    Science.gov (United States)

    2016-04-01

    ARL-TN-0753 ● APR 2016 US Army Research Laboratory In-vitro Synthesis of Gold Nanoclusters in Neurons by Maggie Gillan and...longer needed. Do not return it to the originator. ARL-TN-0753 ● APR 2016 US Army Research Laboratory In-vitro Synthesis of...

  20. CO oxidation on gold nanoparticles: Theoretical studies

    DEFF Research Database (Denmark)

    Remediakis, Ioannis; Lopez, Nuria; Nørskov, Jens Kehlet

    2005-01-01

    We present a summary of our theoretical results regarding CO oxidation on both oxide-supported and isolated gold nanoparticles. Using Density Functional Theory we have studied the adsorption of molecules and the oxidation reaction of CO on gold clusters. Low-coordinated sites on the gold...... nanoparticles can adsorb small inorganic molecules such as O2 and CO, and the presence of these sites is the key factor for the catalytic properties of supported gold nanoclusters. Other contributions, induced by the presence of the support, can provide parallel channels for the reaction and modulate the final...

  1. Co-deposition of silver nanoclusters and sputtered alumina for sensor devices

    International Nuclear Information System (INIS)

    Schultes, Guenter; Schmidt, Michael; Truar, Marcel; Goettel, Dirk; Freitag-Weber, Olivia; Werner, Ulf

    2007-01-01

    Heterogeneous thin films may be beneficial for sensoring devices. The electrical conductivity of nanoscale metallic particles being embedded in a matrix of non conducting material should exhibit higher sensitivity to mechanical stress and strain compared to homogeneous films. The production of heterogeneous films may follow different routes. This paper describes the attempt to embed Ag nanoclusters emitted from a gas aggregation cluster source into a growing matrix of alumina originating from sputter sources. The characteristics of the cluster source are first resumed, with their mean masses ranging from approx. 1000 to 100,000 atoms per cluster. The expelled and soft landed clusters are extensively examined by transmission electron microscopy verifying their crystalline form. Yet the use of a radio frequency driven sputter source for the embed material destroys and annihilates the Ag clusters even at very low sputter power. If a reactive direct current sputter process is performed within an oxidising sputter gas instead, the Ag clusters are oxidised to different oxides, but they survive as crystalline entities as verified by X-ray diffraction investigations. A simple subsequent heat treatment reduces the Ag oxides to metallic Ag clusters

  2. Shell model for REO{sub x} nanoclusters in amorphous SiO{sub 2}: charge trapping and electroluminescence quenching

    Energy Technology Data Exchange (ETDEWEB)

    Tiagulskyi, S.; Nazarov, A.; Tyagulskii, I.; Lysenko, V. [Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospekt Nauki 41, 03028 Kiev (Ukraine); Rebohle, L.; Lehmann, J.; Skorupa, W. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden Rossendorf e.V., POB 510119, 01314 Dresden (Germany)

    2012-06-15

    In this work charge trapping and electroluminescence (EL) quenching in rare-earth (RE) implanted SiO{sub 2} on Si as a function of injected charge into the dielectric were studied. The blocking of the luminescent REO{sub X} nanoclusters from the hot exciting electrons by negative charge trapping in a defect region (shell) located in the vicinity of the REO{sub X} nanocluster/SiO{sub 2} interface is considered as the main mechanism of EL quenching for small size (up to 10 nm) REO{sub X} nanoclusters. It is suggested that the increase of the nanoclusters size results in disordering of the SiO{sub 2} matrix but in a decrease of local blocking for excitation of the luminescent centers. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Adsorption of small gas molecules on B36 nanocluster

    Indian Academy of Sciences (India)

    Supplementary Information. Journal of Chemical Sciences. Adsorption of small gas molecules on B36 nanocluster. YOUNES VALADBEIGI. *. , HOSSEIN FARROKHPOUR and MAHMOUD TABRIZCHI. Department of chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran. *. Corresponding Author: Younes ...

  4. Bulky Counterions: Enhancing the Two-Photon Excited Fluorescence of Gold Nanoclusters.

    Science.gov (United States)

    Bertorelle, Franck; Moulin, Christophe; Soleilhac, Antonin; Comby-Zerbino, Clothilde; Dugourd, Philippe; Russier-Antoine, Isabelle; Brevet, Pierre-François; Antoine, Rodolphe

    2018-01-19

    Increasing fluorescence quantum yields of ligand-protected gold nanoclusters has attracted wide research interest. The strategy consisting in using bulky counterions has been found to dramatically enhance the fluorescence. In this Communication, we push forward this concept to the nonlinear optical regime. We show that by an appropriate choice of bulky counterions and of solvent, a 30-fold increase in two-photon excited fluorescence (TPEF) signal at ≈600 nm for gold nanoclusters can be obtained. This would correspond to a TPEF cross-section in the range of 0.1 to 1 GM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effect of thermal treatments on sputtered silver nanocluster/silica composite coatings on soda-lime glasses: ionic exchange and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Ferraris, S., E-mail: sara.ferraris@polito.it; Miola, M.; Perero, S.; Balagna, C.; Verne, E. [Politecnico di Torino, Department of Applied Science and Technology, Institute of Materials Physics and Engineering (Italy); Gautier, G. [IMAMOTER Institute for Agricultural and Earthmoving Machines (Italy); Manfredotti, Ch.; Battiato, A.; Vittone, E. [University of Torino, Physics Department, NIS Excellence Centre and CNISM (Italy); Speranza, G. [Fondazione Bruno Kessler FBK (Italy); Bogdanovic, I. [Ruder Boskovic Institute, Experimental Physics Department (Croatia)

    2012-12-15

    Silver nanocluster/silica composite coatings were deposited on both soda-lime and silica glasses by radio frequency (RF) co-sputtering. The effect of thermal treatments on the microstructure in the range of 150-450 Degree-Sign C were examined by UV-visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Time of Flight-Elastic Recoil Detection Analysis. Sodium/silver ionic exchange was evidenced for coatings sputtered on soda-lime substrates after heating at 450 Degree-Sign C; presence of silver ions and/or silver nanoclusters, nanocluster size and their position inside the sputtered layers will be discussed for as-deposited and heated coatings on both substrates. The antibacterial activity of all coatings was determined against Staphylococcus aureus and Candida albicans by disk diffusion method and colonies forming units count; in agreement with microstructural results, the antibacterial activity present on all coatings was slightly reduced after heating at 450 Degree-Sign C. All coatings have been submitted to humidity plus UV ageing and sterilization by autoclave, gamma ray and ethylene oxide gas. Tape resistance (ASTM D3359-97) tests have been done on each coating before and after ageing and sterilizations, revealing a good adhesion on soda-lime substrates, except for those aged in humidity plus UV and sterilized by autoclave. Scratch tests and nanoindentation tests have been done on each coating, as-deposited and after heating at 450 Degree-Sign C. The coating hardness was improved by heating only when coatings were deposited on silica. The heating of coatings deposited on soda-lime substrates gave opposite effect on their hardness.

  6. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Halder, A.; Chattopadhyay, R.; Majumder, S.; Paul, M. C.; Das, S.; Bhadra, S. K., E-mail: skbhadra@cgcri.res.in [Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India); Bysakh, S.; Unnikrishnan, M. [Material Characterization Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032 (India)

    2015-01-05

    An efficient visible fluorescent optical fiber embedded with silver nanoclusters (Ag-NCs) having size ∼1 nm, uniformly distributed in alumina-silica composite core glass, is reported. Fibers are fabricated in a repetitive controlled way through modified chemical vapour deposition process associated with solution doping technique. Fibers are drawn from the transparent preforms by conventional fiber drawing process. Structural characteristics of the doped fibers are studied using transmission electron microscopy and electron probe micro analysis. The oxidation state of Ag within Ag-NCs is investigated by X-ray photo electron spectroscopy. The observed significant fluorescence of the metal clusters in fabricated fibers is correlated with electronic model. The experimentally observed size dependent absorption of the metal clusters in fabricated fibers is explained with the help of reported results calculated by ab-initio density functional theory. These optical fibers may open up an opportunity of realizing tunable wavelength fiber laser without the help of rare earth elements.

  7. Synthesis and analysis of gold nanoclusters on silicon substrates by ion beams

    International Nuclear Information System (INIS)

    Sood, D.K.; Venkatachalam, D.K.; Bhargava, S.K.; Evans, P.J.

    2005-01-01

    To facilitate the growth of silica nanowires on silicon substrates, two different seeding techniques: 1) ion implantation and 2) chemical deposition of as-synthesised gold colloids have been compared for the formation of catalysing gold nanoclusters. The prepared substrates of both types were analysed using Rutherford backscattering spectrometry at ANSTO to determine the amount of gold and its depth distribution. The topography of the substrates deposited with chemically synthesised gold nanoparticles were studied under SEM. The preliminary ion beam (RBS) analysis has shown ion implantation as a novel technique for seeding Au nanoclusters on silicon substrates facilitating growth of nanowires. This method holds a great potential for using any metal across the periodic table that can act as catalysing seed nanoclusters for nanowire growth. The use of chemical deposition as a seeding technique to deposit as-synthesised gold nanoparticles requires further investigations. RBS results show significant difference in the depth distribution of the gold nanoparticles on silicon substrates seeded by two different techniques. (author). 6 refs., 4 figs

  8. Gradients of Rac1 Nanoclusters Support Spatial Patterns of Rac1 Signaling.

    Science.gov (United States)

    Remorino, Amanda; De Beco, Simon; Cayrac, Fanny; Di Federico, Fahima; Cornilleau, Gaetan; Gautreau, Alexis; Parrini, Maria Carla; Masson, Jean-Baptiste; Dahan, Maxime; Coppey, Mathieu

    2017-11-14

    Rac1 is a small RhoGTPase switch that orchestrates actin branching in space and time and protrusion/retraction cycles of the lamellipodia at the cell front during mesenchymal migration. Biosensor imaging has revealed a graded concentration of active GTP-loaded Rac1 in protruding regions of the cell. Here, using single-molecule imaging and super-resolution microscopy, we show an additional supramolecular organization of Rac1. We find that Rac1 partitions and is immobilized into nanoclusters of 50-100 molecules each. These nanoclusters assemble because of the interaction of the polybasic tail of Rac1 with the phosphoinositide lipids PIP2 and PIP3. The additional interactions with GEFs and possibly GAPs, downstream effectors, and other partners are responsible for an enrichment of Rac1 nanoclusters in protruding regions of the cell. Our results show that subcellular patterns of Rac1 activity are supported by gradients of signaling nanodomains of heterogeneous molecular composition, which presumably act as discrete signaling platforms. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Effects of doping in 25-atom bimetallic nanocluster catalysts for carbon–carbon coupling reaction of iodoanisole and phenylacetylene

    Directory of Open Access Journals (Sweden)

    Zhimin Li

    2016-10-01

    Full Text Available We here report the catalytic effects of foreign atoms (Cu, Ag, and Pt doped into well-defined 25-gold-atom nanoclusters. Using the carbon-carbon coupling reaction of p-iodoanisole and phenylacetylene as a model reaction, the gold-based bimetallic MxAu25−x(SR18 (–SR=–SCH2CH2Ph nanoclusters (supported on titania were found to exhibit distinct effects on the conversion of p-iodoanisole as well as the selectivity for the Sonogashira cross-coupling product, 1-methoxy-4-(2-phenylethynylbenzene. Compared to Au25(SR18, the centrally doped Pt1Au24(SR18 causes a drop in catalytic activity but with the selectivity retained, while the AgxAu25−x(SR18 nanoclusters gave an overall performance comparable to Au25(SR18. Interestingly, CuxAu25−x(SR18 nanoclusters prefer the Ullmann homo-coupling pathway and give rise to product 4,4′-dimethoxy-1,1′-biphenyl, which is in opposite to the other three nanocluster catalysts. Our overall conclusion is that the conversion of p-iodoanisole is largely affected by the electronic effect in the bimetallic nanoclusters’ 13-atom core (i.e., Pt1Au12, CuxAu13−x, and Au13, with the exception of Ag doping, and that the selectivity is primarily determined by the type of atoms on the MxAu12−x shell (M=Ag, Cu, and Au in the nanocluster catalysts.

  10. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance

    Science.gov (United States)

    Zhang, Xiao-Dong; Luo, Zhentao; Chen, Jie; Song, Shasha; Yuan, Xun; Shen, Xiu; Wang, Hao; Sun, Yuanming; Gao, Kai; Zhang, Lianfeng; Fan, Saijun; Leong, David Tai; Guo, Meili; Xie, Jianping

    2015-03-01

    Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall Au29-43(SG)27-37 nanoclusters (protecting shell. The GSH-coated Au29-43(SG)27-37 nanoclusters can escape the RES absorption, leading to a good tumor uptake (~8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall Au29-43(SG)27-37 nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long-term side-effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide-protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.

  11. A fluorescence detection of D-penicillamine based on Cu(2+)-induced fluorescence quenching system of protein-stabilized gold nanoclusters.

    Science.gov (United States)

    Wang, Peng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2015-01-25

    In this contribution, a luminescent gold nanoclusters which were synthesized by bovine serum albumin as novel fluorescent probes were successfully utilized for the determination of D-penicillamine for the first time. Cupric ion was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of D-penicillamine caused obvious restoration of fluorescence intensity of the Cu(2+)-gold nanoclusters system. Under optimum conditions, the increment in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by D-penicillamine was linearly proportional to the concentration of D-penicillamine in the range of 2.0×10(-5)-2.39×10(-4) M. The detection limit for D-penicillamine was 5.4×10(-6) M. With the off-on fluorescence signal at 650 nm approaching the near-infrared region, the present sensor for D-penicillamine detection had high sensitivity and low spectral interference. Furthermore, the novel gold nanoclusters-based fluorescent sensor has been applied to the determination of D-penicillamine in real biological samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    Science.gov (United States)

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dual emission fluorescent silver nanoclusters for sensitive detection of the biological coenzyme NAD+/NADH.

    Science.gov (United States)

    Yuan, Yufeng; Huang, Kehan; Chang, Mengfang; Qin, Cuifang; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Xu, Jianhua

    2016-02-01

    Fluorescent silver nanoclusters (Ag NCs) displaying dual-excitation and dual-emission properties have been developed for the specific detection of NAD(+) (nicotinamide adenine dinucleotide, oxidized form). With the increase of NAD(+) concentrations, the longer wavelength emission (with the peak at 550 nm) was gradually quenched due to the strong interactions between the NAD(+) and Ag NCs, whereas the shorter wavelength emission (peaking at 395 nm) was linearly enhanced. More important, the dual-emission intensity ratio (I395/I550), fitting by a single-exponential decay function, can efficiently detect various NAD(+) levels from 100 to 4000 μM, as well as label NAD(+)/NADH (reduced form of NAD) ratios in the range of 1-50. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host.

    Science.gov (United States)

    Kuznetsov, A S; Tikhomirov, V K; Moshchalkov, V V

    2012-09-10

    A mechanism for white luminescence of Ag nanoclusters dispersed in oxyfluoride glass host has been revealed by studying a temperature dependence of its polarization memory. The spectral dependence of the polarization memory indicates the presence of a variety of Ag nanoclusters, particularly emitting in the blue, green and red. Temperature activated intercluster energy transfer has been found responsible for white luminescence. The means for increasing luminescence quantum yield have been suggested. This efficient white luminescence may be used in highly demanded devices, such as luminescent lamps, displays, color phosphors for LEDs, photovoltaic devices based on down shifting of solar spectrum.

  15. Distinct metal-exchange pathways of doped Ag25 nanoclusters

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Sinatra, Lutfan; Bakr, Osman

    2016-01-01

    Atomically precise metal nanoclusters (NCs) containing more than one type of metal atom (i.e., doped or alloyed), due to synergistic effects, open new avenues for engineering the catalytic and optical properties of NCs in a manner that homometal NCs

  16. First-principles calculated decomposition pathways for LiBH4 nanoclusters

    Science.gov (United States)

    Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan; Majzoub, Eric H.; Ozoliņš, Vidvuds

    2016-05-01

    We analyze thermodynamic stability and decomposition pathways of LiBH4 nanoclusters using grand-canonical free-energy minimization based on total energies and vibrational frequencies obtained from density-functional theory (DFT) calculations. We consider (LiBH4)n nanoclusters with n = 2 to 12 as reactants, while the possible products include (Li)n, (B)n, (LiB)n, (LiH)n, and Li2BnHn; off-stoichiometric LinBnHm (m ≤ 4n) clusters were considered for n = 2, 3, and 6. Cluster ground-state configurations have been predicted using prototype electrostatic ground-state (PEGS) and genetic algorithm (GA) based structural optimizations. Free-energy calculations show hydrogen release pathways markedly differ from those in bulk LiBH4. While experiments have found that the bulk material decomposes into LiH and B, with Li2B12H12 as a kinetically inhibited intermediate phase, (LiBH4)n nanoclusters with n ≤ 12 are predicted to decompose into mixed LinBn clusters via a series of intermediate clusters of LinBnHm (m ≤ 4n). The calculated pressure-composition isotherms and temperature-pressure isobars exhibit sloping plateaus due to finite size effects on reaction thermodynamics. Generally, decomposition temperatures of free-standing clusters are found to increase with decreasing cluster size due to thermodynamic destabilization of reaction products.

  17. Ultra-sensitive determination of epinephrine based on TiO{sub 2}-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianbo, E-mail: chm_lijianbo@yeah.net; Wang, Xiaojiao; Duan, Huimin; Wang, Yanhui; Luo, Chuannan, E-mail: chm_lijianbo@yeah.net

    2016-07-01

    A highly efficient and sensitive electrochemical sensor for EP based on reduced graphene and multi-walled carbon nanotube hybrid nanocomposites loaded TiO{sub 2}-Au nano-clusters modified glassy carbon electrode was developed. The surface nature and morphology of the nanocomposite film and the electrochemical properties of the sensor were characterized by Raman spectra, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectra (EDX), Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. Carbon nanomaterials were widely used in sensing due to its large electroactive surface area, fast electron transport and strong adsorption capacity. Meanwhile, TiO{sub 2}-Au nano-clusters could accelerate the electron transfer, increase reactive site and extend electrochemical response window. The nanocomposite film could greatly enhance the response sensitivity and decrease the overpotential. The resulting sensor showed an excellent electrocatalytic activity toward EP. Under the optimum conditions (i.e. pH 6.0, 0.1 M PBS, preconcentration for 110 s), Differential pulse voltammetry was employed to detect ultra-trace amounts of EP. The result of a wide linear range of 1.0–300 nM and limited of detection 0.34 nM (S/N = 3) were obtained. The constructed sensor exhibited excellent accuracy and precision, the relative standard deviation (RSD) was less than 5%. The nanocomposite film sensor was successfully used to accurately detect the content of EP in practical samples, and the recoveries for the standards added are 97%–105%. - Highlights: • The three dimensional composite materials rGO/CNTs were successful synthesized. • High conductivity and catalytic activity of TiO{sub 2}-Au nanoclusters were synthesized. • The sensor displays a wide linear range, low detection limit and good stability.

  18. Ab initio study of structural, electronic, optical, and vibrational properties of ZnxSy (x + y = 2 to 5) nanoclusters

    International Nuclear Information System (INIS)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-01-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y (x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS 2 , ZnS 3 , and ZnS 4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  19. "light-on" sensing of antioxidants using gold nanoclusters

    KAUST Repository

    Hu, Lianzhe

    2014-05-20

    Depletion of intracellular antioxidants is linked to major cytotoxic events and cellular disorders, such as oxidative stress and multiple sclerosis. In addition to medical diagnosis, determining the concentration of antioxidants in foodstuffs, food preservatives, and cosmetics has proved to be very vital. Gold nanoclusters (Au-NCs) have a core size below 2 nm and contain several metal atoms. They have interesting photophysical properties, are readily functionalized, and are safe to use in various biomedical applications. Herein, a simple and quantitative spectroscopic method based on Au-NCs is developed to detect and image antioxidants such as ascorbic acid. The sensing mechanism is based on the fact that antioxidants can protect the fluorescence of Au-NCs against quenching by highly reactive oxygen species. Our method shows great accuracy when employed to detect the total antioxidant capacity in commercial fruit juice. Moreover, confocal fluorescence microscopy images of HeLa cells show that this approach can be successfully used to image antioxidant levels in living cells. Finally, the potential application of this "light-on" detection method in multiple logic gate fabrication was discussed using the fluorescence intensity of Au-NCs as output. © 2014 American Chemical Society.

  20. Nanoclustering as a dominant feature of plasma membrane organization

    NARCIS (Netherlands)

    Garcia-Parajo, M.F.; Cambi, A.; Torreno-Pina, J.A.; Thompson, N.; Jacobson, K.

    2014-01-01

    Early studies have revealed that some mammalian plasma membrane proteins exist in small nanoclusters. The advent of super-resolution microscopy has corroborated and extended this picture, and led to the suggestion that many, if not most, membrane proteins are clustered at the plasma membrane at

  1. Synthesis and Doping of Ligand-Protected Atomically-Precise Metal Nanoclusters

    KAUST Repository

    Aljuhani, Maha A.

    2016-01-01

    by controlling their size, shape, and composition. Among the most thriving areas of research about nanoparticle is the synthesis and doping of the ligand-protected atomically-precise metal nanoclusters. In this thesis, we developed three different novel metal

  2. Carbon surface diffusion and SiC nanocluster self-ordering

    International Nuclear Information System (INIS)

    Pezoldt, J.; Trushin, Yu.V.; Kharlamov, V.S.; Schmidt, A.A.; Cimalla, V.; Ambacher, O.

    2006-01-01

    The process of the spatial ordering of SiC nanoclusters on the step edges on Si surfaces was studied by means of multi-scale computer simulation. The evolution of cluster arrays on an ideal flat surface and surfaces with terraces of various widths was performed by kinetic Monte Carlo (KMC) simulations based on quantitative studies of potential energy surfaces (PES) by molecular dynamics (MD). PES analysis revealed that certain types of steps act as strong trapping centres for both Si and C adatoms stimulating clusters nucleation. Spatial ordering of the SiC nanoclusters at the terrace edges can be achieved if the parameters of the growth process (substrate temperature, carbon flux) and substrate (steps direction and terrace widths) are adjusted to the surface morphology. Temperature ranges for growth regimes with and without formation of cluster chains were determined. Cluster size distributions and the dependence of optimal terrace width for self ordering on the deposition parameters were obtained

  3. The expanding universe of thiolated gold nanoclusters and beyond.

    Science.gov (United States)

    Jiang, De-en

    2013-08-21

    Thiolated gold nanoclusters form a universe of their own. Researchers in this field are constantly pushing the boundary of this universe by identifying new compositions and in a few "lucky" cases, solving their structures. Such solved structures, even if there are only few, provide important hints for predicting the many identified compositions that are yet to be crystallized or structure determined. Structure prediction is the most pressing issue for a computational chemist in this field. The success of the density functional theory method in gauging the energetic ordering of isomers for thiolated gold clusters has been truly remarkable, but to predict the most stable structure for a given composition remains a great challenge. In this feature article from a computational chemist's point of view, the author shows how one understands and predicts structures for thiolated gold nanoclusters based on his old and new results. To further entertain the reader, the author also offers several "imaginative" structures, claims, and challenges for this field.

  4. Synthesis and Characterization of Atomically Precise Copper Nanoclusters

    Science.gov (United States)

    Nguyen, Thuy-Ai Dang

    The reactivity of MCl3(eta1-TEMPO) (M = Fe, Al; TEMPO = 2,2,6,6-tetramethylpiperidine-N-oxyl) with a variety of lignin models, including 3,4-dimethoxybenzyl alcohol, 1-phenyl-2-phenoxyethanol and 1,2-diphenyl-2-methoxyethanol is investigated. FeCl3(TEMPO) is effective in cleanly converting these substrates to the corresponding aldehyde or ketone. AlCl3(eta1-TEMPO) is also able to oxidize these substrates, however in a few instances the products of over-oxidation are also observed. In contrast, 2-phenoxyethanol is not oxidized by MCl 3(eta1-TEMPO); instead it likely coordinates to the metal center, forming a 2-phenoxyethoxide complex. Oxidation of activated alkanes by MCl3(eta1-TEMPO) suggests that the reactions proceed via an initial 1-electron concerted proton-electron transfer (CPET) event. Finally, reaction of TEMPO with FeBr3 in Et 2O results in oxidation of the solvent. The copper hydride clusters [Cu14H12(phen) 6(PPh3)4][X]2 (X = Cl, OTf) are obtained in good yields by reaction of [(Ph3P)CuH]6 with 1,10-phenanthroline, in the presence of a halide or pseudohalide source. [Cu14H 12(phen)6(PPh3)4][Cl]2 reacts with CO2 in CH2Cl2, in the presence of excess Ph3P, to form the formate complex, [(Ph3P)2Cu(kappa 2-O2CH)], along with [(phen)(Ph3P)CuCl]. [Cu25H22(PPh3)12]Cl and [Cu 18H17(PPh3)10]Cl, are isolated from the reaction of Cu(OAc) and CuCl with Ph2SiH2, in the presence of PPh3. [Cu25H22(PPh3) 12]Cl formally features partial Cu(0) character. Subsequent reaction with Ph2phen resulted in the isolation of [Cu29Cl 4H22(Ph2phen)12]Cl (Ph2phen = 4,7-diphenyl-1,10-phenanthroline), in good yields. A time-resolved kinetic evaluation of the formation of [Cu29Cl4H22(Ph 2phen)12]Cl reveals that the mechanism of cluster growth is initiated by rapid ligand exchange, followed by slower extrusion of CuCl monomer, transport, and subsequent capture by intact clusters. Two Cu26 nanoclusters, tentatively formulated as [Cu 26H17(PPh3)9(OAc)3] and [Cu26H22(PPh3)10(OAc)2], are

  5. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Tang, Bingtao, E-mail: tangbt@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wu, Suli; Gao, Zhanming; Ju, Benzhi [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Teng, Xiaoxu [School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 (China); Zhang, Shufen [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2017-02-01

    Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot solvothermal route with 5-sulfosalicylic acid (SSA) as the functional ligand in a mixed-solvent system of diethylene glycol/ethylene glycol (DEG/EG). Nucleation and aggregation growth model was responsible for the formation of secondary structure of the clusters. In the process, the size of the clusters can be effectively controlled by varying the amounts of SSA and the volume ratio of DEG/EG. The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value of about 68.7 emu g{sup −1} at room temperature. The water-soluble small-molecule SSA grafted on the surface of Fe{sub 3}O{sub 4} nanocrystals rendered the superparamagnetic clusters dispersible in water, which is crucial for potential applications in biomedical fields. - Graphical abstract: 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size by a mixed-solvent system of DEG/EG. - Highlights: • Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot 5-sulfosalicylic acid assisted solvothermal route. • The size of the clusters are tunable by varying the amounts of 5-sulfosalicylic acid and the volume ratio of DEG/EG. • The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value. • The 5-sulfosalicylic acid grafted Fe{sub 3}O{sub 4} nanoclusters can be dispersed in water.

  6. Nanoclusters a bridge across disciplines

    CERN Document Server

    Jena, Purusottam

    2010-01-01

    This comprehensive book on Nanoclusters comprises sixteen authoritative chapters written by leading researchers in the field. It provides insight into topics that are currently at the cutting edge of cluster science, with the main focus on metal and metal compound systems that are of particular interest in materials science, and also on aspects related to biology and medicine. While there are numerous books on clusters, the focus on clusters as a bridge across disciplines sets this book apart from others. Delivers cutting edge coverage of cluster science Covers a broad range of topics in

  7. Enantioselective silver nanoclusters: Preparation, characterization and photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Farrag, Mostafa, E-mail: mostafafarrag@aun.edu.eg

    2016-09-01

    Herein, we report a new wet-synthesis method to separate some water-soluble chiral silver nanoclusters with high yield. The cluster material was obtained by the reduction of silver nitrate with NaBH{sub 4} in the presence of three ligands L-penicillamine (L-pen), D-penicillamine (D-pen) and racemic mixture of penicillamine (rac-pen), functioning as capping ligand. For characterizing all silver cluster samples, the particle size was assessed by transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) and their average chemical formula was determined from thermogravimetric analysis (TGA) and elemental analysis (EA). The particles sizes of all three clusters are 2.1 ± 0.2 nm. The optical properties of the samples were studied by four different methods: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), photoluminescence spectroscopy (PL) and circular dichroism (CD) spectroscopy. The spectra are dominated by the typical and intense plasmon peak at 486 nm accompanied by a small shoulder at 540 nm. Infrared spectroscopy was measured for the free ligand and protected silver nanoclusters, where the disappearance of the S-H vibrational band (2535–2570 cm{sup −1}) in the silver nanoclusters confirmed anchoring of ligand to the cluster surface through the sulfur atom. PL studies yielded the fluorescent properties of the samples. The main focus of this work, however, lies in the chirality of the particles. For all silver clusters CD spectra were recorded. While for clusters capped with one of the two enantiomers (D- or L-form) typical CD spectra were observed, no significant signals were detected for a racemic ligand mixture. Furthermore, silver clusters show quite large asymmetry factors (up to 3 × 10{sup −4}) in comparison to most other ligand protected clusters. These large factors and bands in the visible range of the spectrum suggest a strong chiral induction from the ligand to the metal core. Textural features of the

  8. Rapid fluorescence assay for Sudan dyes using polyethyleneimine-coated copper nanoclusters

    International Nuclear Information System (INIS)

    Ling, Yu; Li, Jia Xing; Li, Nian Bing; Luo, Hong Qun; Qu, Fei

    2014-01-01

    We report that the intensity of the blue fluorescence of copper nanoclusters coated with polyethyleneimine (PEI) is strongly reduced in the presence of the food dyestuffs Sudan I-IV. This finding was exploited in a label-free fluorescence assay for these Sudan dyes both in ethanol and aqueous solutions. The PEI-capped nanoclusters have an average diameter of 1.8 nm and are displaying, under 355 nm excitation, a blue emission at 480 nm that matches the absorption bands of the Sudan dyes. The clusters are stable in solution for at least 1 month. Under optimum conditions, this assay can be applied to the quantification of the dyes Sudan I, II, III, and IV, respectively, in the 0.1−30, 0.1–30, 0.1–25, and 0.1–25 μM concentration ranges, and the detection limits (3σ/slope) are 65, 70, 45, and 50 nM, respectively. The capability of reducing the fluorescence of the PEI-capped copper nanoclusters is directly related to the number of the functional groups in that Sudan III and IV give lower detection limits. This analytical scheme exhibits a remarkably high selectivity for the Sudan dyes over potentially interfering substances. The method was successfully applied to determine Sudan I, II, III, and IV in hot chilli powder. (author)

  9. Building machine learning force fields for nanoclusters

    Science.gov (United States)

    Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro

    2018-06-01

    We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.

  10. Enhanced Bonding of Silver Nanoparticles on Oxidized TiO2(110)

    DEFF Research Database (Denmark)

    Hansen, Jonas Ørbæk; Salazar, Estephania Lira; Galliker, Patrick

    2010-01-01

    The nucleation and growth of silver nanoclusters on TiO2(110) surfaces with on-top O adatoms (oxidized TiO2), surface O vacancies and H adatoms (reduced TiO2) have been studied. From the interplay of scanning tunneling microscopy/photoelectron spectroscopy experiments and density functional theor...

  11. Fluorescent silver nanoclusters capped by polyethyleneimine with different molecular weights: Universal synthesis and application as a temperature sensor

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Fei, E-mail: qufei3323@163.com [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); Li, Qingjin [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); You, Jinmao, E-mail: jmyou6304@163.com [The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165, Shandong (China); Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Qufu Normal University, Qufu 273165, Shandong (China); Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001 (China)

    2016-09-15

    In this paper, we developed a universal, applicable and simple synthetic method of Ag nanoclusters capped by polyethyleneimine (PEI) with different molecular weights (AgNC-PEIs), including Mw 600, 1300, 1800, 2000, 10,000, 25,000, 70,000, and 750,000. Using formaldehyde as the sole reducing agent, silver nanoclusters could be successfully prepared by using these templates. Subsequently, several characterization techniques were employed to investigate the properties of AgNC-PEIs, and the results suggested that these AgNC-PEIs had similar sizes, structures, and optical features. However, besides the common characteristics, different temperature sensitivities were found for these nanoclusters, in which AgNC-PEI 25000 was proper to be applied as a temperature sensor. With increasing temperature, the fluorescence quenched dramatically, and this change could be readily observed by naked eyes under UV light. Injection of these temperature sensitive nanoclusters into a glass tube, a simple thermometer could be fabricated easily, thus AgNC-PEI 25000 would be a promising candidate for temperature sensing as a visible indicator.

  12. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Au nano-clusters and nanoparticles (NPs have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001 by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  13. Nanocrystals and Nanoclusters as Cocatalysts for Photocatalytic Water Splitting

    KAUST Repository

    Sinatra, Lutfan

    2016-12-04

    studied for the photocatalytic H2 production in order to explore the synergistic effect of the plasmonic resonance from the Au nanoparticles and pn-junction between Cu2O and TiO2. Additionally, the plasmonic effect of the Au films was also studied and utilized in order to improve the PWS. Secondly, the nanoscaling of cocatalysts was studied in order to improve the efficiency thereof and to reduce the cost of the cocatalyst materials. Moreover, it is sought to explore the quantum size effect on the properties of the cocatalyst and their effect on the photocatalytic reaction. Atomically precise Au and Ni nanoclusters were employed in these studies. Au nanoclusters were studied in relation to the cocatalysts in the photocatalytic water splitting, and Ni nanoclusters were studied in relation to the cocatalysts in the electrocatalytic water oxidation. The results of these studies will provide new insights in relation to the strategy used in order to develop efficient cocatalysts for the purpose of photocatalytic water splitting.

  14. Plasma Deposition and Characterization of Copper-doped Cobalt Oxide Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jacek TYCZKOWSKI

    2013-09-01

    Full Text Available A series of pure and copper-doped cobalt oxide films was prepared by plasma-enhanced metalorganic chemical vapor deposition (PEMOCVD. The effect of Cu-doping on the chemical structure and morphology of the deposited films was investigated. Raman and FTIR spectroscopies were used to characterize the chemical structure and morphology of the produced films. The bulk composition and homogeneity of the samples were investigated by energy dispersive X-ray microanalysis (EDX, and X-ray photoelectron spectroscopy (XPS was employed to assess the surface chemical composition of pure and doped materials. The obtained results permit to affirm that the PEMOCVD technique is a simple, versatile and efficient method for providing homogeneous layers of cobalt oxides with a different content of copper. It has been found that pure cobalt oxide films mainly contain Co3O4 in the form of nanoclusters whereas the films doped with Cu are much more complex, and CoOx (also Co3O4, mixed Co-Cu oxides and CuOx nanoclusters are detected in them. Preliminary catalytical tests show that Cu-doped cobalt oxide films allow to initiate catalytic combustion of n-hexane at a lower temperature compared to the pure cobalt oxide (Co3O4 films. From what has been stated above, the plasma-deposited thin films of Cu-doped cobalt oxides pave the way towards a new class of nanomaterials with interesting catalytic properties. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.2320

  15. TiO2 Films Modified with Au Nanoclusters as Self-Cleaning Surfaces under Visible Light

    Directory of Open Access Journals (Sweden)

    Ting-Wei Liao

    2018-01-01

    Full Text Available In this study, we applied cluster beam deposition (CBD as a new approach for fabricating efficient plasmon-based photocatalytic materials. Au nanoclusters (AuNCs produced in the gas phase were deposited on TiO2 P25-coated silicon wafers with coverage ranging from 2 to 8 atomic monolayer (ML equivalents. Scanning Electron Microscopy (SEM images of the AuNCs modified TiO2 P25 films show that the surface is uniformly covered by the AuNCs that remain isolated at low coverage (2 ML, 4 ML and aggregate at higher coverage (8 ML. A clear relationship between AuNCs coverage and photocatalytic activity towards stearic acid photo-oxidation was measured, both under ultraviolet and green light illumination. TiO2 P25 covered with 4 ML AuNCs showed the best stearic acid photo-oxidation performance under green light illumination (Formal Quantum Efficiency 1.6 × 10−6 over a period of 93 h. These results demonstrate the large potential of gas-phase AuNCs beam deposition technology for the fabrication of visible light active plasmonic photocatalysts.

  16. Ab initio study of structural, electronic, optical, and vibrational properties of Zn x S y ( x + y = 2 to 5) nanoclusters

    Science.gov (United States)

    Yadav, P. S.; Pandey, D. K.; Agrawal, S.; Agrawal, B. K.

    2010-03-01

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn x S y ( x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS2, ZnS3, and ZnS4 nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  17. Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals.

    Science.gov (United States)

    Wang, Yong; Chen, Jia-Tong; Yan, Xiu-Ping

    2013-02-19

    Transferrin (Tf)-functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) was fabricated as a turn-on near-infrared (NIR) fluorescent probe for bioimaging cancer cells and small animals. A one-step approach was developed to prepare Tf-AuNCs via a biomineralization process with Tf as the template. Tf acted not only as a stabilizer and a reducer but also as a functional ligand for targeting the transferrin receptor (TfR). The prepared Tf-AuNCs gave intense NIR fluorescence that can avoid interference from biological media such as tissue autofluorescence and scattering light. The assembly of Tf-AuNCs and GO gave the Tf-AuNCs/GO nanocomposite, a turn-on NIR fluorescent probe with negligible background fluorescence due to the super fluorescence quenching property of GO. The NIR fluorescence of the Tf-AuNCs/GO nanocomposite was effectively restored in the presence of TfR, due to the specific interaction between Tf and TfR and the competition of TfR with the GO for the Tf in Tf-AuNCs/GO composite. The developed turn-on NIR fluorescence probe offered excellent water solubility, stability, and biocompatibility, and exhibited high specificity to TfR with negligible cytotoxicity. The probe was successfully applied for turn-on fluorescent bioimaging of cancer cells and small animals.

  18. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-03-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  20. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.; Hammami, Mohamed Amen; Croissant, Jonas G.; Omar, Haneen; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M.

    2017-01-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  1. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  2. First principles study of the Ag nanoclusters adsorption effect on the photocatalytic properties of AgBr(1 1 0) surface

    Science.gov (United States)

    Chi, Yuhua; Zhao, Lianming; Li, Xue; Zhu, Houyu; Guo, Wenyue

    2018-05-01

    The electronic structures and photocatalytic performance of Agn/AgBr(1 1 0)(n = 7-13) are studied using density functional theory (DFT). The adsorption of Agn (n = 7-13) nanoclusters on AgBr(1 1 0) surface induces a new metal-induced gap band (MIGB) located between the valence band (VB) and the conduction band (CB), the variety of the electronic characters of AgBr(1 1 0) favor the visible and infrared light absorption, which improves the sunlight utilization. The dominant localization of the photo-excited electrons on the Agn clusters of Agn/AgBr(1 1 0)(n = 7-13) facilitates the oxidation-reduction reactions occurring on the surface and also effectively reduces the photolysis of AgBr under the sunlight irradiation. The overpotentials of the CB and VB edges indicate that photocatalytic conversion of CO2 with H2O to methanol is possible on AgBr(1 1 0) deposited with the Agn nanoclusters, which has been realized experimentally (An et al., 2012). The substantial strengthening of visible and infrared light absorption and the free energy profiles for the conversion of CO2 with H2O to methanol indicate that Ag13/AgBr(1 1 0) surface can be expected to be the excellent photocatalysts.

  3. Resonant surface-enhanced Raman scattering by optical phonons in a monolayer of CdSe nanocrystals on Au nanocluster arrays

    Energy Technology Data Exchange (ETDEWEB)

    Milekhin, Alexander G., E-mail: milekhin@isp.nsc.ru [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Sveshnikova, Larisa L.; Duda, Tatyana A. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Rodyakina, Ekaterina E. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Dzhagan, Volodymyr M. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sheremet, Evgeniya [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Gordan, Ovidiu D. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Himcinschi, Cameliu [Institut für Theoretische Physik, TU Bergakademie Freiberg, 09596 Freiberg (Germany); Latyshev, Alexander V. [A.V. Rzhanov Institute of Semiconductor Physics, pr. Lavrentjeva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogov str. 2, 630090 Novosibirsk (Russian Federation); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-05-01

    Highlights: • Regular Au nanocluster and dimer arrays as well as single Au dimers are fabricated. • Resonant SERS by monolayers of CdSe nanocrystals deposited on the Au nanostructures is observed. • LO energy change for CdSe NCs on different single Au dimers indicates SERS by single or a few NCs. - Abstract: Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir–Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 10{sup 3} which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.

  4. In situ fluorescence activation of DNA-silver nanoclusters as a label-free and general strategy for cell nucleus imaging.

    Science.gov (United States)

    Li, Duo; Qiao, Zhenzhen; Yu, Yanru; Tang, Jinlu; He, Xiaoxiao; Shi, Hui; Ye, Xiaosheng; Lei, Yanli; Wang, Kemin

    2018-01-25

    A facile, general and turn-on nucleus imaging strategy was first developed based on in situ fluorescence activation of C-rich dark silver nanoclusters by G-rich telomeres. After a simple incubation without washing, nanoclusters could selectively stain the nucleus with intense red luminescence, which was confirmed using fixed/living cells and several cell lines.

  5. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    Science.gov (United States)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  6. Pinning of size-selected gold and nickel nanoclusters on graphite

    NARCIS (Netherlands)

    Di Vece, M.|info:eu-repo/dai/nl/248753355; Paloma, S.; Palmer, R.E.

    2005-01-01

    Size-selected gold and nickel nanoclusters are of interest from an electronic, catalytic, and biological point of view. These applications require the deposition of the clusters on a surface, and a key challenge is to retain the cluster size. Here controlled energy impact is used to immobilize the

  7. Optical properties of Ag nanoclusters formed by irradiation and annealing of SiO{sub 2}/SiO{sub 2}:Ag thin films

    Energy Technology Data Exchange (ETDEWEB)

    Güner, S., E-mail: sguner@fatih.edu.tr [Department of Physics, Fatih University, 34500 Büyükçekmece, İstanbul (Turkey); Budak, S. [Department of Electrical Engineering and Computer Science, Alabama A and M University, Huntsville, AL 35810 (United States); Gibson, B. [Department of Physics, UAH, Huntsville, AL 35899 (United States); Ila, D. [Department of Chemistry and Physics, Fayetteville St. University, Fayetteville, NC 28301 (United States)

    2014-08-15

    Highlights: • Fabrication of films through the Reactive Electron Beam deposition technique. • Perfect and reproducible Ag nanoclustered host matrix. • Potential technological applicability in thermoelectric devices. - Abstract: We have deposited five periodic SiO{sub 2}/SiO{sub 2} + Ag multi-nano-layered films on fused silica substrates using physical vapor deposition technique. The co-deposited SiO{sub 2}:Ag layers were 2.7–5 nm and SiO{sub 2} buffer layers were 1–15 nm thick. Total thickness was between 30 and 105 nm. Different concentrations of Ag, ranging from 1.5 to 50 molecular% with respect to SiO{sub 2} were deposited to determine relevant rates of nanocluster formation and occurrence of interaction between nanoclusters. Using interferometry as well as in situ thickness monitoring, we measured the thickness of the layers. The concentration of Ag in SiO{sub 2} was measured with Rutherford Backscattering Spectrometry (RBS). To nucleate Ag nanoclusters, 5 MeV cross plane Si ion bombardments were performed with fluence varying between 5 × 10{sup 14} and 1 × 10{sup 16} ions/cm{sup 2} values. Optical absorption spectra were recorded in the range of 200–900 nm in order to monitor the Ag nanocluster formation in the thin films. Thermal annealing treatment at different temperatures was applied as second method to form varying size of nanoclusters. The physical properties of formed super lattice were criticized for thermoelectric applications.

  8. A model for the ethylene and acetylene adsorption on the surface of Cu{sub n}(n = 10–15) nanoclusters: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Farmanzadeh, Davood, E-mail: d.farmanzad@umz.ac.ir; Abdollahi, Tahereh

    2016-11-01

    Highlights: • The most stable structures of Cu{sub n} (n = 10–15) were structures with C{sub S} symmetry. • It is expected that even clusters are better electron donors than the odd clusters. • Acetylene and ethylene adsorb molecularly on the Cu nanoclusters surface. • Acetylene never orient toward di-σ mode for Cu−Cu bond in odd copper nanoclusters. • For di- σ-Cu{sub n}C{sub 2}H{sub 4}, no stable structure is identified. - Abstract: In this work, we report the results of density functional theory calculations of ethylene and acetylene adsorption on the most stable Cu{sub n} (n = 10–15) nanoclusters, in two π and di- σ adsorption modes. Both the hydrocarbons molecularly adsorbed on the surface. Our results show that the quality of interaction of ethylene and acetylene with odd copper nanoclusters (n = 11, 13, 15) is different from what is found on even copper nanoclusters (n = 10, 12, 14). One of the interesting features of this adsorption is that acetylene never orient toward di-σ mode for Cu−Cu bond in odd copper nanoclusters. Also, for di- σ-Cu{sub n}C{sub 2}H{sub 4}, no stable structure is identified. The highest interaction and deformation energies are seen for the adsorption of acetylene and ethylene on Cu{sub 11} in π-mode.

  9. First-principles study of MoS2 and MoSe2 nanoclusters in the framework of evolutionary algorithm and density functional theory

    Science.gov (United States)

    Hashemi, Zohreh; Rafiezadeh, Shohreh; Hafizi, Roohollah; Hashemifar, S. Javad; Akbarzadeh, Hadi

    2018-04-01

    Evolutionary algorithm is combined with full-potential ab initio calculations to investigate conformational space of (MoS2)n and (MoSe2)n (n = 1-10) nanoclusters and to identify the lowest energy structural isomers of these systems. It is argued that within both BLYP and PBE functionals, these nanoclusters favor sandwiched planar configurations, similar to their ideal planar sheets. The second order difference in total energy (Δ2 E) of the lowest energy isomers is computed to estimate the abundance of the clusters at different sizes and to determine the magic sizes of (MoS2)n and (MoSe2)n nanoclusters. In order to investigate the electronic properties of nanoclusters, their energy gap is calculated by several methods, including hybrid functionals (B3LYP and PBE0), GW approach, and Δ scf method. At the end, the vibrational modes of the lowest lying isomers are calculated by using the force constants method and the IR active modes of the systems are identified. The vibrational spectra are used to calculate the Helmholtz free energy of the systems and then to investigate abundance of the nanoclusters at finite temperatures.

  10. Electronic structure and orientation relationship of Li nanoclusters embedded in MgO studied by depth-selective positron annihilation two-dimensional angular correlation

    Science.gov (United States)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-08-01

    Quantum-confined positrons are sensitive probes for determining the electronic structure of nanoclusters embedded in materials. In this work, a depth-selective positron annihilation 2D-ACAR (two-dimensional angular correlation of annihilation radiation) method is used to determine the electronic structure of Li nanoclusters formed by implantation of 1016-cm-2 30-keV 6Li ions in MgO (100) and (110) crystals and by subsequent annealing at 950 K. Owing to the difference between the positron affinities of lithium and MgO, the Li nanoclusters act as quantum dots for positrons. 2D-ACAR distributions for different projections reveal a semicoherent fitting of the embedded metallic Li nanoclusters to the host MgO lattice. Ab initio Korringa-Kohn-Rostoker calculations of the momentum density show that the anisotropies of the experimental distributions are consistent with an fcc crystal structure of the Li nanoclusters. The observed reduction of the width of the experimental 2D-ACAR distribution is attributed to positron trapping in vacancies associated with Li clusters. This work proposes a method for studying the electronic structure of metallic quantum dots embedded in an insulating material.

  11. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  12. Modification of erbium photoluminescence decay rate due to ITO layers on thin films of SiO{sub 2}:Er doped with Si-nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wojdak, M., E-mail: m.wojdak@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Jayatilleka, H. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario, Canada M5S 3G4 (Canada); Shah, M. [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Kenyon, A.J., E-mail: t.kenyon@ucl.ac.uk [Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Gourbilleau, F.; Rizk, R. [Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), ENSICAEN, CNRS, CEA/IRAMIS, Université de Caen, 14050 CAEN cedex (France)

    2013-04-15

    During the fabrication of MOS light emitting devices, the thin film of active material is usually characterized by photoluminescence measurements before electrical contacts are deposited. However, the presence of a conductive contact layer can alter the luminescent properties of the active material. The local optical density of states changes due to the proximity of luminescent species to the interface with the conductive medium (the top electrode), and this modifies the radiative rate of luminescent centers within the active layer. In this paper we report enhancement of the observed erbium photoluminescence rate after deposition of indium tin oxide contacts on thin films of SiO{sub 2}:Er containing silicon nanoclusters, and relate this to Purcell enhancement of the erbium radiative rate. -- Highlights: ► We studied photoluminescence of Er in SiO{sub 2} thin films doped with Si nanoclusters. ► Presence of ITO layer on the top enhances photoluminescence decay rate of Er. ► The effect depends on the thickness of active film. ► Radiative rate change in proximity of ITO layer was calculated theoretically. ► The calculation results are compared with the experiment and discussed.

  13. Absorption Spectra of CuGaSe2 and CuInSe2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2015-10-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density functional theory. Although the lowest energy structures are found to show almost random geometries, the band gaps and absorption spectra still are subject to systematic blue shifts for decreasing cluster size in the case of CunGanSe2n, indicating strong electron confinement. The applicability of the nanoclusters in photovoltaics is discussed. © 2015 American Chemical Society.

  14. Atomic-scale structure of single-layer MoS2 nanoclusters

    DEFF Research Database (Denmark)

    Helveg, S.; Lauritsen, J. V.; Lægsgaard, E.

    2000-01-01

    We have studied using scanning tunneling microscopy (STM) the atomic-scale realm of molybdenum disulfide (MoS2) nanoclusters, which are of interest as a model system in hydrodesulfurization catalysis. The STM gives the first real space images of the shape and edge structure of single-layer MoS2...

  15. Quasi-Dual-Packed-Kerneled Au49 (2,4-DMBT)27 Nanoclusters and the Influence of Kernel Packing on the Electrochemical Gap.

    Science.gov (United States)

    Liao, Lingwen; Zhuang, Shengli; Wang, Pu; Xu, Yanan; Yan, Nan; Dong, Hongwei; Wang, Chengming; Zhao, Yan; Xia, Nan; Li, Jin; Deng, Haiteng; Pei, Yong; Tian, Shi-Kai; Wu, Zhikun

    2017-10-02

    Although face-centered cubic (fcc), body-centered cubic (bcc), hexagonal close-packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix-packed (fcc and non-fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au 49 (2,4-DMBT) 27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single-crystal X-ray crystallography, which revealed that Au 49 (2,4-DMBT) 27 contains a unique Au 34 kernel consisting of one quasi-fcc-structured Au 21 and one non-fcc-structured Au 13 unit (where 2,4-DMBTH=2,4-dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non-fcc structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.; Bootharaju, Megalamane Siddaramappa; Sinatra, Lutfan; Basset, Jean-Marie; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol

  17. Coherent radiation by quantum dots and magnetic nanoclusters

    International Nuclear Information System (INIS)

    Yukalov, V. I.; Yukalova, E. P.

    2014-01-01

    The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins

  18. Formation of nanoclusters of gadolinium atoms in silicon

    International Nuclear Information System (INIS)

    Iliev, Kh.M.; Saparniyazova, Z.M.; Ismajlov, K.A.; Madzhitov, M.Kh.

    2011-01-01

    A technology of stage wise low temperature diffusion of gadolinium into silicon that makes it possible to form nanoclusters of impurity atoms with a significant magnetic moment distributed throughout the volume of the material has been developed. It is shown that, unlike the samples obtained by high temperature diffusion doping, the samples prepared by the new technology do not have surface erosion, and alloys and silicides are not formed in the near surface region. Nanoclusters of impurity atoms of gadolinium in the volume of the crystal lattice of the silicon are studied using an MIK-5 infrared microscope. It is found that, in the stage wise low temperature diffusion, the temperature and time of the diffusion have an effect not only on the depth of penetration of the impurities but also on the sizes of the resulting clusters; these factors can also prevent the formation of clusters. The study of the effect of low temperature treatments on the size and distribution of clusters shows that, upon annealing in the temperature range of 500-700 degrees Celsius, the ordering of the clusters of gadolinium impurity atoms is observed. A further increase in the annealing temperature leads to the destruction of gadolinium clusters in the silicon bulk. (authors)

  19. A cuboctahedral platinum (Pt79) nanocluster enclosed by well defined facets favours di-sigma adsorption and improves the reaction kinetics for methanol fuel cells.

    Science.gov (United States)

    Mahata, Arup; Choudhuri, Indrani; Pathak, Biswarup

    2015-08-28

    The methanol dehydrogenation steps are studied very systematically on the (111) facet of a cuboctahedral platinum (Pt79) nanocluster enclosed by well-defined facets. The various intermediates formed during the methanol decompositions are adsorbed at the edge and bridge site of the facet either vertically (through C- and O-centres) or in parallel. The di-sigma adsorption (in parallel) on the (111) facet of the nanocluster is the most stable structure for most of the intermediates and such binding improves the interaction between the substrate and the nanocluster and thus the catalytic activity. The reaction thermodynamics, activation barrier, and temperature dependent reaction rates are calculated for all the successive methanol dehydrogenation steps to understand the methanol decomposition mechanism, and these values are compared with previous studies to understand the catalytic activity of the nanocluster. We find the catalytic activity of the nanocluster is excellent while comparing with any previous reports and the methanol dehydrogenation thermodynamics and kinetics are best when the intermediates are adsorbed in a di-sigma manner.

  20. Global existence conditions for a non-local problem arising in statistical mechanics

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); I.A. Guerra (Ignacio Antonio); M.A. Peletier (Mark)

    2001-01-01

    textabstractWe consider the evolution of the density and temperature of athree-dimensional cloud of self-interacting particles. This phenomenon ismodelled by a parabolic equation for the density distributioncombining temperature-dependent diffusion and convection drivenby the gradient of the

  1. Nanoclusters and Microparticles in Gases and Vapors

    CERN Document Server

    Smirnov, Boris M

    2012-01-01

    Research of processes involving Nanoclusters and Microparticleshas been developing fastin many fields of rescent research, in particular in materials science. To stay at the cutting edge of this development, a sound understanding of the processes is needed. In this work, several processes involving small particles are described, such as transport processes in gases, charging of small particles in gases, chemical processes, atom attachment and quenching of excited atomic particles on surfaces, nucleation, coagulation, coalescence and growth processes for particles and aggregates. This work pres

  2. Ab initio study of structural, electronic, optical, and vibrational properties of Zn{sub x}S{sub y} (x + y = 2 to 5) nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P. S.; Pandey, D. K., E-mail: pdhiraj2000@gmail.com; Agrawal, S.; Agrawal, B. K. [Allahabad University, Department of Physics (India)

    2010-03-15

    An ab initio study of the stability, structural, electronic. and optical properties has been performed for 46 zinc sulfide nanoclusters Zn{sub x}S{sub y} (x + y = n = 2 to 5). Five out of them are seen to be unstable as their vibrational frequencies are found to be imaginary. A B3LYP-DFT/6-311G(3df) method is employed to optimize the geometries and a TDDFT method is used for the study of the optical properties. The binding energies (BE), HOMO-LUMO gaps and the bond lengths have been obtained for all the clusters. For the ZnS{sub 2}, ZnS{sub 3}, and ZnS{sub 4} nanoclusters, our stable structures are seen to be different from those obtained earlier by using the effective core potentials. We have also considered the zero point energy (ZPE) corrections ignored by the earlier workers. For a fixed value of n, we designate the most stable structure the one, which has maximum final binding energy per atom. The adiabatic and vertical ionization potentials (IP) and electron affinities (EA), charges on the atoms, dipole moments, optical properties, vibrational frequencies, infrared intensities, relative infrared intensities, and Raman scattering activities have been investigated for the most stable structures. The nanoclusters containing large number of S atoms for each n is found to be most stable. The HOMO-LUMO gap decreases from n = 2-3 and then increases above n = 3. The IP and EA both fluctuate with the cluster size n. The optical absorption is quite weak in visible region but strong in the ultraviolet region in most of the nanoclusters except a few. The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every nanocluster and may be used to characterize a specific nanocluster. The growth of most stable nanoclusters may be possible in the experiments.

  3. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    Science.gov (United States)

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  4. The actin cytoskeleton modulates the activation of iNKT cells by segregating CD1d nanoclusters on antigen-presenting cells

    Science.gov (United States)

    Torreno-Pina, Juan A.; Manzo, Carlo; Salio, Mariolina; Aichinger, Michael C.; Oddone, Anna; Lakadamyali, Melike; Shepherd, Dawn; Besra, Gurdyal S.; Cerundolo, Vincenzo

    2016-01-01

    Invariant natural killer T (iNKT) cells recognize endogenous and exogenous lipid antigens presented in the context of CD1d molecules. The ability of iNKT cells to recognize endogenous antigens represents a distinct immune recognition strategy, which underscores the constitutive memory phenotype of iNKT cells and their activation during inflammatory conditions. However, the mechanisms regulating such “tonic” activation of iNKT cells remain unclear. Here, we show that the spatiotemporal distribution of CD1d molecules on the surface of antigen-presenting cells (APCs) modulates activation of iNKT cells. By using superresolution microscopy, we show that CD1d molecules form nanoclusters at the cell surface of APCs, and their size and density are constrained by the actin cytoskeleton. Dual-color single-particle tracking revealed that diffusing CD1d nanoclusters are actively arrested by the actin cytoskeleton, preventing their further coalescence. Formation of larger nanoclusters occurs in the absence of interactions between CD1d cytosolic tail and the actin cytoskeleton and correlates with enhanced iNKT cell activation. Importantly and consistently with iNKT cell activation during inflammatory conditions, exposure of APCs to the Toll-like receptor 7/8 agonist R848 increases nanocluster density and iNKT cell activation. Overall, these results define a previously unidentified mechanism that modulates iNKT cell autoreactivity based on the tight control by the APC cytoskeleton of the sizes and densities of endogenous antigen-loaded CD1d nanoclusters. PMID:26798067

  5. Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.

    Science.gov (United States)

    Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J

    2012-09-12

    Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.

  6. Electronic Properties of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications

    International Nuclear Information System (INIS)

    Lee, Takhee; Liu Jia; Chen, N.-P.; Andres, R.P.; Janes, D.B.; Reifenberger, R.

    2000-01-01

    We review current research on the electronic properties of nanoscale metallic islands and clusters deposited on semiconductor substrates. Reported results for a number of nanoscale metal-semiconductor systems are summarized in terms of their fabrication and characterization. In addition to the issues faced in large-area metal-semiconductor systems, nano-systems present unique challenges in both the realization of well-controlled interfaces at the nanoscale and the ability to adequately characterize their electrical properties. Imaging by scanning tunneling microscopy as well as electrical characterization by current-voltage spectroscopy enable the study of the electrical properties of nanoclusters/semiconductor systems at the nanoscale. As an example of the low-resistance interfaces that can be realized, low-resistance nanocontacts consisting of metal nanoclusters deposited on specially designed ohmic contact structures are described. To illustrate a possible path to employing metal/semiconductor nanostructures in nanoelectronic applications, we also describe the fabrication and performance of uniform 2-D arrays of such metallic clusters on semiconductor substrates. Using self-assembly techniques involving conjugated organic tether molecules, arrays of nanoclusters have been formed in both unpatterned and patterned regions on semiconductor surfaces. Imaging and electrical characterization via scanning tunneling microscopy/spectroscopy indicate that high quality local ordering has been achieved within the arrays and that the clusters are electronically coupled to the semiconductor substrate via the low-resistance metal/semiconductor interface

  7. Sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer platform using the BSA-stabilized Au nanoclusters/amino-functionalized graphene oxide hybrids.

    Science.gov (United States)

    Lan, Jing; Zou, Hong Yan; Wang, Qiang; Zeng, Ping; Li, Yuan Fang; Huang, Cheng Zhi

    2016-12-01

    An ultra-sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer in the BSA-stabilized gold nanoclusters/amino-functionalized graphene oxide (BSA-AuNCs/NH 2 -GO) hybrids was successfully realized. The BSA-AuNCs containing amounts of carboxyl groups could be absorbed on the surface of NH 2 -GO through the electrostatic interaction, which resulted in the fluorescence quenching of BSA-AuNCs with high efficiency. However, heparin, possessing high density of negative charge, could compete with BSA-AuNCs to bind NH 2 -GO and block the energy transfer from BSA-AuNCs to NH 2 -GO. The fluorescence recovery of BSA-AuNCs was closely related to the amount of heparin and there was a good linear relationship between fluorescence recovery of BSA-AuNCs and heparin over the range of 100ng/mL to 30μg/mL with a detection limit of 40ng/mL. What's more, the fluorescence assay was successfully applied for heparin sensing in human serums and intracellular imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Silver Nanocluster Reparative Effect in Hernioplasty

    Directory of Open Access Journals (Sweden)

    Nikolay M. Anichkov

    2014-06-01

    Full Text Available Background: The acceleration of re-epithelialization and fibroblast differentiation were noted during the experiments with silver nanoclusters (SNs by interrupting the negative development of inflammation at the level of cytokines and promoting a positive course of reparative processes. The aim of this work was to elaborate the experimental model of prosthesis hernioplasty in subcutaneous and intraperitoneal locations of hernioprostheses with SNs, which allowed us to study the course of reparative reactions in all layers of the anterior abdominal wall. Material and Methods: We used a modified hernioprosthesis made from polyester fibers coated with a metal-polymer composition, including the stabilized SN in a concentration of 6.8 and 11.3 mg per 1 g of the hernioprosthesis mesh. During this research we used guinea pigs to study the in vivo tissue reactions. The clinical part of the study included the group of 212 patients who underwent removal of an inguinal hernia. We have identified various factors associated with infectious and toxic effects on the body by determining the level of the serum glutamate-pyruvate-transaminase (SGPT. Results: In implantation of the hernioprostheses, including the high concentration of SN in the laparotomy wound, the exudative component of the inflammation was weakly expressed. It was mostly the proliferative changes that took place. We did not find either CD8-positive type T lymphocytes or PAX5-positive type B activated cells in the exudate. Conclusion: Our research has shown that the use of hernioprostheses that include silver nanoclusters leads to the reduction of inflammation in the exudative phase and to a more favorable course of reparative processes.

  9. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution

    International Nuclear Information System (INIS)

    Yang, Xiaoming; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao

    2014-01-01

    Graphical abstract: An innovative and simple strategy for synthesizing high-fluorescent Cu nanoclusters stabilized with L-cysteine has been successfully established in aqueous solution. Significantly, the Cu nanoclusters were employed for sensitive and selective detections of Hg 2+ , coding and fluorescent staining, suggesting their potential toward various applications. - Highlights: • A novel, one-step strategy for synthesizing water-soluble CuNCs was established. • A simple, selective, and cost-effective assay for Hg 2+ was developed. • CuNCs may broaden ways for fluorescent staining and coding. - Abstract: Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV–vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg 2+ on the basis of the interactions between Hg 2+ and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg 2+ in a linear range of 1.0 × 10 −7 mol L −1 × 10 −3 mol L −1 , with a detection limit of 2.4 × 10 −8 mol L −1 at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications

  10. Formation and vibrational structure of Si nano-clusters in ZnO matrix

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serrano, J. [Universidad Autonoma del Estado de Hidalgo, Hidalgo (Mexico); Pal, U. [Universidad Autonoma de Puebla, Puebla (Mexico); Koshizaki, N.; Sasaki, T. [National Institute of Materials and Chemical Research, Ibaraki (Japan)

    2001-02-01

    We have studied the formation and vibrational structure of Si nano-clusters in ZnO matrix prepared by radio-frequency (r.f.) co-sputtering, and characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and Infrared (IR) spectroscopy techniques. The composite films of Si/ZnO were grown o quartz substrates by co-sputtering of Si and ZnO targets. TEM images show a homogeneous distribution of clusters in the matrix with average size varied from 3.7 nm to 34 nm depending on the temperature of annealing. IR absorption measurements revealed the bands correspond to the modes of vibrations of Si{sub 3} in its triangular geometrical structure. By analysing the IR absorption and XPS spectra we found that the nano-clusters consist of a Si{sub 3} core and a SiO{sub x} cap layer. With the increase of annealing temperature, the vibrational states of Si changed from the triplet {sup 3}B1(C2{sub v}) and {sup 3}A'{sub 2}(D{sub 3h}) states to its singlet ground state {sup 1}A{sub 1}(C2{sub v}) and the oxidation state of Si in SiO{sub x} increased. The evolution of the local atomic structure of the Si nano-clusters with the variation of Si content in the film and with the variation of the temperature of annealing are discussed. [Spanish] Se estudia la formacion y estructura vibracional de nano-cumulos de Si en matriz de ZnO preparados por la tecnica de radio-frecuencia (r.f.) co-sputtering, y caracterizados por Microscopia Electronica de Transmision (TEM), Espectroscopia Fotoelectronica de rayos X (XPS) y Espectroscopia de Infrarrojo (IR). Las peliculas compositas de Si/ZnO fueron crecidas sobre sustratos de cuarzo mediante el co-sputtering de blancos de Si y ZnO. Las imagenes de TEM mostraron una distribucion homogenea de cumulos en la matriz con un tamano promedio de 3.7 nm a 34 nm dependiendo de la temperatura de tratamiento. Las mediciones de IR relevaron las bandas correspondientes a los modos de vibracion de Si{sub 3} en su estructura

  11. The Size of Activating and Inhibitory Killer Ig-like Receptor Nanoclusters Is Controlled by the Transmembrane Sequence and Affects Signaling

    Directory of Open Access Journals (Sweden)

    Anna Oszmiana

    2016-05-01

    Full Text Available Super-resolution microscopy has revealed that immune cell receptors are organized in nanoscale clusters at cell surfaces and immune synapses. However, mechanisms and functions for this nanoscale organization remain unclear. Here, we used super-resolution microscopy to compare the surface organization of paired killer Ig-like receptors (KIR, KIR2DL1 and KIR2DS1, on human primary natural killer cells and cell lines. Activating KIR2DS1 assembled in clusters two-fold larger than its inhibitory counterpart KIR2DL1. Site-directed mutagenesis established that the size of nanoclusters is controlled by transmembrane amino acid 233, a lysine in KIR2DS1. Super-resolution microscopy also revealed two ways in which the nanoscale clustering of KIR affects signaling. First, KIR2DS1 and DAP12 nanoclusters are juxtaposed in the resting cell state but coalesce upon receptor ligation. Second, quantitative super-resolution microscopy revealed that phosphorylation of the kinase ZAP-70 or phosphatase SHP-1 is favored in larger KIR nanoclusters. Thus, the size of KIR nanoclusters depends on the transmembrane sequence and affects downstream signaling.

  12. Hydrothermal synthesis of polyethylenimine-protected high luminescent Pt-nanoclusters and their application to the detection of nitroimidazoles

    International Nuclear Information System (INIS)

    Xu, Na; Li, Hong-Wei; Wu, Yuqing

    2017-01-01

    A novel one-step hydrothermal synthesis of highly fluorescent platinum nanoclusters protected by polyethylenimine (Pt-NCs@PEI) is described. The products are characterized well by UV–vis absorption, fluorescence spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) imaging. The Pt-NCs@PEI possess high quantum yield at 28%, which is the relatively high one among the reported Pt-NCs; especially, the synthesis is in one-step and the reaction time is much shorter (<1 h) than the related methods. In addition, the Pt-NCs@PEI have large Stocks-shift (∼150 nm), high tolerability to the extreme pH and high ionic strengths, and excellent photo-stability under UV–vis irradiation, lay the foundation for the practical bio-applications. Finally, the obtained Pt-NCs@PEI are used to determine trace amount of metronidazole (MTZ) in buffer solution in showing a linear response over a concentration range of 0.25–300 μM and a low detection limit of 0.1 μM. Furthermore, the related investigation on response mechanism will be helpful to design and synthesize new metal nanoclusters as fluorescent probe to detect the trace amount of harmful medicine residuum as nitroimidazoles in human body. - Highlights: • This paper provides the first hydrothermal synthesis of platinum nanoclusters. • The prepared polyethylenimine-protected platinum nanoclusters possess high quantum yield of 28%. • A new method to detect trace amount of metronidazole in urine is proposed.

  13. Hydrothermal synthesis of polyethylenimine-protected high luminescent Pt-nanoclusters and their application to the detection of nitroimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Na [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022 (China); Li, Hong-Wei, E-mail: lihongwei@jlu.edu.cn [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China); Wu, Yuqing, E-mail: yqwu@jlu.edu.cn [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2017-03-15

    A novel one-step hydrothermal synthesis of highly fluorescent platinum nanoclusters protected by polyethylenimine (Pt-NCs@PEI) is described. The products are characterized well by UV–vis absorption, fluorescence spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) imaging. The Pt-NCs@PEI possess high quantum yield at 28%, which is the relatively high one among the reported Pt-NCs; especially, the synthesis is in one-step and the reaction time is much shorter (<1 h) than the related methods. In addition, the Pt-NCs@PEI have large Stocks-shift (∼150 nm), high tolerability to the extreme pH and high ionic strengths, and excellent photo-stability under UV–vis irradiation, lay the foundation for the practical bio-applications. Finally, the obtained Pt-NCs@PEI are used to determine trace amount of metronidazole (MTZ) in buffer solution in showing a linear response over a concentration range of 0.25–300 μM and a low detection limit of 0.1 μM. Furthermore, the related investigation on response mechanism will be helpful to design and synthesize new metal nanoclusters as fluorescent probe to detect the trace amount of harmful medicine residuum as nitroimidazoles in human body. - Highlights: • This paper provides the first hydrothermal synthesis of platinum nanoclusters. • The prepared polyethylenimine-protected platinum nanoclusters possess high quantum yield of 28%. • A new method to detect trace amount of metronidazole in urine is proposed.

  14. Comparative Analysis of Particle Swarm and Differential Evolution via Tuning on Ultrasmall Titanium Oxide Nanoclusters

    Science.gov (United States)

    Inclan, Eric; Lassester, Jack; Geohegan, David; Yoon, Mina

    Optimization algorithms (OA) coupled with numerical methods enable researchers to identify and study (meta) stable nanoclusters without the control restrictions of empirical methods. An algorithm's performance is governed by two factors: (1) its compatibility with an objective function, (2) the dimension of a design space, which increases with cluster size. Although researchers often tune an algorithm's user-defined parameters (UDP), tuning is not guaranteed to improve performance. In this research, Particle Swarm (PSO) and Differential Evolution (DE), are compared by tuning their UDP in a multi-objective optimization environment (MOE). Combined with a Kolmogorov Smirnov test for statistical significance, the MOE enables the study of the Pareto Front (PF), made of the UDP settings that trade-off between best performance in energy minimization (``effectiveness'') based on force-field potential energy, and best convergence rate (``efficiency''). By studying the PF, this research finds that UDP values frequently suggested in the literature do not provide best effectiveness for these methods. Additionally, monotonic convergence is found to significantly improve efficiency without sacrificing effectiveness for very small systems, suggesting better compatibility. Work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  15. Expansion-limited aggregation of nanoclusters in a single-pulse laser-produced plume

    International Nuclear Information System (INIS)

    Gamaly, E. G.; Madsen, N. R.; Rode, A. V.; Golberg, D.

    2009-01-01

    Formation of carbon nanoclusters in a single-laser-pulse created ablation plume was studied both in vacuum and in a noble gas environment at various pressures. The developed theory provides cluster radius dependence on combination of laser parameters, properties of ablated material, and type and pressure of an ambient gas in agreement with experiments. The experiments were performed on carbon nanoclusters formed by laser ablation of graphite targets with 12 picosecond 532 nm laser pulses at MHz-range repetition rate in a broad range of ambient He, Ar, Kr, and Xe gas pressures from 2x10 -2 to 1500 Torr. The experimental results confirmed our theoretical prediction that the average size of the nanoparticles depends weakly on the type of the ambient gas used, and is determined exclusively by the single laser pulse parameters even at the repetition rate as high as 28 MHz with the time gap 36 ns between the pulses. The most important finding relates to the fact that in vacuum the cluster size is mainly determined by hydrodynamic expansion of the plume while in the ambient gas it is controlled by atomic diffusion in the gas. We demonstrate that the ultrashort pulses can be used for production of clusters with the size less than the critical value, which separates the particles with properties drastically different from those of a material in a bulk. The presented results of experiments on formation of carbon nanoclusters are in close agreement with the theoretical scaling. The developed theory is applicable for cluster formation from any monatomic material, such as silicon for example.

  16. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoming, E-mail: ming4444@swu.edu.cn; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao

    2014-10-17

    Graphical abstract: An innovative and simple strategy for synthesizing high-fluorescent Cu nanoclusters stabilized with L-cysteine has been successfully established in aqueous solution. Significantly, the Cu nanoclusters were employed for sensitive and selective detections of Hg{sup 2+}, coding and fluorescent staining, suggesting their potential toward various applications. - Highlights: • A novel, one-step strategy for synthesizing water-soluble CuNCs was established. • A simple, selective, and cost-effective assay for Hg{sup 2+} was developed. • CuNCs may broaden ways for fluorescent staining and coding. - Abstract: Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV–vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg{sup 2+} on the basis of the interactions between Hg{sup 2+} and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg{sup 2+} in a linear range of 1.0 × 10{sup −7} mol L{sup −1} × 10{sup −3} mol L{sup −1}, with a detection limit of 2.4 × 10{sup −8} mol L{sup −1} at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications.

  17. Double surface plasmon enhanced organic light-emitting diodes by gold nanoparticles and silver nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Chia-Yuan; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chen, Kan-Lin [Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung, Taiwan (China); Huang, Chien-Jung, E-mail: chien@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan (China)

    2015-12-30

    Graphical abstract: - Highlights: • The buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated. • The silver nanoclusters will generate surface plasmon resonance effect, resulting that the localized electric field around the silver nanoclusters is enhanced. • When the recombination region of the excitons is too close to the nanoparticles of the hole-transport layer, the nonradiative quenching of excitons is generated. - Abstract: The influence of gold nanoparticles (GNPs) and silver nanoclusters (SNCs) on the performance of organic light-emitting diodes is investigated in this study. The GNPs are doped into (poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate)) (PEDOT: PSS) and the SNCs are introduced between the electron-injection layer and cathode alumina. The power efficiency of the device, at the maximum luminance, with double surface plasmon resonance and buffer layer is about 2.15 times higher than that of the device without GNPs and SNCs because the absorption peaks of GNPs and SNCs are as good as the photoluminescence peak of the emission layer, resulting in strong surface plasmon resonance effect in the device. In addition, the buffer layer is inserted between PEDOT: PSS and the emitting layer in order to avoid that the nonradiative decay process of exciton is generated.

  18. Rapid synthesis of tin oxide decorated carbon nanotube nanocomposities as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lin, Jeng-Yu; Chou, Ming-Hung; Kuo, Yi-Chen

    2014-01-01

    Highlights: • SnO 2 –CNTs nanocomposite was synthesized by microwave-assisted hydrothermal route. • Adding glucose assisted SnO 2 nanoclusters uniformly grow on the surfaces of CNTs. • SnO 2 –CNTs nanocomposite shows improved electrochemical properties. -- Abstract: In this study, the tin oxide decorated carbon nanotubes (SnO 2 –CNTs) nanocomposites have been successfully synthesized using an ultrafast and environmentally friendly microwave-assisted hydrothermal method. According to X-ray diffraction pattern, field emission scanning electron microscopy and transmission electron microscopy, the SnO 2 nanoclusters can directly grow on the surfaces of CNTs with uniform coverage along the longitudinal axis by using glucose as a binding agent. The electrochemical properties of the SnO 2 –CNTs nanocomposite electrode have been further characterized by galvanostatic discharge/charge cycling tests, cyclic voltammetry and electrochemical impedance spectroscopy. Results demonstrate that the SnO 2 –CNTs nanocomposite electrode exhibited a superior reversible discharge capacity, cycling stability and rate capability as an anode material for Li-ion batteries compared to the pristine SnO 2 electrode. Such synergic improvements can be attributed to combining the SnO 2 nanoclusters onto the conductive CNTs matrix by taking advantage of the relatively high specific capacity of SnO 2 nanoclusters and the excellent cycling capability of the CNTs

  19. Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants

    International Nuclear Information System (INIS)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Rao, Mulpuri V

    2011-01-01

    Nanowire-nanocluster hybrid chemical sensors were realized by functionalizing gallium nitride (GaN) nanowires (NWs) with titanium dioxide (TiO 2 ) nanoclusters for selectively sensing benzene and other related aromatic compounds. Hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO 2 nanoclusters using RF magnetron sputtering. The sensor fabrication process employed standard microfabrication techniques. X-ray diffraction and high-resolution analytical transmission electron microscopy using energy-dispersive x-ray and electron energy-loss spectroscopies confirmed the presence of the anatase phase in TiO 2 clusters after post-deposition anneal at 700 deg. C. A change of current was observed for these hybrid sensors when exposed to the vapors of aromatic compounds (benzene, toluene, ethylbenzene, xylene and chlorobenzene mixed with air) under UV excitation, while they had no response to non-aromatic organic compounds such as methanol, ethanol, isopropanol, chloroform, acetone and 1,3-hexadiene. The sensitivity range for the noted aromatic compounds except chlorobenzene were from 1% down to 50 parts per billion (ppb) at room temperature. By combining the enhanced catalytic properties of the TiO 2 nanoclusters with the sensitive transduction capability of the nanowires, an ultra-sensitive and selective chemical sensing architecture is demonstrated. We have proposed a mechanism that could qualitatively explain the observed sensing behavior.

  20. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    International Nuclear Information System (INIS)

    Taherkhani, Farid; Akbarzadeh, Hamed; Feyzi, Mostafa; Rafiee, Hamid Reza

    2015-01-01

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models

  1. Disorder effect on heat capacity, self-diffusion coefficient, and choosing best potential model for melting temperature, in gold–copper bimetallic nanocluster with 55 atoms

    Energy Technology Data Exchange (ETDEWEB)

    Taherkhani, Farid, E-mail: faridtaherkhani@gmail.com, E-mail: f.taherkhani@razi.ac.ir [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of); Akbarzadeh, Hamed [Hakim Sabzevari University, Department of Chemistry (Iran, Islamic Republic of); Feyzi, Mostafa; Rafiee, Hamid Reza [Razi University, Department of Physical Chemistry (Iran, Islamic Republic of)

    2015-01-15

    Molecular dynamics simulation has been implemented for doping effect on melting temperature, heat capacity, self-diffusion coefficient of gold–copper bimetallic nanostructure with 55 total gold and copper atom numbers and its bulk alloy. Trend of melting temperature for gold–copper bimetallic nanocluster is not same as melting temperature copper–gold bulk alloy. Molecular dynamics simulation of our result regarding bulk melting temperature is consistence with available experimental data. Molecular dynamics simulation shows that melting temperature of gold–copper bimetallic nanocluster increases with copper atom fraction. Semi-empirical potential model and quantum Sutton–Chen potential models do not change melting temperature trend with copper doping of gold–copper bimetallic nanocluster. Self-diffusion coefficient of copper atom is greater than gold atom in gold–copper bimetallic nanocluster. Semi-empirical potential within the tight-binding second moment approximation as new application potential model for melting temperature of gold–copper bulk structure shows better result in comparison with EAM, Sutton–Chen potential, and quantum Sutton–Chen potential models.

  2. Structure prediction of nanoclusters; a direct or a pre-screened search on the DFT energy landscape?

    Science.gov (United States)

    Farrow, M R; Chow, Y; Woodley, S M

    2014-10-21

    The atomic structure of inorganic nanoclusters obtained via a search for low lying minima on energy landscapes, or hypersurfaces, is reported for inorganic binary compounds: zinc oxide (ZnO)n, magnesium oxide (MgO)n, cadmium selenide (CdSe)n, and potassium fluoride (KF)n, where n = 1-12 formula units. The computational cost of each search is dominated by the effort to evaluate each sample point on the energy landscape and the number of required sample points. The effect of changing the balance between these two factors on the success of the search is investigated. The choice of sample points will also affect the number of required data points and therefore the efficiency of the search. Monte Carlo based global optimisation routines (evolutionary and stochastic quenching algorithms) within a new software package, viz. Knowledge Led Master Code (KLMC), are employed to search both directly and after pre-screening on the DFT energy landscape. Pre-screening includes structural relaxation to minimise a cheaper energy function - based on interatomic potentials - and is found to improve significantly the search efficiency, and typically reduces the number of DFT calculations required to locate the local minima by more than an order of magnitude. Although the choice of functional form is important, the approach is robust to small changes to the interatomic potential parameters. The computational cost of initial DFT calculations of each structure is reduced by employing Gaussian smearing to the electronic energy levels. Larger (KF)n nanoclusters are predicted to form cuboid cuts from the rock-salt phase, but also share many structural motifs with (MgO)n for smaller clusters. The transition from 2D rings to 3D (bubble, or fullerene-like) structures occur at a larger cluster size for (ZnO)n and (CdSe)n. Differences between the HOMO and LUMO energies, for all the compounds apart from KF, are in the visible region of the optical spectrum (2-3 eV); KF lies deep in the UV region

  3. Towards understanding of poly-guanine activated fluorescent silver nanoclusters

    International Nuclear Information System (INIS)

    Walczak, Sylwia; Morishita, Kiyoshi; Ahmed, Moin; Liu, Juewen

    2014-01-01

    It has been recently reported that the fluorescence of some DNA-templated silver nanoclusters (AgNCs) can be significantly enhanced upon by hybridizing with a partially complementary DNA containing a G-rich overhang near the AgNCs. This discovery has found a number of analytical applications but many fundamental questions remain to be answered. In this work, the photostability of these activated AgNCs is reported. After adding the G-rich DNA activator, the fluorescence intensity peaks in ∼1 h and then starts to decay, where the decaying rate is much faster with light exposure. The lost fluorescence is recovered by adding NaBH 4 , suggesting that the bleaching is an oxidative process. Once activated, the G-rich activator can be removed while the AgNCs still maintain most of their fluorescence intensity. UV–vis spectroscopy suggests that new AgNC species are generated upon hybridization with the activator. The base sequence and length of the template DNA have also been varied, leading to different emission colors and color change after hybridization. G-rich aptamers can also serve as activators. Our results indicate that activation of the fluorescence by G-rich DNA could be a convenient method for biosensor development since the unstable NaBH 4 is not required for the activation step. (paper)

  4. Wireless electrochemical preparation of gradient nanoclusters consisting of copper(II), stearic acid and montmorillonite on a copper wire for headspace in-tube microextraction of chlorobenzenes.

    Science.gov (United States)

    Enteshari Najafabadi, Marzieh; Bagheri, Habib

    2017-12-26

    This work introduces a new gradient fiber coating for microextraction of chlorobenzenes. Nanoclusters of organoclay-Cu(II) on a copper wire were fabricated by wireless electrofunctionalization. The resultant gradient coatings are more robust, and thermally and mechanically stable. Wireless electrofunctionalization was carried out in a bipolar cell under a constant deposition potential and using an ethanolic electrolyte solution containing stearic acid and montmorillonite. Stearic acid acts as an inexpensive and green coating while montmorillonite acts as a modifier to impart thermal stability. The gradient morphology of the nanoclusters was investigated by scanning electron microscopy, thermogravimetric analysis and energy dispersive X-ray spectroscopy. The coated wire was placed in a hollow needle and used for headspace in-tube microextraction (HS-ITME) of chlorobenzenes (CBs). Effects of various parameters affecting synthesis and extraction were optimized. Following extraction, the needles were directly inserted into the GC injector, and the CBs (chlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,2,3,4-tetrachlorobenzene) were quantified by GC-MS. The limits of detection under optimized conditions range from 0.5 to 10 ng.L -1 . The intra- and inter-day relative standard deviations (RSDs) (for n = 10, 5 respectively) using a single fiber are 6-10 and 10-15%, respectively. The fiber-to-fiber RSDs (for n = 3) is between 17 and 24%. The method was successfully applied to the extraction of CBs from real water samples, and relative recoveries are between 91 and 110%. Graphical abstract A gradient coating of organoclay-Cu nanoclusters was fabricated on a copper wire by wireless electrofunctionalization. The oxidation of copper takes place at the anodic pole (red) while dissolved oxygen in ethanol solution is reduced at the cathodic pole (blue).

  5. Ultrafast coherence transfer in DNA-templated silver nanoclusters

    DEFF Research Database (Denmark)

    Thyrhaug, Erling; Bogh, Sidsel Ammitzbøll; Carro, Miguel

    2017-01-01

    DNA-templated silver nanoclusters of a few tens of atoms or less have come into prominence over the last several years due to very strong absorption and efficient emission. Applications in microscopy and sensing have already been realized, however little is known about the excited-state structure...... and dynamics in these clusters. Here we report on a multidimensional spectroscopy investigation of the energy-level structure and the early-time relaxation cascade, which eventually results in the population of an emitting state. We find that the ultrafast intramolecular relaxation is strongly coupled...

  6. The Relationship between Nanocluster Precipitation and Thermal Conductivity in Si/Ge Amorphous Multilayer Films: Effects of Cu Addition

    Directory of Open Access Journals (Sweden)

    Ahmad Ehsan Mohd Tamidi

    2016-01-01

    Full Text Available We have used a molecular dynamics technique to simulate the relationship between nanocluster precipitation and thermal conductivity in Si/Ge amorphous multilayer films, with and without Cu addition. In the study, the Green-Kubo equation was used to calculate thermal conductivity in these materials. Five specimens were prepared: Si/Ge layers, Si/(Ge + Cu layers, (Si + Cu/(Ge + Cu layers, Si/Cu/Ge/Cu layers, and Si/Cu/Ge layers. The number of precipitated nanoclusters in these specimens, which is defined as the number of four-coordinate atoms, was counted along the lateral direction of the specimens. The observed results of precipitate formation were considered in relation to the thermal conductivity results. Enhancement of precipitation of nanoclusters by Cu addition, that is, densification of four-coordinate atoms, can prevent the increment of thermal conductivity. Cu dopant increases the thermal conductivity of these materials. Combining these two points, we concluded that Si/Cu/Ge is the best structure to improve the conversion efficiency of the Si/Ge amorphous multilayer films.

  7. Nanosystems in Ceramic Oxides Created by Means of Ion Implantation

    OpenAIRE

    Van Huis, M.A.

    2003-01-01

    The material properties of nanometer-sized clusters are dependent on the cluster size. Changing the cluster dimensions induces structural phase transformations, metal-insulator transitions, non-linear optical properties and widening of the band gap of semiconductors. In this work, nanoclusters are created by ion implantation followed by thermal annealing. The ceramic oxides MgO and Al2O3 are used as embedding materials because of their stability and optical transparency. All clusters were cre...

  8. Theory of Nanocluster Size Distributions from Ion Beam Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-06-13

    Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.

  9. First-principles investigation of strain effects on the energy gaps in silicon nanoclusters

    International Nuclear Information System (INIS)

    Peng, X-H; Alizadeh, A; Bhate, N; Varanasi, K K; Kumar, S K; Nayak, S K

    2007-01-01

    First-principles density functional calculations were performed to study strain effects on the energy gaps in silicon nanoclusters with diameter ranging from 0.6 to 2 nm. Hydrostatic and non-hydrostatic strains have been found to affect the energy gaps differently. For the same strain energy density, non-hydrostatic strain leads to a significantly larger change in the energy gap of silicon clusters compared to that of the hydrostatic strain case. In contrast, hydrostatic and non-hydrostatic strain effects on the energy gaps of bulk Si or larger size Si quantum dots are comparable. Non-hydrostatic strains break the tetrahedral bonding symmetry in silicon, resulting in significant variation in the energy gaps due to the splitting of the degenerate orbitals in the clusters. Our results suggest that the combination of energy gaps and strains permits the engineering of photoluminescence in silicon nanoclusters and offers the possibility of designing novel optical devices and chemical sensors

  10. Site of Er ions in silica layers codoped with Si nanoclusters and Er

    International Nuclear Information System (INIS)

    Pellegrino, P.; Garrido, B.; Arbiol, J.; Garcia, C.; Lebour, Y.; Morante, J.R.

    2006-01-01

    Silica layers implanted with Si and Er ions to various doses and annealed at 950 deg. C have been investigated by means of energy-filtered transmission electron microscopy (EFTEM) and high annular angle dark field (HAADF). EFTEM analysis reveals Si nanoclusters (Si-nc) with an average size around 3 nm for high Si content (15 at. %) whereas no clusters can be imaged for the lowest Si excess (5 at. %). Raman scattering supports that amorphous Si precipitates are present in all the samples. Moreover, the filtered images show that Er ions appear preferentially located outside the Si-nc. HAADF analysis confirms that the Er atoms form agglomerations of 5-10 nm size when the Er concentration exceeds 1x10 20 cm -3 . This observation correlates well with the reduction of the Er population excitable by Si nanoclusters, in the best case corresponding to 10% of the total. A suitable tuning of the annealing drastically reduces this deleterious effect

  11. Enhanced charge collection and photocatalysis performance of CdS and PbS nanoclusters co-sensitized TiO{sub 2} porous film

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao; Xu, Yanyan; Gong, Zezhou; Tao, Jiajia [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Sun, Zhaoqi, E-mail: szq@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230601 (China); Lv, Jianguo [School of Electronic & Information Engineering, Hefei Normal University, Hefei, 230601 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Chen, Xiaoshuang [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Jiang, Xishun [School of Physics & Material Science, Anhui University, Hefei 230601 (China); School of Mechanical & Electronic Engineering, Chuzhou University, Chuzhou, 239000 (China); He, Gang; Wang, Peihong; Meng, Fanming [School of Physics & Material Science, Anhui University, Hefei 230601 (China)

    2015-11-15

    A novel translucent TiO{sub 2} porous film was prepared through etched method. The CdS, PbS and CdS/PbS nanoclusters were imbedded on TiO{sub 2} porous film by successive ionic layer adsorption and reaction method. Microstructure, morphology, optical and photoelectron-chemical properties of the as-synthesized thin films were investigated systematically. XRD and morphology analysis showed that PbS or CdS nanoclusters have been attached to the TiO{sub 2} porous films. It was found that the energy band gap of TiO{sub 2} porous film decreased from 3.46 to 3.2 eV after sensitized with nanoclusters. The photocurrent density of ITO/TiO{sub 2} photoelectrode increased from 0.017 to 0.28 mA/cm{sup 2} after co-sensitized with CdS and PbS nanoclusters. Besides, the photoelectrode sensitized with two sorts of nanoclusters showed evident higher photocurrent density than which sensitized just one sort of nanoclusters. The photocurrent density of ITO/TiO{sub 2}/PbS and TO/TiO{sub 2}/CdS photoelectrode was 0.11 mA/cm{sup 2} and 0.22 mA/cm{sup 2} respectively. 0.28 mA/cm{sup 2} can be obtained by ITO/TiO{sub 2}/CdS/PbS photoelectrode. The results showed that the optical and photoelectrochemistry properties and phtotcatalysis performance of TiO{sub 2} porous film were greatly improved by co-sensitized with CdS and PbS nanoclusters. - Graphical abstract: When CdS and PbS were brought in the cascade structure, such a Fermi level alignment causes upward and downward shifts of the band edges for PbS and CdS, respectively. Therefore the resulting band edges for the ITO/TiO{sub 2}/CdS/PbS devices are inferred to have a stepwise structure. The elevated conduction band edge of PbS provides a higher driving force for the injection of photogenerated electrons from PbS to CdS as well as the injection of excited holes from CdS to PbS. Such a structure offers efficient separation and transport of the excited electrons and holes. - Highlights: • Ti films were obtained from direct current

  12. Processing and microstructure characterisation of oxide dispersion strengthened Fe–14Cr–0.4Ti–0.25Y2O3 ferritic steels fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Zhang, Hongtao; Huang, Yina; Ning, Huanpo; Williams, Ceri A.; London, Andrew J.; Dawson, Karl; Hong, Zuliang; Gorley, Michael J.; Grovenor, Chris R.M.; Tatlock, Gordon J.; Roberts, Steve G.; Reece, Michael J.; Yan, Haixue; Grant, Patrick S.

    2015-01-01

    Highlights: • Nanostructured ODS steels were successfully produced by SPS. • Presence of Y 2 Ti 2 O 7 nanoclusters was confirmed by synchrotron XRD and microscopy. • The chemistry of nanoclusters tested by ATP indicated they are Y–Ti–O oxides. - Abstract: Ferritic steels strengthened with Ti–Y–O nanoclusters are leading candidates for fission and fusion reactor components. A Fe–14Cr–0.4Ti + 0.25Y 2 O 3 (14YT) alloy was fabricated by mechanical alloying and subsequently consolidated by spark plasma sintering (SPS). The densification of the 14YT alloys significantly improved with an increase in the sintering temperature. Scanning electron microscopy and electron backscatter diffraction revealed that 14YT SPS-sintered at 1150 °C under 50 MPa for 5 min had a high density (99.6%), a random grain orientation and a bimodal grain size distribution (<500 nm and 1–20 μm). Synchrotron X-ray diffraction patterns showed bcc ferrite, Y 2 Ti 2 O 7 , FeO, and chromium carbides, while transmission electron microscopy and atom probe tomography showed uniformly dispersed Y 2 Ti 2 O 7 nanoclusters of <5 nm diameter and number density of 1.04 × 10 23 m −3 . Due to the very much shorter consolidation times and lower pressures used in SPS compared with the more usual hot isostatic pressing routes, SPS is shown to be a cost-effective technique for oxide dispersion strengthened (ODS) alloy manufacturing with microstructural features consistent with the best-performing ODS alloys

  13. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-01

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.

  14. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements.

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-15

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Interaction between rare-earth ions and amorphous silicon nanoclusters produced at low processing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, A. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada)]. E-mail: ameldrum@ualberta.ca; Hryciw, A. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); MacDonald, A.N. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); Blois, C. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); Clement, T. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G2V4 (Canada); De Corby, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G2V4 (Canada); Wang, J. [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China); Li Quan [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China)

    2006-12-15

    Temperatures of 1000 deg. C and higher are a significant problem for the incorporation of erbium-doped silicon nanocrystal devices into standard silicon technology, and make the fabrication of contacts and reflectors in light emitting devices difficult. In the present work, we use energy-filtered TEM imaging techniques to show the formation of size-controlled amorphous silicon nanoclusters in SiO films annealed between 400 and 500 deg. C. The PL properties of such films are characteristic of amorphous silicon, and the spectrum can be controlled via a statistical size effect-as opposed to quantum confinement-that has previously been proposed for porous amorphous silicon. Finally, we show that amorphous nanoclusters sensitize the luminescence from the rare-earth ions Er, Nd, Yb, and Tm with excitation cross-sections similar in magnitude to erbium-doped silicon nanocrystal composites, and with a similar nonresonant energy transfer mechanism.

  16. Multilayered nanoclusters of platinum and gold: insights on electrodeposition pathways, electrocatalysis, surface and bulk compositional properties

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2013-06-01

    Full Text Available Electrochemical, surface and bulk compositional properties of multilayered nanoclusters of Pt and Au, electrochemically deposited on glassy carbon under conditions involving sequential surface–limited redox–replacement reactions (performed at open...

  17. Solvent Effect on Redox Properties of Hexanethiolate Monolayer-Protected Gold Nanoclusters

    OpenAIRE

    Su, B; Zhang, M; Shao, Y; Girault, HH

    2006-01-01

    The capacitance of monolayer-protected gold nanoclusters (MPCs), CMPC, in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to CMPC and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparin...

  18. Plasmon tsunamis on metallic nanoclusters.

    Science.gov (United States)

    Lucas, A A; Sunjic, M

    2012-03-14

    A model is constructed to describe inelastic scattering events accompanying electron capture by a highly charged ion flying by a metallic nanosphere. The electronic energy liberated by an electron leaving the Fermi level of the metal and dropping into a deep Rydberg state of the ion is used to increase the ion kinetic energy and, simultaneously, to excite multiple surface plasmons around the positively charged hole left behind on the metal sphere. This tsunami-like phenomenon manifests itself as periodic oscillations in the kinetic energy gain spectrum of the ion. The theory developed here extends our previous treatment (Lucas et al 2011 New J. Phys. 13 013034) of the Ar(q+)/C(60) charge exchange system. We provide an analysis of how the individual multipolar surface plasmons of the metallic sphere contribute to the formation of the oscillatory gain spectrum. Gain spectra showing characteristic, tsunami-like oscillations are simulated for Ar(15+) ions capturing one electron in distant collisions with Al and Na nanoclusters.

  19. Absorption Spectra of CuGaSe2 and CuInSe2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Singh, Nirpendra; Schwingenschlö gl, Udo

    2015-01-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density

  20. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    Science.gov (United States)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  1. Atomic structure of embedded Fe nanoclusters as a function of host matrix material: a synchrotron radiation study

    International Nuclear Information System (INIS)

    Baker, S H; Roy, M; Gurman, S J; Louch, S; Bleloch, A; Binns, C

    2004-01-01

    The atomic structure of Fe nanoclusters embedded in a range of matrix materials has been studied using synchrotron radiation. In particular, the effect of embedding the clusters in Ag, amorphous carbon (a-C) and a porous C 60 matrix is investigated. The embedded cluster samples were prepared by co-deposition using a gas aggregation cluster source. Samples with both dilute and high-volume-filling fraction of clusters, at 4 and 40% respectively, were prepared. Fe K edge EXAFS measurements were used to probe the structure within the clusters. In a Ag matrix, the Fe clusters retain the b.c.c. structure of bulk Fe while in a-C there is evidence for both b.c.c. and f.c.c. structures in the clusters. These results are independent of cluster volume-filling fraction over the range investigated. When embedded in a porous C 60 matrix, the Fe clusters oxidize to Fe 2 O 3

  2. Hydrogen interactions with ZrCo nanoclusters: a first-principles study

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Bhattacharya, Saswata; Majumder, C.

    2014-01-01

    Tritium is one of the fuels going to be used in fusion reactor program. But, this radioactive isotope should be stored safely. ZrCo intermetallic has been chosen as a tritium storage material in ITER program. It is important to study how hydrogen interacts with ZrCo in its different dimensions. In this study we have investigated the hydrogen interaction with the Zr m Co n (m+n = 2, 4 and 6) nanoclusters using the state-of-the-art first principles method

  3. Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au-12 Nanoclusters

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Falsig, Hanne

    2012-01-01

    that the rate of H2O2 and H2O formation can be determined from a single descriptor, namely, the binding energy of oxygen (E-O). Our model predicts the search direction starting from an Au-12 nanocluster for an optimal catalyst in terms of activity and selectivity for direct H2O2 synthesis. Taking also stability......We present density functional theory calculations on the direct synthesis of H2O2 from H-2 and O-2 over an Au-12 corner model of a gold nanoparticle. We first show a simple route for the direct formation of H2O2 over a gold nanocatalyst, by studying the energetics of 20 possible elementary...... reactions involved in the oxidation of H-2 by O-2. The unwanted side reaction to H2O is also considered. Next we evaluate the degree of catalyst control and address the factors controlling the activity and the selectivity. By combining well-known energy scaling relations with microkinetic modeling, we show...

  4. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    KAUST Repository

    Pablo-Pedro, Ricardo

    2017-08-17

    High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we performed DFT calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n-type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the zigzag and armchair directions may permit the design of novel n-type electronic materials and spinctronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  5. One-step aqueous synthesis of fluorescent copper nanoclusters by direct metal reduction

    International Nuclear Information System (INIS)

    Fernández-Ujados, Mónica; Trapiella-Alfonso, Laura; Costa-Fernández, José M; Pereiro, Rosario; Sanz-Medel, Alfredo

    2013-01-01

    A one-step aqueous synthesis of highly fluorescent water-soluble copper nanoclusters (CuNCs) is here described, based on direct reduction of the metal precursor with NaBH 4 in the presence of bidentate ligands (made of lipoic acid anchoring groups, appended with a poly(ethylene glycol) short chain). A complete optical and structural characterization was carried out: the optical emission was centred at 416 nm, with a luminescence quantum yield in water of 3.6% (the highest one reported so far in water for this kind of nanocluster). The structural characterization reveals a homogeneous size distribution (of 2.5 nm diameter) with spherical shape. The CuNCs obtained offer long-term stability (the luminescence emission remained unaltered after more than two months) under a broad range of chemical conditions (e.g. stored at pH 3–12 or even in a high ionic strength medium such as 1 M NaCl) and high photostability, keeping their fluorescence emission intact after more than 2 h of daylight and UV-light exposition. All those advantageous features warrant synthesized CuNCs being promising fluorescent nanoprobes for further developments including (bio)applications. (paper)

  6. Characterization and Application of DNA-templated Silver Nanoclusters and Polarized Spectroscopy of Self-Assembled Nanostructures

    DEFF Research Database (Denmark)

    Carro-Temboury, Miguel R.

    In this thesis two different systems are investigated envisioning their potential applications: DNA-templated silver nanoclusters (DNA-AgNCs) and ionic self-assembled (ISA) nanostructures based on azo-dyes. Mainly Visible-NIR spectroscopy was used to probe electronic transitions with absorbance a...

  7. Definition of the size of nanoclusters of silver and palladium in carbon fiber

    International Nuclear Information System (INIS)

    Volobuev, V.S.; Bashmakov, I.A.; Lukashevich, S.M.; Tolkacheva, E.A.; Tikhonova, T.F.; Lukashevich, M.G.; Kaputskij, F.N.

    2008-01-01

    Size of palladium and silver nanoclusters is carbon matrix prepared by heart treatment of metal-polymer precursor has been determined by means of XR diffractions study. It was shown that the cluster size increases with increasing annealing temperature from 700 to 900 degree Celsius by factor two. No structuring of carbon matrix was observed under clusters forming. (authors)

  8. Electrical transport properties in Co nanocluster-assembled granular film

    Science.gov (United States)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  9. Dispersion of gold nanoclusters in TMBPA-polycarbonate by a combination of thermal embedding and vapour-induced crystallization

    International Nuclear Information System (INIS)

    Kruse, J; Dolgner, K; Greve, H; Zaporojtchenko, V; Faupel, F

    2006-01-01

    Gold nanoclusters can be dispersed into the surface of a bisphenol-A polycarbonate film by acetone vapour induced crystallization, an effect which has been demonstrated in a previous publication of our group. Gold nanoclusters were deposited by physical vapour deposition on an amorphous thin film of polycarbonate. After vapour induced crystallization these clusters were detected by depth profiling to be embedded into the surface, with a concentration maximum in a depth of approximately 100 nm. In this work, we replaced the BPA by the modified tetramethyl bisphenol-A polycarbonate, which shows a slower crystallization kinetics. A strong enhancement of the dispersion depth has been achieved by thermal pre-embedding of the clusters into the surface. Surface analysis by means of atomic force microscopy reflects the rearrangement of polymer material in the course of crystallization

  10. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  11. Thermodynamics, kinetics, and catalytic effect of dehydrogenation from MgH2 stepped surfaces and nanocluster: a DFT study

    Science.gov (United States)

    Reich, Jason; Wang, Linlin; Johnson, Duane

    2013-03-01

    We detail the results of a Density Functional Theory (DFT) based study of hydrogen desorption, including thermodynamics and kinetics with(out) catalytic dopants, on stepped (110) rutile and nanocluster MgH2. We investigate competing configurations (optimal surface and nanoparticle configurations) using simulated annealing with additional converged results at 0 K, necessary for finding the low-energy, doped MgH2 nanostructures. Thermodynamics of hydrogen desorption from unique dopant sites will be shown, as well as activation energies using the Nudged Elastic Band algorithm. To compare to experiment, both stepped structures and nanoclusters are required to understanding and predict the effects of ball milling. We demonstrate how these model systems relate to the intermediary sized structures typically seen in ball milling experiments.

  12. Melting of Cu nanoclusters by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Zhang, Yanning; Bian, Xiufang; Chen, Ying

    2003-04-14

    We present a detailed molecular dynamics study of the melting of copper nanoclusters with up to 8628 atoms within the framework of the embedded-atom method. The finding indicates that there exists an intermediate nanocrystal regime above 456 atoms. The linear relation between the cluster size and its thermodynamics properties is obeyed in this regime. Melting first occurs at the surface of the clusters, leading to T{sub m,N}=T{sub m,Bulk}-{alpha}N{sup -1/3}, dropping from T{sub m,Bulk}=1360 K to T{sub m,456}=990 K. In addition, the size, surface energy as well as the root mean square displacement (RMSD) of the clusters in the intermediate regime have been investigated.

  13. Synthesis of ultrasmall CsPbBr3 nanoclusters and their transformation to highly deep-blue-emitting nanoribbons at room temperature.

    Science.gov (United States)

    Xu, Yibing; Zhang, Qiang; Lv, Longfei; Han, Wenqian; Wu, Guanhong; Yang, Dong; Dong, Angang

    2017-11-16

    Discretely sized semiconductor clusters have attracted considerable attention due to their intriguing optical properties and self-assembly behaviors. While lead halide perovskite nanostructures have been recently intensively explored, few studies have addressed perovskite clusters and their self-assembled superstructures. Here, we report the room-temperature synthesis of sub-2 nm CsPbBr 3 clusters and present strong evidence that these ultrasmall perovskite species, obtained under a wide range of reaction conditions, possess a specific size, with optical properties and self-assembly characteristics resembling those of well-known II-VI semiconductor magic-sized clusters. Unlike conventional CsPbBr 3 nanocrystals, the as-synthesized CsPbBr 3 nanoclusters spontaneously self-assemble into a hexagonally packed columnar mesophase in solution, which can be further converted to single-crystalline CsPbBr 3 quantum nanoribbons with bright deep-blue emission at room temperature. Such a conversion of CsPbBr 3 nanoclusters to nanoribbons is found to be driven by a ligand-destabilization-induced crystallization and mesophase transition process. Our study will facilitate the investigation of perovskite nanoclusters and offer new possibilities in the low-temperature synthesis of anisotropic perovskite nanostructures.

  14. Exchange bias in reduced dimensions: cobalt nanocluster arrays underthe influence of nanometer thin MnPt capping layers

    Czech Academy of Sciences Publication Activity Database

    Sessi, V.; Hertenberger, S.; Zhang, J.; Schmitz, D.; Gsell, S.; Schreck, M.; Morel, R.; Brenac, A.; Honolka, Jan; Kern, K.

    2014-01-01

    Roč. 113, č. 12 (2014), "123903-1"-"123903-10" ISSN 0021-8979 Institutional support: RVO:68378271 Keywords : antiferromagnetism * cobalt * nanoclusters * quenching * superparamagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  15. First-principles study of the electronic transport properties in (GaAs)n (n=2–4) nanocluster-based molecular junctions

    International Nuclear Information System (INIS)

    Zhang, Daoli; Xu, Yuanlan; Zhang, Jianbing; Miao, Xiangshui

    2012-01-01

    In this program the geometric structures and electronic transport properties of a series of (GaAs) n (n=2,3,4) clusters are comparatively studied using non-equilibrium Green's function (NEGF) combined with density functional theory (DFT). It is find that all the GaAs nanocluster-based molecular junctions show metallic behavior at low biases ([−2 V,2 V]) while negative differential resistance (NDR) appears at a certain high bias range. Our calculation shows that the current of (GaAs) 3 nanocluster-based molecular junction is almost the smallest at any bias. The mechanisms of the current–voltage characteristics of all the three molecular junctions are proposed.

  16. AcquisitionFootprintAttenuationDrivenbySeismicAttributes

    Directory of Open Access Journals (Sweden)

    Cuellar-Urbano Mayra

    2014-04-01

    Full Text Available Acquisition footprint, one of the major problems that PEMEX faces in seismic imaging, is noise highly correlated to the geometric array of sources and receivers used for onshore and offshore seismic acquisitions. It prevails in spite of measures taken during acquisition and data processing. This pattern, throughout the image, is easily confused with geological features and misguides seismic attribute computation. In this work, we use seismic data from PEMEX Exploración y Producción to show the conditioning process for removing random and coherent noise using linear filters. Geometric attributes used in a workflow were computed for obtaining an acquisition footprint noise model and adaptively subtract it from the seismic data.

  17. Heterogeneous Photodecolorization of Methyl Green Catalyzed by Fe(II-o-Phenanthroline/Zeolite Y Nanocluster

    Directory of Open Access Journals (Sweden)

    Alireza Nezamzadeh-Ejhieh

    2011-01-01

    Full Text Available The potential of Fe(II-orthophenatrolin, as doped with synthetic zeolite Y nanocluster (Na-Y via complexation process, after wet impregnation of parent zeolite with FeSO4 aqueous solution, was studied as a photocatalyst in decolorization of Methyl Green (MG under UV irradiation. The characterization of the synthesized zeolite nanocluster and the prepared catalyst was studied using X-ray powder diffraction (XRD, infrared spectroscopy (FT-IR, thermal analysis, and SEM methods. The dye photodecolorization process was studied considering the influence of experimental parameters and it was observed that photoreactivity of the photocatalyst was varied with catalyst amount, initial dye concentration, pH of dye solution, temperature, and the presence of KBrO3. The optimal experimental parameters were obtained as follows: catalyst amount: 1 gL−1, dye concentration: 40 ppm, pH: 9, and active component value: 100 mg Fe(II-orthophenatrolin per g catalyst. The reusability of the intended catalyst was also investigated. The degradation process obeyed first-order kinetics.

  18. Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state

    International Nuclear Information System (INIS)

    Degoli, Elena; Bisi, O.; Ossicini, Stefano; Cantele, G.; Ninno, D.; Luppi, Eleonora; Magri, Rita

    2004-01-01

    Electronic and structural properties of small hydrogenated silicon nanoclusters as a function of dimension are calculated from ab initio technique. The effects induced by the creation of an electron-hole pair are discussed in detail, showing the strong interplay between the structural and optical properties of the system. The distortion induced on the structure after an electronic excitation of the cluster is analyzed together with the role of the symmetry constraint during the relaxation. We point out how the overall effect is that of significantly changing the electronic spectrum if no symmetry constraint is imposed to the system. Such distortion can account for the Stokes shift and provides a possible structural model to be linked to the four-level scheme invoked in the literature to explain recent results for the optical gain in silicon nanoclusters. Finally, formation energies for clusters with increasing dimension are calculated and their relative stability discussed

  19. Probing phosphate ion via the europium(III)-modulated fluorescence of gold nanoclusters

    International Nuclear Information System (INIS)

    Ding, Shou-Nian; Li, Chun-Mei; Gao, Bu-Hong; Kargbo, Osman; Zhou, Chan; Chen, Xi; Wan, Neng

    2014-01-01

    Fluorescent gold nanoclusters (Au-NCs) were synthesized by a one-pot method using 11-mercaptoundecanoic acid as a reducing and capping reagent. It is found that the red fluorescence of the Au-NCs is quenched by the introduction of Eu(III) at pH 7.0, but that fluorescence is restored on addition of phosphate. The Au-NCs were investigated by transmission electron microscopy and fluorescence photographs. The effect of pH on fluorescence was studied in the range from pH 6 to 10 and is found to be strong. Based on these findings, we have developed an assay for phosphate. Ions such as citrate, Fe(CN) 6 3− , SO 4 2− , S 2 O 8 2− , Cl − , HS − , Br − , AcO − , NO 2 − , SCN − , ClO 4 − , HCO 3 − , NO 3 − , Cd 2+ , Ba 2+ , Zn 2+ , Mg 2+ , and glutamate do not interfere, but ascorbate and Fe 3+ can quench Au-NCs fluorescence. The fluorescent nanocluster probe responds to phosphate in the range from 0.18 to 250 μM, and the detection limit is 180 nM. The probe also responds to pyrophosphate and ATP. (author)

  20. Design and mechanistic study of a novel gold nanocluster-based drug delivery system.

    Science.gov (United States)

    Li, Qinzhen; Pan, Yiting; Chen, Tiankai; Du, Yuanxin; Ge, Honghua; Zhang, Buchang; Xie, Jianping; Yu, Haizhu; Zhu, Manzhou

    2018-05-22

    Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.

  1. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    Science.gov (United States)

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  2. Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity.

    Science.gov (United States)

    Hu, Lianzhe; Liao, Hong; Feng, Lingyan; Wang, Min; Fu, Wensheng

    2018-04-26

    The peroxidase-like catalytic activity of gold nanoclusters (NCs) is quite low around physiological pH, which greatly limits their biological applications. Herein, we found heparin can greatly accelerate the peroxidase-like activity of Au-NCs at neutral pH. The catalytic activity of Au-NCs toward the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2 was 25-fold increased in the presence of heparin at pH 7. The addition of heparin not only accelerated the initial catalytic rate of Au-NCs, but also prevented the Au-NCs from catalyst deactivation. This allows the sensitive colorimetric detection of heparin at neutral pH. In the presence of heparinase, heparin was hydrolyzed into small fragments, weakening the enhancement effect of catalytic activity. Based on this phenomenon, the sensitive colorimetric determination of heparinase in biological samples was also developed.

  3. Production and analysis of ultradispersed uranium oxide powders

    Science.gov (United States)

    Zajogin, A. P.; Komyak, A. I.; Umreiko, D. S.; Umreiko, S. D.

    2010-05-01

    Spectroscopic studies are made of the laser plasma formed near the surface of a porous body containing nanoquantities of uranium compounds which is irradiated by two successive laser pulses. The feasibility of using laser chemical methods for obtaining nanoclusters of uranium oxide particles in the volume of a porous body and the simultaneous possibility of determining the uranium content with good sensitivity are demonstrated. The thermochemical and spectral characteristics of the analogs of their compounds with chlorine are determined and studied. The possibility of producing uranium dioxides under ordinary conditions and their analysis in the reaction products is demonstrated.

  4. Nanomorphology of Polymer Frameworks and Their Role as Templates for Generating Size-Controlled Metal Nanoclusters

    Czech Academy of Sciences Publication Activity Database

    Artuso, F.; D'Archivio, A. A.; Lora, S.; Jeřábek, Karel; Králik, E.; Corain, B.

    2003-01-01

    Roč. 9, č. 21 (2003), s. 5292-5296 ISSN 0947-6539 Grant - others:GA-(IT) 2001038991; VEGA(SK) 1/9142/02 Institutional research plan: CEZ:AV0Z4072921 Keywords : nanoclusters * nano-structures * gel-type resin s Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.353, year: 2003

  5. One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India); Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India)

    2011-04-14

    Research highlights: > Single-step synthesis of Cu{sub 2}O, Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) and Cu nanocrystals co-doped novel antimony oxide glass hybrid nanocomposites. > Yellow and orange colored nanocomposites shows size-controlled band gap shift of Cu{sub 2}O. > Red nanocomposite exhibits surface plasmon resonance band due to metallic Cu. > They exhibit broad deep-red photoluminescence emission under various UV excitation wavelengths. - Abstract: Cuprous oxide (Cu{sub 2}O) antimony glass (K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3}) monolithic nanocomposites having brilliant yellow to ruby red color have been synthesized by a single-step melt-quench technique involving in situ thermochemical reduction of Cu{sup 2+} (CuO) by the reducing glass matrix without using any external reducing agent. The X-ray diffraction (XRD), infrared transmission and reflection spectra, and selected area electron diffraction analysis support the reduction of Cu{sup 2+} to Cu{sup +} with the formation of Cu{sub 2}O nanoclusters along with Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) nanocrystalline phases while Cu{sup 0} nanoclusters are formed at very high Cu concentration. The UV-vis spectra of the yellow and orange colored nanocomposites show size-controlled band gap shift of the semiconductor (Cu{sub 2}O) nanocrystallites embedded in the glasses while the red nanocomposite exhibits surface plasmon resonance band at 529 nm due to metallic Cu. Transmission electron microscopic image advocates the formation of nanocystallites (5-42 nm). Photoluminescence emission studies show broad red emission band around 626 nm under various excitation wavelengths from 210 to 270 nm.

  6. Some properties of solid helium and helium nanoclusters using the effective HFD-like interaction potential: Adsorption and desorption inside carbon nanotube

    Science.gov (United States)

    Abbaspour, M.; Akbarzadeh, H.; Banihashemi, S. Z.; Sotoudeh, A.

    2018-02-01

    We have calculated the zero equation of state of solid helium using a two-body Hartree-Fock dispersion (HFD)-like potential from molecular dynamics (MD) simulation. To take many-body forces into account, our simple and accurate empirical expression is used with the HFD-like potential without requiring an expensive three-body calculation. This potential model also includes the quantum effects for helium at low temperatures. The results indicate that our effective HFD-like potential improves the prediction of the classical two-body results to get better agreement with experiment than many other two-body and three-body potentials of helium reported in the literature. We have also simulated the adsorption and desorption processes of the (He)55, (He)147, (He)309, (He)561, and (He)923 icosahedral nanoclusters confined into the different armchair and zigzag CNTs from 0 to 50 K using our effective model. We have observed an interesting phenomenon at 0 K for helium. The nanoclusters adsorb to the inner CNT wall as a melting process. But, the heavier noble gas clusters (such as Ne and Xe) show the different behavior than the He clusters. They form a multilayered solid structure into the CNT at zero temperature and adsorb into the inner wall of the CNT at higher temperatures. Our results for He clusters show that the absolute value of the adsorption energy increases as the size of the nanocluster increases. The desorption process begins at a certain temperature and represents itself by a jump in the configurational energy values. We have also investigated the structural and dynamical properties of the confined helium nanoclusters during the adsorption and desorption processes at different temperatures.

  7. Mathematical simulation of the amplification of 1790-nm laser radiation in a nuclear-excited He - Ar plasma containing nanoclusters of uranium compounds

    Science.gov (United States)

    Kosarev, V. A.; Kuznetsova, E. E.

    2014-02-01

    The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.

  8. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    Science.gov (United States)

    Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  9. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  10. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    NARCIS (Netherlands)

    van Huis, M.A.; van Veen, A.; Schut, H.; Eijt, S.W.H.; Kooi, B.J.; de Hosson, J.T.M.

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 x 10(16) Cd ions cm(-2) and 210 keV, 1 x 10(16) Se ions cm(-2) in single crystals of MgO(001) and subsequent thermal annealing at a temperature of 1300 K, The structural properties and the orientation relationship between

  11. Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2008-01-01

    In this work, the morphological and magnetic properties of cobalt nanoclusters obtained from two different sulphate electrolyte solutions were studied. The aggregates were electrodeposited onto highly oriented pyrolytic graphite electrodes in overpotential conditions, in order to investigate the cationic influence on the final properties of the aggregates. In both cases, scanning electron microscopy and atomic force microscopy showed random isolated clusters on the electrode surface, where size variations were determined by the electrolyte solution. By using magnetic force microscopy, the distribution of the electrodeposited magnetic material was more clearly observed which gave some insights on the growth mechanism of these aggregates.

  12. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    Science.gov (United States)

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.

  13. Evolution of magnetism of Cr nanoclusters on a Au(111) surface

    Science.gov (United States)

    Gotsis, Harry; Kioussis, Nicholas; Papaconstantopoulos, Dimitri

    2004-03-01

    Advances in low-temperature scanning tunneling microscopy under ultrahigh vacuum have provided new opportunities for investigating the magnetic structures of nanoclusters adsorbed on surfaces. Recent STM studies of Cr trimers on the Au(111) surface suggest a switching between two distinct electronic states. We have carried out ab initio electronic structure calculations to investigate the structural, electronic and magnetic properties of isolated Cr atoms, Cr dimers and trimers in different geometry. We will present results for the evolution of magnetic behavior including noncollinear magnetism and provide insight in the connection between magnetism and geometry.

  14. Structural, electronic and vibrational properties of GexCy (x+y=2-5) nanoclusters: A B3LYP-DFT study

    Science.gov (United States)

    Goswami, Sohini; Saha, Sushmita; Yadav, R. K.

    2015-11-01

    An ab-initio study of the stability, structural and electronic properties has been made for 84 germanium carbide nanoclusters, GexCy (x+y=2-5). The configuration possessing the maximum value of final binding energy (FBE), among the various configurations corresponding to a fixed x+y=n value, is named as the most stable structure. The vibrational and optical properties have been investigated only for the most stable structures. A B3LYP-DFT/6-311G(3df) method has been employed to optimize fully the geometries of the nanoclusters. The binding energies (BE), highest-occupied and lowest-unoccupied molecular orbital (HOMO-LUMO) gaps have been obtained for all the clusters and the bond lengths have been reported for the most stable clusters. We have considered the zero point energy (ZPE) corrections. The adiabatic and vertical ionization potentials (IPs) and electron affinities (EAs), charge on atoms, dipole moments, vibrational frequencies, infrared intensities (IR Int.), relative infrared intensities (Rel. IR Int.) and Raman scattering activities have also been investigated for the most stable structures. The configurations containing the carbon atoms in majority are seen to be the most stable structures. The strong C-C bond has important role in stabilizing the clusters. For the clusters containing one germanium atom and all the other as carbon atoms, the BE increases monotonically with the number of the carbon atoms. The HOMO-LUMO gap, IPs and EAs fluctuates with increase in the number of atoms. The nanoclusters containing even number of carbon atoms have large HOMO-LUMO gaps and IPs, whereas the nanoclusters containing even number of carbon atoms have small EAs. In general, the adiabatic IP (EA) is smaller (greater) than the vertical IP (EA). The optical absorption spectrum or electron energy loss spectrum (EELS) is unique for every cluster, and may be used to characterize a specific cluster. All the predicted physical quantities are in good agreement with the

  15. Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst

    International Nuclear Information System (INIS)

    Ozkar, S.; Zahmakiran, M.

    2005-01-01

    Sodium borohydride is stable in aqueous alkaline solution, however, it hydrolyses in water to hydrogen gas in the presence of suitable catalyst. By this way hydrogen can be generated safely for the fuel cells. Generating H 2 catalytically from NaBH 4 solutions has many advantages: NaBH 4 solutions are nonflammable, reaction products are environmentally benign, rate of H 2 generation is easily controlled, the reaction product NaBO 2 can be recycled, H 2 can be generated even at low temperatures. All of the catalysts that has been used in hydrolysis of sodium borohydride are bulk metals and they act as heterogeneous catalysts. The limited surface area of the heterogeneous catalysts causes lower catalytic activity as the activity of catalyst is directly related to its surface area. Thus, the use of metal nanoparticles with large surface area provides potential route to increase the catalytic activity. Here, we report, for the first time, the use of ruthenium(0) nanoclusters as catalyst in the hydrolysis of sodium borohydride liberating hydrogen gas. The ruthenium nanoparticles are generated from the reduction of ruthenium(III) chloride by sodium borohydride in water and stabilized by specific ligand. The ruthenium(0) nanoclusters are found to be highly active catalyst for the hydrolysis of sodium borohydride

  16. Microwave-Assisted Synthesis of Red-Light Emitting Au Nanoclusters with the Use of Egg White

    Science.gov (United States)

    Tian, Jinghan; Yan, Lei; Sang, Aohua; Yuan, Hongyan; Zheng, Baozhan; Xiao, Dan

    2014-01-01

    We developed a simple, cost-effective, and eco-friendly method to synthesize gold nanoclusters (AuNCs) with red fluorescence. The experiment was performed using HAuCl[subscript 4], egg white, Na[subscript 2]CO[subscript 3] (known as soda ash or washing soda), and a microwave oven. In our experiment, fluorescent AuNCs were prepared within a…

  17. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO(1 0 0) and MgO(1 1 0)

    International Nuclear Information System (INIS)

    Falub, C.V.; Mijnarends, P.E.; Eijt, S.W.H.; Huis, M.A. van; Veen, A. van; Schut, H.

    2002-01-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -2 6 Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations

  18. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO(1 0 0) and MgO(1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Falub, C.V. E-mail: c.falub@iri.tudelft.nl; Mijnarends, P.E.; Eijt, S.W.H.; Huis, M.A. van; Veen, A. van; Schut, H

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10{sup 16} cm{sup -2} {sup 6}Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  19. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO( 1 0 0 ) and MgO( 1 1 0 )

    Science.gov (United States)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W. H.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -26Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  20. The Impact of the Polymer Chain Length on the Catalytic Activity of Poly(N-vinyl-2-pyrrolidone)-supported Gold Nanoclusters.

    Science.gov (United States)

    Haesuwannakij, Setsiri; Kimura, Tetsunari; Furutani, Yuji; Okumura, Kazu; Kokubo, Ken; Sakata, Takao; Yasuda, Hidehiro; Yakiyama, Yumi; Sakurai, Hidehiro

    2017-08-29

    Poly(N-vinyl-2-pyrrolidone) (PVP) of varying molecular weight (M w  = 40-360 kDa) were employed to stabilize gold nanoclusters of varying size. The resulting Au:PVP clusters were subsequently used as catalysts for a kinetic study on the sized-dependent aerobic oxidation of 1-indanol, which was monitored by time-resolved in situ infrared spectroscopy. The obtained results suggest that the catalytic behaviour is intimately correlated to the size of the clusters, which in turn depends on the molecular weight of the PVPs. The highest catalytic activity was observed for clusters with a core size of ~7 nm, and the size of the cluster should increase with the molecular weight of the polymer in order to maintain optimal catalytic activity. Studies on the electronic and colloid structure of these clusters revealed that the negative charge density on the cluster surface also strongly depends on the molecular weight of the stabilizing polymers.

  1. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    Science.gov (United States)

    Jin, Hyung Dae

    Recent advances in nanocrystalline materials production are expected to impact the development of next generation low-cost and/or high efficiency solar cells. For example, semiconductor nanocrystal inks are used to lower the fabrication cost of the absorber layers of the solar cells. In addition, some quantum confined nanocrystals display electron-hole pair generation phenomena with greater than 100% quantum yield, called multiple exciton generation (MEG). These quantum dots could potentially be used to fabricate solar cells that exceed the Schockley-Queisser limit. At present, continuous syntheses of nanoparticles using microreactors have been reported by several groups. Microreactors have several advantages over conventional batch synthesis. One advantage is their efficient heat transfer and mass transport. Another advantage is the drastic reduction in the reaction time, in many cases, down to minutes from hours. Shorter reaction time not only provides higher throughput but also provide better particle size control by avoiding aggregation and by reducing probability of oxidizing precursors. In this work, room temperature synthesis of Au11 nanoclusters and high temperature synthesis of chalcogenide nanocrystals were demonstrated using continuous flow microreactors with high throughputs. A high rate production of phosphine-stabilized Au11 nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 mum thick was used to step up the production of phosphine-stabilized Au11 nanoclusters. Continuous production of highly monodispersed phosphine-stabilized Au 11 nanoclusters at a rate of about 11.8 [mg/s] was achieved using a microreactor with a size of 1.687cm3. This result is about 30,000 times over conventional batch synthesis according to production rate/per reactor volume. We have elucidated the

  2. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    International Nuclear Information System (INIS)

    Wang, C.-H.; Shih, H.-C.; Tsai, Y.-T.; Du, H.-Y.; Chen, L.-C.; Chen, K.-H.

    2006-01-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN x NTs) directly grown on the carbon cloth have been investigated. The CN x NTs directly grown on the carbon cloth (CN x NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN x NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN x NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN x NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications

  3. High methanol oxidation activity of electrocatalysts supported by directly grown nitrogen-containing carbon nanotubes on carbon cloth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-H. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Shih, H.-C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Tsai, Y.-T. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Du, H.-Y. [Institue of Materials Science and Nano Technology, Chinese Culture University, Taipei, Taiwan (China); Chen, L.-C. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China); Chen, K.-H. [Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan (China) and Institue of Atomic and Molecular Science, Academia Sinica, Taipei, Taiwan (China)]. E-mail: chenkh@pub.iams.sinica.edu.tw

    2006-12-01

    The microstructure and electrochemical activity of the Pt-Ru supported by nitrogen-containing carbon nanotubes (CN {sub x} NTs) directly grown on the carbon cloth have been investigated. The CN {sub x} NTs directly grown on the carbon cloth (CN {sub x} NTs-carbon cloth composite electrode) were synthesized using microwave-plasma-enhanced chemical vapour deposition first and then use as the template to support the Pt-Ru nanoclusters subsequently sputtered on. The ferricyanide/ferrocyanide redox reaction in cyclic voltammetry (CV) measurements showed a faster electron transfer on the CN {sub x} NTs-carbon cloth composite electrode than the one with carbon cloth alone. Comparing their methanol oxidation abilities, it is found that the Pt-Ru nanoclusters supported by the CN {sub x} NTs-carbon cloth composite electrode have considerably higher electrocatalytic activity than the carbon cloth counterpart. This result suggests high performance of the CN {sub x} NTs-carbon cloth composite electrode, and demonstrates its suitability for direct methanol fuel cell applications.

  4. Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence

    KAUST Repository

    Prabaswara, Aditya; Stowe, David J.; Janjua, Bilal; Ng, Tien Khee; Anjum, Dalaver H.; Longo, Paolo; Zhao, Chao; Elafandy, Rami T.; Li, Xiaohang; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    We report on the study and characterization of nanoclusters-related recombination centers within quantum-disks-in-nanowires heterostructure by utilizing microphotoluminescence (mu-PL) and cathodoluminescence scanning transmission electron microscopy (CL-STEM). mu-PL measurement shows that the nanoclusters-related recombination center exhibits different temperature-dependent characteristics compared with the surrounding InGaN quantum-disksrelated recombination center. CL-STEM measurements reveal that these recombination centers mainly arise from irregularities within the quantum disks, with a strong, spatially localized emission when measured at low temperature. The spectra obtained from both CL-STEM and mu-PL correlate well with each other. Our work sheds light on the optical and structural properties of simultaneously coexisting recombination centers within nanowires heterostructures. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

  5. Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence

    KAUST Repository

    Prabaswara, Aditya

    2017-06-30

    We report on the study and characterization of nanoclusters-related recombination centers within quantum-disks-in-nanowires heterostructure by utilizing microphotoluminescence (mu-PL) and cathodoluminescence scanning transmission electron microscopy (CL-STEM). mu-PL measurement shows that the nanoclusters-related recombination center exhibits different temperature-dependent characteristics compared with the surrounding InGaN quantum-disksrelated recombination center. CL-STEM measurements reveal that these recombination centers mainly arise from irregularities within the quantum disks, with a strong, spatially localized emission when measured at low temperature. The spectra obtained from both CL-STEM and mu-PL correlate well with each other. Our work sheds light on the optical and structural properties of simultaneously coexisting recombination centers within nanowires heterostructures. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

  6. Tuning the magnetic interactions in GaAs:Mn/MnAs hybrid structures by controlling shape and position of MnAs nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Elm, Matthias Thomas

    2010-07-01

    In this work the magnetic properties of hexagonal MnAs nanoclusters and their influence on the transport properties of GaAs:Mn /MnAs hybrid structures were studied. Various arrangements of isolated nanoclusters and cluster chains were grown on (111)B-GaAs substrates by SA-MOVPE. The first part of this work deals with the manufacturing process of the different cluster arrangements investigated. By a suitable pre-structuring of the substrate it was possible to influence the cluster size, cluster shape and cluster position systematically. Preparing various arrangements it could be shown that the hexagonal nanoclusters prefer to grow along their a-axes. In the second part, the magnetic properties of the nanoclusters were studied. Ferromagnetic resonance (FMR) measurements show a hard magnetic axis perpendicular to the sample plane, i.e. parallel to the c-axis. By measurements, where the magnetic field was rotated in the sample plane, it could be demonstrated that the orientation of the magnetization can be forced into a certain direction by controlling the cluster shape. These results are confirmed by measurements using magnetic force microscopy. The third part deals with the influence of the nanoclusters and their arrangement on the transport properties of the GaAs:Mn matrix. For temperatures above 30 K the structures investigated show positive as well as negative magnetoresistance effects, which are typical for granular GaAs:Mn/MnAs hybrid structures. This behaviour can be explained in the context of transport in extended band states. The size of the magnetoresistance effects correlates strongly with the respective cluster arrangement of the sample. This behaviour has been predicted theoretically and could be confirmed experimentally in the context of this work. Below 30 K large positive magnetoresistance effects show up for the regular cluster arrangements, which cannot be observed for hybrid structures with random cluster distributions. These large positive

  7. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by L-cysteine in aqueous solution.

    Science.gov (United States)

    Yang, Xiaoming; Feng, Yuanjiao; Zhu, Shanshan; Luo, Yawen; Zhuo, Yan; Dou, Yao

    2014-10-17

    Herein, an innovative and simple strategy for synthesizing high fluorescent Cu nanoclusters was successfully established while L-cysteine played a role as the stabilizer. Meaningfully, the current Cu nanoclusters together with a quantum yield of 14.3% were prepared in aqueous solution, indicating their extensive applications. Subsequently, the possible fluorescence mechanism was elucidated by fluorescence, UV-vis, HR-TEM, FTIR, XPS, and MS. Additionally, the CuNCs were employed for assaying Hg(2+) on the basis of the interactions between Hg(2+) and L-cysteine; thus facilitating the quenching of their fluorescence. The proposed analytical strategy permitted detections of Hg(2+) in a linear range of 1.0×10(-7) mol L(-1)×10(-3) mol L(-1), with a detection limit of 2.4×10(-8) mol L(-1) at a signal-to-noise ratio of 3. Significantly, this CuNCs described here were further applied for coding and fluorescent staining, suggesting may broaden avenues toward diverse applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Probing DNA-stabilized fluorescent silver nanocluster spectral heterogeneity by time-correlated single photon counting

    DEFF Research Database (Denmark)

    Carro, Miguel; Paolucci, Valentina; Hooley, Emma Nicole

    2016-01-01

    DNA-stabilized silver nanoclusters (DNA-AgNCs) are promising fluorophores whose photophysical properties and synthesis procedures have received increased attention in the literature. However, depending on the preparation conditions and the DNA sequence, the DNA-AgNC samples can host a range...... the spectral heterogeneity of other fluorophores, such as luminescent colloidal nanoparticles, and to assess the reproducibility of a synthetic procedure containing an unknown distribution of emissive species....

  9. A molecular beacon based on DNA-templated silver nanoclusters for the highly sensitive and selective multiplexed detection of virulence genes.

    Science.gov (United States)

    Han, Dan; Wei, Chunying

    2018-05-01

    In this work, we develop a fluorescent molecular beacon based on the DNA-templated silver nanoclusters (DNA-Ag NCs). The skillfully designed molecular beacon can be conveniently used for detection of diverse virulence genes as long as the corresponding recognition sequences are embedded. Importantly, the constructed detection system allows simultaneous detection of multiple nucleic acids, which is attributed to non-overlapping emission spectra of the as-synthesized silver nanoclusters. Based on the target-induced fluorescence enhancement, three infectious disease-related genes HIV, H1N1, and H5N1 are detected, and the corresponding detection limits are 3.53, 0.12 and 3.95nM, respectively. This design allows specific, versatile and simultaneous detection of diverse targets with easy operation and low cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Label-Free Fluorescent Detection of Trypsin Activity Based on DNA-Stabilized Silver Nanocluster-Peptide Conjugates

    Directory of Open Access Journals (Sweden)

    Cai-Xia Zhuo

    2016-11-01

    Full Text Available Trypsin is important during the regulation of pancreatic exocrine function. The detection of trypsin activity is currently limited because of the need for the substrate to be labeled with a fluorescent tag. A label-free fluorescent method has been developed to monitor trypsin activity. The designed peptide probe consists of six arginine molecules and a cysteine terminus and can be conjugated to DNA-stabilized silver nanoclusters (DNA-AgNCs by Ag-S bonding to enhance fluorescence. The peptide probe can also be adsorbed to the surface of graphene oxide (GO, thus resulting in the fluorescence quenching of DNA-AgNCs-peptide conjugate because of Förster resonance energy transfer. Once trypsin had degraded the peptide probe into amino acid residues, the DNA-AgNCs were released from the surface of GO, and the enhanced fluorescence of DNA-AgNCs was restored. Trypsin can be determined with a linear range of 0.0–50.0 ng/mL with a concentration as low as 1 ng/mL. This label-free method is simple and sensitive and has been successfully used for the determination of trypsin in serum. The method can also be modified to detect other proteases.

  11. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    Science.gov (United States)

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters

    KAUST Repository

    Allian, Ayman Daoud; Takanabe, Kazuhiro; Fujdala, Kyle L.; Hao, Xianghong; Truex., Timothy J.; Cai, Juan; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-01-01

    Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis

  13. Catalysis by Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide Synthesis on Ag, Cu or Au Nanoclusters

    Science.gov (United States)

    2008-02-07

    22 nm) were prepared by reducing a Au salt, and encapsulating the Au nanoparticles formed in a polymer33 . A variety of high area oxides (TiO 2, ZnO ...Morphologies Utilizing a Combinatorial Electrochemistry Methodology. Ph. D. dissertation, Chemical Engineering, University of California, Santa Barbara (2004

  14. Charge Carrier Dynamics at Silver Nanocluster-Molecular Acceptor Interfaces

    KAUST Repository

    Almansaf, Abdulkhaleq

    2017-07-01

    A fundamental understanding of interfacial charge transfer at donor-acceptor interfaces is very crucial as it is considered among the most important dynamical processes for optimizing performance in many light harvesting systems, including photovoltaics and photo-catalysis. In general, the photo-generated singlet excitons in photoactive materials exhibit very short lifetimes because of their dipole-allowed spin radiative decay and short diffusion lengths. In contrast, the radiative decay of triplet excitons is dipole forbidden; therefore, their lifetimes are considerably longer. The discussion in this thesis primarily focuses on the relevant parameters that are involved in charge separation (CS), charge transfer (CT), intersystem crossing (ISC) rate, triplet state lifetime, and carrier recombination (CR) at silver nanocluster (NCs) molecular-acceptors interfaces. A combination of steady-state and femto- and nanosecond broadband transient absorption spectroscopies were used to investigate the charge carrier dynamics in various donor-acceptor systems. Additionally, this thesis was prolonged to investigate some important factors that influence the charge carrier dynamics in Ag29 silver NCs donor-acceptor systems, such as the metal doping and chemical structure of the nanocluster and molecular acceptors. Interestingly, clear correlations between the steady-state measurements and timeresolved spectroscopy results are found. In the first study, we have investigated the interfacial charge transfer dynamics in positively charged meso units of 5, 10, 15, 20-tetra (1- methyl-4-pyridino)-porphyrin tetra (p-toluene sulfonate) (TMPyP) and neutral charged 5, 10, 15, 20-tetra (4-pyridyl)-porphyrin (TPyP), with negatively charged undoped and gold (Au)- doped silver Ag29 NCs. Moreover, this study showed the impact of Au doping on the charge carrier dynamics of the system. In the second study, we have investigated the interfacial charge transfer dynamics in [Pt2 Ag23 Cl7 (PPh3

  15. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    Science.gov (United States)

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  16. Factors responsible for the stability and the existence of a clean energy gap of a silicon nanocluster

    International Nuclear Information System (INIS)

    Liu, Lei; Jayanthi, C. S.; Wu, Shi-Yu

    2001-01-01

    We present a critical theoretical study of electronic properties of silicon nanoclusters, in particular the roles played by symmetry, relaxation, and hydrogen passivation on the stability, the gap states and the energy gap of the system using the order N [O(N)] nonorthogonal tight-binding molecular dynamics and the local analysis of electronic structure. We find that for an unrelaxed cluster with its atoms occupying the regular tetrahedral network, the presence of undistorted local bonding configuration is sufficient for the appearance of a small clean energy gap. However, the energy gap of the unrelaxed cluster does not start at the highest occupied molecular orbital (HOMO). In fact, between the HOMO and the lower edge of the energy gap, localized dangling bond states are found. With hydrogen passivation, the localized dangling bond states are eliminated, resulting in a wider and clean energy gap. Relaxation of these hydrogen passivated clusters does not alter either the structure or the energy gap appreciably. However, if the silicon clusters are allowed to relax first, the majority of the dangling bonds are eliminated but additional defect states due to bond distortion appear, making the energy gap dirty. Hydrogen passivation of these relaxed clusters will further eliminate most of the remnant dangling bonds but no appreciable effect on the defect states associated with bond distortions will take place, thus still resulting in a dirty gap. For the hydrogen-passivated Si N nanoclusters with no bond distortion and no overall symmetry, we have studied the variation of the energy gap as a function of size of the cluster for N in the range of 80< N<6000. The dependence of the energy gap on the size shows similar behavior to that for silicon nanoclusters with no bond distortion but possessing overall symmetry

  17. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M.; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-01

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV–vis spectroscopy and AFM measurements show that this functionality stems from the films’ ability to structurally tune their HOMO–LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures’ plausibility for on-chip molecular electronics operative at room temperature.

  18. Size-dependent single electron transfer and semi-metal-to-insulator transitions in molecular metal oxide electronics.

    Science.gov (United States)

    Balliou, Angelika; Bouroushian, Mirtat; Douvas, Antonios M; Skoulatakis, George; Kennou, Stella; Glezos, Nikos

    2018-07-06

    All-inorganic self-arranged molecular transition metal oxide hyperstructures based on polyoxometalate molecules (POMs) are fabricated and tested as electronically tunable components in emerging electronic devices. POM hyperstructures reveal great potential as charging nodes of tunable charging level for molecular memories and as enhancers of interfacial electron/hole injection for photovoltaic stacks. STM, UPS, UV-vis spectroscopy and AFM measurements show that this functionality stems from the films' ability to structurally tune their HOMO-LUMO levels and electron localization length at room temperature. By adapting POM nanocluster size in solution, self-doping and current modulation of four orders of magnitude is monitored on a single nanocluster on SiO 2 at voltages as low as 3 Volt. Structurally driven insulator-to-semi-metal transitions and size-dependent current regulation through single electron tunneling are demonstrated and examined with respect to the stereochemical and electronic structure of the molecular entities. This extends the value of self-assembly as a tool for correlation length and electronic properties tuning and demonstrate POM hyperstructures' plausibility for on-chip molecular electronics operative at room temperature.

  19. Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Billo, Tadesse; Fu, Fang-Yu; Raghunath, Putikam; Shown, Indrajit; Chen, Wei-Fu; Lien, Hsiang-Ting; Shen, Tzu-Hsien; Lee, Jyh-Fu; Chan, Ting-Shan; Huang, Kuo-You; Wu, Chih-I; Lin, M C; Hwang, Jih-Shang; Lee, Chih-Hao; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-01

    One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO 2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO 2 (Ni/TiO 2[Vo] ) with built-in dual active sites for selective photocatalytic CO 2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO 2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO 2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO 2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation.

    Science.gov (United States)

    Cifuentes-Rius, Anna; Ivask, Angela; Das, Shreya; Penya-Auladell, Nuria; Fabregas, Laura; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Voelcker, Nicolas H

    2017-11-29

    Gold nanoclusters (Au NCs) have become a promising nanomaterial for cancer therapy because of their biocompatibility and fluorescent properties. In this study, the effect of ultrasmall protein-stabilized 2 nm Au NCs on six types of mammalian cells (fibroblasts, B-lymphocytes, glioblastoma, neuroblastoma, and two types of prostate cancer cells) under electromagnetic radiation is investigated. Cellular association of Au NCs in vitro is concentration-dependent, and Au NCs have low intrinsic toxicity. However, when Au NC-incubated cells are exposed to a 1 GHz electromagnetic field (microwave radiation), cell viability significantly decreases, thus demonstrating that Au NCs exhibit specific microwave-dependent cytotoxicity, likely resulting from localized heating. Upon i.v. injection in mice, Au NCs are still present at 24 h post administration. Considering the specific microwave-dependent cytotoxicity and low intrinsic toxicity, our work suggests the potential of Au NCs as effective and safe nanomedicines for cancer therapy.

  1. Metallic oxide nano-clusters synthesis by ion implantation in high purity Fe10Cr alloy

    International Nuclear Information System (INIS)

    Zheng, Ce

    2015-01-01

    ODS (Oxide Dispersed Strengthened) steels, which are reinforced with metal dispersions of nano-oxides (based on Y, Ti and O elements), are promising materials for future nuclear reactors. The detailed understanding of the mechanisms involved in the precipitation of these nano-oxides would improve manufacturing and mechanical properties of these ODS steels, with a strong economic impact for their industrialization. To experimentally study these mechanisms, an analytical approach by ion implantation is used, to control various parameters of synthesis of these precipitates as the temperature and concentration. This study demonstrated the feasibility of this method and concerned the behaviour of alloys models (based on aluminium oxide) under thermal annealing. High purity Fe-10Cr alloys were implanted with Al and O ions at room temperature. Transmission electron microscopy observations showed that the nano-oxides appear in the Fe-10Cr matrix upon ion implantation at room temperature without subsequent annealing. The mobility of implanted elements is caused by the defects created during ion implantation, allowing the nucleation of these nanoparticles, of a few nm in diameter. These nanoparticles are composed of aluminium and oxygen, and also chromium. The high-resolution experiments show that their crystallographic structure is that of a non-equilibrium compound of aluminium oxide (cubic γ-Al 2 O 3 type). The heat treatment performed after implantation induces the growth of the nano-sized oxides, and a phase change that tends to balance to the equilibrium structure (hexagonal α-Al 2 O 3 type). These results on model alloys are fully applicable to industrial materials: indeed ion implantation reproduces the conditions of milling and heat treatments are at equivalent temperatures to those of thermo-mechanical treatments. A mechanism involving the precipitation of nano-oxide dispersed in ODS alloys is proposed in this manuscript based on the obtained experimental results

  2. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3.

    Science.gov (United States)

    Sanchez, Sergio I; Menard, Laurent D; Bram, Ariella; Kang, Joo H; Small, Matthew W; Nuzzo, Ralph G; Frenkel, Anatoly I

    2009-05-27

    The structural dynamics-cluster size and adsorbate-dependent thermal behaviors of the metal-metal (M-M) bond distances and interatomic order-of Pt nanoclusters supported on a gamma-Al(2)O(3) are described. Data from scanning transmission electron microscopy (STEM) and X-ray absorption spectroscopy (XAS) studies reveal that these materials possess a dramatically nonbulklike nature. Under an inert atmosphere small, subnanometer Pt/gamma-Al(2)O(3) clusters exhibit marked relaxations of the M-M bond distances, negative thermal expansion (NTE) with an average linear thermal expansion coefficient alpha = (-2.4 +/- 0.4) x 10(-5) K(-1), large static disorder and dynamical bond (interatomic) disorder that is poorly modeled within the constraints of classical theory. The data further demonstrate a significant temperature-dependence to the electronic structure of the Pt clusters, thereby suggesting the necessity of an active model to describe the cluster/support interactions mediating the cluster's dynamical structure. The quantitative dependences of these nonbulklike behaviors on cluster size (0.9 to 2.9 nm), ambient atmosphere (He, 4% H(2) in He or 20% O(2) in He) and support identity (gamma-Al(2)O(3) or carbon black) are systematically investigated. We show that the nonbulk structural, electronic and dynamical perturbations are most dramatically evidenced for the smallest clusters. The adsorption of hydrogen on the clusters leads to an increase of the Pt-Pt bondlengths (due to a lifting of the surface relaxation) and significant attenuation of the disorder present in the system. Oxidation of these same clusters has the opposite effect, leading to an increase in Pt-Pt bond strain and subsequent enhancement in nonbulklike thermal properties. The structural and electronic properties of Pt nanoclusters supported on carbon black contrast markedly with those of the Pt/gamma-Al(2)O(3) samples in that neither NTE nor comparable levels of atomic disorder are observed. The Pt

  3. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters

    KAUST Repository

    Allian, Ayman Daoud

    2011-03-30

    Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis at conditions typical of its industrial practice. CO oxidation turnover rates and the dynamics and thermodynamics of adsorption-desorption processes on cluster surfaces saturated with chemisorbed CO were measured on 1-20 nm Pt clusters under conditions of strict kinetic control. Turnover rates are proportional to O2 pressure and inversely proportional to CO pressure, consistent with kinetically relevant irreversible O2 activation steps on vacant sites present within saturated CO monolayers. These conclusions are consistent with the lack of isotopic scrambling in C16O-18O2-16O 2 reactions, and with infrared bands for chemisorbed CO that did not change within a CO pressure range that strongly influenced CO oxidation turnover rates. Density functional theory estimates of rate and equilibrium constants show that the kinetically relevant O2 activation steps involve direct O2* (or O2) reactions with CO* to form reactive O*-O-C*=O intermediates that decompose to form CO 2 and chemisorbed O*, instead of unassisted activation steps involving molecular adsorption and subsequent dissociation of O2. These CO-assisted O2 dissociation pathways avoid the higher barriers imposed by the spin-forbidden transitions required for unassisted O2 dissociation on surfaces saturated with chemisorbed CO. Measured rate parameters for CO oxidation were independent of Pt cluster size; these parameters depend on the ratio of rate constants for O2 reactions with CO* and CO adsorption equilibrium constants, which reflect the respective activation barriers and reaction enthalpies for these two steps. Infrared spectra during isotopic displacement and thermal desorption with 12CO- 13CO mixtures showed that the binding, dynamics, and thermodynamics of CO

  4. The role of carbon solubility in Fe-C nano-clusters on the growth of small single-walled carbon nanotubes

    Science.gov (United States)

    Curtarolo, Stefano; Awasthy, Neha; Setyawan, Wahyu; Mora, Elena; Tokune, Toshio; Bolton, Kim; Harutyunyan, Avetik

    2008-03-01

    Various diameters of alumina-supported Fe catalysts are used to grow single-walled carbon nanotubes (SWCNTs) with chemical vapor decomposition. We find that the reduction of the catalyst size requires an increase of the minimum temperature necessary for the growth. We address this phenomenon in terms of solubility of C in Fe nanoclusters and, by using first principles calculations, we devise a simple model to predict the behavior of the phases competing for stability in Fe-C nanoclusters at low temperature. We show that, as a function particles size, there are three scenarios compatible with steady state-, limited- and no-growth of SWCNTs, corresponding to unaffected, reduced and no solubility of C in the particles. The result raises previously unknown concerns about the growth feasibility of small and very-long SWCNTs within the current Fe CVD technology, and suggests new strategies in the search of better catalysts. Research supported by Honda R.I. and NSF.

  5. The physical and chemical properties of nanostructured mixed-metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li [Texas A & M Univ., College Station, TX (United States); Goodman, David Wayne [Texas A & M Univ., College Station, TX (United States)

    2016-04-21

    The main targets of this study has been to synthesize well-defined nanoclusters of Ni, Co, Pt, Rh and Pd as well as mixed-metal nanoclusters on ultrathin oxide surfaces and to characterize their detailed morphology using scanning probe techniques. The focus of the research is an understanding of the effects of metal-substrate interactions and overall composition on the structure/stability of single metal and mixed-metal nanoclusters and their catalytic activity.

  6. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg 2+ to gold nanoclusters.

    Science.gov (United States)

    Dai, Haichao; Shi, Yan; Wang, Yilin; Sun, Yujing; Hu, Jingting; Ni, Pengjuan; Li, Zhuang

    2014-03-15

    In this work, we proposed a facile, environmentally friendly and cost-effective assay for melamine with BSA-stabilized gold nanoclusters (AuNCs) as a fluorescence reader. Melamine, which has a multi-nitrogen heterocyclic ring, is prone to coordinate with Hg(2+). This property causes the anti-quenching ability of Hg(2+) to AuNCs through decreasing the metallophilic interaction between Hg(2+) and Au(+). By this method, detection limit down to 0.15 µM is obtained, which is approximately 130 times lower than that of the US food and Drug Administration estimated melamine safety limit of 20 µM. Furthermore, several real samples spiked with melamine, including raw milk and milk powder, are analyzed using the sensing system with excellent recoveries. This gold-nanocluster-based fluorescent method could find applications in highly sensitive detection of melamine in real samples. © 2013 Elsevier B.V. All rights reserved.

  7. Electrically driven light emission from an array of Si nanoclusters

    International Nuclear Information System (INIS)

    Mazzitello, K I; Martin, H O; Aldao, C M; Roman, H E

    2004-01-01

    Charge transport and light emission properties of an array of silicon nanoclusters (NCs), sandwiched between a p-type and an n-type doped silicon crystal, are studied theoretically by assuming that electrons and holes enter from the opposite sides of the array in response to an applied electric field. The size of the NCs considered ranges from 16 nm down to 3.6 nm and their spatial distribution is optimized so that light emission, resulting from radiative recombinations, is peaked in the visible red around 1.8 eV. The light emission efficiency is limited by the carrier hopping times and is found to be in the range 2-0.5%, for fields ranging from 100 kV cm -1 to 500 kV cm -1 , respectively

  8. Three-Dimensional Atomic Structure of Metastable Nanoclusters in Doped Semiconductors

    Science.gov (United States)

    Couillard, Martin; Radtke, Guillaume; Knights, Andrew P.; Botton, Gianluigi A.

    2011-10-01

    Aberration-corrected scanning transmission electron microscopy is used to determine the atomic structure of nanoclusters of cerium dopant atoms embedded in silicon. By channeling electrons along two crystallographic orientations, we identify a characteristic zinc-blende chemical ordering within CeSi clusters coherent with the silicon host matrix. Strain energy limits the size of these ordered arrangements to just above 1 nm. With the local order identified, we then determine the atomic configuration of an individual subnanometer cluster by quantifying the scattering intensity under weak channeling condition in terms of the number of atoms. Analysis based on single-atom visualization also evidences the presence of split-vacancy impurity complexes, which supports the hypothesis of a vacancy-assisted formation of these metastable CeSi nanophases.

  9. Probing the Absorption and Emission Transition Dipole Moment of DNA Stabilized Silver Nanoclusters

    DEFF Research Database (Denmark)

    Hooley, Emma Nicole; Carro Temboury, Miguel R.; Vosch, Tom André Jos

    2017-01-01

    Using single molecule polarization measurements, we investigate the excitation and emission polarization characteristics of DNA stabilized silver nanoclusters (C24-AgNCs). Although small changes in the polarization generally accompany changes to the emission spectrum, the emission and excitation...... transition dipoles tend to be steady over time and aligned in a similar direction, when immobilized in PVA. The emission transition dipole patterns, observed for C24-AgNCs in defocused wide field imaging, match that of a single emitter. The small changes to the polarization and spectral shifting that were...

  10. Eco-friendly (green) synthesis of magnetically active gold nanoclusters

    Science.gov (United States)

    Kadasala, Naveen Reddy; Lin, Lu; Gilpin, Christopher; Wei, Alexander

    2017-12-01

    Au-FexOy composite nanoparticles (NPs) are of great technological interest due to their combined optical and magnetic properties. However, typical syntheses are neither simple nor ecologically friendly, creating a challenging situation for process scale-up. Here we describe conditions for preparing Au-FexOy NPs in aqueous solutions and at ambient temperatures, without resorting to solvents or amphiphilic surfactants with poor sustainability profiles. These magnetic gold nanoclusters (MGNCs) are prepared in practical yields with average sizes slightly below 100 nm, and surface plasmon resonances that extend to near-infrared wavelengths, and sufficient magnetic moment (up to 6 emu g-1) to permit collection within minutes by handheld magnets. The MGNCs also produce significant photoluminescence when excited at 488 nm. Energy dispersive X-ray (EDX) analysis indicates a relatively even distribution of Fe within the MGNCs, as opposed to a central magnetic core.

  11. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Galván, Andrés, E-mail: andres.rodriguez@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Instituto de Física, Dpto. Física Experimental, Universidad Nacional Autónoma de México, Coyoacán, México, DF 04510 (Mexico); Unidad de Investigación Biomédica en Cáncer INCan-UNAM, Instituto Nacional de Cancerología, México, DF 14080 (Mexico); Heredia, Alejandro [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 México D.F. (Mexico); Amelines-Sarria, Oscar; Rivera, Margarita [Instituto de Física, Dpto. Materia Condensada, Universidad Nacional Autónoma de México, Coyoacán, 04510 México D.F. (Mexico); and others

    2015-03-15

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT–AgNCs–HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV–vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications.

  12. Non-covalent attachment of silver nanoclusters onto single-walled carbon nanotubes with human serum albumin as linking molecule

    International Nuclear Information System (INIS)

    Rodríguez-Galván, Andrés; Heredia, Alejandro; Amelines-Sarria, Oscar; Rivera, Margarita

    2015-01-01

    The attachment of silver nanoclusters (AgNCs) onto single-walled carbon nanotubes (SWNTs) for the formation of integrated fluorescence sites has attracted much attention due their potential applications as biological probes and nanovectors in theragnosis. Here, we report the preparation through assembly of fluorescent quasi 1-D nanomaterial based on SWNTs and silver nanoclusters (AgNCs) non-covalently attached to human serum albumin as biological linker. The fluorescent SWNT–AgNCs–HSA conjugates were characterized by atomic force microscopy, high-resolution transmission electron microscopy (HRTEM), high angle annular dark field scanning TEM (HAADF-STEM), fluorescent and UV–vis spectroscopy. The above techniques confirmed that AgNCs were non-covalently attached onto the external surface of SWNTs. In addition, it was observed that the modification did not affect the optical properties of the synthesized AgNCs since the absorption spectra and fluorescence under UV irradiation (λ = 365 nm) remain the same. The effect of the functionalized systems was tested on mammal red blood cells (RBCs) and it was found that their structural integrity was compromised by the conjugates, limiting their biological and medical applications

  13. Direct immobilization of antibodies on Zn-doped Fe_3O_4 nanoclusters for detection of pathogenic bacteria

    International Nuclear Information System (INIS)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin

    2017-01-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe_3O_4 nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S_t_h_i_o_l bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  14. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe{sub 3}O{sub 4} nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired.

  15. Synthesis of Iron-ferrocyanide functionalized magnetic nanocluster for the removal of cesium

    International Nuclear Information System (INIS)

    Yang, Hee-Man; Jang, Sung-Chan; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon

    2014-01-01

    In the present study, magnetite nanocluster was synthesized by hydrothermal method, and coated with iron ferrocyanide for the adsorption of cesium in an aqueous solution through simple addition of iron ferrocyanide in acid condition. We describe the morphology, structure, and physical property of these nanoparticles. In addition, their ability to eliminate cesium from water was also evaluated. In this study, we fabricated Iron ferrocyanide immobilized magnetite nanocluster (IFC-MNC) using hydrothermal methods. The CIFC-MNC exhibited easy separation ability from water by an external magnet, and showed a high removal efficiency of cesium in aqueous solutions. Therefore, the IFC-MNC demonstrated good potential for the treatment of water contaminated with radioactive cesium. gnetic nanoadsorbents composed of a magnetic particles core and functional shell, which adsorb the contaminants, has attracted significant attention in environmental remediation owing to their high surface area and unique superparamagnetism. The nuclear accident at the Fukushima Daiichi nuclear power station in 2011 released a huge quantity of radioactive contaminants into the environment. Among these, cesium Cs-137 is the most problematic contaminant due to its long half-life (30.2 years), and high-energy gamma ray (γ-ray) emissions. Among various adsorbents to treat Cs-137 contaminated water, metal ferrocyanides were widely applied to remove the Cs-137 in water. For better separation of metal ferrocyanide from water, recently, our group reported the fabrication of copper ferrocyanide-functionalized magnetic nanoparticles (Cu-FC-EDA-MNPs) using alkoxysilanes, having ethylenediamine (EDA) group, modified Fe 3 O 4 nanoparticles (EDA-MNPs) for the fast and easy magnetic separation of metal ferrocyanide. However, the fabrication method was multistep procedure. Thus, a more simplified fabrication procedure is still desired

  16. Ultrafast static and diffusion-controlled electron transfer at Ag 29 nanocluster/molecular acceptor interfaces

    KAUST Repository

    Aly, Shawkat Mohammede; AbdulHalim, Lina G.; Besong, Tabot M.D.; Soldan, Giada; Bakr, Osman; Mohammed, Omar F.

    2015-01-01

    Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV2+) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs. © 2016 The Royal Society of Chemistry.

  17. Ultrafast static and diffusion-controlled electron transfer at Ag 29 nanocluster/molecular acceptor interfaces

    KAUST Repository

    Aly, Shawkat Mohammede

    2015-10-29

    Efficient absorption of visible light and a long-lived excited state lifetime of silver nanoclusters (Ag29 NCs) are integral properties for these new clusters to serve as light-harvesting materials. Upon optical excitation, electron injection at Ag29 NC/methyl viologen (MV2+) interfaces is very efficient and ultrafast. Interestingly, our femto- and nanosecond time-resolved results demonstrate clearly that both dynamic and static electron transfer mechanisms are involved in photoluminescence quenching of Ag29 NCs. © 2016 The Royal Society of Chemistry.

  18. One-step microwave-assisted synthesis of water-dispersible Fe3O4 magnetic nanoclusters for hyperthermia applications

    Science.gov (United States)

    Sathya, Ayyappan; Kalyani, S.; Ranoo, Surojit; Philip, John

    2017-10-01

    To realize magnetic hyperthermia as an alternate stand-alone therapeutic procedure for cancer treatment, magnetic nanoparticles with optimal performance, within the biologically safe limits, are to be produced using simple, reproducible and scalable techniques. Herein, we present a simple, one-step approach for synthesis of water-dispersible magnetic nanoclusters (MNCs) of superparamagnetic iron oxide by reducing of Fe2(SO4)3 in sodium acetate (alkali), poly ethylene glycol (capping ligand), and ethylene glycol (solvent and reductant) in a microwave reactor. The average size and saturation magnetization of the MNC's are tuned from 27 to 52 nm and 32 to 58 emu/g by increasing the reaction time from 10 to 600 s. Transmission electron microscopy images reveal that each MNC composed of large number of primary Fe3O4 nanoparticles. The synthesised MNCs show excellent colloidal stability in aqueous phase due to the adsorbed PEG layer. The highest SAR value of 215 ± 10 W/gFe observed in 52 nm size MNC at a frequency of 126 kHz and field of 63 kA/m suggest the potential use of these MNC in hyperthermia applications. This study further opens up the possibilities to develop metal ion-doped MNCs with tunable sizes suitable for various biomedical applications using microwave assisted synthesis.

  19. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters.

    Science.gov (United States)

    Yan, Xu; Li, Hongxia; Hu, Tianyu; Su, Xingguang

    2017-05-15

    Assays for organophosphorus pesticides (OPs) with high sensitivity as well as on-site screening have been urgently required to protect ecosystem and prevent disease. Herein, a novel fluorimetric sensing platform was constructed for quantitative detection of OPs via tyrosinase (TYR) enzyme-controlled quenching of gold nanoclusters (AuNCs). One-step green synthetic approach was developed for the synthesis of AuNCs by using chicken egg white (CEW) as template and stabilizer. Initially, TYR can catalyze the oxidation of dopamine to dopaminechrome, which can efficiently quench the fluorescence intensity of AuNCs at 630nm based on dynamic quenching process. However, with the presence of OPs, the activity of TYR was inhibited, resulting in the fluorescence recovery of AuNCs. This proposed fluorescence platform was demonstrated to enable rapid detection for OPs (paraoxon as model) and to provide excellent sensitivity with a detection limit of 0.1ngmL -1 . Significantly, the fluorescence probe was used to prepare paper-based test strips for visual detection of OPs, which validated the excellent potential for real-time and on-site application. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation.

    Science.gov (United States)

    Russier-Antoine, Isabelle; Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Dugourd, Philippe; Sanader, Željka; Bonačić-Koutecký, Vlasta; Brevet, Pierre-François; Antoine, Rodolphe

    2016-02-07

    We demonstrate that the tuning of the light emission from red to blue in dihydrolipoic acid (DHLA) capped Ag29 nanoclusters can be trigged with one and two photon excitations. The cluster stoichiometry was determined with mass spectrometry and found to be Ag29(DHLA)12. In a detailed optical investigation, we show that these silver nanoclusters exhibit a strong red photoluminescence visible to the naked eye and characterized by a quantum yield of nearly ∼2% upon one-photon excitation. In the nonlinear optical (NLO) study of the properties of the clusters, the two-photon excited fluorescence spectra were recorded and their first hyperpolarizability obtained. The two-photon absorption cross-section at ∼800 nm for Ag29(DHLA)12 is higher than 10(4) GM and the hyperpolarizability is 106 × 10(-30) esu at the same excitation wavelength. The two-photon excited fluorescence spectrum appears strongly blue-shifted as compared to the one-photon excited spectrum, displaying a broad band between 400 and 700 nm. The density functional theory (DFT) provides insight into the structural and electronic properties of Ag29(DHLA)12 as well as into interplay between metallic subunit or core and ligands which is responsible for unique optical properties.

  1. Connections Between Theory and Experiment for Gold and Silver Nanoclusters

    Science.gov (United States)

    Weerawardene, K. L. Dimuthu M.; Häkkinen, Hannu; Aikens, Christine M.

    2018-04-01

    Ligand-stabilized gold and silver nanoparticles are of tremendous current interest in sensing, catalysis, and energy applications. Experimental and theoretical studies have closely interacted to elucidate properties such as the geometric and electronic structures of these fascinating systems. In this review, the interplay between theory and experiment is described; areas such as optical absorption and doping, where the theory-experiment connections are well established, are discussed in detail; and the current status of these connections in newer fields of study, such as luminescence, transient absorption, and the effects of solvent and the surrounding environment, are highlighted. Close communication between theory and experiment has been extremely valuable for developing an understanding of these nanocluster systems in the past decade and will undoubtedly continue to play a major role in future years.

  2. Modeling the photosensitizing properties of thiolate-protected gold nanoclusters.

    Science.gov (United States)

    Azarias, Cloé; Adamo, Carlo; Perrier, Aurélie

    2016-03-21

    An accurate computational strategy for studying the structural, redox and optical properties of thiolated gold nanoclusters (GNCs) using (Time-Dependent) Density Functional Theory is proposed. The influence of the pseudopotential/basis set, solvent description and the choice of the functional has been investigated to model the structural and electronic properties of the Au25(SR)18(-) system, with R being an organic ligand. This study aims to describe with a comparable precision both the GNC and the organic ligands and rationalize the effect of coating on different GNC properties. Two differently coated GNCs have been considered: the system with R = CH2CH2Ph and the GNC coated with 17 alkyl chains (C6H13) and functionalized by one fluorophore pyrene derivative (CH2CH2(NH)(CO)Py). The computational protocol we propose should then be used to design more efficient metal cluster-sensitized solar cells.

  3. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    Science.gov (United States)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  4. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Directory of Open Access Journals (Sweden)

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  5. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    International Nuclear Information System (INIS)

    Poudel, P.R.; Poudel, P.P.; Paramo, J.A.; Strzhemechny, Y.M.; Rout, B.; McDaniel, F.D.

    2015-01-01

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C - ) at a fluence of 3 x 10 17 atoms/cm 2 was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H 2 + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main contributors to the observed

  6. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, P.R. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); Intel Corporation, Rio Rancho, NM (United States); Poudel, P.P. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); Paramo, J.A.; Strzhemechny, Y.M. [Texas Christian University, Department of Physics and Astronomy, Fort Worth, TX (United States); Rout, B. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); University of North Texas, Center for Advanced Research and Technology, Denton, TX (United States); McDaniel, F.D. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States)

    2014-09-18

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C{sup -}) at a fluence of 3 x 10{sup 17} atoms/cm{sup 2} was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H{sub 2} + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main

  7. Surface functionalization of carbon nanofibers by sol-gel coating of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shao Dongfeng [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China); Changzhou Textile Garment Institute, Changzhou 213164 (China); Wei Qufu [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)], E-mail: qfwei@jiangnan.edu.cn; Zhang Liwei; Cai Yibing; Jiang Shudong [Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122 (China)

    2008-08-15

    In this paper the functional carbon nanofibers were prepared by the carbonization of ZnO coated PAN nanofibers to expand the potential applications of carbon nanofibers. Polyacrylonitrile (PAN) nanofibers were obtained by electrospinning. The electrospun PAN nanofibers were then used as substrates for depositing the functional layer of zinc oxide (ZnO) on the PAN nanofiber surfaces by sol-gel technique. The effects of coating, pre-oxidation and carbonization on the surface morphology and structures of the nanofibers were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM), respectively. The results of SEM showed a significant increase of the size of ZnO nanograins on the surface of nanofibers after the treatments of coating, pre-oxidation and carbonization. The observations by SEM also revealed that ZnO nanoclusters were firmly and clearly distributed on the surface of the carbon nanofibers. FTIR examination also confirmed the deposition of ZnO on the surface of carbon nanofibers. The XRD analysis indicated that the crystal structure of ZnO nanograins on the surface of carbon nanofibers.

  8. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  9. Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters

    KAUST Repository

    Wu, Zhennan

    2017-03-20

    Aggregation/assembly induced emission (AIE) has been observed for metal nanoclusters (NCs), but the origin of the enhanced emission is not fully understood, yet. In this work, the significant contribution of metal defects on AIE is revealed by engineering the self-assembly process of Cu NCs using ethanol. The presence of ethanol leads to a rapid assembly of NCs into ultrathin nanosheets, promoting the formation of metal defects-rich surface. Detailed studies and computer simulation confirm that the metal defects-rich nanosheets possess increased Cu(I)-to-Cu(0) ratio, which greatly influences ligand-to-metal-metal charge transfer and therewith facilitates the radiative relaxation of excitons. Consequently, the Cu NCs self-assembly nanosheets exhibit obvious emission enhancement.

  10. Generating Palladium Nanoclusters Inside Very Lipophilic Gel-Type Functional Resins: Preliminary Catalytic Tests in the Hydrogenation of 2-Ethyl-Anthraquinone to 2-Ethylanthrahydroquinone

    Czech Academy of Sciences Publication Activity Database

    Bombi, G.; Lora, S.; Zancato, M.; D'Archivio, A. A.; Jeřábek, Karel; Corain, B.

    2003-01-01

    Roč. 194, 1-2 (2003), s. 273-281 ISSN 1381-1169 Institutional research plan: CEZ:AV0Z4072921 Keywords : palladium nanoclusters * gel-type resins * catalyst Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.264, year: 2003

  11. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  12. Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster

    KAUST Repository

    AbdulHalim, Lina G.

    2015-06-24

    The bottom-up assembly of nanoparticles into diverse ordered solids is a challenge because it requires nanoparticles, which are often quasi-spherical, to have interaction anisotropy akin to atoms and molecules. Typically, anisotropy has been introduced by changing the shape of the inorganic nanoparticle core. Here, we present the design, self-assembly, optical properties and total structural determination of Ag29(BDT)12(TPP)4, an atomically precise tetravalent nanocluster (NC) (BDT: 1,3-benzenedithiols; TPP: triphenylphosphine). It features four unique tetrahedrally symmetrical binding surface sites facilitated by the supramolecular assembly of 12 BDT—wide footprint bidentate thiols—in the ligand shell. When each of these sites was selectively functionalized by a single phosphine ligand, particle stability, synthetic yield and the propensity to self-assemble into macroscopic crystals increased. The solid crystallized NCs have a substantially narrowed optical bandgap compared to that of the solution state, suggesting strong inter-particle electronic coupling occurs in the solid state.

  13. Ag29(BDT)12(TPP)4: A Tetravalent Nanocluster

    KAUST Repository

    AbdulHalim, Lina G.; Bootharaju, Megalamane Siddaramappa; Tang, Qing; Del Gobbo, Silvano; AbdulHalim, Rasha; Eddaoudi, Mohamed; Jiang, De-en; Bakr, Osman

    2015-01-01

    The bottom-up assembly of nanoparticles into diverse ordered solids is a challenge because it requires nanoparticles, which are often quasi-spherical, to have interaction anisotropy akin to atoms and molecules. Typically, anisotropy has been introduced by changing the shape of the inorganic nanoparticle core. Here, we present the design, self-assembly, optical properties and total structural determination of Ag29(BDT)12(TPP)4, an atomically precise tetravalent nanocluster (NC) (BDT: 1,3-benzenedithiols; TPP: triphenylphosphine). It features four unique tetrahedrally symmetrical binding surface sites facilitated by the supramolecular assembly of 12 BDT—wide footprint bidentate thiols—in the ligand shell. When each of these sites was selectively functionalized by a single phosphine ligand, particle stability, synthetic yield and the propensity to self-assemble into macroscopic crystals increased. The solid crystallized NCs have a substantially narrowed optical bandgap compared to that of the solution state, suggesting strong inter-particle electronic coupling occurs in the solid state.

  14. Carbon nanotube growth from catalytic nano-clusters formed by hot-ion-implantation into the SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Arima, Hiroki; Yokoyama, Ai; Saito, Yasunao; Nakata, Jyoji [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2012-07-01

    We have studied growth of chirality-controlled carbon nanotubes (CNTs) from hot-implantation-formed catalytic nano-clusters in a thermally grown SiO{sub 2}/Si substrate. This procedure has the advantage of high controllability of the diameter and the number of clusters by optimizing the conditions of the ion implantation. In the present study, Co{sup +} ions with ion dose of 8 Multiplication-Sign 10{sup 16} cm{sup -2} are implanted in the vicinity of the SiO{sub 2}/Si interface at 300 Degree-Sign C temperature. The implanted Co atoms located in the SiO{sub 2} layer has an amorphous-like structure with a cluster diameter of several nm. In contrast, implanted Co atoms in the Si substrate are found to take a cobalt silicide structure, confirmed by the high-resolution image of transmission electron microscope. CNTs are grown by microwave-plasma-enhanced chemical vapor deposition. We have confirmed a large amount of vertically-aligned multi-walled CNTs from the Co nano-clusters formed by the hot-ion-implantation near the SiO{sub 2}/Si interface.

  15. Large-scale preparation of shape controlled SnO and improved capacitance for supercapacitors: from nanoclusters to square microplates

    Science.gov (United States)

    Wang, Lu; Ji, Hongmei; Zhu, Feng; Chen, Zhi; Yang, Yang; Jiang, Xuefan; Pinto, João; Yang, Gang

    2013-07-01

    Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible absorption spectroscopy (UV-vis) and X-ray diffraction (XRD). To explore its potential applications in energy storage, SnO was fabricated into a supercapacitor electrode and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge measurements. The as-synthesized SnO exhibits remarkable pseudocapacitive activity including high specific capacitance (208.9 F g-1 at 0.1 A g-1), good rate capability (65.8 F g-1 at 40 A g-1), and excellent cycling stability (retention 119.3% after 10 000 cycles) for application in supercapacitors. The capacitive behavior of SnO with various crystal morphologies was observed by fitted EIS using an equivalent circuit. The novel synthetic route for SnO is a convenient and potential way to large-scale production of microplates which is expected to be applicable in the synthesis of other metal oxide nanoparticles.Here, we first provide a facile ultrasonic-assisted synthesis of SnO using SnCl2 and the organic solvent of ethanolamine (ETA). The moderate alkalinity of ETA and ultrasound play very important roles in the synthesis of SnO. After the hydrolysis of the intermediate of ETA-Sn(ii), the as-synthesized SnO nanoclusters undergo assembly, amalgamation, and preferential growth to microplates in hydrothermal treatment. The as-synthesized SnO was characterized by scanning

  16. Phosphate-mediated electrochemical adsorption of cisplatin on gold electrodes

    International Nuclear Information System (INIS)

    Kolodziej, Adam; Figueiredo, Marta C.; Koper, Marc T.M.; Fernandez-Trillo, Francisco; Rodriguez, Paramaconi

    2017-01-01

    Highlights: •The potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode is mediated by the adsorption of phosphate anions on gold electrode. •Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. •Upon reduction of the phosphate-mediated cisplatin adsorption, the platinum deposits are formed by 3D nanoclusters -- Abstract: This manuscript reports the potential-dependent adsorption and deposition of cisplatin on polycrystalline gold electrode. It was found that this process is mediated by the adsorption of phosphate anions on the gold electrode and that the maximum coverage of Pt adsorbed is given by the maximum coverage of phosphate adsorbed at a given potential. The interaction of cisplatin with the phosphate groups was confirmed by in situ FTIR spectroscopy under external reflexion configuration. Quantitative analysis suggests that the stoichiometry of the phosphate species and the cisplatin adsorbed was 1:1. Moreover, the relationship between the charge of the Pt deposited and the charge of the electrochemical surface area of the Pt deposited on the gold electrodes indicates that 3D nanoclusters of a few atoms of Pt were formed over the gold electrode upon the electrochemical reduction of the adsorbed cisplatin. The Pt nanoclusters formed under these conditions were later evaluated for the oxidation of a monolayer of carbon monoxide. The Pt nanoclusters showed a high overpotential for the oxidation of the carbon monoxide monolayer and the high oxidation overpotential was attributed to the absence of adsorption sites for OH species on the Pt clusters: only at potentials where the OH species are adsorbed at the edge between the Pt nanocluster and the gold support, the oxidation of the carbon monoxide on the Pt nanoparticles takes place.

  17. Direct immobilization of antibodies on Zn-doped Fe{sub 3}O{sub 4} nanoclusters for detection of pathogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Monalisa; Lee, Sanghee; Kwon, Donghoon; Hwang, Jeongin; Lee, Hyeonjeong; Hwang, Seokyung; Jeon, Sangmin, E-mail: jeons@postech.ac.kr

    2017-02-01

    Zinc-doped magnetic nanoclusters (Zn-MNCs) were synthesized and used to detect pathogenic bacteria in milk. Hydrothermally synthesized Zn-MNCs exhibited stronger magnetic properties than pure MNCs, which facilitated the magnetic separation from the sample using a permanent magnet. The presence of accessible Zn sites allows the direct immobilization of half-fragmented antibodies over Zn-MNCs through strong Zn−S bonds and prevents the tedious multiple steps of molecular functionalization or coating with costly noble metals prior to conjugation with an antibody. After the capture and magnetic separation of Salmonella in milk using the antibody-functionalized Zn-MNCs, the concentration of bacteria was determined with a portable ATP luminometer and the detection limit was found to be 10 CFU/mL. - Highlights: • Zn-doped Fe{sub 3}O{sub 4} nanoclusters (Zn-MNCs) were synthesized by hydrothermal method. • Antibodies were directly immobilized over Zn-MNCs through strong Zn–S{sub thiol} bonds. • Higher magnetization of Zn-MNCs than pure MNCs facilitates the magnetic separation. • Detection limit of pathogenic bacteria in milk was found to be 10 cfu/mL. • Cost effective, sensitive and selective detection of bacteria.

  18. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  19. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  20. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiannan; Shu, Xiaolin, E-mail: shuxlin@buaa.edu.cn; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-02-15

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  1. A comparison of interatomic potentials for modeling tungsten nanocluster structures

    International Nuclear Information System (INIS)

    Hao, Jiannan; Shu, Xiaolin; Jin, Shuo; Zhang, Xuesong; Zhang, Ying; Lu, Guang-Hong

    2017-01-01

    Molecular dynamic simulation is utilized to study the nanocluster and the fuzz structure on the PFM surface of tungsten. The polyhedral and linear cluster structures based on the icosahedron, cuboctahedron and rhombic dodecahedron are built up. Three interatomic potentials are used in calculating the relationship between the cluster energy and the number of atoms. The results are compared with first-principles calculation to show each potential’s best application scale. Furthermore, the transition between the icosahedral and the cuboctahedral clusters is observed in molecular dynamic simulation at different temperatures, which follows a critical curve for different numbers of atoms. The linear structures are proved to be stable at experimental temperatures by thermodynamics. The work presents a selection of interatomic potentials in simulating tungsten cluster systems and helps researchers understand the growth and evolution laws of clusters and the fuzz-like structure formation process in fusion devices.

  2. Critical sizes and critical characteristics of nanoclusters, nanostructures and nanomaterials

    International Nuclear Information System (INIS)

    Suzdalev, I.P.

    2005-01-01

    Full text: Critical sizes and characteristics of nanoclusters and nanostructures are introduced as the parameters of nanosystems and nanomaterials. The next critical characteristics are considered: atomic and electronic 'magic number', critical size of cluster nucleation, critical size of melting-freezing of cluster, critical size of quantum (laser) radiation, critical sizes for the single electron conductivity, critical energy and magnetic field for the magnetic tunneling, critical cluster sizes for the giant magnetic resistance, critical size of the first order magnetic phase transition. The critical characteristics are estimated by thermodynamic approaches, by Moessbauer spectroscopy, AFM, heat capacity, SQUID magnetometry and other technique, The influence of cluster-cluster interactions, cluster-matrix interactions and cluster defects on cluster atomic dynamics, cluster melting, cluster critical sizes, Curie or Neel points and the character of magnetic phase transitions were investigated. The applications of critical size and critical characteristic parameters for the nanomaterial characterization are considered

  3. Silver Nanoclusters: From Design Principles to Practical Applications

    KAUST Repository

    Abdulhalim, Lina G.

    2015-12-08

    A strategy based on reticulating metal ions and organic ligands into atomically precise gold and silver nanoclusters (NCs) with high monodispersity has been advanced to a point that allows the design of NCs with strict stoichiometries, functionalities and valence. Of the Ag NCs discovered, Ag44 is the most studied, not only due to its high absorption that transcends the visible spectrum suitable for photovoltaics but also because of its long excited state lifetime, as revealed by nanosecond transient absorption spectroscopy. A major principle discovered in this dissertation is the ability to produce Ag44 in scalable amounts and with high stability in addition to modulation of the functional groups of the organic ligands via a fast and complete ligand exchange process. This new discovery has led to the development of synthetic designs in which new sizes were obtained by varying the reaction parameters (e.g., ligands functionality, reaction temperature and time), namely, Ag29 using dithiols and phosphines. The synthesized NCs possess tetravalent functionalities that facilitate their crystallization and characterization. Furthermore, Ag29 glows red and is therefore a possible candidate for sensing and imaging applications.

  4. Synthesis and characterization of human transferrin-stabilized gold nanoclusters

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Schneider, Marc; Daum, Nicole

    2011-01-01

    Human transferrin has been biolabelled with gold nanoclusters (Au NCs) using a simple, fast and non-toxic method. These nanocrystals ( em = 695 nm). Structural investigation and photophysical measurements show a high population of clusters formed of 22-33 gold atoms covalently bound to the transferrin. In solutions with pH ranging from 5 to 10 and in buffer solutions (PBS, HEPES), those biolabelled proteins exhibit a good stability. No significant quenching effect of the fluorescent transferrin has been detected after iron loading of iron-free transferrin (apoTf) and in the presence of a specific polyclonal antibody. Additionally, antibody-induced agglomeration demonstrates no alteration in the protein activity and the receptor target ability. MTT and Vialight Plus tests show no cytotoxicity of these labelled proteins in cells (1 μg ml -1 -1 mg ml -1 ). Cell line experiments (A549) indicate also an uptake of the iron loaded fluorescent proteins inside cells. These remarkable data highlight the potential of a new type of non-toxic fluorescent transferrin for imaging and targeting.

  5. Size dependent hcp-to-fcc transition temperature in Co nanoclusters obtained by ion implantation in silica

    International Nuclear Information System (INIS)

    Mattei, G.; Maurizio, C.; Fernandez, C Julian de; Mazzoldi, P.; Battaglin, G.; Canton, P.; Cattaruzza, E.; Scian, C.

    2006-01-01

    In this work we present in situ investigations on the increase of the hcp-to-fcc transition temperature for Co with respect to the bulk value (420 deg. C) when nanoclusters are considered. Starting from Co:SiO 2 composites obtained by ion implantation with average Co cluster size of about 5 nm, a transition temperature between 800 deg. C and 900 deg. C is found upon thermal annealing in vacuum by in situ transmission electron microscopy. Preliminary results on electron irradiation to promote the transition at lower temperatures are presented

  6. DFT investigation of the interaction of gold nanoclusters with poly(amidoamine) PAMAM G0 dendrimer

    Science.gov (United States)

    Camarada, M. B.

    2016-06-01

    The interaction between PAMAM G0 and gold nanoclusters Aun (n = 2, 4, 6, and 8) was studied theoretically at DFT level. Different coordination sites were explored, including internal and superficial coordination. All stable complexes exhibited external interaction with the amine or carbonyl site, while the core site coordination was not favored. The more stable binding of Aun was registered with the terminal amine group, while the binding at the amide site was relatively weaker. The vertical first ionization potential, electron affinity, Fermi level, and the HOMO-LUMO gap of PAMAM and Aun-PAMAM G0 complexes were also analyzed.

  7. Cobalt nanoparticles as recyclable catalyst for aerobic oxidation of alcohols in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Arijit; Mukherjee, Debkumar, E-mail: debkumarmukherjee@rediffmail.com [Ramsaday College, Department of Chemistry (India); Adhikary, Bibhutosh, E-mail: adhikarybibhu@yahoo.com [Indian Institute of Engineering, Sciences and Technology, Shibpur, Department of Chemistry (India); Ahmed, Md Azharuddin [University of Calcutta, Department of Physics (India)

    2016-05-15

    Cobalt nanoparticles prepared at room temperature from cobalt sulphate and tetrabutyl ammonium bromide as surfactant have been found to be effective oxidation catalysts. Palladium and platinum nanoparticles (average size 4–6 nm) can also be prepared from PdCl{sub 2} and K{sub 2}PtCl{sub 4}, respectively, using the same surfactant but require high temperature (~120 °C) and much longer preparation time. Agglomeration of nanoparticles prepared from metals like palladium and platinum in common solvents, however, restricts their use as catalysts. It is therefore our endeavour to find the right combination of catalyst and solvent that will be beneficial from industrial point of view. Magnetic property measurement of cobalt nanoclusters was made using SQUID to identify their reusability nature. Herein, we report the use of cobalt nanoparticles (average size 90–95 nm) in dichloromethane solvent as effective reusable catalysts for aerobic oxidation of a variety of alcohols.Graphical Abstract.

  8. Gold nanocluster-based vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides

    Science.gov (United States)

    Tao, Yu; Zhang, Yan; Ju, Enguo; Ren, Hui; Ren, Jinsong

    2015-07-01

    We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments.We here report a facile one-pot synthesis of fluorescent gold nanoclusters (AuNCs) via the peptide biomineralization method, which can elicit specific immunological responses. The as-prepared peptide-protected AuNCs (peptide-AuNCs) display strong red fluorescence, and more importantly, as compared to the peptide alone, the immune stimulatory ability of the resulting peptide-AuNCs can not only be retained, but can also be efficaciously enhanced. Moreover, through a dual-delivery of antigen peptides and cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs), the as-prepared peptide-AuNC-CpG conjugates can also act as smart self-vaccines to assist in the generation of high immunostimulatory activity, and be applied as a probe for intracellular imaging. Both in vitro and in vivo studies provide strong evidence that the AuNC-based vaccines may be utilized as safe and efficient immunostimulatory agents that are able to prevent and/or treat a variety of ailments. Electronic supplementary information (ESI

  9. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets.

    Science.gov (United States)

    Zhang, Yunyi; Li, Yongxin; Zhang, Cuiyun; Zhang, Qingfeng; Huang, Xinan; Yang, Meiding; Shahzad, Sohail Anjum; Lo, Kenneth Kam-Wing; Yu, Cong; Jiang, Shichun

    2017-08-01

    A fluorescence turn-on assay for alkaline phosphatase (ALP) activity is developed through the controlled release of polyethyleneimine-capped copper nanoclusters (PEI-capped CuNCs) from the MnO 2 nanosheets. In an aqueous solution, the positively charged PEI-capped CuNCs could be adsorbed onto the surface of the negatively charged MnO 2 nanosheets. Such adsorption through favorable electrostatic interactions could efficiently quench the nanocluster fluorescence emission via resonance energy transfer from the PEI-capped CuNCs to the MnO 2 nanosheets. 2-Phospho-L-ascorbic acid (AAP) could be hydrolyzed to L-ascorbic acid (AA) in the presence of ALP. AA could reduce MnO 2 into Mn 2+ and trigger the disintegration of the MnO 2 nanosheets. As a result, the CuNCs were released and the quenched fluorescence was recovered efficiently. The detection strategy is simple, inexpensive, sensitive, selective, with low toxicity, and has better biocompatibility. The newly fabricated biosensor for ALP activity will potentially make it a robust candidate for numerous biological and biomedical applications.

  10. Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes.

    Science.gov (United States)

    Lin, Xiaodong; Liu, Yaqing; Deng, Jiankang; Lyu, Yanlong; Qian, Pengcheng; Li, Yunfei; Wang, Shuo

    2018-02-21

    The integration of multiple DNA logic gates on a universal platform to implement advance logic functions is a critical challenge for DNA computing. Herein, a straightforward and powerful strategy in which a guanine-rich DNA sequence lighting up a silver nanocluster and fluorophore was developed to construct a library of logic gates on a simple DNA-templated silver nanoclusters (DNA-AgNCs) platform. This library included basic logic gates, YES, AND, OR, INHIBIT, and XOR, which were further integrated into complex logic circuits to implement diverse advanced arithmetic/non-arithmetic functions including half-adder, half-subtractor, multiplexer, and demultiplexer. Under UV irradiation, all the logic functions could be instantly visualized, confirming an excellent repeatability. The logic operations were entirely based on DNA hybridization in an enzyme-free and label-free condition, avoiding waste accumulation and reducing cost consumption. Interestingly, a DNA-AgNCs-based multiplexer was, for the first time, used as an intelligent biosensor to identify pathogenic genes, E. coli and S. aureus genes, with a high sensitivity. The investigation provides a prototype for the wireless integration of multiple devices on even the simplest single-strand DNA platform to perform diverse complex functions in a straightforward and cost-effective way.

  11. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe.

    Science.gov (United States)

    Xu, Yujuan; Zhang, Peng; Wang, Zhen; Lv, Shaoping; Ding, Caifeng

    2018-02-27

    Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity. Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.

  12. One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO2 Quasi-Nanocubes for Enhanced Activity and Selectivity of CO2 Photoreduction to CH4.

    Science.gov (United States)

    Jin, Jingpeng; Luo, Jiang; Zan, Ling; Peng, Tianyou

    2017-11-17

    A new kind of metallic Cu-loaded brookite TiO 2 composite, in which Cu nanoclusters with a small size of 1-3 nm are decorated on brookite TiO 2 quasi nanocube (BTN) surfaces (hereafter referred to as Cu-BTN), is synthesized via a one-pot hydrothermal process and then used as photocatalyst for CO 2 reduction. It was found that the decoration of Cu nanoclusters on BTN surfaces can improve the activity and selectivity of CO 2 photoreduction to CH 4 , and 1.5 % Cu-BTN gives a maximum overall photocatalytic activity (150.9 μmol g -1  h -1 ) for CO/CH 4 production, which is ≈11.4 and ≈3.3 times higher than those of pristine BTN (13.2 μmol g -1  h -1 ) and Ag-BTN (45.2 μmol g -1  h -1 ). Moreover, the resultant Cu-BTN products can promote the selective generation of CH 4 as compared to CO due to the number of surface oxygen vacancies and the CO 2 /H 2 O adsorption behavior, which differs from that of the pristine BTN. The present results demonstrate that brookite TiO 2 would be a potential effective photocatalyst for CO 2 photoreduction, and that Cu nanoclusters can act as an inexpensive and efficient co-catalyst alternative to the commonly used noble metals to improve the photoactivity and selectivity for CO 2 reduction to CH 4 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Participation of the Third Order Optical Nonlinearities in Nanostructured Silver Doped Zinc Oxide Thin Solid Films

    Directory of Open Access Journals (Sweden)

    C. Torres-Torres

    2012-01-01

    Full Text Available We report the transmittance modulation of optical signals in a nanocomposite integrated by two different silver doped zinc oxide thin solid films. An ultrasonic spray pyrolysis approach was employed for the preparation of the samples. Measurements of the third-order nonlinear optical response at a nonresonant 532 nm wavelength of excitation were performed using a vectorial two-wave mixing. It seems that the separated contribution of the optical nonlinearity associated with each film noticeable differs in the resulting nonlinear effects with respect to the additive response exhibited by the bilayer system. An enhancement of the optical Kerr nonlinearity is predicted for prime number arrays of the studied nanoclusters in a two-wave interaction. We consider that the nanostructured morphology of the thin solid films originates a strong modification of the third-order optical phenomena exhibited by multilayer films based on zinc oxide.

  14. The effect of silicon crystallographic orientation on the formation of silicon nanoclusters during anodic electrochemical etching

    International Nuclear Information System (INIS)

    Timokhov, D. F.; Timokhov, F. P.

    2009-01-01

    Possible ways for increasing the photoluminescence quantum yield of porous silicon layers have been investigated. The effect of the anodization parameters on the photoluminescence properties for porous silicon layers formed on silicon substrates with different crystallographic orientations was studied. The average diameters for silicon nanoclusters are calculated from the photoluminescence spectra of porous silicon. The influence of the substrate crystallographic orientation on the photoluminescence quantum yield of porous silicon is revealed. A model explaining the effect of the substrate orientation on the photoluminescence properties for the porous silicon layers formed by anode electrochemical etching is proposed.

  15. Oxygen evolution reaction in nanoconfined carbon nanotubes

    Science.gov (United States)

    Li, Ying; Lu, Xuefeng; Li, Yunfang; Zhang, Xueqing

    2018-05-01

    Improving oxygen electrochemistry through nanoscopic confinement has recently been highlighted as a promising strategy. In-depth understanding the role of confinement is therefore required. In this study, we simulate the oxygen evolution reaction (OER) on iron oxide nanoclusters under confinement of (7,7) and (8,8) armchair carbon nanotubes (CNTs). The free energies of the four proton coupled electron transfer (PCET) steps and the OER overpotentials are calculated. The Fe4O6 nanocluster confined in (7,7) CNT is found to be the most active for OER among the systems considered in this work. This leads to an increase in catalytic efficiency of OER compared to the hematite (110) surface, which was reported recently as an active surface towards OER. The calculated results show that the OER overpotential depends strongly on the magnetic properties of the iron oxide nanocluster. These findings are helpful for experimental design of efficient catalyst for water splitting applications.

  16. Research on total-dose hardening for H-gate PD NMOSFET/SIMOX by ion implanting into buried oxide

    International Nuclear Information System (INIS)

    Qian Cong; Zhang Zhengxuan; Zhang Feng; Lin Chenglu

    2008-01-01

    In this work, we investigate the back-gate I-V characteristics for two kinds of NMOSFET/SIMOX transistors with H gate structure fabricated on two different SOI wafers. A transistors are made on the wafer implanted with Si + and then annealed in N 2 , and B transistors are made on the wafer without implantation and annealing. It is demonstrated experimentally that A transistors have much less back-gate threshold voltage shift ΔV th than B transistors under X-ray total close irradiation. Subthreshold charge separation technique is employed to estimate the build-up of oxide charge and interface traps during irradiation, showing that the reduced ΔV th for A transistors is mainly due to its less build-up of oxide charge than B transistors. Photo-luminescence (PL) research indicates that Si implantation results in the formation of silicon nanocrystalline (nanocluster) whose size increases with the implant dose. This structure can trap electrons to compensate the positive charge build-up in the buried oxide during irradiation, and thus reduce the threshold voltage negative shift. (authors)

  17. Silver nanocluster formation in ion-exchanged glasses by annealing, ion beam and laser beam irradiation: An EXAFS study

    International Nuclear Information System (INIS)

    Battaglin, G.; Cattaruzza, E.; Gonella, F.; Polloni, R.; D'Acapito, F.; Colonna, S.; Mattei, G.; Maurizio, C.; Mazzoldi, P.; Padovani, S.; Sada, C.; Quaranta, A.; Longo, A.

    2003-01-01

    Extended X-ray absorption fine structure analysis is used to determine the silver local environment in silicate glasses doped by the Ag-alkali ion-exchange process, followed by different treatments, namely, ion irradiation, thermal annealing in reducing atmosphere, laser irradiation. The obtained results indicate that metal nanocluster composites with different cluster structures may be formed with these multistep methodologies, pointing out the role of the preparation parameters in giving rise to different features. Lattice parameters and cluster diameter were determined by grazing incidence X-ray diffraction

  18. Imaging C. elegans with thiolated tryptophan-based NIR fluorescent gold nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Barman, Apurba Kr. [Indian Institute of Technology Kanpur, Department of Chemistry (India); Chaturbedi, Amaresh; Subramaniam, K. [Indian Institute of Technology Kanpur, Department of Biological Sciences and Bioengineering (India); Verma, Sandeep, E-mail: sverma@iitk.ac.in [Indian Institute of Technology Kanpur, Department of Chemistry (India)

    2013-11-15

    Multidentate, thiolated, tryptophan-containing peptide conjugates were synthesized for the preparation of gold nanoclusters (AuNCs). Precursor Au{sub 11}(PPh{sub 3}){sub 8}Cl{sub 3} was prepared by the reduction of HAuCl{sub 4}, followed by the use of tryptophan-containing peptide conjugates in ligand displacement reactions, to afford near-infrared fluorescent AuNCs. The emission maxima for these newly synthesized AuNCs were ∼715 nm. AuNCs were characterized with the help of UV–Vis, FTIR, fluorescence and MALDI analysis. FTIR spectra showed that the ligands bind to Au atoms through Au–S bonds, while MALDI mass spectra revealed that the clusters consisted of 20–23 Au atoms. Introduction of hydrophilic –COOH groups engendered water solubility to these AuNCs, enabling bioimaging applications. We demonstrate fluorescence imaging of the nematode C. elegans and confirm distribution of these AuNCs in nematode gut with the help of green fluorescent protein co-localization experiments.

  19. Peculiar features of heat capacity for Cu and Ni nanoclusters

    International Nuclear Information System (INIS)

    Gafner, S. L.; Redel, L. V.; Gafner, Yu. Ya.; Samsonov, V. M.

    2011-01-01

    The heat capacity of copper and nickel clusters (from 2 to 6 nm in diameter) was investigated in the temperature range 200–800 K using molecular dynamics method and a modified tight-binding potential. The simulation results demonstrate a very good agreement with the available experimental data at T = 200 K and a fairy good agreement at higher temperatures. A number of regular trends are revealed in computer experiments which agree with the corresponding theoretical predictions. A conclusion is made that in the case of single free clusters the heat capacity may exceed the capacity of the corresponding bulk material. It is found that at 200 K, the copper nanocluster (D = 6 nm) heat capacity is higher by 10% and for nickel cluster by 13%. The difference diminishes with increasing the nanoparticles size proportionally to the relative number of surface atoms. A conclusion is made that very high values of the nanostructure heat capacity observed in laboratory experiments should not be attributed to free clusters, i.e., the effect in question is caused by other reasons.

  20. Synthesis, characterization, and cytotoxicity evaluation of high-magnetization multifunctional nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Petran, Anca; Radu, Teodora; Nan, Alexandrina [National Institute for Research and Development of Isotopic and Molecular Technologies (Romania); Olteanu, Diana; Filip, Adriana, E-mail: adrianafilip33@yahoo.com; Clichici, Simona; Baldea, Ioana [Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology (Romania); Suciu, Maria; Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies (Romania)

    2017-01-15

    The paper presents the synthesis, characterization, and in vitro cytotoxicity tests of Fe{sub 3}O{sub 4} magnetic nanoclusters coated with ethylenediaminetetraacetic acid disodium salt (EDTA). Electron microscopy analysis (SEM) evidences that magnetite nanoparticles are closely packed into the clusters stabilized with EDTA with well-defined near spherical shapes and sizes in the range 100–200 nm. From XRD measurements, we determined the mean size of the crystallites inside the magnetic cluster about 36 nm. The saturation magnetization determined for the magnetic clusters stabilized with EDTA has high value, about 81.7 emu/g at 300 K. X-ray photoelectron spectroscopy has been used to determine both the elemental and chemical structure of the magnetic cluster surface. In vitro studies have shown that the magnetic clusters at low doses did not induce toxicity on human umbilical vein endothelial cells or lesions of the cell membrane. In contrast, at high doses, the magnetic clusters increased the lipid peroxidation and reduced the leakage of a cytoplasmic enzyme, lactate dehydrogenase (LDH), in parallel with increasing the antioxidant defense.

  1. Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield

    KAUST Repository

    Soldan, Giada

    2016-04-10

    A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26-fold PL QY enhancement of the Ag29(BDT)12(TPP)4 cluster (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29-xAux(BDT)12(TPP)4, x=1-5. The Au-doped clusters exhibit an enhanced stability and an intense red emission around 660nm. Single-crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster.

  2. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, M.; Perero, S. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Ferraris, S., E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Miola, M.; Vernè, E. [Politecnico di Torino, Department of Applied Science and Technology, Torino, C.so Duca degli Abruzzi 24, I-10129 (Italy); Skoglund, S. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); Blomberg, E. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden); SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Odnevall Wallinder, I. [KTH Royal Institute of Technology, Div. Surface and Corrosion Science, Dr. Kristinas v. 51, SE-100 44 (Sweden)

    2017-02-28

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H{sub 2}SO{sub 4} and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel

  3. Antibacterial silver nanocluster/silica composite coatings on stainless steel

    International Nuclear Information System (INIS)

    Ferraris, M.; Perero, S.; Ferraris, S.; Miola, M.; Vernè, E.; Skoglund, S.; Blomberg, E.; Odnevall Wallinder, I.

    2017-01-01

    Highlights: • A silver nanocluster-silica composite coating sputter-deposited onto stainless steel. • Good adhesion and resistance upon cleaning with NaOH, H_2SO_4 and detergents. • Low release of silver ions and no release as silver nanoparticles. • Good antibacterial activity against S. aureus even after heating to 450 °C. • Good antibacterial activity shown during cheese production. - Abstract: A coating made of silver nanocluster/silica composites has been deposited, via a radio frequency (RF) co-sputtering technique, for the first time onto stainless steel (AISI 304L) with the aim to improve its antibacterial properties. Different thermal treatments after coating deposition have been applied in order to optimize the coating adhesion, cohesion and its antibacterial properties. Its applicability has been investigated at realistic conditions in a cheese production plant. The physico-chemical characteristics of the coatings have been analyzed by means of different bulk and surface analytical techniques. Field emission scanning electron microscopy (FESEM), X-ray Photoelectron Spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM) were employed to assess coating morphology, composition, surface roughness, wetting properties, size and local distribution of the nanoparticles within the coating. Tape tests were used to determine the adhesion/cohesion properties of the coating. The amount and time-dependence of released silver in solutions of acetic acid, artificial water, artificial tap water and artificial milk were determined by means of Atomic Absorption Spectroscopy (AAS). The antibacterial effect of the coating was evaluated at different experimental conditions using a standard bacterial strain of Staphylococcus aureus in compliance with National Committee for Clinical Laboratory Standards (NCCLS) and AATCC 147 standards. The Ahearn test was performed to measure the adhesion of bacteria to the coated stainless steel surface

  4. Calcium carbonate-gold nanocluster hybrid spheres: synthesis and versatile application in immunoassays.

    Science.gov (United States)

    Peng, Juan; Feng, Li-Na; Zhang, Kui; Li, Xing-Hua; Jiang, Li-Ping; Zhu, Jun-Jie

    2012-04-23

    Fluorescent gold nanoclusters (AuNCs) were incorporated into porous calcium carbonate spheres through electrostatic interaction. The resulting CaCO(3)/AuNCs hybrid material exhibited interesting properties, such as porous structure, excellent biocompatibility, good water solubility, and degradability. These properties make the CaCO(3)/AuNCs hybrid material a promising template to assemble horseradish peroxidase/antibody conjugates (HRP-Ab(2)). By using CaCO(3)/AuNCs/HRP-Ab(2) bioconjugates as probes, a versatile immunosensor was developed for fluorescent and electrochemical detection of the cancer biomarker neuron-specific enolase (NSE). The detection limits of the sensor were 2.0 and 0.1 pg mL(-1) for fluorescent and electrochemical detection, respectively. The immunosensor shows high sensitivity and offers an alternative strategy for the detection of other proteins and DNA. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Design and Fabrication of N-Alkyl-Polyethylenimine-Stabilized Iron Oxide Nanoclusters for Gene Delivery

    OpenAIRE

    Liu, Gang; Wang, Zhiyong; Lee, Seulki; Ai, Hua; Chen, Xiaoyuan

    2012-01-01

    With the rapid development of nanotechnology, inorganic magnetic nanoparticles, especially iron oxide nanoparticles (IOs), have emerged as great vehicles for biomedical diagnostic and therapeutic applications. In order to rationally design IO-based gene delivery nanovectors, surface modification is essential and determines the loading and release of the gene of interest. Here we highlight the basic concepts and applications of nonviral gene delivery vehicles based on low molecular weight N-al...

  6. A strategy to find minimal energy nanocluster structures.

    Science.gov (United States)

    Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel

    2013-11-05

    An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.

  7. Ab initio investigation of helium in Y_2Ti_2O_7: Mobility and effects on mechanical properties

    International Nuclear Information System (INIS)

    Danielson, T.; Tea, E.; Hin, C.

    2016-01-01

    Oxide nanoclusters (NCs) in nanostructured ferritic alloys (NFAs) are known to be efficient trapping sites for the transmutation product helium. In this study, the migration barriers and potential energy surfaces of helium in Y_2Ti_2O_7 are presented to explain the mobility of helium through oxide NCs and shed light on the accumulation of helium and the trapping mechanisms of the oxides. A complex tunnel-shaped potential energy surface is identified and gives rise to relatively large migration barriers. Subsequently, the effect of helium accumulation on the mechanical properties of Y_2Ti_2O_7 oxide nanoclusters is investigated and it is shown that the mechanical properties of the oxide do not significantly degrade as helium accumulates. - Highlights: • Migration barriers of helium in Y_2Ti_2O_7 are calculated using the climbing image nudged elastic band. • Helium Potential energy surfaces are calculated. • Mechanical properties of varying helium concentrations are presented.

  8. Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC

    International Nuclear Information System (INIS)

    Li Bing; Qiao Jinli; Yang Daijun; Zheng Junsheng; Ma Jianxin; Zhang Jiujun; Wang Haijiang

    2009-01-01

    The active, carbon-supported Ir and Ir-V nanoclusters with well-controlled particle size, dispersity, and composition uniformity, have been synthesized via an ethylene glycol method using IrCl 3 and NH 4 VO 3 as the Ir and V precursors. The nanostructured catalysts were characterized by X-ray diffraction and high-resolution transmission electron microscopy. The catalytic activities of these carbon-supported nanoclusters were screened by applying on-line cyclic voltammetry and electrochemical impedance spectroscopy techniques, which were used to characterize the electrochemical properties of fuel cells using several anode Ir/C and Ir-V/C catalysts. It was found that Ir/C and Ir-V/C catalysts affect the performance of electrocatalysts significantly based on the discharge characteristics of the fuel cell. The catalyst Ir-V/C at 40 wt.% displayed the highest catalytic activity to hydrogen oxidation reaction and, therefore, high cell performance is achieved which results in a maximum power density of 563 mW cm -2 at 0.512 V and 70 deg. C in a real H 2 /air fuel cell. This performance is 20% higher as compared to the commercial available Pt/C catalyst. Fuel cell life test at a constant current density of 1000 mA cm -2 in a H 2 /O 2 condition shows good stability of anode Ir-V/C after 100 h of continuous operation.

  9. Mercury speciation with fluorescent gold nanocluster as a probe.

    Science.gov (United States)

    Yang, Jian-Yu; Yang, Ting; Wang, Xiao-Yan; Chen, Ming-Li; Yu, Yong-Liang; Wang, Jian-Hua

    2018-05-11

    Fluorescent nanoparticles are widely used for sensing biologically significant species. However, it is rarely reported for the discrimination or speciation of metal species. In this work, we report for the first time the speciation of mercury (Hg 2+ ) and methylmercury (CH 3 Hg + ) by taking advantage of the fluorescence feature of folic acid-capped gold nanoclusters (FA-AuNCs). FA-Au NCs exhibit an average size of 2.08±0.15 nm and a maximum emission at λ ex /λ em = 280/440 nm with a quantum yield of 27.3%. It is interesting that Hg 2+ causes a significant quench on the fluorescence of FA-Au NCs, whereas CH 3 Hg + leads to a remarkable fluorescence enhancement. Based on this discriminative fluorescent response between Hg 2+ and CH 3 Hg + , a novel nanosensor for the speciation of CH 3 Hg + and Hg 2+ was developed, providing limits of detection (LOD) of 28 nM for Hg 2+ and 25 nM for CH 3 Hg + within 100-1000 nM. This sensing system is highly selective to mercury. Its practical applications were further demonstrated by the analysis of CH 3 Hg + and the speciation of mercury (CH 3 Hg + and Hg 2+ ) in environmental water and fish samples.

  10. Structure-property relationships in NOx sensor materials composed of arrays of vanadium oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Putrevu, Naga Ravikanth; Darling, Seth B.; Segre, Carlo U.; Ganegoda, Hasitha; Khan, M. Ishaque

    2017-10-04

    The mixed-valent vanadium oxide based three-dimensional framework structure species [Cd3(H2O)12V16IVV2VO36(OH)6(AO4)]∙24H2O, (A=V,S) (Cd3(VO)o) represents a rare example of an interesting sensor material which exhibits NOx {NO+NO2} semiconducting gas sensor properties under ambient conditions. The electrical resistance of the sensor material Cd3(VO)o decreases in air. Combined characterization studies revealed that the building block, {V18O42(AO4)} cluster, of 3-D framework undergoes oxidation and remains intact for at least 2 months. The decrease in resistance is attributable to the reactivity of molecular oxygen towards vanadium which results in an increase in the oxidation state as well as the coordination number of vanadium center and decrease in band gap of Cd3(VO)o. Based on these results we propose that the changes in semiconducting properties of Cd3(VO)o under ambient conditions are due to the greater overlap between the O 2p and V 3d orbitals occurring during the oxidation.

  11. Algorithm based on the Thomson problem for determination of equilibrium structures of metal nanoclusters

    Science.gov (United States)

    Arias, E.; Florez, E.; Pérez-Torres, J. F.

    2017-06-01

    A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.

  12. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-10-10

    Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H–) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H– ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand–metal bonding for researchers to explore both experimentally and computationally.

  13. One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition abilities for visualization fluorescence enhancement detection of E. coli.

    Science.gov (United States)

    Liu, Jiali; Lu, Lili; Xu, Suying; Wang, Leyu

    2015-03-01

    A facile one-pot strategy was developed for the synthesis of lysozyme functionalized fluorescence gold nanoclusters (AuNCs). The lysozymes added to reduce Au(3+) ions and stabilize the AuNCs during the synthesis were coated on the AuNCs surface and retained their specific recognition ability for bacteria such as Escherichia coli (E. coli). Based on such ability, these AuNCs were specifically attached onto the surface of E. coli, which resulted in great red fluorescence enhancement. Nevertheless, the bovine serum albumin (BSA) stabilized AuNCs could not recognize E. coli and no fluorescence enhancement was observed. Upon the addition of E. coli, the red fluorescence intensity of lysozyme-AuNCs was enhanced linearly over the range of 2.4×10(4) -6.0×10(6) CFU/mL of E. coli with high sensitivity (LOD=2.0×10(4) CFU/mL, S/N=3). The visualization fluorescence evolution may enable the rapid and real-time detection of bacteria. This study may be extended to other functional proteins such as antibody, enzyme, and peptide functionalized nanoclusters while retaining the bioactivity of coating proteins and find wide applications in the fields of biochemistry and biomedicine. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Rapid detection of Cu(2+) by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters.

    Science.gov (United States)

    Fang, Xueen; Zhao, Qianqian; Cao, Hongmei; Liu, Juan; Guan, Ming; Kong, Jilie

    2015-11-21

    In this work, bovine serum albumin (BSA)-Au nanoclusters were used to coat a paper-based microfluidic device. This device acted as a Cu(2+) biosensor that showed fluorescence quenching on detection of copper ions. The detection limit of this sensor could be adjusted by altering the water absorbing capacity of the device. Qualitative and semi-quantitative results could be obtained visually without the aid of any advanced instruments. This sensor could test Cu(2+) rapidly with high specificity and sensitivity, which would be useful for point-of-care testing (POCT).

  15. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  16. Solvent effect on redox properties of hexanethiolate monolayer-protected gold nanoclusters.

    Science.gov (United States)

    Su, Bin; Zhang, Meiqin; Shao, Yuanhua; Girault, Hubert H

    2006-11-02

    The capacitance of monolayer-protected gold nanoclusters (MPCs), C(MPC), in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to C(MPC) and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparing the redox properties of MPCs in four organic solvents: 1,2-dichloroethane (DCE), dichloromethane (DCM), chlorobenzene (CB), and toluene (TOL), in all of which MPCs have excellent solubility. Furthermore, this set of organic solvents features a dielectric constant in a range from 10.37 (DCE) to 2.38 (TOL), which is wide enough to probe the solvent effect. In these organic solvents, tetrahexylammonium bis(trifluoromethylsulfonyl)imide (THATf2N) is used as the supporting electrolyte. Cyclic and differential pulse voltammetric results provide concrete evidence that, despite the monolayer protection, the solvent plays a significant effect on the properties of MPCs in solution.

  17. Defining clusters in APT reconstructions of ODS steels.

    Science.gov (United States)

    Williams, Ceri A; Haley, Daniel; Marquis, Emmanuelle A; Smith, George D W; Moody, Michael P

    2013-09-01

    Oxide nanoclusters in a consolidated Fe-14Cr-2W-0.3Ti-0.3Y₂O₃ ODS steel and in the alloy powder after mechanical alloying (but before consolidation) are investigated by atom probe tomography (APT). The maximum separation method is a standard method to define and characterise clusters from within APT data, but this work shows that the extent of clustering between the two materials is sufficiently different that the nanoclusters in the mechanically alloyed powder and in the consolidated material cannot be compared directly using the same cluster selection parameters. As the cluster selection parameters influence the size and composition of the clusters significantly, a procedure to optimise the input parameters for the maximum separation method is proposed by sweeping the d(max) and N(min) parameter space. By applying this method of cluster parameter selection combined with a 'matrix correction' to account for trajectory aberrations, differences in the oxide nanoclusters can then be reliably quantified. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. A novel colorimetric method based on copper nanoclusters with intrinsic peroxidase-like for detecting xanthine in serum samples

    Science.gov (United States)

    Yan, Zhengyu; Niu, Qianqian; Mou, Mingyao; Wu, Yi; Liu, Xiaoxuan; Liao, Shenghua

    2017-07-01

    A facile strategy for detecting xanthine in serum samples by copper nanocluster (CuNCs) with high intrinsic peroxidase-like activity was reported. Firstly, a simple, mild and time-saving method for preparing CuNCs was developed, in which dithiothreitol (DTT) and bovine serum albumin (BSA) were used as reductant and stabilizer, respectively. The as-prepared CuNCs exhibited a fluorescence emission at 590 nm with a quantum yield (QY) of approximately 5.29%, the fluorescence intensity of the as-prepared CuNCs exhibited no considerable change when stored under ambient condition with the lifetime is 1.75 μs. Moreover, the as-prepared CuNCs exhibited high intrinsic peroxidase-like activity with lower K m ( K m = 8.90 × 10-6 mol L-1) for H2O2, which indicated that CuNCs have a higher affinity for H2O2. Compared with natural enzyme, the as-synthesized CuNCs are more catalytic stable over a wide range of pH (4.0 13.0) and temperature (4 80 °C). Finally, an indirect method for sensing xanthine was established because xanthine oxidase can catalyse the oxidation of xanthine to produce H2O2. Xanthine could be detected as low as 3.8 × 10-7 mol L-1 with a linear range from 5.0 × 10-7 to 1.0 × 10-4 mol L-1. These results proved that the proposed method is sensitive and accurate and could be successfully applied to the determination of xanthine in the serum sample with satisfaction.

  19. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates

    Science.gov (United States)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-05-01

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a

  20. Cr interaction in the formation of nano cluster of Y, Ti and O in bcc Fe an ab initio study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharath; Sundar, C.S.

    2008-01-01

    Nanostructured ferritic alloys containing highly stable fine dispersion of yttrium oxide nano particles, produced by mechanical alloying, are promising structural materials for fast fission and fusion environments. Formation of Cr depleted and O enriched Y-Ti-O nanoclusters are observed in the atom probe analysis. Ab initio calculations based on density functional theory are carried out to understand the role of Cr atom interactions with other solute atoms (Y, Ti, O) and vacancies in the formation of nanocluster. The binding energy of clusters of Y-Ti-O in bcc Fe is found to be very high in the presence of vacancies. Our calculations are consistent with the atom probe observation of depletion of Cr atoms and enrichment of O atoms in the nanoclusters. (author)

  1. A dual amplified electrochemical immunosensor for ofloxacin: Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label

    International Nuclear Information System (INIS)

    Zang, Shuai; Liu, Yingju; Lin, Mouhong; Kang, Jianli; Sun, Yuanming; Lei, Hongtao

    2013-01-01

    Graphical abstract: Schematic representation of the OFL electrochemical immunosensor using Au nanoclusters/PPy/GCE as the substrate and multi-HRP-GNR-Ab2 bioconjugates as the label. Highlights: ► Gold nanorod was used to load HRP and Ab 2 to form multi-HRP-GNR-Ab 2 . ► A sensitive immunosensor for ofloxacin was constructed using the homemade antibody. ► A dual signal amplified strategy was based on the PPy-Au and multi-HRP-GNR-Ab 2 . -- Abstract: In this work, an electrochemical immunosensor, basing on a dual signal amplified strategy by employing a biocompatible polypyrrole film-Au nanocluster matrix as a sensor platform and multi-enzyme-antibody functionalized gold nanorod as an electrochemical detection label, is established for sensitive detection of ofloxacin (OFL). Firstly, polypyrrole film and Au nanoclusters were progressively fabricated onto the surface of a glassy carbon electrode via electropolymerization and electrochemical deposition, respectively. Such PPy-Au nanocomposite modified electrode was used to immobilize OFL-OVA, blocked with the blocking reagent, and then associated with the corresponding antibody. Secondly, gold nanorod (GNR) was synthesized to load horseradish peroxidase (HRP) and horseradish peroxidase-secondary antibody (HRP-Ab 2 ), and the resulting nanostructure (multi-HRP-GNR-Ab 2 ) was applied as the detection label. The fabrication process of the ordered multilayer structure and immunosensor were characterized by scanning electron microscopy (SEM) and electrochemical measurements, respectively. Finally, based on a competitive immunoassay, i.e., the association ability with the corresponding antibody between the captured antigen and free OFL in the solution, the fabricated immunosensor exhibited a sensitive response to OFL in the range from 0.08 to 410 ng/mL with a detection limit of 0.03 ng/mL. The current immunosensor exhibited good sensitivity, selectivity and long-term stability. This amplification strategy shows excellent

  2. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    Science.gov (United States)

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Nanoclusters in bcc-Fe containing vacancies, copper and nickel: Structure and energetics

    International Nuclear Information System (INIS)

    Al-Motasem, A.T.; Posselt, M.; Bergner, F.

    2011-01-01

    Highlights: → Fe-Cu-Ni model alloys for RPV steels. → Atomistic simulation, mainly MMC and MD simulations. → Finding the most stable configurations of defect clusters. → Energetics of clusters, formation and binding energies. → Size dependence of monomer binding energy formula as input for OKMC methods. - Abstract: The most stable atomic configuration of coherent nanoclusters in bcc-Fe formed by vacancies, Cu and Ni as well as the corresponding energetics are determined by on-lattice simulated annealing and subsequent off-lattice relaxation. An interatomic potential recently designed for investigations of radiation-induced effects in the ternary Fe-Cu-Ni system is used in the atomistic simulations. Ternary v l Cu m Ni n clusters show a core-shell structure with vacancies in the core coated by a shell of Cu atoms, followed by a shell of Ni atoms. In binary Cu m Ni n clusters the Cu core is covered by a shell of Ni atoms. On the contrary, binary v l Ni n clusters consist of a pure vacancy cluster surrounded by an agglomeration of Ni atoms. The latter is similar to a pure Ni cluster (Ni n ) and consists of Ni atoms at the second nearest neighbor distance. Because of this special arrangement of atoms v l Ni n and Ni n are also called quasi-clusters. In all clusters investigated Ni atoms may be nearest neighbors of Cu atoms but never nearest neighbors of vacancies or other Ni atoms. The atomic configurations found can be understood by the peculiarities of the binding between vacancies, Cu, Ni and Fe atoms. The structure obtained for Cu m Ni n clusters is in agreement with previous theoretical results and with indications from measurements while for the other clusters reference data are not available. It is shown that the presence of Ni atoms promotes the nucleation of clusters containing vacancies and Cu. This is in agreement with experimental observations and with recent results of atomic kinetic Monte Carlo simulations. Based on the specific atomic structure

  4. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. J.; Xue, X. L.; Jia, Yu [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Guo, Z. X. [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H (United Kingdom); Li, S. F., E-mail: sflizzu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhenyu, E-mail: zhangzy@ustc.edu.cn [ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Y. F., E-mail: ygao7@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  5. Label-Free Platform for MicroRNA Detection Based on the Fluorescence Quenching of Positively Charged Gold Nanoparticles to Silver Nanoclusters.

    Science.gov (United States)

    Miao, Xiangmin; Cheng, Zhiyuan; Ma, Haiyan; Li, Zongbing; Xue, Ning; Wang, Po

    2018-01-16

    A novel strategy was developed for microRNA-155 (miRNA-155) detection based on the fluorescence quenching of positively charged gold nanoparticles [(+)AuNPs] to Ag nanoclusters (AgNCs). In the designed system, DNA-stabilized Ag nanoclusters (DNA/AgNCs) were introduced as fluorescent probes, and DNA-RNA heteroduplexes were formed upon the addition of target miRNA-155. Meanwhile, the (+)AuNPs could be electrostatically adsorbed on the negatively charged single-stranded DNA (ssDNA) or DNA-RNA heteroduplexes to quench the fluorescence signal. In the presence of duplex-specific nuclease (DSN), DNA-RNA heteroduplexes became a substrate for the enzymatic hydrolysis of the DNA strand to yield a fluorescence signal due to the diffusion of AgNCs away from (+)AuNPs. Under the optimal conditions, (+)AuNPs displayed very high quenching efficiency to AgNCs, which paved the way for ultrasensitive detection with a low detection limit of 33.4 fM. In particular, the present strategy demonstrated excellent specificity and selectivity toward the detection of target miRNA against control miRNAs, including mutated miRNA-155, miRNA-21, miRNA-141, let-7a, and miRNA-182. Moreover, the practical application value of the system was confirmed by the evaluation of the expression levels of miRNA-155 in clinical serum samples with satisfactory results, suggesting that the proposed sensing platform is promising for applications in disease diagnosis as well as the fundamental research of biochemistry.

  6. Metal Catalysis with Nanostructured Metals Supported Inside Strongly Acidic Cross-linked Polymer Frameworks: Influence of Reduction Conditions of AuIII-containing Resins on Metal Nanoclusters Formation in Macroreticular and Gel-Type Materials

    Czech Academy of Sciences Publication Activity Database

    Calore, L.; Cavinato, g.; Canton, P.; Peruzzo, L.; Banavali, R.; Jeřábek, Karel; Corain, B.

    2012-01-01

    Roč. 391, AUG 30 (2012), s. 114-120 ISSN 0020-1693 Institutional support: RVO:67985858 Keywords : strongly acidic cross-linked polymer * frameworks * gold(0) nanoclusters Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.687, year: 2012

  7. A highly efficient nano-cluster artificial peroxidase and its direct electrochemistry on a nano complex modified glassy carbon electrode.

    Science.gov (United States)

    Hong, Jun; Wang, Wei; Huang, Kun; Yang, Wei-Yun; Zhao, Ying-Xue; Xiao, Bao-Lin; Gao, Yun-Fei; Moosavi-Movahedi, Zainab; Ghourchian, Hedayatollah; Moosavi-Movahedi, Ali Akbar

    2012-01-01

    A nano-cluster with highly efficient peroxide activity was constructed based on nafion (NF) and cytochrome c (Cyt c). UV-Vis spectrometry and transmission electron microscopy (TEM) methods were utilized for characterization of the nano-structured enzyme or artificial peroxidase (AP). The nano-cluster was composed of a Chain-Ball structure, with an average ball size of about 40 nm. The Michaelis-Menten (K(m)) and catalytic rate (k(cat)) constants of the AP were determined to be 2.5 ± 0.4 µM and 0.069 ± 0.001 s(-1), respectively, in 50 mM PBS at pH 7.0. The catalytic efficiency of the AP was evaluated to be 0.028 ± 0.005 µM(-1) s(-1), which was 39 ± 5% as efficient as the native horseradish peroxidase (HRP). The AP was also immobilized on a functional multi-wall carbon nanotube (MWNCTs)-gold colloid nanoparticles (AuNPs) nano-complex modified glassy carbon (GC) electrode. The cyclic voltammetry of AP on the nano complex modified GC electrode showed a pair of well-defined redox peaks with a formal potential (E°') of -45 ± 2 mV (vs. Ag/AgCl) at a scan rate of 0.05 V/s. The heterogeneous electron transfer rate constant (k(s)) was evaluated to be 0.65 s(-1). The surface concentration of electroactive AP on GC electrode (Γ) was 7 × 10(-10) mol cm(-2). The apparent Michaelis-Menten constant (K(m)(app)) was 0.23 nM.

  8. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    International Nuclear Information System (INIS)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu

    2014-01-01

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO 4 3- ) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications

  9. Efficient Removal of Arsenic Using Magnetic Multi-Granule Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungho; Cha, Jinmyung; Sim, Kyunjong; Lee, Jinkyu [Seoul National Univ., Seoul (Korea, Republic of)

    2014-02-15

    Magnetic multi-granule nanoclusters (MGNCs) were investigated as an inexpensive means to effectively remove arsenic from aqueous environment, particularly groundwater sources consumed by humans. Various size MGNCs were examined to determine both their capacity and efficiency for arsenic adsorption for different initial arsenic concentrations. The MGNCs showed highly efficient arsenic adsorption characteristics, thereby meeting the allowable safety limit of 10 μg/L (ppb), prescribed by the World Health Organization (WHO), and confirming that 0.4 g and 0.6 g of MGNCs were sufficient to remove 0.5 mg/L and 1.0 mg/L of arsenate (AsO{sub 4}{sup 3-}) from water, respectively. Adsorption isotherm models for the MGNCs were used to estimate the adsorption parameters. They showed similar parameters for both the Langmuir and Sips models, confirming that the adsorption process in this work was active at a region of low arsenic concentration. The actual efficiency of arsenate removal was then tested against 1 L of artificial arsenic-contaminated groundwater with an arsenic concentration of 0.6 mg/L in the presence of competing ions. In this case, only 1.0 g of 100 nm MGNCs was sufficient to reduce the arsenic concentrations to below the WHO permissible safety limit for drinking water, without adjusting the pH or temperature, which is highly advantageous for practical field applications.

  10. Investigating the adsorption of H2O on ZnO nanoclusters by first principle calculations

    KAUST Repository

    Al-Sunaidi, Abdullah A.

    2011-04-01

    The interaction of a single H2O molecule on selected ZnO nanoclusters is investigated by carrying out calculations based on the density-functional theory at the hybrid-GGA (B97-2) level. These clusters have ring, drum, tube and bubble shapes and their physical properties like the binding energy and the band gap energy depend strongly on the shape and size of the cluster. Depending on the stability of the cluster, H2O show both chemisorption and dissociation on the surfaces of the clusters. We analyzed the effect of H2O adsorption on the properties of clusters of size n = 12 via the density of state, HOMO-LUMO orbitals and the changes in the IR frequencies. © 2011 Elsevier B.V. All rights reserved.

  11. Ultrastable BSA-capped gold nanoclusters with a polymer-like shielding layer against reactive oxygen species in living cells

    Science.gov (United States)

    Zhou, Wenjuan; Cao, Yuqing; Sui, Dandan; Guan, Weijiang; Lu, Chao; Xie, Jianping

    2016-05-01

    The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells.The prevalence of reactive oxygen species (ROS) production and the enzyme-containing intracellular environment could lead to the fluorescence quenching of bovine serum albumin (BSA)-capped gold nanoclusters (AuNCs). Here we report an efficient strategy to address this issue, where a polymer-like shielding layer is designed to wrap around the Au core to significantly improve the stability of AuNCs against ROS and protease degradation. The key of our design is to covalently incorporate a thiolated AuNC into the BSA-AuNC via carbodiimide-activated coupling, leading to the formation of a AuNC pair inside the cross-linked BSA molecule. The as-designed paired AuNCs in BSA (or BSA-p-AuNCs for short) show improved performances in living cells. Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c6nr02178f

  12. Switchable DNA wire: deposition-stripping of copper nanoclusters as an "ON-OFF" nanoswitch.

    Science.gov (United States)

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-19

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the "ON-OFF" switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an "ON-OFF" nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an "ON-OFF" state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further.

  13. pH-Induced Surface Modification of Atomically Precise Silver Nanoclusters: An Approach for Tunable Optical and Electronic Properties

    KAUST Repository

    AbdulHalim, Lina G.

    2016-10-24

    Noble metal nanoclusters (NCs) play a pivotal role in bridging the gap between molecules and quantum dots. Fundamental understanding of the evolution of the structural, optical, and electronic properties of these materials in various environments is of paramount importance for many applications. Using state-of-the-art spectroscopy, we provide the first decisive experimental evidence that the structural, electronic, and optical properties of Ag-44(MNBA)(30) NCs can now be tailored by controlling the chemical environment. Infrared and photoelectron spectroscopies clearly indicate that there is a dimerization between two adjacent ligands capping the NCs that takes place upon lowering the pH from 13 to 7.

  14. Ab initio investigation of helium in Y{sub 2}Ti{sub 2}O{sub 7}: Mobility and effects on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Danielson, T., E-mail: thomasd1@vt.edu [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA 24060 (United States); Tea, E. [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA 24060 (United States); Hin, C. [Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA 24060 (United States); Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA 24060 (United States)

    2016-08-15

    Oxide nanoclusters (NCs) in nanostructured ferritic alloys (NFAs) are known to be efficient trapping sites for the transmutation product helium. In this study, the migration barriers and potential energy surfaces of helium in Y{sub 2}Ti{sub 2}O{sub 7} are presented to explain the mobility of helium through oxide NCs and shed light on the accumulation of helium and the trapping mechanisms of the oxides. A complex tunnel-shaped potential energy surface is identified and gives rise to relatively large migration barriers. Subsequently, the effect of helium accumulation on the mechanical properties of Y{sub 2}Ti{sub 2}O{sub 7} oxide nanoclusters is investigated and it is shown that the mechanical properties of the oxide do not significantly degrade as helium accumulates. - Highlights: • Migration barriers of helium in Y{sub 2}Ti{sub 2}O{sub 7} are calculated using the climbing image nudged elastic band. • Helium Potential energy surfaces are calculated. • Mechanical properties of varying helium concentrations are presented.

  15. Morphological Evolution of Nanocluster Aggregates and Single Crystals in Alkaline Zinc Electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Desai, D; Turney, DE; Anantharaman, B; Steingart, DA; Banerjee, S

    2014-04-24

    The morphology of Zn electrodeposits is studied on carbon-coated transmission electron microscopy grids. At low over-potentials (eta = -50 mV), the morphology develops by aggregation at two distinct length scales: similar to 5 nm diameter monocrystalline nanoclusters form similar to 50 nm diameter polycrystalline aggregates, and the aggregates form a branched network. Epitaxial (00 (0) over bar2) growth above an overpotential of vertical bar eta(c)vertical bar > 125 mV leads to the formation of hexagonal single crystals up to 2 mu m in diameter. Potentiostatic current transients were used to calculate the nucleation rate from Scharifker et al.'s model. The exp(eta) dependence of the nucleation rates indicates that atomistic nucleation theory explains the nucleation process better than Volmer-Weber theory. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment.

  16. Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films

    International Nuclear Information System (INIS)

    RodrIguez, A; Ortiz, M I; Sangrador, J; RodrIguez, T; Avella, M; Prieto, A C; Torres, A; Jimenez, J; Kling, A; Ballesteros, C

    2007-01-01

    The luminescence emission of structures containing Ge nanocrystals embedded in a dielectric matrix obtained by dry and wet oxidation of polycrystalline SiGe layers has been studied as a function of the oxidation time and initial SiGe layer thickness. A clear relationship between the intensity of the luminescence, the structure of the sample, the formation of Ge nanocrystals and the oxidation process parameters that allows us to select the appropriate process conditions to get the most efficient emission has been established. The evolution of the composition and thickness of the growing oxides and the remaining SiGe layer during the oxidation processes has been characterized using Raman spectroscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, Rutherford backscattering spectrometry and transmission electron microscopy. For dry oxidation, the luminescence appears suddenly, regardless of the initial SiGe layer thickness, when all the Si of the SiGe has been oxidized and the remaining layer of the segregated Ge starts to be oxidized forming Ge nanocrystals. Luminescence is observed as long as Ge nanocrystals are present. For wet oxidation, the luminescence appears from the first stages of the oxidation, and is related to the formation of Ge-rich nanoclusters trapped in the mixed (Si and Ge) growing oxide. A sharp increase of the luminescence intensity for long oxidation times is also observed, due to the formation of Ge nanocrystals by the oxidation of the layer of segregated Ge. For both processes the luminescence is quenched when the oxidation time is long enough to cause the full oxidation of the Ge nanocrystals. The intensity of the luminescence in the dry oxidized samples is about ten times higher than in the wet oxidized ones for equal initial thickness of the SiGe layer

  17. Core–shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinqin; Cui, Yingqi; Zeng, Qun; Yang, Mingli, E-mail: myang@scu.edu.cn [Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065 (China); Yu, Shengping [College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041 (China)

    2016-04-07

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe){sub x}@(CdSe){sub y} and their Zn-substituted complexes of x = 2–4 and y = 16–28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn–Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition–structure–property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  18. Fluorescent turn-on determination of the activity of peptidases using peptide templated gold nanoclusters

    International Nuclear Information System (INIS)

    Luo, Junjun; Wang, Liqiang; Zeng, Ke; Shen, Congcong; Qian, Pin; Yang, Minghui; Rasooly, Avraham; Qu, Fengli

    2016-01-01

    The fluorescence intensity of gold nanoclusters (AuNCs) is inversely related to the length of a peptide immobilized on its surface. This finding has been exploited to design a turn-on fluorescent method for the determination of the activity of peptidase. The β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) was chosen as a model peptidase. BACE1 cleaves the peptide substrates on AuNCs, and the fluorescence intensity of the AuNCs (at exCitation/emission wavelengths of 320/405 nm) carrying the rest of the cleaved peptide is significantly higher than that of the AuNCs with uncleaved peptide. Transmission electron microscopy revealed a decrease in the size of the AuNCs which is assumed cause fluorescence enhancement. The assay was applied to the determination of BACE1 activity in spiked cell lysates, and recoveries were between 96.9 and 104.0 %. (author)

  19. Ferromagnetism in doped or undoped spintronics nanomaterials

    Science.gov (United States)

    Qiang, You

    2010-10-01

    Much interest has been sparked by the discovery of ferromagnetism in a range of oxide doped and undoped semiconductors. The development of ferromagnetic oxide semiconductor materials with giant magnetoresistance (GMR) offers many advantages in spintronics devices for future miniaturization of computers. Among them, TM-doped ZnO is an extensively studied n-type wide-band-gap (3.36 eV) semiconductor with a tremendous interest as future mini-computer, blue light emitting, and solar cells. In this talk, Co-doped ZnO and Co-doped Cu2O semiconductor nanoclusters are successfully synthesized by a third generation sputtering-gas-aggregation cluster technique. The Co-doped nanoclusters are ferromagnetic with Curie temperature above room temperature. Both of Co-doped nanoclusters show positive magnetoresistance (PMR) at low temperature, but the amplitude of the PMRs shows an anomalous difference. For similar Co doping concentration at 5 K, PMR is greater than 800% for Co-doped ZnO but only 5% for Co-doped Cu2O nanoclusters. Giant PMR in Co-doped ZnO which is attributed to large Zeeman splitting effect has a linear dependence on applied magnetic field with very high sensitivity, which makes it convenient for the future spintronics applications. The small PMR in Co-doped Cu2O is related to its vanishing density of states at Fermi level. Undoped Zn/ZnO core-shell nanoparticle gives high ferromagnetic properties above room temperature due to the defect induced magnetization at the interface.

  20. Protein coated gold nanoparticles as template for the directed synthesis of highly fluorescent gold nanoclusters

    Science.gov (United States)

    Zhang, Lingyan; Han, Fei

    2018-04-01

    Bovine serum albumin (BSA) modified gold nanoparticles (AuNPs) was selected as template for the synthesis of AuNPs@gold nanoclusters (AuNCs) core/shell nanoparticles, in which BSA not only acted as dual functions agent for both anchoring and reducing Au3+ ions, but also was employed as a bridge between the AuNPs and AuNCs. Optical properties of AuNPs@AuNCs core/shell nanoparticles were studied using UV-visible and fluorescence spectroscopy. The prepared AuNPs@AuNCs core/shell nanoparticles exhibited sphere size uniformity with improved monodispersity, excellent fluorescence and fluorescent stability. Compared with AuNCs, AuNPs@AuNCs core/shell nanoparticles possessed large size and strong fluorescence intensity due to the effect of AuNPs as core. Moreover, the mechanism of the AuNPs induced fluorescence changes of the core/shell nanoparticles was first explored.

  1. Synthesis and Evaluation of Nanostructured Gold-Iron Oxide Catalysts for the Oxidative Dehydrogenation of Cyclohexane

    Science.gov (United States)

    Wu, Peng

    Shape-controlled iron oxide and gold-iron oxide catalysts with a cubic inverse spinel structure were studied in this thesis for the oxidative dehydrogenation of cyclohexane. The structure of iron oxide and gold-iron oxide catalysts has no major impact on their oxidative dehydrogenation activity. However, the product selectivity is influenced. Both cyclohexene and benzene are formed on bare iron oxide nanoshapes, while benzene is the only dehydrogenation product in the presence of gold. The selectivity of benzene over CO2 depends strongly on the stability of the iron oxide support and the gold-support interaction. The highest benzene yield has been observed on gold-iron oxide octahedra. {111}-bound nanooctahedra are highly stable in reaction conditions at 300 °C, while {100}-bound nanocubes start to sinter above 250 °C. The highest benzene yield has been observed on gold-iron oxide nanooctahedra, which are likely to have gold atoms, and few-atom gold clusters strongly-bound on their surface. Cationic gold appears to be the active site for benzene formation. An all-organic method to prepare Au-FeOx nano-catalysts is needed due to the inconvenience of the half-organic, half-inorganic synthesis process discussed above. Several methods from the literature to prepare gold-iron oxide nanocomposites completely in organic solvents were reviewed and followed. FeOx Au synthesis procedures in literatures are initially designed for a Au content of over 70%. This approach was tried here to prepare composites with a much lower Au content (2-5 atom. %). Heat treatment is required to bond Au and FeOx NPs in the organic-phase syntheses. Au-FeOx-4 was obtained as a selective catalyst for the ODH of cyclohexane. A Audelta+ peak is observed in the UV-Vis spectrum of sample Au-FeOx-4. This different Au delta+ form may be cationic Au nano-clusters interacting with the FeOx support. It has been demonstrated that cationic gold is responsible for dehydrogenation behavior. Furthermore, the

  2. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.

    2017-02-04

    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  3. The impact of Au doping on the charge carrier dynamics at the interfaces between cationic porphyrin and silver nanoclusters

    KAUST Repository

    Almansaf, Abdulkhaleq A.; Parida, Manas R.; Besong, Tabot M.D.; Maity, Partha; Bootharaju, Megalamane Siddaramappa; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    We explore the impact of Au doping on the charge transfer dynamics between the positively charged porphyrin (TMPyP) and negatively charged silver nanoclusters (Ag29 NCs). Our transient absorption (TA) spectroscopic results demonstrate that the interfacial charge transfer, the intersystem crossing and the triplet state lifetime of porphyrin can be tuned by the doping of Au atoms in Ag29 NCs. Additionally, we found that the electrostatic interaction between the negative charge of the cluster and the positive charge on the TMPyP is the driving force that brings them close to each other for complex formation and subsequently facilitates the transfer process.

  4. Theoretical assessment of the electro-optical features of the group III nitrides (B{sub 12}N{sub 12}, Al{sub 12}N{sub 12} and Ga{sub 12}N{sub 12}) and group IV carbides (C{sub 24}, Si{sub 12}C{sub 12} and Ge{sub 12}C{sub 12}) nanoclusters encapsulated with alkali metals (Li, Na and K)

    Energy Technology Data Exchange (ETDEWEB)

    Tahmasebi, Elham [Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan (Iran, Islamic Republic of); Shakerzadeh, Ehsan, E-mail: e.shakerzadeh@scu.ac.ir [Chemistry Department, Faculty of Science, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Biglari, Zeinab [Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Encapsulation of Li, Na and K narrow the HOMO–LUMO gaps of the clusters. • The group III nitrides nanoclusters strongly interacted with the alkali metals. • First hyperpolarizabilities remarkably enhance for B{sub 12}N{sub 12} encapsulated with Na/K. - Abstract: Density functional theory (DFT) calculations have been carried out to study the influence of alkali metals (Li, Na and K) encapsulation within the group III nitrides (B{sub 12}N{sub 12}, Al{sub 12}N{sub 12} and Ga{sub 12}N{sub 12}) and the group IV carbides (C{sub 24}, Si{sub 12}C{sub 12}and Ge{sub 12}C{sub 12}) nanoclusters. The encapsulation of Li, Na and K atoms is found to narrow the HOMO–LUMO gaps of the considered clusters. The electronic properties of these clusters, especially the group III nitrides nanoclusters, are strongly sensitive to interaction with the alkali metals. Moreover it is observed that the encapsulation of alkali metals enhances the first hyperpolarizabilities of B{sub 12}N{sub 12} nanocluster. Surprisingly, due to the alkali metals encapsulation within B{sub 12}N{sub 12} nanocluster, the first hyperpolarizability values are remarkably increased to 8505.49 and 122,503.76 a.u. for Na@B{sub 12}N{sub 12} and K@B{sub 12}N{sub 12}, respectively. Also the TD-DFT calculations at both CAM-B3LYP/6-311+G(d) and PBE0/6-311+G(d) levels of theory are also performed to investigate the origin of first hyperpolarizabilities.

  5. A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe.

    Science.gov (United States)

    Yuan, Shi-Jie; He, Hui; Sheng, Guo-Ping; Chen, Jie-Jie; Tong, Zhong-Hua; Cheng, Yuan-Yuan; Li, Wen-Wei; Lin, Zhi-Qi; Zhang, Feng; Yu, Han-Qing

    2013-01-01

    Electrochemically active bacteria (EAB) are ubiquitous in environment and have important application in the fields of biogeochemistry, environment, microbiology and bioenergy. However, rapid and sensitive methods for EAB identification and evaluation of their extracellular electron transfer ability are still lacking. Herein we report a novel photometric method for visual detection of EAB by using an electrochromic material, WO(3) nanoclusters, as the probe. This method allowed a rapid identification of EAB within 5 min and a quantitative evaluation of their extracellular electron transfer abilities. In addition, it was also successfully applied for isolation of EAB from environmental samples. Attributed to its rapidness, high reliability, easy operation and low cost, this method has high potential for practical implementation of EAB detection and investigations.

  6. Construction of multilayers of bare and Pd modified gold nanoclusters and their electrocatalytic properties for oxygen reduction

    Directory of Open Access Journals (Sweden)

    Motoko Harada, Hidenori Noguchi, Nikolas Zanetakis, Satoru Takakusagi, Wenbo Song and Kohei Uosaki

    2011-01-01

    Full Text Available Multilayers of gold nanoclusters (GNCs coated with a thin Pd layer were constructed using GNCs modified with self-assembled monolayers (SAMs of mercaptoundecanoic acid and a polyallylamine hydrochloride (PAH multilayer assembly, which has been reported to act as a three-dimensional electrode. SAMs were removed from GNCs by electrochemical anodic decomposition and then a small amount of Pd was electrochemically deposited on the GNCs. The kinetics of the oxygen reduction reaction (ORR on the Pd modified GNC/PAH multilayer assembly was studied using a rotating disk electrode, and a significant increase in the ORR rate was observed after Pd deposition. Electrocatalytic activities in alkaline and acidic solutions were compared both for the GNC multilayer electrode and Pd modified GNC electrode.

  7. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters

    Science.gov (United States)

    Huang, H. Y.; Cai, K. B.; Chang, L. Y.; Chen, P. W.; Lin, T. N.; Lin, C. A. J.; Shen, J. L.; Talite, M. J.; Chou, W. C.; Yuan, C. T.

    2017-09-01

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in ‘green photonics’. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing ‘green’ LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for ‘green’ LSCs by further enhancing solid-state PL-QYs.

  8. Eco-friendly luminescent solar concentrators with low reabsorption losses and resistance to concentration quenching based on aqueous-solution-processed thiolate-gold nanoclusters.

    Science.gov (United States)

    Huang, H Y; Cai, K B; Chang, L Y; Chen, P W; Lin, T N; Lin, C A J; Shen, J L; Talite, M J; Chou, W C; Yuan, C T

    2017-09-15

    Heavy-metal-containing quantum dots (QDs) with engineered electronic states have been served as luminophores in luminescent solar concentrators (LSCs) with impressive optical efficiency. Unfortunately, those QDs involve toxic elements and need to be synthesized in a hazardous solvent. Recently, biocompatible, eco-friendly gold nanoclusters (AuNCs), which can be directly synthesized in an aqueous solution, have gained much attention for promising applications in 'green photonics'. Here, we explored the solid-state photophysical properties of aqueous-solution-processed, glutathione-stabilized gold nanoclusters (GSH-AuNCs) with a ligand-to-metal charge-transfer (LMCT) state for developing 'green' LSCs. We found that such GSH-AuNCs exhibit a large Stokes shift with almost no spectral overlap between the optical absorption and PL emission due to the LMCT states, thus, suppressing reabsorption losses. Compared with GSH-AuNCs in solution, the photoluminescence quantum yields (PL-QYs) of the LSCs can be enhanced, accompanied with a lengthened PL lifetime owing to the suppression of non-radiative recombination rates. In addition, the LSCs do not suffer from severe concentration-induced PL quenching, which is a common weakness for conventional luminophores. As a result, a common trade-off between light-harvesting efficiency and solid-state PL-QYs can be bypassed due to nearly-zero spectral overlap integral between the optical absorption and PL emission. We expect that GSH-AuNCs hold great promise for serving as luminophores for 'green' LSCs by further enhancing solid-state PL-QYs.

  9. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates.

    Science.gov (United States)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-06-07

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.

  10. Switchable DNA wire: deposition-stripping of copper nanoclusters as an “ON-OFF” nanoswitch

    Science.gov (United States)

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-01

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the “ON-OFF” switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an “ON-OFF” nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an “ON-OFF” state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further. PMID:26781761

  11. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    Science.gov (United States)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  12. An Atomically Precise Au10 Ag2 Nanocluster with Red-Near-IR Dual Emission.

    Science.gov (United States)

    Lei, Zhen; Guan, Zong-Jie; Pei, Xiao-Li; Yuan, Shang-Fu; Wan, Xian-Kai; Zhang, Jin-Yuan; Wang, Quan-Ming

    2016-08-01

    A red-near-IR dual-emissive nanocluster with the composition [Au10 Ag2 (2-py-C≡C)3 (dppy)6 ](BF4 )5 (1; 2-py-C≡C is 2-pyridylethynyl, dppy=2-pyridyldiphenylphosphine) has been synthesized. Single-crystal X-ray structural analysis reveals that 1 has a trigonal bipyramidal Au10 Ag2 core that contains a planar Au4 (2-py-C≡C)3 unit sandwiched by two Au3 Ag(dppy)3 motifs. Cluster 1 shows intense red-NIR dual emission in solution. The visible emission originates from metal-to-ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3 Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2-pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time-dependent density functional theory (TD-DFT) calculation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preparation and use of Cu nanoclusters as fluorescent probes to determine Au(III) ions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinshui, E-mail: jsliu@sina.com; Wang, Bin; Xu, Meijiao; Wang, Lizhen; Zhou, Zihan

    2017-05-15

    Polyethyleneimine-capped Cu nanoclusters (PEI-CuNCs) with a mean diameter of 2.5 nm and that emitted blue light at 485 nm were synthesized. The fluorescence of PEI-CuNCs was strongly quenched when Au(III) ions were present. Because of this specific response, a PEI-CuNC-based fluorescent turn-off sensor was developed. Under optimum conditions, a good linear relationship (R{sup 2}=0.993) was found between the relative fluorescence intensity (F{sub 0}/F) and the Au(III) ion concentration between 0.5 and 15 µM. The detection limit for Au(III) ions was 0.06 µM. The quenching mechanism was assessed by performing X-ray photoelectron spectroscopy spectra studies. The fluorescence quenching was ascribed to photo-induced electron transfer from the PEI-CuNCs to the AuCl{sub 4}{sup −} occur. Using The method described is a new way of quantifying Au(III) ions.

  14. Microscopic parameters of heterostructures containing nanoclusters and thin layers of Ge in Si matrix

    CERN Document Server

    Erenburg, S B; Stepina, N P; Nikiforov, A I; Nenashev, A V; Mazalov, L N

    2001-01-01

    GeK XAFS measurements have been performed using the total electron yield detection mode for pseudomorphous Ge films deposited on Si(0 0 1) substrate via molecular beam epitaxy at 300 deg. C. The samples have been produced by thrice repeating the growing procedure separated by deposition of blocking Si layers at 500 deg. C. The local microstructure parameters (interatomic distances, Ge coordination numbers) are linked to nanostructure morphology and adequate models are suggested and discussed. It was established that pseudomorphous 4-monolayer Ge films contain 50% of Si atoms on the average. Pyramid-like, pure Ge islands formed in the Stranski-Krastanov growth are characterized by the interatomic Ge-Ge distances of 2.41 A (by 0.04 A less than in bulk Ge) and the Ge-Si distances of 2.37 A. It was revealed that the pure Ge nanoclusters are covered by a 1-2-monolayer film with admixture on the average of a 50% Si atom impurity from blocking Si layers.

  15. The detection of melamine base on a turn-on fluorescence of DNA-Ag nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Peisi [Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou 350002 (China); State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China); Zhan, Yuanjin; Wu, Mei; Guo, Longhua; Lin, Zhenyu [Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou 350002 (China); Qiu, Bin, E-mail: summer328cn@163.com [Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou 350002 (China); Chen, Guonan [Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, Fuzhou University, Fuzhou 350002 (China); Cai, Zongwei [State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong (China)

    2017-06-15

    A label-free, ultra-sensitive and turn-on fluorescence method to detect melamine has been developed. The strategy uses the DNA-Ag nanoclusters (DNA-AgNCs) as the fluorescence probe. The fluorescence of DNA-AgNCs can be quenched in presence of Hg{sup 2+}. However, When Hg{sup 2+} and melamine were reacted for 15 min at 1000 rmp then introduced into DNA-AgNCs solution, a strong fluorescence recovery could be found. Based on this methodology, the changing fluorescent intensity has a linear relationship with melamine in the range of 0.2 μM to 4 μM (R{sup 2}=0.997). The detection limit down to 0.1 μM was obtained, which is 200 times lower than the melamine safety limit of 20 μM estimated by the US Food and Drug Administration. In addition, we had been successfully applied this method to detect melamine in milk powder and raw milk.

  16. Bio-NCs--the marriage of ultrasmall metal nanoclusters with biomolecules.

    Science.gov (United States)

    Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping

    2014-11-21

    Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.

  17. Bio-NCs - the marriage of ultrasmall metal nanoclusters with biomolecules

    Science.gov (United States)

    Goswami, Nirmal; Zheng, Kaiyuan; Xie, Jianping

    2014-10-01

    Ultrasmall metal nanoclusters (NCs) have attracted increasing attention due to their fascinating physicochemical properties. Today, functional metal NCs are finding growing acceptance in biomedical applications. To achieve a better performance in biomedical applications, metal NCs can be interfaced with biomolecules, such as proteins, peptides, and DNA, to form a new class of biomolecule-NC composites (or bio-NCs in short), which typically show synergistic or novel physicochemical and physiological properties. This feature article focuses on the recent studies emerging at the interface of metal NCs and biomolecules, where the interactions could impart unique physicochemical properties to the metal NCs, as well as mutually regulate biological functions of the bio-NCs. In this article, we first provide a broad overview of key concepts and developments in the novel biomolecule-directed synthesis of metal NCs. A special focus is placed on the key roles of biomolecules in metal NC synthesis. In the second part, we describe how the encapsulated metal NCs affect the structure and function of biomolecules. Followed by that, we discuss several unique synergistic effects observed in the bio-NCs, and illustrate them with examples highlighting their potential biomedical applications. Continued interdisciplinary efforts are required to build up in-depth knowledge about the interfacial chemistry and biology of bio-NCs, which could further pave their ways toward biomedical applications.

  18. One Pot Synthesis of Pt/Graphene Composite Using Polyamidoamine/Chitosan as a Template and Its Electrocatalysis for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2016-10-01

    Full Text Available A one-pot hydrothermal strategy was used to synthesize Pt/GNs (PAMAM & Pt/GNs (CS composites. Pt nanoparticles are deposited onto graphene sheets (GNs via synchronous reduction of K2PtCl4 and graphene oxide (GO under hydrothermal conditons without additional reducing agent. During the synthesis process, polyamidoamine (PAMAM or chitosan (CS was used as a template respectively to obtain shape controlled Pt particles on the surface of GNs, leading to the formation of flower-like Pt nanoclusters for Pt/GNs (PAMAM and uniform spherical Pt nanoparticles for Pt/GNs (CS. PAMAM and CS are simultaneously served as intrinsic reducing agents to accelerate reduction process; ensuring excellent electrical conductivity of the composites. Electrochemical tests show that Pt/GNs (PAMAM and Pt/GNs (CS have much higher electrocatalytic activity and better stability toward methanol oxidation reaction (MOR in comparison with counterpart Pt/GNs and the commercially available 20% Pt/C catalyst (Pt/C due to their better dispersion of Pt particles, stronger interaction between Pt and substrate materials, and better electron transfer capability.

  19. An Investigation of Electronic Structure and Aromaticity in Medium-Sized Nanoclusters of Gold-Doped Germanium

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Li

    2012-01-01

    Full Text Available The electronic property and aromaticity of endohedrally doped and clusters are investigated using the density-functional theory (DFT within the hybrid B3LYP method. The calculated results reveal that the two clusters have high thermodynamic stability reflected by reaction energy. At the same time, it could be hoped that their high stability may arise from the closed-shell spherical aromaticity with eight -electrons satisfying the counting rule with . A popular nucleus-independent chemical shifts (NICSs calculation on basis of magnetic shieldings is also performed to confirm the aromaticity of the three-dimensional nanoclusters with largely negative NICS values. In addition, the electronic features and chemical bonding of the two clusters are analyzed with the help of the density of states (DOS and electron localization function (ELF, and the majority of Ge–Ge bonds on the cage show more covalent characters.

  20. Melamine dependent fluorescence of glutathione protected gold nanoclusters and ratiometric quantification of melamine in commercial cow milk and infant formula

    Science.gov (United States)

    Kalaiyarasan, Gopi; K, Anusuya; Joseph, James

    2017-10-01

    Companies processing the milk for the further production of powdered infant formulation normally check the protein level through a test measuring nitrogen content. The addition of melamine which is a nitrogen-rich organic chemical in milk increases the nitrogen content and therefore enhances its apparent protein content. However, the melamine causes kidney failure and death owing to the formation of kidney stone. Thus the determination of melamine in humans and milk products have gained great significance in recent years. The gold nanoclusters (AuNCs) have attracting features due to its unique electronic and optical properties like fluorescence nature. Therefore one can use AuNCs in the field of biosensor, bio-imaging, nanobiotechnology, drug delivery, diagnosis etc. We report, a new ratiometric nanosensor established for the selective and sensitive detection of melamine based optical sensing using glutathione stabilized AuNCs. The AuNCs were characterized by high-resolution transmission electron microscopy (HR-TEM), UV-visible and Photoluminescence (PL) spectroscopic techniques. In the presence of melamine, the PL intensity at 430 nm increases owing to the (turn-on) enhancement in fluorescence, whereas PL intensity at 610 nm decreases due to the melamine-induced aggregation and subsequent aggregation-enhanced emission quenching. The observed changes were ascribed to the hydrogen bonding interaction between melamine and AuNCs, which led to the aggregation of the nanoclusters. This was confirmed by dynamic light scattering and HR-TEM measurements. The present probe showed an extreme selectivity towards the determination of 28.2 μM melamine in the presence of 100-fold excess of common interfering molecules such as Alanine, Glycine, Glucose, Cystine etc. The proposed method was successfully applied to determine melamine in cow milk.

  1. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.

    2016-12-17

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol, BDT) and a phosphine (triphenylphosphine, TPP) together as ligands and synthesized an atomically precise gold NC with the formula [Au28(BDT)4(TPP)9]2+. This NC exhibited multiple absorption features and a charge of +2, which are distinctly different from the reported all-thiolated [Au28(SR)20]0 NC (SR: monothiolate). The composition of [Au28(BDT)4(TPP)9]2+ NC was deduced from high-resolution electrospray ionization mass spectrometry (ESI MS) and it was further corroborated by thermogravimetric analysis (TGA). Differential pulse voltammetry (DPV) revealed a HOMO–LUMO gap of 1.27 eV, which is in good agreement with the energy gap of 1.3 eV obtained from its UV–vis spectrum. The successful synthesis of atomically precise, dithiol-protected Au28 NC would stimulate theoretical and experimental research into bidentate ligands as a new path for expanding the library of different metal NCs, which have so far been dominated by monodentate thiols.

  2. Nanosystems in Ceramic Oxides Created by Means of Ion Implantation

    NARCIS (Netherlands)

    Van Huis, M.A.

    2003-01-01

    The material properties of nanometer-sized clusters are dependent on the cluster size. Changing the cluster dimensions induces structural phase transformations, metal-insulator transitions, non-linear optical properties and widening of the band gap of semiconductors. In this work, nanoclusters are

  3. Depth-resolution imaging of crystalline nanoclusters attached on and embedded in amorphous films using aberration-corrected TEM

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Jun, E-mail: yamasaki@uhvem.osaka-u.ac.jp [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Mori, Masayuki [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Hirata, Akihiko [Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Hirotsu, Yoshihiko [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Tanaka, Nobuo [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-04-15

    For observations of crystalline nanoclusters, the features and capabilities of depth-resolution imaging by aberration-corrected transmission electron microscopy (TEM) were investigated using image simulations and experiments for two types of samples. The first sample was gold clusters attached on an amorphous carbon film. The experimental through-focal series indicated that the focal plane for the cluster was shifted 3 nm from that for the supporting film. This difference is due to the depth-resolution imaging of the cluster and film, the mid-planes of which are separated by 3 nm along the depth direction (the electron incident direction). On the basis of this information, the three-dimensional configuration of the sample, such as the film thickness of 2 nm, was successfully illustrated. The second sample was a Zr{sub 66.7}Ni{sub 33.3} metallic glass including a medium-range-order (MRO) structure, which was approximately considered to be a crystalline cluster with a diameter of 1.6 nm. In the experimental through-focal series, the lattice fringe of the MRO cluster was visible at limited focal conditions. Image simulations reproduced well the focal conditions and also indicated a structural condition for the visualization that the embedded cluster must be apart from the mid-plane of the matrix film. Similar to the case of the first sample, this result can be explained by the idea that the “effective focal planes” for the film and cluster are at different heights. This type of depth-resolution phase contrast imaging is possible only in aberration-corrected TEM and when the sample has a simple structure and is sufficiently thin for the kinematical scattering approximation. - Highlights: • Depth-resolution imaging by aberration-corrected TEM was demonstrated. • Thickness of a carbon film supporting gold nano-crystals was successfully estimated. • A crystalline nanocluster embedded in an amorphous matrix was successfully observed. • It was clarified that

  4. Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors

    Science.gov (United States)

    Jang, Yoon Hee; Chung, Kyungwha; Quan, Li Na; Špačková, Barbora; Šípová, Hana; Moon, Seyoung; Cho, Won Joon; Shin, Hae-Young; Jang, Yu Jin; Lee, Ji-Eun; Kochuveedu, Saji Thomas; Yoon, Min Ji; Kim, Jihyeon; Yoon, Seokhyun; Kim, Jin Kon; Kim, Donghyun; Homola, Jiří; Kim, Dong Ha

    2013-11-01

    Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated.Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated. Electronic supplementary information (ESI) available: TEM image and UV-vis absorption spectrum of citrate-capped Au NPs, AFM images of Au NC arrays on the PS-b-P4VP (41k-24k) template, ImageJ-analyzed results of PS-b-P4VP (41k-24k)-templated Au NC arrays, calculated %-surface coverage values, SEM images of Au NC arrays on the PS-b-P2VP (172k-42k

  5. Establishing linear solvation energy relationships between VOCs and monolayer-protected gold nanoclusters using quartz crystal microbalance.

    Science.gov (United States)

    Li, Chi-Lin; Lu, Chia-Jung

    2009-08-15

    Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/rho) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (pattraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s=1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b=1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.

  6. Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions.

    Science.gov (United States)

    Shi, Miao-Miao; Bao, Di; Wulan, Ba-Ri; Li, Yong-He; Zhang, Yue-Fei; Yan, Jun-Min; Jiang, Qing

    2017-05-01

    As the NN bond in N 2 is one of the strongest bonds in chemistry, the fixation of N 2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber-Bosch process (150-350 atm, 350-550 °C), wherein the input of H 2 and energy are largely derived from fossil fuels and thus result in large amount of CO 2 emission. In this paper, it is demonstrated that by using Au sub-nanoclusters (≈0.5 nm ) embedded on TiO 2 (Au loading is 1.542 wt%), the electrocatalytic N 2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH 3 : 21.4 µg h -1 mg -1 cat. , Faradaic efficiency: 8.11%) and good selectivity is achieved at -0.2 V versus RHE, which is much higher than that of the best results for N 2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well-defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2015-05-21

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  8. Reversible Size Control of Silver Nanoclusters via Ligand-exchange

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa; Burlakov, Victor M.; Besong, Tabot M.D.; Joshi, Chakra Prasad; AbdulHalim, L; Black, David; Whetten, Robert; Goriely, Alain; Bakr, Osman

    2015-01-01

    The properties of atomically monodisperse noble metal nanoclusters (NCs) are intricately intertwined with their precise molecular formula. The vast majority of size-specific NC syntheses start from the reduction of the metal salt and thiol ligand mixture. Only in gold was it recently shown that ligand-exchange could induce the growth of NCs from one atomically precise species to another; a process of yet unknown reversibility. Here, we present a process for the ligand-exchange-induced growth of atomically precise silver NCs, in a biphasic liquid-liquid system, which is particularly of interest because of its complete reversibility and ability to occur at room temperature. We explore this phenomenon in-depth using Ag35(SG)18 [SG= glutathionate] and Ag44(4-FTP)30 [4-FTP= 4-fluorothiophenol] as model systems. We show that the ligand-exchange conversion of Ag35(SG)18 into Ag44(4-FTP)30 is rapid (< 5 min) and direct, while the reverse process proceeds slowly through intermediate cluster sizes. We adapt a recently developed theory of reverse Ostwald ripening to model the NCs’ interconvertibility. The model’s predictions are in good agreement with the experimental observations, and they highlight the importance of small changes in the ligand-metal binding energy in determining the final equilibrium NC size. Based on the insight provided by this model, we demonstrated experimentally that by varying the choice of ligands, ligand-exchange can be used to obtain different sized NCs. The findings in this work establish ligand-exchange as a versatile tool for tuning cluster sizes.

  9. Switching a Nanocluster Core from Hollow to Non-hollow

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-03-24

    Modulating the structure-property relationship in atomically precise nanoclusters (NCs) is vital for developing novel NC materials and advancing their applications. While promising biphasic ligand-exchange (LE) strategies have been developed primarily to attain novel NCs, understanding the mechanistic aspects involved in tuning the core and the ligand-shell of NCs in such biphasic processes is challenging. Here, we design a single phase LE process that enabled us to elucidate the mechanism of how a hollow NC (e.g., [Ag44(SR)30]4-, -SR: thiolate) converts into a non-hollow NC (e.g., [Ag25(SR)18]-), and vice versa. Our study reveals that the complete LE of the hollow [Ag44(SPhF)30]4- NCs (–SPhF: 4-fluorobenzenethiolate) with incoming 2,4-dimethylbenzenethiol (HSPhMe2) induced distortions in the Ag44 structure forming the non-hollow [Ag25(SPhMe2)18]- by a disproportionation mechanism. While the reverse reaction of [Ag25(SPhMe2)18]- with HSPhF prompted an unusual dimerization of Ag25, followed by a rearrangement step that reproduces the original [Ag44(SPhF)30]4-. Remarkably, both the forward and the backward reactions proceed through similar size intermediates that seem to be governed by the boundary conditions set by the thermodynamic and electronic stability of the hollow and non-hollow metal cores. Furthermore, the resizing of NCs highlights the surprisingly long-range effect of the ligands which are felt by atoms far deep in the metal core, thus opening a new path for controlling the structural evolution of nanoparticles.

  10. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.

    Science.gov (United States)

    Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue

    2015-08-21

    In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration.

  11. Application of ionizing radiation for metal nanoclusters synthesis

    International Nuclear Information System (INIS)

    Smietanko-Chmielewska, D.K.; Chmielewski, A.G.; Warsaw University of Technology, Warsaw

    2011-01-01

    Complete text of publication follows. Possibility of ionizing radiation application in nanotechnology has been observed from very beginning when this field of science and technology was named. The lithography is based on electron and ion beam applications, and metal clusters synthesis by radiation induced radicals was reported many years ago. International Atomic Energy Agency was the first organization which has started coordinated programs on radiation applications in nanotechnology which are being continued in the frame of regional cooperation project RER8014. Some of applications led to patented technical solutions. Then review papers and chapters in the books have been published. The main applications beside of lithography deal with metal nanoclusters and nano-composites synthesis. Polymer composites containing metal nanoparticles have attracted a great interest due to their unique chemical and physical properties. 'Green' chemistry promotes application of natural fibers in such structures, among them cellulose is one of the most frequently used. However, cellulose fabric have ability to absorb moisture, so under certain conditions of humidity and temperature they can be subjected to microbial attack. One of the most popular and best known antibacterial agents is silver, which serves as a potential antibacterial material acting against an exceptionally broad spectrum of bacteria including activity against antibiotic-resistant bacteria. Silver nanoparticles (Ag NPs) were grown at the cellulose fibers surface by direct reduction of AgNO 3 with electron beam (EB) application. The big field of development concerns nano composites, possibility of e/X units application enlarge this possibility to industrial scale product manufacturing. Acknowledgement: This work was supported by the IAEA, regional project RER/8/014 and by the Ministry of Science and Higher Education, project DPN/W14/IAEA/2009.

  12. Surface-confined fluorescence enhancement of Au nanoclusters anchoring to a two-dimensional ultrathin nanosheet toward bioimaging

    Science.gov (United States)

    Tian, Rui; Yan, Dongpeng; Li, Chunyang; Xu, Simin; Liang, Ruizheng; Guo, Lingyan; Wei, Min; Evans, David G.; Duan, Xue

    2016-05-01

    Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC/ELDH hybrid material exhibits excellent imaging properties with good stability and biocompatibility in the intracellular environment. Therefore, this work provides a facile strategy to achieve highly luminescent Au NCs via surface-confined emission enhancement imposed by ultrathin inorganic nanosheets, which can be potentially used in bio-imaging and cell labelling.Gold nanoclusters (Au NCs) as ultrasmall fluorescent nanomaterials possess discrete electronic energy and unique physicochemical properties, but suffer from relatively low quantum yield (QY) which severely affects their application in displays and imaging. To solve this conundrum and obtain highly-efficient fluorescent emission, 2D exfoliated layered double hydroxide (ELDH) nanosheets were employed to localize Au NCs with a density as high as 5.44 × 1013 cm-2, by virtue of the surface confinement effect of ELDH. Both experimental studies and computational simulations testify that the excited electrons of Au NCs are strongly confined by MgAl-ELDH nanosheets, which results in a largely promoted QY as well as prolonged fluorescence lifetime (both ~7 times enhancement). In addition, the as-fabricated Au NC

  13. Selective Killing of Breast Cancer Cells by Doxorubicin-Loaded Fluorescent Gold Nanoclusters: Confocal Microscopy and FRET.

    Science.gov (United States)

    Chattoraj, Shyamtanu; Amin, Asif; Jana, Batakrishna; Mohapatra, Saswat; Ghosh, Surajit; Bhattacharyya, Kankan

    2016-01-18

    Fluorescent gold nanoclusters (AuNCs) capped with lysozymes are used to deliver the anticancer drug doxorubicin to cancer and noncancer cells. Doxorubicin-loaded AuNCs cause the highly selective and efficient killing (90 %) of breast cancer cells (MCF7) (IC50 =155 nm). In contrast, the killing of the noncancer breast cells (MCF10A) by doxorubicin-loaded AuNCs is only 40 % (IC50 =4500 nm). By using a confocal microscope, the fluorescence spectrum and decay of the AuNCs were recorded inside the cell. The fluorescence maxima (at ≈490-515 nm) and lifetime (≈2 ns), of the AuNCs inside the cells correspond to Au10-13 . The intracellular release of doxorubicin from AuNCs is monitored by Förster resonance energy transfer (FRET) imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation and Characterization of Chitosan/Soy Protein Isolate Nanocomposite Film Reinforced by Cu Nanoclusters

    Directory of Open Access Journals (Sweden)

    Kuang Li

    2017-06-01

    Full Text Available Soy protein isolate (SPI based films have received considerable attention for use in packaging materials. However, SPI-based films exhibit relatively poor mechanical properties and water resistance ability. To tackle these challenges, chitosan (CS and endogenous Cu nanoclusters (NCs capped with protein were proposed and designed to modify SPI-based films. Attenuated total reflectance-Fourier transform infrared spectroscopy and X-ray diffraction patterns of composite films demonstrated that interactions, such as hydrogen bonds in the film forming process, promoted the cross-linking of composite films. The surface microstructure of CS/SPI films modified with Cu NCs was more uniform and transmission electron microscopy (TEM showed that uniform and discrete clusters were formed. Compared with untreated SPI films, the tensile strength and elongation at break of composite films were simultaneously improved by 118.78% and 74.93%, respectively. Moreover, these composite films also exhibited higher water contact angle and degradation temperature than that of pure SPI film. The water vapor permeation of the modified film also decreased. These improved properties of functional bio-polymers show great potential as food packaging materials.

  15. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.

    Science.gov (United States)

    Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping

    2014-05-25

    Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.

  16. Oligonucleotide-stabilized fluorescent silver nanoclusters for the specific and sensitive detection of biotin.

    Science.gov (United States)

    Xiong, Xiaoli; Tang, Yan; Zhao, Jingjin; Zhao, Shulin

    2016-02-21

    A novel biotin fluorescent probe based on oligonucleotide-stabilized silver nanoclusters (DNA-AgNCs) was synthesized by employing a biotinylated cytosine-rich sequence as a synthesized template. The fluorescence properties of the DNA-AgNCs are related to the modified position of the DNA. When biotin is linked to the middle thymine base of the DNA sequence, the DNA-AgNCs emit the strongest fluorescence. Moreover, the stability of the DNA-AgNCs was affected by avidin through biotin-avidin binding, quenching the fluorescence of the DNA-AgNCs. In contrast, if free biotin is further introduced into this system, the quenching is apparently weakened by competition, leading to the restoration of fluorescence. This phenomenon can be utilized for the detection of biotin. Under the optimal conditions, the fluorescence recovery is linearly proportional to the concentration of biotin in the range of 10 nM-1.0 μM with a detection limit of 6.0 nM. This DNA-AgNCs probe with excellent fluorescent properties is sensitive and selective for the detection of biotin and has been applied for the determination of biotin in wheat flour.

  17. Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies.

    Science.gov (United States)

    Nejati, K; Hosseinian, A; Bekhradnia, A; Vessally, E; Edjlali, L

    2017-06-01

    It has been recently indicated that the Li-ion batteries may be replaced by Na-ion batteries because of their low safety, high cost, and low-temperature performance, and lack of the Li mineral reserves. Here, using density functional theory calculations, we studied the potential application of B 12 N 12 nanoclusters as anode in Na-ion batteries. Our calculations indicate that the adsorption energy of Na + and Na are about -23.4 and -1.4kcal/mol, respectively, and the pristine BN cage to improve suffers from a low cell voltage (∼0.92V) as an anode in Na-ion batteries. We presented a strategy to increase the cell voltage and performance of Na-ion batteries. We showed that encapsulation of different halides (X=F - , Cl - , or Br - ) into BN cage significantly increases the cell voltage. By increasing the atomic number of X, the Gibbs free energy change of cell becomes more negative and the cell voltage is increased up to 3.93V. The results are discussed based on the structural, energetic, frontier molecular orbital, charge transfer and electronic properties and compared with the performance of other nanostructured anodes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.

    Science.gov (United States)

    Zhang, Mingming; Qiao, Juan; Zhang, Shufeng; Qi, Li

    2018-05-15

    Herein, a unique protocol based on copper nanoclusters (CuNCs) probe for turn-on fluorescence sensing of L-lysine was developed. The fluorescent CuNCs with ovalbumin as the stabilizer was prepared by a simple, one-step and green method. When 370 nm was used as the excitation wavelength, the resultant CuNCs exhibited a pale blue fluorescence with the maximum emission at 440 nm. Interestingly, existence of L-lysine evoked the obvious fluorescence intensity increase of CuNCs. The detection limit of the proposed method for L-lysine was 5.5 μM, with a good linear range from 10.0 μM to 1.0 mM (r 2 = 0.999). Moreover, the possible mechanism for enhanced fluorescence intensity of CuNCs by addition of L-lysine was explored and discussed briefly. Further, the as-prepared fluorescent CuNCs was successfully applied in detection of L-lysine in urine. Our results demonstrated that L-lysine could be monitored by the probe, providing new path for construction of CuNCs as fluorescent probes and showing great potential in quantification of L-lysine in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays

    Science.gov (United States)

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K.

    2017-03-01

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ˜100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  20. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen.

    Science.gov (United States)

    Huang, Fengchun; Zhang, Huilin; Wang, Lei; Lai, Weihua; Lin, Jianhan

    2018-02-15

    Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 10 2 to 10 7 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Computational investigation of CO adsorbed on Aux, Agx and (AuAg)x nanoclusters (x = 1 - 5, 147) and monometallic Au and Ag low-energy surfaces*

    Science.gov (United States)

    Gould, Anna L.; Catlow, C. Richard A.; Logsdail, Andrew J.

    2018-02-01

    Density functional theory calculations have been performed to investigate the use of CO as a probe molecule for the determination of the structure and composition of Au, Ag and AuAg nanoparticles. For very small nanoclusters (x = 1 - 5), the CO vibrational frequencies can be directly correlated to CO adsorption strength, whereas larger 147-atom nanoparticles show a strong energetic preference for CO adsorption at a vertex position but the highest wavenumbers are for the bridge positions. We also studied CO adsorption on Au and Ag (100) and (111) surfaces, for a 1 monolayer coverage, which proves to be energetically favourable on atop only and bridge positions for Au (100) and atop for Ag (100); vibrational frequencies of the CO molecules red-shift to lower wavenumbers as a result of increased metal coordination. We conclude that CO vibrational frequencies cannot be solely relied upon in order to obtain accurate compositional analysis, but we do propose that elemental rearrangement in the core@shell nanoclusters, from Ag@Au (or Au@Ag) to an alloy, would result in a shift in the CO vibrational frequencies that indicate changes in the surface composition. Contribution to the Topical Issue "Shaping Nanocatalysts", edited by Francesca Baletto, Roy L. Johnston, Jochen Blumberger and Alex Shluger.Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-80280-7

  2. Diffusion of Y and Ti/Zr in bcc iron: A first principles study

    International Nuclear Information System (INIS)

    Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Sundar, C.S.

    2011-01-01

    The diffusion of yttrium plays an important role in the kinetics of formation of oxide nanoclusters in oxide dispersion strengthened alloys. Also, the diffusivity of minor alloying elements like Ti and Zr are of special interest as they are crucial for fine dispersion of oxide nanoclusters in the ferritic matrix. These solute atoms occupy substitutional sites in bcc Fe. The diffusion coefficients of these solute atoms were calculated using Le Claire’s nine frequency model involving the vacancy mechanism. We have done detailed density functional theory calculation of the interaction of these solute atoms with vacancies (□) and estimated various migration energy barriers of the vacancies in the presence of these solute atoms using nudged elastic band method. Strikingly, compared with Zr and Ti, Y shows a very large relaxation towards first neighbor vacancy resulting in strong binding with the vacancy. The Y-□ binding energy of 1.45 eV is almost double that of Zr-□ binding energy of 0.78 eV. We have also compared the calculated diffusion coefficients of these solute atoms with the experimental values.

  3. Signal-on electrochemical assay for label-free detection of TdT and BamHI activity based on grown DNA nanowire-templated copper nanoclusters.

    Science.gov (United States)

    Hu, Yufang; Zhang, Qingqing; Xu, Lihua; Wang, Jiao; Rao, Jiajia; Guo, Zhiyong; Wang, Sui

    2017-11-01

    Electrochemical methods allow fast and inexpensive analysis of enzymatic activity. Here, a simple and yet efficient "signal-on" electrochemical assay for sensitive, label-free detection of DNA-related enzyme activity was established on the basis of terminal deoxynucleotidyl transferase (TdT)-mediated extension strategy. TdT, which is a template-independent DNA polymerase, can catalyze the sequential addition of deoxythymidine triphosphate (dTTP) at the 3'-OH terminus of single-stranded DNA (ssDNA); then, the TdT-yield T-rich DNA nanowires can be employed as the synthetic template of copper nanoclusters (CuNCs). Grown DNA nanowires-templated CuNCs (noted as DNA-CuNCs) were attached onto graphene oxide (GO) surface and exhibited unique electrocatalytic activity to H 2 O 2 reduction. Under optimal conditions, the proposed biosensor was utilized for quantitatively monitoring TdT activity, with the observed LOD of 0.1 U/mL. It also displayed high selectivity to TdT with excellent stability, and offered a facile, convenient electrochemical method for TdT-relevant inhibitors screening. Moreover, the proposed sensor was successfully used for BamHI activity detection, in which a new 3'-OH terminal was exposed by the digestion of a phosphate group. Ultimately, it has good prospects in DNA-related enzyme-based biochemical studies, disease diagnosis, and drug discovery. Graphical Abstract Extraordinary TdT-generated DNA-CuNCs are synthesized and act as a novel electrochemical sensing platform for sensitive detection of TdT and BamHI activity in biological environments.

  4. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    Science.gov (United States)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  5. Effects of magnetic processing on electrochemical and photoelectrochemical properties of electrodes modified with nanoclusters of a phenothiazine-C60 linked compound

    International Nuclear Information System (INIS)

    Yonemura, H; Yamada, S; Wakita, Y; Moribe, S; Fujiwara, Y; Tanimoto, Y

    2009-01-01

    Effects of magnetic processing on morphological, electrochemical, and photoelectrochemical properties of electrodes modified with nanoclusters of a phenothiazine-C 60 linked compound with four methylene group (Ph(4)C 60 ) were examined in the absence and presence of magnetic processing with three different magnetic environments due to strong magnetic field. The AFM measurements indicated that the morphologies of nanostructures of Ph(4)C 60 varied with magnetic enviroments as comparison with that in the absence of magnetic processing. At top position (5.6 T; - 940 T 2 /m) with hypogravity, large spherical nanoclusters (60∼70 nm diameter) were observed as comparion with those (ca. 20 nm diameter) in the absence of magnetic processing. At middle positon (15 T; 0 T 2 /m) with normal gravity, the fiber-like nanostructure was observed. At bottom position (9.8 T; + 1070T 2 /m) with hypergravity, the rod-like nanostrucure was observed. The interesting results might be ascribed to the different solvent properties due to the different rates of evaporation of two solvents in the toluene-acetonitrile mixed solvent during drying process under various magnetic environments. First reduction peaks due to C 60 moiety of Ph(4)C 60 nanostrucures in the presence of magnetic processing at three different positions were negative-shifted as comparison with that in the absence of magnetic processing. Potential dependencies of the photocurrents of the electrodes modified with Ph(4)C 60 nanostrucures in the presence of magnetic processing at three positions were also different from that in the absence of magnetic processing. The magnetic field effects in AFM, and electrochemical and photoelectrochemical measurements are most likely ascribed to the difference of the reduction potentials due to C 60 clusters between the absence and presence of magnetic processing due to the morphological change of Ph(4)C 60 nanostrucures.

  6. Angle-sensitive and fast photovoltage of silver nanocluster embeded ZnO thin films induced by 1.064-μm pulsed laser

    International Nuclear Information System (INIS)

    Song-Qing, Zhao; Li-Min, Yang; Wen-Wei, Liu; Kun, Zhao; Yue-Liang, Zhou; Qing-Li, Zhou

    2010-01-01

    Silver nanocluster embedded ZnO composite thin film was observed to have an angle-sensitive and fast photovoltaic effect in the angle range from −90° to 90°, its peak value and the polarity varied regularly with the angle of incidence of the 1.064-μm pulsed Nd:YAG laser radiation onto the ZnO surface. Meanwhile, for each photovoltaic signal, its rising time reached ∼2 ns with an open-circuit photovoltage of ∼2 ns full width at half-maximum. This angle-sensitive fast photovoltaic effect is expected to put this composite film a candidate for angle-sensitive and fast photodetector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets via Dipole-Induced Asymmetric van der Waals Attraction.

    Science.gov (United States)

    Wu, Zhennan; Liu, Jiale; Li, Yanchun; Cheng, Ziyi; Li, Tingting; Zhang, Hao; Lu, Zhongyuan; Yang, Bai

    2015-06-23

    Two-dimensional (2D) nanomaterials possessing regular layered structures and versatile chemical composition are highly expected in many applications. Despite the importance of van der Waals (vdW) attraction in constructing and maintaining layered structures, the origin of 2D anisotropy is not fully understood, yet. Here, we report the 2D self-assembly of ligand-capped Au15 nanoclusters into mono-, few-, and multilayered sheets in colloidal solution. Both the experimental results and computer simulation reveal that the 2D self-assembly is initiated by 1D dipolar attraction common in nanometer-sized objects. The dense 1D attachment of Au15 leads to a redistribution of the surface ligands, thus generating asymmetric vdW attraction. The deliberate control of the coordination of dipolar and vdW attraction further allows to manipulate the thickness and morphologies of 2D self-assembly architectures.

  8. Experimental determination of the energy difference between competing isomers of deposited, size-selected gold nanoclusters.

    Science.gov (United States)

    Foster, D M; Ferrando, R; Palmer, R E

    2018-04-03

    The equilibrium structures and dynamics of a nanoscale system are regulated by a complex potential energy surface (PES). This is a key target of theoretical calculations but experimentally elusive. We report the measurement of a key PES parameter for a model nanosystem: size-selected Au nanoclusters, soft-landed on amorphous silicon nitride supports. We obtain the energy difference between the most abundant structural isomers of magic number Au 561 clusters, the decahedron and face-centred-cubic (fcc) structures, from the equilibrium proportions of the isomers. These are measured by atomic-resolution scanning transmission electron microscopy, with an ultra-stable heating stage, as a function of temperature (125-500 °C). At lower temperatures (20-125 °C) the behaviour is kinetic, exhibiting down conversion of metastable decahedra into fcc structures; the higher state is repopulated at higher temperatures in equilibrium. We find the decahedron is 0.040 ± 0.020 eV higher in energy than the fcc isomer, providing a benchmark for the theoretical treatment of nanoparticles.

  9. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum

    International Nuclear Information System (INIS)

    Tang, Ting; Ouyang, Jiang; Hu, Lanshuang; Guo, Linyan; Yang, Minghui; Chen, Xiang

    2016-01-01

    Copper nanoclusters (Cu-NCs) were prepared by reducing CuCl 2 with ascorbic acid in the presence of the short peptide template Cys-Cys-Cys-Asp-Leu. They were characterized by UV-vis absorption and fluorescence spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The Cu-NCs have a size of ∼2 nm, can be well dispersed in water and are photostable. Their fluorescence (peaking at 425 nm under 365-nm excitation) is quenched by Fe(III) ions. Based on this finding, a sensitive and selective fluorescence assay for the detection of Fe(III) was developed. Under optimized conditions and a pH value of 2.0, the assay displays a linear response in the 0.05 to 30 μM Fe(III) concentration range, with a detection limit of 20 nM based on an S/N ratio of 3. The assay was successfully applied to the determination of Fe(III) in spiked human serum where is gave recoveries that ranged from 96.2 % to 98.3 %. (author)

  10. Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin

    Science.gov (United States)

    R. S., Aparna; J. S., Anjali Devi; John, Nebu; Abha, K.; S. S., Syamchand; George, Sony

    2018-06-01

    Hurdles to develop point of care diagnostic methods restrict the translation of progress in the health care sector from bench side to bedside. In this article a simple, cost effective fluorescent as well as colorimetric nanosensor was developed for the early and easy detection of hyperbilirubinemia. A stable, water soluble bovine serum albumin stabilised copper nanocluster (BSA CuNC) was used as the fluorescent probe which exhibited strong blue emission (404 nm) upon 330 nm excitation. The fluorescence of the BSA CuNC can be effectively quenched by the addition of bilirubin by the formation of copper-bilirubin complex. Meanwhile the copper-bilirubin complex resulted in an observable colour change from pale violet to green facilitating colorimetric detection. The prepared sensor displayed good selectivity and sensitivity over other co-existing molecules, and can be used for quantifying bilirubin with a detection limit down to 257 fM. Additionally, the as-prepared probe was coated on a paper strip to develop a portable paper strip sensor of bilirubin. Moreover, the method was successfully applied in real sample analysis and obtained promising result.

  11. Distinct metal-exchange pathways of doped Ag25 nanoclusters

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-09-09

    Atomically precise metal nanoclusters (NCs) containing more than one type of metal atom (i.e., doped or alloyed), due to synergistic effects, open new avenues for engineering the catalytic and optical properties of NCs in a manner that homometal NCs cannot. Unfortunately, it is still a major challenge to controllably introduce multimetallic dopants in NCs, understanding the dopants\\' positions, mechanism, and synergistic effects. To overcome these challenges, we designed a metal-exchange approach involving NCs as molecular templates and metal ions as the source of the incoming dopant. In particular, two structurally similar monodoped silver-rich NCs, [MAg24(SR)(18)](2-) (M = Pd/Pt and SR: thiolate), were synthesized as templates to study their mechanistic transformation in response to the introduction of gold atoms. The controllable incorporation of Au atoms into the MAg24 framework facilitated the elucidation of distinct doping pathways through high-resolution mass spectrometry, optical spectroscopy and elemental analysis. Interestingly, gold replaced the central Pd atom of [PdAg24(SR)(18)](2-) clusters to produce predominantly bimetallic [AuAg24(SR)(18)](-) clusters along with a minor product of an [Au2Ag23(SR)(18)](-) cluster. In contrast, the central Pt atom remained intact in [PtAg24(SR)(18)](2-) clusters, and gold replaced the noncentral Ag atoms to form trimetallic [AuxPtAg24-x(SR)(18)](2-) NCs, where x = 1-2, with a portion of the starting [PtAg24(SR)(18)](2-) NCs remaining. This study reveals some of the unusual metal-exchange pathways of doped NCs and the important role played by the initial metal dopant in directing the position of a second dopant in the final product.

  12. Talking back to theory: the missed opportunities in learning technology research

    Directory of Open Access Journals (Sweden)

    Martin Oliver

    2011-12-01

    Full Text Available Research into learning technology has developed a reputation for being drivenby rhetoric about the revolutionary nature of new developments, for payingscant attention to theories that might be used to frame and inform research, andfor producing shallow analyses that do little to inform the practice of education.Although there is theoretically-informed research in learning technology, this isin the minority, and has been actively marginalised by calls for applied designwork. This limits opportunities to advance knowledge in the field. Using threeexamples, alternative ways to engage with theory are identified. The paper concludesby calling for greater engagement with theory, and the development of ascholarship of learning technology, in order to enrich practice within the fieldand demonstrate its relevance to other fields of work.

  13. Facile Synthesis of Gd-Functionalized Gold Nanoclusters as Potential MRI/CT Contrast Agents

    Directory of Open Access Journals (Sweden)

    Wenjun Le

    2016-04-01

    Full Text Available Multi-modal imaging plays a key role in the earlier detection of disease. In this work, a facile bioinspired method was developed to synthesize Gd-functionalized gold nanoclusters (Gd-Au NCs. The Gd-Au NCs exhibit a uniform size, with an average size of 5.6 nm in dynamic light scattering (DLS, which is a bit bigger than gold clusters (3.74 nm, DLS, while the fluorescent properties of Gd-Au NCs are almost the same as that of Au NCs. Moreover, the Gd-Au NCs exhibit a high longitudinal relaxivity value (r1 of 22.111 s−1 per mM of Gd in phosphate-buffered saline (PBS, which is six times higher than that of commercial Magnevist (A complex of gadolinium with a chelating agent, diethylenetriamine penta-acetic acid, Gd-DTPA, r1 = 3.56 mM−1·s−1. Besides, as evaluated by nano single photon emission computed tomography (SPECT and computed tomography (CT the Gd-Au NCs have a potential application as CT contrast agents because of the Au element. Finally, the Gd-Au NCs show little cytotoxicity, even when the Au concentration is up to 250 μM. Thus, the Gd-Au NCs can act as multi-modal imaging contrast agents.

  14. Quantum sized Ag nanocluster assisted fluorescence enhancement in Tm3+-Yb3+ doped optical fiber beyond plasmonics

    International Nuclear Information System (INIS)

    Chattopadhyay, Rik; Haldar, Arindam; Paul, Mukul C.; Das, Shyamal; Bhadra, Shyamal K.

    2015-01-01

    We report a process for enhancing fluorescence emission from conventional rare earth ions in optical fiber by metal nanocluster (MNC) in nonresonant indirect pumping. The process is completely different from formal metal enhanced fluorescence phenomenon as the MNCs are too small in size to support localized surface plasmon and the excitation wavelength is far from plasmon resonance frequency. We used an established theory of two coupled oscillators to explain the simultaneous enhancement of Ytterbium (Yb 3+ ) and Thulium (Tm 3+ ) emission by silver (Ag) NCs under nonresonant pumping in optical fiber. The fiber is pumped with a 980 nm fiber pigtailed laser diode with input power of 20–100 mW to excite the Yb 3+ . Four times enhancement of Yb 3+ emission of 900–1100 nm and Tm 3+ upconversion emission around 474 nm, 650 nm, and 790 nm is observed in the fiber with Ag NCs

  15. Synthesis and Structure Determination of a New Au20 Nanocluster Protected by Tripodal Tetraphosphine Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [Brown Univ., Providence, RI (United States); Zhang, Qianfan [Brown Univ., Providence, RI (United States); Williard, Paul G. [Brown Univ., Providence, RI (United States); Wang, Lai-Sheng [Brown Univ., Providence, RI (United States)

    2014-03-31

    We report the synthesis and structure determination of a new Au20 nanocluster coordinated by four tripodal tetraphosphine (PP3) ligands {PP3 = tris[2-(diphenylphosphino)ethyl]phosphine}. Single-crystal Xray crystallography and electrospray ionization mass spectrometry show that the cluster assembly can be formulated as [Au20(PP3)4]Cl4. The Au20 cluster consists of an icosahedral Au13 core and a seven-Au-atom partial outer shell arranged in a local C3 symmetry. One PP3 ligand coordinates to four Au atoms in the outer shell, while the other three PP3 ligands coordinate to one Au atom from the outer shell and three Au atoms from the surface of the Au13 core, giving rise to an overall chiral 16-electron Au cluster core with C3 symmetry.

  16. Size distribution of silver nanoclusters induced by ion, electron, laser beams and thermal treatments of an organometallic precursor

    International Nuclear Information System (INIS)

    D'Urso, L.; Nicolosi, V.; Compagnini, G.; Puglisi, O.

    2004-01-01

    Recently, a huge variety of physical and chemical synthetic processes have been reported to prepare nanostructured materials made of very small (diameter<50 nm) metallic clusters. Depending on the nature of clusters, this new kind of materials posses interesting properties (electronic, optical, magnetic, catalytic) that can be tailored as a function of the particles size and shape. Silver nanoparticles have been obtained by direct thermal treatment or by beam-enhanced decomposition (ion, electron and laser) of a silver organometallic compound (precursor) spinned onto suitable substrates. In this paper, we present the results of a study on the size distribution of such nanoparticles as a function of the different synthesis methods. It was found that the methods employed strongly affect the silver nanoparticles formation. Smaller silver nanoclusters were obtained after reduction by ion beam irradiation and thermal treatment, as observed by using different techniques (AFM, XRD and UV-Vis)

  17. The effects of oxide evolution on mechanical properties in proton- and neutron-irradiated Fe-9%Cr ODS steel

    Energy Technology Data Exchange (ETDEWEB)

    Swenson, M.J., E-mail: matthewswenson1@u.boisestate.edu [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Dolph, C.K. [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Wharry, J.P. [Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Purdue University, 400 Central Drive, West Lafayette, IN 47907 (United States)

    2016-10-15

    The objective of this study is to evaluate the effect of irradiation on the strengthening mechanisms of a model Fe-9%Cr oxide dispersion strengthened steel. The alloy was irradiated with protons or neutrons to a dose of 3 displacements per atoms at 500 °C. Nanoindentation was used to measure strengthening due to irradiation, with neutron irradiation causing a greater increase in yield strength than proton irradiation. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography (APT). Cluster analysis reveals solute migration from the Y-Ti-O-rich nanoclusters to the surrounding matrix after both irradiations, though the effect is more pronounced in the neutron-irradiated specimen. Because the dissolved oxygen atoms occupy interstitial sites in the iron matrix, they contribute significantly to solid solution strengthening. The dispersed barrier hardening model relates microstructure evolution to the change in yield strength, but is only accurate if solid solution contributions to strengthening are considered simultaneously.

  18. Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters

    Science.gov (United States)

    Jafari, Marzieh; Tashkhourian, Javad; Absalan, Ghodratollah

    2017-10-01

    A simple, fast and green method for chiral recognition of S- and R-naproxen has been introduced. The method was based on quenching of the fluorescence intensity of bovine serum albumin-stabilized gold nanoclusters in the presence of naproxen enantiomers. The quenching intensity in the presence of S-naproxen was higher than R-naproxen when phosphate buffer solution at pH 7.0 was used. The chiral recognition occurred due to steric effect between bovine serum albumin conformation and naproxen enantiomers. Two linear determination range were established as 7.4 × 10-7-9.1 × 10-6 and 9.1 × 10-6-3.1 × 10-5 mol L-1 for both enantiomers and detection limits of 7.4 × 10-8 mol L- 1 and 9.5 × 10-8 mol L-1 were obtained for S- and R-naproxen, respectively. The developed method showed good repeatability and reproducibility for the analysis of a synthetic sample. To make the procedure applicable to biological samples, the removal of heavy metals from the sample is suggested before any analytical attempt.

  19. Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.

    Science.gov (United States)

    Zhang, Li; He, Yiliang; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; Tao, Xianji

    2016-06-01

    The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Capability of ds-DNA duplex structure in growing fluorescent silver nanoclusters

    International Nuclear Information System (INIS)

    Wu, Tao; Lin, Fan; Hu, Yuehua; Wang, Ying; Zhou, Xiaoshun; Shao, Yong

    2016-01-01

    Silver nanoclusters (AgNCs) have attracted wide interests in variant fields due to their easy synthesis and practical tunability in fluorescence properties. DNA has been generally used as the host to grow AgNCs due to the sequence-dependent fluorescence behavior. Actually, in such DNA, various ss-DNA segments that are structurally confined by the rigid ds-DNA counterparts have been used as the AgNCsГ—Ві growth sites. However, whether the ds-DNA structure plays somewhat role in AgNCsГ—Ві creation has not been well elucidated. Herein, we found that ds-DNA can also accommodate the growth of fluorescent AgNCs. The fluorescent AgNCs grown on ds-DNA should be separated each other and the G/C base pairs with right context sequences are the growth sites of fluorescent AgNCs. The intermediate A/T base pair among the continuous G/C ones seems to quench the growth of fluorescent AgNCs. For the repeat sequences, the fluorescence band position of AgNCs is not changed but the intensity is enhanced upon increasing the ds-DNA length, which is different from the results obtained with the previously reported ss-DNAs. AgNCs should be grown on the ds-DNA major groove, as convinced by the cytosine methylation experiment. Our work demonstrates that besides the ss-DNA role in defining AgNCs, one should also take into account the critical role of the ds-DNA segment in tuning the AgNCsГ—Ві fluorescence property.