WorldWideScience

Sample records for oxide highly reduced

  1. Reduced graphene oxide synthesis by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, O. [Department of Physics, M.U.C Women' s College, Burdwan 713104 (India); Mitra, S. [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India); Pal, M. [CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Datta, A. [University School of Basic and Applied Science (USBAS), Guru Gobind Singh Indraprastha University, New Delhi 110075 (India); Dhara, S. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chakravorty, D., E-mail: mlsdc@iacs.res.in [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India)

    2015-07-01

    Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. The process of ball milling introduces defects and removes oxygen functional groups, thereby creating the possibility of fine tuning the band gap of all intermediate stages of the structural evolution. A limit of the backbone sp{sup 2} network structure has been found which should be able to accommodate defects, before amorphization sets in. The amorphization of graphene oxide is achieved rather quickly in comparison to that of graphite. From thermogravimetric and differential scanning calorimetric analysis along with Fourier transform infrared (FTIR) and Raman spectroscopic studies, it is found that the number of oxygen-containing groups decreases at a faster rate than that of aromatic double bonds with increasing ball milling time with a maximum limit of 3 h. Several characterization techniques (FTIR, Raman, UV–Visible and X-ray photoelectron spectroscopy) have confirmed that the material synthesized is, indeed, reduced graphene oxide. - Highlights: • Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. • Fine tuning the band gap by introducing defects and removing oxygen functional groups. • Introduction of excess defects leads to amorphization. • Photoluminescence has been observed in the UV-blue region.

  2. Highly crumpled solar reduced graphene oxide electrode for supercapacitor application

    Science.gov (United States)

    Mohanapriya, K.; Ahirrao, Dinesh J.; Jha, Neetu

    2018-04-01

    Highly crumpled solar reduced graphene oxide (CSRGO) was synthesized by simple and rapid method through freezing the solar reduced graphene oxide aqueous suspension using liquid nitrogen and used as electrode material for supercapacitor application. This electrode material was characterized by transmission electron microscope (TEM), X-Ray diffractometer (XRD) and Raman Spectroscopy techniques to understand the morphology and structure. The electrochemical performance was studied by cyclic voltammetry (CV), galvanostatic charge/discharge (CD) and electrochemical impedance spectroscopy (EIS) using 6M KOH electrolyte. The CSRGO exhibit high specifc capacitance of 210.1 F g-1 at the current density of 0.5 A g-1 and shows excellent rate capability. These features make the CSRGO material as promising electrode for high-performance supercapacitors.

  3. Riboflavin enhanced fluorescence of highly reduced graphene oxide

    Science.gov (United States)

    Iliut, Maria; Gabudean, Ana-Maria; Leordean, Cosmin; Simon, Timea; Teodorescu, Cristian-Mihail; Astilean, Simion

    2013-10-01

    The improvement of graphene derivates' fluorescence properties is a challenging topic and very few ways were reported up to now. In this Letter we propose an easy method to enhance the fluorescence of highly reduced graphene oxide (rGO) through non-covalent binding to a molecular fluorophore, namely the riboflavin (Rb). While the fluorescence of Rb is quenched, the Rb - decorated rGO exhibits strong blue fluorescence and significantly increased fluorescence lifetime, as compared to its pristine form. The data reported here represent a promising start towards tailoring the optical properties of rGOs, having utmost importance in optical applications.

  4. Cyclic Oxidation of High Mo, Reduced Density Superalloys

    Directory of Open Access Journals (Sweden)

    James L. Smialek

    2015-11-01

    Full Text Available Cyclic oxidation was characterized as part of a statistically designed, 12-alloy compositional study of 2nd generation single crystal superalloys as part of a broader study to co-optimize density, creep strength, and cyclic oxidation. The primary modification was a replacement of 5 wt. % W by 7% or 12% Mo for density reductions of 2%–7%. Compositions at two levels of Mo, Cr, Co, and Re were produced, along with a midpoint composition. Initially, polycrystalline vacuum induction samples were screened in 1100 °C cyclic furnace tests using 1 h cycles for 200 h. The behavior was primarily delimited by Cr content, producing final weight changes of −40 mg/cm2 to −10 mg/cm2 for 0% Cr alloys and −2 mg/cm2 to +1 mg/cm2 for 5% Cr alloys. Accordingly, a multiple linear regression fit yielded an equation showing a strong positive Cr effect and lesser negative effects of Co and Mo. The results for 5% Cr alloys compare well to −1 mg/cm2, and +0.5 mg/cm2 for Rene′ N4 and Rene′ N5 (or Rene′ N6, respectively. Scale phases commonly identified were Al2O3, NiAl2O4, NiTa2O6, and NiO, with (Ni,CoMoO4 found only on the least resistant alloys having 0% Cr and 12% Mo. Scale microstructures were complex and reflected variations in the regional spallation history. Large faceted NiO grains and fine NiTa2O6 particles distributed along NiAl2O4 grain boundaries were typical distinctive features. NiMoO4 formation, decomposition, and volatility occurred for a few high Mo compositions. A creep, density, phase stability, and oxidation balanced 5% Cr, 10% Co, 7% Mo, and 3% Re alloy was selected to be taken forward for more extensive evaluations in single crystal form.

  5. Direct oxide reducing method

    International Nuclear Information System (INIS)

    Tokiwai, Moriyasu.

    1995-01-01

    Calcium oxides and magnetic oxides as wastes generated upon direct reduction are subjected to molten salt electrolysis, and reduced metallic calcium and magnesium are separated and recovered. Then calcium and magnesium are used recyclically as the reducing agent upon conducting direct oxide reduction. Even calcium oxides and magnesium oxides, which have high melting points and difficult to be melted usually, can be melted in molten salts of mixed fluorides or chlorides by molten-salt electrolysis. Oxides are decomposed by electrolysis, and oxygen is removed in the form of carbon monoxide, while the reduced metallic calcium and magnesium rise above the molten salts on the side of a cathode, and then separated. Since only carbon monoxide is generated as radioactive wastes upon molten salt electrolysis, the amount of radioactive wastes can be greatly reduced, and the amount of the reducing agent used can also be decreased remarkably. (N.H.)

  6. Anchoring samarium oxide nanoparticles on reduced graphene oxide for high-performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Dezfuli, Amin Shiralizadeh [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ganjali, Mohammad Reza, E-mail: ganjali@khayam.ut.ac.ir [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Naderi, Hamid Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2017-04-30

    Highlights: • Samarium oxide nanoparticles have been anchored on the surface of reduced graphene oxide for the first time. • Sm{sub 2}O{sub 3}/RGO nanocomposite show high capacitance, good rate and cycling performance. • Sm{sub 2}O{sub 3}/RGO nanocomposite can serve as efficient electrode material for energy storage. • The best composite electrode exhibits specific capacitance of 321 F g{sup −1} in 2 mV s{sup −1}. - Abstract: We have synthesized Sm{sub 2}O{sub 3} nanoparticles (SmNs) and anchored them onto the surface of reduced graphene oxide (RGO) through a self-assembly thereof by utilizing a facile sonochemical procedure. The nanomaterials were characterized by means of powder X-ray diffraction (XRD), Field-emission scanning electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FT-IR) spectra, and X-ray photoelectron spectroscopy (XPS). As the next step, the supercapacitive behavior of the resulting nanocomposites were investigated when used as electrode material, through with cyclic voltammetric (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques. The SmNs decorated RGO (SmN-RGO) nanocomposites were found to possess a specific capacitance (SC) of 321 F g{sup −1} when used in a 0.5 M Na{sub 2}SO{sub 4} solution as an electrolyte, in a scan rate of 2 mV s{sup −1}. The SC of the SmN-RGO based electrodes were also found to be 268 F g{sup −1} at a current density of 2 A g{sup −1} through galvanostatic charge-discharge tests. The outstanding properties of the SmN-RGOs were attributed to synergy of the high charge mobility of SmNs and the flexibility of the sheets of RGOs. Additionally, the nano-composite revealed a unique cycling durability (maintaining 99% of its SC even after 4000 cycles).

  7. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.

    Science.gov (United States)

    Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan

    2013-01-11

    A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.

  8. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  9. In situ polymerization of highly dispersed polypyrrole on reduced graphite oxide for dopamine detection.

    Science.gov (United States)

    Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2013-12-15

    A composite consisting of reduced graphite oxide and highly dispersed polypyrrole nanospheres was synthesized by a straightforward technique, by in situ chemical oxidative polymerization. The novel polypyrrole nanospheres can prevent the aggregation of reduced graphite oxide sheets by electrostatic repulsive interaction, and enhance their electrochemical properties in the nano-molar measurement of dopamine in biological systems with a linear range of 1-8000 nM and a detection limit as low as 0.3 nM. © 2013 Elsevier B.V. All rights reserved.

  10. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature

    OpenAIRE

    Lili Zhang; Xinxin Yu; Hongrui Hu; Yang Li; Mingzai Wu; Zhongzhu Wang; Guang Li; Zhaoqi Sun; Changle Chen

    2015-01-01

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4?7H2O. By adjusting reaction temperature, ?-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from ?-Fe2O3 to Fe3O4 via ?-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide ...

  11. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-08-01

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.

  12. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

    Science.gov (United States)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-09-07

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.

  13. Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Baik, Chul; Yoo, Heejoun; Min, Misook; Park, Younghun; Lee, Sae Mi; Lee, Hyoyoung

    2013-08-27

    An anti-solvent for graphene oxide (GO), hexane, is introduced to increase the surface area and the pore volume of the non-stacked GO/reduced GO 3D structure and allows the formation of a highly crumpled non-stacked GO powder, which clearly shows ideal supercapacitor behavior. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  15. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Exfoliation approach for preparing high conductive reduced graphite oxide and its application in natural rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Wipatkrut, Pattharaporn [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Poompradub, Sirilux, E-mail: sirilux.p@chula.ac.th [Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Center for Petroleum, Petrochemical and Advanced Material, Chulalongkorn University, Bangkok 10330 (Thailand)

    2017-04-15

    Highlights: • Graphite waste was exfoliated by oxidation and chemical and thermal reduction. • The obtained graphene-T was a single layer sheet with a high electrical conductivity. • Graphene-T incorporation at 5 phr improved the electrical conductivity of NR. • Graphene-T incorporation at 5–25 phr improved the mechanical properties of NR. - Abstract: High conductivity reduced graphite oxide (RGO) was prepared by exfoliation of graphite waste from the metal smelting industry. To improve the surface properties of the RGO, the graphite oxide obtained based on Hummers’ method was reduced by L-ascorbic acid to give RGOV, which was then subjected to thermal reduction to obtain RGOT. The residual oxygen-containing groups in RGOV were almost completely removed by the thermal reduction and the conjugated graphene networks were restored in RGOT. The effect of the RGOT content in natural rubber (NR) on the cure, electrical and mechanical properties of the NR-RGOT (NG) composites was evaluated. The electrical conductivity of NR was increased by the inclusion of RGOT at a percolation threshold of 5 phr, with an electrical conductivity of 8.71 × 10{sup −6} S/m. The mechanical properties, i.e., the modulus, tensile strength and hardness, of NG were comparable with those of conductive carbon black filled NR ones.

  17. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  18. Spirulina improves antioxidant status by reducing oxidative stress in rabbits fed a high-cholesterol diet.

    Science.gov (United States)

    Kim, Mi Yeon; Cheong, Sun Hee; Lee, Jeung Hee; Kim, Min Ji; Sok, Dai-Eun; Kim, Mee Ree

    2010-04-01

    The beneficial effect of Spirulina (Spirulina platensis) on tissue lipid peroxidation and oxidative DNA damage was tested in the hypercholesterolemic New Zealand White rabbit model. After hypercholesterolemia was induced by feeding a high cholesterol (0.5%) diet (HCD) for 4 weeks, then HCD supplemented with 1% or 5% Spirulina (SP1 or SP5, respectively) was provided for an additional 8 weeks. Spirulina supplementation significantly reduced the increased lipid peroxidation level in HCD-fed rabbits, and levels recovered to control values. Oxidative stress biomarkers such as glutathione, glutathione peroxidase, glutathione reductase, and glutathione S-transferase were significantly improved in the liver and red blood cells of rabbits fed SP1. Furthermore, SP5 induced antioxidant enzyme activity by 3.1-fold for glutathione, 2.5-fold for glutathione peroxidase, 2.7-fold for glutathione reductase, and 2.3-fold for glutathione S-transferase in liver, compared to the HCD group. DNA damage in lymphocytes was significantly reduced in both the SP1 and SP5 groups, based on the comet assay. Findings from the present study suggest that dietary supplementation with Spirulina may be useful to protect the cells from lipid peroxidation and oxidative DNA damage.

  19. Photobiomodulation Leads to Reduced Oxidative Stress in Rats Submitted to High-Intensity Resistive Exercise

    Directory of Open Access Journals (Sweden)

    Helenita Antonia de Oliveira

    2018-01-01

    Full Text Available The aim of this study was to determine whether oxidative stress markers are influenced by low-intensity laser therapy (LLLT in rats subjected to a high-intensity resistive exercise session (RE. Female Wistar rats divided into three experimental groups (Ctr: control, 4J: LLLT, and RE and subdivided based on the sampling times (instantly or 24 h postexercise underwent irradiation with LLLT using three-point transcutaneous method on the hind legs, which was applied to the gastrocnemius muscle at the distal, medial, and proximal points. Laser (4J or placebo (device off were carried out 60 sec prior to RE that consisted of four climbs bearing the maximum load with a 2 min time interval between each climb. Lipoperoxidation levels and antioxidant capacity were obtained in muscle. Lipoperoxidation levels were increased (4-HNE and CL markers instantly post-RE. LLLT prior to RE avoided the increase of the lipid peroxidation levels. Similar results were also notified for oxidation protein assays. The GPx and FRAP activities did not reduce instantly or 24 h after RE. SOD increased 24 h after RE, while CAT activity did not change with RE or LLLT. In conclusion, LLLT prior to RE reduced the oxidative stress markers, as well as, avoided reduction, and still increased the antioxidant capacity.

  20. Supercapacitors based on highly dispersed polypyrrole-reduced graphene oxide composite with a folded surface

    Science.gov (United States)

    Wang, Anqi; Zhou, Xi; Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian

    2015-08-01

    Highly dispersed polypyrrole particles were decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composite, which obtained a folded surface, shows remarkable performance as the electrode material of supercapacitors. The specific capacitance reaches 564.1 F g-1 at a current density of 1 A g-1 and maintains 86.4 % after 1000 charging-discharging cycles at a current density of 20 A g-1, which indicates a good cycling stability. Furthermore, the prepared supercapacitor demonstrates an ultrahigh energy density of 50.13 Wh kg-1 at power density of 0.40 kW kg-1, and remains of 45.33 Wh kg-1 even at high power density of 8.00 kW kg-1, which demonstrate that the hybrid supercapacitor can be a promising energy storage system for fast and efficient energy storage in the future.

  1. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    International Nuclear Information System (INIS)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I

    2010-01-01

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm 2 V -1 s -1 respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  2. Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer

    Directory of Open Access Journals (Sweden)

    Khan M

    2016-03-01

    Full Text Available Merajuddin Khan,1 Mujeeb Khan,1 Abdulhadi H Al-Marri,1 Abdulrahman Al-Warthan,1 Hamad Z Alkhathlan,1 Mohammed Rafiq H Siddiqui,1 Vadithe Lakshma Nayak,2 Ahmed Kamal,2 Syed F Adil1 1Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Department of Medicinal Chemistry and Pharmacology, CSIR – Indian Institute of Chemical Technology, Hyderabad, India Abstract: Recently, graphene and graphene-based materials have been increasingly used for various biological applications due to their extraordinary physicochemical properties. Here, we demonstrate the anticancer properties and apoptosis-inducing ability of silver doped highly reduced graphene oxide nanocomposites synthesized by employing green approach. These nano­composites (PGE-HRG-Ag were synthesized by using Pulicaria glutinosa extract (PGE as a reducing agent and were evaluated for their anticancer properties against various human cancer cell lines with tamoxifen as the reference drug. A correlation between the amount of Ag nanoparticles on the surface of highly reduced graphene oxide (HRG and the anticancer activity of nanocomposite was observed, wherein an increase in the concentration of Ag nanoparticles on the surface of HRG led to the enhanced anticancer activity of the nanocomposite. The nanocomposite PGE-HRG-Ag-2 exhibited more potent cytotoxicity than standard drug in A549 cells, a human lung cancer cell line. A detailed investigation was undertaken and Fluorescence activated cell sorting (FACS analysis demonstrated that the nanocomposite PGE-HRG-Ag-2 showed G0/G1 phase cell cycle arrest and induced apoptosis in A549 cells. Studies such as, measurement of mitochondrial membrane potential, generation of reactive oxygen species (ROS and Annexin V-FITC staining assay suggested that this compound induced apoptosis in human lung cancer cells. Keywords: plant extract, graphene/silver nanocomposites, anticancer, apoptosis

  3. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.

    Science.gov (United States)

    Youn, Hee-Chang; Bak, Seong-Min; Kim, Myeong-Seong; Jaye, Cherno; Fischer, Daniel A; Lee, Chang-Wook; Yang, Xiao-Qing; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-06-08

    A two-step method consisting of solid-state microwave irradiation and heat treatment under NH3 gas was used to prepare nitrogen-doped reduced graphene oxide (N-RGO) with a high specific surface area (1007 m(2)  g(-1) ), high electrical conductivity (1532 S m(-1) ), and low oxygen content (1.5 wt %) for electrical double-layer capacitor applications. The specific capacitance of N-RGO was 291 F g(-1) at a current density of 1 A g(-1) , and a capacitance of 261 F g(-1) was retained at 50 A g(-1) , which indicated a very good rate capability. N-RGO also showed excellent cycling stability and preserved 96 % of the initial specific capacitance after 100 000 cycles. Near-edge X-ray absorption fine-structure spectroscopy results provided evidenced for the recovery of π conjugation in the carbon networks with the removal of oxygenated groups and revealed chemical bonding of the nitrogen atoms in N-RGO. The good electrochemical performance of N-RGO is attributed to its high surface area, high electrical conductivity, and low oxygen content. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2014-10-01

    Full Text Available Much effort has been made to study the formation mechanisms of photocurrents in graphene and reduced graphene oxide films under visible and near-infrared light irradiation. A built-in field and photo-thermal electrons have been applied to explain the experiments. However, much less attention has been paid to clarifying the mid-infrared response of reduced graphene oxide films at room temperature. Thus, mid-infrared photoresponse and annealing temperature-dependent resistance experiments were carried out on reduced graphene oxide films. A maximum photocurrent of 75 μA was observed at room temperature, which was dominated by the bolometer effect, where the resistance of the films decreased as the temperature increased after they had absorbed light. The electrons localized in the defect states and the residual oxygen groups were thermally excited into the conduction band, forming a photocurrent. In addition, a temperature increase of 2 °C for the films after light irradiation for 2 minutes was observed using absorption power calculations. This work details a way to use reduced graphene oxide films that contain appropriate defects and residual oxygen groups as bolometer-sensitive materials in the mid-infrared range.

  5. Three-Dimensional Reduced Graphene Oxide Network on Copper Foam as High-performance Supercapacitor Electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    E lectrochemically generated copper foam (Cuf) could serve as an effective template for fabrication of three - dimensional (3D) reduced graphe n e oxide (rGO) network s. Here we present a facile approach to preparation of 3D rGO network supported by Cuf a s binder - free and current collector - i...

  6. Plasma-induced high efficient synthesis of boron doped reduced graphene oxide for supercapacitors

    DEFF Research Database (Denmark)

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei

    2016-01-01

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors ...

  7. Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes

    Science.gov (United States)

    Si, Weijiang; Wu, Xiaozhong; Zhou, Jin; Guo, Feifei; Zhuo, Shuping; Cui, Hongyou; Xing, Wei

    2013-05-01

    Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g-1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g-1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups.

  8. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    Science.gov (United States)

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  9. Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yandong; Xie, Jian; Zhang, Shichao; Zhu, Peiyi; Cao, Gaoshao; Zhao, Xinbing

    2015-01-01

    Highlights: • A nanohybrid based on ultrafine SnO 2 and few-layered rGO has been prepared. • The nanohybrid exhibits excellent electrochemical Na-storage properties. • The rGO supplies combined conducting, buffering and dispersing effects. - Abstract: Na-ion Battery is attractive alternative to Li-ion battery due to the natural abundance of sodium resource. Searching for suitable anode materials is one of the critical issues for Na-ion battery due to the low Na-storage activity of carbon materials. In this work, we synthesized a nanohybrid anode consisting of ultrafine SnO 2 anchored on few-layered reduced graphene oxide (rGO) by a facile hydrothermal route. The SnO 2 /rGO hybrid exhibits a high capacity, long cycle life and good rate capability. The hybrid can deliver a high charge capacity of 324 mAh g SnO2 −1 at 50 mA g −1 . At 1600 mA g −1 (2.4C), it can still yield a charge capacity of 200 mAh g SnO2 −1 . After 100 cycles at 100 mA g −1 , the hybrid can retain a high charge capacity of 369 mAh g SnO2 −1 . X-ray photoelectron spectroscopy, ex situ transmission electron microscopy and electrochemical impedance spectroscopy were used to investigate the origin of the excellent electrochemical Na-storage properties of SnO 2 /rGO

  10. High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks.

    Science.gov (United States)

    Purkait, Taniya; Singh, Guneet; Kumar, Dinesh; Singh, Mandeep; Dey, Ramendra Sundar

    2018-01-12

    A simple approach for growing porous electrochemically reduced graphene oxide (pErGO) networks on copper wire, modified with galvanostatically deposited copper foam is demonstrated. The as-prepared pErGO networks on the copper wire are directly used to fabricate solid-state supercapacitor. The pErGO-based supercapacitor can deliver a specific capacitance (C sp ) as high as 81±3 F g -1 at 0.5 A g -1 with polyvinyl alcohol/H 3 PO 4 gel electrolyte. The C sp per unit length and area are calculated as 40.5 mF cm -1 and 283.5 mF cm -2 , respectively. The shape of the voltammogram retained up to high scan rate of 100 V s -1 . The pErGO-based supercapacitor device exhibits noticeably high charge-discharge cycling stability, with 94.5% C sp retained even after 5000 cycles at 5 A g -1 . Nominal change in the specific capacitance, as well as the shape of the voltammogram, is observed at different bending angles of the device even after 5000 cycles. The highest energy density of 11.25 W h kg -1 and the highest power density of 5 kW kg -1 are also achieved with this device. The wire-based supercapacitor is scalable and highly flexible, which can be assembled with/without a flexible substrate in different geometries and bending angles for illustrating promising use in smart textile and wearable device.

  11. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation

    International Nuclear Information System (INIS)

    Li, Yan; Fang, Xufei; Lu, Siyuan; Yu, Qingmin; Hou, Guohui; Feng, Xue

    2016-01-01

    Nanoindentation tests were performed on single crystal Ni-based superalloy at temperatures ranging from 20 °C to 800 °C in inert environment. Load-displacement curves at temperatures higher than 500 °C exhibit obvious creep inferred by increasing displacements at load-holding segments. Load-displacement curves obtained at 800 °C also display negative unloading stiffness. Examination of the microstructure beneath the indented area using Transmission Electron Microscope (TEM) reveals abundant dislocation piling up as well as oxide formation on the substrate. A method considering the creep effect is proposed to calculate the reduced modulus. In addition, a dimensionless ratio relating indentation depth and oxide film thickness is introduced to explain the oxidation effect on the mechanical properties derived from the load-displacement curves.

  12. Reduced Graphene Oxide-Gold Nanoparticle Nanoframework as a Highly Selective Separation Material for Aflatoxins.

    Science.gov (United States)

    Guo, Wenbo; Wu, Lidong; Fan, Kai; Nie, Dongxia; He, Weijing; Yang, Junhua; Zhao, Zhihui; Han, Zheng

    2017-11-03

    Graphene-based materials have been studied in many applications, owing to the excellent electrical, mechanical, and thermal properties of graphene. In the current study, an environmentally friendly approach to the preparation of a reduced graphene oxide-gold nanoparticle (rGO-AuNP) nanocomposite was developed by using L-cysteine and vitamin C as reductants under mild reaction conditions. The rGO-AuNP material showed a highly selective separation ability for 6 naturally occurring aflatoxins, which are easily adsorbed onto traditional graphene materials but are difficult to be desorbed. The specificity of the nanocomposite was evaluated in the separation of 6 aflatoxin congeners (aflatoxin B1, aflatoxin B2, aflatoxin G1, aflatoxin G2, aflatoxin M1 and aflatoxin M2) from 23 other biotoxins (including, ochratoxin A, citrinin, and deoxynivalenol). The results indicated that this material was specific for separating aflatoxin congeners. The synthesized material was further validated by determining the recovery (77.6-105.0%), sensitivity (limit of detection in the range of 0.05-0.21 μg kg -1 ), and precision (1.5-11.8%), and was then successfully applied to the separation of aflatoxins from real-world maize, wheat and rice samples.

  13. Plasma-induced highly efficient synthesis of boron doped reduced graphene oxide for supercapacitors.

    Science.gov (United States)

    Li, Shaobo; Wang, Zhaofeng; Jiang, Hanmei; Zhang, Limei; Ren, Jingzheng; Zheng, Mingtao; Dong, Lichun; Sun, Luyi

    2016-09-21

    In this work, we presented a novel route to synthesize boron doped reduced graphene oxide (rGO) by using the dielectric barrier discharge (DBD) plasma technology under ambient conditions. The doping of boron (1.4 at%) led to a significant improvement in the capacitance of rGO and supercapacitors based on the as-synthesized B-rGO exhibited an outstanding specific capacitance.

  14. Copper sulfide microspheres wrapped with reduced graphene oxide for high-capacity lithium-ion storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiyong; Li, Kun; Wang, Yunhui; Zeng, Jing; Ji, Panying; Zhao, Jinbao, E-mail: jbzhao@xmu.edu.cn

    2016-11-15

    Highlights: • We prepare the nanocomposites of Cu{sub x}S microspheres wrapped with rGO. • As-prepared Cu{sub x}S/rGO can effectively accommodate large volume changes. • As-prepared Cu{sub x}S/rGO supply a 2D conductive network. • As-prepared Cu{sub x}S/rGO trap the polysulfides generated during the discharge–charge. • The Cu{sub x}S/rGO has high capacity, cycle stability and excellent rate capability. - Abstract: In this study, a facile two-step approach was developed to prepare the nanocomposites (Cu{sub x}S/rGO) of copper sulfide (Cu{sub x}S) microspheres wrapped with reduced graphene oxide (rGO). The morphology and structure of Cu{sub x}S/rGO materials were researched by using SEM, XRD and laser Raman spectroscopy. As-prepared Cu{sub x}S/rGO nanocomposites, as an active anode material in LIBs, showed distinctly improved electrochemical characteristics, superior cycling stability and high rate capability. Due to the synergistic effect between the Cu{sub x}S microspheres and the rGO nanosheets, as-prepared Cu{sub x}S/rGO nanocomposites could effectively alleviate large volume changes, provide a 2D conductive network and trap the diffusion of polysulfides during the discharge–charge processes, therefore, the Cu{sub x}S/rGO nanocomposites showed excellent electrochemical characteristics.

  15. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  16. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  17. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    Science.gov (United States)

    Dinh, D. A.; Hui, K. S.; Hui, K. N.; Cho, Y. R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-04-01

    A green facile chemical approach to control the dimensions of Ag nanoparticles-graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N2/H2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  18. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.

    Science.gov (United States)

    Yong, Yang-Chun; Yu, Yang-Yang; Zhang, Xinhai; Song, Hao

    2014-04-22

    Low extracellular electron transfer performance is often a bottleneck in developing high-performance bioelectrochemical systems. Herein, we show that the self-assembly of graphene oxide and Shewanella oneidensis MR-1 formed an electroactive, reduced-graphene-oxide-hybridized, three-dimensional macroporous biofilm, which enabled highly efficient bidirectional electron transfers between Shewanella and electrodes owing to high biomass incorporation and enhanced direct contact-based extracellular electron transfer. This 3D electroactive biofilm delivered a 25-fold increase in the outward current (oxidation current, electron flux from bacteria to electrodes) and 74-fold increase in the inward current (reduction current, electron flux from electrodes to bacteria) over that of the naturally occurring biofilms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, D.A. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Hui, K.N., E-mail: bizhui@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Cho, Y.R. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Zhou, Wei [Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005 (China); Hong, Xiaoting [School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006 (China); Chun, Ho-Hwan [Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2014-04-01

    Graphical abstract: - Highlights: • A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed at room temperature. • With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. • The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. • The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). - Abstract: A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO{sub 3} and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  20. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Dinh, D.A.; Hui, K.S.; Hui, K.N.; Cho, Y.R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-01-01

    Graphical abstract: - Highlights: • A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed at room temperature. • With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. • The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N 2 /H 2 gas flow for 1 h. • The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). - Abstract: A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO 3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N 2 /H 2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips

  1. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Chen, Nali; Ren, Yapeng; Kong, Peipei; Tan, Lin; Feng, Huixia; Luo, Yongchun

    2017-01-01

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g"−"1 is obtained at 0.5 A·g"−"1. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  2. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Nali [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Ren, Yapeng; Kong, Peipei; Tan, Lin [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Feng, Huixia, E-mail: fenghx@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Luo, Yongchun, E-mail: luoyc@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China)

    2017-01-15

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g{sup −1} is obtained at 0.5 A·g{sup −1}. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  3. Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation.

    Science.gov (United States)

    Mirza-Aghayan, Maryam; Tavana, Mahdieh Molaee; Boukherroub, Rabah

    2016-03-01

    Sulfonated reduced graphene oxide nanosheets (rGO-SO3H) were prepared by grafting sulfonic acid-containing aryl radicals onto chemically reduced graphene oxide (rGO) under sonochemical conditions. rGO-SO3H catalyst was characterized by Fourier-transform infrared (FT-IR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray photoelectron spectroscopy (XPS). rGO-SO3H catalyst was successfully applied as a reusable solid acid catalyst for the direct amidation of carboxylic acids with amines into the corresponding amides under ultrasonic irradiation. The direct sonochemical amidation of carboxylic acid takes place under mild conditions affording in good to high yields (56-95%) the corresponding amides in short reaction times. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Mesoporous cobalt monoxide nanorods grown on reduced graphene oxide nanosheets with high lithium storage performance

    International Nuclear Information System (INIS)

    Zhu, Wenjun; Huang, Hui; Gan, Yongping; Tao, Xinyong; Xia, Yang; Zhang, Wenkui

    2014-01-01

    Graphical abstract: - Highlights: • Facile synthesis of mesoporous CoO NRs/rGO composite by a hydrothermal method. • The composite has an unique 1D porous nanorods/2D sheets hybrid nanostructure. • The CoO NRs/rGO composite shows excellent electrochemical performance as anode materials for Li-ion batteries. - Abstract: Graphene-based hybrid nanostructures could offer many opportunities for improved lithium storage performance. Herein, we report a facile synthesis of mesoporous CoO nanorods (CoO NRs) on a reduced graphene oxide (rGO) substrate by hydrothermal and calcination treatment. Transmission electron microscopy (TEM) investigation reveals that the CoO NRs with a diameter of 20–60 nm are tightly anchored on the surface of rGO sheets. Compared to pure CoO NRs, the CoO NRs/rGO composite shows higher lithium storage capacity and superior rate capability as anode materials for Li-ion batteries. The CoO NRs/rGO composite delivers an initial discharge capacity of 1452 mAh g −1 , and it can still remains 960 mAh g −1 after 50 cycles at 0.1 A g −1 . After each 10 cycles at 0.1, 0.2, 0.5, and 1 A g −1 , the specific capacities of the composite are about 1096, 1049, 934 and 513 mAh g −1 , respectively. The enhanced electrochemical performance of the composite is closely related to its unique structure, such as 1D mesoporous morphology of CoO NRs and its tightly-contacting with rGO nanosheets, which could shorten the transport pathway for both electrons and ions, enhance the electrical conductivity and accommodate the volume expansion during prolonged cycling

  5. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    Science.gov (United States)

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3-δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3-δ (SFCN) exhibits a conductivity of 63 Scm-1and 60 Scm-1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3-δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3-δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3-δ as the cathode achieved a power density of 423 mWcm-2 at 700 °C indicating that SFCN is a promising anode for SOFCs.

  6. Pre-oxidation and its effect on reducing high-temperature corrosion of superheater tubes during biomass firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Kvisgaard, M.; Montgomery, Melanie

    2017-01-01

    Superheater tubes in biomass-fired power plants experience high corrosion rates due to condensation of corrosive alkali chloride-rich deposits. To explore the possibility of reducing the corrosion attack by the formation of an initial protective oxide layer, the corrosion resistance of pre......-oxidised Al and Ti-containing alloys (Kanthal APM and Nimonic 80A, respectively) was investigated under laboratory conditions mimicking biomass firing. The alloys were pre-oxidised at 900°C for 1 week. Afterwards, pre-oxidised samples, and virgin non-pre-oxidised samples as reference, were coated...... with a synthetic deposit of KCl and exposed at 560°C for 1 week to a gas mixture typical of biomass firing. Results show that pre-oxidation could hinder the corrosion attack; however, the relative success was different for the two alloys. While corrosion attack was observed on the pre-oxidised Kanthal APM, the pre...

  7. Fabrication of highly oriented reduced graphene oxide microbelts array for massive production of sensitive ammonia gas sensors

    International Nuclear Information System (INIS)

    Zhang, Jia; Zhang, Rongfu; Wang, Xiaona; Feng, Wei; Hu, PingAn; Wang, Zhenlong; O’Neill, William

    2013-01-01

    Patterning oriented reduced graphene oxide (rGO) into functional structures is significant for its application in electronics and sensors. A large array of highly oriented rGO microbelts are prepared by a soft lithography process. These rGO microbelts have a uniform structure that enables the massive production of graphene electronics using a simple mask shielding process. A high performance NH 3 sensor array which was fabricated from rGO microbelts exhibits a reproducible performance with the relative resistance response (ΔR/R 0 ) reaching 0.35, whilst offering a large concentration range response of 10 ppm ∼38%, showing these sensors to be both highly sensitive and responsive. The impact of working temperature on the response to NH 3 in low and high concentration ranges of NH 3 is also discussed. (paper)

  8. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  9. Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors.

    Science.gov (United States)

    Li, Meili; Sun, Guoying; Yin, Pingping; Ruan, Changping; Ai, Kelong

    2013-11-13

    Vanadium pentoxide (V2O5) has attracted much attention for energy storage application because of its high Faradaic activity and stable crystal structure, which make it a promising electrode material for supercapacitors. However, the low electronic conductivity and small lithium-ion diffusion coefficient of V2O5 limit its practical applications. To overcome these limitations, a facile and efficient method is here demonstrated for the fabrication of V2O5/reduced graphene oxide (rGO) nanocomposites as electrode materials for supercapacitors. With this method, the reduction of graphene oxide can be achieved in a cost-effective and environmentally friendly solvent, without the addition of any other toxic reducing agent. Importantly, this solvent can control the formation of the uniform rodlike V2O5 nanocrystals on the surface of rGO. Compared to pure V2O5 microspheres, the V2O5/rGO nanocomposites exhibited a higher specific capacitance of 537 F g(-1) at a current density of 1 A g(-1) in neutral aqueous electrolytes, a higher energy density of 74.58 Wh kg(-1) at a power density of 500 W kg(-1), and better stability even after 1000 charge/discharge cycles. Their excellent performances can be attributed to the synergistic effect of rGO and rodlike V2O5 nanocrystals. Such impressive results may promote new opportunities for these electrode materials in high-energy-density storage systems.

  10. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  11. All-solid-state flexible supercapacitors based on highly dispersed polypyrrole nanowire and reduced graphene oxide composites.

    Science.gov (United States)

    Yu, Chenfei; Ma, Peipei; Zhou, Xi; Wang, Anqi; Qian, Tao; Wu, Shishan; Chen, Qiang

    2014-10-22

    Highly dispersed polypyrrole nanowires are decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composites exhibit high dispersibility, large effective surface area, and high electric conductivity. All-solid-state flexible supercapacitors are assembled based on the prepared composites, which show excellent electrochemical performances with a specific capacitance of 434.7 F g(-1) at a current density of 1 A g(-1). The as-fabricated supercapacitor also exhibits excellent cycling stability (88.1% capacitance retention after 5000 cycles) and exceptional mechanical flexibility. In addition, outstanding power and energy densities were obtained, demonstrating the significant potential of prepared material for flexible and portable energy storage devices.

  12. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    Science.gov (United States)

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Mei, Riguo; Song, Xiaorui; Hu, Yan; Yang, Yanfeng; Zhang, Jingjie

    2015-01-01

    Hollow reduced graphene oxide (RGO) microspheres are successfully synthesized in large quantities through spray-drying suspension of graphene oxide (GO) nanosheets and subsequent carbothermal reduction. With this new procedure, blighted-microspherical GO precursor is synthesized through the process of spray drying, afterwards the GO precursor is subsequently calcined at 800 °C for 5 h to obtain hollow RGO microspheres. A series of analyses, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR) are performed to characterize the structure and morphology of intermediates and as-obtained product. The as-obtained hollow RGO microspheres provide a high specific surface area (175.5 m 2 g −1 ) and excellent electronic conductivity (6.3 S cm −1 ), and facilitated high electrochemical performance as anode material for Li-ion batteries (LIBs). Compared with the RGO nanosheets, the as-obtained hollow RGO microspheres exhibit superior specific capacity and outstanding cyclability. In addition, this spray drying and carbothermal reduction (SDCTR) method provided a facile route to prepare hollow RGO microspheres in large quantities

  14. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yongji Zhang; HuiJuan Chi; WenHui Zhang; Youyi Sun; Qing Liang; Yu Gu; Riya Jing

    2014-01-01

    Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.

  15. A simple route to Develop Highly porous Nano Polypyrrole/Reduced Graphene Oxide Composite film for Selective Determination of Dopamine

    International Nuclear Information System (INIS)

    Daniel Arulraj, Abraham; Arunkumar, Arumugam; Vijayan, Muthunanthevar; Balaji Viswanath, Kamatchirajan; Vasantha, Vairathevar Sivasamy

    2016-01-01

    A highly selective sensor was developed for dopamine with electrochemically treated sodium dodecyl benzene sulfonate doped nano polypyrrole (ET-SDBS-NPPy)/reduced graphene oxide (RGO) film. First, graphene oxide (GO) was reduced on the electrode surface electrochemically and then, SDBS-NPPy film was polymerized electrochemically on the ERGO coated GCE and bare GCE also. The SDBS-NPPy/ERGO and SDBS-NPPy films were treated electrochemically in phosphate buffer solution to replace macro SDBS- anions by smaller phosphate anions. Then, the physical properties of the above composite films were characterized by scanning electron microscope (SEM) and water wettability test. The replacement of SDBS- anions by phosphate anions leaves porous structure in the polymer films and also increases the hydrophobicity in the films. Then, these composite films were applied for the determination of dopamine in the presence of ascorbic acid and uric acid. Under the optimal conditions, the linear range for dopamine detection is 0.1 μM-100.0 μM with the detection limit of 20 nM at S/N = 3. Generally, conducting polypyrrole film could sense ascorbic acid and dopamine simultaneously. However, we have proposed a simple route to synthesis a porous and hydrophobic polypyrrole composite film for selective determination of dopamine in the presence of higher concentration (five orders) of ascorbic acid and uric acid.

  16. Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Seubsai, Anusorn; Chanlek, Narong; Kidkhunthod, Pinit; Sangthong, Winyoo; Maensiri, Santi; Yimnirun, Rattikorn; Nilmoung, Sukanya; Pannopard, Panvika; Ittisanronnachai, Somlak; Kongpatpanich, Kanokwan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-11-01

    Although manganese oxide- and graphene-based supercapacitors have been widely studied, their charge storage mechanisms are not yet fully investigated. In this work, we have studied the charge storage mechanisms of K-birnassite MnO2 nanosheets and N-doped reduced graphene oxide aerogel (N-rGOae) using an in situ X-ray absorption spectroscopy (XAS) and an electrochemical quart crystal microbalance (EQCM). The oxidation number of Mn at the MnO2 electrode is +3.01 at 0 V vs. SCE for the charging process and gets oxidized to +3.12 at +0.8 V vs. SCE and then reduced back to +3.01 at 0 V vs. SCE for the discharging process. The mass change of solvated ions, inserted to the layers of MnO2 during the charging process is 7.4 μg cm-2. Whilst, the mass change of the solvated ions at the N-rGOae electrode is 8.4 μg cm-2. An asymmetric supercapacitor of MnO2//N-rGOae (CR2016) provides a maximum specific capacitance of ca. 467 F g-1 at 1 A g-1, a maximum specific power of 39 kW kg-1 and a specific energy of 40 Wh kg-1 with a wide working potential of 1.6 V and 93.2% capacity retention after 7,500 cycles. The MnO2//N-rGOae supercapacitor may be practically used in high power and energy applications.

  17. Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Seubsai, Anusorn; Chanlek, Narong; Kidkhunthod, Pinit; Sangthong, Winyoo; Maensiri, Santi; Yimnirun, Rattikorn; Nilmoung, Sukanya; Pannopard, Panvika; Ittisanronnachai, Somlak; Kongpatpanich, Kanokwan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-01-01

    Although manganese oxide- and graphene-based supercapacitors have been widely studied, their charge storage mechanisms are not yet fully investigated. In this work, we have studied the charge storage mechanisms of K-birnassite MnO2 nanosheets and N-doped reduced graphene oxide aerogel (N-rGOae) using an in situ X-ray absorption spectroscopy (XAS) and an electrochemical quart crystal microbalance (EQCM). The oxidation number of Mn at the MnO2 electrode is +3.01 at 0 V vs. SCE for the charging process and gets oxidized to +3.12 at +0.8 V vs. SCE and then reduced back to +3.01 at 0 V vs. SCE for the discharging process. The mass change of solvated ions, inserted to the layers of MnO2 during the charging process is 7.4 μg cm−2. Whilst, the mass change of the solvated ions at the N-rGOae electrode is 8.4 μg cm−2. An asymmetric supercapacitor of MnO2//N-rGOae (CR2016) provides a maximum specific capacitance of ca. 467 F g−1 at 1 A g−1, a maximum specific power of 39 kW kg−1 and a specific energy of 40 Wh kg−1 with a wide working potential of 1.6 V and 93.2% capacity retention after 7,500 cycles. The MnO2//N-rGOae supercapacitor may be practically used in high power and energy applications. PMID:27857225

  18. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors

    Science.gov (United States)

    Li, Bo; Cheng, Jianli; Wang, Zhuanpei; Li, Yinchuan; Ni, Wei; Wang, Bin

    2018-02-01

    Flexible supercapacitors have attracted great interest due to outstanding flexibility and light weight. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fibers have the great potential in using as electrodes for flexible supercapacitors due to the good flexibility. However, the reported conductivity and specific capacitance of these PEDOT: PSS fibers are not very high, which limit their electrochemical performances. In this work, composite fibers of reduced graphene oxide(rGO)-PEDOT: PSS with a highly-wrinkled structure on the surface and pores inside are prepared by wet spinning. The fibers with different ratios of graphene to PEDOT:PSS show a distinctly enhanced conductivity up to ca. 590 S·cm-1 and high strength up to ca. 18.4 MPa. Meanwhile, the composite fibers show an improved electrochemical performances, including a high specific areal capacitance of 131 mF cm-2 and high specific areal energy density of 4.55 μWh·cm-2. The flexible supercapacitors including fiber-shaped supercapacitors and interdigital designed supercapacitors not only could work in different bending states without obvious capacitance decay, but also have small leakage current. The interdigital design can further improve the performances of composite fibers with high capacitance and high utilization compared with traditional parallel connected structure.

  19. Tuning inner-layer oxygen functional groups of reduced graphene oxide by potentiostatic oxidation for high performance electrochemical energy storage devices

    International Nuclear Information System (INIS)

    Wang, Huixin; Feng, Bingmei; Ye, Yifan; Guo, Jinghua; Fang, Hai-Tao

    2017-01-01

    Graphical abstract: Tuning inner-layer oxygen functional groups of reduced graphene oxide by potentiostatic oxidation in carbonate-based electrolyte improves the electrochemical performance. - Abstract: The electrochemical lithiation/delithiation of oxygen-containing functional groups (OCFGs) of nanocarbon materials, particularly graphene, have attracted intensive interest in recent years. Here, we propose a controllable potentiostatic oxidation approach to tune the OCFGs of as-prepared reduced graphene oxide (rGO) in a carbonate-based electrolyte to improve the specific capacity and rate capability. By X-Ray absorption spectroscopy in total fluorescence yield mode and X-Ray diffraction, we confirm that potentiostatic oxidations generate new OCFGs in the inner-layer of rGO. The content of OCFGs increases as oxidation potential being elevated. Such increasing of OCFGs in quantity significantly enhances the capacity. For instance, the specific capacity of 170.4 mAh g −1 for pristine rGO electrode is increased to 290.5 mAh g −1 after the oxidation at 5.0 V. We demonstrate that oxidations at moderate potentials can reduce the electrochemical and ohmic polarizations of rGO electrodes without deteriorating diffusion dynamic, thereby improving rate capability. After the optimal oxidation at 4.7 V, rGO electrode exhibits an excellent rate capability, delivering 58.4 mAh g −1 at 20 A g −1 .

  20. One-step synthesis of Pt-reduced graphene oxide composites based on high-energy radiation technique

    International Nuclear Information System (INIS)

    Liu, Xuqiang; Jiang, Shubin; Huang, Wei; Song, Hongtao

    2014-01-01

    In this paper, we introduce a novel 60 Co-ray-irradiation-based one-step synthesis method of Pt-reduced graphene oxide composites (Pt-RGO) in acid aqueous solution. The compositional distribution of the particles in the samples was characterized by transmission electron microscopy. The structure and composition of the nanocomposite has been determined with a scanning electron microscope (SEM) equipped with an energy dispersion X-ray (EDS) analyzer. Surface enhanced Raman scattering (SERS) of graphene deposited by the Pt nanoparticles were investigated with the 514.5 nm excitation. It was found that small-sized and highly-dispersed Pt nanoparticles could easily grow on the RGO surface under acidic conditions. In addition, the obtained homogeneous dispersions exhibit long-term stability, which will facilitate the production of homogeneous composites. (orig.)

  1. SARM1 deletion restrains NAFLD induced by high fat diet (HFD) through reducing inflammation, oxidative stress and lipid accumulation.

    Science.gov (United States)

    Pan, Zhen-Guo; An, Xu-Sheng

    2018-04-06

    SARM1 (Sterile alpha and armadillo motif-containing protein 1) is the recently identified TIR domain-containing cytosolic protein, which is involved in toll-like receptors (TLRs) signaling transduction. In the present study, the role of SARM1 in high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) progression was explored. We found that SARM1 was expressed highly in fatty liver. And SARM1-knockout (KO) reduced steatohepatitis and metabolic disorders induced by HFD. SARM1-deletion decreased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in HFD-fed mice. Additionally, inflammatory response caused by HFD was alleviated by SARM1-deletion through inactivating TLR4/7/9 and nuclear factor kappa B (NF-κB) pathways. Of note, SARM1-deletion also reduced the expressions of inflammation-associated molecules in hypothalamus of HFD-fed mice. Furthermore, HFD administration led to oxidative stress in liver of mice, while being decreased in SARM1-KO mice. Moreover, SARM1-ablation improved lipid dyslipidemia by suppressing the mRNA levels of genes, linked to glycolysis, lipogenesis and transcriptional regulation. Insulin resistance was also attenuated by SARM1-deficiency through enhancing the activation of liver Akt/glycogen synthase kinase-3β (GSK3β) and insulin receptor substrate-1 (IRS1)/FOXO1 pathways in HFD-fed mice. Also, SARM1-knockout improved neuropeptide Y (NPY), Pro-Opiomelanocortins (POMC), Agouti-related Protein (AGRP) and Cocaine-and-Amphetamine Responsive Transcript 1 (CART1) expressions in hypothalamus of mice after HFD administration. In vitro, we found that the reduction of inflammatory response, oxidative stress and dyslipidemia induced by SARM1-knockout in primary hepatocytes after fructose stimulation was largely attributed to its suppression to TLR4/7/9. Together, the findings demonstrated that SARM1 might be an effective target for developing effective therapeutic strategies against NAFLD. Copyright © 2018

  2. Reduced Graphene Oxide-Wrapped FeS2 Composite as Anode for High-Performance Sodium-Ion Batteries

    Science.gov (United States)

    Wang, Qinghong; Guo, Can; Zhu, Yuxuan; He, Jiapeng; Wang, Hongqiang

    2018-06-01

    Iron disulfide is considered to be a potential anode material for sodium-ion batteries due to its high theoretical capacity. However, its applications are seriously limited by the weak conductivity and large volume change, which results in low reversible capacity and poor cycling stability. Herein, reduced graphene oxide-wrapped FeS2 (FeS2/rGO) composite was fabricated to achieve excellent electrochemical performance via a facile two-step method. The introduction of rGO effectively improved the conductivity, BET surface area, and structural stability of the FeS2 active material, thus endowing it with high specific capacity, good rate capability, as well as excellent cycling stability. Electrochemical measurements show that the FeS2/rGO composite had a high initial discharge capacity of 1263.2 mAh g-1 at 100 mA g-1 and a high discharge capacity of 344 mAh g-1 at 10 A g-1, demonstrating superior rate performance. After 100 cycles at 100 mA g-1, the discharge capacity remained at 609.5 mAh g-1, indicating the excellent cycling stability of the FeS2/rGO electrode.

  3. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.

    Science.gov (United States)

    Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-11

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices.

  4. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  5. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.

    Science.gov (United States)

    Rui, Xianhong; Zhu, Jixin; Sim, Daohao; Xu, Chen; Zeng, Yi; Hng, Huey Hoon; Lim, Tuti Mariana; Yan, Qingyu

    2011-11-01

    Reduced graphene oxide (rGO) supported highly porous polycrystalline V(2)O(5) spheres (V(2)O(5)/rGO) were prepared by using a solvothermal approach followed by an annealing process. Initially, reduced vanadium oxide (rVO) nanoparticles with sizes in the range of 10-50 nm were formed through heterogeneous nucleation on rGO sheets during the solvothermal process. These rVO nanoparticles were oxidized to V(2)O(5) after the annealing process in air at 350 °C and assembled into polycrystalline porous spheres with sizes of 200-800 nm. The weight ratio between the rGO and V(2)O(5) is tunable by changing the weight ratio of the precursors, which in turn affects the morphology of V(2)O(5)/rGO composites. The V(2)O(5)/rGO composites display superior cathode performances with highly reversible specific capacities, good cycling stabilities and excellent rate capabilities (e.g. 102 mA h g(-1) at 19 C).

  6. Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors

    Science.gov (United States)

    Naderi, Hamid Reza; Sobhani-Nasab, Ali; Rahimi-Nasrabadi, Mehdi; Ganjali, Mohammad Reza

    2017-11-01

    A composite of cobalt tungstate nanoparticles coated on nitrogen-doped reduced graphene oxide (CoWO4/NRGO) was prepared through an in situ sonochemical approach. The composite was next evaluated as an electrode material for use supercapacitors electrodes. The characterization of the various CoWO4/NRGO nanocomposite samples was carried out through field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), Brunauer-Emmett-Teller (BET) method and Raman spectroscopy. Complementary studies were also performed through cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS), and continues cyclic voltammetry (CCV). The electrochemical evaluations were carried out in a 2 M H2SO4 solution as the electrolyte. The electrochemical evaluations on the nano-composite samples indicated that CoWO4/NRGO-based electrodes reveal enhanced supercapacitive characteristics (i.e. a high specific capacitance (SC) of 597 F g-1 at a scan rate of 5 mV s-1, an energy density (ED) value of 67.9 W h kg-1, and high rate capability). CCV studies indicated that CoWO4/NRGO-based electrodes keep 97.1% of their original capacitance after 4000 cycles. The results led to the conclusion that CoWO4/NRGO effectively merge the merits of CoWO4 and CoWO4/RGO in one new nanocomposite material.

  7. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xing; Tang, Yao; Song, Junhua; Yang, Wei; Wang, Mingshan; Zhu, Chengzhou; Zhao, Wengao; Zheng, Jianming; Lin, Yuehe

    2018-04-30

    A self-supporting and flexible activated carbon/carbon nanotube/reduced graphene oxide (AC/CNT/RGO) film has been rationally designed for constructing high- performance supercapacitor. The AC/CNT/RGO film is prepared by anchoring the AC particles with a 3D and porous framework built by hierarchically weaving the 1 D CNT and 2D RGO using their intrinsic van der Waals force. The CNT network is beneficial for improving the electronic conductivity of the electrode, while the AC particles could effectively suppress the aggregation of RGO and CNT due to their blocking effect. The synergistic effects among the AC, CNT and RGO validate the AC/CNT/RGO as a promising electrode for supercapacitor, exhibiting greatly enhanced electrochemical performances in comparison with the pure RGO film, pure CNT film and AC electrode. The AC/CNT/RGO electrode delivers a high specific capacitance of 101 F g-1 at the current density of 0.2 A g-1, offering a maximum energy density of 30.0 W h kg-1 in organic electrolyte at the cut-off voltage range of 0.001~3.0 V. The findings of this work open a new avenue for the design of self-supporting electrodes for the development of flexible and light weight energy storage supercapacitor.

  8. Highly sensitive and selective detection of Bis-phenol A based on hydroxyapatite decorated reduced graphene oxide nanocomposites

    International Nuclear Information System (INIS)

    Alam, Mohammad K.; Rahman, Mohammed M.; Elzwawy, Amir; Torati, Sri Ramulu; Islam, Mohammad S.; Todo, Mitsugu; Asiri, Abdullah M.; Kim, Dojin; Kim, CheolGi

    2017-01-01

    Highlights: •Simple chemical reduction method was used for preparation of reduced graphene oxide/hydroxyapatite (rGO/HAp) nanocomposites. •The rGO/HAp nanocomposites exhibited good biocompatibility with hMSCs. •Selective chemical sensor based on rGO/HAp nanocomposites was developed for detection of Bis-phenol A. •The fabricated rGO/HAp/Nafion/GCE sensor exhibited good detection limit of 60 pmol L −1 . -- Abstract: A facile and cost effective chemical reduction method is employed for the preparation of reduced graphene oxide/hydroxyapatite (rGO/HAp) nanocomposites. The transmission electron microscopy images revealed that the HAp flakes are well decorated on the surface of rGO. The morphological structure of the as-synthesized rGO/HAp nanocomposites was confirmed through X-ray diffraction, Fourier transform infrared spectroscopy and Raman spectroscopy, while the composition and thermal stability were analyzed by energy dispersive spectra and thermogravimetric analysis, respectively. Furthermore, the effect of rGO/HAp nanocomposites for the proliferation of Human Mesenchymal Stem Cell (hMSC) was performed to confirm the biocompatibility. A selective chemical sensor based on rGO/HAp modified glassy carbon electrode (GCE) for sensitive detection of Bis-phenol A (BPA) has been developed. Several important parameters controlling the performance of the BPA chemi-sensor were investigated and optimized at room conditions. The rGO/HAp/Nafion/GCE sensor offers a fast response and highly sensitive BPA detection. Under the optimal conditions, a linear range from 0.2 nmol L −1 to 2.0 mmol L −1 for the detection of BPA was observed with the detection limit of 60.0 pmol L −1 (signal-to-noise ratio, at an SNR of 3) and sensitivity of 18.98 × 10 4 μA.L/μmol.m 2 . Meanwhile, the fabricated chemi-sensor showed an excellent, specific and selective recognition to target BPA molecules among coexistence of other analytes in the buffer system. This novel effort initiated

  9. Highly sensitive amperometric biosensor based on electrochemically-reduced graphene oxide-chitosan/hemoglobin nanocomposite for nitromethane determination.

    Science.gov (United States)

    Wen, Yunping; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2016-05-15

    Nitromethane (CH3NO2) is an important organic chemical raw material with a wide variety of applications as well as one of the most common pollutants. Therefore it is pretty important to establish a simple and sensitive detection method for CH3NO2. In our study, a novel amperometric biosensor for nitromethane (CH3NO2) based on immobilization of electrochemically-reduced graphene oxide (rGO), chitosan (CS) and hemoglobin (Hb) on a glassy carbon electrode (GCE) was constructed. Scanning electron microscopy, infrared spectroscopy and electrochemical methods were used to characterize the Hb-CS/rGO-CS composite film. The effects of scan rate and pH of phosphate buffer on the biosensor have been studied in detail and optimized. Due to the graphene and chitosan nanocomposite, the developed biosensor demonstrating direct electrochemistry with faster electron-transfer rate (6.48s(-1)) and excellent catalytic activity towards CH3NO2. Under optimal conditions, the proposed biosensor exhibited fast amperometric response (<5s) to CH3NO2 with a wide linear range of 5 μM~1.46 mM (R=0.999) and a low detection limit of 1.5 μM (S/N=3). In addition, the biosensor had high selectivity, reproducibility and stability, providing the possibility for monitoring CH3NO2 in complex real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The nanostructure of microbially-reduced graphene oxide fosters thick and highly-performing electrochemically-active biofilms

    Science.gov (United States)

    Virdis, Bernardino; Dennis, Paul G.

    2017-07-01

    Biofilms of electrochemically-active organisms are used in microbial electrochemical technologies (METs) to catalyze bioreactions otherwise not possible at bare electrodes. At present, however, achievable current outputs are still below levels considered sufficient for economic viability of large-scale METs implementations. Here, we report three-dimensional, self-aggregating biofilm composites comprising of microbial cells embedded with microbially-reduced graphene oxide (rGO) nanoparticles to form a thick macro-porous network with superior electrochemical properties. In the presence of metabolic substrate, these hybrid biofilms are capable of producing up to five times more catalytic current than the control biofilms. Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, show that in spite of the increased thickness, the biofilms amended with GO display lower polarization/charge transfer resistance compared to the controls, which we ascribe to the incorporation of rGO into the biofilms, which (1) promotes fast electron transfer, yet conserving a macroporous structure that allows free diffusion of reactants and products, and (2) enhances the interfacial dynamics by allowing a higher load of microbial cells per electrode surface area. These results suggest an easy-to-apply and cost-effective method to produce high-performing electrochemically-active biofilms in situ.

  11. High-sensitive nitrogen dioxide and ethanol gas sensor using a reduced graphene oxide-loaded double split ring resonator

    Science.gov (United States)

    Singh, Sandeep Kumar; Azad, Prakrati; Akhtar, M. J.; Kar, Kamal K.

    2017-08-01

    A reduced graphene oxide (rGO) incorporated double split ring resonator (DSRR) portable microwave gas sensor is proposed in this work. The sensor is fabricated using two major steps: the DSRR is fabricated on the FR-4 substrate, which is excited by a high impedance microstrip line. The rGO is synthesized via a chemical route and coated inside the smaller ring of the DSRR. The SEM micrographs reveal crumpled sheets of rGO that provide a large surface area, and the XRD patterns of the as-synthesized rGO reveal the two-dimensional structure of the rGO nanosheets. The sensor performance is measured at room temperature using 100-400 ppm of ethanol and NO2 target gases. At 400 ppm, the sensor reveals a shift of 420 and 390 MHz in the S 21 frequency for NO2 and ethanol gases, respectively. The frequency shifts of 130 and 120 MHz in the S 21 resonance frequency are obtained for NO2 and ethanol gases, respectively, at a very low concentration of 100 ppm. The high sensitivity of the proposed rGO gas sensor is achieved due to the combined effect of the large surface area of the rGO responsible for accommodating more gas molecules, and its increased conductivity due to the transfer of the electron from the rGO. Moreover, an exceedingly short response time is observed for NO2 in comparison to ethanol, which allows the proposed sensor to be used for the selective detection of NO2 in a harsh environment. The overall approach used in this study is quite simple, and has great potential to enhance the gas detection behaviour of rGO.

  12. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sundaram Ganesh; Ramalingam Vinoth [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Neppolian, Bernaurdshaw, E-mail: neppolian.b@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Ashokkumar, Muthupandian [The School of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010 (Australia)

    2015-06-30

    Highlights: • Diffused sunlight is firstly used as an effective source for the degradation of organics. • More than 10 fold synergistic effect is achieved by sono-photocatalysis. • rGO enhances the degradation efficiency up to 54% as compared with CuO–TiO{sub 2} alone. • Plausible mechanism and intermediates formed are supported with experimental studies. - Abstract: Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO–TiO{sub 2} photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV–vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO–TiO{sub 2} more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO{sub 2} and CuO facilitates the separation of photogenerated electron–hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC–MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO{sub 2} based photocatalysts for the complete mineralization of organic contaminants.

  13. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Guina, E-mail: xiaoguina@shnu.edu.cn; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei, E-mail: leihuang@shnu.edu.cn

    2017-05-15

    Highlights: • We developed a paper-based SERS substrate by gravure and inkjet printing methods. • The S-RGO/AgNPs comoposite structure had higher SERS activity than the pure AgNPs. • The Raman enhancement factor of S-RGO/AgNPs substrate was calculated to be 10{sup 9}. • The paper-based substrate exhibited good reproducibility and long-term stability. - Abstract: Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 10{sup 9}. The minimum detection limit for MG and R6G was down to 10{sup −7} M with good linear responses (R{sup 2} = 0.9996, 0.9983) range from 10{sup −4} M to 10{sup −7} M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  14. Growth of zinc cobaltate nanoparticles and nanorods on reduced graphene oxide porous networks toward high-performance supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaling; Zhao, Changhui; Fu, Wenbin; Zhang, Zemin; Zhang, Mingxiang; Zhou, Jinyuan; Pan, Xiaojun, E-mail: xjpan@lzu.edu.cn; Xie, Erqing

    2016-05-25

    A type of composite network constructed from zinc cobaltate (ZnCo{sub 2}O{sub 4}) nanoparticles and nanorods on reduced graphene oxide (rGO) nanosheets has been prepared by a facile hydrothermal method. Transmission electron microscope results reveal that the rGO nanosheets are covered by ZnCo{sub 2}O{sub 4} nanoparticles evenly due to the abundant surface functional groups on surface of original GO, and supported by some cross-linked ZnCo{sub 2}O{sub 4} nanorods in the entire structures. With a rational combination, the composite networks present a meso-/macroporous architecture with a larger specific surface area than those of pristine ZnCo{sub 2}O{sub 4} nanorods. As expected, the prepared ZnCo{sub 2}O{sub 4}/rGO electrode exhibits improved electrochemical performances, which shows a high specific capacitance (626 F g{sup −1} at 1 A g{sup −1}), excellent rate capability (81% retention of the initial capacitance at 30 A g{sup −1}), and long-term cycling stability (99.7% retention after 3000 cycles at 10 A g{sup −1}). Such remarkable electrochemical performances of ZnCo{sub 2}O{sub 4}/rGO electrode can be due to the effective pathways for both electronic and ionic transport in these porous networks. - Highlights: • Porous ZnCo{sub 2}O{sub 4}/rGO composite networks can be prepared by a hydrothermal method. • These networks are mainly constructed from ZnCo{sub 2}O{sub 4} nanorods and rGO nanosheets. • The rGO nanosheets are uniformly covered by ZnCo{sub 2}O{sub 4} nanoparticles. • The composite networks can promote capacitive performances as electrode materials.

  15. Montmorency Cherries Reduce the Oxidative Stress and Inflammatory Responses to Repeated Days High-Intensity Stochastic Cycling

    Directory of Open Access Journals (Sweden)

    Phillip G. Bell

    2014-02-01

    Full Text Available This investigation examined the impact of Montmorency tart cherry concentrate (MC on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16 were divided into equal groups and consumed 30 mL of MC or placebo (PLA, twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH, interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, interleukin-8 (IL-8, interleukin-1-beta (IL-1-β, high-sensitivity C-reactive protein (hsCRP and creatine kinase (CK were conducted. LOOH (p < 0.01, IL-6 (p < 0.05 and hsCRP (p < 0.05 responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario’s where back-to-back performances are required.

  16. High-Performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-Doped Reduced Graphene Oxide Aerogel.

    Science.gov (United States)

    Pettong, Tanut; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Sukha, Phansiri; Sirisinudomkit, Pichamon; Seubsai, Anusorn; Chareonpanich, Metta; Kongkachuichay, Paisan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-12-14

    The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo 2 O 4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGO AE ) was fabricated in this work. The MnCo 2 O 4 NFs at the positive electrode store the negative charges, i.e., solvated OH - , while the N-rGO AE at the negative electrode stores the positive charges, i.e., solvated K + . An as-fabricated aqueous-based MnCo 2 O 4 //N-rGO AE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg -1 and 9851 W kg -1 , respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo 2 O 4 , the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo 2 O 4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo 2 O 4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.

  17. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    Science.gov (United States)

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  18. One-step synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang; Wang, Yujia; Pu, Xianjuan; Jiang, Yong; Cheng, Lingli, E-mail: chenglingli@shu.edu.cn; Jiao, Zheng, E-mail: zjiao@shu.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • Both graphene oxide and silver ion were reduced simultaneously by electron beam-based method. • The size of AgNPs can be controlled by changing the irradiation dose of electron beam. • The AgNPs/rGO nanocomposite exhibits much lower sheet resistivity (0.06 Ω m). - Abstract: A rapid, eco-friendly, one-step electron beam (EB)-based method for both the reduction of graphene oxide and loading of Ag nanoparticles (AgNPs) were achieved. Further, the effects of irradiation dose on the morphology of AgNPs and the sheet resistance of Ag nanoparticles/reduced graphene oxide (AgNPs/rGO) were studied. The results reveal that when the irradiation dose increased from 70 kGy to 350 kGy, the size of the AgNPs decreased and became uniformly distributed over the surface of the rGO nanosheets. However the size of the AgNPs increased when the irradiation dose reached 500 kGy. Four-point probe measurement showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistivity of 0.06 Ω m was obtained in the film corresponding to 350 kGy irradiation dose, which showed a much lower resistivity than the GO film (5.04 × 10{sup 5} Ω m). The formation mechanisms of the as-prepared AgNPs/rGO nanocomposites were proposed. This study provides a fast and eco-friendly EB irradiation induced method to controlling the dimensions of AgNPs/rGO nanocomposites, which can strongly support the mass production of AgNPs/rGO nanocomposites for practical applications.

  19. One-step synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films by electron beam irradiation

    International Nuclear Information System (INIS)

    Liu, Gang; Wang, Yujia; Pu, Xianjuan; Jiang, Yong; Cheng, Lingli; Jiao, Zheng

    2015-01-01

    Graphical abstract: - Highlights: • Both graphene oxide and silver ion were reduced simultaneously by electron beam-based method. • The size of AgNPs can be controlled by changing the irradiation dose of electron beam. • The AgNPs/rGO nanocomposite exhibits much lower sheet resistivity (0.06 Ω m). - Abstract: A rapid, eco-friendly, one-step electron beam (EB)-based method for both the reduction of graphene oxide and loading of Ag nanoparticles (AgNPs) were achieved. Further, the effects of irradiation dose on the morphology of AgNPs and the sheet resistance of Ag nanoparticles/reduced graphene oxide (AgNPs/rGO) were studied. The results reveal that when the irradiation dose increased from 70 kGy to 350 kGy, the size of the AgNPs decreased and became uniformly distributed over the surface of the rGO nanosheets. However the size of the AgNPs increased when the irradiation dose reached 500 kGy. Four-point probe measurement showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistivity of 0.06 Ω m was obtained in the film corresponding to 350 kGy irradiation dose, which showed a much lower resistivity than the GO film (5.04 × 10 5 Ω m). The formation mechanisms of the as-prepared AgNPs/rGO nanocomposites were proposed. This study provides a fast and eco-friendly EB irradiation induced method to controlling the dimensions of AgNPs/rGO nanocomposites, which can strongly support the mass production of AgNPs/rGO nanocomposites for practical applications

  20. 2,3-diaminopyridine functionalized reduced graphene oxide-supported palladium nanoparticles with high activity for electrocatalytic oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Yasmin, Sabina; Joo, Yuri; Jeon, Seungwon, E-mail: swjeon3380@naver.com

    2017-06-01

    Highlights: • Synthesis of 2,3 DAP-rGO/Pd catalyst by electrochemical deposition method. • The ORR performance of 2,3 DAP-rGO/Pd catalyst was evaluated by CV and RRDE. • ORR possess 4-electron pathway with lower H{sub 2}O{sub 2}. • Better anodic fuel tolerance and long term stable than that of commercial Pt/C. - Abstract: The electrochemical deposition of Pd nanoparticles (Pd NPs) on 2,3 diamino pyridine functionalized reduced graphene oxide (2,3 DAP-rGO/Pd) has been investigated for the oxygen reduction reaction (ORR) in alkaline media. First, 2,3 diaminopyridine functionalized graphene oxide (2,3 DAP-rGO) has been synthesized via simple hydrothermal method. Then, palladium is directly incorporated into the 2,3 DAP-rGO by electrochemical deposition method to generate 2,3 DAP-rGO/Pd composites. The as-prepared material 2,3 DAP-rGO/Pd has been characterized by various instrumental methods. The morphological analysis shows the cluster-like Pd nanoparticles are dispersed onto the 2,3 diamino pyridine functionalized reduced graphene oxide (2,3 DAP-rGO). The electrocatalytic activities have been verified using cyclic voltammetry (CV) and hydrodynamic voltammetry and chronoamperometry techniques in 0.1 M KOH electrolyte. The as-synthesized 2,3 DAP-rGO/Pd shows higher catalytic activity toward ORR with more positive onset potential and cathodic current density, superior methanol/ethanol tolerance and excellent stability in alkaline medium. It is also noteworthy that the 2,3 DAP-rGO/Pd exhibits a four-electron transfer pathway for ORR with lower H{sub 2}O{sub 2} yield.

  1. 2,3-diaminopyridine functionalized reduced graphene oxide-supported palladium nanoparticles with high activity for electrocatalytic oxygen reduction reaction

    International Nuclear Information System (INIS)

    Yasmin, Sabina; Joo, Yuri; Jeon, Seungwon

    2017-01-01

    Highlights: • Synthesis of 2,3 DAP-rGO/Pd catalyst by electrochemical deposition method. • The ORR performance of 2,3 DAP-rGO/Pd catalyst was evaluated by CV and RRDE. • ORR possess 4-electron pathway with lower H_2O_2. • Better anodic fuel tolerance and long term stable than that of commercial Pt/C. - Abstract: The electrochemical deposition of Pd nanoparticles (Pd NPs) on 2,3 diamino pyridine functionalized reduced graphene oxide (2,3 DAP-rGO/Pd) has been investigated for the oxygen reduction reaction (ORR) in alkaline media. First, 2,3 diaminopyridine functionalized graphene oxide (2,3 DAP-rGO) has been synthesized via simple hydrothermal method. Then, palladium is directly incorporated into the 2,3 DAP-rGO by electrochemical deposition method to generate 2,3 DAP-rGO/Pd composites. The as-prepared material 2,3 DAP-rGO/Pd has been characterized by various instrumental methods. The morphological analysis shows the cluster-like Pd nanoparticles are dispersed onto the 2,3 diamino pyridine functionalized reduced graphene oxide (2,3 DAP-rGO). The electrocatalytic activities have been verified using cyclic voltammetry (CV) and hydrodynamic voltammetry and chronoamperometry techniques in 0.1 M KOH electrolyte. The as-synthesized 2,3 DAP-rGO/Pd shows higher catalytic activity toward ORR with more positive onset potential and cathodic current density, superior methanol/ethanol tolerance and excellent stability in alkaline medium. It is also noteworthy that the 2,3 DAP-rGO/Pd exhibits a four-electron transfer pathway for ORR with lower H_2O_2 yield.

  2. Reduced graphite oxide in supercapacitor electrodes.

    Science.gov (United States)

    Lobato, Belén; Vretenár, Viliam; Kotrusz, Peter; Hulman, Martin; Centeno, Teresa A

    2015-05-15

    The current energy needs have put the focus on highly efficient energy storage systems such as supercapacitors. At present, much attention focuses on graphene-like materials as promising supercapacitor electrodes. Here we show that reduced graphite oxide offers a very interesting potential. Materials obtained by oxidation of natural graphite and subsequent sonication and reduction by hydrazine achieve specific capacitances as high as 170 F/g in H2SO4 and 84F/g in (C2H5)4NBF4/acetonitrile. Although the particle size of the raw graphite has no significant effect on the physico-chemical characteristics of the reduced materials, that exfoliated from smaller particles (materials may suffer from a drop in their specific surface area upon fabrication of electrodes with features of the existing commercial devices. This should be taken into account for a reliable interpretation of their performance in supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Hierarchically ordered macro-mesoporous ZnS microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Sookhakian, M., E-mail: m.sokhakian@gmail.com [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Amin, Y.M. [Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Basirun, W.J. [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Centre of Research in Nanotechnology and Catalysis (NanoCat), Institute of Postgraduate Studies, University Malaya, Kuala Lumpur 50603 (Malaysia)

    2013-10-15

    A facile one-pot method for the fabrication of high quality self-assembled hierarchically ordered macro-mesoporous ZnS microsphere–reduced graphene oxide (RGO) composite without the use of templates or surfactants is described. During the hydrothermal process, reduced graphene oxide (RGO) was loaded into the ZnS microsphere by in situ reduction of graphene oxide added in the self-assembly system. The morphology and structure of the as-prepared composites were confirmed by X-ray diffraction, high resolution transmission electron microscopy, energy dispersive X-ray analysis, Fourier transform infrared spectroscopy and Raman spectroscopy. Incorporation of reduced graphene oxide as an excellent electron-transporting material effectively suppresses the charge recombination. Hence, a significant enhancement in the photocatalytic efficiency for the photodegradation of methylene blue was observed with the ZnS–RGO composite, compared to the pure ZnS. Overall, this research results may lay down new vistas for the in situ fabrication of the ZnS–RGO composite as a highly efficient photocatalysis under visible-light irradiation and their applications in environmental protection.

  4. Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution

    Science.gov (United States)

    Zhang, Jiao; Hao, Jinghao; Ma, Qianli; Li, Chuanqi; Liu, Yushan; Li, Baojun; Liu, Zhongyi

    2017-06-01

    Ruthenium/reduced graphene oxide nanocomposites (Ru/rGO NCs) were synthesized via an electrostatic self-assembly approach. Polyvinylpyrrolidone (PVP) stabilized and positively charged metallic ruthenium nanoclusters about 1.2 nm were synthesized and uniformly loaded onto negatively charged graphene oxide (GO) sheets via strong electrostatic interactions. The as-prepared Ru/rGO NCs exhibited superior performance in catalytic hydrolysis of sodium borohydride (NaBH4) to generate H2. The hydrogen generation rate was up to 14.87 L H2 min-1 gcat -1 at 318 K with relatively low activation energy of 38.12 kJ mol-1. Kinetics study confirmed that the hydrolysis of NaBH4 was first order with respect to concentration of catalysts. Besides, the conversion of NaBH4 remained at 97% and catalytic activity retained more than 70% after 5 reaction cycles at room temperature. These results suggested that the Ru/rGO NCs have a promising prospect in the field of clean energy.

  5. Rice bran protein hydrolysates reduce arterial stiffening, vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet.

    Science.gov (United States)

    Senaphan, Ketmanee; Sangartit, Weerapon; Pakdeechote, Poungrat; Kukongviriyapan, Veerapol; Pannangpetch, Patchareewan; Thawornchinsombut, Supawan; Greenwald, Stephen E; Kukongviriyapan, Upa

    2018-02-01

    Rice bran protein hydrolysates (RBPH) contain highly nutritional proteins and antioxidant compounds which show benefits against metabolic syndrome (MetS). Increased arterial stiffness and the components of MetS have been shown to be associated with an increased risk of cardiovascular disease. This study aimed to investigate whether RBPH could alleviate the metabolic disorders, arterial stiffening, vascular remodeling, and oxidative stress in rats fed a high-carbohydrate and high-fat (HCHF) diet. Male Sprague-Dawley rats were fed either a standard chow and tap water or a HCHF diet and 15 % fructose solution for 16 weeks. HCHF rats were treated orally with RBPH (250 or 500 mg/kg/day) for the final 6 weeks of the experimental period. Rats fed with HCHF diet had hyperglycemia, insulin resistance, dyslipidemia, hypertension, increased aortic pulse wave velocity, aortic wall hypertrophy and vascular remodeling with increased MMP-2 and MMP-9 expression. RBPH supplementation significantly alleviated these alterations (P stress was also alleviated after RBPH treatment by decreasing plasma malondialdehyde, reducing superoxide production and suppressing p47 phox NADPH oxidase expression in the vascular tissues of HCHF rats. RBPH increased plasma nitrate/nitrite level and up-regulated eNOS expression in the aortas of HCHF-diet-fed rats, indicating that RBPH increased NO production. RBPH mitigate the deleterious effects of HCHF through potential mechanisms involving enhanced NO bioavailability, anti-ACE, anti-inflammatory and antioxidant properties. RBPH could be used as dietary supplements to minimize oxidative stress and vascular alterations triggered by MetS.

  6. Three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite with super high electrochemical and capacitance performances

    International Nuclear Information System (INIS)

    Lin, Yan; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Yinjun, Fang; Guangli, Wang; Zhiguo, Gu

    2013-01-01

    The paper reported a three-dimensional activated reduced graphene oxide nanocup/nickel aluminum layered double hydroxides composite (3D-ARGON/NiAl-LDH) with super high electrochemical and capacitance performances. Graphene oxide was reduced by hydrazine in ammonia medium to form three-dimensional reduced graphene oxide nanocup using polystyrene colloidal particle as sacrificial template. The nanocup was then activated by the alkali corrosion and thermal annealing. The 3D-ARGON/NiAl-LDH was finally fabricated by the hydrothermal synthesis via in situ growth of ultrathin NiAl-LDH nanoflakes on the 3D-ARGON in an ethanol medium. The study demonstrated that the composite offers special 3D architecture with a macropore on the rim of a cup and large mesoporous structure on the wall of a cup, which will greatly boost the electron transfer and mass transport during the faradaic redox reaction, and displays excellent electrochemical and capactance performances, including high specific capacitance and rate capability, good charge/discharge stability and long-term cycling life. Its maximum specific capacitance was found to be 2712.7 F g −1 at the current density of 1 A g −1 , which is more than 7-fold that of pure NiAl-LDH, 3-fold that of common reduced graphene oxide/NiAl-LDH and 1.8-fold that of two-dimensional activated reduced graphene oxide/NiAl-LDH. The specific capacitance can remain 1174 F g −1 when the current density increases up to 50 A g −1 . After 5000 cycles at the current density of 30 A g −1 , the capacitance can keep at least 98.9%. This study provides a promising approach for the design and synthesis of graphene-based materials with largely enhanced supercapacitor behaviors, which can be potentially applied in energy storage/conversion devices

  7. Reverse microemulsion synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide nanocomposites for high-performance supercapacitors and sodium ion batteries

    Science.gov (United States)

    Qiu, Xiaoming; Liu, Yongchang; Wang, Luning; Fan, Li-Zhen

    2018-03-01

    Prussian blue analogues with tunable open channels are of fundamental and technological importance for energy storage systems. Herein, a novel facile synthesis of nickel-cobalt hexacyanoferrate/reduced graphene oxide (denoted as Ni-CoHCF/rGO) nanocomposite is realized by a reverse microemulsion method. The very fine Ni-CoHCF nanoparticles (10-20 nm) are homogeneously anchored on the surface of reduced graphene oxide by electrostatic adsorption and reduced graphene oxide is well-separated by Ni-CoHCF particles. Benefiting from the combined advantages of this structure, the Ni-. It CoHCF/rGO nanocomposite can be used as electrodes for both supercapacitors and sodium ion batteries exhibits excellent pseudocapacitve performance in terms of high specific capacitance of 466 F g-1 at 0.2 A g-1 and 350 F g-1 at 10 A g-1, along with high cycling stabilities. As a cathode material for sodium ion batteries, it also demonstrates a high reversible capacity of 118 mAh g-1 at 0.1 A g-1, good rate capability, and superior cycling stability. These results suggest its potential as an efficient electrode for high-performance energy storage and renewable delivery devices.

  8. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    International Nuclear Information System (INIS)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yousefi, Ali Akbar; Yazdanshenas, Mohammad Esmail

    2016-01-01

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  9. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  10. Using reduced graphene oxide-Ca:CdSe nanocomposite to enhance photoelectrochemical activity of gold nanoparticles functionalized tungsten oxide for highly sensitive prostate specific antigen detection.

    Science.gov (United States)

    Wang, Xueping; Xu, Rui; Sun, Xu; Wang, Yaoguang; Ren, Xiang; Du, Bin; Wu, Dan; Wei, Qin

    2017-10-15

    An ultrasensitive sandwich-type photoelectrochemical (PEC) immunosensor was constructed for the detection of prostate specific antigen (PSA). In this work, Au-nanoparticle-loaded tungsten oxide (WO 3 -Au) hybrid composites was applied as PEC sensing platform, while Ca ions doped CdSe equipped on the conducting framework of reduced graphene oxide (rGO-Ca:CdSe) nanocomposites were employed as the signal amplification probe. As for WO 3 -Au, massive Au nanoparticles were formed on the surface of WO 3 without any additional reducing agent, providing a novel nanocarriers for anchoring plenty of the primary antibodies due to the large specific surface area and good biocompatibility by chemical bonding between Au nanoparticles and -NH 2 of antibodies. Besides, the incorporation of the rGO and the doping of Ca ions could improve the conductivity and hinder the recombination of electron-hole pairs of CdSe nanoparticles effectively, thereby enhancing the photocurrent conversion efficiency. Based on the sandwich immunoreaction, the primary antibody was immobilized onto WO 3 -Au substrate, after the formed rGO-Ca:CdSe labels were captured onto the electrode surface via the specific antibody-antigen interaction, the photocurrent intensity could be further enhanced due to the sensitization effect. Under the optimal conditions, the proposed PEC immunosensor shows a linear relationship between photocurrent variation and the logarithm of PSA concentration in the wide range of 5pgmL -1 to 50ngmL -1 with a low detection limit of 2.6pgmL -1 (S/N=3). Moreover, it also presented good stability and acceptable specificity, indicating the potential applications in clinical diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. High performance sponge-like cobalt sulfide/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Huo, Jinghao; Wu, Jihuai; Zheng, Min; Tu, Yongguang; Lan, Zhang

    2015-10-01

    A sponge-like cobalt sulfide/reduced graphene oxide (CoS/rGO) hybrid film is deposited on fluorine doped SnO2 (FTO) glass by electrophoretic deposition and ion exchange deposition, following by sodium borohydride and sulfuric acid solution treatment. The film is used as the counter electrode of dye-sensitized solar cells (DSSCs), and is characterized by field emission scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and Tafel measurements. The results show that the CoS counter electrode has a sponge structure with large specific surface area, small charge-transfer resistance at the electrode/electrolyte interface. The addition of rGO further improves the electrocatalytic activity for I3- reduction, which results in the better electrocatalytic property of CoS/rGO counter electrodes than that of Pt counter electrode. Using CoS/rGO0.2 as counter electrode, the DSSC achieves a power conversion efficiency of 9.39%; which is increased by 27.93% compared with the DSSC with Pt counter electrode (7.34%).

  12. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  13. High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide

    International Nuclear Information System (INIS)

    Jiang, Xinyu; Wang, Zilei; Han, Wenhui; Liu, Qiming; Lu, Shuqi; Wen, Yuxiang; Hou, Juan; Huang, Fei; Peng, Shanglong; He, Deyan; Cao, Guozhong

    2017-01-01

    Highlights: • The fabricated Si–organic hybrid solar cells with 2 mg/ml rGO addition yielded a power conversion efficiency of 11.95% with a J_s_c of 31.94 mA cm"−"2, a V_o_c of 579 mV and a FF of 0.648, about 27.8% increase from 9.35% in pristine hybrid solar cells. • The electrical conductivity of PEDOT:PSS improved 35% when appropriate amount rGO was added to PEDOT:PSS, the electron recombination at the junction interface of the device was suppressed by the appropriate amount rGO flakes addition. • The rGO flakes also serve as an antireflection coating to further reduce the reflectance in the wavelength range of 300–550 nm, leading to further enhanced performances of hybrid solar cells. - Abstract: The optical and electrical properties of PEDOT:PSS organic layer play a very important role in determining the power conversion efficiency (PCE) of Si–organic hybrid solar cells (HSCs). In the present study, properties of PEDOT:PSS thin films with reduced graphene oxide (rGO) and their impacts on the performances of the resultant Si–organic HSCs have been systematically investigated. The electrical conductivity of PEDOT:PSS improved 35% when rGO was added to PEDOT:PSS, and the fabricated HSCs with 2 mg/ml rGO addition yielded an PCE of 11.95% with a J_s_c of 31.94 mA cm"−"2, a V_o_c of 579 mV and a FF of 0.648. However, excess rGO would deteriorate the solar cells performances and it might create additional defects and prevent carriers being collected. The Raman spectroscopy, sheet resistance and EQE analyses with rGO suggested that the interaction between the conductive rGO flakes and the aromatic PEDOT most probably not only provide additional charge transport pathways in hole transport layer to improve carrier mobility leading to a higher carrier collection efficiency, but also suppress the electron recombination at the junction interface. In addition, the rGO serve as an antireflection coating to reduce the reflectance of PEDOT:PSS thin film

  14. High performance silicon–organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xinyu; Wang, Zilei; Han, Wenhui; Liu, Qiming; Lu, Shuqi; Wen, Yuxiang [School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Hou, Juan [School of Science, Key Laboratory of Ecophysics, Shihezi University, Xinjiang 832003 (China); Huang, Fei [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120 (United States); Peng, Shanglong, E-mail: pengshl@lzu.edu.cn [School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); He, Deyan [School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Cao, Guozhong, E-mail: gzcao@u.washington.edu [Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-2120 (United States)

    2017-06-15

    Highlights: • The fabricated Si–organic hybrid solar cells with 2 mg/ml rGO addition yielded a power conversion efficiency of 11.95% with a J{sub sc} of 31.94 mA cm{sup −2}, a V{sub oc} of 579 mV and a FF of 0.648, about 27.8% increase from 9.35% in pristine hybrid solar cells. • The electrical conductivity of PEDOT:PSS improved 35% when appropriate amount rGO was added to PEDOT:PSS, the electron recombination at the junction interface of the device was suppressed by the appropriate amount rGO flakes addition. • The rGO flakes also serve as an antireflection coating to further reduce the reflectance in the wavelength range of 300–550 nm, leading to further enhanced performances of hybrid solar cells. - Abstract: The optical and electrical properties of PEDOT:PSS organic layer play a very important role in determining the power conversion efficiency (PCE) of Si–organic hybrid solar cells (HSCs). In the present study, properties of PEDOT:PSS thin films with reduced graphene oxide (rGO) and their impacts on the performances of the resultant Si–organic HSCs have been systematically investigated. The electrical conductivity of PEDOT:PSS improved 35% when rGO was added to PEDOT:PSS, and the fabricated HSCs with 2 mg/ml rGO addition yielded an PCE of 11.95% with a J{sub sc} of 31.94 mA cm{sup −2}, a V{sub oc} of 579 mV and a FF of 0.648. However, excess rGO would deteriorate the solar cells performances and it might create additional defects and prevent carriers being collected. The Raman spectroscopy, sheet resistance and EQE analyses with rGO suggested that the interaction between the conductive rGO flakes and the aromatic PEDOT most probably not only provide additional charge transport pathways in hole transport layer to improve carrier mobility leading to a higher carrier collection efficiency, but also suppress the electron recombination at the junction interface. In addition, the rGO serve as an antireflection coating to reduce the reflectance of

  15. Reduced Graphene Oxide-Hybridized Polymeric High-Internal Phase Emulsions for Highly Efficient Removal of Polycyclic Aromatic Hydrocarbons from Water Matrix.

    Science.gov (United States)

    Huang, Yipeng; Zhang, Wenjuan; Ruan, Guihua; Li, Xianxian; Cong, Yongzheng; Du, Fuyou; Li, Jianping

    2018-03-27

    Reduced graphene oxide (RGO)-hybridized polymeric high-internal phase emulsions (RGO/polyHIPEs) with an open-cell structure and hydrophobicity have been successfully prepared using 2-ethylhexyl acrylate and ethylene glycol dimethacrylate as the monomer and the cross-linker, respectively. The adsorption mechanism and performance of this RGO/polyHIPEs to polycyclic aromatic hydrocarbons (PAHs) were investigated. Adsorption isotherms of PAHs on RGO/polyHIPEs show that the saturated adsorption capacity is 47.5 mg/g and the equilibrium time is 8 h. Cycling tests show that the adsorption capacity of RGO/polyHIPEs remains stable in 10 adsorption-desorption cycles without observable structure change in RGO/polyHIPEs. Moreover, the PAH residues in water samples after being purified by RGO/polyHIPEs are lower than the limit values in drinking water set by the European Food Safety Authority. These results demonstrate that the RGO/polyHIPEs have great potentiality in PAH removal and water purification.

  16. Stable High-Capacity Lithium Ion Battery Anodes Produced by Supersonic Spray Deposition of Hematite Nanoparticles and Self-Healing Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Joshi, Bhavana N.; Lee, Jong-Hyuk; Kim, Tae-Gun; Kim, Do-Yeon; Al-Deyab, Salem S.; Seong, Il Won; Swihart, Mark T.; Yoon, Woo Young; Yoon, Sam S.

    2017-01-01

    Hematite (Fe 2 O 3 ) nanoparticles and reduced graphene oxide (rGO) were supersonically sprayed onto copper current collectors to create high-performance, binder-free lithium ion battery (LIB) electrodes. Supersonic spray deposition is rapid, low-cost, and suitable for large-scale production. Supersonic impact of rGO sheets and Fe 2 O 3 nanoparticles on the substrate produces compacted nanocomposite films with short diffusion lengths for Li + ions. This structure produces high reversible capacity and markedly improved capacity retention over many cycles. Decomposition of lithium oxide generated during cycling activates the solid electrolyte interface layer, contributing to high capacity retention. The optimal composition ratio of rGO to Fe 2 O 3 was 9.1 wt.%, which produced a reversible capacity of 1242 mAh g −1 after N = 305 cycles at a current density of 1000 mA g −1 (1C).

  17. In-situ synthesis of reduced graphene oxide modified lithium vanadium phosphate for high-rate lithium-ion batteries via microwave irradiation

    International Nuclear Information System (INIS)

    Wang, Zhaozhi; Guo, Haifu; Yan, Peng

    2015-01-01

    Highlights: • Graphene-decorated Li 3 V 2 (PO 4 ) 3 is synthesized via microwave irradiation. • Both Li 3 V 2 (PO 4 ) 3 and RGO can be simultaneously achieved through this route. • The GO is reduced by microwave irradiation not the carbon. • Li 3 V 2 (PO 4 ) 3 /RGO displays excellent high-rate ability and cyclic stability. - Abstract: We report a simple and rapid method to synthesize graphene-modified Li 3 V 2 (PO 4 ) 3 as cathode material for lithium-ion batteries via microwave irradiation. By treating graphene oxide and the precursor of Li 3 V 2 (PO 4 ) 3 in a commercial microwave oven, both reduced graphene oxide and Li 3 V 2 (PO 4 ) 3 could be simultaneously synthesized within 5 min. The structure, morphology and electrochemical performances of as-synthesized graphene-modified Li 3 V 2 (PO 4 ) 3 are investigated systematically by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, charge/discharge tests, electrochemical impedance spectra (EIS) and cyclic voltammetry (CV). The XRD result indicates that single-phase graphene-modified Li 3 V 2 (PO 4 ) 3 with monoclinic structure can be obtained. Both SEM and TEM images show that Li 3 V 2 (PO 4 ) 3 nanocrystals are embedded in the reduced graphene oxide sheets which could provide an easy path for the electrons and Li-ions during the cycling process. Compared with the pristine Li 3 V 2 (PO 4 ) 3 electrode, graphene-modified Li 3 V 2 (PO 4 ) 3 exhibits a better high-rate ability and cyclic stability. These superior electrochemical performances are attributed to the good conductivity of reduced graphene oxide which enhances the electrons and Li-ions transport on the surface of Li 3 V 2 (PO 4 ) 3 . Thus, this simple and rapid method could be promising to synthesize graphene-modified electrode materials

  18. N-acetylcysteine is able to reduce the oxidation status and the endothelial activation after a high-glucose content meal in patients with Type 2 diabetes mellitus.

    Science.gov (United States)

    Masha, A; Brocato, L; Dinatale, S; Mascia, C; Biasi, F; Martina, V

    2009-04-01

    Post-prandial hyperglycemia seems to play a pivotal role in the pathogenesis of the cardiovascular complications of diabetes mellitus, as it leads to an oxidative stress which in turn causes a reduced NO bioavailability. These conditions produce an endothelial activation. The aim of this study was to assure that the administration of N-acetylcysteine (NAC), thiolic antioxidant, is able to decrease the oxidation status and endothelial activation after a high-glucose content meal. Ten patients with Type 2 diabetes mellitus (DMT2) (Group 1) and 10 normal subjects (Group 2) were studied. They assumed a high-glucose content meal without (phase A) or after (phase B) the administration of NAC. Glycemia, insulinemia, intercellular adhesion molecule 1, vascular adhesion molecule 1 (VCAM-1), E-selectin, malonaldehyde (MDA), and 4-hydroxynonenal (HNE) were assessed at -30, 0, +30, +60, +90, +120, and +180 min with respect to the meal consumption. During the phase A in Group 1, only HNE and MDA levels increased after the meal assumption; all parameters remained unchanged in Group 2. During the phase B, in Group 1, HNE, MDA, VCAM-1, and E-selectin levels after the meal were lower than those in phase A, while no change for all variables were observed in Group 2. A high-glucose meal produces an increase in oxidation parameters in patients with DMT2. The administration of NAC reduces the oxidative stress and, by doing so, reduces the endothelial activation. In conclusion, NAC could be efficacious in the slackening of the progression of vascular damage in DMT2.

  19. Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Yankun; Li, Dan; Liu, Yushan; Zhang, Jianmin

    2016-01-01

    Highlights: • 3D ZnSnO 3 hollow cubes@reducedgrapheneoxideaerogels(ZGAs) were fabricated. • The electrochemical properties of ZGAs were investigated for LIBs. • ZGAs demonstrated superior lithium storage performance. - Abstract: 3D ZnSnO 3 hollow cubes@reduced graphene oxide aerogels (ZGAs) were fabricated via a colloid electrostatic self-assembly method between the graphene oxide (GO) nanosheets and poly(diallyldimethylammonium chloride) (PDDA) modified ZnSnO 3 hollow cubes colloid, followed by hydrothermal and freeze-drying treatments. The unique porous architecture of ZnSnO 3 hollow cubes encapsulated by flexible reduced graphene oxide (rGO) sheets not only effectively retarded the huge volume expansion during repeated charge-discharge cycles, but also facilitated fast lithium ion and electron transport through 3D networks. The ZGAs exhibited significantly enhanced cycling stability (745.4 mAh g −1 after 100 cycles at a current of 100 mA g −1 ) and superior rate capability (as high as 552.6 mAh g −1 at 1200 mA g −1 ). The results indicate that the ZGAs are promising anode materials for high-performance lithium-ion batteries.

  20. Porous Co3O4 nanofibers surface-modified by reduced graphene oxide as a durable, high-rate anode for lithium ion battery

    International Nuclear Information System (INIS)

    Hu, Renzong; Zhang, Houpo; Bu, Yunfei; Zhang, Hanyin; Zhao, Bote; Yang, Chenghao

    2017-01-01

    Here we report our findings in synthesis and characterization of porous Co 3 O 4 nanofibers coated with a surface-modification layer, reduced graphene oxide. The unique porous Co 3 O 4 @rGO architecture enables efficient stress relaxation and fast Li + ions and electron transport during discharge/charge cycling. When tested in a half cell, the Co 3 O 4 @rGO electrodes display high Coulombic efficiency, enhanced cyclic stability, and high rate capability (∼900 mAh/g at 1A/g, and ∼600 mAh/g at 5 A/g). The high capacity is contributed by a stable capacity yielded from reversible conversion reactions above 0.8 V vs. Li/Li + , and a increasing capacity induced by the electrolyte decomposition and interfacial storage between 0.8 0.01 V during discahrge. A full cell constructed from a Co 3 O 4 @rGO anode and a LiMn 2 O 4 cathode delivers good capacity retention with operation voltage of ∼2.0 V. These performances are better than those of other full cells using alloy or metal oxide anodes. Our work is a preliminary attempt for practicality of high capacity metal oxide anodes in Li-ion batteries used for the electronic devices.

  1. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    OpenAIRE

    Gurunathan, Sangiliyandi; Han,Jae Woong; Abdal Daye,Ahmed; Eppakayala,Vasuki; Kim,Jin-Hoi

    2012-01-01

    Sangiliyandi Gurunathan, Jae Woong Han, Ahmed Abdal Dayem, Vasuki Eppakayala, Jin-Hoi KimDepartment of Animal Biotechnology, Konkuk University, Seoul, South KoreaBackground: Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxid...

  2. Fe2O3/Reduced Graphene Oxide/Fe3O4 Composite in Situ Grown on Fe Foil for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhao, Chongjun; Shao, Xiaoxiao; Zhang, Yuxiao; Qian, Xiuzhen

    2016-11-09

    A Fe 2 O 3 /reduced graphene oxide (RGO)/Fe 3 O 4 nanocomposite in situ grown on Fe foil was synthesized via a simple one-step hydrothermal growth process, where the iron foil served as support, reductant of graphene oxide, Fe source of Fe 3 O 4 , and also the current collector of the electrode. When it directly acted as the electrode of a supercapacitor, as-synthesized Fe 2 O 3 /RGO/Fe 3 O 4 @Fe exhibited excellent electrochemical performance with a high capability of 337.5 mF/cm 2 at 20 mA/cm 2 and a superior cyclability with 2.3% capacity loss from the 600th to the 2000th cycle.

  3. Preparation of Highly Dispersed Reduced Graphene Oxide Decorated with Chitosan Oligosaccharide as Electrode Material for Enhancing the Direct Electron Transfer of Escherichia coli.

    Science.gov (United States)

    Luo, Zhimin; Yang, Dongliang; Qi, Guangqin; Yuwen, Lihui; Zhang, Yuqian; Weng, Lixing; Wang, Lianhui; Huang, Wei

    2015-04-29

    Water-dispersed reduced graphene oxide/chitosan oligosaccharide (RGO-CTSO) was prepared by chemical reduction of graphene oxide and synchronous functionalization with biocompatible chitosan oligosaccharide (CTSO). ζ potential measurement indicated that RGO-CTSO was highly stable in the acidic aqueous solution. RGO-CTSO was used to modify glassy carbon electrode (GCE) as the growth template of Escherichia coli (E. coli). The enhanced direct electron transfer of E. coli on the RGO-CTSO-modified GCE was studied by cyclic voltammetry. Compared with GCE or RGO-modified GCE, RGO-CTSO-modified GCE was more suitable for the adhesion growth of E. coli to improve direct electron transfer. The biocompatibility and versatility of RGO-CTSO made it promising for use as an anode material in microbial fuel cells.

  4. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    Science.gov (United States)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  5. One-Step Laser Patterned Highly Uniform Reduced Graphene Oxide Thin Films for Circuit-Enabled Tattoo and Flexible Humidity Sensor Application

    Directory of Open Access Journals (Sweden)

    Rowoon Park

    2018-06-01

    Full Text Available The conversion of graphene oxide (GO into reduced graphene oxide (rGO is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.

  6. Mesoporous anatase TiO2/reduced graphene oxide nanocomposites: A simple template-free synthesis and their high photocatalytic performance

    International Nuclear Information System (INIS)

    Zhou, Qi; Zhong, Yong-Hui; Chen, Xing; Huang, Xing-Jiu; Wu, Yu-Cheng

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous TiO 2 nanoparticles with anatase phase were assembled on reduced graphene oxide via a template-free one-step hydrothermal method. • The TiO 2 /rGO nanocomposites have better adsorption capacity and photocatalytic degradation efficiency for dyes removal. • Improved dye adsorption and photogenerated charge separation are responsible for enhanced activity. - Abstract: Mesoporous anatase phase TiO 2 was assembled on reduced graphene oxide (rGO) using a template-free one-step hydrothermal process. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) surface area. Morphology of TiO 2 was related to the content of graphene oxide. TiO 2 /rGO nanocomposites exhibited excellent photocatalytic activity for the photo-degradation of methyl orange. The degradation rate was 4.5 times greater than that of pure TiO 2 nanoparticles. This difference was attributed to the thin two-dimensional graphene sheet. The graphene sheet had a large surface area, high adsorption capacity, and acted as a good electron acceptor for the transfer of photo-generated electrons from the conduction band of TiO 2 . The enhanced surface adsorption characteristics and excellent charge transport separation were independent properties of the photocatalytic degradation process

  7. Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors.

    Science.gov (United States)

    Gao, Guoxin; Lu, Shiyao; Xiang, Yang; Dong, Bitao; Yan, Wei; Ding, Shujiang

    2015-11-21

    Ultrathin CoMn2O4 nanosheets supported on reduced graphene oxide (rGO) are successfully synthesized through a simple co-precipitation method with a post-annealing treatment. With the assistance of citrate, the free-standing CoMn2O4 ultrathin nanosheets can form porous overlays on both sides of the rGO sheets. Such a novel hybrid nanostructure can effectively promote charge transport and accommodate volume variation upon prolonged charge/discharge cycling. When evaluated as a promising electrode for supercapacitors in a 6 M KOH solution electrolyte, the hybrid nanocomposites demonstrate highly enhanced capacitance and excellent cycling stability.

  8. Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature

    Science.gov (United States)

    Su, Zhibin; Tan, Li; Yang, Ruiqiang; Zhang, Yu; Tao, Jin; Zhang, Nan; Wen, Fusheng

    2018-03-01

    Nitrogen dioxide (NO2) as one of the most serious air pollution is harmful to people's health, therefore high-performance gas sensors is critically needed. Here, Cu-modified carbon spheres/reduced graphene oxide (Cu@CS/RGO) composite have been prepared as NO2 gas sensor material. Carbon sphere in the interlayer of RGO can increase the specific surface area of RGO. Copper nanoparticles decorated on the surface of CS can effectively enhance the adsorption activity of RGO as supplier of free electrons. The experimental results showed that its particular structure improved the gas sensitivity of RGO at different NO2 concentrations at room temperature.

  9. High-performance for hydrogen evolution and pollutant degradation of reduced graphene oxide/two-phase g-C3N4 heterojunction photocatalysts.

    Science.gov (United States)

    Song, Chengjie; Fan, Mingshan; Shi, Weidong; Wang, Wei

    2018-05-01

    We have successfully synthesized the composites of two-phase g-C 3 N 4 heterojunction photocatalysts by one-step method. And the reduced graphene oxide/two-phase g-C 3 N 4 heterojunction photocatalyst was fabricated via a facile hydrothermal reduction method. The characterization results indicated that the two-phase g-C 3 N 4 was integrated closely, and the common phenomenon of agglomeration for g-C 3 N 4 was significantly reduced. Moreover, the oxidized graphene was reduced successfully in the composites and the graphene was overlaid on the surface or the interlayers of g-C 3 N 4 heterojunction composite uniformly. In addition, we have carried out the photocatalytic activity experiments by H 2 evolution and rhodamine B removal, tetracycline removal under the visible light irradiation. The results revealed that the composite has improved the separation efficiency a lot than the pure photocatalyst. The photocurrent test demonstrated that the recombination of electrons and holes were efficiently inhibited as well as enhanced the photocatalytic activity. The 0.4% rGO loaded samples, 0.4% rGOCN2, own the best performance. Its rate of H 2 evolution was 15 times as high as that of the pure g-C 3 N 4 .

  10. Polypropylene/Polyaniline Nanofiber/Reduced Graphene Oxide Nanocomposite with Enhanced Electrical, Dielectric, and Ferroelectric Properties for a High Energy Density Capacitor.

    Science.gov (United States)

    Cho, Sunghun; Kim, Minkyu; Lee, Jun Seop; Jang, Jyongsik

    2015-10-14

    This work demonstrates a ternary nanocomposite system, composed of polypropylene (PP), redoped PANI (r-PANI) nanofibers, and reduced graphene oxides (RGOs), for use in a high energy density capacitor. r-PANI nanofibers were fabricated by the combination methods of chemical oxidation polymerization and secondary doping processes, resulting in higher conductivity (σ≈156 S cm(-1)) than that of the primarily doped PANI nanofibers (σ≈16 S cm(-1)). RGO sheets with high electron mobility and thermal stability can enhance the conductivity of r-PANI/RGO (σ≈220 S cm(-1)) and thermal stability of PP matrix. These findings could be extended to combine the advantages of r-PANI nanofibers and RGO sheets for developing an efficient means of preparing PP/r-PANI/RGO nanocomposite. When the r-PANI/RGO cofillers (10 vol %) were added to PP matrix, the resulting PP/r-PANI/RGO nanocomposite exhibited high dielectric constant (ε'≈51.8) with small dielectric loss (ε″≈9.3×10(-3)). Furthermore, the PP/r-PANI/RGO nanocomposite was used for an energy-harvesting device, which demonstrated high energy density (Ue≈12.6 J cm(-3)) and breakdown strength (E≈5.86×10(3) kV cm(-1)).

  11. Self-Assembly of Antisite Defectless nano-LiFePO4 @C/Reduced Graphene Oxide Microspheres for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Hongbin; Liu, Lijia; Wang, Runwei; Yan, Xiao; Wang, Ziqi; Hu, Jiangtao; Chen, Haibiao; Jiang, Shang; Ni, Ling; Qiu, Hailong; Tang, Haitong; Wei, Yingjin; Zhang, Zongtao; Qiu, Shilun; Pan, Feng

    2018-05-18

    LiFePO 4 @C/reduced graphene oxide (rGO) hierarchical microspheres with superior electrochemical activity and a high tap density were first synthesized by using a Fe 3+ -based single inorganic precursor (LiFePO 4 OH@RF/GO; RF=resorcinol-formaldehyde, GO=graphene oxide) obtained from a template-free self-assembly synthesis followed by direct calcination. The synthetic process requires no physical mixing step. The phase transformation pathway from tavorite LiFePO 4 OH to olivine LiFePO 4 upon calcination was determined by means of the in situ high-temperature XRD technique. Benefitting from the unique structure of the material, these microspheres can be densely packed together, giving a high tap density of 1.3 g cm -3 , and simultaneously, defectless LiFePO 4 primary nanocrystals modified with a highly conductive surface carbon layer and ultrathin rGO provide good electronic and ionic kinetics for fast electron/Li + ion transport. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Poly(3,4-ethylenedioxythiophene)/reduced graphene oxide composites as counter electrodes for high efficiency dye-sensitized solar cells

    Science.gov (United States)

    Ma, Jinfu; Yuan, Shenghua; Yang, Shaolin; Lu, Hui; Li, Yingtao

    2018-05-01

    A facile, low cost, easy-controllable method to prepare Poly(3,4-ethylenedioxythiophene) (PEDOT)/reduced graphene oxide (rGO) composites by electrochemical deposition onto fluorinated tin oxide (FTO) as counter electrodes (CEs) in high performance dye-sensitized solar cells (DSSCs) is reported. The electro-deposition process was accomplished by electro-polymerization of graphene oxide (GO)/PEDOT composites onto FTO substrates followed by electrochemical reduction of the GO component. Electrochemical measurements show that the I-/I3- catalytic activity of the as-prepared PEDOT/rGO CE is improved compared with that of the pure PEDOT and PEDOT/GO electrode. Through the analysis of photoelectric properties, the performance of the electrodes fabricated with different polymerization times are compared, and the optimal preparation condition is determined. The photoelectric conversion efficiency (PCE) of the DSSC assembled with PEDOT/rGO electrode reaches 7.79%, close to 8.33% of the cell with Platinum (Pt) electrode, and increases by 13.2% compared with 6.88% of the device with the PEDOT electrode.

  13. Toward High Performance 2D/2D Hybrid Photocatalyst by Electrostatic Assembly of Rationally Modified Carbon Nitride on Reduced Graphene Oxide

    Science.gov (United States)

    Chen, Jian; Xu, Xiaochan; Li, Tao; Pandiselvi, Kannusamy; Wang, Jingyu

    2016-11-01

    Efficient metal-free visible photocatalysts with high stability are highly desired for sufficient utilization of solar energy. In this work, the popular carbon nitride (CN) photocatalyst is rationally modified by acid exfoliation of molecular grafted CN, achieving improved visible-light utilization and charge carriers mobility. Moreover, the modification process tuned the surface electrical property of CN, which enabled it to be readily coupled with the oppositely charged graphene oxide during the following photo-assisted electrostatic assembly. Detailed characterizations indicate the formation of well-contacted 2D/2D heterostructure with strong interfacial interaction between the modified CN nanosheets (CNX-NSs) and reduced graphene oxide (RGO). The optimized hybrid (with a RGO ratio of 20%) exhibits the best photocatalytic performance toward MB degradation, which is almost 12.5 and 7.0 times of CN under full spectrum and visible-light irradiation, respectively. In addition, the hybrid exhibits high stability after five successive cycles with no obvious change in efficiency. Unlike pure CNX-NSs, the dye decomposition mostly depends on the H2O2 generation by a two-electron process due to the electron reservoir property of RGO. Thus the enhancement in photocatalytic activity could be ascribed to the improved light utilization and increased charge transfer ability across the interface of CNX-NSs/RGO heterostructure.

  14. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode

    Science.gov (United States)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.

  15. High performance electrodes for reduced temperature solide oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 1. Ni-SDC cermet anode

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T. [Japan Fine Ceramics Center, Nagoya (Japan); Yoshida, H.; Inagaki, T. [The Kansai Electroc Power Co. Inc., Hyogo (Japan); Miura, K. [Kanden Kakou Co. Ltd., Hyogo (Japan)

    2000-03-01

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800 C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm{sup 2}. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode. (orig.)

  16. Highly oxidized superconductors

    Science.gov (United States)

    Morris, Donald E.

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  17. Photoconductivity of reduced graphene oxide and graphene oxide composite films

    International Nuclear Information System (INIS)

    Liang, Haifeng; Ren, Wen; Su, Junhong; Cai, Changlong

    2012-01-01

    A photoconductive device was fabricated by patterning magnetron sputtered Pt/Ti electrode and Reduced Graphene Oxide (RGO)/Graphene Oxide (GO) composite films with a sensitive area of 10 × 20 mm 2 . The surface morphology of as-deposited GO films was observed by scanning electronic microscopy, optical microscopy and atomic force microscopy, respectively. The absorption properties and chemical structure of RGO/GO composite films were obtained using a spectrophotometer and an X-ray photoelectron spectroscopy. The photoconductive properties of the system were characterized under white light irradiation with varied output power and biased voltage. The results show that the resistance decreased from 210 kΩ to 11.5 kΩ as the irradiation power increased from 0.0008 mW to 625 mW. The calculated responsiveness of white light reached 0.53 × 10 −3 A/W. Furthermore, the device presents a high photo-conductivity response and displays a photovoltaic response with an open circuit voltage from 0.017 V to 0.014 V with irradiation power. The sources of charge are attributed to efficient excitation dissociation at the interface of the RGO/GO composite film, coupled with cross-surface charge percolation.

  18. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors

    International Nuclear Information System (INIS)

    Min, Shudi; Zhao, Chongjun; Chen, Guorong; Qian, Xiuzhen

    2014-01-01

    Reduced graphene oxide (RGO) on nickel hydroxide (Ni(OH) 2 ) film was synthesized via a green and facile hydrothermal approach. In this process, graphene oxide (GO) was reduced by nickel foam (NF) while the nickel metal was oxidized to Ni(OH) 2 film simultaneously, which resulted in RGO on Ni(OH) 2 structure. The RGO/Ni(OH) 2 composite film was characterized using by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The electrochemical performances of the supercapacitor with the as-synthesized RGO/Ni(OH) 2 composite films as electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. Results indicated that the RGO/Ni(OH) 2 /NF composite electrodes exhibited superior capacitive performance with high capability (2500 mF cm −2 at a current density of 5 mA cm −2 , or 1667 F g −1 at 3.3 A g −1 ), compared with pure Ni(OH) 2 /NF (450 mF cm −2 at 5 mA cm −2 , 409 F g −1 at 3.3 A g −1 ) prepared under the identical conditions. Our study highlights the importance of anchoring RGO films on Ni(OH) 2 surface for maximizing the optimized utilization of electrochemically active Ni(OH) 2 and graphene for energy storage application in supercapacitors

  19. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode.

    Science.gov (United States)

    Chang, Jingbo; Huang, Xingkang; Zhou, Guihua; Cui, Shumao; Hallac, Peter B; Jiang, Junwei; Hurley, Patrick T; Chen, Junhong

    2014-02-01

    Multilayered Si/RGO anode nanostructures, featuring alternating Si nanoparticle (NP) and RGO layers, good mechanical stability, and high electrical conductivity, allow Si NPs to easily expand between RGO layers, thereby leading to high reversible capacity up to 2300 mAh g(-1) at 0.05 C (120 mA g(-1) ) and 87% capacity retention (up to 630 mAh g(-1) ) at 10 C after 152 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Combination Therapy with Losartan and Pioglitazone Additively Reduces Renal Oxidative and Nitrative Stress Induced by Chronic High Fat, Sucrose, and Sodium Intake

    Directory of Open Access Journals (Sweden)

    Xiang Kong

    2012-01-01

    Full Text Available We recently showed that combination therapy with losartan and pioglitazone provided synergistic effects compared with monotherapy in improving lesions of renal structure and function in Sprague-Dawley rats fed with a high-fat, high-sodium diet and 20% sucrose solution. This study was designed to explore the underlying mechanisms of additive renoprotection provided by combination therapy. Losartan, pioglitazone, and their combination were orally administered for 8 weeks. The increased level of renal malondialdehyde and expression of nicotinamide adenine dinucleotide phosphate oxidase subunit p47phox and nitrotyrosine as well as the decreased total superoxide dismutase activity and copper, zinc-superoxide dismutase expression were tangible evidence for the presence of oxidative and nitrative stress in the kidney of model rats. Treatment with both drugs, individually and in combination, improved these abnormal changes. Combination therapy showed synergistic effects in reducing malondialdehyde level, p47phox, and nitrotyrosine expression to almost the normal level compared with monotherapy. All these results suggest that the additive renoprotection provided by combination therapy might be attributed to a further reduction of oxidative and nitrative stress.

  1. Poly(vinyl alcohol)-Assisted Fabrication of Hollow Carbon Spheres/Reduced Graphene Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhang, Yunqiang; Ma, Qiang; Wang, Shulan; Liu, Xuan; Li, Li

    2018-05-22

    Three-dimensional hollow carbon spheres/reduced graphene oxide (DHCSs/RGO) nanocomposites with high-level heteroatom doping and hierarchical pores are fabricated via a versatile method. Poly(vinyl alcohol) (PVA) that serves as a dispersant and nucleating agent is used as the nonremoval template for synthesizing melamine resin (MR) spheres with abundant heteroatoms, which are subsequently composited with graphene oxide (GO). Use of PVA and implementation of freezing treatment prevent agglomeration of MR spheres within the GO network. Molten KOH is used to achieve the one-step carbonization/activation/reduction for the synthesis of DHCSs/RGO. DHCSs/RGO annealed at 700 °C shows superior discharge capacity of 1395 mA h/g at 0.1 A/g and 606 mA h/g at 5 A/g as well as excellent retentive capacity of 755 mA h/g after 600 cycles at a current density of 2 A/g. An extra CO 2 activation leads to further enhancement of electrochemical performance with outstanding discharge capacity of 1709 mA h/g at 0.1 A/g and 835 mA h/g at 2 A/g after 600 cycles. This work may improve our understanding of the synthesis of graphene-like nanocomposites with hollow and porous carbon architectures and fabrication of high-performance functional devices.

  2. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide

    Science.gov (United States)

    Ha, Nguyen Hai; Thinh, Dao Duc; Huong, Nguyen Thanh; Phuong, Nguyen Huy; Thach, Phan Duy; Hong, Hoang Si

    2018-03-01

    Zinc oxide (ZnO) nanoparticles loaded onto 3D reduced graphene oxide (3D-RGO) for carbon monoxide (CO) sensing were synthesized using hydrothermal method. The highly porous ZnO/3D-RGO configuration was stable without collapsing and was deposited on the micro-heater of the CO gas sensor. The resulting CO gas sensor displayed high sensitivity, fast response/recovery, and good linearity. The sensor achieved a response value of 85.2% for 1000 ppm CO at a working temperature of 200 °C. The response and recovery times of the sensor were 7 and 9 s for 1000 ppm CO at 200 °C. Similarly, the response value, response time, and recovery time of the sensor at room temperature were 27.5%, 14 s, and 15 s, respectively. The sensor demonstrated a distinct response to various CO concentrations in the range of 1-1000 ppm and good selectivity toward CO gas. In addition, the sensor exhibited good repeatability in multi-cycle and long-term stability.

  3. Three-Dimensional Reduced Graphene Oxide Coupled with Mn3O4 for Highly Efficient Removal of Sb(III) and Sb(V) from Water.

    Science.gov (United States)

    Zou, Jian-Ping; Liu, Hui-Long; Luo, Jinming; Xing, Qiu-Ju; Du, Hong-Mei; Jiang, Xun-Heng; Luo, Xu-Biao; Luo, Sheng-Lian; Suib, Steven L

    2016-07-20

    Highly porous, three-dimensional (3D) nanostructured composite adsorbents of reduced graphene oxides/Mn3O4 (RGO/Mn3O4) were fabricated by a facile method of a combination of reflux condensation and solvothermal reactions and systemically characterized. The as-prepared RGO/Mn3O4 possesses a mesoporous 3D structure, in which Mn3O4 nanoparticles are uniformly deposited on the surface of the reduced graphene oxide. The adsorption properties of RGO/Mn3O4 to antimonite (Sb(III)) and antimonate (Sb(V)) were investigated using batch experiments of adsorption isotherms and kinetics. Experimental results show that the RGO/Mn3O4 composite has fast liquid transport and superior adsorption capacity toward antimony (Sb) species in comparison to six recent adsorbents reported in the literature and summarized in a table in this paper. Theoretical maximum adsorption capacities of RGO/Mn3O4 toward Sb(III) and Sb(V) are 151.84 and 105.50 mg/g, respectively, modeled by Langmuir isotherms. The application of RGO/Mn3O4 was demonstrated by using drinking water spiked with Sb (320 μg/L). Fixed-bed column adsorption experiments indicate that the effective breakthrough volumes were 859 and 633 mL bed volumes (BVs) for the Sb(III) and Sb(V), respectively, until the maximum contaminant level of 5 ppb was reached, which is below the maximum limits allowed in drinking water according to the most stringent regulations. The advantages of being nontoxic, highly stable, and resistant to acid and alkali and having high adsorption capacity toward Sb(III) and Sb(V) confirm the great potential application of RGO/Mn3O4 in Sb-spiked water treatment.

  4. Three-dimensional sulphur/nitrogen co-doped reduced graphene oxide as high-performance supercapacitor binder-free electrodes

    Science.gov (United States)

    Huo, Jinghao; Zheng, Peng; Wang, Xiaofei; Guo, Shouwu

    2018-06-01

    Sulphur/nitrogen co-doped reduced graphene oxide (SNG) aerogels were prepared by a simple solvothermal method with l-cysteine-assisted in ethylene glycol. The morphology and composition tests showed that the S/N heteroatoms were evenly distributed on SNG microsheets, and these microsheets were further composed of SNG aerogels with three-dimensional (3D) porous structure. The cyclic voltammetry and galvanostatic charge/discharge tests illustrated the SNG bind-free electrode possessed electric double-layer capacitance and pseudocapacitance, and had a capacitance of 254 F g-1 at a current density of 1 A g-1. After the 5000 cycles tests, the capacitance retained 83.54% at a current density of 2 A g-1. Meanwhile, the electrochemical impedance spectroscopy data shown the electrode materials had excellent capacity and good conductivity. Hence, the SNG aerogel prepared by l-cysteine-assisted solvothermal method is a great material for high-performance supercapacitors.

  5. Highly efficient hydrogen evolution based on Ni3S4@MoS2 hybrids supported on N-doped reduced graphene oxide

    Science.gov (United States)

    Xu, Xiaobing; Zhong, Wei; Wu, Liqian; Sun, Yuan; Wang, Tingting; Wang, Yuanqi; Du, Youwei

    2018-01-01

    Hydrogen evolution reaction (HER) through water splitting at low overpotential is an appealing technology to produce renewable energy, wherein the design of stable electrocatalysts is very critical. To achieve optimal electrochemical performance, a highly efficient and stable noble-metal-free HER catalyst is synthesized by means of a facile hydrothermal co-synthesis. It consists of Ni3S4 nanosheets and MoS2 nanolayers supported on N-doped reduced graphene oxide (Ni3S4/MoS2@N-rGO). The optimized sample provides a large amount of active sites that benefit electron transfer in 3D conductive networks. Thanks to the strong synergistic effect in the catalyst network, we achieved a low overpotential of 94 mV, a small Tafel slope of 56 mV/dec and remarkable durability in an acidic medium.

  6. Reducing nitrogen oxides from power stations

    International Nuclear Information System (INIS)

    Scheller, W.

    1986-12-01

    The report contains 17 individual lectures of the seminar included in databanks. The lectures concern combustion and waste gas measures for reducing the sulfur dioxide and nitrogen oxide emission from coal-fired and gas-fired power stations. (PW) [de

  7. A novel high-performance supercapacitor based on high-quality CeO2/nitrogen-doped reduced graphene oxide nanocomposite

    Science.gov (United States)

    Heydari, Hamid; Gholivand, Mohammad Bagher

    2017-03-01

    In this work, we have developed a novel nanocomposite via deposition of ceria (CeO2) on nitrogen-doped reduced graphene (CeO2/NRGO). NRGO was synthesized through a facile, safe, and scalable method to achieve simultaneous thermal reduction along with nitrogen doping of graphene oxide (GO) in air at much lower reaction temperature. CeO2/NRGO was prepared via a sonochemical method in which ceria nanoparticles were uniformly distributed on NRGO sheets. The structure and morphology of CeO2/NRGO nanocomposites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and Raman spectroscopy. Electrochemical properties of the proposed nanocomposite electrodes were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge, continuous cyclic voltammetry (CCV), and electrochemical impedance spectroscopy (EIS) measurements. CeO2-NRGO nanocomposite electrodes showed excellent supercapacitive behavior, including much higher specific capacitance (230 F g-1 at 2 mV s-1) and higher rate capability compared to pure N-graphene. The cycling stability of the electrodes was measured by continues cyclic voltammetry (CCV) technique. The CCV showed that the specific capacitance of the CeO2/NRGO and NRGO nanocomposite maintained at 94.1 and 93.2% after 4000 cycles. The results suggest its promising potential as efficient electrode material for supercapacitors.

  8. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors.

    Science.gov (United States)

    Ates, Murat; El-Kady, Maher; Kaner, Richard B

    2018-04-27

    Graphene/polyaniline composite hydrogels (GH/PANI) were chemically synthesized by in situ polymerization of aniline monomer. Graphene hydrogels were obtained by a hydrothermal method and used in supercapacitors. The graphene/polyaniline composite hydrogel exhibits better electrochemical performance than the pure individual components as determined by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopic measurements. A remarkable specific capacitance (C sp ) of 323.9 F g -1 was measured using CV at a scan rate of 2 mV s -1 at 25 °C. GCD measurements (311.3 F g -1 ) and electrochemical impedance analysis also support these results. The numbers were obtained at extremely high loading masses: 7.14 mg cm -2 for GH and GH/PANI synthesized at 0 °C, and 8.93 mg cm -2 for GH/PANI synthesized at 25 °C. The corresponding areal capacitances are 1.14, 1.75 and 2.78 F cm -2 for GH, and GH/PANI composite hydrogels synthesized at 0 °C and 25 °C, respectively. These values in F cm -2 are 3.80, 5.83 and 9.27 times higher than commercially available activated carbon supercapacitors (∼0.3 F cm -2 for a two electrode system). Moreover, the GH/PANI composite synthesized at 25 °C exhibits excellent stability with 99% initial capacitance retention after 1000 charge/discharge cycles. GH/PANI composites synthesized at 0 °C and 25 °C therefore hold promise for use in supercapacitor device applications.

  9. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors

    Science.gov (United States)

    Ates, Murat; El-Kady, Maher; Kaner, Richard B.

    2018-04-01

    Graphene/polyaniline composite hydrogels (GH/PANI) were chemically synthesized by in situ polymerization of aniline monomer. Graphene hydrogels were obtained by a hydrothermal method and used in supercapacitors. The graphene/polyaniline composite hydrogel exhibits better electrochemical performance than the pure individual components as determined by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopic measurements. A remarkable specific capacitance (C sp) of 323.9 F g-1 was measured using CV at a scan rate of 2 mV s-1 at 25 °C. GCD measurements (311.3 F g-1) and electrochemical impedance analysis also support these results. The numbers were obtained at extremely high loading masses: 7.14 mg cm-2 for GH and GH/PANI synthesized at 0 °C, and 8.93 mg cm-2 for GH/PANI synthesized at 25 °C. The corresponding areal capacitances are 1.14, 1.75 and 2.78 F cm-2 for GH, and GH/PANI composite hydrogels synthesized at 0 °C and 25 °C, respectively. These values in F cm-2 are 3.80, 5.83 and 9.27 times higher than commercially available activated carbon supercapacitors (˜0.3 F cm-2 for a two electrode system). Moreover, the GH/PANI composite synthesized at 25 °C exhibits excellent stability with 99% initial capacitance retention after 1000 charge/discharge cycles. GH/PANI composites synthesized at 0 °C and 25 °C therefore hold promise for use in supercapacitor device applications.

  10. Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode

    Science.gov (United States)

    Cui, Dongming; Zheng, Zhong; Peng, Xue; Li, Teng; Sun, Tingting; Yuan, Liangjie

    2017-09-01

    The composite of fluorine-doped SnO2 anchored on reduced graphene oxide (F-SnO2/rGO) has been synthesized through a hydrothermal method. F-SnO2 particles with average size of 8 nm were uniformly anchored on the surfaces of rGO sheets and the resulting composite had a high loading of F-SnO2 (ca. 90%). Benefiting from the remarkably improved electrical conductivity and Li-ion diffusion in the electrode by F doping and rGO incorporation, the composite material exhibited high reversible capacity, excellent long-term cycling stability and superior rate capability. The electrode delivered a large reversible capacity of 1037 mAh g-1 after 150 cycles at 100 mA g-1 and high rate capacities of 860 and 770 mAh g-1 at 1 and 2 A g-1, respectively. Moreover, the electrode could maintain a high reversible capacities of 733 mAh g-1 even after 250 cycles at 500 mA g-1. The outstanding electrochemical performance of the as-synthesized composite make it a promising anode material for high-energy lithium ion batteries.

  11. Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor.

    Science.gov (United States)

    Liu, Yonghuan; Wang, Rutao; Yan, Xingbin

    2015-06-08

    Nanoscale electrode materials including metal oxide nanoparticles and two-dimensional graphene have been employed for designing supercapacitors. However, inevitable agglomeration of nanoparticles and layers stacking of graphene largely hamper their practical applications. Here we demonstrate an efficient co-ordination and synergistic effect between ultra-small Ni(OH)2 nanoparticles and reduced graphene oxide (RGO) sheets for synthesizing ideal electrode materials. On one hand, to make the ultra-small Ni(OH)2 nanoparticles work at full capacity as an ideal pseudocapacitive material, RGO sheets are employed as an suitable substrate to anchor these nanoparticles against agglomeration. As a consequence, an ultrahigh specific capacitance of 1717 F g(-1) at 0.5 A g(-1) is achieved. On the other hand, to further facilitate ion transfer within RGO sheets as an ideal electrical double layer capacitor material, the ultra-small Ni(OH)2 nanoparticles are introduced among RGO sheets as the recyclable sacrificial spacer to prevent the stacking. The resulting RGO sheets exhibit superior rate capability with a high capacitance of 182 F g(-1) at 100 A g(-1). On this basis, an asymmetric supercapacitor is assembled using the two materials, delivering a superior energy density of 75 Wh kg(-1) and an ultrahigh power density of 40 000 W kg(-1).

  12. Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles

    International Nuclear Information System (INIS)

    Dhara, Keerthy; Thiagarajan, Ramachandran; Thekkedath, Gopalakrishnan Satheesh Babu; Nair, Bipin G.

    2015-01-01

    A nanocomposite consisting of reduced graphene oxide decorated with palladium-copper oxide nanoparticles (Pd-CuO/rGO) was synthesized by single-step chemical reduction. The morphology and crystal structure of the nanocomposite were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction analysis. A 3-electrode system was fabricated by screen printing technology and the Pd-CuO/rGO nanocomposite was drop cast on the carbon working electrode. The catalytic activity towards glucose in 0.2 M NaOH solutions was analyzed by linear sweep voltammetry and amperometry. The steady state current obtained at a constant potential of +0.6 V (vs. Ag/AgCl) showed the modified electrode to possess a wide analytical range (6 μM to 22 mM), a rather low limit of detection (30 nM), excellent sensitivity (3355 μA∙mM −1 ∙cm −2 ) and good selectivity over commonly interfering species and other sugars including fructose, sucrose and lactose. The sensor was successfully employed to the determination of glucose in blood serum. (author)

  13. A facile synthesis of reduced holey graphene oxide for supercapacitors.

    Science.gov (United States)

    Hu, Xinjun; Bai, Dongchen; Wu, Yiqi; Chen, Songbo; Ma, Yu; Lu, Yue; Chao, Yuanzhi; Bai, Yongxiao

    2017-12-12

    Hydroxyl radicals (˙OH) generated from a UV/O 3 solution reaction is used to efficiently etch graphene oxide nanosheets under moderate conditions. Reduced holey graphene oxide is directly used as a supercapacitor electrode material and exhibits high specific capacitance (224 F g -1 at a current density of 1 A g -1 ) and high volumetric capacitance (up to 206 F cm -3 ).

  14. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages.

    Science.gov (United States)

    Jampasa, Sakda; Siangproh, Weena; Duangmal, Kiattisak; Chailapakul, Orawon

    2016-11-01

    A simple and highly sensitive electrochemical sensor based on an electrochemically reduced graphene oxide-modified screen-printed carbon electrode (ERGO-SPCE) for the simultaneous determination of sunset yellow (SY) and tartrazine (TZ) was proposed. An ERGO film was coated onto the electrode surface using a cyclic voltammetric method and then characterized by scanning electron microscopy (SEM). In 0.1M phosphate buffer at a pH of 6, the two oxidation peaks of SY and TZ appeared separately at 0.41 and 0.70V, respectively. Surprisingly, the electrochemical response remarkably increased approximately 90- and 20-fold for SY and TZ, respectively, using the modified electrode in comparison to the unmodified electrode. The calibration curves exhibited linear ranges from 0.01 to 20.0µM for SY and from 0.02 to 20.0µM for TZ. The limits of detection were found to be 0.50 and 4.50nM (at S/N=3) for SY and TZ, respectively. Furthermore, this detection platform provided very high selectivity for the measurement of both colorants. This electrochemical sensor was successfully applied to determine the amount of SY and TZ in commercial beverages. Comparison of the results obtained from this proposed method to those obtained by an in-house standard technique proved that this developed method has good agreement in terms of accuracy for practical applications. This sensor offers an inexpensive, rapid and sensitive determination. The proposed system is therefore suitable for routine analysis and should be an alternative method for the analysis of food colorants. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrochemical immunoassay for the prostate specific antigen using a reduced graphene oxide functionalized with a high molecular-weight silk peptide

    International Nuclear Information System (INIS)

    Wang, Yanying; Qu, Ying; Li, Chunya; Wu, Kangbing; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Wu, Wangze

    2015-01-01

    High molecular-weight silk peptide (SP) was used to functionalize the surface of nanosheets of reduced graphene oxide (rGO). The SP-rGO nanocomposite was then mixed with mouse anti-human prostate specific antigen monoclonal antibody (anti-PSA) and coated onto a glassy carbon electrode to fabricate an immunosensor. By using the hexacyanoferrate redox system as electroactive probe, the immunosensor was characterized by voltammetry and electrochemical impedance spectroscopy. The peak current, measured at the potential of 0.24 V (vs. SCE), is distinctly reduced after binding prostate specific antigen (PSA). Response (measured by differential pulse voltammetry) is linearly related to PSA concentration in the range from 0.1 to 5.0 ng · mL −1 and from 5.0 to 80.0 ng∙mL −1 , and the detection limit is 53 pg∙mL −1 (at an SNR of 3). The immunosensor was successfully applied to the determination of PSA in clinical serum samples, and the results were found to agree well with those obtained with an enzyme-linked immunosorbent assay. (author)

  16. Anchoring ultrafine Pd nanoparticles and SnO2 nanoparticles on reduced graphene oxide for high-performance room temperature NO2 sensing.

    Science.gov (United States)

    Wang, Ziying; Zhang, Tong; Zhao, Chen; Han, Tianyi; Fei, Teng; Liu, Sen; Lu, Geyu

    2018-03-15

    In this paper, we demonstrate room-temperature NO 2 gas sensors using Pd nanoparticles (NPs) and SnO 2 NPs decorated reduced graphene oxide (Pd-SnO 2 -RGO) hybrids as sensing materials. It is found that ultrafine Pd NPs and SnO 2 NPs with particle sizes of 3-5 nm are attached to RGO nanosheets. Compared to SnO 2 -RGO hybrids, the sensor based on Pd-SnO 2 -RGO hybrids exhibited higher sensitivity at room temperature, where the response to 1 ppm NO 2 was 3.92 with the response time and recovery time being 13 s and 105 s. Moreover, such sensor exhibited excellent selectivity, and low detection limit (50 ppb). In addition to high transport capability of RGO as well as excellent NO 2 adsorption ability derived from ultrafine SnO 2 NPs and Pd NPs, the superior sensing performances of the hybrids were attributed to the synergetic effect of Pd NPs, SnO 2 NPs and RGO. Particularly, the excellent sensing performances were related to high conductivity and catalytic activity of Pd NPs. Finally, the sensing mechanism for NO 2 sensing and the reason for enhanced sensing performances by introduction of Pd NPs are also discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes

    Science.gov (United States)

    Huang, Jiarui; Wang, Wei; Lin, Xirong; Gu, Cuiping; Liu, Jinyun

    2018-02-01

    A sandwich-structured NiMn2O4@reduced graphene oxide (NiMn2O4@rGO) nanocomposite consisting of ultrathin NiMn2O4 sheets uniformly anchored on both sides of a three-dimensional (3D) porous rGO is presented. The NiMn2O4@rGO nanocomposites prepared through a dipping process combining with a hydrothermal method show a good electrochemical performance including a high reversible capability of 1384 mAh g-1 at 1000 mA g-1 over 1620 cycles, and an superior rate performance. Thus, a full cell consisting of a commercial LiCoO2 cathode and the NiMn2O4@rGO anode delivers a stable capacity of about 1046 mAh g-1 (anode basis) after cycling at 50 mA g-1 for 60 times. It is demonstrated that the 3D porous composite structure accommodates the volume change during the Li+ insertion/extraction process and facilitates the rapid transport of ions and electrons. The high performance would enable the presented NiMn2O4@rGO nanocomposite a promising anode candidate for practical applications in Li-ion batteries.

  18. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.

    Science.gov (United States)

    Ha, Sung Hoon; Lee, Yun Jung

    2015-01-26

    Core-shell carbon-coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high-power lithium-ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon-coated LiFePO4 -rGO (LFP/C-rGO) hybrids were ascribed to three factors: 1) In-situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4 , 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C-rGO hybrids with LFP/C-rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li(+) ion and electron transport for high power applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 2D Layered Graphitic Carbon Nitride Sandwiched with Reduced Graphene Oxide as Nanoarchitectured Anode for Highly Stable Lithium-ion Battery

    International Nuclear Information System (INIS)

    M Subramaniyam, Chandrasekar; Deshmukh, Kavita A.; Tai, Zhixin; Mahmood, Nasir; Deshmukh, Abhay D.; Goodenough, John B.; Dou, Shi Xue; Liu, Hua Kun

    2017-01-01

    Two dimensional (2D) nanomaterials with high gravimetric capacity and rate capability are a key strategy for the anode of a Li-ion battery, but they still pose a challenge for Li-ion storage due to limited conductivity and an inability to alleviate the volume change upon lithiation and delithiation. In this paper, we report the construction of a 3D architecture anode consisting of exfoliated 2D layered graphitic carbon nitride (g-C_3N_4) and reduced graphene oxide (rGO) nanosheets (CN-rGO) by hydrothermal synthesis. First, bulk g-C_3N_4 is converted to nanosheets to increase the edge density of the inert basal planes since the edges act as active Li-storage sites. This unique 3D architecture, which consists of ultrathin g-C_3N_4 nanosheets sandwiched between conductive rGO networks, exhibits a capacity of 970 mA h g"−"1 after 300 cycles, which is 15 fold higher than the bulk g-C_3N_4. The tuning of the intrinsic structural properties of bulk g-C_3N_4 by this simple bottom-up synthesis has rendered a 3D architectured material (CN-rGO) as an effective negative electrode for high energy storage applications.

  20. Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material.

    Science.gov (United States)

    Zhang, Yanhua; Zhou, Wenjie; Yu, Hong; Feng, Tong; Pu, Yong; Liu, Hongdong; Xiao, Wei; Tian, Liangliang

    2017-12-01

    Nickel silicate hydroxide/reduced graphene oxide (Ni 3 Si 2 O 5 (OH) 4 /RGO) composite hollow microspheres were one-pot hydrothermally synthesized by employing graphene oxide (GO)-wrapped SiO 2 microspheres as the template and silicon source, which were prepared through sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO 2 substrate microspheres. The composition, morphology, structure, and phase of Ni 3 Si 2 O 5 (OH) 4 /RGO microspheres as well as their electrochemical properties were carefully studied. It was found that Ni 3 Si 2 O 5 (OH) 4 /RGO microspheres featured distinct hierarchical porous morphology with hollow architecture and a large specific surface area as high as 67.6 m 2  g -1 . When utilized as a supercapacitor electrode material, Ni 3 Si 2 O 5 (OH) 4 /RGO hollow microspheres released a maximum specific capacitance of 178.9 F g -1 at the current density of 1 A g -1 , which was much higher than that of the contrastive bare Ni 3 Si 2 O 5 (OH) 4 hollow microspheres and bare RGO material developed in this work, displaying enhanced supercapacitive behavior. Impressively, the Ni 3 Si 2 O 5 (OH) 4 /RGO microsphere electrode exhibited outstanding rate capability and long-term cycling stability and durability with 97.6% retention of the initial capacitance after continuous charging/discharging for up to 5000 cycles at the current density of 6 A g -1 , which is superior or comparable to that of most of other reported nickel-based electrode materials, hence showing promising application potential in the energy storage area.

  1. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, B.R.; Hernandez Rodas, M.C.; Espinosa, A.; Rincon Cervera, M.A.; Romero, N.; Barrera Vazquez, C.; Marambio, M.; Vivero, J.; Valenzuela, B.A.

    2016-07-01

    Long-chain polyunsaturated fatty acids (LCPUFA) which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD) generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation) in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO) is rich in anti-oxidants (polyphenols and tocopherols) which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group) were fed a control diet (CD) or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day). The group fed HFD showed a significant increase (p < 0.05) in fat accumulation and oxidative stress in the liver, accompanied by a reduction in the levels of n-3 and n-6 LCPUFA in the liver, erythrocytes and brain. Supplementation with EVOO mitigated the increase in fat and oxidative stress produced by HFD in the liver, along with a normalization of LCPUFA levels in the liver, erythrocytes and brain. It is proposed that EVOO supplementation protects against fat accumulation, and oxidative stress and normalizes n-3 and n-6 LCPUFA depletion induced in mice fed a HFD. (Author)

  2. Realization of ppm-level CO detection with exceptionally high sensitivity using reduced graphene oxide-loaded SnO2 nanofibers with simultaneous Au functionalization.

    Science.gov (United States)

    Kim, Jae-Hun; Katoch, Akash; Kim, Hyoun Woo; Kim, Sang Sub

    2016-03-07

    We have realized the highly sensitive, selective ppm-level carbon monoxide (CO) detection based on graphene oxide (RGO) nanosheets-loaded SnO2 nanofibers with simultaneous Au functionalization. The interplay between RGO/Au and SnO2 in terms of transfer of charge carriers and modulation of potential barriers is responsible for the exceptionally high CO detectability.

  3. Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors.

    Science.gov (United States)

    Chen, Qidi; Miao, Jinkang; Quan, Liang; Cai, Daoping; Zhan, Hongbing

    2018-02-22

    Exploring high-performance and low-priced electrode materials for supercapacitors is important but remains challenging. In this work, a unique sandwich-like nanocomposite of reduced graphene oxide (rGO)-supported N-doped carbon embedded with ultrasmall CoNiS x nanocrystallites (rGO/CoNiS x /N-C nanocomposite) has been successfully designed and synthesized by a simple one-step carbonization/sulfurization treatment of the rGO/Co-Ni precursor. The intriguing structural/compositional/morphological advantages endow the as-synthesized rGO/CoNiS x /N-C nanocomposite with excellent electrochemical performance as an advanced electrode material for supercapacitors. Compared with the other two rGO/CoNiO x and rGO/CoNiS x nanocomposites, the rGO/CoNiS x /N-C nanocomposite exhibits much enhanced performance, including a high specific capacitance (1028.2 F g -1 at 1 A g -1 ), excellent rate capability (89.3% capacitance retention at 10 A g -1 ) and good cycling stability (93.6% capacitance retention over 2000 cycles). In addition, an asymmetric supercapacitor (ASC) device based on the rGO/CoNiS x /N-C nanocomposite as the cathode and activated carbon (AC) as the anode is also fabricated, which can deliver a high energy density of 32.9 W h kg -1 at a power density of 229.2 W kg -1 with desirable cycling stability. These electrochemical results evidently indicate the great potential of the sandwich-like rGO/CoNiS x /N-C nanocomposite for applications in high-performance supercapacitors.

  4. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

    Science.gov (United States)

    Bhuvaneswari, Subramani; Pratheeksha, Parakandy Muzhikara; Anandan, Srinivasan; Rangappa, Dinesh; Gopalan, Raghavan; Rao, Tata Narasinga

    2014-03-21

    Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

  5. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors.

    Science.gov (United States)

    Kumar, Nanjundan Ashok; Choi, Hyun-Jung; Shin, Yeon Ran; Chang, Dong Wook; Dai, Liming; Baek, Jong-Beom

    2012-02-28

    An alternative and effective route to prepare conducting polyaniline-grafted reduced graphene oxide (PANi-g-rGO) composite with highly enhanced properties is reported. In order to prepare PANi-g-rGO, amine-protected 4-aminophenol was initially grafted to graphite oxide (GO) via acyl chemistry where a concomitant partial reduction of GO occurred due to the refluxing and exposure of GO to thionyl chloride vapors and heating. Following the deprotection of amine groups, an in situ chemical oxidative grafting of aniline in the presence of an oxidizing agent was carried out to yield highly conducting PANi-g-rGO. Electron microscopic studies demonstrated that the resultant composite has fibrillar morphology with a room-temperature electrical conductivity as high as 8.66 S/cm and capacitance of 250 F/g with good cycling stability.

  6. Cationic Reduced Graphene Oxide as Self-Aligned Nanofiller in the Epoxy Nanocomposite Coating with Excellent Anticorrosive Performance and Its High Antibacterial Activity.

    Science.gov (United States)

    Luo, Xiaohu; Zhong, Jiawen; Zhou, Qiulan; Du, Shuo; Yuan, Song; Liu, Yali

    2018-05-17

    The design and preparation of an excellent corrosion protection coating is still a grand challenge and is essential for large-scale practical application. Herein, a novel cationic reduced graphene oxide (denoted as RGO-ID + )-based epoxy coating was fabricated for corrosion protection. RGO-ID + was synthesized by in situ synthesis and salification reaction, which is stable dispersion in water and epoxy latex, and the self-aligned RGO-ID + -reinforced cathodic electrophoretic epoxy nanocomposite coating (denoted as RGO-ID + coating) at the surface of metal was prepared by electrodeposition. The self-alignment of RGO-ID + in the coatings is mainly attributed to the electric field force. The significantly enhanced anticorrosion performance of RGO-ID + coating is proved by a series of electrochemical measurements in different concentrated NaCl solutions and salt spray tests. This superior anticorrosion property benefits from the self-aligned RGO-ID + nanosheets and the quaternary-N groups present in the RGO-ID + nanocomposite coating. Interestingly, the RGO-ID + also exhibits a high antibacterial activity toward Escherichia coli with 83.4 ± 1.3% antibacterial efficiency, which is attributed to the synergetic effects of RGO-ID + and the electrostatic attraction and hydrogen bonding between RGO-ID + and E. coli. This work offers new opportunities for the successful development of effective corrosion protection and self-antibacterial coatings.

  7. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 2. La(Sr)CoO{sub 3} cathode

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru; Yoshida, Hiroyuki [The Kansai Electric Power, Hyogo (Japan); Miura, Kazuhiro [Kanden Kakou, Hyogo (Japan); Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa [Japan Fine Ceramics Center, Nagoya (Japan)

    2000-03-01

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM) electrolyte, La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} (LSCo) cathode, and Ni-(CeO{sub 2}){sub 0.8}(SmO{sub 1.5}){sub 0.2} (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm{sup 2}, at 800 C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO{sub 3}-YSZ cathode and Ni-YSZ cermet anode at 1000 C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm{sup 2} was measured for a cathode prepared by sintering at 1000 C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface. (orig.)

  8. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. II. La(Sr)CoO 3 cathode

    Science.gov (United States)

    Inagaki, Toru; Miura, Kazuhiro; Yoshida, Hiroyuki; Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- α (LSGM) electrolyte, La 0.6Sr 0.4CoO 3- δ (LSCo) cathode, and Ni-(CeO 2) 0.8(SmO 1.5) 0.2 (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm 2, at 800°C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO 3-YSZ cathode and Ni-YSZ cermet anode at 1000°C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm 2 was measured for a cathode prepared by sintering at 1000°C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface.

  9. One-Step Process for High-Performance, Adhesive, Flexible Transparent Conductive Films Based on p-Type Reduced Graphene Oxides and Silver Nanowires.

    Science.gov (United States)

    Lai, Yi-Ting; Tai, Nyan-Hwa

    2015-08-26

    This work demonstrates a one-step process to synthesize uniformly dispersed hybrid nanomaterial containing silver nanowires (AgNWs) and p-type reduced graphene (p-rGO). The hybrid nanomaterial was coated onto a polyethylene terephthalate (PET) substrate for preparing high-performance flexible transparent conductive films (TCFs). The p-rGO plays the role of bridging discrete AgNWs, providing more electron holes and lowering the resistance of the contacted AgNWs; therefore, enhancing the electrical conductivity without sacrificing too much transparence of the TCFs. Additionally, the p-rGO also improves the adhesion between AgNWs and substrate by covering the AgNWs on the substrate tightly. The study shows that coating of the hybrid nanomaterials on the PET substrate demonstrates exceptional optoelectronic properties with a transmittance of 94.68% (at a wavelength of 550 nm) and a sheet resistance of 25.0 ± 0.8 Ω/sq. No significant variation in electric resistance can be detected even when the film was subjected to a bend loading with a radius of curvature of 5.0 mm or the film was loaded with a reciprocal tension or compression for 1000 cycles. Furthermore, both chemical corrosion resistance and haze effect were improved when p-rGO was introduced. The study shows that the fabricated flexible TCFs have the potential to replace indium tin oxide film in the optoelectronic industry.

  10. Ag1 Pd1 Nanoparticles-Reduced Graphene Oxide as a Highly Efficient and Recyclable Catalyst for Direct Aryl C-H Olefination.

    Science.gov (United States)

    Hu, Qiyan; Liu, Xiaowang; Wang, Guoliang; Wang, Feifan; Li, Qian; Zhang, Wu

    2017-12-14

    The efficient and selective palladium-catalyzed activation of C-H bonds is of great importance for the construction of diverse bioactive molecules. Despite significant progress, the inability to recycle palladium catalysts and the need for additives impedes the practical applications of these reactions. Ag 1 Pd 1 nanoparticles-reduced graphene oxide (Ag 1 Pd 1 -rGO) was used as highly efficient and recyclable catalyst for the chelation-assisted ortho C-H bond olefination of amides with acrylates in good yields with a broad substrate scope. The catalyst can be recovered and reused at least 5 times without losing activity. A synergistic effect between the Ag and Pd atoms on the catalytic activity was found, and a plausible mechanism for the AgPd-rGO catalyzed C-H olefination is proposed. These findings suggest that the search for such Pd-based bimetallic alloy nanoparticles is a new method towards the development of superior recyclable catalysts for direct aryl C-H functionalization under mild conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rapid microwave-assisted synthesis of mesoporous NiMoO_4 nanorod/reduced graphene oxide composites for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Liu, Ting; Chai, Hui; Jia, Dianzeng; Su, Ying; Wang, Tao; Zhou, Wanyong

    2015-01-01

    Graphical abstract: Mesoporous NiMoO_4-rGO shows high specific capacitance of 1274 F/g at 1 A/g and ultrahigh energy density of 30.3 Wh/kg at a power density of 187 W/kg. - Abstract: Mesoporous NiMoO_4 nanorods grown on the surface of reduced graphene oxide composites (NiMoO_4-rGO) were synthesized via a simple, rapidly, and environment-friendly microwave-solvothermal method. The structure and morphology of the composites were characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, and transmission electron microscopy. The NiMoO_4-rGO composite exhibited high performance as an electrode material for supercapacitors. At a current density of 1 A g"−"1, the specific capacitance reached 1274 F g"−"1, which is higher than that of pure NiMoO_4 (800 F g"−"1). NiMoO_4-rGO can retain about 81.1% of its initial capacitance after 1000 charge/discharge cycles. Remarkably, NiMoO_4-rGO composites can be applied in asymmetric supercapacitors with ultrahigh energy density of 30.3 Wh kg"−"1 at a power density of 187 W kg"−"1. The enhanced electrochemical performance of NiMoO_4-rGO is mainly ascribed to the mesoporous-NiMoO_4 nanorods with large specific surface area, as well as high coupling with conductive rGO.

  12. Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites.

    Science.gov (United States)

    Hazarika, Ankita; Deka, Biplab K; Kim, DoYoung; Roh, Hyung Doh; Park, Young-Bin; Park, Hyung Wook

    2017-10-18

    Well-aligned NiCo 2 S 4 nanowires, synthesized hydrothermally on the surface of woven Kevlar fiber (WKF), were used to fabricate composites with reduced graphene oxide (rGO) dispersed in polyester resin (PES) by means of vacuum-assisted resin transfer molding. The NiCo 2 S 4 nanowires were synthesized with three precursor concentrations. Nanowire growth was characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Hierarchical and high growth density of the nanowires led to exceptional mechanical properties of the composites. Compared with bare WKF/PES, the tensile strength and absorbed impact energy were enhanced by 96.2% and 92.3%, respectively, for WKF/NiCo 2 S 4 /rGO (1.5%)/PES. The synergistic effect of NiCo 2 S 4 nanowires and rGO in the fabricated composites improved the electrical conductivity of insulating WKF/PES composites, reducing the resistance to ∼10 3 Ω. Joule heating performance depended strongly on the precursor concentration of the nanowires and the presence of rGO in the composite. A maximum surface temperature of 163 °C was obtained under low-voltage (5 V) application. The Joule heating performance of the composites was demonstrated in a surface deicing experiment; we observed that 17 g of ice melted from the surface of the composite in 14 min under an applied voltage of 5 V at -28 °C. The excellent performance of WKF/NiCo 2 S 4 /rGO/PES composites shows great potential for aerospace structural applications requiring outstanding mechanical properties and Joule heating capability for deicing of surfaces.

  13. Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions

    International Nuclear Information System (INIS)

    Barelli, L.; Ottaviano, A.

    2014-01-01

    Nowadays the control of greenhouse gas is probably the most challenging environmental policy issue. Since CO 2 is considered the major greenhouse gas (GHG) that contributes to the global warming, enforcing technological strategies aiming to avoid or reuse CO 2 emissions becomes crucial, in order to mitigate GHG environmental impact. Currently, solutions conventionally adopted to this purpose are carbon capture and storage (CCS) technologies. In this context, instead, the followed strategy aims to further improvements in energetic conversion efficiency with related reduced specific CO 2 emissions (per produced kWh e ). Therefore, with particular reference to the electric power generation, this paper proposes an innovative energy conversion system, based on solid oxide fuel cell (SOFC), characterized by higher efficiency and reduced CO 2 emission factor respect to an analogous conventional energy plant. In particular, the innovative solution consists of combining SOFC to methane dry reforming technology, while the conventional system refers to steam methane reforming-SOFC coupling. The innovative system performance up to 65% electric efficiency as cited in the paper, was validated through simulations carried out in Aspen Plus environment. - Highlights: • An innovative high efficiency plant with low CO 2 emissions is presented. • The new solution combined SOFC to methane dry reforming technology (CDR–SOFC). • A comparison between CDR–SOFC and SMR–SOFC system was carried out in Aspen Plus. • CDR–SOFC efficiency is greater of 6.4% percentage points respect to SMR–SOFC. • A CO 2 emission factor reduction of about 10% was achieved by CDR–SOFC plant

  14. Highly efficient removal of Malachite green from water by a magnetic reduced graphene oxide/zeolitic imidazolate framework self-assembled nanocomposite

    International Nuclear Information System (INIS)

    Lin, Kun-Yi Andrew; Lee, Wei-Der

    2016-01-01

    Graphical abstract: - Highlights: • MRGO/ZIF nanocomposite was prepared via self-assembly and used for MG adsorption. • MRGO/ZIF can exhibit an ultra-high adsorption capacity for MG of ∼3000 mg g −1 . • Adsorption isotherm was properly fitted to the Langmuir–Freundlich isotherm model. • Effects of temperature, pH and co-existing compounds were investigated. • Recyclability of MRGO/ZIF for MG adsorption was highly efficient and stable. - Abstract: Compared to the relatively low adsorption capacities of conventional adsorbents for Malachite Green (MG) (i.e., ∼500 mg g −1 ), zeolitic imidazolate framework (ZIF) appears to be a promising adsorbent considering its significantly high adsorption capacity (i.e., >2000 mg g −1 ). Nevertheless, using such a nano-scale ZIF material for adsorption may lead to secondary contamination from the release of nanomaterials to the environment. Thus, ZIF has to be recovered conveniently to prevent the secondary contamination and facilitate the separation of adsorbent from water after adsorption. To this end, in this study ZIF nanocrystals were loaded on the sheet-like magnetic reduced graphene oxide (MRGO) to form a self-assembled MRGO/ZIF. The self-assembly of MRGO/ZIF was achieved possibly via the electrostatic attraction and the π–π stacking interaction between MRGO and ZIF. The resultant MRGO/ZIF exhibited an ultra-high adsorption capacity for MG (∼3000 mg g −1 ). The adsorption kinetics, isotherm, activation and thermodynamics were also determined. Other factors affecting the adsorption were examined including temperature, pH and co-existing ions/compound. To demonstrate that MRGO/ZIF can be recovered and reused, a multiple-cycle of MG adsorption using the regenerated MRGO/ZIF was revealed and the recyclability remained highly efficient and stable. The highly-effective, recoverable and re-usable features enable MRGO/ZIF a promising adsorbent to remove MG from water.

  15. Vanadium Pentoxide Nanobelt-Reduced Graphene Oxide Nanosheet Composites as High-Performance Pseudocapacitive Electrodes: ac Impedance Spectroscopy Data Modeling and Theoretical Calculations

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2016-07-01

    Full Text Available Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO nanobelts (VNBs and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO are formed in the presence of graphene oxide (GO, a mild oxidant, which transforms into reduced GO (rGOHT, assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV with a varying scan rate and galvanostatic charging-discharging (V–t profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3 showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1, as compared to V1G1 (VO/GO = 1:1 composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of

  16. Preparation of Reduced Graphene Oxides as Electrode Materials for Supercapacitors

    KAUST Repository

    Bai, Yaocai

    2012-01-01

    Reduced graphene oxide as outstanding candidate electrode material for supercapacitor has been investigated. This thesis includes two topics. One is that three kinds of reduced graphene oxides were prepared by hydrothermal reduction under different

  17. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and

  18. Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease.

    Science.gov (United States)

    Khan, N; Monagas, M; Andres-Lacueva, C; Casas, R; Urpí-Sardà, M; Lamuela-Raventós, R M; Estruch, R

    2012-12-01

    Epidemiological studies suggest that regular consumption of cocoa-containing products may confer cardiovascular protection, reducing the risk of coronary heart disease (CHD). However, studies on the effects of cocoa on different cardiovascular risk factors are still scarce. The aim of this study was too evaluate the effects of chronic cocoa consumption on lipid profile, oxidized low-density lipoprotein (oxLDL) particles and plasma antioxidant vitamin concentrations in high-risk patients. Forty-two high-risk volunteers (19 men and 23 women, mean age 69.7 ± 11.5 years) were included in a randomized, crossover feeding trial. All received 40g of cocoa powder with 500 mL of skimmed milk/day(C + M) or only 500 mL/day of skimmed milk (M) for 4 weeks in a random order. Before and after each intervention period, plasma lipids, oxLDL and antioxidant vitamin concentrations were measured, as well as urinary cocoa polyphenols metabolites derived from phase II and microbial metabolisms. Compared to M, C + M intervention increases HDLc [2.67 mg/dL (95% confidence intervals, CI, 0.58-4.73; P = 0.008)] and decreases oxLDL levels [-12.3 U/L (CI,-19.3 to -5.2;P = 0.001)]. No changes between intervention groups were observed in vitamins B1, B6, B12, C and E, or folic acid concentrations. In addition, subjects who showed higher increments in urinary cocoa polyphenol metabolites exhibited significant increases in HDLc and significant decreases in oxLDL levels (P Consumption of cocoa power with milk modulates the lipid profile in high-risk subjects for CHD. In addition, the relationship observed between the urinary excretion of cocoa polyphenol metabolites and plasma HDLc and oxLDL levels suggests a beneficial role for cocoa polyphenols in lipid metabolism. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Adsorption of VOCs on reduced graphene oxide.

    Science.gov (United States)

    Yu, Lian; Wang, Long; Xu, Weicheng; Chen, Limin; Fu, Mingli; Wu, Junliang; Ye, Daiqi

    2018-05-01

    A modified Hummer's method was adopted for the synthesis of graphene oxide (GO) and reduced graphene oxide (rGO). It was revealed that the modified method is effective for the production of GO and rGO from graphite. Transmission electron microscopy (TEM) images of GO and rGO showed a sheet-like morphology. Because of the presence of oxygenated functional groups on the carbon surface, the interlayer spacing of the prepared GO was higher than that of rGO. The presence of OH and CO groups in the Fourier transform infrared spectra (FTIR) spectrum and G-mode and 2D-mode in Raman spectra confirmed the synthesis of GO and rGO. rGO (292.6m 2 /g) showed higher surface area than that of GO (236.4m 2 /g). The prepared rGO was used as an adsorbent for benzene and toluene (model pollutants of volatile organic compounds (VOCs)) under dynamic adsorption/desorption conditions. rGO showed higher adsorption capacity and breakthrough times than GO. The adsorption capacity of rGO for benzene and toluene was 276.4 and 304.4mg/g, respectively. Desorption experiments showed that the spent rGO can be successfully regenerated by heating at 150.0°C. Its excellent adsorption/desorption performance for benzene and toluene makes rGO a potential adsorbent for VOC adsorption. Copyright © 2017. Published by Elsevier B.V.

  20. High Current Oxide Cathodes

    National Research Council Canada - National Science Library

    Luhmann, N

    2000-01-01

    The aim of the AASERT supported research is to develop the plasma deposition/implantation process for coating barium, strontium and calcium oxides on nickel substrates and to perform detailed surface...

  1. High Current Oxide Cathodes

    National Research Council Canada - National Science Library

    Luhmann, N

    2000-01-01

    .... The vacuum are plasma deposition gun developed at Lawrence Berkeley National Laboratory (LBNL) has been used to deposit oxides and nitrides with very precise control over deposition rate and composition.

  2. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  3. Microwave-assisted synthesis of Mn{sub 3}O{sub 4} nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    She, Xiao; Zhang, Xinmin; Liu, Jingya [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Liang, E-mail: msell08@163.com [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Yu, Xianghua; Huang, Zhiliang [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Shang, Songmin, E-mail: shang.songmin@polyu.edu.hk [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2015-10-15

    Highlights: • Mn{sub 3}O{sub 4}@rGO nanocomposites were prepared by one-step microwave-assisted method. • The growth of Mn{sub 3}O{sub 4} and the reduction of graphene oxide occurred simultaneously. • Specific capacitance of the nanocomposite is higher than those of rGO and Mn{sub 3}O{sub 4}. • The nanocomposites have good rate capability and cycling stability. - ABSTRACT: One-step microwave-assisted synthetic route for the fabrication of Mn{sub 3}O{sub 4} nanoparticles@reduced graphene oxide (Mn{sub 3}O{sub 4}@rGO) nanocomposites has been demonstrated. The morphological structures of the nanocomposites are characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analyses (TGA), and scanning electron microscopy (SEM), respectively. All of the results indicate that the microwave-assisted synthesis results in the growth of Mn{sub 3}O{sub 4} and the reduction of graphene oxide simultaneously in ethylene glycol-water system. The specific capacitance of the as-prepared Mn{sub 3}O{sub 4}@rGO nanocomposite is higher than those of rGO and pure Mn{sub 3}O{sub 4}, which indicates the synergetic interaction between rGO and Mn{sub 3}O{sub 4}. The nanocomposites also have good rate capability and cycling stability in electrochemical experiments. This facile technique may be extended to the large scale and cost effective production of other composites based on graphene and metal oxide for many applications.

  4. Hydrothermal synthesis of magnetic reduced graphene oxide sheets

    International Nuclear Information System (INIS)

    Shen, Jianfeng; Shi, Min; Ma, Hongwei; Yan, Bo; Li, Na; Ye, Mingxin

    2011-01-01

    Graphical abstract: An environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite with a one-step hydrothermal method was demonstrated. The reducing process was accompanied by generation of magnetic nanoparticles. Highlights: → A one-step hydrothermal method for preparation of MN-CCG was demonstrated. → Glucose was used as the 'green' reducing agent. → The reducing process was accompanied by generation of magnetic nanoparticles. → The prepared MN-CCG is highly water suspendable and sensitive to magnetic field. -- Abstract: We demonstrated an environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite (MN-CCG). Glucose was used as the reducing agent in this one-step hydrothermal method. The reducing process was accompanied by generation of magnetic nanoparticles. The structure and composition of the nanocomposite was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and transmission electron microscopy. It was found that the prepared MN-CCG is highly water suspendable and sensitive to magnetic field.

  5. Vacuum-Assisted Low-Temperature Synthesis of Reduced Graphene Oxide Thin-Film Electrodes for High-Performance Transparent and Flexible All-Solid-State Supercapacitors.

    Science.gov (United States)

    Aytug, Tolga; Rager, Matthew S; Higgins, Wesley; Brown, Forrest G; Veith, Gabriel M; Rouleau, Christopher M; Wang, Hui; Hood, Zachary D; Mahurin, Shannon M; Mayes, Richard T; Joshi, Pooran C; Kuruganti, Teja

    2018-04-04

    Simple and easily integrated design of flexible and transparent electrode materials affixed to polymer-based substrates hold great promise to have a revolutionary impact on the functionality and performance of energy storage devices for many future consumer electronics. Among these applications are touch sensors, roll-up displays, photovoltaic cells, health monitors, wireless sensors, and wearable communication devices. Here, we report an environmentally friendly, simple, and versatile approach to produce optically transparent and mechanically flexible all-solid-state supercapacitor devices. These supercapacitors were constructed on tin-doped indium oxide coated polyethylene terephthalate substrates by intercalation of a polymer-based gel electrolyte between two reduced graphene oxide (rGO) thin-film electrodes. The rGO electrodes were fabricated simply by drop-casting of graphene oxide (GO) films, followed by a novel low-temperature (≤250 °C) vacuum-assisted annealing approach for the in situ reduction of GO to rGO. A trade-off between the optical transparency and electrochemical performance is determined by the concentration of the GO in the initial dispersion, whereby the highest capacitance (∼650 μF cm -2 ) occurs at a relatively lower optical transmittance (24%). Notably, the all-solid-state supercapacitors demonstrated excellent mechanical flexibility with a capacity retention rate above 90% under various bending angles and cycles. These attributes underscore the potential of the present approach to provide a path toward the realization of thin-film-based supercapacitors as flexible and transparent energy storage devices for a variety of practical applications.

  6. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    Science.gov (United States)

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  7. Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution

    Science.gov (United States)

    Shi, Ya-Cheng; Chen, Sai-Sai; Feng, Jiu-Ju; Lin, Xiao-Xiao; Wang, Weiping; Wang, Ai-Jun

    2018-05-01

    Ionic liquids as templates or directing agents have attracted great attention for shaping-modulated synthesis of advanced nanomaterials. In this work, reduced graphene oxide supported uniform core-shell Au@Pt nanoparticles (Au@Pt NPs/rGO) were fabricated by a simple one-pot aqueous approach, using N-methylimidazolium-based dicationic ionic liquid (1,1-bis(3-methylimadazoilum-1-yl)butylene bromide, [C4(Mim)2]2Br) as the shape-directing agent. The morphology evolution, structural information and formation mechanism of Au@Pt NPs anchored on rGO were investigated by a series of characterization techniques. The obtained nanocomposites displayed superior electrocatalytic features toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) compared with commercial Pt/C catalyst. This approach provides a novel route for facile synthesis of nanocatalysts in fuel cells.

  8. Embedding ultrafine ZnSnO3 nanoparticles into reduced graphene oxide composites as high-performance electrodes for lithium ion batteries

    Science.gov (United States)

    Ma, Yuhang; Jiang, Ranran; Li, Dan; Dong, Yutao; Liu, Yushan; Zhang, Jianmin

    2018-05-01

    Ultrafine ZnSnO3 nanoparticles, with an average diameter of 45 nm, homogeneously grown on reduced graphene oxide (rGO) have been successfully fabricated via methods of low temperature coprecipitation, colloid electrostatic self-assembly, and hydrothermal treatment. The uniformly distributed ZnSnO3 nanocrystals could inhibit the restacking of rGO sheets. In turn, the existence of rGO could hinder the growth and aggregation of ZnSnO3 nanoparticles in the synthesis process, increase the conductivity of the composite, and buffer the volume expansion of the ZnSnO3 nanocrystals upon lithium ion insertion and extraction. The obtained ZnSnO3/rGO exhibited superior cycling stability with a discharge/charge capacity of 718/696 mA h g-1 after 100 cycles at a current density of 0.1 A g-1.

  9. Fabrication of gold nanoparticles-decorated reduced graphene oxide as a high performance electrochemical sensing platform for the detection of toxicant Sudan I

    International Nuclear Information System (INIS)

    Li, Junhua; Feng, Haibo; Li, Jun; Feng, Yonglan; Zhang, Yaqian; Jiang, Jianbo; Qian, Dong

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •A well-dispersed AuNPs/RGO nanocomposite was fabricated via a green and in situ reduction method. •This nanocomposite displays excellent electro-catalysis activity for the oxidation of Sudan I. •The AuNPs/RGO/GCE exhibits superior comprehensive properties for the detection of Sudan I. •This proposed method was successfully applied to detect Sudan I in chilli powder and ketchup sauce. -- Abstract: In this paper, we are presenting a facile, green and in situ synthesis strategy for the convenient preparation of well-dispersed gold nanoparticles (AuNPs)-decorated reduced graphene oxide (RGO) without the use of any template molecules and poisonous reductant. The as-synthesized nanocomposite has been detailedly characterized by scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis as well as electrochemical technologies. The morphological and structural characterizations illustrate that AuNPs can be efficiently decorated on RGO with the Au content of 20.33 wt% in the matrix and the size of the embedded AuNPs vary between 25 and 40 nm. The electrochemical investigations confirm that the small-sized AuNPs on the RGO film can remarkably boost the electrocatalytic activity for the oxidation of Sudan I, which can be used as an enhanced electrochemical sensing platform for the sensitively detection of the toxicant Sudan I. Moreover, the kinetic parameter studies demonstrate that the Sudan I electro-oxidation at the AuNPs/RGO electrode is a diffusion-controlled process which involves two-electron and two-proton transfer. Under the optimal conditions, a wide linear range of Sudan I detection from 0.01 to 70 μmol L −1 with good linearity (R 2 = 0.9965, 0.9942) and a low detection limit (1.0 nmol L −1 , S/N = 3) were obtained. In comparison with the existing analogues ever reported

  10. Assembling porous carbon-coated TiO2(B)/anatase nanosheets on reduced graphene oxide for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Jiang, Shang; Wang, Runwei; Pang, Mingjun; Wang, Hongbin; Zeng, Shangjing; Yue, Xinzheng; Ni, Ling; Yu, Yanru; Dai, Jinyu; Qiu, Shilun; Zhang, Zongtao

    2015-01-01

    Highlights: • Porous carbon-coated mixed-phase Titanium dioxide nanosheets/reduced graphene oxide composites are successfully fabricated. • Carbon coating has been achieved from organic components. • Mesopores are uniformly distributed throughout the whole TiO 2 @C nanosheet. • Excellent cycling stability: the reversible capacity of 158.6 mAh g −1 is achieved at the current density of 800 mA g −1 after 500 cycles. - Abstract: Novel porous carbon-coated mixed-phase porous TiO 2 (TiO 2 (B)/anatase) nanosheets/reduced graphene oxide composites (TiO 2 @C/RGO) are successfully prepared through a facile one-pot solvothermal process followed by subsequent heat treatment in H 2 /Ar. The as-formed composites have a hierarchical porous structure, involving an average pore size of 28.56 nm, a large pore volume of 0.589 cm 3 g −1 and a desired surface area (136.19 m 2 g −1 ). When used as an anode material in LIBs, TiO 2 @C/RGO exhibits stable cycling performance with a reversible capacity of 272.9 mAh g −1 (with the second capacity retention of 151.1%) after 500 cycles at a current density of 100 mA g −1 , much higher than that of TiO 2 @C (177.6 mAh g −1 , 123.9% of the discharge capacity in second cycle) and TiO 2 (75.1 mAh g −1 , corresponding to 96.5% of the original capacity). More impressively, the capacity of TiO 2 @C/RGO can reach 158.6 mAh g −1 after 500 cycles even at 800 mA g −1 with Coulombic efficiency above 99.0%. The superior electrochemical performance of TiO 2 @C/RGO may be attributed to its unique 3D hierarchical porous structures, the existence of carbon, large surface area and extremely reduced diffusion length.

  11. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  12. Reduced graphene oxide for Li–air batteries

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Overgaard, Marc; Younesi, Reza

    2015-01-01

    Reduced graphene oxide (rGO) has shown great promise as an air-cathode for Li-air batteries with high capacity. In this article we demonstrate how the oxidation time of graphene oxide (GO) affects the ratio of different functional groups and how trends of these in GO are extended to chemically...... and thermally reduced GO. We investigate how differences in functional groups and synthesis may affect the performance of Li-O-2 batteries. The oxidation timescale of the GO was varied between 30 min and 3 days before reduction. Powder Xray diffraction, micro-Raman, FE-SEM, BET analysis, and XPS were used...... techniques can enhance the structural understanding of rGO. Different rGO cathodes were tested in Li-O-2 batteries which revealed a difference in overpotentials and discharge capacities for the different rGO's. We report the highest Li-O-2 battery discharge capacity recorded of approximately 60,000 m...

  13. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Yan, Xiao-Yan; Tong, Xi-Li; Zhang, Yue-Fei; Han, Xiao-Dong; Wang, Ying-Yong; Jin, Guo-Qiang; Qin, Yong; Guo, Xiang-Yun

    2012-02-11

    Cuprous oxide (Cu(2)O) nanoparticles dispersed on reduced graphene oxide (RGO) were prepared by reducing copper acetate supported on graphite oxide using diethylene glycol as both solvent and reducing agent. The Cu(2)O/RGO composite exhibits excellent catalytic activity and remarkable tolerance to methanol and CO in the oxygen reduction reaction. This journal is © The Royal Society of Chemistry 2012

  14. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  15. In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Kwang-Heon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Park, Sang-Hoon; Kim, Kwang-Bum

    2013-08-07

    An in situ chemical synthesis approach has been developed to prepare ruthenium oxide/reduced graphene oxide (RGO) nanocomposites. It is found that as the C/O ratio increases, the number density of RuO2 nanoparticles decreases, because the chemical interaction between the Ru ions and the oxygen-containing functional groups provides anchoring sites where the nucleation of particles takes place. For electrochemical capacitor applications, the microwave-hydrothermal process was carried out to improve the conductivity of RGO in RuO2/RGO nanocomposites. The significant improvement in capacitance and high rate capability might result from the RuO2 nanoparticles used as spacers that make the interior layers of the reduced graphene oxide electrode available for electrolyte access.

  16. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.

    Science.gov (United States)

    Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E

    2013-12-01

    Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. © 2013 Elsevier Ltd. All rights reserved.

  17. Two-dimensional heterostructures of V2O5 and reduced graphene oxide as electrodes for high energy density asymmetric supercapacitors

    KAUST Repository

    Nagaraju, Doddahalli H.

    2014-08-27

    In this article, we report the synthesis of electrode materials based on two-dimensional (2D) heterostructures of V2O5 nanosheets (V2O5 NS) and reduced graphene oxide (rGO) electrodes for asymmetric supercapacitor applications. Specifically, the 2D V2O5 and rGO/V2O5 nanosheet electrodes showed a specific capacitance of 253 F g-1 and 635 F g-1, respectively at a current density of 1 A g-1. The capacitance of the heterostructures is almost 2.5 times higher than the 2D V2O5 nanosheets alone. The corresponding energy density of 39 Wh kg-1 and 79.5 Wh kg-1 were achieved for the two electrodes at a power density of 900 W kg-1 in an asymmetric supercapacitor configuration. The energy and power density using the nanosheet heterostructure are, to our knowledge, higher than any of those that were previously reported for asymmetric supercapacitors using V2O5 electrodes. This journal is

  18. One-step synthesis of free-standing α-Ni(OH)2 nanosheets on reduced graphene oxide for high-performance supercapacitors

    Science.gov (United States)

    Dong, Bitao; Zhou, Han; Liang, Jin; Zhang, Lusi; Gao, Guoxin; Ding, Shujiang

    2014-10-01

    In this work, a hierarchical hybrid structure of reduced graphene oxide (rGO) supported ultrathin α-Ni(OH)2 nanosheets (denoted as α-Ni(OH)2@rGO NSs) has been developed successfully via an environmentally friendly one-step solution method. The resulting product of α-Ni(OH)2@rGO NSs was further characterized by scanning electron microscope, transmission electron microscope, x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. The ultrathin α-Ni(OH)2 nanosheets of around 6 nm in thickness are uprightly coated on the double sides of rGO substrate. When evaluated as electrodes for supercapacitors, the hybrid α-Ni(OH)2@rGO NSs demonstrate excellent supercapacitor performance and cycling stability, compared with the self-aggregated α-Ni(OH)2 powder. Even after 2000 cycles, the hybrid electrodes still can deliver a specific capacitance of 1300 F g-1 at the current density of 5 A g-1, corresponding to no capacity loss of the initial cycle. Such excellent electrochemical performance should be attributed to the ultrathin, free-standing, and hierarchical nanosheets of α-Ni(OH)2, which not only promote efficient charge transport and facilitate the electrolyte diffusion, but also prevent aggregation of electro-active materials effectively during the charge-discharge process.

  19. One-step synthesis of free-standing α-Ni(OH)₂ nanosheets on reduced graphene oxide for high-performance supercapacitors.

    Science.gov (United States)

    Dong, Bitao; Zhou, Han; Liang, Jin; Zhang, Lusi; Gao, Guoxin; Ding, Shujiang

    2014-10-31

    In this work, a hierarchical hybrid structure of reduced graphene oxide (rGO) supported ultrathin α-Ni(OH)2 nanosheets (denoted as α-Ni(OH)2@rGO NSs) has been developed successfully via an environmentally friendly one-step solution method. The resulting product of α-Ni(OH)2@rGO NSs was further characterized by scanning electron microscope, transmission electron microscope, x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. The ultrathin α-Ni(OH)2 nanosheets of around 6 nm in thickness are uprightly coated on the double sides of rGO substrate. When evaluated as electrodes for supercapacitors, the hybrid α-Ni(OH)2@rGO NSs demonstrate excellent supercapacitor performance and cycling stability, compared with the self-aggregated α-Ni(OH)2 powder. Even after 2000 cycles, the hybrid electrodes still can deliver a specific capacitance of 1300 F g(-1) at the current density of 5 A g(-1), corresponding to no capacity loss of the initial cycle. Such excellent electrochemical performance should be attributed to the ultrathin, free-standing, and hierarchical nanosheets of α-Ni(OH)2, which not only promote efficient charge transport and facilitate the electrolyte diffusion, but also prevent aggregation of electro-active materials effectively during the charge-discharge process.

  20. One-step synthesis of free-standing α-Ni(OH)2 nanosheets on reduced graphene oxide for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Dong, Bitao; Zhou, Han; Liang, Jin; Zhang, Lusi; Gao, Guoxin; Ding, Shujiang

    2014-01-01

    In this work, a hierarchical hybrid structure of reduced graphene oxide (rGO) supported ultrathin α-Ni(OH) 2 nanosheets (denoted as α-Ni(OH) 2 @rGO NSs) has been developed successfully via an environmentally friendly one-step solution method. The resulting product of α-Ni(OH) 2 @rGO NSs was further characterized by scanning electron microscope, transmission electron microscope, x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller. The ultrathin α-Ni(OH) 2 nanosheets of around 6 nm in thickness are uprightly coated on the double sides of rGO substrate. When evaluated as electrodes for supercapacitors, the hybrid α-Ni(OH) 2 @rGO NSs demonstrate excellent supercapacitor performance and cycling stability, compared with the self-aggregated α-Ni(OH) 2 powder. Even after 2000 cycles, the hybrid electrodes still can deliver a specific capacitance of 1300 F g −1 at the current density of 5 A g −1 , corresponding to no capacity loss of the initial cycle. Such excellent electrochemical performance should be attributed to the ultrathin, free-standing, and hierarchical nanosheets of α-Ni(OH) 2 , which not only promote efficient charge transport and facilitate the electrolyte diffusion, but also prevent aggregation of electro-active materials effectively during the charge–discharge process. (paper)

  1. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    Science.gov (United States)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  2. Defect driven tailoring of colossal dielectricity of Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S.; Mondal, A. [Department of Physics, Jadavpur University, Kolkata 700 032 (India); Dey, K. [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Ray, R., E-mail: juphyruma@gmail.com [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-02-15

    Highlights: • Reduced graphene oxides (RGO) are prepared by two chemical routes. • Defects in RGO are characterized by Raman, FTIR and XPS studies. • Defects tailor colossal dielectricity in RGO. - Abstract: Reduced graphene oxide (RGO) is prepared in two different chemical routes where reduction of graphene oxide is performed by hydrazine hydrate and through high pressure in hydrothermal reactor. Samples are characterized by X-ray powdered diffraction (XRD), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Types of defects are probed by Raman, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). UV–vis absorption reveals different optical band gaps of the two RGOs. Conductivity mechanism is studied through I–V measurements displaying different characteristic features which are addressed due to the presence of defects appeared in different synthesis. Significantly high value (∼10{sup 4}) of dielectric permittivity at 10 MHz is attractive for technological application which could be tuned by the defects present in RGO.

  3. One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform

    International Nuclear Information System (INIS)

    Teymourian, Hazhir; Salimi, Abdollah; Firoozi, Somayeh; Korani, Aazam; Soltanian, Saied

    2014-01-01

    Graphical abstract: - Highlights: • One pot hydrothermal synthesis used for preparing of ZrO 2 NPs reduced graphene oxide. • Electrocatalytic activity of ZrO 2 /rGO improved in compared to ZrO 2 based C- materials. • ZrO 2 NPs/rGO modified GCE was used for electrocatalytic reduction of O 2 and H 2 O 2 . • ZrO 2 NPs/rGO/GCE shows excellent ability to simultaneous detection of AA,UA and DP. • With immobilization of GOX onto ZrO 2 NPs/rGO a sensitive glucose biosensor fabricated. - Abstract: We report on the synthesis of zirconium dioxide-reduced graphene oxide composite (ZrO 2 -rGO) and its application as a novel architecture for electrochemical sensing and biosensing purposes. ZrO 2 -rGO hybrid is synthesized through a simple one-step hydrothermal route, where the reduction of GO and the in-situ generation of ZrO 2 nanoparticles (NPs) occurred simultaneously. Characterization of the resultant hybrid material using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy clearly indicated the homogeneous dispersion of ZrO 2 NPs with particle sizes of ∼5 nm on rGO sheets. The potential application of ZrO 2 -rGO modified glassy carbon electrode (ZrO 2 -rGO/GC) for electroanalytical purposes was demonstrated by using several important electroactive compounds as representative examples (i.e., O 2 , hydrogen peroxide (H 2 O 2 ), glucose, ascorbic acid (AA), dopamine (DA) and uric acid (UA)). Electrochemical control experiments by using different composites of ZrO 2 /graphite, ZrO 2 /Active Carbon and ZrO 2 electrodeposited on activated GC electrode revealed that the ZrO 2 -rGO composite possessed superior electrocatalytic activitiy towards the catalytic reduction of O 2 and H 2 O 2 at more reduced overpotentials. The linear range of H 2 O 2 concentration was from 0.10 to 1340 μM with the detection limit of 20 nM (S/N = 3). Furthermore, via immobilization of glucose oxidase (GOx) enzyme onto the

  4. Analysis of alternative pathways for reducing nitrogen oxide emissions

    Science.gov (United States)

    Strategies for reducing tropospheric ozone typically include modifying combustion processes to reduce the formation of nitrogen oxides (NOx) and applying control devices that remove NOx from the exhaust gases of power plants, industrial sources and vehicles. For portions of the ...

  5. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...... by the competition between chain‐branching and ‐propagating steps; modeling predictions are particularly sensitive to the branching fraction for the OCS + O reaction to form CO + SO or CO2 + S....

  6. Extra virgin olive oil reduces liver oxidative stress and tissue depletion of long-chain polyunsaturated fatty acids produced by a high saturated fat diet in mice

    Directory of Open Access Journals (Sweden)

    Valenzuela, R.

    2016-06-01

    Full Text Available Long-chain polyunsaturated fatty acids (LCPUFA which are synthesized mainly in the liver have relevant functions in the organism. A diet high in fat (HFD generates an increase in the levels of fat and induces oxidative stress (lipo-peroxidation in the liver, along with a reduction in tissue n-3 and n-6 LCPUFA. Extra virgin olive oil (EVOO is rich in anti-oxidants (polyphenols and tocopherols which help to prevent the development of oxidative stress. This study evaluated the role of EVOO in preventing the induction of fat deposition and oxidative stress in the liver and in the depletion of LCPUFA in the liver, erythrocytes and brain generated by a HFD in C57BL/6J mice. Four experimental groups (n = 10/group were fed a control diet (CD or a HFD for 12 weeks and were respectively supplemented with EVOO (100 mg/day. The group fed HFD showed a significant increase (p Los ácidos grasos poliinsaturados de cadena larga (AGPICL sintetizados principalmente por el hígado, cumplen funciones relevantes en el organismo. Una dieta alta en grasa (DAG genera un incremento en los niveles de grasa y estrés oxidativo (lipoperoxidación en hígado y una reducción en los niveles de AGPICL n-3 y n-6 en diferentes tejidos. El aceite de oliva extra virgen (AOEV es rico en antioxidantes (polifenoles y tocoferoles que ayudan a prevenir el desarrollo del estrés oxidativo. Este trabajo evaluó el rol del AOEV en la prevención del depósito de grasa, estrés oxidativo hepático y reducción de los AGPICL n-3 y n-6 en diferentes tejidos generado por una DAG en ratones C57BL/6J. Cuatro grupos experimentales (n=10/grupo fueron alimentados (12 semanas con dieta control (DC o DAG y suplementados con AOEV (100 mg/día. El grupo alimentado con DAG presentó un incremento (p < 0,05 en la acumulación de grasa y estrés oxidativo hepático, acompañado de una reducción en los niveles de AGPICL n-3 y n-6 en hígado, eritrocitos y cerebro. La suplementación con AOEV logr

  7. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods

    International Nuclear Information System (INIS)

    Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I.

    2014-01-01

    Highlights: • Graphene oxide (FL-GOc) and reduced graphene oxide (FL-RGOc): XRD, TEM, XPS, REELS. • FL-GOc: stacking nanostructure—22 × 6 nm (DxH), 0.9 nm layers separation (XRD). • FL-RGOc: stacking nanostructure—8 × 1 nm (DxH), 0.4 nm layers separation (XRD). • Reduction: oxygen group degradation, decreasing distance between graphene layers. • Number of graphene layers in stacking nanostructure: 6–7 (FL-GOc), 2–3 (FL-RGOc). - Abstract: The commercial and synthesised few-layer graphene oxide, prepared using oxidation reactions, and few-layer reduced graphene oxide samples were structurally and chemically investigated by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron spectroscopy methods, i.e. X-ray photoelectron spectroscopy (XPS) and reflection electron energy loss spectroscopy (REELS). The commercial graphene oxide (FL-GOc) shows a stacking nanostructure of about 22 × 6 nm average diameter by height with the distance of 0.9 nm between 6-7 graphene layers, whereas the respective reduced graphene oxide (FL-RGOc)—about 8 × 1 nm average diameter by height stacking nanostructure with the distance of 0.4 nm between 2-3 graphene layers (XRD). The REELS results are consistent with those by the XRD indicating 8 (FL-GOc) and 4 layers (FL-RGOc). In graphene oxide and reduced graphene oxide prepared from the graphite the REELS indicates 8–11 and 7–10 layers. All graphene oxide samples show the C/O ratio of 2.1–2.3, 26.5–32.1 at% of C sp 3 bonds and high content of functional oxygen groups (hydroxyl—C-OH, epoxy—C-O-C, carbonyl—C=O, carboxyl—C-OOH, water) (XPS). Reduction increases the C/O ratio to 2.8–10.3, decreases C sp 3 content to 11.4–20.3 at% and also the content of C-O-C and C=O groups, accompanied by increasing content of C-OH and C-OOH groups. Formation of additional amount of water due to functional oxygen group reduction leads to layer delamination. Removing of functional oxygen groups

  8. Facile synthesis of BiOF/Bi{sub 2}O{sub 3}/reduced graphene oxide photocatalyst with highly efficient and stable natural sunlight photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Limin; Dong, Shuying; Li, Qilu; Feng, Jinglan; Pi, Yunqing; Liu, Menglin [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China); Sun, Jingyu, E-mail: sunjy-cnc@pku.edu.cn [Center for Nanochemistry (CNC), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Sun, Jianhui, E-mail: sunjh@htu.cn [School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007 (China)

    2015-06-05

    Highlights: • A dual Bi-based ball-shaped material BiOF/Bi{sub 2}O{sub 3} were facilely synthesized. • The composition effect of BiOF/Bi{sub 2}O{sub 3}/RGO hybrid were probed for the first time. • The photocatalytic performances were evaluated upon natural sunlight irradiation. • The composites showed a twofold augmentation in the degradation efficiency. • The hybrid photocatalyst can be easily recycled for three times. - Abstract: A facile and efficient route for the controllable synthesis of BiOF/Bi{sub 2}O{sub 3} nanostructures by hydrolysis method was reported, where the as-prepared BiOF/Bi{sub 2}O{sub 3} was subsequently incorporated with reduced graphene oxide (RGO) sheets to form BiOF/Bi{sub 2}O{sub 3}/RGO composites. The obtained BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical and optical properties. Photocatalytic capacities of the pure BiOF/Bi{sub 2}O{sub 3} and BiOF/Bi{sub 2}O{sub 3}/RGO composites have been investigated by the degradation of Rhodamine B (RhB)-contained wastewater under natural sunlight irradiation. A twofold augmentation of degradation efficiency was in turn observed for BiOF/Bi{sub 2}O{sub 3}/RGO composites compared with that of pure BiOF/Bi{sub 2}O{sub 3} under the natural sunlight irradiation. The optimum conditions, the effects of the active species and stabilities in photocatalytic performances of the BiOF/Bi{sub 2}O{sub 3}/RGO composites have also been probed.

  9. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material

    International Nuclear Information System (INIS)

    Chang, Xueting; Sun, Shibin; Dong, Lihua; Hu, Xiong; Yin, Yansheng

    2014-01-01

    Graphical abstract: Electrochromic mechanism of tungsten oxide nanowires-reduced graphene oxide composite. - Highlights: • A novel inorganic-nano-carbon hybrid composite was prepared. • The hybrid composite has sandwich-like structure. • The hybrid composite exhibited high-quality electrohcromic performance. - Abstract: In this work, we report the synthesis of a novel hybrid electrochromic composite through nucleation and growth of ultrathin tungsten oxide nanowires on graphene oxide sheets using a facile solvothermal route. The competition between the growth of tungsten oxide nanowires and the reduction of graphene oxide sheets leads to the formation of sandwich-structured tungsten oxide-reduced graphene oxide composite. Due to the strongly coupled effect between the ultrathin tungsten oxide nanowires and the reduced graphene oxide nanosheets, the novel electrochromic composite exhibited high-quality electrochromic performance with fast color-switching speed, good cyclic stability, and high coloration efficiency. The present tungsten oxide-reduced graphene oxide composite represents a new approach to prepare other inorganic-reduced graphene oxide hybrid materials for electrochemical applications

  10. Reduced graphene oxide wrapped Ag nanostructures for enhanced SERS activity

    Science.gov (United States)

    Nair, Anju K.; Kala, M. S.; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    Graphene - metal nanoparticle hybrids have received great attention due to their unique electronic properties, large specific surface area, very high conductivity and more charge transfer. Thus, it is extremely advantages to develop a simple and efficient process to disperse metal nanostructures over the surface of graphene sheets. Herein, we report a hydrothermal assisted strategy for developing reduced graphene oxide /Ag nanomorphotypes (cube, wire) for surface enhanced Raman scattering (SERS) applications, considering the advantages of synergistic effect of graphene and plasmonic properties of Ag nanomorphotypes.

  11. Van der Waals pressure sensors using reduced graphene oxide composites

    Science.gov (United States)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  12. Effective extraction and simultaneous determination of Sudan dyes from tomato sauce and chili-containing foods using magnetite/reduced graphene oxide nanoparticles coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Zhang, Ming-Yue; Wang, Man-Man; Hao, Yu-Lan; Shi, Xin-Ran; Wang, Xue-Sheng

    2016-05-01

    A simple, effective, and robust magnetic solid-phase extraction method was developed using magnetite/reduced graphene oxide nanoparticles as the adsorbent for the simultaneous determination of Sudan dyes (I, II, III, and IV) in foodstuffs. The magnetite/reduced graphene oxide nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. The extraction parameters including extraction time, elution solution, and elution time and volume were investigated in detail. Such magnetite/reduced graphene oxide nanoparticles based magnetic solid-phase extraction in combination with high-performance liquid chromatography and variable wavelength detection gave the detection limits of 3-6 μg/kg for Sudan I-IV in chili sauce, tomato sauce, chili powder, and chili flake samples. The recoveries were 79.6-108% at three spiked levels with the intra- and inter-day relative standard deviations of 1.2-8.6 and 4.5-9.6%, respectively. The feasibility was further performed by a comparison with commercial alumina-N. This method is suitable for the routine analysis of Sudan dyes due to its sensitivity, simplicity, and low cost. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. One-step hydrothermal synthesis of three-dimensional porous Ni-Co sulfide/reduced graphene oxide composite with optimal incorporation of carbon nanotubes for high performance supercapacitors

    Science.gov (United States)

    Chiu, Cheng-Ting; Chen, Dong-Hwang

    2018-04-01

    Three-dimensional (3D) porous Ni-Co sulfide/reduced graphene oxide composite with the appropriate incorporation of carbon nanotubes (NCS/rGO/CNT) was fabricated as a promising material for supercapacitor electrodes. It combined the high pseudo-capacitance of Ni-Co sulfide as well as the large specific surface area and electrical double layer capacitance of reduced graphene oxide (rGO). Carbon nanotubes (CNTs) were incorporated to act as the spacer for hindering the restacking of rGO and to construct a conductive network for enhancing the electron transport. The 3D porous NCS/rGO/CNT composite was fabricated by a facile one-step hydrothermal process in which Ni-Co sulfide nanosheets were synthesized and graphene oxide was reduced simultaneously. It was shown that the capacitance and cyclic performance indeed could be effectively improved via the appropriate addition of CNTs. In addition, a flexible all-solid-state asymmetric supercapacitor based on the NCS/rGO/CNT electrode was fabricated and exhibited the same capacitive electrochemical performance under bending. Also, it could successfully turn on a light-emitting diode light, revealing its feasibility in practical application. All results demonstrated that the developed NCS/rGO/CNT composite has potential application in supercapacitors.

  14. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    Science.gov (United States)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  15. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    Science.gov (United States)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  16. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    OpenAIRE

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the p...

  17. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  18. A glassy carbon electrode modified with porous Cu_2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid

    International Nuclear Information System (INIS)

    Mei, Li-Ping; Feng, Jiu-Ju; Wu, Liang; Chen, Jian-Rong; Shen, Liguo; Wang, Ai-Jun; Xie, Yunlong

    2016-01-01

    Porous cuprous oxide nanospheres were deposited on reduced graphene oxide (pCu_2O NS-rGO) by a solvothermal approach that uses hexadecyltrimethylammonium bromide as the capping agent and L-glutamic acid as the reducing agent. The nanomaterial was characterized by transmission electron microscopy, Raman spectroscopy, thermogravimetry, and electrochemical methods. A glassy carbon electrode was modified with pCu_2O NS-rGO, and the respective electrode displays a well expressed oxidation peak for dopamine (DA) located at 160 mV (vs. SCE). It also gives a strong peak for uric acid (UA) which is separated from the DA peak by 130 mV (vs. SCE). No signals can be detected for ascorbic acid (AA) in concentrations up to 2.0 mM. The findings are exploited in a method for simultaneous determination of UA and DA. The linear ranges are from 1.0 to 138 μM for UA, and from 0.05 to 109 μM for DA even in the presence of relatively high concentrations of AA. The detection limits are 112 nM for UA and 15 nM for DA (at an S/N ratio of 3). (author)

  19. Study on IR Properties of Reduced Graphene Oxide

    Science.gov (United States)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun

    2018-01-01

    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  20. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite

    International Nuclear Information System (INIS)

    Rathnayake, R.M.N.M.; Wijayasinghe, H.W.M.A.C.; Pitawala, H.M.T.G.A.; Yoshimura, Masamichi; Huang, Hsin-Hui

    2017-01-01

    Highlights: • The high purity of this form of needle platy natural vein graphite is expected to synthesize GO and rGO readily and efficiently, as compared to the synthetic and less pure graphite raw materials. • Production of large-scale GO and rGO for industrial applications can be achieved by using this highly crystalline NPG vein graphite, and it adds value to the natural resources. • High quality, few-layer, and cost effective GO and rGO can achieve great results using this low cost, natural graphite. - Abstract: Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated R_O_/_C of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.

  1. Synthesis of graphene oxide and reduced graphene oxide by needle platy natural vein graphite

    Energy Technology Data Exchange (ETDEWEB)

    Rathnayake, R.M.N.M. [National Institute of Fundamental Studies, Kandy (Sri Lanka); Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Wijayasinghe, H.W.M.A.C., E-mail: athulawijaya@gmail.com [National Institute of Fundamental Studies, Kandy (Sri Lanka); Pitawala, H.M.T.G.A. [Department of Geology, University of Peradeniya, Peradeniya (Sri Lanka); Yoshimura, Masamichi; Huang, Hsin-Hui [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2017-01-30

    Highlights: • The high purity of this form of needle platy natural vein graphite is expected to synthesize GO and rGO readily and efficiently, as compared to the synthetic and less pure graphite raw materials. • Production of large-scale GO and rGO for industrial applications can be achieved by using this highly crystalline NPG vein graphite, and it adds value to the natural resources. • High quality, few-layer, and cost effective GO and rGO can achieve great results using this low cost, natural graphite. - Abstract: Among natural graphite varieties, needle platy vein graphite (NPG) has very high purity. Therefore, it is readily used to prepare graphene oxide (GO) and reduced graphene oxide (rGO). In this study, GO and rGO were prepared using chemical oxidation and reduction process, respectively. The synthesized materials were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. XRD studies confirmed the increase of the interlayer spacing of GO and rGO in between 3.35 to 8.66 A°. AFM studies showed the layer height of rGO to be 1.05 nm after the reduction process. TEM micrographs clearly illustrated that the prepared GO has more than 25 layers, while the rGO has only less than 15 layers. Furthermore, the effect of chemical oxidation and reduction processes on surface morphology of graphite were clearly observed in FESEM micrographs. The calculated R{sub O/C} of GO and rGO using XPS analysis are 5.37% and 1.77%, respectively. The present study revealed the successful and cost effective nature of the chemical oxidation, and the reduction processes for the production of GO and rGO out of natural vein graphite.

  2. Facile Assembly of 3D Porous Reduced Graphene Oxide/Ultrathin MnO2 Nanosheets-S Aerogels as Efficient Polysulfide Adsorption Sites for High-Performance Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhao, Xiaojun; Wang, Hui; Zhai, Gaohong; Wang, Gang

    2017-05-23

    Rechargeable lithium-sulfur (Li-S) batteries are receiving much attention due to their high specific capacity, low cost, and environmental friendliness. Nonetheless, fast capacity decay and low specific capacity still limit their practical implementation. Herein, we report a facile strategy to overcome these challenges by the design and fabrication of 3D porous reduced graphene oxide/ultrathin MnO 2 nanosheets-S aerogel (rGM-SA) composites for Li-S batteries. By a simple solvothermal reaction process, nanosized S atoms are homogeneously decorated into the 3D scaffold formed by reduced graphene oxide (rGO) and MnO 2 nanosheets, which can form the homogeneous rGM-SA composites. In this porous network architecture, rGO serves as an electron and ion transfer pathway, a physical adsorption site for polysulfides, and provides structural stability. The ultrathin MnO 2 nanosheets provide strong binding sites for trapping polysulfide intermediates. The 3D porous rGO/MnO 2 architecture enables rapid ion transport and buffers volume expansion of sulfur during discharge. The rGM-SA composites can be directly used as lithium-sulfur battery cathodes without using binder and conductive additive. As a result of this multifunctional arrangement, the rGM-SA composites exhibit high and stable-specific capacities over 200 cycles and excellent high-rate performances. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Casein mediated green synthesis and decoration of reduced graphene oxide

    Science.gov (United States)

    Maddinedi, Sireesh Babu; Mandal, Badal Kumar; Vankayala, Raviraj; Kalluru, Poliraju; Tammina, Sai Kumar; Kiran Kumar, H. A.

    This research is mainly focusing on one-step biosynthesis of graphene from graphene oxide and its stabilization using naturally occurring milk protein, casein. The synthesis of casein reduced graphene oxide (CRGO) was completed within 7 h under reflux at 90 °C with the formation of few layered fine graphene nanosheets. UV-Vis, XRD, XPS analysis data revealed the reduction process of the graphene oxide. Results of FT-IR, HPLC and TEM analysis have shown that the ensuing material consists of graphene decorated with casein molecules. Aspartic acid and glutamic acid residue present in casein molecules are responsible for the reduction of graphene oxide.

  4. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.

    Science.gov (United States)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Li, Jia; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-08-14

    The cellulose nanofibers (CNFs) paper exhibit high visible light transmittance, high mechanical strength, and excellent flexibility. Therefore, CNFs paper may be an excellent substrate material for flexible transparent electronic devices. In this paper, we endeavor to prepare CNFs-based flexible transparent conductive paper by layer-by-layer (LbL) assembly using divalent copper ions (Cu(2+)) as the crosslinking agent. The thickness of the reduced graphene oxide (RGO) active layer in the CNFs paper can be controlled by the cycle times of the LbL assembly. CNFs/[RGO]20 paper has the sheet resistances of ∼2.5 kΩ/□, and the transmittance of about 76% at a wavelength of 550 nm. Furthermore, CNFs/[RGO]20 paper inherits the excellent mechanical properties of CNFs paper, and the ultimate strength is about 136 MPa. CNFs-based flexible transparent conductive paper also exhibits excellent electrical stability and flexibility. Copyright © 2013. Published by Elsevier Ltd.

  5. Preparation of Reduced Graphene Oxides as Electrode Materials for Supercapacitors

    KAUST Repository

    Bai, Yaocai

    2012-06-01

    Reduced graphene oxide as outstanding candidate electrode material for supercapacitor has been investigated. This thesis includes two topics. One is that three kinds of reduced graphene oxides were prepared by hydrothermal reduction under different pH conditions. The pH values were found to have great influence on the reduction of graphene oxides. Acidic and neutral media yielded reduced graphene oxides with more oxygen-functional groups, lower specific surface areas but broader pore size distributions than those in basic medium. Variations induced by the pH changes resulted in great differences in the supercapacitor performance. The graphene produced in the basic solution presented mainly electric double layer behavior with specific capacitance of 185 F/g, while the other two showed additional pseudocapacitance behavior with specific capacitance of 225 F/g (acidic) and 230 F/g (neutral), all at a constant current density of 1A/g. The other one is that different reduced graphene oxides were prepared via solution based hydrazine reduction, low temperature thermal reduction, and hydrothermal reduction. The as- prepared samples were then investigated by UV-vis spectroscopy, X-ray diffraction, Raman spectroscopy, and Scanning electron microscope. The supercapacitor performances were also studied and the hydrothermally reduced graphene oxide exhibited the highest specific capacitance.

  6. Two-dimensional porous architecture of protonated GCN and reduced graphene oxide via electrostatic self-assembly strategy for high photocatalytic hydrogen evolution under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Chenchen; Wan, Jun; Liu, Enzhou; Yin, Yunchao; Li, Juan; Ma, Yongning [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Fan, Jun, E-mail: fanjun@nwu.edu.cn [School of Chemical Engineering, Northwest University, Xi’an 710069 (China); Hu, Xiaoyun, E-mail: hxy3275@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710069 (China)

    2017-03-31

    Highlights: • The protonated GCN (pGCN) is prepared by acidic cutting and hydrothermal process. • The pGCN coupled with rGO are synthesized via electrostatic self-assembly strategy. • The pGCN-5 wt% rGO is obtained with a high specific surface area of 115.64 m{sup 2}g{sup −1}. • The pGCN-5 wt% rGO photocatalysts exhibit superb photocatalytic reduction capacity. - Abstract: Herein, porous protonated graphitic carbon nitride (pGCN) is prepared from bulk g-C{sub 3}N{sub 4} (GCN) directly by acidic cutting and hydrothermal process. The holey structure not only provides a lot of bounds on the accelerated and photo induced charge transfer and thus reduce the aggregation, but also endows the GCN with more exposure to the active site. The pGCN is obtained with an increased band gap of 2.91 eV together with a higher specific surface area of 82.76 m{sup 2}g{sup −1}. Meanwhile, the positively charged GCN resulted from the protonation pretreatment is beneficial for improving the interaction with negatively charged GO sheets. Compared with GCN, pGCN-rGO displays a significant decrease of PL intensities and an apparently enhancement of visible-light absorption, resulting a lower charge recombination rate and a better light absorption. Besides, the enhanced charge separation is demonstrated by photoluminescence emission spectroscopy and the transient photocurrent measurement. The photocatalytic performance studies for the degradation of MB indicate that pGCN-rGO exhibits the highest adsorption ability towards dye molecules. In addition, the pGCN-5 wt% rGO composite shows the optimal photocatalytic activity, the photodegradation rate of MB is 99.4% after 80 min of irradiation and the H{sub 2} evolution performance up to 557 μmol g{sup −1}h{sup −1} under visible light, which is much higher than the other control samples.

  7. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    Science.gov (United States)

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  8. Incorporation of polydimethylsiloxane with reduced graphene oxide and zinc oxide for tensile and electrical properties

    Science.gov (United States)

    Danial, N. S.; Ramli, Muhammad. M.; Halin, D. S. C.; Hong, H. C.; Isa, S. Salwa M.; Abdullah, M. M. A. B.; Anhar, N. A. M.; Talip, L. F. A.; Mazlan, N. S.

    2017-09-01

    Polydimethylsiloxane (PDMS) is an organosilicon polymer that is commonly used to incorporate with other fillers. PDMS in high viscous liquid form is mechanically stirred with reduced graphene oxide (rGO) and mixed with zinc oxide (ZnO) with specific ratio, thus rendering into two types of samples. The mechanical and electrical properties of both samples are characterized. The result shows that PDMS sample with 50 mg rGO has the highest tensile strength with the value of 9.1 MPa. For electrical properties, sample with the lowest resistance is PDMS with 50 mg rGO and ZnO with the value of l.67×l05 Ω. This experiment shows the significant role of conductive fillers like rGO and ZnO incorporated in polymeric material such as PDMS to improve its electrical properties.

  9. Microwave Synthesis of Zinc Oxide/Reduced Graphene Oxide Hybrid for Adsorption-Photocatalysis Application

    Directory of Open Access Journals (Sweden)

    Fatin Saiha Omar

    2014-01-01

    Full Text Available This work reports on synthesis of zinc oxide/reduced graphene oxide (ZnO/rGO nanocomposites in the presence of diethylenetriamine (DETA via a facile microwave method. The X-ray diffraction (XRD patterns of the nanocomposites correspond to the ZnO hexagonal phase wurtzite structure. The high-resolution transmission electron microscopy (HRTEM images revealed that the ZnO nanorods, with an average length : diameter ratio of 10, were successfully deposited on the rGO sheets. Under the irradiation of sunlight, the nanocomposites showed enhanced adsorption-photocatalysis by more than twofold and photocurrent response by sixfold compared to the ZnO. The excellent photoactivity performance of the nanocomposites is contributed by smaller ZnO nanorod and the presence of rGO that acts as a photosensitizer by transferring electrons to the conduction band of ZnO within the nanocomposite during sunlight illumination.

  10. Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings

    Science.gov (United States)

    Ghauri, Faizan Ali; Raza, Mohsin Ali; Saad Baig, Muhammad; Ibrahim, Shoaib

    2017-12-01

    This work aims to determine the effect of graphene oxide (GO) and reduced graphene oxide (rGO) incorporation as filler on the corrosion protection ability of epoxy coatings in saline media. GO was derived from graphite powder following modified Hummers’ method, whereas rGO was obtained after reduction of GO with hydrazine solution. About 1 wt.% of GO or rGO were incorporated in epoxy resin by solution mixing process followed by ball milling. GO and rGO-based epoxy composite coatings were coated on mild steel substrates using film coater. The coated samples were characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests after 1 and 24 h immersion in 3.5% NaCl. The results suggested that GO-based epoxy composite coatings showed high impedance and low corrosion rate.

  11. Sorption of neptunium under oxidizing and reducing groundwater conditions

    International Nuclear Information System (INIS)

    Hakanen, M.

    1991-01-01

    Sorption of neptunium was studied under aerobic, anoxic and reducing groundwater conditions using solutions with initial Np concentrations of 10 -14 to 10 -8 mol/l. Under aerobic conditions the sorption was the same for all concentrations. Under anoxic conditions the same proportion of neptunium (70-80%) was removed from the water. The neptunium sorbed on rock surfaces was of mixed oxidation states. Only Np(V) was found in waters. Under reducing groundwater conditions, nearly all the neptunium was removed from water. The sorbed neptunium was at first almost completely in the form of Np(IV). The submicrogram amounts of neptunium were partly oxidized with time, but Np(V) did not dissolve in reducing water. The holding oxidant character of the tonalite to Np(V) and, the holding reductant character of rocks to small amounts of Np(IV), was demonstrated under anaerobic and reducing groundwater conditions, respectively. (orig.)

  12. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Vemuri, Goutham; Eiteman, M.A; McEwen, J.E

    2007-01-01

    effect is due to limited respiratory capacity or is caused by glucose-mediated repression of respiration. When respiration in S. cerevisiae was increased by introducing a heterologous alternative oxidase, we observed reduced aerobic ethanol formation. In contrast, increasing nonrespiratory NADH oxidation...... Crabtree effect.’’ The yeast Saccharomyces cerevisiae has served as an important model organism for studying the Crabtree effect. When subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from purely...... respiratory to mixed respiratory and fermentative. It is well known that glucose repression of respiratory pathways occurs at high glycolytic fluxes, resulting in a decrease in respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree...

  13. A primary reduced TCA flux governs substrate oxidation in T2D skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    Our current knowledge on substrate oxidation in skeletal muscle in relation to insulin resistance and type 2 diabetes (T2D) originate mainly from in vivo studies. The oxidative capacity of skeletal muscle is highly influenced by physical activity, ageing, hormonal status, and fiber type composition...... further regulatory mechanism to our understanding of substrate oxidation in human skeletal muscle during normo- an pathophysiological conditions, focusing especially on the governing influence of a primary reduced TCA flux for the diabetic phenotype in skeletal muscle....

  14. One-pot synthesis of reduced graphene oxide@boron nitride nanosheet hybrids with enhanced oxidation-resistant properties

    Science.gov (United States)

    Sun, Guoxun; Bi, Jianqiang; Wang, Weili; Zhang, Jingde

    2017-12-01

    Reduced graphene oxide@boron nitride nanosheet (RGO@BNNS) hybrids were prepared for the first time using template-assisted autoclave pyrolysis technique at the temperature as low as 600 °C. The developed method can be scaled into gram-scale synthesis of the material. The BNNSs combine with RGO through van der Waals interplanar interaction without damaging the structures of RGO. Such ultrathin BNNSs on the surface of RGO can serve as high-performance oxidation-resistant coatings in oxidizing atmospheres at high temperatures. The RGO@BNNS hybrids can sustain up to 800 °C over a relatively long period of time.

  15. Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes

    Science.gov (United States)

    Mo, Runwei; Du, Ying; Rooney, David; Ding, Guqiao; Sun, Kening

    2016-01-01

    Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.

  16. In situ green synthesis of MnFe_2O_4/reduced graphene oxide nanocomposite and its usage for fabricating high-performance LiMn_1_/_3Fe_2_/_3PO_4/reduced graphene oxide/carbon cathode material for Li-ion batteries

    International Nuclear Information System (INIS)

    Wu, Kaipeng; Hu, Guorong; Peng, Zhongdong; Cao, Yanbing; Du, Ke

    2016-01-01

    Highlights: • MnFe_2O_4/rGO was prepared by an in situ green reduction-coprecipitation method. • LiMn_1_/_3Fe_2_/_3PO_4/rGO/C was synthesized by using MnFe_2O_4/rGO as precursor. • Both pyrolytic carbon and rGO could construct an interconnected conductive network. • LiMn_1_/_3Fe_2_/_3PO_4/rGO/C shows excellent electrochemical performance. - Abstract: MnFe_2O_4/reduced graphene oxide nanocomposite (MnFe_2O_4/rGO) has been synthesized via a green reduction-coprecipitation method for the first time, which involved in situ reduction of GO in presence of Fe"2"+ and the ensuing coprecipitation of Fe"3"+ and Mn"2"+ onto the surface of rGO. The resultant MnFe_2O_4/rGO was then employed as the precursor to fabricate LiMn_1_/_3Fe_2_/_3PO_4/reduced graphene oxide/carbon composite (LiMn_1_/_3Fe_2_/_3PO_4/rGO/C) cathode material for Li-ion batteries. The composite consists of homogeneous Mn-Fe distributed LiMn_1_/_3Fe_2_/_3PO_4 with its primary particles (∼200 nm) covered and connected by both pyrolytic carbon and rGO sheets, which could prevent the aggregation of the particles as well as construct an interconnected conductive network for rapid transmission of electrons during charging and discharging process. The fabricated LiMn_1_/_3Fe_2_/_3PO_4/rGO/C can deliver a discharge capacity of 94.8 mAh g"−"1 even at the high rate of 20C, and shows a capacity decay rate of only 6.25% after 900 long-term charge-discharge cycles. Moreover, the proposed synthesis strategy can also be applied to prepare other graphene-decorated multi-component cathode/anode materials for the Li-ion batteries.

  17. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy Sciences, Beijing 100049 (China); Zhang Xiong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Dacheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy Sciences, Beijing 100049 (China); Ma Yanwei, E-mail: ywma@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-01-15

    Highlights: > Graphite oxide instead of graphene as precursor has been used to synthesize reduced graphene oxide/ruthenium oxide composites by a hydrothermal treatment. > Using NaOH solution to adjust pH of GO colloids leads to homogeneous ruthenium oxide deposited on reduced graphene oxide sheets. > A maximum capacitance of 471 F g{sup -1} is obtained at 0.5 A g{sup -1} for the composites when loading 40% of RuO{sub 2} and its life retention reaches 92% after 3000 cycles. - Abstract: Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO{sub 2} in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO{sub 2} exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 F g{sup -1} is measured in the composites at 0.5 A g{sup -1} when loaded with 45 wt% of RuO{sub 2}. After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors.

  18. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

    International Nuclear Information System (INIS)

    Chen Yao; Zhang Xiong; Zhang Dacheng; Ma Yanwei

    2012-01-01

    Highlights: → Graphite oxide instead of graphene as precursor has been used to synthesize reduced graphene oxide/ruthenium oxide composites by a hydrothermal treatment. → Using NaOH solution to adjust pH of GO colloids leads to homogeneous ruthenium oxide deposited on reduced graphene oxide sheets. → A maximum capacitance of 471 F g -1 is obtained at 0.5 A g -1 for the composites when loading 40% of RuO 2 and its life retention reaches 92% after 3000 cycles. - Abstract: Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO 2 in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO 2 exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 F g -1 is measured in the composites at 0.5 A g -1 when loaded with 45 wt% of RuO 2 . After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors.

  19. Direct formation of reduced graphene oxide and 3D lightweight nickel network composite foam by hydrohalic acids and its application for high-performance supercapacitors.

    Science.gov (United States)

    Huang, Haifu; Tang, Yanmei; Xu, Lianqiang; Tang, Shaolong; Du, Youwei

    2014-07-09

    Here, a novel graphene composite foam with 3D lightweight continuous and interconnected nickel network was successfully synthesized by hydroiodic (HI) acid using nickel foam as substrate template. The graphene had closely coated on the backbone of the 3D nickel conductive network to form nickel network supported composite foam without any polymeric binder during the HI reduction of GO process, and the nickel conductive network can be maintained even in only a small amount of nickel with 1.1 mg/cm(2) and had replaced the traditional current collector nickel foam (35 mg/cm(2)). In the electrochemical measurement, a supercapacitor device based on the 3D nickel network and graphene composite foam exhibited high rate capability of 100 F/g at 0.5 A/g and 86.7 F/g at 62.5 A/g, good cycle stability with capacitance retention of 95% after 2000 cycles, low internal resistance (1.68 Ω), and excellent flexible properties. Furthermore, the gravimetric capacitance (calculated using the total mass of the electrode) was high up to 40.9 F/g. Our work not only demonstrates high-quality graphene/nickel composite foam, but also provides a universal route for the rational design of high performance of supercapacitors.

  20. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  1. Reduced Graphene Oxide Joins Graphene Oxide to Teach Undergraduate Students Core Chemistry and Nanotechnology Concepts

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Malgorzata; Z?elechowska, Kamila

    2018-01-01

    Novel carbon nanomaterials such as reduced graphene oxide (rGO) and graphene oxide (GO) can be easily incorporated into the undergraduate curriculum to discuss basic chemistry and nanotechnology concepts. This paper describes a laboratory experiment designed to study the differences between GO and rGO regarding their physicochemical properties…

  2. Synthesis of adenine-modified reduced graphene oxide nanosheets.

    Science.gov (United States)

    Cao, Huaqiang; Wu, Xiaoming; Yin, Gui; Warner, Jamie H

    2012-03-05

    We report here a facile strategy to synthesize the nanocomposite of adenine-modified reduced graphene oxide (AMG) via reaction between adenine and GOCl which is generated from SOCl(2) reacted with graphite oxide (GO). The as-synthesized AMG was characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), and galvanostatic discharge analysis. The AMG owns about one adenine group per 53 carbon atoms on a graphene sheet, which improves electronic conductivity compared with reduced graphene oxide (RGO). The AMG displays enhanced supercapacitor performance compared with RGO accompanying good stability and good cycling behavior in the supercapacitor.

  3. Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silwana, Bongiwe; Horst, Charlton van der [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa); SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Iwuoha, Emmanuel [SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Somerset, Vernon, E-mail: vsomerset@csir.co.za [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa)

    2015-10-01

    This paper demonstrates some aspects on the synthesis and characterisation of nanoparticles of metallic alloys using polyvinyl alcohol as a stabiliser, which combines high surface area and superior hybrid properties. The present experimental design was to synthesise a nanocomposite of reduced graphene oxide and antimony nanoparticles to be used as thin films for macro- and micro-carbon electrodes for enhancing sensing of different toxic metal pollutants in the environment. The synthetic process of reduced graphene oxide was done using the modified Hummers method while antimony pentachloride was reduced with sodium borohydride into nanoparticles of antimony using polyvinyl-alcohol as a stabiliser. The systematic investigation of morphology was done by scanning electron microscopy and high resolution-transmission electron microscope, which revealed the synthesis of a product, consists of reduced graphene oxide antimony nanoparticles. The electrochemical behaviour of the reduced graphene oxide antimony nanoparticles coated on a glassy carbon electrode was performed using voltammetric and impedance techniques. Electrochemical impedance measurements showed that the overall resistance, including the charge–transfer resistance, was smaller with reduced graphene oxide antimony nanoparticles than reduced graphene oxide and antimony nanoparticles, on their own. Evaluation of the reduced graphene oxide antimony nanoparticle sensor in the stripping voltammetry has shown a linear working range for concentration of platinum (II) between 6.0 × 10{sup −6}–5.4 × 10{sup −5} μg L{sup −1} with limit of detection of 6 × 10{sup −6} μg L{sup −1} (signal-to-noise ratio = 3), which is below the World Health Organisation guidelines for freshwater. - Highlights: • Reduced graphene oxide modified antimony nanoparticles were chemically synthesised. • TEM results show rGO-Sb nanoparticles with a diameter range of between 2 and 20 nm. • Impedance results confirm

  4. Reduced-graphene-oxide-and-strontium-titanate-based double

    Indian Academy of Sciences (India)

    Microwave-absorbing materials based on reduced graphene oxide (r-GO)/ strontium titanate were prepared by embedding in epoxy matrix. R-GO and strontium titanate were synthesized and characterized before composite fabrication. Microstructures of the constituent elements were studied by scanning electron ...

  5. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhaoxia; Zhou, Yin; Li, Guang Bin; Wang, Shaohong; Wang, Mei Han; Hu, Xiaodan; Li, Siming [Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School ofMechanical Engineering, Shenyang University, Shenyang (China)

    2015-06-15

    Graphite oxide was prepared via the modified Hummers’ method and graphene via chemical reduction. Deoxygenation efficiency of graphene oxide was compared among single reductants including sodium borohydride, hydrohalic acids, hydrazine hydrate, and vitamin C. Two-step reduction of graphene oxide was primarily studied. The reduced graphene oxide was characterized by XRD, TG, SEM, XPS, and Raman spectroscopy. Square resistance was measured as well. Results showed that films with single-step N2H4 reduction have the best transmittance and electrical conductivity with square resistance of ~5746 Ω/sq at 70% transmittance. This provided an experimental basis of using graphene for electronic device applications.

  6. Quantitative combination of natural anti-oxidants prevents metabolic syndrome by reducing oxidative stress.

    Science.gov (United States)

    Gao, Mingjing; Zhao, Zhen; Lv, Pengyu; Li, YuFang; Gao, Juntao; Zhang, Michael; Zhao, Baolu

    2015-12-01

    Insulin resistance and abdominal obesity are present in the majority of people with the metabolic syndrome. Antioxidant therapy might be a useful strategy for type 2 diabetes and other insulin-resistant states. The combination of vitamin C (Vc) and vitamin E has synthetic scavenging effect on free radicals and inhibition effect on lipid peroxidation. However, there are few studies about how to define the best combination of more than three anti-oxidants as it is difficult or impossible to test the anti-oxidant effect of the combination of every concentration of each ingredient experimentally. Here we present a math model, which is based on the classical Hill equation to determine the best combination, called Fixed Dose Combination (FDC), of several natural anti-oxidants, including Vc, green tea polyphenols (GTP) and grape seed extract proanthocyanidin (GSEP). Then we investigated the effects of FDC on oxidative stress, blood glucose and serum lipid levels in cultured 3T3-L1 adipocytes, high fat diet (HFD)-fed rats which serve as obesity model, and KK-ay mice as diabetic model. The level of serum malondialdehyde (MDA) in the treated rats was studied and Hematoxylin-Eosin (HE) staining or Oil red slices of liver and adipose tissue in the rats were examined as well. FDC shows excellent antioxidant and anti-glycation activity by attenuating lipid peroxidation. FDC determined in this investigation can become a potential solution to reduce obesity, to improve insulin sensitivity and be beneficial for the treatment of fat and diabetic patients. It is the first time to use the math model to determine the best ratio of three anti-oxidants, which can save much more time and chemical materials than traditional experimental method. This quantitative method represents a potentially new and useful strategy to screen all possible combinations of many natural anti-oxidants, therefore may help develop novel therapeutics with the potential to ameliorate the worldwide metabolic

  7. Solid oxide fuel cell cathode with oxygen-reducing layer

    Science.gov (United States)

    Surdoval, Wayne A.; Berry, David A.; Shultz, Travis

    2018-04-03

    The disclosure provides a SOFC comprised of an electrolyte, anode, and cathode, where the cathode comprises an MIEC and an oxygen-reducing layer. The oxygen-reducing layer is in contact with the MIEC, and the MIEC is generally between and separating the oxygen-reducing layer and the electrolyte. The oxygen-reducing layer is comprised of single element oxides, single element carbonates, or mixtures thereof, and has a thickness of less than about 30 nm. In a particular embodiment, the thickness is less than 5 nm. In another embodiment, the thickness is about 3 monolayers or less. The oxygen-reducing layer may be a continuous film or a discontinuous film with various coverage ratios. The oxygen-reducing layer at the thicknesses described may be generated on the MIEC surface using means known in the art such as, for example, ALD processes.

  8. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection.

    Science.gov (United States)

    Li, Bing; Pan, Genhua; Avent, Neil D; Lowry, Roy B; Madgett, Tracey E; Waines, Paul L

    2015-10-15

    A novel printed graphene electrode modified with electrochemically reduced graphene oxide was developed for the detection of a specific oligonucleotide sequence. The graphene oxide was immobilized onto the surface of a graphene electrode via π-π bonds and electrochemical reduction of graphene oxide was achieved by cyclic voltammetry. A much higher redox current was observed from the reduced graphene oxide-graphene double-layer electrode, a 42% and 36.7% increase, respectively, in comparison with that of a bare printed graphene or reduced graphene oxide electrode. The good electron transfer activity is attributed to a combination of the large number of electroactive sites in reduced graphene oxide and the high conductivity nature of graphene. The probe ssDNA was further immobilized onto the surface of the reduced graphene oxide-graphene double-layer electrode via π-π bonds and then hybridized with its target cDNA. The change of peak current due to the hybridized dsDNA could be used for quantitative sensing of DNA concentration. It has been demonstrated that a linear range from 10(-7)M to 10(-12)M is achievable for the detection of human immunodeficiency virus 1 gene with a detection limit of 1.58 × 10(-13)M as determined by three times standard deviation of zero DNA concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hawkmoths use nectar sugar to reduce oxidative damage from flight.

    Science.gov (United States)

    Levin, E; Lopez-Martinez, G; Fane, B; Davidowitz, G

    2017-02-17

    Nectar-feeding animals have among the highest recorded metabolic rates. High aerobic performance is linked to oxidative damage in muscles. Antioxidants in nectar are scarce to nonexistent. We propose that nectarivores use nectar sugar to mitigate the oxidative damage caused by the muscular demands of flight. We found that sugar-fed moths had lower oxidative damage to their flight muscle membranes than unfed moths. Using respirometry coupled with δ 13 C analyses, we showed that moths generate antioxidant potential by shunting nectar glucose to the pentose phosphate pathway (PPP), resulting in a reduction in oxidative damage to the flight muscles. We suggest that nectar feeding, the use of PPP, and intense exercise are causally linked and have allowed the evolution of powerful fliers that feed on nectar. Copyright © 2017, American Association for the Advancement of Science.

  10. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  11. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    Science.gov (United States)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. Copyright © 2014. Published by Elsevier B.V.

  12. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor

    KAUST Repository

    Couly, Cedric

    2017-11-27

    Current microfabrication of micro-supercapacitors often involves multistep processing and delicate lithography protocols. In this study, simple fabrication of an asymmetric MXene-based micro-supercapacitor that is flexible, binder-free, and current-collector-free is reported. The interdigitated device architecture is fabricated using a custom-made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced graphene oxide (rGO), which are both 2D layered materials that contribute to the fast ion diffusion in the interdigitated electrode architecture. This MXene-based asymmetric micro-supercapacitor operates at a 1 V voltage window, while retaining 97% of the initial capacitance after ten thousand cycles, and exhibits an energy density of 8.6 mW h cm−3 at a power density of 0.2 W cm−3. Further, these micro-supercapacitors show a high level of flexibility during mechanical bending. Utilizing the ability of Ti3C2Tx-MXene electrodes to operate at negative potentials in aqueous electrolytes, it is shown that using Ti3C2Tx as a negative electrode and rGO as a positive one in asymmetric architectures is a promising strategy for increasing both energy and power densities of micro-supercapacitors.

  13. Strategies for enhanced deammonification performance and reduced nitrous oxide emissions.

    Science.gov (United States)

    Leix, Carmen; Drewes, Jörg E; Ye, Liu; Koch, Konrad

    2017-07-01

    Deammonification's performance and associated nitrous oxide emissions (N 2 O) depend on operational conditions. While studies have investigated factors for high performances and low emissions separately, this study investigated optimizing deammonification performance while simultaneously reducing N 2 O emissions. Using a design of experiment (DoE) method, two models were developed for the prediction of the nitrogen removal rate and N 2 O emissions during single-stage deammonification considering three operational factors (i.e., pH value, feeding and aeration strategy). The emission factor varied between 0.7±0.5% and 4.1±1.2% at different DoE-conditions. The nitrogen removal rate was predicted to be maximized at settings of pH 7.46, intermittent feeding and aeration. Conversely, emissions were predicted to be minimized at the design edges at pH 7.80, single feeding, and continuous aeration. Results suggested a weak positive correlation between the nitrogen removal rate and N 2 O emissions, thus, a single optimizing operational set-point for maximized performance and minimized emissions did not exist. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High temperature oxidation of slurry coated interconnect alloys

    DEFF Research Database (Denmark)

    Persson, Åsa Helen

    with this interaction mechanism mainly give a geometrical protection against oxidation by blocking oxygen access at the surface of the oxide scale. The protecting effect is gradually reduced as the oxide scale grows thicker than the diameter of the coating particles. Interaction mechanism B entails a chemical reaction...... scale. The incorporated coating particles create a geometrical protection against oxidation that should not loose their effect after the oxide scale has grown thicker than the diameter of the coating particles. The two single layer coatings consisting of (La0.85Sr0.15)MnO3 + 10% excess Mn, LSM, and (La0......In this project, high temperature oxidation experiments of slurry coated ferritic alloys in atmospheres similar to the atmosphere found at the cathode in an SOFC were conducted. From the observations possible interaction mechanisms between the slurry coatings and the growing oxide scale...

  15. Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage

    Science.gov (United States)

    Shi, Yongzheng; Yang, Dongzhi; Yu, Ruomeng; Liu, Yaxin; Hao, Shu-Meng; Zhang, Shiyi; Qu, Jin; Yu, Zhong-Zhen

    2018-04-01

    To satisfy increasing power demands of mobile devices and electric vehicles, rationally designed electrodes with short diffusion length are highly imperative to provide highly efficient ion and electron transport paths for high-rate and long-life lithium-ion batteries. Herein, binder-free electrodes with the robust three-dimensional conductive network are prepared by assembling ultralong TiO2 nanowires with reduced graphene oxide (RGO) sheets for high-performance lithium-ion storage. Ultralong TiO2 nanowires are synthesized and used to construct an interconnecting network that avoids the use of inert auxiliary additives of polymer binders and conductive agents. By thermal annealing, a small amount of anatase is generated in situ in the TiO2(B) nanowires to form abundant TiO2(B)/anatase interfaces for accommodating additional lithium ions. Simultaneously, RGO sheets efficiently enhance the electronic conductivity and enlarge the specific surface area of the TiO2/RGO nanocomposite. The robust 3D network in the binder-free electrode not only effectively avoids the agglomeration of TiO2/RGO components during the long-term charging/discharging process, but also provides direct and fast ion/electron transport paths. The binder-free electrode exhibits a high reversible capacity of 259.9 mA h g-1 at 0.1 C and an excellent cycling performance with a high reversible capacity of 111.9 mA h g-1 at 25 C after 5000 cycles.

  16. Complete coverage of reduced graphene oxide on silicon dioxide substrates

    International Nuclear Information System (INIS)

    Jingfeng Huang; Hu Chen; Yoong Alfred Tok Iing; Larisika, Melanie; Nowak, Christoph; Faulkner, Steve; Nimmo, Myra A.

    2014-01-01

    Reduced graphene oxide (RGO) has the advantage of an aqueous and industrial-scale production route. No other approaches can rival the RGO field effect transistor platform in terms of cost (oxide with ethanol, carbon islets are deposited preferentially at the edges of existing flakes. With a 2-h treatment, the standard deviation in electrical resistance of the treated chips can be reduced by 99.95%. Thus this process could enable RGO to be used in practical electronic devices. (special topic — international conference on nanoscience and technology, china 2013)

  17. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  18. Studies of physicochemical properties of graphite oxide and thermally exfoliated/reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Drewniak Sabina Elżbieta

    2015-12-01

    Full Text Available The aim of the experimental research studies was to determine some electrical properties of graphite oxide and thermally exfoliated/reduced graphene oxide. The authors tried to interpret the obtained physicochemical results. For that purpose, both resistance measurements and investigation studies were carried out in order to characterize the samples. The resistance was measured at various temperatures in the course of composition changes of gas atmospheres (which surround the samples. The studies were also supported by such methods as: scanning electron microscopy (SEM, Raman spectroscopy (RS, atomic force microscopy (AFM and thermogravimetry (TG. Moreover, during the experiments also the elemental analyses (EA of the tested samples (graphite oxide and thermally exfoliated/reduced graphene oxide were performed.

  19. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides.

    Science.gov (United States)

    Sun, Yubing; Yang, Shubin; Zhao, Guixia; Wang, Qi; Wang, Xiangke

    2013-11-01

    Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high-temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi-Dubinin-Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g(-1)) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore-filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. All-solid-state asymmetric supercapacitors based on Fe-doped mesoporous Co3O4 and three-dimensional reduced graphene oxide electrodes with high energy and power densities.

    Science.gov (United States)

    Zhang, Cheng; Wei, Jun; Chen, Leiyi; Tang, Shaolong; Deng, Mingsen; Du, Youwei

    2017-10-19

    An asymmetric supercapacitor offers opportunities to effectively utilize the full potential of the different potential windows of the two electrodes for a higher operating voltage, resulting in an enhanced specific capacitance and significantly improved energy without sacrificing the power delivery and cycle life. To achieve high energy and power densities, we have synthesized an all-solid-state asymmetric supercapacitor with a wider voltage range using Fe-doped Co 3 O 4 and three-dimensional reduced graphene oxide (3DrGO) as the positive and negative electrodes, respectively. In contrast to undoped Co 3 O 4 , the increased density of states and modified charge spatial separation endow the Fe-doped Co 3 O 4 electrode with greatly improved electrochemical capacitive performance, including high specific capacitance (1997 F g -1 and 1757 F g -1 at current densities of 1 and 20 A g -1 , respectively), excellent rate capability, and superior cycling stability. Remarkably, the optimized all-solid-state asymmetric supercapacitor can be cycled reversibly in a wide range of 0-1.8 V, thus delivering a high energy density (270.3 W h kg -1 ), high power density (9.0 kW kg -1 at 224.2 W h kg -1 ), and excellent cycling stability (91.8% capacitance retention after 10 000 charge-discharge cycles at a constant current density of 10 A g -1 ). The superior capacitive performance suggests that such an all-solid-state asymmetric supercapacitor shows great potential for developing energy storage systems with high levels of energy and power delivery.

  1. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  2. Nb effect on Zr-alloy oxidation under high pressure steam at high temperatures

    International Nuclear Information System (INIS)

    Park, Kwangheon; Yang, Sungwoo; Kim, Kyutae

    2005-01-01

    The high-pressure steam effects on the oxidation of Zircaloy-4 (Zry-4) and Zirlo (Zry-1%Nb) claddings at high temperature have been analyzed. Test temperature range was 700-900degC, and pressures were 1-150 bars. High pressure-steam enhances oxidation of Zry-4, and the dependency of enhancement looks exponential to steam pressure. The origin of the oxidation enhancement turned out to be the formation of cracks in oxide. The loss of tetragonal phase by high-pressure steam seems related to the crack formation. Addition of Nb as an alloying element to Zr alloy reduces significantly the steam pressure effects on oxidation. The higher compressive stresses and the smaller fraction of tetragonal oxides in Zry-1%Nb seem to be the diminished effect of high-pressure steam on oxidation. (author)

  3. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    OpenAIRE

    Abdulkareem Mohammed Ali Al-Sammarraie; Mazin Hasan Raheema

    2017-01-01

    The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and therm...

  4. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    Science.gov (United States)

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    Science.gov (United States)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  6. Electrical current mediated interconversion between graphene oxide to reduced grapene oxide

    Science.gov (United States)

    Teoh, H. F.; Tao, Y.; Tok, E. S.; Ho, G. W.; Sow, C. H.

    2011-04-01

    In this work, we demonstrate that graphene oxide (GO) can be reversibly converted to reduced-graphene-oxide (rGO) through the use of electric current. Strong electric field could cause ionization of water molecules in air to generate H+ ions at cathode, causing GO to be reduced. When the bias is reversed, the same electrode becomes positive and OH- ions are produced. According to Le Chatelier Principle, it then favors the reverse reaction, converting rGO back to GO, GO+2H++2e-=>rGO+H2O. X-ray spectroscopy and Raman spectroscopy were carried to verify the conversion reversibility in the reversed process.

  7. In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries.

    Science.gov (United States)

    Xu, Xijun; Ji, Shaomin; Gu, Mingzhe; Liu, Jun

    2015-09-23

    Uniform MnS hollow microspheres in situ crystallized on reduced graphene oxide (RGO) nanosheets via a facile hydrothermal method. The MnS/RGO composite material was used as the anode for Na-ion batteries for the first time and exhibited excellent cycling performance, superior specific capacity, and great cycle stability and rate capability for both Li- and Na-ion batteries. Compared with nonencapsulated pure MnS hollow microspheres, these MnS/RGO nanocomposites demonstrated excellent charge-discharge stability and long cycle life. Li-ion storage testing revealed that these MnS/RGO nanocomposites deliver high discharge-charge capacities of 640 mAh g(-1) at 1.0 A g(-1) after 400 cycles and 830 mAh g(-1) at 0.5 A g(-1) after 100 cycles. The MnS/RGO nanocomposites even retained a specific capacity of 308 mAh g(-1) at a current density of 0.1 A g(-1) after 125 cycles as the anode for Na-ion batteries. The outstanding electrochemical performance of the MnS/RGO composite attributed to the RGO nanosheets greatly improved the electronic conductivity and efficiently mitigated the stupendous volume expansion during the progress of charge and discharge.

  8. High-performance free-standing capacitor electrodes of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide

    Science.gov (United States)

    Yao, Tinghui; Li, Yali; Liu, Dequan; Gu, Yipeng; Qin, Shengchun; Guo, Xin; Guo, Hui; Ding, Yongqiang; Liu, Qiming; Chen, Qiang; Li, Junshuai; He, Deyan

    2018-03-01

    In this paper, a free-standing electrode structure composed of multilayered Co9S8 plates wrapped by carbonized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/reduced graphene oxide (PEDOT:PSS/rGO) layers is introduced. Excellent supercapacitive behaviors, especially long cycling stability at high current densities are delivered owing to the synergetic effects of stable electrical contact between the active material and carbonized PEDOT:PSS/rGO due to the wrapped configuration, efficient charge exchange between the multilayered Co9S8 plates and electrolyte, improved electrical conductance by rGO, and plenty of voids for accommodating volume changes. For the optimized electrode (starting materials: 0.5 mL PEDOT:PSS, 1.0 mL GO (6.0 mg mL-1) and 10.0 mg Co(OH)2), a specific capacitance of about 788.9 F g-1 at 1.0 A g-1 and good cycling stability of over 100% of the initial capacitance (∼488.6 F g-1) after 10000 cycles at a current density of 15.0 A g-1 can be achieved. The assembled asymmetric supercapacitor based on the optimized electrode//active carbon exhibits an energy density of ∼19.6 Wh kg-1 at a power density of 400.9 W kg-1.

  9. Using 238U/235U ratios to understand the formation and oxidation of reduced uranium solids in naturally reduced zones

    Science.gov (United States)

    Jemison, N.; Johnson, T. M.; Druhan, J. L.; Davis, J. A.

    2016-12-01

    Uranium occurs in groundwater primarily as soluble and mobile U(VI), which can be reduced to immobile U(IV), often observed in sediments as uraninite. Numerous U(VI)-contaminated sites, such as the DOE field site in Rifle, CO, contain naturally reduced zones (NRZ's) that have relatively high concentrations of organic matter. Reduction of heavy metals occurs within NRZ's, producing elevated concentrations of iron sulfides and U(IV). Slow, natural oxidation of U(IV) from NRZ's may prolong U(VI) contamination of groundwater. The reduction of U(VI) produces U(IV) with a higher 238U/235U ratio. Samples from two NRZ sediment cores recovered from the Rifle site revealed that the outer fringes of the NRZ contain U(IV) with a high 238U/235U ratio, while lower values are observed in the center . We suggest that as aqueous U(VI) was reduced in the NRZ, it was driven to lower 238U/235U values, such that U(IV) formed in the core of the NRZ reflects a lower 238U/235U. Two oxidation experiments were conducted by injecting groundwater containing between 14.9 and 21.2 mg/L dissolved O2 as an oxidant into the NRZ. The oxidation of U(IV) from this NRZ increased aqueous U(VI) concentrations and caused a shift to higher 238U/235U in groundwater as U(IV) was oxidized primarily on the outer fringes of the NRZ. In total these observations suggest that the stability of solid phase uranium is governed by coupled reaction and transport processes. To better understand various reactive transport scenarios we developed a model for the formation and oxidation of NRZ's utilizing the reactive transport software CrunchTope. These simulations suggest that the development of isotopically heterogeneous U(IV) within NRZ's is largely controlled by permeability of the NRZ and the U(VI) reduction rate. Oxidation of U(IV) from the NRZ's is constrained by the oxidation rate of U(IV) as well as iron sulfides, which can prevent oxidation of U(IV) by scavenging dissolved oxygen.

  10. Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors

    International Nuclear Information System (INIS)

    Shou Qingliang; Cheng Jipeng; Zhang Li; Nelson, Bradley J.; Zhang Xiaobin

    2012-01-01

    We report a one-step synthesis of a nanocomposite of goethite (α-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge–discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g −1 with an excellent recycling capability making the material promising for electrochemical capacitors. - Graphical abstract: The reduced graphene oxide sheets are decorated with goethite nanorods. The as-prepared composite exhibits a high electrochemical capacitance with good recycling capability, which is promising for supercapacitor applications. Higlights: ► Ferrous ions act as reductant of graphite oxide and precursor of goethite nanorods. ► Goethite nanorods are attached on both sides of the reduced graphene oxide sheets. ► Composite exhibits a high specific capacitance and a good recycling capability. ► Composite is promising for supercapacitor applications.

  11. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    International Nuclear Information System (INIS)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R.; Goicoechea, Hector C.

    2014-01-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples

  12. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad-Bagher, E-mail: mbgholivand2013@gmail.com [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Jalalvand, Ali R. [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina); Goicoechea, Hector C. [Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina)

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples.

  13. Shungite as the natural pantry of nanoscale reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Elena F. Sheka

    2014-01-01

    Full Text Available Shungite is presented as a natural carbon allotrope of a multilevel fractal structure that is formed by a successive aggregation of ~1 nm reduced graphene oxide nanosheets. Turbostratic stacks of the sheets of ~1.5 nm in thickness and globular composition of the stacks of ~6 nm in size determine the secondary and tertiary levels of the structure. Aggregates of globules of tens of nanometers complete the structure. Molecular theory of graphene oxide, supported by large experience gained by the modern graphene science, has led to the foundation of the suggested presentation. The microscopic view has found a definite confirmation when analyzing the available empirical appearance of shungite. To our knowledge, this is the first time a geological process is described at quantum level.

  14. Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures

    Science.gov (United States)

    Opila, Elizabeth J.; Serra, Jessica

    2009-01-01

    Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.

  15. Reducibility of ceria-lanthana mixed oxides under temperature programmed hydrogen and inert gas flow conditions

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Cifredo, G.; Perez-Omil, J.A.; Pintado, J.M.; Rodriguez-Izquierdo, J.M.

    1997-01-01

    The present paper deals with the preparation and characterization of La/Ce mixed oxides, with La molar contents of 20, 36 and 57%. We carry out the study of the structural, textural and redox properties of the mixed oxides, comparing our results with those for pure ceria. For this aim we use temperature programmed reduction (TPR), temperature programmed desorption (TPD), nitrogen physisorption at 77 K, X-ray diffraction and high resolution electron microscopy. The mixed oxides are more easy to reduce in a flow of hydrogen than ceria. Moreover, in an inert gas flow they release oxygen in higher amounts and at lower temperatures than pure CeO 2 . The textural stability of the mixed oxides is also improved by incorporation of lanthana. All these properties make the ceria-lanthana mixed oxides interesting alternative candidates to substitute ceria in three-way catalyst formulations. (orig.)

  16. Environmental Factors Affecting Ammonium Oxidation Under Iron Reducing Conditions

    Science.gov (United States)

    Jaffe, P. R.; Huang, S.; Ruiz-Urigüen, M.

    2014-12-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. Through a 180-day anaerobic incubation experiment, and using PCR-DGGE, 454-pyosequecing and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, a previously unreported species in the Acidimicrobiaceae family, might be either responsible or plays a key role in the Feammox process, We have enriched these Feammox bacteria (65.8% in terms of cell numbers) in a membrane reactor, and isolated the pure Acidimicrobiaceae bacterium A6 strain in an autotrophic medium. In samples collected and then incubated from a series of local wetland-, upland-, as well as storm-water detention pond-sediments, Feammox activity was only detected in acidic soil environments that contain Fe oxides. Using primers we developed for this purpose, Acidimicrobiaceae bacterium A6 was detected in all incubations where Feammox was observed. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. Feammox was still proceeding at pH as low as 2. In Feammox culture amended with different Fe(III) sources, Feammox reaction proceeded only when Fe oxides (ferrihydrite or goethite ) were supplied, whereas samples incubated with ferric chloride or ferric citrate showed no measurable NH4+ oxidation. Furthermore, we have also determined from incubation experiments conducted with a temperature gradient (10 ~ 35℃), that the Feammox process was active when the temperature is above 15℃, and the optimal temperature is 20℃. Incubations of enrichment culture with 79% Feammox bacteria appeared to remove circa 8% more NH4+ at 20ºC than at

  17. Sponge-like reduced graphene oxide/silicon/carbon nanotube composites for lithium ion batteries

    Science.gov (United States)

    Fang, Menglu; Wang, Zhao; Chen, Xiaojun; Guan, Shiyou

    2018-04-01

    Three-dimensional sponge-like reduced graphene oxide/silicon/carbon nanotube composites were synthesized by one-step hydrothermal self-assembly using silicon nanoparticles, graphene oxide and amino modified carbon nanotubes to develop high-performance anode materials of lithium ion batteries. Scanning electron microscopy and transmission electron microscopy images show the structure of composites that Silicon nanoparticles are coated with reduced graphene oxide while amino modified carbon nanotubes wrap around the reduced graphene oxide in the composites. When applied to lithium ion battery, these composites exhibit high initial specific capacity of 2552 mA h/g at a current density of 0.05 A/g. In addition, reduced graphene oxide/silicon/carbon nanotube composites also have better cycle stability than bare Silicon nanoparticles electrode with the specific capacity of 1215 mA h/g after 100 cycles. The three-dimension sponge-like structure not only ensures the electrical conductivity but also buffers the huge volume change, which has broad potential application in the field of battery.

  18. Layer-by-Layer-Assembled AuNPs-Decorated First-Generation Poly(amidoamine) Dendrimer with Reduced Graphene Oxide Core as Highly Sensitive Biosensing Platform with Controllable 3D Nanoarchitecture for Rapid Voltammetric Analysis of Ultratrace DNA Hybridization.

    Science.gov (United States)

    Jayakumar, Kumarasamy; Camarada, María Belén; Dharuman, Venkataraman; Rajesh, Rajendiran; Venkatesan, Rengarajan; Ju, Huangxian; Maniraj, Mahalingam; Rai, Abhishek; Barman, Sudipta Roy; Wen, Yangping

    2018-06-12

    The structure and electrochemical properties of layer-by-layer-assembled gold nanoparticles (AuNPs)-decorated first-generation (G1) poly(amidoamine) dendrimer (PD) with reduced graphene oxide (rGO) core as a highly sensitive and label-free biosensing platform with a controllable three-dimensional (3D) nanoarchitecture for the rapid voltammetric analysis of DNA hybridization at ultratrace levels were characterized. Mercaptopropinoic acid (MPA) was self-assembled onto Au substrate, then GG1PD formed by the covalent functionalization between the amino terminals of G1PD and carboxyl terminals of rGO was covalently linked onto MPA, and finally AuNPs were decorated onto GG1PD by strong physicochemical interaction between AuNPs and -OH of rGO in GG1PD, which was characterized through different techniques and confirmed by computational calculation. This 3D controllable thin-film electrode was optimized and evaluated using [Fe(CN) 6 ] 3-/4- as the redox probe and employed to covalently immobilize thiol-functionalized single-stranded DNA as biorecognition element to form the DNA nanobiosensor, which achieved fast, ultrasensitive, and high-selective differential pulse voltammetric analysis of DNA hybridization in a linear range from 1 × 10 -6 to 1 × 10 -13 g m -1 with a low detection limit of 9.07 × 10 -14 g m -1 . This work will open a new pathway for the controllable 3D nanoarchitecture of the layer-by-layer-assembled metal nanoparticles-functionalized lower-generation PD with two-dimensional layered nanomaterials as cores that can be employed as ultrasensitive and label-free nanobiodevices for the fast diagnosis of specific genome diseases in the field of biomedicine.

  19. Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes

    KAUST Repository

    Rasul, Shahid; Alazmi, Amira; Jaouen, K.; Hedhili, Mohamed N.; Da Costa, Pedro M. F. J.

    2016-01-01

    Strategies to synthesize reduced graphene oxide (rGO) abound but, in most studies, research teams select one particular oxidation-reduction method without providing a methodic reasoning for doing so. Herein, it is analyzed how diverse oxidation

  20. Synthesis of calcium carbonate in alkali solution based on graphene oxide and reduced graphene oxide

    Science.gov (United States)

    Yaseen, Sarah Abduljabbar; Yiseen, Ghadah Abdaljabar; Li, Zongjin

    2018-06-01

    This paper reports a new approach of producing CaCO3 particles in alkali solution. CaCO3 particles with pure calcite structure were obtained from the reaction of water-dispersed graphene oxide (GO) or reduced graphene oxide (rGO) with either Ca(OH)2 or CaO. In Fourier Transform Infrared (FTIR) spectra, the pure calcite structure was demonstrated by fundamental bands at 1425 (ν3), 873 (ν2), and 712 cm-1 (ν4). The Raman spectra showed the characteristic peak of calcite structure at 1085 cm-1 (ν1). X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS) analyses further confirmed that only the pure calcite phase of CaCO3 was formed in both synthesis approaches. Scanning electron microscopy (SEM), Energy dispersive X-ray analyzer (EDX), and High-resolution transmission electron microscopy (HRTEM) also confirmed that distorted cubic and rhombic calcite particles were obtained with GO, while the pine flower-like and flower-like particles were obtained with rGO, and the average crystallite sizes varied from 26 to 44 nm. The mechanism of the reaction was investigated and it was found that the decomposition of oxygen functional groups on the surface of GO or rGO in certain alkaline media to release CO, CO2, and water was a key process as the released CO2 further reacted with OH- and Ca2+ to form CaCO3. This demonstrated that both GO and rGO could be used as main reactants for the synthesis of calcite.

  1. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  2. Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications.

    Science.gov (United States)

    Salunkhe, Rahul R; Hsu, Shao-Hui; Wu, Kevin C W; Yamauchi, Yusuke

    2014-06-01

    We report an effective route for the preparation of layered reduced graphene oxide (rGO) with uniformly coated polyaniline (PANI) layers. These nanocomposites are synthesized by chemical oxidative polymerization of aniline monomer in the presence of layered rGO. SEM, TEM, X-ray photoelectron spectroscopy (XPS), FTIR, and Raman spectroscopy analysis results demonstrated that reduced graphene oxide-polyaniline (rGO-PANI) nanocomposites are successfully synthesized. Because of synergistic effects, rGO-PANI nanocomposites prepared by this approach exhibit excellent capacitive performance with a high specific capacitance of 286 F g(-1) and high cycle reversibility of 94 % after 2000 cycles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reduced Graphene Oxide on Nickel Foam for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Uma Ramabadran

    2017-11-01

    Full Text Available The focus of this paper is the investigation of reduced graphene oxide (GO/nickel foam (RGON samples for use as supercapacitor electrodes. Nickel foam samples were soaked in a GO suspension and dried before being subjected to two different methods to remove oxygen. Atmospheric pressure annealed (APA samples were treated with a varying number (10–18 of nitrogen plasma jet scans, where sample temperatures did not exceed 280 °C. Furnace annealed (FA samples were processed in an atmosphere of hydrogen and argon, at temperatures ranging from 600 °C to 900 °C. Environmental Scanning Electron Microscope (ESEM data indicated that the carbon to oxygen (C:O ratio for APA samples was minimized at an intermediate number of plasma scans. Fourier Transform Infrared Spectroscopic (FTIR and Raman spectroscopic data supported this finding. ESEM analysis from FA samples showed that with increasing temperatures of annealing, GO is transformed to reduced graphene oxide (RGO, with C:O ratios exceeding 35:1. X-ray Photoelectron Spectroscopy (XPS and X-ray diffraction (XRD data indicated the formation of RGO with an increasing annealing temperature until 800 °C, when oxygen reincorporation in the surface atomic layers becomes an issue. Supercapacitors, constructed using the FA samples, demonstrated performances that correlated with surface atomic layer optimization of the C:O ratio.

  4. Silver nanoparticles anchored reduced graphene oxide for enhanced electrocatalytic activity towards methanol oxidation

    Science.gov (United States)

    Kumar, Sanjeev; Mahajan, Mani; Singh, Rajinder; Mahajan, Aman

    2018-02-01

    In this report, silver nanoparticles (Ag NPs) anchored reduced graphene oxide (rGO) sheets (rGO/Ag) nanohybrid has been explored as anode material in direct methanol fuel cells (DMFCs). The synthesized rGO/Ag nanohybrid is characterized by XRD, XPS, FTIR spectroscopy and HRTEM techniques. Cyclic voltammograms demonstrate that the rGO/Ag nanohybrid exhibits higher electrocatalytic activity in comparison to rGO sheets for methanol oxidation reaction (MOR). This enhancement is attributed to the synergetic effect produced by the presence of more active sites provided by Ag NPs anchored on a conducting network of large surface area rGO sheets.

  5. Reducing Heating In High-Speed Cinematography

    Science.gov (United States)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  6. Determination of trace bisphenol A in environmental water by high-performance liquid chromatography using magnetic reduced graphene oxide based solid-phase extraction coupled with dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Li, Danping; Ma, Xiaoguo; Wang, Rui; Yu, Yumian

    2017-02-01

    Bisphenol A (BPA), an endocrine-disrupting chemical, has received much attention from researchers and the general public. In this paper, a novel method of determining BPA at trace levels was developed, using magnetic reduced graphene oxide (rGO-Fe 3 O 4 )-based solid-phase extraction coupled with dispersive liquid-liquid microextraction (DLLME), followed by high-performance liquid chromatographic determination. The rGO-Fe 3 O 4 was prepared and then characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The greatest saturation magnetization of rGO-Fe 3 O 4 was up to 43.8 emu g -1 , which allowed rapid isolation of the rGO-Fe 3 O 4 from solutions upon applying an appropriate magnetic field. The effects of solution pH, adsorbent amount, type and volume of eluent and extraction solvent, extraction time, and salt concentration on the extraction efficiency of BPA were examined and optimized. Under the optimum conditions, an enrichment factor of 5217 and an LOD of 0.01 μg L -1 for BPA were obtained. The reusability of rGO-Fe 3 O 4 for at least 12 repeated cycles without any significant decrease in the extraction recovery of BPA was demonstrated. The proposed method was applied to the determination of BPA in different real water samples, with relative recoveries of 84.8-104.9 % and RSDs of 0.8-8.3 % in the spiked concentration range 1-10 μg L -1 .

  7. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  8. Controllable synthesis of palladium nanocubes/reduced graphene oxide composites and their enhanced electrocatalytic performance

    Science.gov (United States)

    Zhang, Yuting; Huang, Qiwei; Chang, Gang; Zhang, Zaoli; Xia, Tiantian; Shu, Honghui; He, Yunbin

    2015-04-01

    Homogeneous distribution of cube-shaped Pd nanocrystals on the surface of reduced graphene oxide is obtained via a facile one-step method by employing AA and KBr as the reductant and capping agent, respectively. The experimental factors affecting the morphology and structure of Pd nanoparticles have been systematically investigated to explore the formation mechanism of Pd nanocubes (PdNCs). It is revealed that PdNCs enclosed by active {100} facets with an average side length of 15 nm were successfully synthesized on the surface of reduced graphene oxide. KBr plays the role for facet selection by surface passivation and AA controls the reduction speed of Pd precursors, both of which govern the morphology changes of palladium nanoparticles. In the further electrochemical evaluations, the Pd nanocubes/reduced graphene oxide composites show better electrocatalytic activity and stability towards the electro-oxidation of ethanol than both reduced graphene oxide supported Pd nanoparticles and free-standing PdNCs. It could be attributed to the high electrocatalytic activity of the dominated active {100} crystal facets of Pd nanocubes and the enhanced electron transfer of graphene. The developed approach provide a versatile way for shape-controlled preparation of noble metal nanoparticles, which can work as novel electrocatalysts in the application of direct alcohols fuel cells.

  9. Hydrogen oxidation at high pressure and intermediate temperatures: experiments and kinetic modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2015-01-01

    was varied from very oxidizing to strongly reducing conditions. The results supplement high-pressure data from RCM (900–1100 K) and shock tubes (900–2200 K). At the reducing conditions ( U = 12), oxidation started at 748–775 K while it was shifted to 798–823 K for stoichiometric and oxidizing conditions ( U...

  10. Doxycycline reduces nitric oxide production in guinea pig inner ears.

    Science.gov (United States)

    Helling, Kai; Wodarzcyk, Karl; Brieger, Jürgen; Schmidtmann, Irene; Li, Huige; Mann, Wolf J; Heinrich, Ulf-Rüdiger

    2011-12-01

    Gentamicin application is an important therapeutic option to control vertigo spells in Ménière's disease. However, even in the case of low-dose intratympanic application, gentamicin might contribute to a pathological NO-increase leading to cochlear damage and hearing impairment. The study was performed to evaluate the nitric oxide (NO) reducing capacity of doxycycline in the inner ear after NO-induction by gentamicin. In a prospective animal study, a single dose of gentamicin (10mg/kg body weight) was injected intratympanically into male guinea pigs (n=48). The auditory brainstem responses (ABRs) were recorded prior to application and 3, 5 and 7 days afterwards. The organ of Corti and the lateral wall of 42 animals were isolated after 7 days and incubated separately for 6h in cell culture medium. Doxycycline was adjusted to organ cultures of 5 animals. Two NOS inhibitors, N(G)-Nitro-l-arginine methyl ester (l-NAME) and NG-monomethyl-l-arginine monoacetate (l-NMMA), were applied in three different concentrations to the organ cultures of 30 animals in total (5 animals per concentration). As controls, seven animals received no further substance except gentamicin. The NO-production was quantified by chemiluminescence. Additional six gentamicin-treated animals were used for immunohistochemical studies. The ABRs declined continuously from the first to the seventh day after gentamicin application. Doxycycline reduced NO-production in the lateral wall by 54% (p=.029) comparable to the effect of the applied nitric oxide inhibitors. In the organ of Corti, NO-production was reduced by about 41% showing no statistical significance in respect to great inter-animal variations. The application of doxycycline might offer a new therapeutic approach to prevent NO-induced cochlea damage through ototoxic substances. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate.

    Science.gov (United States)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa J; Finster, Kai W; Schreiber, Lars

    2017-07-18

    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. IMPORTANCE Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus , with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an

  12. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  13. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Huang, Ziming; Jones, Deron W; Pritchard, Kirkwood A; Zhang, Hao

    2016-05-24

    Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.

  14. Capacitive behavior of highly-oxidized graphite

    Science.gov (United States)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  15. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    KAUST Repository

    Tang, Bo

    2015-12-02

    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes’ physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes.

  16. Are vacuum-filtrated reduced graphene oxide membranes symmetric?

    KAUST Repository

    Tang, Bo; Zhang, Lianbin; Li, Renyuan; Wu, Jinbo; Hedhili, Mohamed Neijib; Wang, Peng

    2015-01-01

    Graphene or reduced graphene oxide (rGO) membrane-based materials are promising for many advanced applications due to their exceptional properties. One of the most widely used synthesis methods for rGO membranes is vacuum filtration of graphene oxide (GO) on a filter membrane, followed by reduction, which shows great advantages such as operational convenience and good controllability. Despite vacuum-filtrated rGO membranes being widely used in many applications, a fundamental question is overlooked: are the top and bottom surfaces of the membranes formed at the interfaces with air and with the filter membrane respectively symmetric or asymmetric? This work, for the first time, reports the asymmetry of the vacuum-filtrated rGO membranes and discloses the filter membranes’ physical imprint on the bottom surface of the rGO membrane, which takes place when the filter membrane surface pores have similar dimension to GO sheets. This result points out that the asymmetric surface properties should be cautiously taken into consideration while designing the surface-related applications for GO and rGO membranes.

  17. Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide.

    Science.gov (United States)

    Rajesh, A; Mangamma, G; Sairam, T N; Subramanian, S; Kalavathi, S; Kamruddin, M; Dash, S

    2017-07-01

    Graphene oxide (GO) based nanocomposites have gained considerable attention in the field of material science due to their excellent physicochemical and biological properties. Incorporation of nanomaterials into GO sheets prevents the formation of π-π stacking bond thereby giving rise to composites that show the improved properties compared to their individual counterparts. In this work, reduced graphene oxide (rGO) - hydroxyapatite (HAP) nanocomposites were synthesized by ultrasonic method. Increasing the c/a ratio of HAP in the diffraction pattern of rGO/HAP nanocomposites indicates the c-axis oriented grown HAP nanorods interacting with rGO layers. Shift in wavenumber (15cm -1 ) and increase of full width at half maximum (45cm -1 ) of G band in Raman spectra of the rGO/HAP nanocomposites are observed and attributed to the tensile strain induced due to the intercalated HAP nanorods between the rGO layers. Atomic force microscopy (AFM) and phase imaging studies revealed the intercalation of HAP nanorod with diameter 30nm and length 110-120nm in rGO sheets was clearly perceived along with improved elasticity compared to pristine HAP. 13 C-NMR results proved the synergistic interaction between both components in rGO/HAP nanocomposite. The novel properties observed and the microscopic mechanism responsible for this are a result of the structural modification in rGO layers brought about by the intercalation of HAP nanorods. Copyright © 2017. Published by Elsevier B.V.

  18. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide

    Science.gov (United States)

    Winiwarter, Wilfried; Höglund-Isaksson, Lena; Klimont, Zbigniew; Schöpp, Wolfgang; Amann, Markus

    2018-01-01

    We describe a consistent framework developed to quantify current and future anthropogenic emissions of nitrous oxide and the available technical abatement options by source sector for 172 regions globally. About 65% of the current emissions derive from agricultural soils, 8% from waste, and 4% from the chemical industry. Low-cost abatement options are available in industry, wastewater, and agriculture, where they are limited to large industrial farms. We estimate that by 2030, emissions can be reduced by about 6% ±2% applying abatement options at a cost lower than 10 €/t CO2-eq. The largest abatement potential at higher marginal costs is available from agricultural soils, employing precision fertilizer application technology as well as chemical treatment of fertilizers to suppress conversion processes in soil (nitrification inhibitors). At marginal costs of up to 100 €/t CO2-eq, about 18% ±6% of baseline emissions can be removed and when considering all available options, the global abatement potential increases to about 26% ±9%. Due to expected future increase in activities driving nitrous oxide emissions, the limited technical abatement potential available means that even at full implementation of reduction measures by 2030, global emissions can be at most stabilized at the pre-2010 level. In order to achieve deeper reductions in emissions, considerable technological development will be required as well as non-technical options like adjusting human diets towards moderate animal protein consumption.

  19. Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@Ni foam: a high-energy-density aqueous asymmetric supercapacitor.

    Science.gov (United States)

    Ghosh, Debasis; Das, Chapal Kumar

    2015-01-21

    Ni foam@reduced graphene oxide (rGO) hydrogel-Ni3S2 and Ni foam@rGO hydrogel-Co3S4 composites have been successfully synthesized with the aid of a two-step hydrothermal protocol, where the rGO hydrogel is sandwiched between the metal sulfide and Ni foam substrate. Sonochemical deposition of exfoliated rGO on Ni foam with subsequent hydrothermal treatment results in the formation of a rGO-hydrogel-coated Ni foam. Then second-time hydrothermal treatment of the dried Ni@rGO substrate with corresponding metal nitrate and sodium sulfide results in individual uniform growth of porous Ni3S2 nanorods and a Co3S4 self-assembled nanosheet on a Ni@rGO substrate. Both Ni@rGO-Ni3S2 and Ni@rGO-Co3S4 have been electrochemically characterized in a 6 M KOH electrolyte, exhibiting high specific capacitance values of 987.8 and 1369 F/g, respectively, at 1.5 A/g accompanied by the respective outstanding cycle stability of 97.9% and 96.6% at 12 A/g over 3000 charge-discharge cycles. An advanced aqueous asymmetric (AAS) supercapacitor has been fabricated by exploiting the as-prepared Ni@rGO-Co3S4 as a positive electrode and Ni@rGO-Ni3S2 as a negative electrode. The as-fabricated AAS has shown promising energy densities of 55.16 and 24.84 Wh/kg at high power densities of 975 and 13000 W/kg, respectively, along with an excellent cycle stability of 96.2% specific capacitance retention over 3000 charge-discharge cycles at 12 A/g. The enhanced specific capacitance, stupendous cycle stability, elevated energy density, and a power density as an AAS of these electrode materials indicate that it could be a potential candidate in the field of supercapacitors.

  20. Method to reduce the nitrogen oxide content of gaseous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Klopp, G.; Sueto, J.; Szasz, K.; Szebenyi, I.; Winkler, G.; Machacs, M.; Palmai, G.

    1980-11-13

    The proposed process is suited for the denitrification of waste gases from nitric acid plants. It proceeds without an additional energy source with an integrated adsorption unit which guaranties the complete recirculation of the produced nitrogen oxides and allows the regeneration of the adsorbents by the use of the energy from the oxidation of nitrous oxide to nitric oxide. The desorption is carried out by the intermediate passage of the hot gases from the oxidizer through the adsorber.

  1. Peanut skin extract reduces lipid oxidation in cooked chicken patties.

    Science.gov (United States)

    Munekata, P E S; Calomeni, A V; Rodrigues, C E C; Fávaro-Trindade, C S; Alencar, S M; Trindade, M A

    2015-03-01

    The objectives of this study were to evaluate the antioxidant capacity of peanut skin extract and its effect on the color and lipid oxidation of cooked chicken patties over 15 d of refrigerated storage. The extract was obtained using 80% ethanol and evaluated in terms of total phenolic content, reducing power based on the ferric reducing ability of plasma (FRAP) reagent, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The patties were made with ground thigh fillets, chicken skin, and 2% salt. They were homogenized and divided into the following two groups: a control treatment without antioxidants and a peanut skin treatment with 70 mg gallic acid equivalent (GAE)/kg per patty. Analyses of the fatty acid profiles, instrumental colors (L*, a*, and b*) and thiobarbituric acid reactive substances (TBARS) were performed on d 1, 8, and 15 of storage at 1±1ºC. The peanut skin extract resulted in a phenolic content of 32.6±0.7 mg GAE/g dry skin, an antioxidant activity (FRAP) of 26.5±0.8 6 μmol Trolox equivalent/g dry skin, and an efficient concentration (EC50) of 46.5 μg/mL. The total unsaturated fatty acid was approximately 73%, and 39% of this fatty acid content was monounsaturated. The peanut skin extract slowed the decrease in the a* values (Pcooked chicken patties because it efficiently inhibits lipid oxidation in this product during refrigerated storage. © 2015 Poultry Science Association Inc.

  2. The production of reduced graphene oxide by a low-cost vacuum system for supercapacitors applications

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Q.A.; Sakata, S.K.; Faria, R.N. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Silva, F.M.; Vieira, L.S.; Casini, J.C.S., E-mail: julio.casini@ifro.edu.br [Instituto Federal de Ciencia e Tecnologia de Rondonia (IFRO), RO (Brazil)

    2016-07-01

    Graphene (G) has attracted great interest for its excellent electrical properties. However, the large-scale production of graphene is still currently under investigations. Graphene oxide (GO) can be partially reduced to graphene-like sheets by removing the oxygen-containing groups with the recovery of a conjugated structure. It can be produced using inexpensive graphite as raw material by cost-effective chemical methods. High vacuum and temperature (10{sup -7}mbar/1100 deg C) is well established as an effective route for reduced powder preparation on a laboratory scale. However, a high vacuum reduction system, which can be routinely operated at 10{sup -7} mbar, has a considerable capital, operational and maintenance cost to be used in a large scale. In the present work, a low-cost route aiming large scale reduction of graphene oxide has been investigated. A stainless steel vessel has been evacuated to backing-pump pressure (10{sup -2} mbar) to process graphene oxide at low and high temperatures. Attempts of reducing GO powder using low vacuum pressures have been carried out and investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results of processing graphene oxide powder at various temperatures (200-1000°C) at relatively low pressures have been reported. The microstructures of the processed material have been investigated using scanning electron microscopy (SEM) and chemical microanalyses employing energy dispersive X-ray analysis (EDX). (author)

  3. The production of reduced graphene oxide by a low-cost vacuum system for supercapacitors applications

    International Nuclear Information System (INIS)

    Cardoso, Q.A.; Sakata, S.K.; Faria, R.N.; Silva, F.M.; Vieira, L.S.; Casini, J.C.S.

    2016-01-01

    Graphene (G) has attracted great interest for its excellent electrical properties. However, the large-scale production of graphene is still currently under investigations. Graphene oxide (GO) can be partially reduced to graphene-like sheets by removing the oxygen-containing groups with the recovery of a conjugated structure. It can be produced using inexpensive graphite as raw material by cost-effective chemical methods. High vacuum and temperature (10 -7 mbar/1100 deg C) is well established as an effective route for reduced powder preparation on a laboratory scale. However, a high vacuum reduction system, which can be routinely operated at 10 -7 mbar, has a considerable capital, operational and maintenance cost to be used in a large scale. In the present work, a low-cost route aiming large scale reduction of graphene oxide has been investigated. A stainless steel vessel has been evacuated to backing-pump pressure (10 -2 mbar) to process graphene oxide at low and high temperatures. Attempts of reducing GO powder using low vacuum pressures have been carried out and investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The experimental results of processing graphene oxide powder at various temperatures (200-1000°C) at relatively low pressures have been reported. The microstructures of the processed material have been investigated using scanning electron microscopy (SEM) and chemical microanalyses employing energy dispersive X-ray analysis (EDX). (author)

  4. Using REDUCE in high energy physics

    International Nuclear Information System (INIS)

    Grozin, A.G.

    1997-01-01

    This book describes the use of the symbolic manipulation language REDUCE in particle physics. There are several general purpose mathematics packages available to physicists, including Mathematica, Maple, and REDUCE. Each has advantages and disadvantages, but REDUCE has been found to be both powerful and convenient in solving a wide range of problems. This book introduces the reader to REDUCE and demonstrates its utility as a mathematical tool in physics. The first chapter of the book describes the REDUCE system, including some library packages. The following chapters show the use of REDUCE in examples from classical mechanics, hydrodynamics, general relativity, and quantum mechanics. The rest of the book systematically presents the Standard Model of particle physics (QED, weak interactions, QCD). A large number of scattering and decay processes are calculated with REDUCE. All example programs from the book can be downloaded via Internet. The emphasis throughout is on learning through worked examples. This will be an essential introduction and reference for high energy and theoretical physicists. (author)

  5. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  6. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    International Nuclear Information System (INIS)

    Bagheri, Hasan; Hajian, Ali; Rezaei, Mosayeb; Shirzadmehr, Ali

    2017-01-01

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S_b/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  7. Desferrioxamine Reduces Oxidative Stress in the Lung Contusion

    Directory of Open Access Journals (Sweden)

    Umit Nusret Basaran

    2013-01-01

    Full Text Available Our hypothesis in this study is that desferrioxamine (DFX has therapeutic effects on experimental lung contusions in rats. The rats were divided into four groups (n=8: control, control+DFX, contusion, and contusion+DFX. In the control+DFX and contusion+DFX groups, 100 mg/kg DFX was given intraperitoneally once a day just after the contusion and the day after the contusion. Contusions led to a meaningful rise in the malondialdehyde (MDA level in lung tissue. MDA levels in the contusion+DFX group experienced a significant decline. Glutathione levels were significantly lower in the contusion group than in the control group and significantly higher in the contusion+DFX group. Glutathione peroxidase (GPx and superoxide dismutase (SOD levels in the contusion group were significantly lower than those in the control group. In the contusion+DFX group, SOD and GPx levels were significantly higher than those in the contusion group. In light microscopic evaluation, the contusion and contusion+DFX groups showed edema, hemorrhage, alveolar destruction, and leukocyte infiltration. However, histological scoring of the contusion+DFX group was significantly more positive than that of the contusion group. The iNOS staining in the contusion group was significantly more intensive than that in all other groups. DFX reduced iNOS staining significantly in comparison to the contusion group. This study showed that DFX reduced oxidative stress in lung contusions in rats and histopathologically ensured the recovery of the lung tissue.

  8. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Jin-Mok Hur; Min Ku Jeon; University of Science and Technology, Yuseong-gu, Daejeon

    2017-01-01

    We report that residual salt removal by high-temperature distillation causes partial reoxidation of uranium metal to uranium oxide in electrolytically reduced simulated oxide fuel. Specifically, the content of uranium metal in the above product decreases with increasing distillation temperatures, which can be attributed to reoxidation by Li 2 O contained in residual salt (LiCl). Additionally, we estimate the fractions of Li 2 O reacted with uranium metal under these conditions, showing that they decrease with decreasing temperature, and calculate some thermodynamic parameters of the above reoxidation. (author)

  9. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    Science.gov (United States)

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors.

  10. Fabrication and characterization on reduced graphene oxide field effect transistor (RGOFET) based biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, A. Diyana [School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh, Perlis (Malaysia); Ruslinda, A. Rahim, E-mail: ruslinda@unimap.edu.my; Fatin, M. F. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis (Malaysia); Hashim, U.; Arshad, M. K. [School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Pauh, Perlis (Malaysia); Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis (Malaysia)

    2016-07-06

    The fabrication and characterization on reduced graphene oxide field effect transistor (RGO-FET) were demonstrated using a spray deposition method for biological sensing device purpose. A spray method is a fast, low-cost and simple technique to deposit graphene and the most promising technology due to ideal coating on variety of substrates and high production speed. The fabrication method was demonstrated for developing a label free aptamer reduced graphene oxide field effect transistor biosensor. Reduced graphene oxide (RGO) was obtained by heating on hot plate fixed at various temperatures of 100, 200 and 300°C, respectively. The surface morphology of RGO were examined via atomic force microscopy to observed the temperature effect of produced RGO. The electrical measurement verify the performance of electrical conducting RGO-FET at temperature 300°C is better as compared to other temperature due to the removal of oxygen groups in GO. Thus, reduced graphene oxide was a promising material for biosensor application.

  11. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  12. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization

    Science.gov (United States)

    Hidayah, N. M. S.; Liu, Wei-Wen; Lai, Chin-Wei; Noriman, N. Z.; Khe, Cheng-Seong; Hashim, U.; Lee, H. Cheun

    2017-10-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are known to have superior properties for various applications. This work compares the properties of GO and RGO with graphite. GO was prepared by using Improved Hummer's method whereas the produced GO was subjected to chemical reduction with the use of hydrazine hydrate. Graphite, GO and RGO had different morphologies, quality, functionalized groups, UV-Vis absorption peaks and crystallinity. With the removal of oxygen-containing functional group during reduction for RGO, the quality of samples was decreased due to higher intensity of D band than G band was seen in Raman results. In addition, platelet-like surface can be observed on the surface of graphite as compared to GO and RGO where wrinkled and layered flakes, and crumpled thin sheets were observed on GO and RGO surface respectively. Fourier Transform Infra-Red (FTIR) analysis showed the presence of abundant oxygen-containing functional groups in GO as compared to RGO and graphite. The characteristic peaks at 26.62°, 9.03° and 24.10° for graphite, GO and RGO, respectively, can be detected from X-Ray diffraction (XRD). Furthermore, the reduction also caused red shift at 279nm from 238nm, as obtained from ultraviolet visible (UV-Vis) analysis. The results proved that GO was successfully oxidized from graphite whereas RGO was effectively reduced from GO.

  13. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma

    DEFF Research Database (Denmark)

    Jaworski, Sławomir; Sawosz, Ewa; Kutwin, Marta

    2015-01-01

    Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO) and reduced grap......, the level of apoptotic markers increased in rGO-treated tumors. We show that rGO induces cell death mostly through apoptosis, indicating the potential applicability of graphene in cancer therapy.......Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO) and reduced...... graphene oxide (rGO) platelets, using U87 and U118 glioma cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane for an in vivo model. The in vitro investigation consisted of structural analysis of GO and rGO platelets using transmission electron microscopy...

  14. Fast Oxidation Processes in a Naturally Reduced Aquifer Zone Caused by Dissolved Oxygen

    Science.gov (United States)

    Davis, J. A.; Jemison, N. E.; Williams, K. H.; Hobson, C.; Bush, R. P.

    2014-12-01

    The occurrence of naturally reduced zones is quite common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. The naturally reduced zones are heterogeneously dispersed in such aquifers and are characterized by high concentrations of organic carbon and reduced phases, including iron sulfides and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases that are found in association with these natural reducing zones, although there is little understanding of the relative importance of various potential oxidants. Three field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO wherein groundwater associated with naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in these field systems if supplied to the naturally reduced zones. Small concentrations of nitrate were also observed in the previously nitrate-free groundwater, and Fe(II) decreased to the detection limit. These results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS) rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table, and seasonal variations

  15. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Yuan, E-mail: cyho@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Wang, Hong-Wen [Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan (China)

    2015-12-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP{sub 250} as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  16. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    International Nuclear Information System (INIS)

    Ho, Ching-Yuan; Wang, Hong-Wen

    2015-01-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP 250 as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  17. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  19. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress.

    Science.gov (United States)

    Poliandri, Ariel H B; Machiavelli, Leticia I; Quinteros, Alnilan F; Cabilla, Jimena P; Duvilanski, Beatriz H

    2006-02-15

    Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.

  20. Electrodeposition of Polypyrrole/Reduced Graphene Oxide/Iron Oxide Nanocomposite as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Y. C. Eeu

    2013-01-01

    Full Text Available Polypyrrole (PPy was reinforced with reduced graphene oxide (RGO and iron oxide to achieve electrochemical stability and enhancement. The ternary nanocomposite film was prepared using a facile one-pot chronoamperometry approach, which is inexpensive and experimentally friendly. The field emission scanning electron microscopy (FESEM image shows a layered morphology of the ternary nanocomposite film as opposed to the dendritic structure of PPy, suggesting hybridization of the three materials during electrodeposition. X-ray diffraction (XRD profile shows the presence of Fe2O3 in the ternary nanocomposite. Cyclic voltammetry (CV analysis illustrates enhanced current for the nanocomposite by twofold and fourfold compared to its binary (PPy/RGO and individual (PPy counterparts, respectively. The ternary nanocomposite film exhibited excellent specific capacitance retention even after 200 cycles of charge/discharge.

  1. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm.

    Science.gov (United States)

    Guo, Zhiling; Xie, Changjian; Zhang, Peng; Zhang, Junzhe; Wang, Guohua; He, Xiao; Ma, Yuhui; Zhao, Bin; Zhang, Zhiyong

    2017-02-15

    Impact of graphene based material (GNMs) on bacteria biofilm has not been well understood yet. In this study, we compared the impact of graphene oxide (GO) and reduced graphene oxide (rGO) on biofilm formation and development in Luria-Bertani (LB) medium using Escherichia coli and Staphylococcus aureus as models. GO significantly enhanced the cell growth, biofilm formation, and biofilm development even up to a concentration of 500mg/L. In contrast, rGO (≥50mg/L) strongly inhibited cell growth and biofilm formation. However, the inhibitory effects of rGO (50mg/L and 100mg/L) were attenuated in the mature phase (>24h) and eliminated at 48h. GO at 250mg/L decreased the reactive oxygen species (ROS) levels in biofilm and extracellular region at mature phase. ROS levels were significantly increased by rGO at early phase, while they returned to the same levels as control at mature phase. These results suggest that oxidative stress contributed to the inhibitory effect of rGO on bacterial biofilm. We further found that supplement of extracellular polymeric substances (EPS) in the growth medium attenuated the inhibitory effect of rGO on the growth of developed biofilm. XPS results showed that rGO were oxidized to GO which can enhance the bacterial growth. We deduced that the elimination of the toxicity of rGO at mature phase was contributed by EPS protection and the oxidation of rGO. This study provides new insights into the interaction of GNMs with bacteria biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phenylboronic acid functionalized reduced graphene oxide based fluorescence nano sensor for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Basiruddin, SK; Swain, Sarat K., E-mail: swainsk2@yahoo.co.in

    2016-01-01

    Reduced graphene has emerged as promising tools for detection based application of biomolecules as it has high surface area with strong fluorescence quenching property. We have used the concept of fluorescent quenching property of reduced graphene oxide to the fluorescent probes which are close vicinity of its surface. In present work, we have synthesized fluorescent based nano-sensor consist of phenylboronic acid functionalized reduced graphene oxide (rGO–PBA) and di-ol modified fluorescent probe for detection of biologically important glucose molecules. This fluorescent graphene based nano-probe has been characterized by high resolution transmission electron microscope (HRTEM), Atomic force microscope (AFM), UV–visible, Photo-luminescence (PL) and Fourier transformed infrared (FT-IR) spectroscopy. Finally, using this PBA functionalized reduced GO based nano-sensor, we were able to detect glucose molecule in the range of 2 mg/mL to 75 mg/mL in aqueous solution of pH 7.4. - Highlights: • Easy and simple synthesis of PBA functionalized reduced GO based nano probe. • PBA functionalized reduced GO graphene based nano-probes are characterized. • PBA functionalized reduced GO nano probe is used to detect glucose molecules. • It is very cost-effective and enzyme-free detection of glucose in solution.

  3. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Hasan, E-mail: h.bagheri@bmsu.ac.ir [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hajian, Ali [Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg (Germany); Rezaei, Mosayeb; Shirzadmehr, Ali [Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of)

    2017-02-15

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S{sub b}/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  4. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors.

    Science.gov (United States)

    Galstyan, Vardan; Comini, Elisabetta; Kholmanov, Iskandar; Ponzoni, Andrea; Sberveglieri, Veronica; Poli, Nicola; Faglia, Guido; Sberveglieri, Giorgio

    2016-01-01

    A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

  5. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma

    Directory of Open Access Journals (Sweden)

    Jaworski S

    2015-02-01

    Full Text Available Sławomir Jaworski,1 Ewa Sawosz,1 Marta Kutwin,1 Mateusz Wierzbicki,1 Mateusz Hinzmann,1 Marta Grodzik,1 Anna Winnicka,2 Ludwika Lipinska,3 Karolina Włodyga,1 Andrè Chwalibog41Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, 2Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 3Institute of Electronic Materials Technology, Warsaw, Poland; 4University of Copenhagen, Department of Veterinary Clinical and Animal Sciences, Copenhagen, DenmarkAbstract: Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO and reduced graphene oxide (rGO platelets, using U87 and U118 glioma cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane for an in vivo model. The in vitro investigation consisted of structural analysis of GO and rGO platelets using transmission elec­tron microscopy, evaluation of cell morphology and ultrastructure, assessment of cell viability by XTT assay, and investigation of cell proliferation by BrdU assay. Toxicity in U87 glioma tumors was evaluated by calculation of weight and volume of tumors and analyses of ultrastructure, histology, and protein expression. The in vitro results indicate that GO and rGO enter glioma cells and have different cytotoxicity. Both types of platelets reduced cell viability and proliferation with increasing doses, but rGO was more toxic than GO. The mass and volume of tumors were reduced in vivo after injection of GO and rGO. Moreover, the level of apoptotic markers increased in rGO-treated tumors. We show that rGO induces cell death mostly through apoptosis, indicating the potential applicability of

  6. A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors

    Directory of Open Access Journals (Sweden)

    Vardan Galstyan

    2016-10-01

    Full Text Available A hybrid nanostructure based on reduced graphene oxide and ZnO has been obtained for the detection of volatile organic compounds. The sensing properties of the hybrid structure have been studied for different concentrations of ethanol and acetone. The response of the hybrid material is significantly higher compared to pristine ZnO nanostructures. The obtained results have shown that the nanohybrid is a promising structure for the monitoring of environmental pollutants and for the application of breath tests in assessment of exposure to volatile organic compounds.

  7. Starved Escherichia coli preserve reducing power under nitric oxide stress

    Energy Technology Data Exchange (ETDEWEB)

    Gowers, Glen-Oliver F. [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Robinson, Jonathan L. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States); Brynildsen, Mark P., E-mail: mbrynild@princeton.edu [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States)

    2016-07-15

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availability in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.

  8. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  9. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    Science.gov (United States)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g-1, far exceeding spider dragline silk (165 J g-1) and Kevlar (78 J g-1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  10. Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)

    Science.gov (United States)

    Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda

    2017-03-01

    A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.

  11. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    Science.gov (United States)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-31

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  12. A comparison study between ZnO nanorods coated with graphene oxide and reduced graphene oxide

    International Nuclear Information System (INIS)

    Ding, Jijun; Wang, Minqiang; Deng, Jianping; Gao, Weiyin; Yang, Zhi; Ran, Chenxin; Zhang, Xiangyu

    2014-01-01

    Highlights: • Optical properties between ZnO-GO and ZnO-RGO composites were compared. • Photoluminescence quenching was observed in ZnO-GO composites. • We obtained enhanced photoluminescence in ZnO-RGO composites. -- Abstract: ZnO nanorods (ZnO NRs) coated with graphene oxide (ZnO-GO) and reduced graphene oxide sheets (ZnO-RGO) were prepared on indium tin oxide (ITO) substrates. The crystal structures, morphology and optical properties were analyzed by using X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) images, absorption spectra and photoluminescence (PL) spectra, respectively. A comparison between PL properties from ZnO-GO and ZnO-RGO were studied. Results indicated that the peak at 442 nm and a broad band at 450–600 nm of ZnO NRs show PL quenching after coating with GO sheets. As coating with RGO sheets, the extent of PL quenching increases. It is interesting to note that as ZnO NRs coated with RGO sheets, the intensity of PL peak at 390 nm significantly increased. The enhanced PL emission research in ZnO-RGO is directed toward development of the “nextgeneration” optoelectronics devices related with graphene materials

  13. Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials.

    Science.gov (United States)

    Socaci, C; Pogacean, F; Biris, A R; Coros, M; Rosu, M C; Magerusan, L; Katona, G; Pruneanu, S

    2016-02-01

    The paper describes the preparation of supramolecular assemblies of tetrapyridylporphyrin (TPyP) and its metallic complexes with graphene oxide (GO) and thermally reduced graphene oxide (TRGO). The two carbon supports are introducing different characteristics in the absorption spectra of the investigated nanocomposites. Raman spectroscopy shows that the absorption of iron-tetrapyridylporphyrin is more efficient on GO than TRGO, suggesting that oxygen functionalities are involved in the non-covalent interaction between the iron-porphyrin and graphene. The biomimetic peroxidase activity is investigated and the two iron-containing composites exhibit a better catalytic activity than each component of the assembly, and their cobalt and manganese homologues, respectively. The main advantages of this work include the demonstration of graphene oxide as a very good support for graphene-based nanomaterials with peroxidase-like activity (K(M)=0.292 mM), the catalytic activity being observed even with very small amounts of porphyrins (the TPyP:graphene ratio=1:50). Its potential application in the detection of lipophilic antioxidants (vitamin E can be measured in the 10(-5)-10(-4) M range) is also shown. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrzak, Malgorzata, E-mail: malgorzata.aleksandrzak@o2.pl; Kukulka, Wojciech; Mijowska, Ewa

    2017-03-15

    Highlights: • Graphitic carbon nitride modified with graphene nanostructures. • Influence of graphene nanostructures size in photocatalytic properties of g-C{sub 3}N{sub 4}. • Improved photocatalysis resulted from up-converted photoluminescence. - Abstract: The study presents a modification of graphitic carbon nitride (g-C{sub 3}N{sub 4}) with graphene oxide (GO) and reduced graphene oxide (rGO) and investigation of photoluminescent and photocatalytic properties. The influence of GO and rGO lateral sizes used for the modification was investigated. The nanomaterials were characterized with atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV–vis spectroscopy (DR-UV-vis) and photoluminescence spectroscopy (PL). PL revealed that pristine graphitic carbon nitride and its nanocomposites with GO and rGO emitted up-converted photoluminescence (UCPL) which could contribute to the improvement of photocatalytic activity of the materials. The photoactivity was evaluated in a process of phenol decomposition under visible light. A hybrid composed of rGO nanoparticles (rGONPs, 4–135 nm) exhibited the highest photoactivity compared to rGO with size of 150 nm–7.2 μm and graphene oxide with the corresponding sizes. The possible reason of the superior photocatalytic activity is the most enhanced UCPL of rGONPs, contributing to the emission of light with higher energy than the incident light, resulting in improved photogeneration of electron-hole pairs.

  15. Consecutive evaluation of graphene oxide and reduced graphene oxide nanoplatelets immunotoxicity on monocytes.

    Science.gov (United States)

    Yan, Junyan; Chen, Liliang; Huang, Chih-Ching; Lung, Shih-Chun Candice; Yang, Lingyan; Wang, Wen-Cheng; Lin, Po-Hsiung; Suo, Guangli; Lin, Chia-Hua

    2017-05-01

    The biocompatibilities of graphene-family nanomaterials (GFNs) should be thoroughly evaluated before their application in drug delivery and anticancer therapy. The present study aimed to consecutively assess the immunotoxicity of graphene oxide nanoplatelets (GONPs) and reduced GONPs (rGONPs) on THP-1 cells, a human acute monocytic leukemia cell line. GONPs induced the expression of antioxidative enzymes and inflammatory factors, whereas rGONPs had substantially higher cellular uptake rate, higher levels of NF-κB expression. These distinct toxic mechanisms were observed because the two nanomaterials differ in their oxidation state, which imparts different affinities for the cell membrane. Because GONPs have a higher cell membrane affinity and higher impact on membrane proteins compared with rGONPs, macrophages (THP-1a) derived from GONPs treated THP-1cells showed a severer effect on phagocytosis. By consecutive evaluation the effects of GONPs and rGONPs on THP-1 and THP-1a, we demonstrated that their surface oxidation states may cause GFNs to behave differently and cause different immunotoxic effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Barium borate nanorod decorated reduced graphene oxide for optical power limiting applications

    Science.gov (United States)

    Muruganandi, G.; Saravanan, M.; Vinitha, G.; Jessie Raj, M. B.; Sabari Girisun, T. C.

    2018-01-01

    By simple hydrothermal method, nanorods of barium boate were successfully loaded on reduced graphene oxide sheets. Powder XRD confirms the incorporation of barium borate (2θ = 29°, (202)) along with the transition of graphene oxide (2θ = 12°, (001)) into reduced graphene oxide (2θ = 25°, (002)). In the FTIR spectra, presence of characteristic absorption peaks of rGO (1572 and 2928 cm-1) and barium borate (510, 760 and 856 cm-1) further evidences the formation of BBO:rGO nanocomposite. FESEM images potray the existence of graphene sheets as thin layers and growth of barium borate as nanorods on the sheets of reduced graphene oxide. Ground state absorption studies reveal the hypsochromic shift in the absorption maxima of the graphene layers due to reduction of graphene oxide and hypochromic shift in the absorbance intensity due to the inclusion of highly transparent barium bortae. The photoluminescence of BBO:rGO shows maximum emission in the UV region arising from the direct transitions involving the valence band and conduction band in the band gap region. Z-scan technique using CW diode pumped Nd:YAG laser (532 nm, 50 mW) exposes that both nanocomposite and individual counterpart possess saturable absorption and self-defocusing behavior. Third-order nonlinear optical coefficients of BBO:rGO nanocomposite is found to be higher than bare graphene oxide. In particular the nonlinear refractive index of nanocomposite is almost four times higher than GO which resulted in superior optical power limiting action. Strong nonlinear refraction (self-defocusing) and lower onset limiting thershold makes the BBO:rGO nanocomposite preferable candidate for laser safety devices.

  17. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    International Nuclear Information System (INIS)

    Ngoi, Kuan Hoon; Chia, Chin-Hua; Zakaria, Sarani; Chiu, Wee Siong

    2015-01-01

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature

  18. Shape control of the magnetic iron oxide nanoparticles under different chain length of reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Ngoi, Kuan Hoon; Chia, Chin-Hua, E-mail: chia@ukm.edu.my; Zakaria, Sarani [School of Applied Physics, Faculty Science and Technology, University Kebangsaan Malaysia 43600 UKM Bangi, Selangor (Malaysia); Chiu, Wee Siong [Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Lembah Pantai, Kuala Lumpur (Malaysia)

    2015-09-25

    We report on the effect of using reducing agents with different chain-length on the synthesis of iron oxide nanoparticles by thermal decomposition of iron (III) acetylacetonate in 1-octadecene. This modification allows us to control the shape of nanoparticles into spherical and cubic iron oxide nanoparticles. The highly monodisperse 14 nm spherical nanoparticles are obtained under 1,2-dodecanediol and average 14 nm edge-length cubic iron oxide nanoparticles are obtained under 1,2-tetradecanediol. The structural characterization such as transmission electron microscope (TEM) and X-ray diffraction (XRD) shows similar properties between two particles with different shapes. The vibrating sample magnetometer (VSM) shows no significant difference between spherical and cubic nanoparticles, which are 36 emu/g and 37 emu/g respectively and superparamagnetic in nature.

  19. The tunable plasma synthesis of Pt-reduced graphene oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Yulong Ma

    2017-06-01

    Full Text Available Herein, we have developed Pt-plasma reduced graphene oxide (Pt/P-rGO catalysts displaying high overpotentials for methanol oxidation reaction (MOR through facile and tunable plasma treatments. We provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. The analysis results showed that the Pt nanoparticles (NPs were successfully deposited on P-rGO. The deposition and uniformity of Pt NPs were influenced by tuning the discharge power of the plasma. The catalytic performance towards the methanol oxidation reaction is investigated. The Pt/P-rGO NPs composites under 100 W show the best electrocatalytic activity. These results were vital to the further application of graphene-based metal nanocomposites synthesized by plasma technology.

  20. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Park, Moon Gyu [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Croiset, Eric, E-mail: ecroiset@uwaterloo.ca [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Chen, Zhongwei [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Nam, Sung Chan; Ryu, Ho-Jung [Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of)

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H{sub 2}S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H{sub 2}S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H{sub 2}S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H{sub 2} and CO{sub 2} on H{sub 2}S adsorption was also investigated. The presence of hydrogen in the H{sub 2}S stream had a positive effect on the removal of H{sub 2}S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn{sup 2+}) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO{sub 2}) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H{sub 2}S and CO{sub 2}.

  1. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Science.gov (United States)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  2. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    International Nuclear Information System (INIS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-01-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H 2 S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H 2 S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H 2 S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H 2 and CO 2 on H 2 S adsorption was also investigated. The presence of hydrogen in the H 2 S stream had a positive effect on the removal of H 2 S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn 2+ ) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO 2 ) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H 2 S and CO 2 .

  3. Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications

    Energy Technology Data Exchange (ETDEWEB)

    García-Gómez, A. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Eugénio, S., E-mail: s.eugenio@tecnico.ulisboa.pt [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Duarte, R.G. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTBarreiro, Instituto Politécnico de Setúbal, Setúbal (Portugal); Silva, T.M. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ADEM, GI-MOSM, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa (Portugal); Carmezim, M.J. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTSetúbal, Instituto Politécnico de Setúbal, Setúbal (Portugal); Montemor, M.F. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal)

    2016-09-30

    Highlights: • Electrochemically reduced graphene/CoOx composites were successfully produced by electrodeposition. • The composite material presents a specific capacitance of about 430 F g{sup −1}. • After heat treatment, the capacitance retention of the composite was 76% after 3500 cycles. - Abstract: In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 °C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g{sup −1} at 1 A g{sup −1} and presenting long-term cycling stability.

  4. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  5. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  6. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Rajini P., E-mail: raji.anna@gmail.com; Preethi, L.K.; Gupta, Bhavana; Mathews, Tom, E-mail: tom@igcar.gov.in; Dash, S.; Tyagi, A.K.

    2015-10-15

    Highlights: • Synthesis of Pt–RGO nanohybrids of very high electrochemically active surface area. • Electrocatalytic activity-cum-stability: ∼10 times that of commercial Pt-C catalyst. • TEM confirms narrow size distribution and excellent dispersion of Pt nanoparticles. • SAED and XRD indicate (1 1 1) orientation of Pt nanoparticles. • Methanol oxidation EIS reveal decrease in charge transfer resistance with potential - Abstract: High quality thermally exfoliated reduced graphene oxide (RGO) nanosheets decorated with platinum nanocrystals have been synthesized using a simple environmentally benign process. The electrocatalytic behaviour of the Pt–RGO nanohybrid for methanol oxidation was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. High resolution transmission electron microscopy shows uniform dispersion of Pt nanoparticles of ∼2–4 nm size. X-ray diffraction and selected area diffraction studies reveal (1 1 1) orientation of the platinum nanoparticles. The cyclic voltammetry and chronoamperometry results indicate higher catalytic activity and stability for Pt–RGO compared to commercial Pt-C. The electrochemical active surface area of Pt–RGO (52.16 m{sup 2}/g) is found to be 1.5 times that of commercial Pt-C. Impedance spectroscopy shows different impedance behaviour at different potential regions, indicating change in methanol oxidation reaction mechanism with potential. The reversal of impedance pattern to the second quadrant, at potentials higher than ∼0.40 V, indicates change in the rate determining reaction.

  7. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  8. REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    F. Sakhaei

    2016-12-01

    Full Text Available Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.

  9. White tea (Camellia sinensis extract reduces oxidative stress and triacylglycerols in obese mice

    Directory of Open Access Journals (Sweden)

    Lílian Gonçalves Teixeira

    2012-12-01

    Full Text Available White tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. Although its levels of catechins are higher than those of green tea (derived from the same plant, there are no studies addressing the relationship between this tea and obesity associated with oxidative stress.The objective of this study was to evaluate the effect of white tea on obesity and its complications using a diet induced obesity model. Forty male C57BL/6 mice were fed a high-fat diet to induce obesity (Obese group or the same diet supplemented with 0.5% white tea extract (Obese + WTE for 8 weeks. Adipose tissue, serum lipid profile, and oxidative stress were studied. White tea supplementation was not able to reduce food intake, body weight, or visceral adiposity. Similarly, there were no changes in cholesterol rich lipoprotein profile between the groups. A reduction in blood triacylglycerols associated with increased cecal lipids was observed in the group fed the diet supplemented with white tea. White tea supplementation also reduced oxidative stress in liver and adipose tissue. In conclusion, white tea extract supplementation (0.5% does not influence body weight or adiposity in obese mice. Its benefits are restricted to the reduction in oxidative stress associated with obesity and improvement of hypertriacylglycerolemia.

  10. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  11. High rate flame synthesis of highly crystalline iron oxide nanorods

    International Nuclear Information System (INIS)

    Merchan-Merchan, W; Taylor, A M; Saveliev, A V

    2008-01-01

    Single-step flame synthesis of iron oxide nanorods is performed using iron probes inserted into an opposed-flow methane oxy-flame. The high temperature reacting environment of the flame tends to convert elemental iron into a high density layer of iron oxide nanorods. The diameters of the iron oxide nanorods vary from 10 to 100 nm with a typical length of a few microns. The structural characterization performed shows that nanorods possess a highly ordered crystalline structure with parameters corresponding to cubic magnetite (Fe 3 O 4 ) with the [100] direction oriented along the nanorod axis. Structural variations of straight nanorods such as bends, and T-branched and Y-branched shapes are frequently observed within the nanomaterials formed, opening pathways for synthesis of multidimensional, interconnected networks

  12. Infrared photodetectors based on reduced graphene oxide nanoparticles and graphene oxide

    Science.gov (United States)

    Ahmad, H.; Tajdidzadeh, M.; Thambiratnam, K.; Yasin, M.

    2018-06-01

    Two photodiode (PD) designs incorporating graphene oxide (GO) and reduced graphene oxide (rGO) are proposed and fabricated. Both PDs have 50 mm thick silver electrodes deposited on the active area, and another electrode consisting of either GO or rGO nanoparticles (NPs). The GO and rGO NPs are deposited onto the p-type silicon substrate by the drop casting method. Both fabricated PDs show good sensitivity and quick responses under 974 nm laser illumination at 150 mW. The photoresponsivity values and external quantum efficiency of both photodetectors are measured to be approximately 800 µAw‑1 and 0.12% for the GO based PD and 1.6 m Aw‑1 and 0.20% for the rGO based PD. Both PDs also have response and recovery times of 114 µs and 276 µs as well as 11 µs and 678 µs for the GO and rGO based PDs respectively. The proposed PDs would have significant applications in many optoelectronic devices as well as nanoelectronics.

  13. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos.

    Science.gov (United States)

    Liu, Xiao Tong; Mu, Xi Yan; Wu, Xiao Li; Meng, Li Xuan; Guan, Wen Bi; Ma, Yong Qiang; Sun, Hua; Wang, Cheng Ju; Li, Xue Feng

    2014-09-01

    This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations ls were evaluated. Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.

    Science.gov (United States)

    Cuddihy, Sarah L; Baty, James W; Brown, Kristin K; Winterbourn, Christine C; Hampton, Mark B

    2009-01-01

    The oxidation and reduction of cysteine residues is emerging as an important post-translational control of protein function. We describe a method for fluorescent labelling of either reduced or oxidized thiols in combination with two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (2DE) to detect changes in the redox proteome of cultured cells. Reduced thiols are labelled with the fluorescent compound 5-iodoacetamidofluorescein. To monitor oxidized thiols, the reduced thiols are first blocked with N-ethyl-maleimide, then the oxidized thiols reduced with dithiothreitol and labelled with 5-iodoacetamidofluorescein. The method is illustrated by treating Jurkat T-lymphoma cells with hydrogen peroxide and monitoring increased labelling of oxidized thiol proteins. A decrease in labelling can also be detected, and this is attributed to the formation of higher oxidation states of cysteine that are not reduced by dithiothreitol.

  15. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing

    Directory of Open Access Journals (Sweden)

    Muhammad Hassan

    2017-09-01

    Full Text Available Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance.

  16. An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material

    International Nuclear Information System (INIS)

    Shao Dali; Sawyer, Shayla; Yu Mingpeng; Lian Jie

    2013-01-01

    A high sensitivity, fast ultraviolet (UV) photodetector was fabricated from WO 3 nanodiscs (NDs)/reduced graphene oxide (RGO) composite material. The WO 3 NDs/reduced GO composite material was synthesized using a facile three-step synthesis procedure. First, the Na 2 WO 4 /GO precursor was synthesized by homogeneous precipitation. Second, the Na 2 WO 4 /GO precursor was transformed into H 2 WO 4 /GO composites by acidification. Finally, the H 2 WO 4 /GO composites were reduced to WO 3 NDs/RGO via a hydrothermal reduction process. The UV photodetector showed a fast transient response and high responsivity, which are attributed to the improved carrier transport and collection efficiency through graphene. The excellent material properties of the WO 3 NDs/RGO composite demonstrated in this work may open up new possibilities for using WO 3 NDs/RGO for future optoelectronic applications. (paper)

  17. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Pan, Zhanchang, E-mail: panzhanchang@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Li, Wuyi; Yu, Ke [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Xia, Guowei; Zhao, Qixiang; Shi, Shikun [Victory Giant Technology (Hui Zhou) Co., Ltd., Huizhou 516083 (China); Hu, Guanghui; Xiao, Chumin; Wei, Zhigang [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China)

    2017-07-15

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  18. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    International Nuclear Information System (INIS)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-01-01

    Highlights: • TiNiN/CNT-rGO support with an interactive three-dimensional structure and high surface area was synthesized. • Pt nanoparticles with small size were well dispersed on TiNiN/CNT-rGO support. • Pt/TiNiN/CNT-rGO shows remarkably enhanced methanol oxidation activity and durability. - Abstract: Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  19. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mohammed Ali Al-Sammarraie

    2017-01-01

    Full Text Available The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and thermodynamics parameters were established from Tafel plots using three-electrode potentiostat. The deposited films were examined by FTIR, Raman, XRD, SEM, and AFM techniques; they revealed high percentages of conversion to the few layers of graphene with confirmed defects.

  20. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film

    Science.gov (United States)

    Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei

    2018-04-01

    A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.

  1. High-density oxidized porous silicon

    International Nuclear Information System (INIS)

    Gharbi, Ahmed; Souifi, Abdelkader; Remaki, Boudjemaa; Halimaoui, Aomar; Bensahel, Daniel

    2012-01-01

    We have studied oxidized porous silicon (OPS) properties using Fourier transform infraRed (FTIR) spectroscopy and capacitance–voltage C–V measurements. We report the first experimental determination of the optimum porosity allowing the elaboration of high-density OPS insulators. This is an important contribution to the research of thick integrated electrical insulators on porous silicon based on an optimized process ensuring dielectric quality (complete oxidation) and mechanical and chemical reliability (no residual pores or silicon crystallites). Through the measurement of the refractive indexes of the porous silicon (PS) layer before and after oxidation, one can determine the structural composition of the OPS material in silicon, air and silica. We have experimentally demonstrated that a porosity approaching 56% of the as-prepared PS layer is required to ensure a complete oxidation of PS without residual silicon crystallites and with minimum porosity. The effective dielectric constant values of OPS materials determined from capacitance–voltage C–V measurements are discussed and compared to FTIR results predictions. (paper)

  2. Reduced graphene oxide mid-infrared photodetector at 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Gustavo E.; Kim, Jin Ho; Oller, Declan; Xu, Jimmy [School of Engineering, Brown University, Box D, Providence, Rhode Island 02912 (United States)

    2015-09-14

    We report on uncooled mid-infrared photovoltaic responses at 300 K arising in heterojunctions of reduced graphene oxide with p-Si. Two major photoresponse spectral peaks are observed, one in the near infrared starting at 1.1 μm corresponding to electron-hole pair generation in the Si substrate, and another at wavelengths below 2.5 μm, arising from properties of the reduced graphene oxide-Si heterojunction. Our analysis of the current-voltage characteristics at various temperatures suggests that the two materials form a type-II (broken-gap) heterojunction, with a characteristic transition between direct tunneling to field emission, to over-the-barrier excitation with increasing reverse voltage. Illumination was found to affect the onset of the transition between direct tunneling and field-emission, suggesting that the mid infrared response results from the excitation of minority carriers (electrons) from the Si and their collection in the reduced graphene oxide contact. The photoresponse near 1.1 μm showed a time constant at least five times faster than the one at 2.5 μm, which points to surface defects as well as high series resistance and capacitance as potentially limiting factors in this mode of operation. With proper device engineering considerations, these devices could be promising as a graphene-based platform for infrared sensing.

  3. Confine sulfur in mesoporous metal–organic framework @ reduced graphene oxide for lithium sulfur battery

    International Nuclear Information System (INIS)

    Bao, Weizhai; Zhang, Zhian; Qu, Yaohui; Zhou, Chengkun; Wang, Xiwen; Li, Jie

    2014-01-01

    Highlights: • Metal organic framework @ reduced graphene oxide was applied for sulfur cathode. • MIL-101(Cr)@rGO/S composites are synthesized by a facile two-step liquid method. • Cycling stability of MIL-101(Cr)@rGO/S sulfur cathode was improved. -- Abstract: Mesoporous metal organic framework @ reduced graphene oxide (MIL-101(Cr)@rGO) materials have been used as a host material to prepare the multi-composite sulfur cathode through a facile and effective two-step liquid phase method successfully, which is different from the simple MIL-101(Cr)/S mixed preparation method. The successful reduced graphene oxide coating in the MIL-101(Cr)@rGO improve the electronic conductivity of meso-MOFs effectively. The discharge capacity and capacity retention rate of MIL-101(Cr)@rGO/S composite sulfur cathode are as high as 650 mAh g −1 and 66.6% at the 50th cycle at the current density of 335 mA g −1 . While the discharge capacity and capacity retention rate of MIL-101(Cr)/S mixed sulfur cathode is 458 mAh g −1 and 37.3%. Test results indicate that the MIL-101(Cr)@rGO is a promising host material for the sulfur cathode in the lithium–sulfur battery applications

  4. The effect of titanium nickel nitride decorated carbon nanotubes-reduced graphene oxide hybrid support for methanol oxidation

    Science.gov (United States)

    Liu, Gen; Pan, Zhanchang; Li, Wuyi; Yu, Ke; Xia, Guowei; Zhao, Qixiang; Shi, Shikun; Hu, Guanghui; Xiao, Chumin; Wei, Zhigang

    2017-07-01

    Titanium nickel nitride (TiNiN) decorated three-dimensional (3D) carbon nanotubes-reduced graphene oxide (CNT-rGO), a fancy 3D platinum (Pt)-based catalyst hybrid support, is prepared by a solvothermal process followed by a nitriding process, which is tested as anodic catalyst support for the methanol oxidation reaction (MOR). The structure, morphology and composition of the synthesized TiNiN/CNT-rGO exhibits a uniform particle dispersion with high purity and interpenetrating 3D network structure. Notably, Pt/TiNiN/CNT-rGO catalyst exhibits significantly improved catalytic activity and durability for methanol oxidation in comparison with Pt/CNT-rGO and conventional Pt/C (JM). The outstanding electrochemical performance was attributed to structure and properties. That is, the 3D CNT-rGO provided a fast transport network for charge-transfer and mass-transfer as well as TiNiN NPs with good synergistic effect and the strong electronic coupling between different domains in TiNiN/CNT-rGO, thus the catalytic activity of the novel catalyst is greatly improved. These results evidences 3D TiNiN/CNT-rGO as a promising catalyst support for a wide range of applications in fuel cells.

  5. Electrodeposition of Polypyrrole and Reduced Graphene Oxide onto Carbon Bundle Fibre as Electrode for Supercapacitor.

    Science.gov (United States)

    Abdul Bashid, Hamra Assyaima; Lim, Hong Ngee; Kamaruzaman, Sazlinda; Abdul Rashid, Suraya; Yunus, Robiah; Huang, Nay Ming; Yin, Chun Yang; Rahman, Mohammad Mahbubur; Altarawneh, Mohammednoor; Jiang, Zhong Tao; Alagarsamy, Pandikumar

    2017-12-01

    A nanocomposite comprising of polypyrrole and reduced graphene oxide was electrodeposited onto a carbon bundle fibre (CBF) through a two-step approach (CBF/PPy-rGO-2). The CBF/PPy-rGO-2 had a highly porous structure compared to a nanocomposite of polypyrrole and reduced graphene oxide that was electrodeposited onto a CBF in a one-step approach (CBF/PPy-rGO), as observed through a field emission scanning electron microscope. An X-ray photoelectron spectroscopic analysis revealed the presence of hydrogen bond between the oxide functional groups of rGO and the amine groups of PPy in PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2 nanocomposite material was used as an electrode material in a symmetrical solid-state supercapacitor, and the device yielded a specific capacitance, energy density and power density of 96.16 F g - 1 , 13.35 Wh kg - 1 and of 322.85 W kg - 1 , respectively. Moreover, the CBF/PPy-rGO-2 showed the capacitance retention of 71% after 500 consecutive charge/discharge cycles at a current density of 1 A g - 1 . The existence of a high degree of porosity in CBF/PPy-rGO-2 significantly improved the conductivity and facilitated the ionic penetration. The CBF/PPy-rGO-2-based symmetrical solid-state supercapacitor device demonstrated outstanding pliability because the cyclic voltammetric curves remained the same upon bending at various angles. Carbon bundle fibre modified with porous polypyrrole/reduced graphene oxide nanocomposite for flexible miniature solid-state supercapacitor.

  6. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  7. Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies

    Directory of Open Access Journals (Sweden)

    Michał Strankowski

    2016-01-01

    Full Text Available Recently, graphene and other graphene-based materials have become an essential part of composite science and technology. Their unique properties are not only restricted to graphene but also shared with derivative compounds like graphene oxide, reduced graphene oxide, functionalized graphene, and so forth. One of the most structurally important materials, graphene oxide (GO, is prepared by the oxidation of graphite. Though removal of the oxide groups can create vacancies and structural defects, reduced graphene oxide (rGO is used in composites as effective filler similar to GO. Authors developed a new polyurethane nanocomposite using a derivative of grapheme, thermally reduced graphene oxide (rGO, to modify the matrix of polyurethane elastomers, by rGO.

  8. Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Gaster, Michael

    2009-01-01

    To date, it is unknown whether reduced lipid oxidation of skeletal muscle of obese and obese type 2 diabetic (T2D) subjects partly is based on reduced oxidation of endogenous lipids. Palmitate (PA) accumulation, total oxidation and lipolysis were not different between myotubes established from lean...... both for endogenous and exogenous lipids. Thus myotubes established from obese and obese T2D subjects express a reduced complete oxidation of endogenous lipids. Two cardinal principles govern the reduced lipid oxidation in obese and diabetic myotubes; firstly, an impaired coupling between endogenous...... lipid and mitochondria in obese and obese diabetic myotubes and secondly, a mismatch between beta-oxidation and citric acid cycle in obese diabetic myotubes....

  9. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires

    Science.gov (United States)

    Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li

    2018-05-01

    Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.

  10. Subchronic nandrolone administration reduces cardiac oxidative markers during restraint stress by modulating protein expression patterns.

    Science.gov (United States)

    Pergolizzi, Barbara; Carriero, Vitina; Abbadessa, Giuliana; Penna, Claudia; Berchialla, Paola; De Francia, Silvia; Bracco, Enrico; Racca, Silvia

    2017-10-01

    Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and professional sports, is associated with detrimental cardiovascular effects through redox-dependent mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in cardiac performance. We wanted to determine whether short-term ND administration could affect the oxidative redox status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment schedule, ND may have a double-edged sword effect. Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in animals exposed to restraint stress, whereas no increase in marker levels was noted in animals pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative damage. Furthermore, isolation and identification of proteins extracted from the left heart ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated rats. In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic heart performance.

  11. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis

    NARCIS (Netherlands)

    Boots, Agnes W.; Drent, Marjolein; de Boer, Vincent C. J.; Bast, Aalt; Haenen, Guido R. M. M.

    2011-01-01

    Oxidative stress and low antioxidant levels are implicated in the aetiology of sarcoidosis, an inflammatory disease. Quercetin is a potent dietary antioxidant that also displays anti-inflammatory activities. Consequently, the aim is to examine the effect of quercetin supplementation on markers of

  12. Blue and green luminescence of reduced graphene oxide quantum dots

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Henych, Jiří; Lang, Kamil; Kormunda, M.

    2013-01-01

    Roč. 63, november (2013), s. 537-546 ISSN 0008-6223 Institutional support: RVO:61388980 Keywords : different solvents * graphene oxides * green luminescence * intensive cavitations * N-methyl-2-pyrrolidone Subject RIV: CA - Inorganic Chemistry Impact factor: 6.160, year: 2013

  13. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  14. Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, R., E-mail: rss@psgias.ac.in; Biji, P.

    2016-08-15

    Highlights: • Cu{sub 2}O nanohexagon–reduced graphene oxide (rGO) nanocomposite has been prepared by in-situ reduction method. • The rGO-Cu{sub 2}O/GCE exhibited excellent catalytic properties for dopamine due to the synergistic action of the nanocomposite. • The proposed sensor is highly selective toward dopamine in the presence of ascorbic acid and uric acid. - Graphical Abstract: - Abstract: An electrochemical sensor using copper (I) oxide nanostructure decorated reduced graphene oxide (rGO) nanocomposite has been proposed for selective detection of dopamine. The rGO–Cu{sub 2}O nanocomposite was synthesized by in-situ chemical reduction method and was characterized using Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX) analysis, X-ray Diffraction (XRD) patterns, Fourier Transform Infrared (FTIR), UV–vis and Raman Spectroscopy, respectively. From Cyclic Voltammetric (CV) studies, it was inferred that rGO–Cu{sub 2}O/GCE exhibits excellent electrocatalytic activity toward dopamine, which is attributed to the enhanced conductivity as well as the synergistic effect of the nanocomposite. The sensing was carried out using Differential Pulse Voltammetry (DPV) wherefrom a Limit of Detection (LOD) of 50 nM with a linear range from 10 µM to 900 µM was estimated. The effect of potential interfering agents such as Uric Acid (UA), Ascorbic Acid (AA), glucose, K{sup +}, Na{sup +}, Cl{sup −}, and SO{sub 4}{sup −} ions toward sensing were investigated. The performance of the sensor toward the estimation of dopamine in human blood and urine samples were analyzed. The facile method for the preparation of a nanocomposite in conjunction with the low detection limit and the wide linear range for dopamine sensing is the advantage of this present study.

  15. Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite

    Science.gov (United States)

    Chang, Betty Yea Sze; Huang, Nay Ming; An’amt, Mohd Nor; Marlinda, Abdul Rahman; Norazriena, Yusoff; Muhamad, Muhamad Rasat; Harrison, Ian; Lim, Hong Ngee; Chia, Chin Hua

    2012-01-01

    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte. PMID:22848166

  16. A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles

    International Nuclear Information System (INIS)

    Wu Tao; Gao Jianping; Xu Xiaoyang; Qiu Haixia; Wang Wei; Gao Chunjuan

    2013-01-01

    Copper metal nanoparticles were used as a reducing agent to reduce graphene oxide (GO). The reaction was complete in about 10 min and did not involve the use of any toxic reagents or acids that are typically used in the reduction of GO by Zn and Fe powders. The high reduction activity of the Cu nanoparticles, compared to Cu powder, may be the result of the formation of Cu 2 O nanoparticles. The effect of the mass ratio of the metal to GO for this reduction was also investigated. The reduction of the GO was verified by ultraviolet–visible absorption spectroscopy, x-ray diffraction, thermogravimetric analysis, Raman spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. After reduction, Cu 2 O supported on reduced GO was formed and showed superior catalytic ability for the degradation of a model dye pollutant, methylene blue. (paper)

  17. A flexible metallic actuator using reduced graphene oxide as a multifunctional component.

    Science.gov (United States)

    Meng, Junxing; Mu, Jiuke; Hou, Chengyi; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2017-09-14

    Flexible actuators are widely in demand for many real-life applications. Considering that existing actuators based on polymers, low-dimensional materials and pore-rich materials are mostly limited by slow response rate, high driving voltage and poor stability, we report here a novel metal based flexible actuator which is fabricated simply through partial oxidation and nano-function of copper foil with the assistance of reduced graphene oxide. The obtained asymmetric metallic actuator is (electric-)thermally driven and exhibits fast response rate (∼2 s) and large curvature (2.4 cm -1 ) under a low voltage (∼1 V) with a sustainable operation of up to ∼50 000 cycles. The actuator can also be triggered by infrared irradiation and direct-heating under various conditions including air, water, and vacuum.

  18. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Alver, Ü., E-mail: ualver@ktu.edu.tr [Karadeniz Technical University, Dept. of Metallurgical and Materials Engineering, 61080 Trabzon (Turkey); Tanrıverdi, A. [Kahramanmaras Sutcu Imam University, Department of Physics, 46100 Kahramanmaraş (Turkey)

    2016-08-15

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  19. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Alver, Ü.; Tanrıverdi, A.

    2016-01-01

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  20. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lv Tian [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Pan Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Liu Xinjuan; Lu Ting; Zhu Guang; Sun Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China)

    2011-10-13

    Highlights: > ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. > The method allows a facile, safe and rapid reaction in aqueous media. > A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  1. Vector rectangular-shape laser based on reduced graphene oxide interacting with a long fiber taper.

    Science.gov (United States)

    Gao, Lei; Zhu, Tao; Huang, Wei; Zeng, Jing

    2014-10-01

    A vector dual-wavelength rectangular-shape laser (RSL) based on a long fiber taper deposited with reduced graphene oxide is proposed, where nonlinearity is enhanced due to a large evanescent-field-interacting length and strong field confinement of an 8 mm fiber taper with a waist diameter of 4 μm. Graphene flakes are deposited uniformly on the taper waist with light pressure effect, so this structure guarantees both excellent saturable absorption and high nonlinearity. The RSL with a repetition rate of 7.9 MHz shows fast polarization switching in two orthogonal polarization directions, and temporal and spectral characteristics are investigated.

  2. Electrophoretic deposition of calcium silicate-reduced graphene oxide composites on titanium substrate

    DEFF Research Database (Denmark)

    Mehrali, Mehdi; Akhiani, Amir Reza; Talebian, Sepehr

    2016-01-01

    Calcium silicate (CS)/graphene coatings have been used to improve the biological and mechanical fixation of metallic prosthesis. Among the extraordinary features of graphene is its very high mechanical strength, which makes it an attractive nanoreinforcement material for composites. Calcium...... silicate-reduced graphene oxide (CS-rGO) composites were synthesized, using an in situ hydrothermal method. CS nanowires were uniformly decorated on the rGO, with an appropriate interfacial bonding. The CS-rGO composites behaved like hybrid composites when deposited on a titanium substrate by cathodic...

  3. Hierarchical Nanocomposites of Polyaniline Nanowire Arrays on Reduced Graphene Oxide Sheets for Supercapacitors

    Science.gov (United States)

    Wang, Li; Ye, Yinjian; Lu, Xingping; Wen, Zhubiao; Li, Zhuang; Hou, Haoqing; Song, Yonghai

    2013-12-01

    Here we reported a novel route to synthesize a hierarchical nanocomposite (PANI-frGO) of polyaniline (PANI) nanowire arrays covalently bonded on reduced graphene oxide (rGO). In this strategy, nitrophenyl groups were initially grafted on rGO via C-C bond, and then reduced to aminophenyl to act as anchor sites for the growth of PANI arrays on rGO. The functionalized process was confirmed by atomic force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analysis. The electrochemical properties of the PANI-frGO as supercapacitor materials were investigated. The PANI-frGO nanocomposites showed high capacitance of 590 F g-1 at 0.1 A g-1, and had no loss of capacitance after 200 cycles at 2 A g-1. The improved electrochemical performance suggests promising application of the PANI-frGO nanocomposites in high-performance supercapacitors.

  4. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  5. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K

    Science.gov (United States)

    Li, Tian; Pickel, Andrea D.; Yao, Yonggang; Chen, Yanan; Zeng, Yuqiang; Lacey, Steven D.; Li, Yiju; Wang, Yilin; Dai, Jiaqi; Wang, Yanbin; Yang, Bao; Fuhrer, Michael S.; Marconnet, Amy; Dames, Chris; Drew, Dennis H.; Hu, Liangbing

    2018-02-01

    The development of ultrahigh-temperature thermoelectric materials could enable thermoelectric topping of combustion power cycles as well as extending the range of direct thermoelectric power generation in concentrated solar power. However, thermoelectric operation temperatures have been restricted to under 1,500 K due to the lack of suitable materials. Here, we demonstrate a thermoelectric conversion material based on high-temperature reduced graphene oxide nanosheets that can perform reliably up to 3,000 K. After a reduction treatment at 3,300 K, the nanosheet film exhibits an increased conductivity to 4,000 S cm-1 at 3,000 K and a high power factor S2σ = 54.5 µW cm-1 K-2. We report measurements characterizing the film's thermoelectric properties up to 3,000 K. The reduced graphene oxide film also exhibits a high broadband radiation absorbance and can act as both a radiative receiver and a thermoelectric generator. The printable, lightweight and flexible film is attractive for system integration and scalable manufacturing.

  6. Oxidative metabolism of astrocytes is not reduced in hepatic encephalopathy

    DEFF Research Database (Denmark)

    Iversen, Peter; Mouridsen, Kim; Hansen, Mikkel B

    2014-01-01

    In patients with impaired liver function and hepatic encephalopathy (HE), consistent elevations of blood ammonia concentration suggest a crucial role in the pathogenesis of HE. Ammonia and acetate are metabolized in brain both primarily in astrocytes. Here, we used dynamic [(11)C]acetate PET...... of the brain to measure the contribution of astrocytes to the previously observed reduction of brain oxidative metabolism in patients with liver cirrhosis and HE, compared to patients with cirrhosis without HE, and to healthy subjects. We used a new kinetic model to estimate uptake from blood to astrocytes...

  7. Physical and electrical characterization of reduced graphene oxide

    Indian Academy of Sciences (India)

    The wide-range industrial application of graphene-related compounds has led to ... The method completely avoids the use of toxic and environmentally harmful reducing agents commonly used in the chemical reduction of GO to obtain RGO.

  8. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    Directory of Open Access Journals (Sweden)

    Simona Carfagna

    2015-01-01

    Full Text Available We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.

  9. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    Science.gov (United States)

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion.

  10. Some Spinel Oxide Compounds as Reducing Gas Sensors

    Directory of Open Access Journals (Sweden)

    Nicolae Rezlescu

    2007-04-01

    Full Text Available Four spinel ferrites, MFe2O4 (M = Cu, Cd, Zn and Ni, having various grain sizes (100 – 700 nm were prepared by sol-gel-selfcombustion and their sensing properties to reducing gases were investigated. The gas sensing characteristics were obtained by measuring the sensitivity as a function of various controlling factors, like operating temperature, composition and concentration of the gas, and finally the response time. The sensitivity of four ferrites to reducing gases like acetone, ethanol and LPG was been compared. It was revealed that CuFe2O4 is the most sensitive to LPG and ZnFe2O4 can be used as a sensor to selectively detect ethanol vapors in air. The strong interaction between ethanol and porous ZnFe2O4 can explain the selective sensitivity to ethanol and negligible sensitivity to the other reducing gases.

  11. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    International Nuclear Information System (INIS)

    Thu, Tran Viet; Ko, Pil Ju; Phuc, Nguyen Huu Huy; Sandhu, Adarsh

    2013-01-01

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag–rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH 4 ) and trisodium citrate. The resulting products were characterized using UV–Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density (∼1,700 NPs μm −2 ) and well-defined size (3.6 ± 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag–rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed

  12. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Tran Viet, E-mail: thu@eiiris.tut.ac.jp; Ko, Pil Ju, E-mail: ko@eiiris.tut.ac.jp [Toyohashi University of Technology, Electronics-Inspired Interdisciplinary Research Institute (Japan); Phuc, Nguyen Huu Huy [Toyohashi University of Technology, Department of Electrical and Electronic Information Engineering (Japan); Sandhu, Adarsh [Toyohashi University of Technology, Electronics-Inspired Interdisciplinary Research Institute (Japan)

    2013-10-15

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag-rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH{sub 4}) and trisodium citrate. The resulting products were characterized using UV-Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density ({approx}1,700 NPs {mu}m{sup -2}) and well-defined size (3.6 {+-} 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag-rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH{sub 4} in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed.

  13. Do oxidized zirconium femoral heads reduce polyethylene wear in cemented THAs? A blinded randomized clinical trial.

    Science.gov (United States)

    Zaoui, Amine; Hage, Samer El; Langlois, Jean; Scemama, Caroline; Courpied, Jean Pierre; Hamadouche, Moussa

    2015-12-01

    Charnley low-friction torque total hip arthroplasty (THA) remains the gold standard in THA. The main cause for failure is wear of the socket. Highly crosslinked polyethylene (HXLPE) has been associated with reduced wear rates. Also, oxidized zirconium has shown in vitro reduced wear rates. However, to our knowledge, there are no data comparing oxidized zirconium femoral heads with metal heads against HXLPE or ultrahigh-molecular-weight polyethylene (UHMWPE) when 22.25-mm bearings were used, which was the same size that performed so well in Charnley-type THAs. We hypothesized that after a minimal 4-year followup (1) use of HXLPE would result in lower radiographic wear than UHMWPE when articulating with a stainless steel head or with an oxidized zirconium head; (2) use of oxidized zirconium would result in lower radiographic wear than stainless steel when articulating with UHMWPE and HXLPE; and (3) there would be no difference in terms of Merle d'Aubigné scores between the bearing couple combinations. One hundred patients were randomized to receive cemented THA with either oxidized zirconium or a stainless steel femoral head. UHMWPE was used in the first 50 patients, whereas HXLPE was used in the next 50 patients. There were 25 patients in each of the four bearing couple combinations. All other parameters were identical in both groups. Complete followup was available in 86 of these patients. Femoral head penetration was measured using a validated computer-assisted method dedicated to all-polyethylene sockets. Clinical results were compared between the groups using the Merle d'Aubigné score. In the UHMWPE series, the median steady-state penetration rate from 1 year onward was 0.03 mm/year (range, 0.003-0.25 mm/year) in the oxidized zirconium group versus 0.11 mm/year (range, 0.03-0.29 mm/year) in the metal group (difference of medians 0.08, p zirconium group versus 0.05 mm/year (range, -0.39 to 0.11 mm/year) in the metal group (difference of medians 0.03, p

  14. Reduced filamentation in high power semiconductor lasers

    DEFF Research Database (Denmark)

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations...

  15. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  16. Gently reduced graphene oxide incorporated into cobalt oxalate rods as bifunctional oxygen electrocatalyst

    International Nuclear Information System (INIS)

    Phihusut, Doungkamon; Ocon, Joey D.; Jeong, Beomgyun; Kim, Jin Won; Lee, Jae Kwang; Lee, Jaeyoung

    2014-01-01

    Graphical abstract: - Abstract: Water-oxygen electrochemistry is at the heart of key renewable energy technologies (fuel cells, electrolyzers, and metal-air batteries) due to the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although much effort has been devoted to the development of improved bifunctional electrocatalysts, an inexpensive, highly active oxygen electrocatalyst, however, remains to be a challenge. In this paper, we present a facile and robust method to create gently reduced graphene oxide incorporated into cobalt oxalate microstructures (CoC 2 O 4 /gRGO) and demonstrate its excellent and stable electrocatalytic activity in both OER and ORR, arising from the inherent properties of the components and their physicochemical interaction. Our synthesis technique also explores a single pot method to partially reduce graphene oxide and form CoC 2 O 4 structures while maintaining the solution processability of reduced graphene oxide. While the OER activity of CoC 2 O 4 /gRGO is exclusively due to CoC 2 O 4 , which transformed into OER-active Co species, the combination with gRGO significantly improves OER stability. On the other hand, CoC 2 O 4 /gRGO exhibits synergistic effect towards ORR, via a quasi-four-electron pathway, leading to a slightly higher ORR limiting current than Pt/C. Remarkably, gRGO offers dual functionality, contributing to ORR activity via the N-functional groups and also enhancing OER stability through the gRGO coating around CoC 2 O 4 structures. Our results suggest a new class of metal-carbon composite that has the potential to be alternative bifunctional catalysts for regenerative fuel cells and metal-air batteries

  17. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor

    KAUST Repository

    Couly, Cedric; Alhabeb, Mohamed; Van Aken, Katherine L.; Kurra, Narendra; Gomes, Luisa; Navarro-Suá rez, Adriana M.; Anasori, Babak; Alshareef, Husam N.; Gogotsi, Yury

    2017-01-01

    -collector-free is reported. The interdigitated device architecture is fabricated using a custom-made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced

  18. Solubilization of plutonium hydrous oxide by iron-reducing bacteria

    International Nuclear Information System (INIS)

    Rusin, P.A.; Quintana, L.; Brainard, J.R.; Strietelmeler, B.A.; Tait, C.D.; Ekberg, S.A.; Palmer, P.D.; Newton, T.W.; Clark, D.L.

    1994-01-01

    The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for α-FeOOH(s) and hydrous PuO 2 (s) suggests that iron-reducing bacteria may also reduce and solubilize plutonium. Bacillus strains were used to demonstrate that iron-reducing bacteria mediate the solubilization of hydrous PuO 2 (s) under anaerobic conditions. Up to ∼90% of the PuO 2 was biosolubilized in the presence of nitrilotriacetic acid (NTA) within 6-7 days. Biosolubilization occurred to a lesser extent (∼ 40%) in the absence of NTA. Little PuO 2 solubilization occurred in sterile culture media or in the presence of a non-iron-reducing Escherichia coli. These observations suggest a potentially attractive, environmentally benign strategy for the remediation of Pu-contaminated soils. 26 refs., 5 figs., 2 tabs

  19. Thymol reduces oxidative stress, aortic intimal thickening, and inflammation-related gene expression in hyperlipidemic rabbits

    Directory of Open Access Journals (Sweden)

    Ya-Mei Yu

    2016-07-01

    Full Text Available Atherosclerosis plays a key role in the development of cardiovascular diseases, and is often associated with oxidative stress and local inflammation. Thymol, a major polyphenolic compound in thyme, exhibits antioxidant and anti-inflammatory properties. In this study, we measured the in vitro antioxidant activity of thymol, and investigated the effect of thymol on high-fat-diet-induced hyperlipidemia and atherosclerosis. New Zealand white rabbits were fed with regular chow, high-fat and high-cholesterol diet (HC, T3, or T6 (HC with thymol supplementation at 3 mg/kg/d or 6 mg/kg/d, respectively for 8 weeks. Aortic intimal thickening, serum lipid parameters, multiple inflammatory markers, proinflammatory cytokines, and atherosclerosis-associated indicators were significantly increased in the HC group but decreased upon thymol supplementation. In summary, thymol exhibits antioxidant activity, and may suppress the progression of high-fat-diet-induced hyperlipidemia and atherosclerosis by reducing aortic intimal lipid lesion, lowering serum lipids and oxidative stress, and alleviating inflammation-related responses.

  20. Synthesis of reduced graphene oxide (rGO) via chemical reduction

    International Nuclear Information System (INIS)

    Thakur, Alpana; Rangra, V. S.; Kumar, Sunil

    2015-01-01

    Natural flake Graphite was used as the starting material for the graphene synthesis. In the first step flake graphite was treated with oxidizing agents under vigorous conditions to obtain graphite oxide. Layered graphite oxide decorated with oxygen has large inter-layer distance leading easy exfoliation into single sheets by ultrasonication giving graphene oxide. In the last step exfoliated graphene oxide sheets were reduced slowly with the help of reducing agent to obtain fine powder which is labeled as reduced graphene oxide (rGO). This rGO was further characterized by X-Ray Diffraction (XRD), Scanning Tunneling Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy techniques. XRD pattern shows peaks corresponding to (002) graphitic lattice planes indicating the formation of network of sp 2 like carbon structure. SEM images show the ultrathin, wrinkled, paper-like morphology of graphene sheets. IR study shows that the graphite has been oxidized to graphite oxide with the presence of various absorption bands confirming the presence of oxidizing groups. The FTIR spectrum of rGO shows no sharp peaks confirming the efficient reduction of rGO. The Raman spectrum shows disorder in the graphene sheets

  1. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  2. High Performance Nitrous Oxide Analyzer for Atmospheric Research, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project targets the development of a highly sensitive gas sensor to monitor atmospheric nitrous oxide. Nitrous oxide is an important species in Earth science...

  3. Carbon nanostructures reduced from graphite oxide as electrode materials for supercapacitors

    Directory of Open Access Journals (Sweden)

    Yurii M. Shulga

    2015-03-01

    Full Text Available In this review we present information about obtaining and properties of carbon nanomaterials (graphite oxide, grapheme oxide, reduced graphene oxide, which are used as electrodes for supercapacitors (SC. This review describes methods of obtaining graphite oxide, followed by separation of graphene oxide and reducing graphene oxide by thermal, photochemical and chemical methods. Information on the composition and concentration of functional groups in graphene oxide and the elemental composition is described in detail. Results of the analysis of еру physical, electrochemical, thermal and optical properties of the graphene oxide and its derivatives are shown. The ratio of oxygen-containing functional groups was estimated by XPS. The presence of partial surface reduction is found. Hydroge-containing functional groups are characterized by IR spectroscopy. Method of estimating the size of graphene crystallites by Raman spectroscopy is shown. Mass loss upon heating is analyzed by thermogravimetry. The gassing of graphene oxide at thermal and photochemical reduction is studied by mass spectrometry. The difference between the abovementioned reduction methods is clearly demonstrated by the difference in the composition of the evolved gases. Also the chemical method of graphene oxide reduction with hydrazine is described. Review considers the literature data which illustrate the most interesting, from the Authors׳ point of view, aspects of that field of research.

  4. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.

    2013-01-01

    Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).

  5. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

    2010-01-01

    The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

  6. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  7. Tuning the reactivity of Ru nanoparticles by defect engineering of the reduced graphene oxide support

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Meng, Changgong; Han, Yu

    2014-01-01

    We systematically investigated the electronic structure of Ru nanoparticles supported on various local structures on reduced graphene oxide (rGO) by first-principles-based calculations. We showed that Ru nanoparticles prefer to nucleate

  8. Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Onyszko Magdalena

    2015-12-01

    Full Text Available Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO, palladium/reduced graphene oxide (Pd/RGO and zirconium dioxide/reduced graphene oxide (ZrO2/RGO nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM, X-ray diffraction analysis (XRD, Raman spectroscopy and thermogravimetric analysis (TGA. The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution.

  9. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  10. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  11. Enhanced Electrocatalytic Activity of Pt Particles Supported on Reduced Graphene Oxide/Poly(3,4-ethylenedioxythiophene RGO/PEDOT Composite towards Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Juanito Raphael F. Foronda

    2013-01-01

    Full Text Available Catalysts in fuel cells are normally platinum based because platinum exhibits high electrocatalytic activity towards ethanol oxidation in acidic medium. However, bulk Pt is expensive and rare in nature. To reduce the consumption of Pt, a support material or matrix is needed to disperse Pt on its surface as micro- or nanoparticles with potential application as anode material in direct ethanol fuel cells (DEFCs. In this study, a composite material consisting of platinum particles dispersed on reduced graphene oxide/poly(3,4-ethylenedioxythiophene (RGO/PEDOT support was electrochemically prepared for ethanol oxidation in sulfuric acid electrolyte. PEDOT, a conductive polymer, was potentiodynamically polymerized from the corresponding monomer, 0.10 M EDOT in 0.10 M HClO4 electrolyte. The PEDOT-modified electrode was used as a substrate for exfoliated graphene oxide (EGO which was prepared by electrochemical exfoliation of graphite from carbon rod of spent batteries and subsequently reduced to form RGO. The Pt/RGO/PEDOT composite gave the highest electrocatalytic activity with an anodic current density of 2688.7 mA·cm−2 at E = 0.70 V (versus Ag/AgCl towards ethanol oxidation compared to bare Pt electrode and other composites. Scanning electron microscopy (SEM revealed the surface morphology of the hybrid composites while energy dispersive X-ray (EDX confirmed the presence of all the elements for the Pt/RGO/PEDOT composite.

  12. Amplified photoacoustic performance and enhanced photothermal stability of reduced graphene oxide coated gold nanorods for sensitive photoacoustic imaging.

    Science.gov (United States)

    Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon

    2015-03-24

    We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.

  13. Reduced Cost Composite Hot Structures with Oxidation Protection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative, low cost high performance technologies are critical to the affordability of future space missions. Carbon/carbon (C/C) composites have significant...

  14. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels

    Science.gov (United States)

    Wang, Jie; Ran, Ran; Sunarso, Jaka; Yin, Chao; Zou, Honggang; Feng, Yi; Li, Xiaobao; Zheng, Xu; Yao, Jianfeng

    2017-04-01

    Here, we have synthesized reduced graphene oxide (rGO) aerogels using a nanocellulose-assisted low temperature (less than 500 °C) thermal treatment route where nanocelluloses promote the gelation of graphene oxide (GO) solution that benefits the fabrication of GO aerogels from low concentration dispersion (2.85 mg mL-1), and after their thermal decomposition the residual nanofibers act as spacer both prevent the re-stacking of graphene sheets and integrate with rGO sheets to give a particular kind of carbon-based aerogel along with numerous defects (holes). Thermal decomposition of nanocellulose appears to be complete beyond 350 °C thus its presence in form of amorphous carbon nanofibers in rGO sheets. The rGO aerogels synthesized at 350 °C provide the best balance in terms of wide interlayer spacing, high content of CO-type functional groups, and high defects content. This translates into a high discharge capacitance of 270 F g-1 at a current rate of 1 A g-1 for compressed rGO aerogels without any binder or conductive additive. Detailed electrochemical tests using 6 M KOH electrolyte establish the fact that pseudocapacitance component has substantial contribution towards the overall capacitance; closely approaching the contribution of the double layer capacitance that is the most dominant capacitance component.

  15. Facile synthesis of reduced graphene oxide/peroxomolybdate(VI)-citrate composite and its potential energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Ciszewski, Mateusz; Benke, Grzegorz; Leszczynska-Sejda, Katarzyna; Kopyto, Dorota [Institute of Non Ferrous Metals, Department of Hydrometallurgy, Gliwice (Poland)

    2017-11-15

    A new energy storage material based on molybdate active species has been presented. Molybdenum seems to be a perspective material in supercapacitors because of numerous possible metal oxidation states, electrolyte storage by means of various chemical reactions and availability in comparison to other refractory metals. Material synthesized within this research was composed of reduced graphene oxide matrix and peroxomolybdate(VI)-citrate active dimers. It was showed that peroxomolybdate(VI)-citrate structure enhanced electrochemical activity of symmetric supercapacitor. Simple methodology was used to synthesize a composite with pH adjustment as the key step. The specific capacity calculated from galvanostatic charge/discharge curves was as high as 250 F/g. Material was distinguished by good cyclability with 5% capacity loss after 1000 cycles. The increase in charge transfer resistance, induced by metal-oxygen compound within the carbon matrix was relatively low, compared to parent reduced graphene oxide. Amorphous structure of peroxomolybdate(VI)-modified material was observed with slight increase in the interlayer distance in comparison to parent reduced graphene oxide. The height and lateral size of crystallites were also determined. Significant decrease in the specific surface area of peroxomolybdate(VI)-modified composite was observed, in comparison to the parent reduced graphene oxide. (orig.)

  16. Facile synthesis of reduced graphene oxide/peroxomolybdate(VI)-citrate composite and its potential energy storage application

    International Nuclear Information System (INIS)

    Ciszewski, Mateusz; Benke, Grzegorz; Leszczynska-Sejda, Katarzyna; Kopyto, Dorota

    2017-01-01

    A new energy storage material based on molybdate active species has been presented. Molybdenum seems to be a perspective material in supercapacitors because of numerous possible metal oxidation states, electrolyte storage by means of various chemical reactions and availability in comparison to other refractory metals. Material synthesized within this research was composed of reduced graphene oxide matrix and peroxomolybdate(VI)-citrate active dimers. It was showed that peroxomolybdate(VI)-citrate structure enhanced electrochemical activity of symmetric supercapacitor. Simple methodology was used to synthesize a composite with pH adjustment as the key step. The specific capacity calculated from galvanostatic charge/discharge curves was as high as 250 F/g. Material was distinguished by good cyclability with 5% capacity loss after 1000 cycles. The increase in charge transfer resistance, induced by metal-oxygen compound within the carbon matrix was relatively low, compared to parent reduced graphene oxide. Amorphous structure of peroxomolybdate(VI)-modified material was observed with slight increase in the interlayer distance in comparison to parent reduced graphene oxide. The height and lateral size of crystallites were also determined. Significant decrease in the specific surface area of peroxomolybdate(VI)-modified composite was observed, in comparison to the parent reduced graphene oxide. (orig.)

  17. Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy

    Science.gov (United States)

    Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro

    2018-06-01

    The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.

  18. Rapid dehalogenation of pesticides and organics at the interface of reduced graphene oxide-silver nanocomposite.

    Science.gov (United States)

    Koushik, Dibyashree; Sen Gupta, Soujit; Maliyekkal, Shihabudheen M; Pradeep, T

    2016-05-05

    This paper reports dehalogenation of various organohalides, especially aliphatic halocarbons and pesticides at reduced graphene oxide-silver nanocomposite (RGO@Ag). Several pesticides as well as chlorinated and fluorinated alkyl halides were chosen for this purpose. The composite and the products of degradation were characterized thoroughly by means of various microscopic and spectroscopic techniques. A sequential two-step mechanism involving dehalogenation of the target pollutants by silver nanoparticles followed by adsorption of the degraded compounds onto RGO was revealed. The composite showed unusual adsorption capacity, as high as 1534 mg/g, which facilitated the complete removal of the pollutants. Irrespective of the pollutants tested, a pseudo-second-order rate equation best described the adsorption kinetics. The affinity of the composite manifested chemical differences. The high adsorption capacity and re-usability makes the composite an excellent substrate for purification of water. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    Science.gov (United States)

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  20. Chemically stabilized reduced graphene oxide/zirconia nanocomposite: synthesis and characterization

    Science.gov (United States)

    Sagadevan, Suresh; Zaman Chowdhury, Zaira; Enamul Hoque, Md; Podder, Jiban

    2017-11-01

    In this research, chemical method was used to fabricate reduced graphene oxide/zirconia (rGO/ZrO2) nanocomposite. X-ray Diffraction analysis (XRD) was carried out to examine the crystalline structure of the nanocomposites. The nanocomposite prepared here has average crystallite size of 14 nm. The surface morphology was observed using scanning electron microscopic analysis (SEM) coupled with electron dispersion spectroscopy (EDS) to detect the chemical element over the surface of the nanocomposites. High-resolution Transmission electron microscopic analysis (HR-TEM) was carried out to determine the particle size and shape of the nanocomposites. The optical property of the prepared samples was determined using UV-visible absorption spectrum. The functional groups were identified using FTIR and Raman spectroscopic analysis. Efficient, cost effective and properly optimized synthesis process of rGO/ZrO2 nanocomposite can ensure the presence of infiltrating graphene network inside the ZrO2 matrix to enhance the electrical properties of the hybrid composites up to a greater scale. Thus the dielectric constant, dielectric loss and AC conductivity of the prepared sample was measured at various frequencies and temperatures. The analytical results obtained here confirmed the homogeneous dispersion of ZrO2 nanostructures over the surface of reduced graphene oxide nanosheets. Overall, the research demonstrated that the rGO/ZrO2 nano-hybrid structure fabricated here can be considered as a promising candidate for applications in nanoelectronics and optoelectronics.

  1. In situ reduced graphene oxide interlayer for improving electrode performance in ZnO nanorods

    Science.gov (United States)

    Venkatesan, A.; Ramesha, C. K.; Kannan, E. S.

    2016-06-01

    The effect of reduced graphene oxide (RGO) thin film on the transport characteristics of vertically aligned zinc oxide nanorods (ZnO NRs) grown on ITO substrate was studied. GO was uniformly drop casted on ZnO NRs as a passivation layer and then converted into RGO by heating it at 60 °C prior to metal electrode deposition. This low temperature reduction is facilitated by the thermally excited electrons from ZnI interstitial sites (~30 meV). Successful reduction of GO was ascertained from the increased disorder band (D) intensity in the Raman spectra. Temperature (298 K-10 K) dependent transport measurements of RGO-ZnO NRs indicate that the RGO layer not only acts as a short circuiting inhibitor but also reduces the height of the potential barrier for electron tunneling. This is confirmed from the temperature dependent electrical characteristics which revealed a transition of carrier transport from thermionic emission at high temperature (T  >  100 K) to tunneling at low temperature (T  <  100 K) across the interface. Our technique is the most promising approach for making reliable electrical contacts on vertically aligned ZnO NRs and improving the reproducibility of device characteristics.

  2. Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides

    Science.gov (United States)

    Gopalakrishnan, K.; Moses, Kota; Govindaraj, A.; Rao, C. N. R.

    2013-12-01

    Nitrogen-doped reduced graphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126F/g at a scan rate of 10mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169F/g at a scan rate of 10mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258F/g and 240F/g at a scan rate of 5mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5V compared to 0.0-1V in aqueous medium.

  3. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    Science.gov (United States)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  4. Strengthening effect of reduced graphene oxide in steel clad copper rod

    Science.gov (United States)

    Gao, Haitao; Liu, Xianghua; Ai, Zhengrong; Zhang, Shilong; Liu, Lizhong

    2016-11-01

    Reduced graphene oxide has been extensively used as reinforcing agent owing to their high mechanical properties. In this work, an attempt is made to synthesize steel clad copper rod reinforced with reduced graphene oxide (RGO) by the combination of powder-in-tube and intermediate annealing (IA). Experiments show that the Fe/RGO/Cu composites manifest better mechanical properties than Fe/Cu composites. In the process of groove rolling, RGO acts as effective binder, which can greatly improve the adhesive strength of copper scrap and two metals. Moreover, the strengthening effect of RGO is tightly related to its dispersion state. The RGO diffuses much more uniformly on the metallic substrate under the IA temperature of 1100 °C than 800 °C, which can be characterized by less deformation twins appearing at the interface of core copper and the formation of Fe-RGO-Cu transition belt at the bonding interface. In this case, the peak hardness, tensile strength and shear strength of Fe/RGO/Cu composites are 52 HV, 125 and 41 MPa higher than those of the Fe/Cu composites, respectively. The difference of strengthening effect and mechanisms of RGO under 800 and 1100 °C of IA are systematically discussed by referring to experimental results.

  5. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  6. High temperature oxidation kinetics of dysprosium particles

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-09-25

    Highlights: • The oxidation behavior of dysprosium particles was studied from 500 to 1000 °C. • Activation energy in initial region found as 8–25 kJ/mol, depending on atmosphere. • Activation energy in intermediate region found as 80–95 kJ/mol. • The oxide grows at the metal–oxide interface. • Generally, the formed oxide behaved as a p-type semiconductor. - Abstract: Rare earth elements have been recognized as critical materials for the advancement of many strategic and green technologies. Recently, the United States Department of Energy has invested many millions of dollars to enhance, protect, and forecast their production and management. The work presented here attempts to clarify the limited and contradictory literature on the oxidation behavior of the rare earth metal, dysprosium. Dysprosium particles were isothermally oxidized from 500 to 1000 °C in N{sub 2}–(2%, 20%, and 50%) O{sub 2} and Ar–20% O{sub 2} using simultaneous thermal analysis techniques. Two distinct oxidation regions were identified at each isothermal temperature in each oxidizing atmosphere. Initially, the oxidation kinetics are very fast until the reaction enters a slower, intermediate region of oxidation. The two regions are defined and the kinetics of each are assessed to show an apparent activation energy of 8–25 kJ/mol in the initial region and 80–95 kJ/mol in the intermediate oxidation reaction region. The effects of varying the oxygen partial pressure on the reaction rate constant are used to show that dysprosium oxide (Dy{sub 2}O{sub 3}) generally acts as a p-type semiconductor in both regions of oxidation (with an exception above 750 °C in the intermediate region)

  7. Synthesis and super capacitance of goethite/reduced graphene oxide for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Huan; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Lu, Ailian; Hu, Yingying; Li, Li; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2013-08-15

    We report a one-step fabrication of α-iron oxyhydroxide/reduced graphene oxide (α-FeOOH/rGO) composites, in which the ferrous sulfate (FeSO{sub 4}·7H{sub 2}O) are used as the iron raw and reducing agent to grow goethite (α-FeOOH) and reduce graphite oxide (GO) to rGO in the same time. The morphology, composition and microstructure of the as-obtained samples are systematically characterized by thermogravimetric (TG) analysis, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and FT-IR. Moreover, their electrochemical properties are investigated using cyclic voltammetry and galvanostatic charge/discharge techniques. The specific capacitance of 452 F g{sup −1} is obtained at a specific current of 1 A g{sup −1} when the mass ratio of α-FeOOH to rGO is up to 80.3:19.7. In addition, the α-FeOOH/rGO composite electrodes exhibit the excellent rate capability (more than 79% retention at 10 A g{sup −1} relative to 1 A g{sup −1}) and well cycling stability (13% capacitance decay after 1000 cycles). These results suggest the importance and great potential of α-FeOOH/rGO composites in the applications of high-performance energy-storage. - Graphical abstract: α-FeOOH loaded on rGO sheets reveals excellent super-capacitive performance. Display Omitted - Highlights: • A one-step synthesis of the environmentally friendly electrode material is designed. • Ferrous sulfate is used as both iron raw source of goethite and reductant of GO. • α-FeOOH nanorods loaded on rGO sheets arrange into a raft-like array. • The resultant composite exhibits high specific capacitance and long cycling stability.

  8. Synthesis and super capacitance of goethite/reduced graphene oxide for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Huan; Hu, Zhongai; Lu, Ailian; Hu, Yingying; Li, Li; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2013-01-01

    We report a one-step fabrication of α-iron oxyhydroxide/reduced graphene oxide (α-FeOOH/rGO) composites, in which the ferrous sulfate (FeSO 4 ·7H 2 O) are used as the iron raw and reducing agent to grow goethite (α-FeOOH) and reduce graphite oxide (GO) to rGO in the same time. The morphology, composition and microstructure of the as-obtained samples are systematically characterized by thermogravimetric (TG) analysis, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and FT-IR. Moreover, their electrochemical properties are investigated using cyclic voltammetry and galvanostatic charge/discharge techniques. The specific capacitance of 452 F g −1 is obtained at a specific current of 1 A g −1 when the mass ratio of α-FeOOH to rGO is up to 80.3:19.7. In addition, the α-FeOOH/rGO composite electrodes exhibit the excellent rate capability (more than 79% retention at 10 A g −1 relative to 1 A g −1 ) and well cycling stability (13% capacitance decay after 1000 cycles). These results suggest the importance and great potential of α-FeOOH/rGO composites in the applications of high-performance energy-storage. - Graphical abstract: α-FeOOH loaded on rGO sheets reveals excellent super-capacitive performance. Display Omitted - Highlights: • A one-step synthesis of the environmentally friendly electrode material is designed. • Ferrous sulfate is used as both iron raw source of goethite and reductant of GO. • α-FeOOH nanorods loaded on rGO sheets arrange into a raft-like array. • The resultant composite exhibits high specific capacitance and long cycling stability

  9. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  10. S-TiO2/S-reduced graphene oxide for enhanced photoelectrochemical water splitting

    Science.gov (United States)

    Elbakkay, Mohamed H.; El Rouby, Waleed M. A.; El-Dek, S. I.; Farghali, Ahmed A.

    2018-05-01

    Sulfur-doped titanium oxide on the surface of sulfur-doped reduced graphene oxide nanocomposites (S-TiO2/S-RGO) were successfully synthesized for the first time through a simple low cost solvothermal reaction process. The sulfur doping was detected in both TiO2 matrix and carbon framework structure of reduced graphene oxide using X-ray photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX). Cross-sectional AFM analysis of S-RGO nanosheets reveals a thickness of 0.51 nm which is much thinner than those previously reported of heteroatom doped-RGO, confirming the single-layer feature. When the as-prepared (S-TiO2/S-RGO) nanocomposites are utilized as photoanodes for photoelectrochemical (PEC) water splitting, they exhibited an enhanced photoelectrochemical performance and long-term stability. The photocurrent density of S-TiO2/S-RGO(0.2) photoanode revealed 3.36 mA/cm2 at 1 V vs Ag/AgCl which is considered 3 times compared to bare synthesized TiO2. This improvement in the photocurrent density was attributed to the increased separation rate of photogenerated electrons and holes and efficient visible light harvesting as a result of the successful combination of the S-TiO2 and the S-RGO in the same nanocomposite photoanode. This promising result presents a new approach for the synthesis of high-efficient future metal-free photoelectrocatalysts.

  11. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  12. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  13. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection.

    Science.gov (United States)

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M

    2017-06-23

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.

  14. Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M.; Daniell, Tim J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3−) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N2O production from soils. PMID:23264770

  15. Soil nitrate reducing processes – drivers, mechanisms for spatial variation and significance for nitrous oxide production

    Directory of Open Access Journals (Sweden)

    Madeline Eleanore Giles

    2012-12-01

    Full Text Available The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3-¬ and production of the potent greenhouse gas, nitrous oxide (N2O. A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub cm areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location and potential for N2O production from soils.

  16. Soil nitrate reducing processes - drivers, mechanisms for spatial variation, and significance for nitrous oxide production.

    Science.gov (United States)

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M; Daniell, Tim J

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ([Formula: see text]) and production of the potent greenhouse gas, nitrous oxide (N(2)O). A number of factors are known to control these processes, including O(2) concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There is an increasing understanding associated with many of these controls on flux through the nitrogen cycle in soil systems. However, there remains uncertainty about how the nitrate reducing communities are linked to environmental variables and the flux of products from these processes. The high spatial variability of environmental controls and microbial communities across small sub centimeter areas of soil may prove to be critical in determining why an understanding of the links between biotic and abiotic controls has proved elusive. This spatial effect is often overlooked as a driver of nitrate reducing processes. An increased knowledge of the effects of spatial heterogeneity in soil on nitrate reduction processes will be fundamental in understanding the drivers, location, and potential for N(2)O production from soils.

  17. The impact of carbon sp{sup 2} fraction of reduced graphene oxide on the performance of reduced graphene oxide contacted organic transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Narae [Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States); Department of Physics, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States); Khondaker, Saiful I., E-mail: saiful@ucf.edu [Nanoscience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States); Department of Physics, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States); School of Electrical Engineering and Computer Science, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, Florida 32826 (United States)

    2014-12-01

    One of the major bottlenecks in fabricating high performance organic field effect transistors (OFETs) is a large interfacial contact barrier between metal electrodes and organic semiconductors (OSCs) which makes the charge injection inefficient. Recently, reduced graphene oxide (RGO) has been suggested as an alternative electrode material for OFETs. RGO has tunable electronic properties and its conductivity can be varied by several orders of magnitude by varying the carbon sp{sup 2} fraction. However, whether the sp{sup 2} fraction of RGO in the electrode affects the performance of the fabricated OFETs is yet to be investigated. In this study, we demonstrate that the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon sp{sup 2} fraction of RGO. When compared to control palladium electrodes, the mobility of the OFETs shows an improvement of ∼200% for 61% sp{sup 2} fraction RGO, which further improves to ∼500% for 80% RGO electrode. Similar improvements were also observed in current on-off ratio, on-current, and transconductance. Our study suggests that, in addition to π-π interaction at RGO/pentacene interface, the tunable electronic properties of RGO electrode have a significant role in OFETs performance.

  18. The impact of carbon sp2 fraction of reduced graphene oxide on the performance of reduced graphene oxide contacted organic transistors

    International Nuclear Information System (INIS)

    Kang, Narae; Khondaker, Saiful I.

    2014-01-01

    One of the major bottlenecks in fabricating high performance organic field effect transistors (OFETs) is a large interfacial contact barrier between metal electrodes and organic semiconductors (OSCs) which makes the charge injection inefficient. Recently, reduced graphene oxide (RGO) has been suggested as an alternative electrode material for OFETs. RGO has tunable electronic properties and its conductivity can be varied by several orders of magnitude by varying the carbon sp 2 fraction. However, whether the sp 2 fraction of RGO in the electrode affects the performance of the fabricated OFETs is yet to be investigated. In this study, we demonstrate that the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon sp 2 fraction of RGO. When compared to control palladium electrodes, the mobility of the OFETs shows an improvement of ∼200% for 61% sp 2 fraction RGO, which further improves to ∼500% for 80% RGO electrode. Similar improvements were also observed in current on-off ratio, on-current, and transconductance. Our study suggests that, in addition to π-π interaction at RGO/pentacene interface, the tunable electronic properties of RGO electrode have a significant role in OFETs performance

  19. Synthesis of Tb_4O_7 complexed with reduced graphene oxide for Rhodamine-B absorption

    International Nuclear Information System (INIS)

    Gao, Hui; Zhou, Yang; Chen, Keqin; Li, Xiaolong

    2016-01-01

    Highlights: • Tb–rGO composite was fabricated via a facile thermally reduction process. • The green and blue emissions were both observed in the composite. • The composite exhibited efficient absorption capability for Rhodamine-B. - Abstract: Tb_4O_7 complexed with reduced graphene oxide composite (Tb–rGO) had been designed and fabricated by a facile thermal reduction method. The formation of Tb_4O_7 particles and reduction of graphene oxide (GO) occurred simultaneously, and partial terbium ions would be complexed with rGO via oxygen-containing function groups on rGO sheets. Introducing of terbium ions could effectively tune the photoluminescence properties of rGO, and the composite exhibited the typical green emission of terbium ions as well as the blue self-luminescence of graphene entered at 440 nm. Moreover, Tb–rGO had demonstrated its high capability as an organic dye (Rhodamine-B) scavenger with high speed and efficiency. The findings showed the promising applications for large-scale removal of organic dye contaminants, especially in the field of waste water treatment.

  20. Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine

    International Nuclear Information System (INIS)

    Hu, Shirong; Huang, Qitong; Lin, Yi; Wei, Chan; Zhang, Hanqiang; Zhang, Wuxiang; Guo, Zhenbo; Bao, Xiuxiu; Shi, Jiangu; Hao, Aiyou

    2014-01-01

    In this study, we developed and characterized a new dopamine (DA) sensor based on the reduced graphene oxide (rGO)-carbon dot composite film with high sensitivity, nice specificity and good stability. The carbon dots (CDs) had carboxyl groups with negative charge, which not only provided good stability, but also enabled interaction with amine functional groups in DA through electrostatic interaction to enhance the specificity of DA with high specificity, and the interaction and electron communication between rGO and DA can be further strengthened via π-π stacking force. Under optimal conditions, the rGO-CDs electrode (GCE) showed better electrochemical response towards the detection of DA than the bare GCE, GO/GCE and CDs/GCE. A linear relationship between the oxidation peak current of DA and its concentration could be obtained in a range from 0.01000 μM to 450.0 μM with the limit of detection as 1.5 nM (3S/N). Furthermore, rGO-CDs/GCE exhibited good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA). Meanwhile, the rGO-CDs/GCE also was applied to the detection of DA content in the injection of DA with satisfactory results, and the biosensor could keep its activity for at least a month

  1. InP/ZnS-graphene oxide and reduced graphene oxide nanocomposites as fascinating materials for potential optoelectronic applications

    Science.gov (United States)

    Samal, Monica; Mohapatra, Priyaranjan; Subbiah, Ramesh; Lee, Chang-Lyoul; Anass, Benayad; Kim, Jang Ah; Kim, Taesung; Yi, Dong Kee

    2013-09-01

    Our recent studies on metal-organic nanohybrids based on alkylated graphene oxide (GO), reduced alkylated graphene oxide (RGO) and InP/ZnS core/shell quantum dots (QDs) are presented. The GO alkylated by octadecylamine (ODA) and the QD bearing a dodecane thiol (DDT) ligand are soluble in toluene. The nanocomposite alkylated-GO-QD (GOQD) is readily formed from the solution mixture. Treatment of the GOQD composite with hydrazine affords a reduced-alkylated-GO-QD (RGOQD) composite. The structure, morphology, photophysical and electrical properties of GOQDs and RGOQDs are studied. The micro-FTIR and Raman studies demonstrate evidence of the QD interaction with GO and RGO through facile intercalation of the alkyl chains. The field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) images of the GOQD composite show heaps of large QD aggregates piled underneath the GO sheet. Upon reduction to RGOQDs, the QDs become evenly distributed on the graphene bed and the size of the clusters significantly decreases. This also facilitates closer proximity of the QDs to the graphene domains by altering the optoelectronic properties of the RGOQDs. The X-ray photoelectron spectroscopy (XPS) results confirm QDs being retained in the composites, though a small elemental composition change takes place. The XPS and the fluorescence spectra show the presence of an In(Zn)P alloy while the X-ray diffraction (XRD) results show characteristics of the tetragonal indium. The photoluminescence (PL) quenching of QDs in GOQD and RGOQD films determined by the time correlated single photon counting (TCSPC) experiment demonstrates almost complete fluorescence quenching in RGOQDs. The conductance studies demonstrate the differences between GOQDs and RGOQDs. Investigation on the metal-oxide-semiconductor field-effect transistor (nMOSFET) characteristics shows the composite to exhibit p-type channel material properties. The RGOQD exhibits much

  2. SnO{sub 2}/reduced graphene oxide composite films for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V., E-mail: mazanikalexander@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-12-15

    Highlights: • SnO{sub 2}/GO composites with mass fraction of carbon phase 0.01% ≤ w{sub C} ≤ 80% have been formed. • 400 °C annealing was applied for GO reduction in the composites. • SnO{sub 2}/rGO composites demonstrate a high electrocatalytic activity in anodic processes. • Exchange current density grows linearly with carbon phase concentration at w{sub C} ≤ 10%. - Abstract: SnO{sub 2}/GO (GO is graphene oxide) composite films with GO mass fraction w{sub C} ranging from 0.01 to 80% have been prepared using colloidal solutions. Heat treatment of SnO{sub 2}/GO films in Ar atmosphere at 400 °C leads to GO reduction accompanied by partial exfoliation and decreasing of the particle thickness. SnO{sub 2}/rGO (rGO is reduced GO) film electrodes demonstrate a high electrocatalytic activity in the anodic oxidation of inorganic (iodide-, chloride-, sulfite-anions) and organic (ascorbic acid) substances. The increase of the anodic current in these reactions is characterized by overpotential inherent to the individual rGO films and exchange current density grows linearly with rGO concentration at w{sub C} ≤ 10% indicating that the rGO particles in composites act as sites of electrochemical process. The SnO{sub 2}/rGO composite films, in which the chemically stable oxide matrix encapsulates the rGO inclusions, can be considered as a promising material for applied electrochemistry.

  3. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    Science.gov (United States)

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  4. Synthesis, nanostructure and magnetic properties of FeCo-reduced graphene oxide composite films by one-step electrodeposition

    International Nuclear Information System (INIS)

    Cao, Derang; Li, Hao; Wang, Zhenkun; Wei, Jinwu; Wang, Jianbo; Liu, Qingfang

    2015-01-01

    FeCo-reduced graphene oxide (FeCo-RGO) composite film was fabricated on indium tin oxide substrate using one-step electrodeposition method. Raman spectroscopy and field emission scanning electron microscope results show that the reduced graphene oxide is coprecipitated with the FeCo film. The energy-dispersive spectrometer results demonstrate that the atomic ratio of Fe/Co in FeCo-RGO composite film is larger than that of the FeCo film under the same fabrication condition. As a result, the FeCo-RGO composite film exhibits good soft magnetic properties and high-frequency properties as well as the FeCo film. The magnetic anisotropy field and saturation magnetization of FeCo-RGO composite film are increased when compared with FeCo film. Furthermore, the ferromagnetic resonance frequency is improved from 2.15 GHz for the FeCo film to 3.9 GHz for the FeCo-RGO composite film. - Highlights: • FeCo-reduced graphene oxide composite film was fabricated on indium tin oxide substrate. • One step electrodeposition method was used. • Good soft magnetic properties were exhibited by the composite films. • Increase of resonance frequency from 2.15 GHz for FeCo film to 3.9 GHz for composite film

  5. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands.

    Science.gov (United States)

    Weisel, Tamara; Baum, Matthias; Eisenbrand, Gerhard; Dietrich, Helmut; Will, Frank; Stockis, Jean-Pierre; Kulling, Sabine; Rüfer, Corinna; Johannes, Christian; Janzowski, Christine

    2006-04-01

    Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.

  6. Baicalein reduces oxidative stress in CHO cell cultures and improves recombinant antibody productivity

    DEFF Research Database (Denmark)

    Kwang Ha, Tae; Hansen, Anders Holmgaard; Kol, Stefan

    2017-01-01

    . Addition of baicalein significantly reduced the expression level of BiP and CHOP along with reduced reactive oxygen species level, suggesting oxidative stress accumulated in the cells can be relieved using baicalein. As a result, addition of baicalein in batch cultures resulted in 1.7 - 1.8-fold increase...

  7. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  8. Highly Efficient, Durable Regenerative Solid Oxide Stack, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a highly efficient regenerative solid oxide stack design. Novel structural elements allow direct internal...

  9. High Performance Graphene Oxide Based Rubber Composites

    Science.gov (United States)

    Mao, Yingyan; Wen, Shipeng; Chen, Yulong; Zhang, Fazhong; Panine, Pierre; Chan, Tung W.; Zhang, Liqun; Liang, Yongri; Liu, Li

    2013-01-01

    In this paper, graphene oxide/styrene-butadiene rubber (GO/SBR) composites with complete exfoliation of GO sheets were prepared by aqueous-phase mixing of GO colloid with SBR latex and a small loading of butadiene-styrene-vinyl-pyridine rubber (VPR) latex, followed by their co-coagulation. During co-coagulation, VPR not only plays a key role in the prevention of aggregation of GO sheets but also acts as an interface-bridge between GO and SBR. The results demonstrated that the mechanical properties of the GO/SBR composite with 2.0 vol.% GO is comparable with those of the SBR composite reinforced with 13.1 vol.% of carbon black (CB), with a low mass density and a good gas barrier ability to boot. The present work also showed that GO-silica/SBR composite exhibited outstanding wear resistance and low-rolling resistance which make GO-silica/SBR very competitive for the green tire application, opening up enormous opportunities to prepare high performance rubber composites for future engineering applications. PMID:23974435

  10. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction.

    Science.gov (United States)

    Shi, Hongfei; Wang, Can; Sun, Zhipei; Zhou, Yueliang; Jin, Kuijuan; Redfern, Simon A T; Yang, Guozhen

    2014-08-11

    Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

  11. Oxidation of naturally reduced uranium in aquifer sediments by dissolved oxygen and its potential significance to uranium plume persistence

    Science.gov (United States)

    Davis, J. A.; Smith, R. L.; Bohlke, J. K.; Jemison, N.; Xiang, H.; Repert, D. A.; Yuan, X.; Williams, K. H.

    2015-12-01

    The occurrence of naturally reduced zones is common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. Such reduced zones are usually heterogeneously dispersed in these aquifers and characterized by high concentrations of organic carbon, reduced mineral phases, and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases found in association with these reducing zones, although there is little understanding of the relative importance of various potential oxidants. Four field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO, wherein groundwater associated with the naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in such field systems if supplied to the naturally reduced zones. Dissolved Fe(II) concentrations decreased to the detection limit, but increases in sulfate could not be detected due to high background concentrations. Changes in nitrogen species concentrations were variable. The results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS), rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table

  12. Preparation of Reduced Graphene Oxide/MnO Composite and Its Electromagnetic Wave Absorption Performance

    Science.gov (United States)

    Yuan, Jiangtao; Li, Kunzhen; Liu, Zhongfei; Jin, Shaowei; Li, Shikuo; Zhang, Hui

    2018-02-01

    The composite containing reduced graphene oxide and MnO nanoparticles (RGO/MnO) has been prepared via a one step pyrolysis method. The MnO nanoparticles were uniformly dispersed on the surface of RGO nanosheets forming MnO/RGO composite. The composite displays a maximum absorption of ‒38.9 dB at 13.5 GHz and the bandwidth of reflection loss corresponding to -10 dB can reach 4.9 GHz (from 11.5 to 16.4 GHz) with a coating layer thickness of only 2 mm. Therefore, the obtained RGO/MnO composite a perfect lightweight and high-performance electromagnetic wave absorbent.

  13. In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing

    Directory of Open Access Journals (Sweden)

    Chen Peng

    2011-01-01

    Full Text Available Abstract In this study, an in situ chemical synthesis approach has been developed to prepare graphene–Au nanocomposites from chemically reduced graphene oxide (rGO in aqueous media. UV–Vis absorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were used to demonstrate the successful attachment of Au nanoparticles to graphene sheets. Configured as field-effect transistors (FETs, the as-synthesized single-layered rGO-Au nanocomposites exhibit higher hole mobility and conductance when compared to the rGO sheets, promising its applications in nanoelectronics. Furthermore, we demonstrate that the rGO-Au FETs are able to label-freely detect DNA hybridization with high sensitivity, indicating its potentials in nanoelectronic biosensing.

  14. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes.

    Science.gov (United States)

    Liu, Juqing; Yin, Zongyou; Cao, Xiehong; Zhao, Fei; Lin, Anping; Xie, Linghai; Fan, Quli; Boey, Freddy; Zhang, Hua; Huang, Wei

    2010-07-27

    A unique device structure with a configuration of reduced graphene oxide (rGO) /P3HT:PCBM/Al has been designed for the polymer nonvolatile memory device. The current-voltage (I-V) characteristics of the fabricated device showed the electrical bistability with a write-once-read-many-times (WORM) memory effect. The memory device exhibits a high ON/OFF ratio (10(4)-10(5)) and low switching threshold voltage (0.5-1.2 V), which are dependent on the sheet resistance of rGO electrode. Our experimental results confirm that the carrier transport mechanisms in the OFF and ON states are dominated by the thermionic emission current and ohmic current, respectively. The polarization of PCBM domains and the localized internal electrical field formed among the adjacent domains are proposed to explain the electrical transition of the memory device.

  15. Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature

    Science.gov (United States)

    Midya, Anupam; Mukherjee, Subhrajit; Roy, Shreyasee; Santra, Sumita; Manna, Nilotpal; Ray, Samit K.

    2018-02-01

    This paper presents a highly selective chloroform sensor using functionalised reduced graphene oxide (RGO) as a sensing layer. Thiol group is covalently attached on the basal plan of RGO film by a simple one-step aryl diazonium chemistry to improve its selectivity. Several spectroscopic techniques like X-ray photoelectron, Raman and Fourier transform infrared spectroscopy confirm successful thiol functionalization of RGO. Finally, the fabricated chemiresistor type sensor is exposed to chloroform in the concentration range 200-800 ppm (parts per million). The sensor shows a 4.3% of response towards 800 ppm chloroform. The selectivity of the sensor is analyzed using various volatile organic compounds as well. The devices show enhanced response and faster recovery attributed to the physiosorption of chloroform onto thiol functionalized graphene making them attractive for 2D materials based sensing applications.

  16. Sulfuric acid intercalated-mechanical exfoliation of reduced graphene oxide from old coconut shell

    Science.gov (United States)

    Islamiyah, Wildatun; Nashirudin, Luthfi; Baqiya, Malik A.; Cahyono, Yoyok; Darminto

    2018-04-01

    We report a fecile preparation of reduced grapheme oxide (rGO) from an old coconut shell by rapid reduction of heating at 400°C, chemical exfoliation using H2SO4 and HCl intercalating and mechanical exfoliation using ultrasonication. The produced samples consist of random stacks of nanometer-sized sheets. The dispersions prepared from H2SO4 had broader size distributions and larger particle sizes than the that from HCl. An average size of rGO in H2SO4 and HCl is respectively 23.62 nm and 570.4 nm. Furthermore, sample prepared in H2SO4 exhibited a high electronical conductivity of 1.1 × 10-3 S/m with a low energy gap of 0.11 eV.

  17. Noncovalently-functionalized reduced graphene oxide sheets by water-soluble methyl green for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaoying; Hu, Zhongai, E-mail: zhongai@nwnu.edu.cn; Hu, Haixiong; Qiang, Ruibin; Li, Li; Li, Zhimin; Yang, Yuying; Zhang, Ziyu; Wu, Hongying

    2015-10-15

    Graphical abstract: Electroactive methyl green (MG) is selected to functionalize reduced graphene oxide (RGO) through non-covalent modification and the composite achieves high specific capacitance, good rate capability and excellent long life cycle. - Highlights: • MG–RGO composites were firstly prepared through non-covalent modification. • The mass ratio in composites is a key for achieving high specific capacitance. • MG–RGO 5:4 exhibits the highest specific capacitance of 341 F g{sup −1}. • MG–RGO 5:4 shows excellent rate capability and long life cycle. - Abstract: In the present work, water-soluble electroactive methyl green (MG) has been used to non-covalently functionalize reduced graphene oxide (RGO) for enhancing supercapacitive performance. The microstructure, composition and morphology of MG–RGO composites are systematically characterized by UV–vis absorption, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performances are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS). The fast redox reactions from MG could generate additional pseudocapacitance, which endows RGO higher capacitances. As a result, the MG–RGO composite (with the 5:4 mass ratio of MG:RGO) achieve a maximum value of 341 F g{sup −1} at 1 A g{sup −1} within the potential range from −0.25 to 0.75 V and provide a 180% enhancement in specific capacitance in comparison with pure RGO. Furthermore, excellent rate capability (72% capacitance retention from 1 A g{sup −1} to 20 A g{sup −1}) and long life cycle (12% capacitance decay after 5000 cycles) are achieved for the MG–RGO composite electrode.

  18. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    Science.gov (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  19. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    Full Text Available Nitrate decreases sulfide release in wastewater treatment plants (WWTP, but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm showed low sulfide production (0.31 μmol cm-3 h-1 and oxygen consumption rates (0.01 μmol cm-3 h-1. The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1. Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB. This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1 an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2 a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR

  20. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    CdS nanoparticles prepared in reverse micellar system was incorporated into ... The molar ratio of various constituents of the hydrothermal gel was ... other synthesis techniques for the preparation of iron oxide nanocomposites using.

  1. In Situ Synchrotron X-Ray Diffraction Characterization of the Synthesis of Graphene Oxide and Reduced Graphene Oxide

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Norby, Poul

    2015-01-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) synthesised from GO, has a promising future in fields ranging from electronics to energy technologies[1]. GO may be synthesized by the modified Hummer’s method[2], where a mixture of potassium permanganate and concentrated sulfuric acid forms...... by placing a mixture of permanganate and sulphuric acid in a capillary next to graphite. The synthesis was then initiated by gently pushing the fluid mixture into the powder with N2 gas. The in situ XRD of the GO synthesis showed how the oxidation reaction proceeds in three separate stages, as seen in Figure...... 1. The first stage was the dissolution of potassium permanganate, followed by an intercalation stage and subsequent formation of crystalline material. The GO 001 diffraction peak was observed early during the synthesis, in the second stage, and the intensity of the 001 diffraction increased during...

  2. Instability of supercritical porosity in highly doped ceria under reduced oxygen partial pressure

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Esposito, Vincenzo

    2015-01-01

    The thermomechanical behavior and microstructural evolution of low relative density (∼0.40) gadolinium-doped ceria are characterized under oxidative and reducing conditions at high temperatures. The electronic defects generated in the structure by Ce4+ to Ce3+ reduction play an important role on ...

  3. Pt nanocrystals electrodeposited on reduced graphene oxide/carbon fiber paper with efficient electrocatalytic properties

    Directory of Open Access Journals (Sweden)

    Zhiling Chen

    2017-08-01

    Full Text Available Carbon fiber paper (CFP wrapped with reduced graphene oxide (rGO film as the composite support (rGO/CFP of Pt catalysts was studied. It was found that rGO could affect the size and morphology of Pt nanocrystals (NCs. Concave nanocubes (CNC Pt NCs ~ 20 nm were uniformly electrodeposited on high reduced HrGO/CFP while irregular Pt NCs ~ 62 nm were loaded on low reduced LrGO. Compared with Pt-LrGO/CFP and Pt-MrGO/CFP, the CNC Pt-HrGO/CFP exhibited a higher electrochemically active surface area (121.7 m2 g−1, as well as enhanced electrooxidation activity of methanol (499 mA mg−1 and formic acid (950 mA mg−1. The results further demonstrated that the CNC Pt-HrGO/CFP could serve as the gas diffusion electrode in fuel cells and yielded a satisfactory performance (1855 mW mg−1. The work can provide an attractive perspective on the convenient preparation of the novel gas diffusion electrode for proton exchange membrane fuel cells.

  4. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Science.gov (United States)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  5. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    Science.gov (United States)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  6. Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping

    2015-01-01

    We have developed a new class of organic–inorganic hybrid nanostructures based on the use of reduced graphene oxide (rGO), polyaniline, and a nickel metal nanostructure. It was applied to efficient non-enzymatic sensing of glucose based on its electrocatalytic oxidation. Scanning electron microscopy and energy-dispersive X-Ray were employed to characterize the material. It is shown that the doped polyaniline plays an important role in the formation of the hybrid nanostructures. Improved analytical performance is found when the hybrid nanostructures were placed on a glassy carbon electrode and used for non-enzymatic sensing of glucose at a typical working potential of +450 mV and a pH value of 13. Features include a fast response (∼2 s), high sensitivity (6,050 μA mM −1 cm −2 ), a linear range from 0.1 μM to 1.0 mM, and a low detection limit (0.08 μM). The response to glucose follows a Michaelis-Menten kinetic behavior, and the K M value was determined to be 0.241 μM. Reproducibility and specificity are acceptable. Fructose and maltose do not interfere significantly. Importantly, the methodology was validated and evaluated for the analysis of 15 spiked human serum specimens, receiving in a good accordance with the results obtained by the non-enzymatic glucose sensing and the commercialized personal glucose meter. (author)

  7. Electrochemical Determination of Paracetamol Using Fe3O4/Reduced Graphene-Oxide-Based Electrode

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Anh Thu

    2018-01-01

    Full Text Available The synthesis of magnetic iron oxide/reduced graphene oxide (Fe3O4/rGO and its application to the electrochemical determination of paracetamol using Fe3O4/rGO modified electrode were demonstrated. The obtained materials were characterized by means of X-ray diffraction (XRD, nitrogen adsorption/desorption isotherms, X-ray photoelectron spectroscopy (XPS, transmission electron microscope (TEM, Fourier transform infrared spectroscopy (FTIR, and magnetic measurement. The results showed that Fe3O4/rGO composite exhibited high specific surface area, and its morphology consists of very fine spherical particles of Fe3O4 in nanoscales. Fe3O4/rGO was used as an electrode modifier for the determination of paracetamol by differential pulse-anodic stripping voltammetry (DP-ASV. The preparation of Fe3O4/rGO-based electrode and some factors affecting voltammetric responses were investigated. The results showed that Fe3O4/rGO is a potential electrode modifier for paracetamol detection by DP-ASV with a low limit of detection. The interfering effect of uric acid, ascorbic acid, and dopamine on the current response of paracetamol has been reported. The repeatability, reproducibility, linear range, and limit of detection were also addressed. The proposed method could be applied to the real samples with satisfactory results.

  8. Biointerfacial impedance characterization of reduced graphene oxide supported carboxyl pendant conducting copolymer based electrode

    International Nuclear Information System (INIS)

    Puri, Nidhi; Niazi, Asad; Srivastava, Avanish Kumar; Rajesh

    2014-01-01

    We report, a comprehensive physical and biointerfacial electrochemical characteristics of electrodeposited poly(pyrrole-co-pyrrolepropylic acid) (PPy-PPa) copolymer film on the reduced graphene oxide (RGO) sheets attached over a silane modified indium-tin-oxide coated glass, for biosensing applications. The highly specific cardiac myoglobin protein antibody, Ab-cMb, has been covalently immobilized on the copolymer film through its pendent carboxyl group by carbodiimide coupling reaction. The factor ‘n’ describing divergence of the system from ideal capacitor characteristics exhibits a low value (n = 0.59) in a constant phase element of the impedance. This low value of ‘n’ showing a porous rough microstructure of PPy-PPa film on RGO exhibiting a diffusive characteristic that has been replaced by dominant charge transfer characteristic (R et ) with n = 0.78 on biomolecular immobilization and subsequent immunoreaction. The bioelectrode exhibits a linear impedance response to human cardiac cMb marker in the range of 10 ng mL −1 to 1 μg mL −1 in phosphate buffer solution (PBS; pH 7.4) at a low frequency region of et sensitivity of 70.30 Ω cm 2 per decade

  9. The Effect of Annealing Temperature on Nickel on Reduced Graphene Oxide Catalysts on Urea Electrooxidation

    International Nuclear Information System (INIS)

    Glass, Dean E.; Galvan, Vicente; Prakash, G.K. Surya

    2017-01-01

    Highlights: •Nickel was reduced on graphene oxide and annealed under argon from 300 to 700 °C. •Nickel was oxidized from the removal of oxygen groups on the graphene oxide. •Higher annealed catalysts displayed decreased urea electrooxidation currents. •Micro direct urea/hydrogen peroxide fuel cells were employed for the first time. •Ni/rGO catalysts displayed enhanced fuel cell performance than the bare nickel. -- Abstract: The annealing temperature effects on nickel on reduced graphene oxide (Ni/rGO) catalysts for urea electrooxidation were investigated. Nickel chloride was directly reduced in an aqueous solution of graphene oxide (GO) followed by annealing under argon at 300, 400, 500, 600, and 700 °C, respectively. X-ray Diffraction (XRD) patterns revealed an increase in the crystallite size of the nickel nanoparticles while the Raman spectra displayed an increase in the graphitic disorder of the reduced graphene oxide at higher annealing temperatures due to the removal of oxygen functional groups. The Ni/rGO catalysts annealed at higher temperatures displayed oxidized nickel surface characteristics from the Ni 2p X-ray Photoelectron Spectra (XPS) due to the oxidation of the nickel from the oxygen functional groups in the graphitic lattice. In the half-cell testing, the onset potential of urea electrooxidation decreased while the urea electrooxidation currents decreased as the annealing temperature was increased. The nickel catalyst annealed at 700 °C displayed a 31% decrease in peak power density while the catalyst annealed at 300 °C displayed a 13% increase compared with the unannealed Ni/rGO catalyst in the micro direct urea/hydrogen peroxide fuel cells tests.

  10. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    Czech Academy of Sciences Publication Activity Database

    Kudr, J.; Richtera, L.; Nejdl, L.; Xhaxhiu, K.; Vítek, Petr; Rutkay-Nedecky, B.; Hynek, D.; Kopel, P.; Adam, V.; Kižek, R.

    2016-01-01

    Roč. 9, č. 1 (2016), UNSP 31 ISSN 1996-1944 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : carbon * cyclic voltammetry * electrochemical impedance spectroscopy * electrochemistry * graphene oxide * heavy metal detection * reduced graphene oxide Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals , electrolysis) Impact factor: 2.654, year: 2016

  11. Double laminated reduced graphene/Cu2S/reduced graphene/graphene oxide nanofilms and their photoelectrochemical properties

    Institute of Scientific and Technical Information of China (English)

    Junwei Li; Xueqi Zhang; Li Song; Min Zhang; Baohang Zhang

    2016-01-01

    In this work,an efficient photocatalytic material was prepared directly on Indium tin oxide (ITO) glass substrates by fabricating Cu2S and graphene oxide onto graphene for photoelectrochemical (PEC) water splitting.The double laminated reduced graphene/Cu2S/reduced graphene/graphene oxide (RG/Cu2S/RG/GO) nanofilms were characterized,and an enhanced photoelectrochemical response in the visible region was discovered.The photocurrent density of the nanofilms for PEC water splitting was measured to be up to 1.98 mA/cm2,which could be ascribed to the followings:(i) a higher efficiency of light-harvesting because of GO coupling with Cu2S that could broaden the absorbing solar spectrum and enhance the light utilization efficiency;(ii) a stepwise structure of band-edge levels in the Cu2S/GO electrode was constructed;(iii) double laminated electron accelerator (RG) was used in the Cu2S/GO materials to get better electron-injecting efficiency.

  12. Improvements in or relating to processes for reducing the oxygen content of metal oxides

    International Nuclear Information System (INIS)

    James, R.H.; Spooner, J.A.

    1980-01-01

    A process is described for reducing the oxygen content of a metal oxide material (such as an intimate mixture of uranium and plutonium oxides or a mixed oxide of uranium and plutonium) by contacting the material with a hydrogen-containing gas at an elevated temperature, wherein the material is contained in a plurality of carbon crucibles, each crucible having apertured ends and being otherwise a closed vessel, the crucibles being moved through a heated zone in end-to-end contact and thereby forming a duct through which the gas is passed counter-current to the direction of movement of the crucibles. (author)

  13. Facial synthesis of carrageenan/reduced graphene oxide/Ag composite as efficient SERS platform

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yuhong; Wang, Zhong; Fu, Li; Peng, Feng, E-mail: yuhongzhengcas@gmail.com [Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing (China); Wang, Aiwu [Department of Physics and Materials Science, City University of Hong (Hong Kong)

    2017-01-15

    In this paper, we reported the preparation of carrageenan/reduced graphene oxide/Ag composite (CA-RGO-Ag) by a wet chemical method at room temperature using carrageenan, graphene oxide and silver nitrate as starting materials. As-prepared composite was characterized by UV-vis spectroscopy, Raman spectroscopy, FTIR, SEM, EDX and XRD. Results showed that the reduction of graphene oxide (GO) and silver nitrate was achieved simultaneously by addition of NaBH{sub 4} . Surface-enhanced Raman scattering study showed that the obtained composite give an intensive and enhanced Raman scattering when Rhodamine B was used as a probing molecule. (author)

  14. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    Science.gov (United States)

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Hepatoprotective Flavonoids in Opuntia ficus-indica Fruits by Reducing Oxidative Stress in Primary Rat Hepatocytes.

    Science.gov (United States)

    Kim, Jung Wha; Kim, Tae Bum; Kim, Hyun Woo; Park, Sang Wook; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Liver disorder was associated with alcohol consumption caused by hepatic cellular damages. Opuntia ficus-indica fruit extracts (OFIEs), which contain betalain pigments and polyphenols including flavonoids, have been introduced as reducing hangover symptoms and liver protective activity. To evaluate hepatoprotective activity of OFIEs and isolated compounds by high-speed countercurrent chromatography (HSCCC). The extract of O. ficus-indica fruits was fractionated into methylene chloride and n -butanol. The n -butanol fraction was isolated by HSCCC separation (methylene chloride-methanol- n -butanol-water, 5:4:3:5, v/v/v/v). The hepatoprotective activity of OFIEs and isolated compounds was evaluated on rat primary hepatocytes against ethanol-induced toxicity. Antioxidative parameters such as glutathione reductase and glutathione peroxidase (GSH-P x ) enzymes and the GSH content were measured. Two flavonoids, quercetin 3- O -methyl ester (1) and (+)-taxifolin, and two flavonoid glycosides, isorhamnetin 3- O -β- d -glucoside (3) and narcissin (4), were isolated from the n -butanol fraction by HSCCC separation. Among them, compound 2 significantly protected rat primary hepatocytes against ethanol exposure by preserving antioxidative properties of GR and GSH-P x . OFIEs and (+)-taxifolin were suggested to reduce hepatic damage by alcoholic oxidative stress. Hepatoprotective Flavonoids were isolated from Opuntia ficus-indica by high -speed countercurrent chromatography (HSCCC).

  16. High pressure oxidation of C2H4/NO mixtures

    DEFF Research Database (Denmark)

    Giménez-López, J.; Alzueta, M.U.; Rasmussen, C.T.

    2011-01-01

    An experimental and kinetic modeling study of the interaction between C2H4 and NO has been performed under flow reactor conditions in the intermediate temperature range (600–900K), high pressure (60bar), and for stoichiometries ranging from reducing to oxidizing conditions. The main reaction...... pathways of the C2H4/O2/NOx conversion, the capacity of C2H4 to remove NO, and the influence of the presence of NOx on the C2H4 oxidation are analyzed. Compared to the C2H4/O2 system, the presence of NOx shifts the onset of reaction 75–150K to lower temperatures. The mechanism of sensitization involves...... the reaction HOCH2CH2OO+NO→CH2OH+CH2O+NO2, which pushes a complex system of partial equilibria towards products. This is a confirmation of the findings of Doughty et al. [3] for a similar system at atmospheric pressure. Under reducing conditions and temperatures above 700K, a significant fraction of the NOx...

  17. [Condition optimization for bio-oxidation of high-S and high-As gold concentrate].

    Science.gov (United States)

    Yang, Caiyun; Dong, Bowen; Wang, Meijun; Ye, Zhiyong; Zheng, Tianling; Huang, Huaiguo

    2015-12-04

    To study the effects of temperature and lixivium return on the concentrate bio-oxidation and rate of gold cyanide leaching. The bioleaching of a high-sulphur (S) and high-arsenic (As) refractory gold concentrate was conducted, and we studied the effects of different temperature (40 ° and 45 °C) and lixivium return (0 and 600 mL) on the bio-oxidation efficiency. The bacterial community structure also was investigated by 16S rRNA gene clone library. The results showed that both the temperature and lixivium return significantly influenced the oxidation system. The temperature rising elevated the oxidation level, while the addition of lixivium depressed the oxidation. Dissimilarity and DCA (detrended correspondence analysis) indicated the effect of temperature on oxidation system was much greater than lixivium. The bacterial community was comprised by Acidithiocacillus caldu (71%) Leptospirillum ferriphilum (23%) and Sulfobacillus thermosulfidooxidans (6%) indicated by the clone library, and the OTU coverage based on 97% sequence similarity was as high as 93.67%. Temperature rising to 45 T would improve the oxidation efficiency while lixivium return would decrease it. This study is helpful to provide an important guiding value for the industry cost optimization of mesophile bacterial oxidation and reduction process.

  18. Rational design of reduced graphene oxide for superior performance of supercapacitor electrodes

    KAUST Repository

    Rasul, Shahid

    2016-10-24

    Strategies to synthesize reduced graphene oxide (rGO) abound but, in most studies, research teams select one particular oxidation-reduction method without providing a methodic reasoning for doing so. Herein, it is analyzed how diverse oxidation-reduction strategies commonly used can result in considerable performance differences of rGO for supercapacitor applications. Depending on the graphite oxidation method followed, the surface chemistry analysis of the products confirms that there is a marked disparity in the degree of oxidation and the nature of the oxygen functional groups present. Subsequent reduction of the oxidized graphite (using three different methods) showed that the maximum specific capacitance of rGOs produced from the classical Hummers\\' method was 128 F g−1 whereas an analogous material obtained from an improved Hummers\\' method reached ∼274 F g−1 (both via an hydrothermal reduction route). Besides showing that the improved oxidation method results in superior capacitance performance, explained by the higher number of structural defects allied to a surface chemistry where residual hydroxyl and epoxy functional groups predominate, this study highlights the need to rationalize the oxidation-reduction strategies followed when investigating applications of rGO materials.

  19. Polyethyleneglycol/silver functionalized reduced graphene oxide aerogel for environmental application

    Science.gov (United States)

    Kumari, G. Vanitha; Asha, S.; Ananth, A. Nimrodh; Rajan, M. A. Jothi; Mathavan, T.

    2018-04-01

    Polyethylene glycol (PEG)/Silver (Ag) functionalized reduced graphene oxide aerogel (RGOA) was synthesized. PEG/Ag decorated reduced graphene oxide aerogel was characterized using XRD, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR). The surface morphology of PEG/Ag/RGOA was analyzed using scanning electron microscope. The non-covalent interaction between reduced graphene oxide layers and the interaction between PEG and Ag on RGOA were studied by FT-IR spectra. It was observed that the interaction between Ag and PEG could enhance the properties of RGOA. Methyl Orange (MO) dye degradation was observed from UV-Vis Spectra. The process was studied by monitoring the simultaneous decrease in the height of UV-Vis absorption peak of dye solution. The results show that PEG/RGOA and PEG/Ag/RGOA are an efficient catalyst for dye degradation.

  20. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    Science.gov (United States)

    Kumar, Ramesh; Kaur, Amarjeet

    2016-05-01

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm-1 respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp2 hybridisation of carbon atoms at 1560 cm-1. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  1. Enhanced and selective ammonia sensing of reduced graphene oxide based chemo resistive sensor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ramesh, E-mail: rameshphysicsdu@gmail.com; Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2016-05-06

    The reduced graphene oxide thin films were fabricated by using the spin coating method. The reduced graphene oxide samples were characterised by Raman studies to obtain corresponding D and G bands at 1360 and 1590 cm{sup −1} respectively. Fourier transform infra-red (FTIR) spectra consists of peak corresponds to sp{sup 2} hybridisation of carbon atoms at 1560 cm{sup −1}. The reduced graphene oxide based chemoresistive sensor exhibited a p-type semiconductor behaviour in ambient conditions and showed good sensitivity to different concentration of ammonia from 25 ppm to 500 ppm and excellent selectivity at room temperature. The sensor displays selectivity to several hazardous vapours such as methanol, ethanol, acetone and hydrazine hydrate. The sensor demonstrated a sensitivity of 9.8 at 25 ppm concentration of ammonia with response time of 163 seconds.

  2. High Temperature Oxidation of Superalloys and Intermetallic Compounds

    Science.gov (United States)

    2010-02-28

    Oxid. Met. Vol.14, pp. 217-234. 1980. 20. T.A. Rannanarayanan, M. Raghavan and R. Petrovic-Luton. Metallic Yttrium Additions to High Temperatura ... Temperatura Alloys: Influence of AI2O3 Scale Properties. Oxid. Met. Vol.22, pp. 83-100. 1984. 21. High-temperature characterization of reactively

  3. Therapeutic Hypothermia Reduces Oxidative Damage and Alters Antioxidant Defenses after Cardiac Arrest

    Science.gov (United States)

    Hackenhaar, Fernanda S.; Medeiros, Tássia M.; Heemann, Fernanda M.; Behling, Camile S.; Putti, Jordana S.; Mahl, Camila D.; Verona, Cleber; da Silva, Ana Carolina A.; Guerra, Maria C.; Gonçalves, Carlos A. S.; Oliveira, Vanessa M.; Riveiro, Diego F. M.; Vieira, Silvia R. R.

    2017-01-01

    After cardiac arrest, organ damage consequent to ischemia-reperfusion has been attributed to oxidative stress. Mild therapeutic hypothermia has been applied to reduce this damage, and it may reduce oxidative damage as well. This study aimed to compare oxidative damage and antioxidant defenses in patients treated with controlled normothermia versus mild therapeutic hypothermia during postcardiac arrest syndrome. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 h mild therapeutic hypothermia (33°C), victims of in- or out-of-hospital cardiac arrest. Parameters were assessed at 6, 12, 36, and 72 h after cardiac arrest in the central venous blood samples. Hypothermic and normothermic patients had similar S100B levels, a biomarker of brain injury. Xanthine oxidase activity is similar between hypothermic and normothermic patients; however, it decreases posthypothermia treatment. Xanthine oxidase activity is positively correlated with lactate and S100B and inversely correlated with pH, calcium, and sodium levels. Hypothermia reduces malondialdehyde and protein carbonyl levels, markers of oxidative damage. Concomitantly, hypothermia increases the activity of erythrocyte antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione S-transferase while decreasing the activity of serum paraoxonase-1. These findings suggest that mild therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses in postcardiac arrest patients. PMID:28553435

  4. Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties

    Science.gov (United States)

    Amollo, Tabitha A.; Mola, Genene T.; Nyamori, Vincent O.

    2017-12-01

    Graphene provides numerous possibilities for structural modification and functionalization of its carbon backbone. Localized magnetic moments can, as well, be induced in graphene by the formation of structural defects which include vacancies, edges, and adatoms. In this work, graphene was functionalized using germanium atoms, we report the effect of the Ge ad atoms on the structural, electrical, optical and magnetic properties of graphene. Reduced graphene oxide (rGO)-germanium quantum dot nanocomposites of high crystalline quality were synthesized by the microwave-assisted solvothermal reaction. Highly crystalline spherical shaped germanium quantum dots, of diameter ranging between 1.6-9.0 nm, are anchored on the basal planes of rGO. The nanocomposites exhibit high electrical conductivity with a sheet resistance of up to 16 Ω sq-1. The electrical conductivity is observed to increase with the increase in Ge content in the nanocomposites. High defect-induced magnetization is attained in the composites via germanium adatoms. The evolution of the magnetic moments in the nanocomposites and the coercivity showed marked dependence on the Ge quantum dots size and concentration. Quantum confinement effects is evidenced in the UV-vis absorbance spectra and photoluminescence emission spectra of the nanocomposites which show marked size-dependence. The composites manifest strong absorption in the UV region, strong luminescence in the near UV region, and a moderate luminescence in the visible region.

  5. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    Science.gov (United States)

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  6. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  7. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira; El Tall, Omar; Rasul, Shahid; Hedhili, Mohamed N.; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  8. High Temperature Oxidation Behavior of Zirconium Alloy with Nano structured Oxide Layer in Air Environment

    International Nuclear Information System (INIS)

    Park, Y. J.; Kim, J. W.; Park, J. W.; Cho, S. O.

    2016-01-01

    If the temperature of the cladding materials increases above 1000 .deg. C, which can be caused by a loss of coolant accident (LOCA), Zr becomes an auto-oxidation catalyst and hence produces a huge amount of hydrogen gas from water. Therefore, many investigations are being carried out to prevent (or reduce) the hydrogen production from Zr-based cladding materials in the nuclear reactors. Our team has developed an anodization technique by which nanostructured oxide can be formed on various flat metallic elements such as Al, Ti, and Zr-based alloy. Anodization is a simple electrochemical technique and requires only a power supply and an electrolyte. In this study, Zr-based alloys with nanostructured oxide layers were oxidized by using Thermogravimetry analysis (TGA) and compared with the pristine one. It reveals that the nanostructured oxide layer can prevent oxidation of substrate metal in air. Oxidation behavior of the pristine Zr-Nb-Sn alloy and the Zr-Nb-Sn alloy with nanostructured oxide layer evaluated by measuring weight gain (TGA). In comparison with the pristine Zr-Nb-Sn alloy, weight gain of the Zr-Nb-Sn alloy with nanostructured oxide layer is lower than 10% even for 12 hours oxidation in air.

  9. Study of mechanism involved in synthesis of graphene oxide and reduced graphene oxide from graphene nanoplatelets

    Science.gov (United States)

    Sharma, Bhasha; Shekhar, Shashank; Malik, Parul; Jain, Purnima

    2018-06-01

    Graphene, a wonder material has inspired quest among researchers due to its numerous applications and exceptional properties. This paper highlights the mechanism and chemistry behind the fabrication of graphene oxide by using phosphoric acid. Chemical functionalization is of prime importance which avoids agglomeration of nanoparticles to attain inherent properties. As non-homogeneous dispersion limits its utilization due to interfacial interactions which restrict reactive sites to produce intercalated network. Thus, chemically functionalized graphene leads to stable dispersion and enhances thermal, mechanical and electrical properties of the resultant polymer composite materials. Solubility of graphene in aqueous solution is the major issue because graphene is hydrophobic, to rectify this oxygen containing hydrophilic groups must be introduced to make it compatible and this can be attained by covalent functionalization. Among all nanofiller GO has shown average particle size i.e. 95 nm and highest surface charge density. The characteristic changes were estimated using Raman spectra.

  10. Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles for humidity sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toloman, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Popa, A., E-mail: popa@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Stan, M.; Socaci, C.; Biris, A.R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca (Romania); Katona, G. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania); Tudorache, F. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Petrila, I. [Interdisciplinary Research Department – Field Science & RAMTECH, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania); Faculty of Automatic Control and Computer Engineering, Gheorghe Asachi Technical University, 27 Dimitrie Mangeron Street, 700050 Iasi (Romania); Iacomi, F. [Faculty of Physics, Al. I. Cuza University, 11 Carol I Blvd., 7000506 Iasi (Romania)

    2017-04-30

    Highlights: • Reduced graphene oxide decorated with Fe doped SnO{sub 2} nanoparticles were synthesized. • The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM. • The reduction of graphene oxide was evidenced using XRD and FT-IR. • Sensitivity tests for relative humidity (RH) were carried out. • The composite sensor exhibited enhanced sensing response as compared with Fe:SnO{sub 2}. - Abstract: Reduced graphene oxide (rGO) decorated with Fe doped SnO{sub 2} nanoparticles were fabricated via the electrostatic interaction between positively charged modified Fe-doped SnO{sub 2} oxide and negatively charged graphene oxide (GO) in the presence of poly(allylamine) hydrochloride (PAH). The decoration of rGO layers with SnO{sub 2}:Fe nanoparticles was highlited by TEM microsopy. For composite sample the diffraction patterns coincide well with those of SnO{sub 2}:Fe nanoparticles. The reduction of graphene oxide was evidenced using XRD and FT-IR spectroscopy. The formation of SnO{sub 2}:Fe-PAH-graphene composites was confirmed by FT-IR, Raman and EPR spectroscopy. Sensitivity tests for relative humidity (RH) measurements were carried out at five different concentrations of humid air at room temperature. The prepared composite sensor exhibited a higher sensing response as compared with Fe:SnO{sub 2} nanoparticles.

  11. Iron oxide nanoparticles stabilized inside highly ordered ...

    Indian Academy of Sciences (India)

    Nanosized iron oxide, a moderately large band-gap semiconductor and an essential component of optoelectrical and magnetic devices, has been prepared successfully inside the restricted internal pores of mesoporous silica material through in-situ reduction during impregnation. The samples were characterized by ...

  12. Water-soluble highly fluorinated graphite oxide

    Czech Academy of Sciences Publication Activity Database

    Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, Stanislava; Janoušek, Zbyněk; Šembera, Filip; Pumera, M.; Sofer, Z.

    2014-01-01

    Roč. 4, č. 3 (2014), s. 1378-1387 ISSN 2046-2069 Institutional support: RVO:61388963 Keywords : graphene oxide * electronic- properties * monolayer graphene * raman-spectroscopy Subject RIV: CC - Organic Chemistry Impact factor: 3.840, year: 2014

  13. Oxidation Behavior of Some Cr Ferritic Steels for High Temperature Fuel Cells

    International Nuclear Information System (INIS)

    Mohamed, H.E.

    2012-01-01

    The oxidation behavior of three high Cr ferritic steels designated 1Al, RA and 5Al with different levels of Al, Si, Mn and Hf has been investigated in the present work. These steels have been developed as candidates for Solid Oxide Fuel Cell (SOFC) interconnect. Specimens of these alloys have been subjected to isothermal as well as cyclic oxidation in air. Isothermal oxidation tests are conducted in the temperature range 800 - 1000 degree C for time periods up to 1000 h. cyclic oxidation tests were carried out at 800 and 1000 degree C for twenty 25 - h cycles giving a total cyclic exposure time of 500 h. The growth rate of the oxide scales was found to follow a parabolic law over a certain oxidation period which changed with alloy composition and oxidation temperature. The value of the parabolic rate constant increased with increasing oxidation temperature. At 800 and 900 degree C alloy 1Al exhibited higher oxidation resistance compared to the other two alloys. Alloy RA showed spalling behavior when oxidized at 900 degree C and the extent of spalling increased with increasing the oxidation temperature to 1000 degree C. Alloy 5Al oxidized at 1000 degree C showed the highest oxidation resistance among the investigated alloys. Alloy 1Al and RA showed similar scale morphology and composition. X- ray diffraction analysis revealed that the scales developed on these alloys consist of Cr 2 O 3 with an outer layer of MnCr 2 O 4 and a minor amount of FeCr 2 O 4 spinels. Alloy 5Al developed scale consisting of γ- Al 2 O 3 at 800 degree C and γ and α- Al 2 O 3 at 900 degree C. Oxidation of alloy 5Al at 1000 degree C led to formation of a scale consisting mainly of the protective phase α Al 2 O 3 . The presence of 0.84 wt% Al and 0.95 wt % Si in alloy 1Al enhanced its oxidation resistance compared to alloy RA which contains only 0.29 wt% Si and is Al - free. This enhancement was attributed to formation of internal oxidation zone in alloy 1Al just beneath the oxide / alloy

  14. Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip, E-mail: necipatar@gmail.com [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Eren, Tanju [Department of Chemical Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi [Department of Metallurgical and Materials Engineering, Sinop University, Sinop (Turkey)

    2015-09-01

    In this study, we report the synthesis of rod shaped gold nanoparticles/2-aminoethanethiol functionalized reduced graphene oxide composite (rdAuNPs/AETrGO) and its application as an anode material for lithium-ion batteries. The structure of the rdAuNPs/AETrGO composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The electrochemical performance was investigated at different current rates by using a coin-type cell. It was found that the rod shaped gold nanoparticles were highly dispersed on the reduced graphene oxide sheets. Moreover, the rdAuNPs/AETrGO composite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1} and a long-term cycle stability. - Highlights: • We prepared rod shaped gold nanoparticles functionalized reduced graphene oxide. • The nanocomposite was used as an anode material for lithium-ion batteries. • The nanocomposite showed a high specific gravimetric capacity of about 1320 mAh g{sup −1}. • The nanocomposite exhibited a long-term cycle stability.

  15. Ultrahigh capacity anode material for lithium ion battery based on rod gold nanoparticles decorated reduced