WorldWideScience

Sample records for oxide electrochemical cell

  1. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  2. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... techniques to provide good guesses for the modeling parameters, like transforming the impedance data to the distribution of relaxation times (DRT), together with experimental parameter sensitivity studies, is the state-of-the-art approach to achieve good EC model fits. Here we present new impedance modeling...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  3. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  4. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  5. Electrochemical characterisation of solid oxide cell electrodes for hydrogen production

    DEFF Research Database (Denmark)

    Bernuy-Lopez, Carlos; Knibbe, Ruth; He, Zeming

    2011-01-01

    Oxygen electrodes and steam electrodes are designed and tested to develop improved solid oxide electrolysis cells for H2 production with the cell support on the oxygen electrode. The electrode performance is evaluated by impedance spectroscopy testing of symmetric cells at open circuit voltage (OCV...

  6. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  7. Electrochemical Impedance Modeling of a Solid Oxide Fuel Cell Anode

    DEFF Research Database (Denmark)

    Mohammadi, R.; Søgaard, Martin; Ramos, Tania

    2014-01-01

    (TLM), which is suitably modified to account for the electrode microstructural details, is used for modeling the impedance arising from the electrochemical reactions. In order to solve the system of nonlinear equations, an in-house code based on the finite difference method was developed. Some...

  8. Modified cermet fuel electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  9. High performance fuel electrode for a solid oxide electrochemical cell

    DEFF Research Database (Denmark)

    2013-01-01

    perovskite oxides selected from the group consisting of niobium-doped strontium titanate, vanadium-doped strontium titanate, tantalum-doped strontium titanate and mixtures thereof, thereby obtaining a porous anode backbone, (b) sintering the coated electrolyte at a high temperature, such as 1200 DEG C...

  10. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Science.gov (United States)

    Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.

    2016-06-01

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  11. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dang-Long, T., E-mail: 3TE14098G@kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Quang-Tuyen, T., E-mail: tran.tuyen.quang.314@m.kyushu-u.ac.jp [International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Shiratori, Y., E-mail: shiratori.yusuke.500@m.kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan)

    2016-06-03

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH{sub 4} and CO{sub 2} and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO{sub 2} reforming of CH{sub 4} and electrochemical oxidation of the produced syngas (H{sub 2}–CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH{sub 4}–CO{sub 2} mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO{sub 2} had strong influences on both reaction processes. The increase in CO{sub 2} partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH{sub 4}−CO{sub 2} mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  12. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  13. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  14. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    Science.gov (United States)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe2O3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from 57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV-visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  15. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    International Nuclear Information System (INIS)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe_2O_3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe_2O_3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe_2O_3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV–visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  16. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Maabong, Kelebogile [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Department of Physics, University of Botswana, Private Bag 002, Gaborone (Botswana); Machatine, Augusto G. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Hu, Yelin [Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Laboratory for Photonics and Interfaces, EPFL, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Braun, Artur [Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Nambala, Fred J. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); University of Zambia, Box 32379, Great East Road Campus, Lusaka (Zambia); Diale, Mmantsae, E-mail: mmantsae.diale@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland)

    2016-01-01

    Hematite (α-Fe{sub 2}O{sub 3}) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe{sub 2}O{sub 3} thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe{sub 2}O{sub 3} nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV–visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  17. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  18. Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance

    KAUST Repository

    Chen, Yonghong

    2016-02-16

    Symmetrical solid oxide fuel cell (SSOFC) using same materials as both anode and cathode simultaneously has gained extensively attentions, which can simplify fabrication process, minimize inter-diffusion between components, enhance sulfur and coking tolerance by operating the anode as the cathode in turn. With keeping the SSOFC\\'s advantages, a novel quasi-symmetrical solid oxide fuel cell (Q-SSOFC) is proposed to further improve the performance, which optimally combines two different SSOFC electrode materials as both anode and cathode simultaneously. PrBaFe2O5+δ (PBFO) and PrBaFe1.6Ni0.4O5+δ (PBFNO, Fe is partially substituted by Ni.) are prepared and applied as both cathode and anode for SSOFC, which exhibit desirable chemical and thermal compatibility with Sm0.8Ce0.2O1.9 (SDC) electrolyte. PBFO cathode exhibits higher oxygen reduction reaction (ORR) activity than PBFNO cathode in air, whereas PBFNO anode exhibits higher hydrogen oxidation reaction (HOR) activity than PBFO anode in H2. The as-designed Q-SSOFC of PBFNO/SDC/PBFO exhibits higher electrochemical performance than the conventional SSOFCs of both PBFO/SDC/PBFO and PBFNO/SDC/PBFNO. The superior performance of Q-SSOFC is attributed to the lowest polarization resistance (Rp). The newly developed Q-SSOFCs open doors for further improvement of electrochemical performance in SSOFC, which hold more promise for various potential applications. © 2016 Elsevier B.V. All rights reserved.

  19. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  20. System Tb-Fe-O: thermodynamic properties of ternary oxides using solid-state electrochemical cells

    International Nuclear Information System (INIS)

    Rakshit, S.K.; Parida, S.C.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2003-01-01

    The standard molar Gibbs free energies of formation of TbFeO 3 (s) and Tb 3 Fe 5 O 12 (s) have been determined using solid-state electrochemical cell employing different solid electrolytes. The reversible emfs of the following solid-state electrochemical cells have been measured in the temperature range 1050≤T/K≤1250. Cell (I):(-)Pt/{TbFeO 3 (s)+Tb 2 O 3 (s)+Fe(s)}//YDT/CSZ//{Fe(s)+Fe 0.95 O(s)}/Pt(+))) (Cell (II):(-)Pt/{Fe(s)+Fe 0.95 O(s)}//CSZ//{TbFeO 3 (s)+Tb 3 Fe 5 O 12 (s)+Fe 3 O 4 (s)}/Pt(+) The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the emf data. The standard molar Gibbs free energies of formation of solid TbFeO 3 and Tb 3 Fe 5 O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by {Δ f G compfn m (TbFeO 3 ,s)/(kJ·mol -1 )±3.2}=-1357.5+0.2531·(T/K); (1050≤T/K≤1548);))and({Δ f G compfn m (Tb 3 Fe 5 O 12 ,s)/(kJ·mol -1 )±3.5}=-4901.7+ 0.9997·(T/K); (1050≤T/K≤1250).)) The uncertainty estimates for Δ f G compfn m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams were computed for the system Tb-Fe-O at T=1250 K

  1. Preliminary Electrochemical Characterization of Anode Supported Solid Oxide Cell (AS-SOC) Produced in the Institute of Power Engineering Operated in Electrolysis Mode (SOEC)

    Science.gov (United States)

    Kupecki, Jakub; Motyliński, Konrad; Skrzypkiewicz, Marek; Wierzbicki, Michał; Naumovich, Yevgeniy

    2017-12-01

    The article discusses the operation of solid oxide electrochemical cells (SOC) developed in the Institute of Power Engineering as prospective key components of power-to-gas systems. The fundamentals of the solid oxide cells operated as fuel cells (SOFC - solid oxide fuel cells) and electrolysers (SOEC - solid oxide fuel cells) are given. The experimental technique used for electrochemical characterization of cells is presented. The results obtained for planar cell with anodic support are given and discussed. Based on the results, the applicability of the cells in power-to-gas systems (P2G) is evaluated.

  2. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    Science.gov (United States)

    Janardhanan, Vinod M.; Deutschmann, Olaf

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH 4 (3% H 2 O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary.

  3. Detailed dynamic solid oxide fuel cell modeling for electrochemical impedance spectra simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ph. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km. Ptolemais-Mpodosakeio Hospital, Region of Kouri, P.O. Box 95, GR 502, 50200 Ptolemais (Greece)

    2010-08-15

    This paper presents a detailed flexible mathematical model for planar solid oxide fuel cells (SOFCs), which allows the simulation of steady-state performance characteristics, i.e. voltage-current density (V-j) curves, and dynamic operation behavior, with a special capability of simulating electrochemical impedance spectroscopy (EIS). The model is based on physico-chemical governing equations coupled with a detailed multi-component gas diffusion mechanism (Dusty-Gas Model (DGM)) and a multi-step heterogeneous reaction mechanism implicitly accounting for the water-gas-shift (WGS), methane reforming and Boudouard reactions. Spatial discretization can be applied for 1D (button-cell approximation) up to quasi-3D (full size anode supported cell in cross-flow configuration) geometries and is resolved with the finite difference method (FDM). The model is built and implemented on the commercially available modeling and simulations platform gPROMS trademark. Different fuels based on hydrogen, methane and syngas with inert diluents are run. The model is applied to demonstrate a detailed analysis of the SOFC inherent losses and their attribution to the EIS. This is achieved by means of a step-by-step analysis of the involved transient processes such as gas conversion in the main gas chambers/channels, gas diffusion through the porous electrodes together with the heterogeneous reactions on the nickel catalyst, and the double-layer current within the electrochemical reaction zone. The model is an important tool for analyzing SOFC performance fundamentals as well as for design and optimization of materials' and operational parameters. (author)

  4. Electrochemical oxidation of methanol and formic acid in fuel cell processes

    Energy Technology Data Exchange (ETDEWEB)

    Seland, Frode

    2005-07-01

    The main objectives of the thesis work were: (1), to study the oxidation of methanol and formic acid on platinum electrodes by employing conventional and advanced electrochemical methods, and (2), to develop membrane electrode assemblies based on polybenzimidazole membranes that can be used in fuel cells up to 200 C. D.c. voltammetry and a.c. voltammetry studies of methanol and formic acid on polycrystalline platinum in sulphuric acid electrolyte were performed to determine the mechanism and kinetics of the oxidation reactions. A combined potential step and fast cyclic voltammetry experiment was employed to investigate the time dependence primarily of methanol oxidation on platinum. Charge measurements clearly demonstrated the existence of a parallel path at low potentials and short times without formation of adsorbed CO. Furthermore, experimental results showed that only the serial path, via adsorbed CO, exists during continuous cycling, with the first step being diffusion controlled dissociative adsorption of methanol directly from the bulk electrolyte. The saturation charge of adsorbed CO derived from methanol was found to be significantly lower than CO derived from formic acid or dissolved CO. This was attributed to the site requirements of the dehydrogenation steps, and possibly different compositions of linear, bridged or multiply bonded CO. The coverage of adsorbed CO from formic acid decreased significantly at potentials just outside of the hydrogen region (0.35 V vs. RHE), while it did not start to decrease significantly until about 0.6 V vs. RHE for methanol. Adsorbed CO from dissolved CO rapidly oxidized at potentials above about 0.75 V due to formation of platinum oxide. Data from a.c. voltammograms from 0.5 Hz up to 30 kHz were assembled into electrochemical impedance spectra (EIS) and analyzed using equivalent circuits. The main advantages of collecting EIS spectra from a.c. voltammetry experiments are the ability to directly correlate the impedance

  5. Degradation of Acetaminophen and Its Transformation Products in Aqueous Solutions by Using an Electrochemical Oxidation Cell with Stainless Steel Electrodes

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-09-01

    Full Text Available In this study, a novel electrochemical oxidation cell using stainless steel electrodes was found to be effective in oxidizing acetaminophen and its transformation products in short reaction times. Aqueous solutions of 10 mg/L-acetaminophen were prepared at pH 3, 5, 7, and 9. These solutions were electrochemically treated at direct current (DC densities of 5.7 mA/cm2, 7.6 mA/cm2, and 9.5 mA/cm2. The pharmaceutical and its intermediates/oxidation products were determined by using high pressure liquid chromatography (HPLC. The results showed that electrochemical oxidation processes occurred in the cell. Acetaminophen degradation rate constants increased proportionally with the increase of current intensity. High current densities accelerated the degradation of acetaminophen; however, this effect diminished remarkably at pH values greater than 5. At pH 3 and 9.5 mA/cm2, the fastest degradation of acetaminophen and its intermediates/oxidation products was achieved. To minimize the wear down of the electrodes, a current density ramp is recommended, first applying 9.5 mA/cm2 during 2.5 min or 7.6 mA/cm2 during 7.5 min and then continuing the electrochemical oxidation process at 5.7 mA/cm2. This strategy will hasten the acetaminophen oxidation, extend the electrode’s life, and shorten the reaction time needed to degrade the pharmaceutical and its intermediates/oxidation products. DC densities up to 9.5 mA/cm2 can be supplied by photovoltaic cells.

  6. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  7. Current Constriction at Electrode/Electrolyte Interfaces in Solid Oxide Cell Electrochemical Devices Calculated Via 3D Reconstructions

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jørgensen, Peter Stanley; Graves, Christopher R.

    2016-01-01

    Electrochemical devices such as batteries, fuel cells, electrolysers, electrochemical reactors and electrochemical sensors are important technologies for the present and the future society. For further improvement or maturing of the various technologies it is important to understand, characterize...

  8. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  9. Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1989-01-01

    An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  10. CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Janardhanan, Vinod M.; Deutschmann, Olaf [Institute for Chemical Technology and Polymer Chemistry, Engesserstr. 20, D-76131 Karlsruhe, University of Karlsruhe (TH) (Germany)

    2006-11-22

    Direct internal reforming in solid oxide fuel cell (SOFC) results in increased overall efficiency of the system. Present study focus on the chemical and electrochemical process in an internally reforming anode supported SOFC button cell running on humidified CH{sub 4} (3% H{sub 2} O). The computational approach employs a detailed multi-step model for heterogeneous chemistry in the anode, modified Butler-Volmer formalism for the electrochemistry and Dusty Gas Model (DGM) for the porous media transport. Two-dimensional elliptic model equations are solved for a button cell configuration. The electrochemical model assumes hydrogen as the only electrochemically active species. The predicted cell performances are compared with experimental reports. The results show that model predictions are in good agreement with experimental observation except the open circuit potentials. Furthermore, the steam content in the anode feed stream is found to have remarkable effect on the resulting overpotential losses and surface coverages of various species at the three-phase boundary. (author)

  11. Electrochemical Deposition of Platinum and Palladium on Gold Nanoparticles Loaded Carbon Nanotube Support for Oxidation Reactions in Fuel Cell

    Directory of Open Access Journals (Sweden)

    Surin Saipanya

    2014-01-01

    Full Text Available Pt and Pd sequentially electrodeposited Au nanoparticles loaded carbon nanotube (Au-CNT was prepared for the electrocatalytic study of methanol, ethanol, and formic acid oxidations. All electrochemical measurements were carried out in a three-electrode cell. A platinum wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. Suspension of the Au-CNT, phosphate buffer, isopropanol, and Nafion was mixed and dropped on glassy carbon as a working electrode. By sequential deposition method, PdPtPt/Au-CNT, PtPdPd/Au-CNT, and PtPdPt/Au-CNT catalysts were prepared. Cyclic voltammograms (CVs of those catalysts in 1 M H2SO4 solution showed hydrogen adsorption and hydrogen desorption reactions. CV responses for those three catalysts in methanol, ethanol, and formic acid electrooxidations studied in 2 M CH3OH, CH3CH2OH, and HCOOH in 1 M H2SO4 show characteristic oxidation peaks. The oxidation peaks at anodic scan contribute to those organic substance oxidations while the peaks at cathodic scan are related with the reoxidation of the adsorbed carbonaceous species. Comparing all those three catalysts, it can be found that the PdPtPt/Au-CNT catalyst is good at methanol oxidation; the PtPdPt/Au-CNT effectively enhances ethanol oxidation while the PtPdPd/Au-CNT exceptionally catalyzes formic acid oxidation. Therefore, a different stoichiometry affects the electrochemical active surface area of the catalysts to achieve the catalytic oxidation reactions.

  12. Novel quasi-symmetric solid oxide fuel cells with enhanced electrochemical performance

    KAUST Repository

    Chen, Yonghong; Cheng, Zhuanxia; Yang, Yang; Gu, Qingwen; Tian, Dong; Lu, Xiaoyong; Yu, Weili; Lin, Bin

    2016-01-01

    Symmetrical solid oxide fuel cell (SSOFC) using same materials as both anode and cathode simultaneously has gained extensively attentions, which can simplify fabrication process, minimize inter-diffusion between components, enhance sulfur and coking

  13. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Soon Weng Chong

    2016-01-01

    Full Text Available A controllable electrochemical synthesis to convert reduced graphene oxide (rGO from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs. Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211% attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3 to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO glasses.

  14. Electrochemically Scavenging the Silica Impurities at the Ni-YSZ Triple Phase Boundary of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Tao, Youkun; Shao, Jing; Cheng, Shiyang

    2016-01-01

    Silica impurity originated from the sealing or raw materials of the solid oxide cells (SOCs) accumulating at the. Ni-YSZ triple phase boundaries (TPBs) is known as one major reason for electrode passivation. Here we report nanosilica precipitates inside Ni grains instead of blocking the TPBs when...... operating the SOCs at vertical bar i vertical bar >= 1.5 A cm-2 for electrolysis of H2O/CO2. An electrochemical scavenging mechanism was proposed to explain this unique behavior: the removal of silica proceeded through the reduction of the silica to Si under strong cathodic polarization, followed by bulk...

  15. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    OpenAIRE

    Maabong Kelebogile; Machatine Augusto G.; Hu Yelin; Braun Artur; Nambala Fred J.; Diale Mmantsae

    2016-01-01

    Abstract Hematite (a Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. a Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine dop...

  16. Fabrication and electrochemical properties of cathode-supported solid oxide fuel cells via slurry spin coating

    International Nuclear Information System (INIS)

    Chen Min; Luo Jingli; Chuang, Karl T.; Sanger, Alan R.

    2012-01-01

    Highlights: ► LSM cathode-supported cell prepared by slurry spin coating. ► Optimizing porosity in CFL resulting in power density of 0.58 W cm −2 at 850 °C. ► Activation polarization govern the impedance arcs measured under the OCV condition. ► Concentration polarization can induce the change of activation polarization. ► Four kinds of polarizations of our cells are separated and investigated. - Abstract: A cathode-supported SOFC consisting of LSM (La 0.8 Sr 0.2 MnO 3−δ ) cathode supporter, LSM–Sm 0.2 Ce 0.8 O 2−δ (SDC) cathode functional layer (CFL), yttria stabilized zirconia (YSZ)/SDC bi-layered electrolyte and Ni-YSZ anode layer was fabricated by a slurry spin coating technique. The influence of the porosity in both the CFL and cathode supporter on the electrochemical properties of the cells has been investigated. It was found that properly controlling the porosity in the CFL would improve the performance of the cells using O 2 in the cathode side (O 2 -cells), with a maximum power density (MPD) value achieving as high as 0.58 W cm −2 at 850 °C. However, this improvement is not so evident for the cells using air in the cathode side (air-cells). When increasing the porosity in the cathode-supporter, a significant increase of the power density for the air cells due to the decreasing R conc,c (cathode concentration polarization to the cell resistance) can be ascertained. In terms of our analysis on various electrochemical parameters, the R act (activation polarization to the cell resistance) is assumed to be mainly responsible for the impedance arcs measured under the OCV condition, with a negligible R conc,c value being able to be detected in our impedances. In this case, a significant decreasing size of the impedance arcs due to the increasing porosity in the cathode supporter would correspond to a decrease of the R act values, which was proved to be induced by the decreasing R conc,c .

  17. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2008-02-15

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R{sub p}) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R{sub p}. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified. (author)

  18. Implications of electronic short circuiting in plasma sprayed solid oxide fuel cells on electrode performance evaluation by electrochemical impedance spectroscopy

    Science.gov (United States)

    White, B. D.; Kesler, O.

    Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.

  19. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia; Vargas, Ignacio T.; Bruns, Mary Ann; Regan, John M.

    2017-01-01

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  20. Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

    KAUST Repository

    Rojas, Claudia

    2017-08-03

    The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (± 0.7) mA at about − 170 mV vs Ag/AgCl and 8.5 (± 0.9) mA between − 500 mV to − 450 mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

  1. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  2. Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Matsushita, Shotaro; Hyodo, Junji; Okuyama, Yuji; Matsuka, Maki; Ishihara, Tatsumi; Matsumoto, Hiroshige

    2012-01-01

    Highlights: ► Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer conducted a large amount of protons. ► YbDC can work as cathode interlayer for proton conducting electrolyte cells. ► Cathode overpotential of the YbDC interlayer cells showed a plateau at about 400 mV. - Abstract: Introduction of doped ceria interlayer to cathode/electrolyte interface of the electrochemical cell with proton conducting electrolyte was investigated using thin Ce 0.8 Yb 0.2 O 2−δ (YbDC) interlayer of about 500 nm thickness. YbDC interlayer conducted a large amount of protons as much as 170 mA cm −2 . It was also found that cathode overpotential of the YbDC interlayer cells consistently showed a plateau at about 400 mV, at which that of the non-interlayer cells did not show, suggesting a possibility that cathode reaction is changed by introducing the doped ceria interlayer. This result also indicates that the interlayer showed high activity for cathode reaction when enough cathodic bias was applied. Especially, the interlayer showed high activity for the improvement of poor cathode reaction between SrZr 0.9 Y 0.1 O 3−α (SZY-91) electrolyte and platinum cathode.

  3. Enhanced electrochemical performance of the solid oxide fuel cell cathode using Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Van Nong, Ngo

    2011-01-01

    This paper reports on the electrochemical performance of an SOFC cathode for potential use in intermediate-temperature solid oxide fuel cells (IT-SOFCs) using the oxygen non-stoichiometric misfit-layered cobaltite Ca3Co4O9+δ or composites of Ca3Co4O9+δ with Ce0.9Gd0.1O1.95 (CGO/Ca3Co4O9+δ......). Electrochemical impedance spectroscopy revealed that symmetric cells with an electrode of pure Ca3Co4O9+δ exhibit a cathode polarization resistance (Rp) of 12.4 Ω cm2, at 600 °C in air. Strikingly, Rp of the composite CGO/Ca3Co4O9+δ with 50 vol.% CGO was reduced by a factor of 19 (i.e. Rp = 0.64 Ω cm2......), the lowest value reported so far for the Ca3Co4O9 family of compounds. These findings together with the reported thermal expansion coefficient, good compatibility with CGO and chemical durability of this material suggest that it is a promising candidate cathode for IT-SOFCs....

  4. Three dimensional electrochemical simulation of solid oxide fuel cell cathode based on microstructure reconstructed by marching cubes method

    Science.gov (United States)

    He, An; Gong, Jiaming; Shikazono, Naoki

    2018-05-01

    In the present study, a model is introduced to correlate the electrochemical performance of solid oxide fuel cell (SOFC) with the 3D microstructure reconstructed by focused ion beam scanning electron microscopy (FIB-SEM) in which the solid surface is modeled by the marching cubes (MC) method. Lattice Boltzmann method (LBM) is used to solve the governing equations. In order to maintain the geometries reconstructed by the MC method, local effective diffusivities and conductivities computed based on the MC geometries are applied in each grid, and partial bounce-back scheme is applied according to the boundary predicted by the MC method. From the tortuosity factor and overpotential calculation results, it is concluded that the MC geometry drastically improves the computational accuracy by giving more precise topology information.

  5. Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement.

    Science.gov (United States)

    Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang

    2015-06-07

    A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.

  6. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  7. Fundamental Insights into Propionate Oxidation in Microbial Electrolysis Cells Using a Combination of Electrochemical, Molecular biology and Electron Balance Approaches

    KAUST Repository

    Rao, Hari Ananda

    2016-11-01

    Increasing demand for freshwater and energy is pushing towards the development of alternative technologies that are sustainable. One of the realistic solutions to address this is utilization of the renewable resources like wastewater. Conventional wastewater treatment processes can be highly energy demanding and can fails to recover the full potential of useful resources such as energy in the wastewater. As a consequence, there is an urgent necessity for sustainable wastewater treatment technologies that could harness such resources present in wastewaters. Advanced treatment process based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have a great potential for the resources recovery through a sustainable wastewater treatment process. METs rely on the abilities of microorganisms that are capable of transferring electrons extracellularly by oxidizing the organic matter in the wastewater and producing electrical current for electricity generation (MFC) or H2 and CH4 production (MEC). Propionate is an important volatile fatty acid (VFA) (24-70%) in some wastewaters and accumulation of this VFA can cause a process failure in a conventional anaerobic digestion (AD) system. To address this issue, MECs were explored as a novel, alternative wastewater treatment technology, with a focus on a better understanding of propionate oxidation in the anode of MECs. Having such knowledge could help in the development of more robust and efficient wastewater treatment systems to recover energy and produce high quality effluents. Several studies were conducted to: 1) determine the paths of electron flow in the anode of propionate fed MECs low (4.5 mM) and high (36 mM) propionate concentrations; 2) examine the effect of different set anode potentials on the electrochemical performance, propionate degradation, electron fluxes, and microbial community structure in MECs fed propionate; and 3) examine the temporal

  8. Electrochemical, Chemical and Enzymatic Oxidations of Phenothiazines

    NARCIS (Netherlands)

    Blankert, B.; Hayen, H.; van Leeuwen, S.M.; Karst, U.; Bodoki, E.; Lotrean, S.; Sandulescu, R.; Mora Diaz, N.; Dominguez, O.; Arcos, J.; Kauffmann, J.-M.

    2005-01-01

    The oxidation of several phenothiazine drugs (phenothiazine, promethazine hydrochloride, promazine hydrochloride, trimeprazine hydrochloride and ethopropazine hydrochloride) has been carried out in aqueous acidic media by electrochemical, chemical and enzymatic methods. The chemical oxidation was

  9. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  10. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells

    International Nuclear Information System (INIS)

    Méndez-Martínez, Ana J.; Dávila-Jiménez, Martin M.; Ornelas-Dávila, Omar; Elizalde-González, María P.; Arroyo-Abad, Uriel; Sirés, Ignasi; Brillas, Enric

    2012-01-01

    Highlights: ► Ni electrodes were used for the mild degradation of the azo dye Reactive Black 5. ► Potentiostatic degradation was performed in undivided and divided cells. ► Degradation by-products were detected and monitored by RP-HPLC and LC–MS/MS. ► Small alkylsulfonyl phenol and isoxazole derivatives were identified. ► The cathodic and anodic degradation pathways for Reactive Black 5 were elucidated. - Abstract: The cathodic reduction and anodic ·OH-mediated oxidation of the azo dye Reactive Black 5 (RB5) have been studied potentiostatically by using undivided and divided cells with a Ni-polyvinylchloride (Ni-PVC) composite cathode and a Ni wire mesh anode. Solutions of 50–100 cm 3 of 20–80 mg dm −3 RB5 in 0.1 mol dm −3 KOH were degraded to assess the effect of electrolysis time and electrode potentials on the infrared and absorbance spectra, as well as on the decay of the total organic carbon and chemical oxygen demand. Reversed-phase high performance liquid chromatography (RP-HPLC) with ion-pairing and diode array detection (ion pair chromatography), along with coupling to tandem mass spectrometry (LC–MS/MS), were used for the identification of the aromatic degradation by-products and monitoring their time course. These analyses revealed the progressive conversion of the RB5 dye to simpler molecules with m/z 200, 369.5 and 547 under the direct action of the electron at the cathode and the formation of polar compounds such as alkylsulfonyl phenol derivatives with m/z 201, 185 and 171 by the ·OH mediation at the anode. From these results, the electrochemical reduction and oxidation pathways for the RB5 dye were elucidated.

  11. Electrochemical impedance spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Mula, Guido, E-mail: guido.mula@unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Tiddia, Maria V. [Dipartimento di Fisica, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Ruffilli, Roberta [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Falqui, Andrea [Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, S.P. 8 km 0.700, 09042 Cagliari (Italy); Palmas, Simonetta; Mascia, Michele [Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università degli Studi di Cagliari, Piazza d' Armi, 09126 Cagliari (Italy)

    2014-04-01

    We present a study of the electrochemical oxidation process of porous silicon. We analyze the effect of the layer thickness (1.25–22 μm) and of the applied current density (1.1–11.1 mA/cm{sup 2}, values calculated with reference to the external samples surface) on the oxidation process by comparing the galvanostatic electrochemical impedance spectroscopy (EIS) measurements and the optical specular reflectivity of the samples. The results of EIS were interpreted using an equivalent circuit to separate the contribution of different sample parts. A different behavior of the electrochemical oxidation process has been found for thin and thick samples: whereas for thin samples the oxidation process is univocally related to current density and thickness, for thicker samples this is no more true. Measurements by Energy Dispersive Spectroscopy using a Scanning Electron Microscopy confirmed that the inhomogeneity of the electrochemical oxidation process is increased by higher thicknesses and higher currents. A possible explanation is proposed to justify the different behavior of thin and thick samples during the electrochemical process. - Highlights: • A multidisciplinary approach on porous Si electrochemical oxidation is proposed. • Electrochemical, optical, and structural characterizations are used. • Layer thickness and oxidation current effects are shown. • An explanation of the observed behavior is proposed.

  12. Synthesis of magnetite nanoparticles using electrochemical oxidation

    Directory of Open Access Journals (Sweden)

    Ye. Ya. Levitin

    2014-08-01

    Full Text Available The monodisperse magnetite nanoparticles are promising for use in the biomedical industry for targeted drug delivery, cell separation and biochemical products, Magnetic Resonance Imaging, immunological studies, etc. Classic method for the synthesis of magnetite is the chemical condensation Elmore’s, it is simple and cheap, but it is complicated by the formation of side compounds which impair the magnetic properties of the final product. Biological and medical purposes require high purity magnetite nanoparticles. Electrochemical methods of producing nanoparticles of magnetite acquire significant spread. The kinetics of electrochemical processes are a function of a larger number of parameters than the kinetics of conventional chemical reaction, thus electrochemical reactions can be thinner and more completely adjusted to give a predetermined size nanoparticles. In the kinetics of the electrochemical oxidation and reduction the important role is played by the nature of the electrode. In many industrial processes, it is advisable to use lead dioxide anodes with titanium current lead. Purpose of the work To determine the optimum conditions of electrochemical oxidation of Fe2+ Fe3+to produce magnetite with high purity and improved magnetic characteristics. Materials and methods Electrochemical studies were carried out in a glass cell ЯСЭ-2 using a potentiostat ПИ-50-1.1 and a recording device ПДА1. Reference electrode - silver chloride ЭВЛ1М 3.1, potentials listed on the hydrogen scale. The test solution contained 80 g/ l FeSO4×7H2O and H2SO4(to pH 1. The pH of the solution was measured with a pH–meter « рН–150». Concentration ratio of Fe3+/Fe2+in the solution was measured by permanganometric method. Magnetite particle sizes were measured by an electron microscope computer ЭВМ-100Л, an increasing is 2×105. Saturation magnetization was evaluated by the magnetization curve, for the measured sample in the field with strength

  13. Continuous electrochemical monitoring of nitric oxide production in murine macrophage cell line RAW 264.7

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Králová, Jana; Kubala, Lukáš; Číž, Milan; Lojek, Antonín; Gregor, Č.; Hrbáč, J.

    2009-01-01

    Roč. 394, č. 5 (2009), s. 1497-1504 ISSN 1618-2642 R&D Projects: GA AV ČR(CZ) 1QS500040507 Grant - others:GA ČR(CZ) GP524/05/P135 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : nitric oxide * macrophage s RAW 264.7 * nitric oxide sensor Subject RIV: BO - Biophysics Impact factor: 3.480, year: 2009

  14. Electrochemical Oxidation of Phenol using a Flow-through Micro ...

    African Journals Online (AJOL)

    The electrochemical oxidation of phenol to benzoquinone followed by the reduction to hydroquinone and catechol was demonstrated by constructing a three-dimensional porous micro-flow cell from lead dioxideand lead. The electrodes were made by using the principles of curing and formation of lead oxide material that ...

  15. Oxidative Treatment to Improve Coating and Electrochemical Stability of Carbon Fiber Paper with Niobium Doped Titanium Dioxide Sols for Potential Applications in Fuel Cells

    International Nuclear Information System (INIS)

    Alvar, Esmaeil Navaei; Zhou, Biao; Eichhorn, S. Holger

    2014-01-01

    Highlights: • Solution coating of metal oxide layer directly onto carbon paper. • Most uniform Metal oxide coating on functionalized carbon paper. • Highest electrochemical stability for metal oxide coated functionalized carbon paper. - Abstract: Regular hydrophobized carbon paper cannot be used for unitized regenerative fuel cell applications as it corrodes at high potentials on the oxygen electrode side. Reported here are the oxidative treatment and dip-coating of carbon paper (Spectracarb™ 2050A-0850) with Nb-doped TiO 2 sols (anatase phase) to increase the corrosion resistance of the carbon paper at the interface between catalyst layer and gas diffusion backing layer. Coating of carbon paper with Nb-doped TiO 2 sols generates a reasonably uniform layer of TiO 2 and covers the individual carbon fibers well only if the carbon paper is oxidatively functionalized prior to coating. This can be reasoned with a better wetting of the functionalized carbon paper by the sol-gel and the formation of covalent bonds between Ti and the large number of functional groups on the surface of oxidized carbon paper, which is in good agreement with previous observation for carbon nanotubes. The resistance towards oxidation of coated and uncoated samples of untreated and functionalized carbon paper was probed by cyclic voltammetry in 0.5 M aqueous H 2 SO 4 at 1.2 V versus Ag/AgCl for up to 72 hours to mimic the conditions in a unitized regenerative fuel cell. Among these four cases studied here, functionalized carbon paper coated with a layer of Nb-doped TiO 2 shows the highest stability towards electrochemical oxidation while uncoated functionalized carbon paper is the least stable due to the large number of available oxidation sites. These results clearly demonstrate that a coating of carbon fibers with TiO 2 generates a lasting protection against oxidation under conditions encountered at the oxygen electrode side of unitized regenerative fuel cells

  16. Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Chen, Ming; Hendriksen, Peter Vang

    2016-01-01

    conductivities in the electrolyte, the gas composition, temperature, and pressure on the current density distribution over the cell and the oxygen activity distribution within the electrolyte. The developed model is further used to simulate long-term durability experiments during different stages of operation......, thereby helping to rationalize microstructural and chemical changes observed in post-mortem analysis. Finally, measures to mitigate degradation by changing conditions of operation, material or electrode properties or overall cell geometry are suggested....

  17. Systems Ln-Fe-O ( Ln=Eu, Gd): thermodynamic properties of ternary oxides using solid-state electrochemical cells

    Science.gov (United States)

    Parida, S. C.; Rakshit, S. K.; Dash, S.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2003-05-01

    The standard molar Gibbs energies of formation of LnFeO 3(s) and Ln3Fe 5O 12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K. Cell (I): (-)Pt / { LnFeO 3(s)+ Ln2O 3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe 0.95O(s)} / Pt(+); Cell (II): (-)Pt/{Fe(s)+Fe 0.95O(s)}//CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+); Cell (III): (-)Pt/{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+); and Cell(IV):(-)Pt/{Fe(s)+Fe 0.95O(s)}//YDT/CSZ//{ LnFeO 3(s)+ Ln3Fe 5O 12(s)+Fe 3O 4(s)}/Pt(+). The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO 3, Eu 3Fe 5O 12, GdFeO 3 and Gd 3Fe 5O 12 calculated by the least-squares regression analysis of the data obtained in the present study are given by Δ fG°m(EuFeO 3, s) /kJ mol -1 (± 3.2)=-1265.5+0.2687( T/K) (1050 ⩽ T/K ⩽ 1570), Δ fG°m(Eu 3Fe 5O 12, s)/kJ mol -1 (± 3.5)=-4626.2+1.0474( T/K) (1050 ⩽ T/K ⩽ 1255), Δ fG°m(GdFeO 3, s) /kJ mol -1 (± 3.2)=-1342.5+0.2539( T/K) (1050 ⩽ T/K ⩽ 1570), and Δ fG°m(Gd 3Fe 5O 12, s)/kJ·mol -1 (± 3.5)=-4856.0+1.0021( T/K) (1050 ⩽ T/K ⩽ 1255). The uncertainty estimates for Δ fG°m include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.

  18. Diagnosis of a cathode-supported solid oxide electrolysis cell by electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Nechache, A.; Mansuy, A.; Petitjean, M.; Mougin, J.; Mauvy, F.; Boukamp, Bernard A.; Cassir, M.; Ringuede, A.

    2016-01-01

    High-temperature electrolysis (HTSE) is a quite recent topic where most of the studies are focused on performance measurements and degradation observations, mainly achieved by polarization curve. However, it mainly leads to the overall cell behaviour. To get more specific knowledge on the operation

  19. Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide

    Czech Academy of Sciences Publication Activity Database

    Kudr, J.; Richtera, L.; Nejdl, L.; Xhaxhiu, K.; Vítek, Petr; Rutkay-Nedecky, B.; Hynek, D.; Kopel, P.; Adam, V.; Kižek, R.

    2016-01-01

    Roč. 9, č. 1 (2016), UNSP 31 ISSN 1996-1944 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : carbon * cyclic voltammetry * electrochemical impedance spectroscopy * electrochemistry * graphene oxide * heavy metal detection * reduced graphene oxide Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals , electrolysis) Impact factor: 2.654, year: 2016

  20. One-Step Electrosynthesis of Graphene Oxide-Doped Polypyrrole Nanocomposite as a Nanointerface for Electrochemical Impedance Detection of Cell Adhesion and Proliferation Using Two Approaches

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2016-01-01

    Full Text Available A novel nanointerface of graphene oxide-doped polypyrrole (GO/PPy is prepared on the surface of an indium tin oxide (ITO electrode for electrochemical impedance detection of cell adhesion and proliferation through a facile one-step electropolymerization. The prepared GO/PPy nanocomposite had a robust surface and provided a biocompatible substrate for A549 cells adhesion and proliferation. The adhesion and proliferation of A549 cells on the surface of the GO/PPy modified ITO electrode directly increased the electron transfer resistance of [Fe(CN6]3−/4− redox probe and influenced the impedance properties of the GO/PPy modified ITO electrode system. Based on these results, the adhesion and proliferation of A549 cells could be detected by electrochemical impedance technology using two approaches. Therefore, the present paper confirms that the GO/PPy nanocomposite film provides an excellent biological-electrical interface for cell immobilization and offers advantages of simple, low-cost fabrication and multiparameter detection and possesses potential application in cytological studies.

  1. Mediated electrochemical oxidation of mixed wastes

    International Nuclear Information System (INIS)

    Chiba, Z.

    1993-04-01

    The Mediated Electrochemical Oxidation (MEO) process was studied for destroying low-level combustible mixed wastes at Rocky Flats Plant. Tests were performed with non-radioactive surrogate materials: Trimsol for contaminated cutting oils, and reagent-grade cellulose for contaminated cellulosic wastes. Extensive testing was carried out on Trimsol in both small laboratory-scale apparatus and on a large-scale system incorporating an industrial-size electrochemical cell. Preliminary tests were also carried out in the small-scale system with cellulose. Operating and system parameters that were studied were: use of a silver-nitric acid versus a cobalt-sulfuric acid system, effect of electrolyte temperature, effect of acid concentration, and effect of current density. Destruction and coulombic efficiencies were calculated using data obtained from continuous carbon dioxide monitors and total organic carbon (TOC) analysis of electrolyte samples. For Trimsol, the best performance was achieved with the silver-nitrate system at high acid concentrations, temperatures, and current densities. Destruction efficiencies of 99% or greater, and coulombic efficiencies up to 70% were obtained. For the cellulose, high destruction efficiencies and reasonable coulombic efficiencies were obtained for both silver-nitrate and cobalt-sulfate systems

  2. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide - polyaniline composite.

    Science.gov (United States)

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Li, Jian; Han, Shumin

    2018-02-15

    In this work, a novel ultrasensitive electrochemical biosensor was developed for the detection of K562 cell by a signal amplification strategy based on multiple layer CdS QDs functionalized polystyrene microspheres(PS) as bioprobe and graphene oxide(GO) -polyaniline(PANI) composite as modified materials of capture electrode. Due to electrostatic force of different charge, CdS QDs were decorated on the surface of PS by PDDA (poly(diallyldimethyl-ammonium chloride)) through a layer-by-layer(LBL) assemble technology, in which the structure of multiple layer CdS QDs increased the detection signal intensity. Moreover, GO-PANI composite not only enhanced the electron transfer rate, but also increased tumor cells load ratio. The resulting electrochemical biosensor was used to detect K562 cells with a lower detection limit of 3 cellsmL -1 (S/N = 3) and a wider linear range from 10 to 1.0 × 10 7 cellsmL -1 . This sensor was also used for mannosyl groups on HeLa cells and Hct116 cells, which showed high specificity and sensitivity. This signal amplification strategy would provide a novel approach for detection, diagnosis and treatment for tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Vinylene carbonate and tris(trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60 °C

    International Nuclear Information System (INIS)

    Koo, Bonjae; Lee, Jeongmin; Lee, Yongwon; Kim, Jun Ki; Choi, Nam-Soon

    2015-01-01

    Highlights: •The combination of tris(trimethylsilyl) phosphite and vinylene carbonate improves the electrochemical performance of lithium manganese oxide/graphite cells at 60 °C. •Removal of hydrogen fluoride and water by tris(trimethylsilyl) phosphite suppresses manganese dissolution from lithium manganese oxide. -- Abstract: The organophosphorus compounds tris(trimethylsilyl) phosphite (TMSP) and vinylene carbonate (VC) have been considered for use as functional additives to improve the electrochemical performance of Li 1.1 Mn 1.86 Mg 0.04 O 4 (LMO)/graphite full cells. Our investigation reveals that the combination of VC and TMSP as additives enhances the cycling properties and storage performance of full cells at 60 °C. The unique functions of the TMSP additive in the VC electrolyte are investigated via ex situ X-ray photoelectron spectroscopy (XPS) and 19 F nuclear magnetic resonance (NMR) measurements. The TMSP additive effectively eliminates trace water and hydrogen fluoride (HF) and produces a protective film on the LMO cathode that alleviates manganese dissolution at 60 °C

  4. Electrochemical analysis of metal oxides

    Czech Academy of Sciences Publication Activity Database

    Grygar, Tomáš; Bezdička, Petr; Hradil, David; Pikna, L.

    90-91, - (2003), s. 45-50 ISSN 1012-0394 Institutional research plan: CEZ:AV0Z4032918 Keywords : powder electroanalysis * Fe oxides * Mn oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 0.687, year: 2003

  5. System DyFeO: thermodynamic properties of ternary oxides using Calvet calorimetry and solid-state electrochemical cell

    Science.gov (United States)

    Parida, S. C.; Jacob, K. T.; Venugopal, V.

    2002-10-01

    The enthalpy increments and the standard molar Gibbs energies of formation of DyFeO 3(s) and Dy 3Fe 5O 12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent from the heat capacity data for DyFeO 3 at ˜648 K. A similar type of phase transition has been observed for Dy 3Fe 5O 12 at ˜560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO 3(s) and Dy 3Fe 5O 12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions: {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.1%)=-52754+142.9×(T ( K))+2.48×10 -3×(T ( K)) 2+2.951×10 6×(T ( K)) -1;(298.15⩽ T ( K)⩽1000) for DyFeO 3(s), and {H 0m(T)-H 0m(298.15 K)} ( J mol-1) (±1.2%)=-191048+545.0×(T ( K))+2.0×10 -5×(T ( K)) 2+8.513×10 6×(T ( K)) -1;(298.15⩽T ( K)⩽1000) for Dy 3Fe 5O 12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO 3(s) + Dy 2O 3(s) + Fe(s)}//YDT/CSZ//{Fe(s) + Fe 0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe 0.95O(s)}//CSZ//{DyFeO 3(s) + Dy 3Fe 5O 12(s) + Fe 3O 4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO 3 and Dy 3Fe 5O 12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe 0.95O and Dy 2O 3 from the literature, are given by: Δ fG 0m( DyFeO3, s) ( kJ mol-1) (±3.2)=-1339.9+0.2473×(T ( K));(1021⩽T ( K)⩽1548) and Δ fG 0m( Dy3Fe5O12, s) ( kJ mol-1) (±3.5)=-4850.4+0.9846×(T ( K));(1035⩽T ( K)⩽1250). The uncertainty estimates for Δ fG 0m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for

  6. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  7. Evaluation of strontium substituted lanthanum manganite-based solid oxide fuel cell cathodes using cone-shaped electrodes and electrochemical impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Kent Kammer Hansen

    2018-05-01

    Full Text Available Five La1-xSrxMnO3+d-based perovskites (x = 0, 0.05, 0.15, 0.25 and 0.50 were synthesized and investigated by powder XRD, dilatometry and electrochemical impedance spectroscopy measurements and cone-shaped electrode techniques. The thermal expansion coefficient increased with increasing strontium content. It was shown that the total polarization resistance was the lowest for the intermediate compound, La0.95Sr0.05MnO3+d. Two arcs were found in the impedance spectra. These arcs were attributed to two one-electron processes. The results indicate that either Mn(III is the catalytically active species or that the redox capacity is important for the activity of the compounds towards the reduction of oxygen in a solid oxide fuel cell. At higher temperatures, the oxide ionic conductivity may also play a role.

  8. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    Science.gov (United States)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  9. Electrochemical oxidation of selective estrogen receptor modulator raloxifene

    International Nuclear Information System (INIS)

    Li, Xi-Qian; He, Jian-Bo; Liu, Lu; Cui, Ting

    2013-01-01

    Highlights: ► Application and analysis of in situ thin-layer spectroelectrochemistry. ► Cyclic voltabsorptometry used for a drug study. ► Highly pH-dependent oxidative metabolism of raloxifene. ► A complex parallel-consecutive mechanism proposed for oxidation of raloxifene. -- Abstract: Raloxifene is a selective estrogen receptor modulator that may produce toxic oxidative species in metabolism. The oxidation mechanism of raloxifene with different pH values was studied by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), in situ UV–vis spectral analysis and cyclic voltabsorptometry based on a long optical-path thin-layer electrochemical cell. Time-derivative cyclic voltabsorptograms were obtained for comparative discussion with the corresponding cyclic voltammograms. Raloxifene was initially oxidized to reactive phenoxyl radicals, followed by a series of transformation steps leading to different final products in different pH media. A parallel-consecutive reaction mechanism was proposed for the pH-dependent formation of 7-hydroxyraloxifene, raloxifene 6,7-o-quinone and two raloxifene dimers, each pathway following a complex electrochemical-chemical mechanism. Both raloxifene diquinone methide and its N-oxides were not detected by in situ UV–vis spectroscopy and XPS analysis. This work provides an electrochemical viewpoint and comparable information for better understanding of the oxidative metabolism and chemical toxicology of raloxifene under physiological conditions in vivo or in vitro

  10. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  11. Electrochemical and partial oxidation of methane

    Science.gov (United States)

    Singh, Rahul

    2008-10-01

    Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a

  12. Electrochemical performance and stability of Ni1-xCox-based cermet anode for direct methane-fuelled solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    Nicharee Wongsawatgul

    2017-01-01

    Full Text Available Carbon deposition on Ni-based anode is well-known as a major barrier for the practical use and commercialization of hydrocarbon-fuelled solid oxide fuel cells (SOFCs. In this work, Co alloying in Ni-YSZ was studied as an alternative anode material for using CH4 as a fuel. The Ni-YSZ and Ni-Co alloyed-YSZ were prepared by the traditional impregnation method without further mixing processes. After sintering and reduction in H2 atmosphere, the introduced Co can completely dissolved into the Ni lattice and changed the morphology with an increase in the Ni-YSZ grain size and showed a better uniform microstructure. The Co alloying also enhanced the electrochemical performance under CH4 fuel by reducing the resistance and anodic overvoltage. Moreover, the Co addition enhanced the stability of the cell with CH4 a constant load current of 80 mA for 60 h. This performance related to the carbon deposition on the anode surface. The Co alloying showed a high efficiency to suppress the carbon deposition and improved the electrochemical performance of an SOFC cell operating under CH4 fuel.

  13. Electrochemical AC impedance model of a solid oxide fuel cell and its application to diagnosis of multiple degradation modes

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I.; Kesler, O. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada)

    2007-05-01

    A finite element model of the impact of diverse degradation mechanisms on the impedance spectrum of a solid oxide fuel cell is presented as a tool for degradation mode identification. Among the degradation mechanisms that cause electrode active area loss, the attention is focused on electrode delamination and uniformly distributed surface area loss, which were found to cause distinct and specific changes in the impedance spectrum. Degradation mechanisms resulting in uniformly distributed reactive surface area loss include sintering, sulphur poisoning, and possibly incipient coke formation at the anode, and chromium deposition at the cathode. Parametric studies reveal the extent and limits of applicability of the model and detectability of the different degradation modes, as well as the influence of different cell geometries on the change in impedance behaviour resulting from the loss of active area. It is expected that this technique could form the basis of a useful diagnostic tool for both solid oxide fuel cell developers and users. (author)

  14. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide.

    Science.gov (United States)

    Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan

    2013-01-11

    A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.

  15. On the Defect Chemistry, Electrical Properties and Electrochemical Performances As Solid Oxide Fuel Cell Cathode Materials of New La-(Sr/Vac)-Co-Ti-O Perovskites

    DEFF Research Database (Denmark)

    García-Alvarado, Flaviano; Gómez-Pérez, Alejandro; Pérez-Flores, Juan Carlos

    2015-01-01

    Perovskite-type oxides are well known materials that have been proposed as electrodes and electrolytes for solid oxide fuel cells (SOFCs). The structure, which is referred to the ABO3 stoichiometry, can accommodate many different transition metal ions in the B-site; its electronic conductivity...... materials with valuable properties for SOFCs. We have analysed the effect of La3+ by Sr2+ substitution and vacancies creation in several double perovskites, La2MTiO6 (M = Co, Ni, Cu). Defect chemistry and electrical behavior have been investigated in order to unveil the nature of charge carriers....... Electrochemical performances have been assessed through polarization resistance measurements. In this communication we present the results regarding La2SrTiO6 perovskites. La/Sr substitution in La2-xSrxCoTiO6-δ produces Co2+ to Co3+ oxidation while vacancies in La2-xCoTiO6-δ yield Co2+ oxidation for low A...

  16. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wei, Yu-Hsuan; Chen, Chih-Sheng; Ma, Chen-Chi M.; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I 3 − to I − ) of redox electrolyte. In combination with a N719 dye-sensitized TiO 2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm −2 ). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  17. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.

    Science.gov (United States)

    Jing, Y; Qin, H; Liu, Q; Singh, M; Zhu, B

    2012-06-01

    Low temperature solid oxide fuel cell (LTSOFC, 300-600 degrees C) is developed with advantages compared to conventional SOFC (800-1000 degrees C). The electrodes with good catalytic activity, high electronic and ionic conductivity are required to achieve high power output. In this work, a LiNiCuZn oxides as anode and cathode catalyst is prepared by slurry method. The structure and morphology of the prepared LiNiCuZn oxides are characterized by X-ray diffraction and field emission scanning electron microscopy. The LiNiCuZn oxides prepared by slurry method are nano Li0.28Ni0.72O, ZnO and CuO compound. The nano-crystallites are congregated to form ball-shape particles with diameter of 800-1000 nm. The LiNiCuZn oxides electrodes exhibits high ion conductivity and low polarization resistance to hydrogen oxidation reaction and oxygen reduction reaction at low temperature. The LTSOFC using the LiNiCuZn oxides electrodes demonstrates good cell performance of 1000 mW cm(-2) when it operates at 470 degrees C. It is considered that nano-composite would be an effective way to develop catalyst for LTSOFC.

  18. Electrochemical synthesis and characterization of copper (I oxide

    Directory of Open Access Journals (Sweden)

    Bugarinović Sanja J.

    2009-01-01

    Full Text Available The quest and need for clean and economical energy sources have increased interest in the development of thin film cells technologies. Electrochemical deposition is an attractive method for synthesis of thin films. It offers the advantages of low synthesis temperature, low cost and high purity. Copper (I oxide or cuprous oxide is an oxide semiconductor which is used as the anodic material in the form of thin film in lithium batteries and solar cells. The cathodic process of synthesis of cuprous oxide thin film is carried out in a potentiostatic mode from the organic electrolyte. The process parameters are chosen in that way to accomplish maximum difference between the potentials at which Cu2O and CuO are obtained. The electrochemical characterization was carried out by cyclic voltammetry. The electrodeposition techniques are particularly well suited for the deposition of single elements but it is also possible to carry out simultaneous depositions of several elements and syntheses of well-defined alternating layers of metals and oxides with thicknesses down to a few nm. Nanomaterials exhibit novel physical properties and play an important role in fundamental research. In addition, cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints. It is insoluble in water and organic solvents. This work presents the examinations of the influence of bath, temperature, pH and current density on the characteristics of electrochemically synthesized cuprous oxide. In the 'classic' process of synthesis, which is carried out under galvanostatic conditions on the anode, the grain size of the powder decreases with the increase in current density while the grain colour becomes lighter. The best commercial quality of the Cu2O (grain size, colour, content of choride was obtained at the temperature of 80°C, concentration of NaCl of 3 mol/dm3 and current density of 400 A/m2.

  19. Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2015-12-01

    Full Text Available The electrochemical reduction process has been used to reduce spent oxide fuel to a metallic form using pyroprocessing technology for a closed fuel cycle in combination with a metal-fuel fast reactor. In the electrochemical reduction process, oxides fuels are loaded at the cathode basket in molten Li2O–LiCl salt and electrochemically reduced to the metal form. Various approaches based on thermodynamic calculations and experimental studies have been used to understand the electrode reaction and efficiently treat spent fuels. The factors that affect the speed of the electrochemical reduction have been determined to optimize the process and scale-up the electrolysis cell. In addition, demonstrations of the integrated series of processes (electrorefining and salt distillation with the electrochemical reduction have been conducted to realize the oxide fuel cycle. This overview provides insight into the current status of and issues related to the electrochemical processing of spent nuclear fuels.

  20. Electrochemical oxidation and detection of sodium urate in alkaline ...

    African Journals Online (AJOL)

    Electrochemical behaviour of copper oxides electrode in the presence of sodium urate was investigated. The correlation between the anodic oxidation and the amperometric detection of sodium urate in the alkaline medium on copper oxides electrode was analysed by cyclic voltammetry (CV) and electrochemical ...

  1. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  2. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Benoved, Nir [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2009-09-05

    Air plasma spraying has been used to produce porous composite anodes based on Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H{sub 2}, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 {omega} cm{sup 2} in impedance tests in hydrogen at 712 C. (author)

  3. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    Science.gov (United States)

    Benoved, Nir; Kesler, O.

    Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.

  4. A novel rotating electrochemically anodizing process to fabricate titanium oxide surface nanostructures enhancing the bioactivity of osteoblastic cells.

    Science.gov (United States)

    Chang, Chih-Hung; Lee, Hsin-Chun; Chen, Chia-Chun; Wu, Yi-Hau; Hsu, Yuan-Ming; Chang, Yin-Pen; Yang, Ta-I; Fang, Hsu-Wei

    2012-07-01

    Titanium oxide (TiO(2) ) surface layers with various surface nanostructures (nanotubes and nanowires) have been developed using an anodizing technique. The pore size and length of TiO(2) nanotubes can be tailored by changing the anodizing time and applied voltage. We developed a novel method to transform the upper part of the formed TiO(2) nanotubes into a nanowire-like structure by rotating the titanium anode during anodizing process. The transformation of nanotubes contributed to the preferential chemical dissolution of TiO(2) on the areas with intense interface tension stress. Furthermore, we further compared the effect of various TiO(2) surface nanostructures including flat, nanotubes, and nanowires on bioactive applications. The MG-63 osteoblastic cells cultured on the TiO(2) nanowires exhibited a polygonal shape with extending filopodia and showed highest levels of cell viability and alkaline phosphatase activity (ALP). The TiO(2) nanowire structure formed by our novel method can provide beneficial effects for MG-63 osteoblastic cells in attachment, proliferation, and secretion of ALP on the TiO(2) surface layer. Copyright © 2012 Wiley Periodicals, Inc.

  5. Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance

    Science.gov (United States)

    Cebollero, J. A.; Lahoz, R.; Laguna-Bercero, M. A.; Larrea, A.

    2017-08-01

    Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.

  6. Capsid protein oxidation in feline calicivirus using an electrochemical inactivation treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shionoiri, Nozomi; Nogariya, Osamu; Tanaka, Masayoshi; Matsunaga, Tadashi; Tanaka, Tsuyoshi, E-mail: tsuyo@cc.tuat.ac.jp

    2015-02-11

    Highlights: • Feline calicivirus was inactivated electrochemically by a factor of >5 log. • The electrochemical treatment was performed at 0.9 V (vs. Ag/AgCl) for 15 min. • Electrochemical treatment caused oxidation of viral proteins. • Oxidation of viral proteins can lead to loss of viral structural integrity. - Abstract: Pathogenic viral infections are an international public health concern, and viral disinfection has received increasing attention. Electrochemical treatment has been used for treatment of water contaminated by bacteria for several decades, and although in recent years several reports have investigated viral inactivation kinetics, the mode of action of viral inactivation by electrochemical treatment remains unclear. Here, we demonstrated the inactivation of feline calicivirus (FCV), a surrogate for human noroviruses, by electrochemical treatment in a developed flow-cell equipped with a screen-printed electrode. The viral infectivity titer was reduced by over 5 orders of magnitude after 15 min of treatment at 0.9 V vs. Ag/AgCl. Proteomic study of electrochemically inactivated virus revealed oxidation of peptides located in the viral particles; oxidation was not observed in the non-treated sample. Furthermore, transmission electron microscopy revealed that viral particles in the treated sample had irregular structures. These results suggest that electrochemical treatment inactivates FCV via oxidation of peptides in the structural region, causing structural deformation of virus particles. This first report of viral protein damage through electrochemical treatment will contribute to broadening the understanding of viral inactivation mechanisms.

  7. Spectro-electrochemical and DFT study of tenoxicam metabolites formed by electrochemical oxidation

    International Nuclear Information System (INIS)

    Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Galano, A.; Rojas-Hernández, A.; Corona-Avendaño, S.; Romero-Romo, M.; Palomar-Pardavé, M.

    2013-01-01

    Highlights: • Tenoxicam deprotonation and electrochemical oxidation were studied. • Both spectro-electrochemical and theoretical DFT studies were considered. • It was found that the ampholitic species of tenoxicam is a zwitterion. • Electrochemical oxidation of tenoxicam yields two non-electroactive products. • The nature of these fragments was further confirmed by a chromatography study. -- Abstract: From experimental (spectro-electrochemical) and theoretical (DFT) studies, the mechanisms of tenoxicam deprotonation and electrochemical oxidation were assessed. From these studies, new insights on the nature of the ampholitic species involved during tenoxicam's deprotonation in aqueous solution are presented; see scheme A. Moreover, it is shown that, after the analysis of two different reaction schemes that involve up to 10 different molecules and 12 reaction paths, the electrochemical oxidation of tenoxicam, yields two non-electroactive products that are predominately formed by its fragmentation, after the loss of two electrons. The nature of these fragments was further confirmed by a chromatography study

  8. Electrochemical cell and method of assembly

    Science.gov (United States)

    Shimotake, Hiroshi; Voss, Ernst C. H.; Bartholme, Louis G.

    1979-01-01

    A method of preparing an electrochemical cell is disclosed which permits the assembly to be accomplished in air. The cell includes a metal sulfide as the positive electrode reactant, lithium alloy as the negative electrode reactant and an alkali metal, molten salt electrolyte. Positive electrode reactant is introduced as Li.sub.2 FeS.sub.2, a single-phase compound produced by the reaction of Li.sub.2 S and FeS. The use of this compound permits introduction of lithium in an oxidized form. Additional lithium can be introduced in the negative electrode structure enclosed within an aluminum foil envelope between layers of porous aluminum. Molten salt electrolyte is added after assembly and evacuation of the cell by including an interelectrode separator that has been prewet with an organic solution of KCl.

  9. Thermodynamic properties of ternary oxides in the system Ba-Fe-O using solid-state electrochemical cells with oxide and fluoride ion conducting electrolytes

    Science.gov (United States)

    Rakshit, S. K.; Parida, S. C.; Singh, Ziley; Prasad, R.; Venugopal, V.

    2004-04-01

    The standard molar Gibbs energy of formations of BaFe 12O 19(s), BaFe 2O 4(s), Ba 2Fe 2O 5(s), Ba 3Fe 2O 6(s) and Ba 5Fe 2O 8(s) have been determined using solid-state electrochemical technique employing CaF 2(s) as an electrolyte. The reversible e.m.f. values have been measured in the temperature range from 970 to 1151 K. The oxygen chemical potential corresponding to three phase equilibria involving technologically important compound BaFe 12O 19(s) has been determined using solid-state electrochemical technique employing CSZ as an electrolyte from 1048 to 1221 K. The values of Δ fGm0( T) for the above ternary oxides are given by ΔfG m0( BaFe12O19, s)/ kJ mol -1(±0.6)=-5431.3+1.5317 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( BaFe2O4, s)/ kJ mol -1(±1.3)=-1461.4+0.3745 (T/ K) (970⩽T/ K⩽1151) ΔfG m0( Ba2Fe2O5, s)/ kJ mol -1(±1.4)=-2038.3+0.4433 (T/ K) (970⩽T/ K⩽1149) ΔfG m0( Ba3Fe2O6, s)/ kJ mol -1(±1.5)=-2700.1+0.6090 (T/ K) (969⩽T/ K⩽1150) and ΔfG m0( Ba5Fe2O8, s)/ kJ mol -1(±1.6)=-3984.1+0.9300 (T/ K) (973⩽T/ K⩽1150) The uncertainty estimates for Δ fGm0 includes the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. An isothermal oxygen potential diagram for the system Ba-Fe-O was constructed at 1100 K based on the thermodynamic data obtained in this study.

  10. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  11. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. pH-sensor properties of electrochemically grown iridium oxide

    NARCIS (Netherlands)

    Olthuis, Wouter; Robben, M.A.M.; Bergveld, Piet; Bos, M.; van der Linden, W.E.

    1990-01-01

    The open-circuit potential of an electrochemically grown iridium oxide film is measured and shows a pH sensitivity between −60 and −80 mV/pH. This sensitivity is found to depend on the state of oxidation of the iridium oxide film; for a higher state of oxidation (or more of the oxide in the high

  13. Diversity in electrochemical oxidation of dihydroxybenzenes in the ...

    Indian Academy of Sciences (India)

    Abstract. Electrochemical oxidation of some catechol derivatives (1a–e) have been studied in water/ acetonitrile solution containing 1-methylindole (3) as a nucleophile, using cyclic voltammetry and controlled- potential coulometry. An interesting diversity in the mechanisms has been observed in electrochemical oxidation ...

  14. Comparative DEMS study on the electrochemical oxidation of carbon blacks

    DEFF Research Database (Denmark)

    Ashton, Sean James; Arenz, Matthias

    2012-01-01

    Publication year: 2012 Source:Journal of Power Sources, Volume 217 Sean J. Ashton, Matthias Arenz The intention of the study presented here is to compare the electrochemical oxidation tendencies of a pristine Ketjen Black EC300 high surface area (HSA) carbon black, and four graphitised counterparts...... heat-treated between 2100 and 3200 °C, such as those typically used as corrosion resistant carbon (CRC) supports for polymer electrolyte membrane fuel cell (PEMFC) catalysts. A methodology combining cyclic voltammetry (CV) and differential electrochemical mass spectrometry (DEMS) is used, which allows......; however, CRC samples graphitised =2800 °C did not exhibit this same behaviour. Highlights ¿ We quantitatively determine electrooxidation of carbon support materials. ¿ We can distinguish between the total and partial electrooxidation. ¿ Non or mildly heat treated carbon forms passivating layer. ¿ Heat...

  15. Bussing Structure In An Electrochemical Cell

    Science.gov (United States)

    Romero, Antonio L.

    2001-06-12

    A bussing structure for bussing current within an electrochemical cell. The bussing structure includes a first plate and a second plate, each having a central aperture therein. Current collection tabs, extending from an electrode stack in the electrochemical cell, extend through the central aperture in the first plate, and are then sandwiched between the first plate and second plate. The second plate is then connected to a terminal on the outside of the case of the electrochemical cell. Each of the first and second plates includes a second aperture which is positioned beneath a safety vent in the case of the electrochemical cell to promote turbulent flow of gasses through the vent upon its opening. The second plate also includes protrusions for spacing the bussing structure from the case, as well as plateaus for connecting the bussing structure to the terminal on the case of the electrochemical cell.

  16. Electrochemical Oxidation of Propene with a LSF15/CGO10 Electrochemical Reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    A porous electrochemical reactor, made of La0.85Sr0.15FeO3 (LSF) as electrode and Ce0.9Gd0.1O1.95 (CGO) as electrolyte, was studied for the electrochemical oxidation of propene over a wide range of temperatures. Polarization was found to enhance propene oxidation rate. Ce0.9Gd0.1O1.95 was used...... as infiltration material to enhance the effect of polarization on propene oxidation rate, especially at low temperatures. The influence of infiltrated material, as a function of heat treatment, on the reactor electrochemical behavior has been evaluated by using electrochemical impedance spectroscopy...... in suppressing the competing oxygen evolution reaction and promoting the oxidation of propene under polarization, with faradaic efficiencies above 70% at 250◦C. © 2014 The Electrochemical Society....

  17. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sumi; Kim, Kyuwon [Incheon National University, Incheon (Korea, Republic of)

    2016-03-15

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  18. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Park, Sumi; Kim, Kyuwon

    2016-01-01

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  19. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  20. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.

  1. Electrical and electrochemical properties of architectured electrodes based on perovskite and A2MO4-type oxides for Protonic Ceramic Fuel Cell

    International Nuclear Information System (INIS)

    Batocchi, P.; Mauvy, F.; Fourcade, S.; Parco, M.

    2014-01-01

    Two mixed ionic-electronic conducting oxides (MIEC) have been investigated as potential cathode materials for protonic ceramic fuel cell (PCFC): the perovskite Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ (BSCF) and the Ruddlesden Popper Pr 2 NiO 4+δ (PrN). Their electrical properties have been studied over a large range of water vapour partial pressure. All compounds exhibit high electronic conductivities (σ ≥ 40 S.cm −1 at 600 °C) whatever the pH 2 O of the surrounding atmosphere. Electrochemical characterizations have been performed as a function of pH 2 O, under zero dc conditions and under dc polarization using symmetrical cells based on BaCe 0.9 Y 0.1 O 3-δ (BCY10) as electrolyte. For this purpose, two electrode architectures have been elaborated: a single phase electrode and a composite cathode/BCY10 architectured electrode. All electrodes showed pH 2 O-dependence with promising polarization resistance values lower than 0.8 Ω cm 2 at 600 °C under air whatever the gas humidification rate. The use of architectured electrodes led to a significant decrease of the polarization resistance with values as low as 0.23 and 0.19 Ω cm 2 for PrN and BSCF respectively, at 600 °C and pH 2 O = 0.20 bar. Concerning the oxygen reduction reaction (ORR) mechanisms, rate determining steps involving protons have been identified. They have been respectively assigned to the proton interface transfer and to the water formation and/or desorption for single phase and architectured electrodes. This change has been attributed to an extent of the electrochemically active area and to an enhancement of the protonic transport properties in the architectured electrodes. However electrodes performances seem to be governed by the dissociative adsorption of oxygen species and/or the charge transfer. Concerning performances under dc current, cathodic polarization is reduced when architectured electrodes are used. An enhancement of the electrodes performances has been also evidenced with water

  2. Electrochemical reduction of nitrous oxide on La1-xSrxFeO3 perovskites

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The electrochemical reduction of nitrous oxide and oxygen has been studied on cone-shaped electrodes of La1-xSrxFeO3-delta perovskites in an all solid state cell, using cyclic voltammetry. It was shown that the activity of the La1-xSrxFeO3-delta perovskites for the electrochemical reduction...... of nitrous oxide mainly depends on the amount of Fe(III) and oxide ion vacancies. The activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of nitrous oxide is much lower than the activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of oxygen...

  3. Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Wigger, Tina; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Karst, U.; van den Berg, Albert

    2016-01-01

    Reactive xenobiotic metabolites and their adduct formation with biomolecules such as proteins are important to study as they can be detrimental to human health. Here, we present a microfluidic electrochemical cell with integrated micromixer to study phase I and phase II metabolism as well as protein

  4. Graphene nanocomposites for electrochemical cell electrodes

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.; Shi, Jinjun

    2015-11-19

    A composite composition for electrochemical cell electrode applications, the composition comprising multiple solid particles, wherein (a) a solid particle is composed of graphene platelets dispersed in or bonded by a first matrix or binder material, wherein the graphene platelets are not obtained from graphitization of the first binder or matrix material; (b) the graphene platelets have a length or width in the range of 10 nm to 10 .mu.m; (c) the multiple solid particles are bonded by a second binder material; and (d) the first or second binder material is selected from a polymer, polymeric carbon, amorphous carbon, metal, glass, ceramic, oxide, organic material, or a combination thereof. For a lithium ion battery anode application, the first binder or matrix material is preferably amorphous carbon or polymeric carbon. Such a composite composition provides a high anode capacity and good cycling response. For a supercapacitor electrode application, the solid particles preferably have meso-scale pores therein to accommodate electrolyte.

  5. Effect of H{sub 2}S on the thermodynamic stability and electrochemical performance of Ni cermet-type of anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, M.

    2006-11-15

    For SOFCs to be main means of power generation, they should be able to exploit wide variety of fuels. Among Ni-cermets, Ni-YSZ is the state-of-the-art materials for SOFC-anode which is the fuel electrode. But sulphur impurity present in different gaseous fuels (e.g Biogas), depending on its concentration, is highly poisonous to the stability and electrochemical performance of the Ni catalyst in the cermet anodes. Thus in this study the microstructural stability of Ni-YSZ, Ni-CGO and Ni-LSGM cermets in H{sub 2}S-containing hydrogen gas is studied in the intermediate temperature range of SOFC operation. Thermodynamic modelling of Ni-S-O-H quaternary system was performed for the calculation of thermodynamic stability and sulphur-tolerance limit of Ni in the gaseous atmosphere made up of H, O and S. The effect of presence H{sub 2}S in fuel gas, in the concentrations well below the thermodynamic tolerance limit, on the electrochemical performance of the anodes is studied by using model Ni-patterned electrodes on YSZ and LSGM. Thermodynamic modelling of the Ni-S-O-H quaternary was performed by employing CALPHAD methodology. The modelling of Ni-S binary phase diagram was performed by using sublattice models for the non-stoichiometric phases. The optimised binaries of Ni-O, and Ni-H were taken from the literature. The Ni-O-S and Ni-O-H ternaries were extrapolated from the lower order binaries. In Ni-O-S ternary, NiSO{sub 4} is the only ternary compound present. The ternary compounds, Ni(OH){sub 2} and NiOOH in the Ni-O-H ternary were considered as stoichiometric line compounds. The model parameters of the ternary compounds were optimised using the experimental data. The Ni-S-O-H quaternary was calculated by extrapolation method as employed in the CALPHAD methodology. Inorder to understand the H{sub 2}-oxidation mechanism and the role played by the electrolyte in the reaction mechanism, symmetrical cells of Ni-patterned YSZ single crystals with different crystallographic

  6. Innovative oxide materials for electrochemical energy conversion and oxygen separation

    Science.gov (United States)

    Belousov, V. V.

    2017-10-01

    Ion-conducting solid metal oxides are widely used in high-temperature electrochemical devices for energy conversion and oxygen separation. However, liquid metal oxides possessing unique electrochemical properties still remain of limited use. The review demonstrates the potential for practical applications of molten oxides. The transport properties of molten oxide materials are discussed. The emphasis is placed on the chemical diffusion of oxygen in the molten oxide membrane materials for electrochemical energy conversion and oxygen separation. The thermodynamics of these materials is considered. The dynamic polymer chain model developed to describe the oxygen ion transport in molten oxides is discussed. Prospects for further research into molten oxide materials are outlined. The bibliography includes 145 references.

  7. Aerobic and Electrochemical Oxidations with N-Oxyl Reagents

    Science.gov (United States)

    Miles, Kelsey C.

    Selective oxidation of organic compounds represents a significant challenge for chemical transformations. Oxidation methods that utilize nitroxyl catalysts have become increasingly attractive and include Cu/nitroxyl and nitroxyl/NO x co-catalyst systems. Electrochemical activation of nitroxyls is also well known and offers an appealing alternative to the use of chemical co-oxidants. However, academic and industrial organic synthetic communities have not widely adopted electrochemical methods. Nitroxyl catalysts facilitate effective and selective oxidation of alcohols and aldehydes to ketones and carboxylic acids. Selective benzylic, allylic, and alpha-heteroatom C-H abstraction can also be achieved with nitroxyls and provides access to oxygenated products when used in combination with molecular oxygen as a radical trap. This thesis reports various chemical and electrochemical oxidation methods that were developed using nitroxyl mediators. Chapter 1 provides a short review on practical aerobic alcohol oxidation with Cu/nitroxyl and nitroxyl/NO x systems and emphasizes the utility of bicyclic nitroxyls as co-catalysts. In Chapter 2, the combination of these bicyclic nitroxyls with NOx is explored for development of a mild oxidation of alpha-chiral aryl aldehydes and showcases a sequential asymmetric hydroformylation/oxidation method. Chapter 3 reports the synthesis and characterization of two novel Cu/bicyclic nitroxyl complexes and the electronic structure analysis of these complexes. Chapter 4 highlights the electrochemical activation of various nitroxyls and reports an in-depth study on electrochemical alcohol oxidation and compares the reactivity of nitroxyls under electrochemical or chemical activation. N-oxyls can also participate in selective C-H abstraction, and Chapter 5 reports the chemical and electrochemical activation of N-oxyls for radical-mediated C-H oxygenation of (hetero)arylmethanes. For these electrochemical transformations, the development of

  8. Electrochemical activity of heavy metal oxides in the process of ...

    Indian Academy of Sciences (India)

    Unknown

    2002-02-02

    Feb 2, 2002 ... Electrochemical activity of heavy metal oxides in the process of chloride induced .... represents the protective barrier moderating the chloride attack which ... inhibitors and their influence on the physical properties of. Portland ...

  9. Kinetic study on electrochemical oxidation of catechols in the ...

    Indian Academy of Sciences (India)

    glassy carbon electrode in different experimental conditions. The electrogenerated ... cancer activities.5 Catechols can be easily oxidized electrochemically to ... from unity and approaches to zero in basic solution. This behavior is related to the ...

  10. effect of electrochemical oxidation of a viscose rayon based ...

    African Journals Online (AJOL)

    DJFLEX

    KEYWORDS: Viscose rayon based activated carbon cloth; Sorption isotherms; Electrochemical oxidation; Arsenic .... (AAS ) in acetylene-air flame emission mode. 2.9. Quality ..... of the EO ACC thereby restricting the number of binding sites for ...

  11. A modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure

    DEFF Research Database (Denmark)

    2013-01-01

    -stabilised zirconium oxide electrolyte and (c) a metallic and/or a ceramic electrocatalyst in the shape of interlayers incorporated in the interface between the anode and the electrolyte. This assembly is first sintered at a given temperature and then at a lower temperature in reducing gas mixtures. These heat...... treatments resulted in a distribution of the metallic and/or ceramic interlayers in the electrolyte/anode backbone junction taking place. The structure is prepared by (a) depositing a ceramic interlayer onto one side of the electrolyte, (b) optionally applying a metallic interlayer thereon, (c) repeating...... steps (a) and (b), (d) applying a layer of the selected anode backbone onto the electrolyte with applied interlayers, (e) sintering the raw assembly and (f) infiltrating the electrocatalyst precursor into the sintered assembly and heat treating the assembly to incorporate additional electrocatalyst...

  12. Effects of p-substituents on electrochemical CO oxidation by Rh porphyrin-based catalysts.

    Science.gov (United States)

    Yamazaki, Shin-ichi; Yamada, Yusuke; Takeda, Sahori; Goto, Midori; Ioroi, Tsutomu; Siroma, Zyun; Yasuda, Kazuaki

    2010-08-21

    Electrochemical CO oxidation by several carbon-supported rhodium tetraphenylporphyrins with systematically varied meso-substituents was investigated. A quantitative analysis revealed that the p-substituents on the meso-phenyl groups significantly affected CO oxidation activity. The electrocatalytic reaction was characterized in detail based on the spectroscopic and X-ray structural results as well as electrochemical analyses. The difference in the activity among Rh porphyrins is discussed in terms of the properties of p-substituents along with a proposed reaction mechanism. Rhodium tetrakis(4-carboxyphenyl)porphyrin (Rh(TCPP)), which exhibited the highest activity among the porphyrins tested, oxidized CO at a high rate at much lower potentials (means that CO is electrochemically oxidized by this catalyst when a slight overpotential is applied during the operation of a proton exchange membrane fuel cell. This catalyst exhibited little H(2) oxidation activity, in contrast to Pt-based catalysts.

  13. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm

    2000-01-01

    investigation was to study a possible non-Faradaic electrochemical promotion of the liquid-phase catalytic reaction. It has been shown that there are two negative potential promotion areas with maximum effects at approximately -0.1 and -0.2 V, and one positive potential promotion area with the maximum effect...... between 0.1 and 0.3 V. There were no Faradaic reactions in the negative polarization region, and there was an anodic current which was less than 16% of the theoretical value for an exclusively Faradaic SO2 oxidation. Therefore the promotion effects at negative polarization are completely non-Faradaic. All...... the promotion effects have been explained as mainly due to charging of the electric double layer at the gold electrode. The effect at -0.2 V also depends on the V2O5 concentration and is more pronounced at higher V2O5 concentrations. This has been ascribed to a destruction of the vanadium polymeric chains...

  14. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell

    Science.gov (United States)

    Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun

    2018-02-01

    SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.

  15. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  16. Textbook Error: Short Circuiting on Electrochemical Cell

    Science.gov (United States)

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  17. Physical and electrochemical study of cobalt oxide nano- and microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alburquenque, D. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Vargas, E. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Dpto. de Metalurgia, USACh, Av. Ecuador 3469, 9170124, Santiago (Chile); Denardin, J.C.; Escrig, J. [Dpto. de Física, USACh and CEDENNA, Av. Ecuador 3493, 9170124 Santiago (Chile); Marco, J.F. [Instituto de Química Física “Rocasolano”, CSIC, c/Serrano 119, 28006 Madrid (Spain); Ortiz, J. [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile); Gautier, J.L., E-mail: juan.gautier@usach.cl [Dpto. de Química de los Materiales, USACh, Av. L.B.O.‘Higgins 3363, 9170022 Santiago (Chile)

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  18. Electrochemical evaluation of sulfur poisoning in a methane-fuelled solid oxide fuel cell: Effect of current density and sulfur concentration

    DEFF Research Database (Denmark)

    Hagen, Anke; Johnson, Gregory B.; Hjalmarsson, Per

    2014-01-01

    , the effect of sulfur was less pronounced on mass transfer/fuel reforming processes but quite significant on the charge transfer/TPB processes. Overall, sulfur related performance loss was more severe at the highest current density (1 A cm−2), due to the deactivation of catalytic fuel reforming reactions......A Ni/ScYSZ based SOFC was tested at 1, 0.5, 0.25, and 0 (OCV) A cm−2 in methane fuel containing 0–100 ppm H2S. Analysis of cell voltage loss during short-term H2S poisoning showed that SOFC performance loss was generally larger at higher current loads. Separating the effect of H2S on catalytic...... reforming and electrochemical activity by evaluating the relevant area specific resistances and charge transfer processes based on impedance spectroscopy revealed that the poisoning of electrochemical activity was not dependent on current density. Two major anode processes were significantly affected...

  19. MECHANISTIC STUDY OF COLCHICINE’s ELECTROCHEMICAL OXIDATION

    International Nuclear Information System (INIS)

    Bodoki, Ede; Chira, Ruxandra; Zaharia, Valentin; Săndulescu, Robert

    2015-01-01

    Colchicine, as one of the most ancient drugs of human kind, is still in the focal point of the current research due to its multimodal mechanism of action. The elucidation of colchicine’s still unknown redox properties may play an important role in deciphering its beneficial and harmful implications over the human body. Therefore, a systematic mechanistic study of colchicine’s oxidation has been undertaken by electrochemistry coupled to mass spectrometry using two different types of electrolytic cells, in order to clarify the existing inconsistencies with respect to this topic. At around 1 V vs. Pd/H 2 , initiated by a one-electron transfer, the oxidation of colchicine sets off leading to a cation radical, whose further oxidation may evolve on several different pathways. The main product of the anodic electrochemical reaction, regardless of the carrier solution’s pH is represented by a 7-hydroxy derivative of colchicine. At more anodic potentials (above 1.4 V vs. Pd/H 2 ) compounds arising from epoxidation and/or multiple hydroxylation occur. No di- or tridemethylated quinone structures, as previously suggested in the literature for the electrolytic oxidation of colchicine, has been detected in the mass spectra.

  20. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  1. Electrochemical oxidation of nitrite on nanodiamond powder electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.H.; Zang, J.B.; Wang, Y.H.; Bian, L.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2008-03-10

    Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO{sub 2} is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 x 10{sup -4} cm/s and (1 - {alpha})n{sub {alpha}} is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO{sub 2}. (author)

  2. Oxidative electrochemical aryl C-C coupling of spiropyrans

    NARCIS (Netherlands)

    Ivashenko, Oleksii; van Herpt, Jochem T.; Rudolf, Petra; Feringa, Ben L.; Browne, Wesley R.

    2013-01-01

    The isolation and definitive assignment of the species formed upon electrochemical oxidation of nitro-spiropyran (SP) is reported. The oxidative aryl C-C coupling at the indoline moiety of the SP radical cation to form covalent dimers of the ring-closed SP form is demonstrated. The coupling is

  3. Implementation of advanced electrochemical oxidation for radiochemical concentrate treatment

    International Nuclear Information System (INIS)

    Velin, Anna; Bengtsson, Bernt; Lundblad, Magnus

    2012-09-01

    Water treatments in Nuclear Power Plants include ion exchange, evaporation and mechanical filtration techniques. These technologies are used to control the chemical release and to treat coolant in light water reactor types from chemicals and most importantly, from radioactive nuclides. Most of the conventional methods are efficient, but at the same time producing aqueous concentrates with high organic load. Before final storage, the level of organic content of those concentrates must be reduced. Advanced electrochemical oxidation with Boron Doped Diamond (BDD) electrodes are being investigated in laboratory- and pilot scale for treatment of dilute and concentrated aqueous waste streams at Vattenfall-Ringhals NPP. BDD anodes and cathodes are having high over potential against water electrolysis, and therefore well suitable for oxidation of organics. Dilute wastewater, such as laundry water, which has an initial COD level of around 500 mg/l, was reduced to a level of < 20 mg/l in the laboratory. Evaporator concentrates, with a TS content of 3% and pH of 7-8, were treated in pilot scale of 800 liters, working in batch operation mode, at temperatures between 25-50 deg. C. Initial COD levels between 2500 and 8000 mg/l in concentrate was reduced to < 100 mg/l at the first tests and later to < 300 mg/l. The advanced electrochemical oxidation is proven to be a promising technique for radioactive concentrate treatment. Long-term operation is still ongoing to evaluate the performance of the electrodes, cell components and overall process efficiency. (authors)

  4. Gas recombination assembly for electrochemical cells

    Science.gov (United States)

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  5. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  6. From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts

    Science.gov (United States)

    Xu, Zhichuan J.

    2018-03-01

    Electrochemical reactions typically occur at the interface between a solid electrode and a liquid electrolyte. The charge exchange behaviour between these two phases determines the kinetics of electrochemical reactions. In the past few years, significant advances have been made in the development of metal oxide electrocatalysts for fuel cell and electrolyser reactions. However, considerable gaps remain in the fundamental understanding of the charge transfer pathways and the interaction between the metal oxides and the conducting substrate on which they are located. In particular, the electrochemical interfaces of metal oxides are significantly different from the traditional (metal) ones, where only a conductive solid electrode and a liquid electrolyte are considered. Oxides are insulating and have to be combined with carbon as a conductive mediator. This electrode configuration results in a three-phase electrochemical interface, consisting of the insulating oxide, the conductive carbon, and the liquid electrolyte. To date, the mechanistic insights into this kind of non-traditional electrochemical interface remain unclear. Consequently conventional electrochemistry concepts, established on classical electrode materials and their two-phase interfaces, are facing challenges when employed for explaining these new electrode materials. [Figure not available: see fulltext.

  7. Kinetic studies of electrochemical generation of Ag(II) ion and catalytic oxidation of selected organics

    International Nuclear Information System (INIS)

    Zawodzinski, C.; Smith, W.H.; Martinez, K.R.

    1993-01-01

    The goal of this research is to develop a method to treat mixed hazardous wastes containing selected organic compounds and heavy metals, including actinide elements. One approach is to destroy the organic via electrochemical oxidation to carbon dioxide, then recover the metal contaminants through normally accepted procedures such as ion exchange, precipitation, etc. The authors have chosen to study the electrochemical oxidation of a simple alcohol, iso-propanol. Much of the recent work reported involved the use of an electron transfer mediator, usually the silver(I)/(II) redox couple. This involved direct electrochemical generation of the mediator at the anode of a divided cell followed by homogeneous reaction of the mediator with the organic compound. In this study the authors have sought to compare the mediated reaction with direct electrochemical oxidation of the organic. In addition to silver(I)/(II) they also looked at the cobalt(II)/(III) redox coupled. In the higher oxidation state both of these metal ions readily hydrolyze in aqueous solution to ultimately form insoluble oxide. The study concluded that in a 6M nitric acid solution at room temperature iso-propanol can be oxidized to carbon dioxide and acetic acid. Acetic acid is a stable intermediate and resists further oxidation. The presence of Co(III) enhances the rate or efficiency of the reaction

  8. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics

    International Nuclear Information System (INIS)

    Li Liang; Liu Yan

    2009-01-01

    This paper investigated the mechanism and pseudo-kinetics for removal of ammonia by electrochemical oxidation with RuO 2 /Ti anode using batch tests. The results show that the ammonia oxidation rates resulted from direct oxidation at electrode-liquid interfaces of the anode by stepwise dehydrogenation, and from indirect oxidation by hydroxyl radicals were so slow that their contribution to ammonia removal was negligible under the condition with Cl - . The oxidation rates of ammonia ranged from 1.0 to 12.3 mg N L -1 h -1 and efficiency reached nearly 100%, primarily due to the indirect oxidation of HOCl, and followed pseudo zero-order kinetics in electrochemical oxidation with Cl - . About 88% ammonia was removed from the solution. The removed one was subsequently found in the form of N 2 in the produced gas. The rate at which Cl - lost electrons at the anode was a major factor in the overall ammonia oxidation. Current density and Cl - concentration affected the constant of the pseudo zero-order kinetics, expressed by k = 0.0024[Cl - ] x j. The ammonia was reduced to less than 0.5 mg N L -1 after 2 h of electrochemical oxidation for the effluent from aerobic or anaerobic reactors which treated municipal wastewater. This result was in line with the strict discharge requirements

  9. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  10. Microwave synthesis of metal nanocatalysts for the electrochemical oxidation of small biomolecules

    DEFF Research Database (Denmark)

    Jensen, Kathrine Schiørring Steen; Sun, Hongyu; Werchmeister, Rebecka Maria Larsen

    2017-01-01

    Electrochemical oxidation of small biomolecules provides an approach to generate clean energy from a sustainable resource. It serves as a principle for anode reactions in fuel cells to convert energy stored in chemical bonds into electrical power. Efficient and robust nanocatalysts are essential ...

  11. Effect of oxide ion concentration on the electrochemical oxidation of carbon in molten LiCl

    International Nuclear Information System (INIS)

    Yun, J. W.; Choi, I. K.; Park, Y. S.; Kim, W. H.

    2001-01-01

    The continuous measurement of lithium oxide concentration was required in DOR (Direct Oxide Reduction) process, which converts spent nuclear fuel to metal form, for the reactivity monitor and effective control of the process. The concentration of lithium oxide was measured by the electrochemical method, which was based on the phenomenon that carbon atoms of glassy carbon electrode electrochemically react with oxygen ions of lithium oxide in molten LiCl medium. From the results of electrode polarization experiments, the trend of oxidation rate of carbon atoms was classified into two different regions, which were proportional and non-proportional ones, dependent on the amount of lithium oxide. Below about 2.5 wt % Li 2 O, as the carbon atom ionization rate was fast enough for reacting with diffusing lithium oxide to the surface of carbon electrode. In this concentration range, the oxidation rate of carbon atoms was controlled by the diffusion of lithium oxide, and the concentration of lithium oxide could be measured by electrochemical method. But, above 2.5 wt % Li 2 O, the oxidation rate of carbon atoms was controlled by the applied electrochemical potential, because the carbon atom ionization rate was suppressed by the huge amounts of diffusing Li 2 O. Above this concentration, the electrochemical method was not applicable to determine the concentration of lithium oxide

  12. Minimizing electrode contamination in an electrochemical cell

    Science.gov (United States)

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  13. Method of constructing an improved electrochemical cell

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry

    1984-10-09

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  14. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity.

    Science.gov (United States)

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong Woo

    2015-07-02

    Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD) or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C), C(RGD)₄ ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot) or three dimensional (rod or pillar) like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD), graphene oxide (GO) and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  15. Neural Cell Chip Based Electrochemical Detection of Nanotoxicity

    Directory of Open Access Journals (Sweden)

    Md. Abdul Kafi

    2015-07-01

    Full Text Available Development of a rapid, sensitive and cost-effective method for toxicity assessment of commonly used nanoparticles is urgently needed for the sustainable development of nanotechnology. A neural cell with high sensitivity and conductivity has become a potential candidate for a cell chip to investigate toxicity of environmental influences. A neural cell immobilized on a conductive surface has become a potential tool for the assessment of nanotoxicity based on electrochemical methods. The effective electrochemical monitoring largely depends on the adequate attachment of a neural cell on the chip surfaces. Recently, establishment of integrin receptor specific ligand molecules arginine-glycine-aspartic acid (RGD or its several modifications RGD-Multi Armed Peptide terminated with cysteine (RGD-MAP-C, C(RGD4 ensure farm attachment of neural cell on the electrode surfaces either in their two dimensional (dot or three dimensional (rod or pillar like nano-scale arrangement. A three dimensional RGD modified electrode surface has been proven to be more suitable for cell adhesion, proliferation, differentiation as well as electrochemical measurement. This review discusses fabrication as well as electrochemical measurements of neural cell chip with particular emphasis on their use for nanotoxicity assessments sequentially since inception to date. Successful monitoring of quantum dot (QD, graphene oxide (GO and cosmetic compound toxicity using the newly developed neural cell chip were discussed here as a case study. This review recommended that a neural cell chip established on a nanostructured ligand modified conductive surface can be a potential tool for the toxicity assessments of newly developed nanomaterials prior to their use on biology or biomedical technologies.

  16. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    International Nuclear Information System (INIS)

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-01-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO 2 was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  17. The behavior of electrochemical cell resistance

    International Nuclear Information System (INIS)

    Ritley, K.A.; Dull, P.M.; Weber, M.H.; Carroll, M.; Hurst, J.J.; Lynn, K.G.

    1990-01-01

    Knowledge of the basic electrochemical behavior found in typical cold fusion experiments is important to understanding and preventing experimental errors. For a Pd/LiOH(D)/Pt electrochemical cell, the applied cell voltage/current relationship (the effective cell resistance) does not obey Ohm's law directly, but instead exhibits a complicated response to the current, voltage, temperature, electrolyte conductance, and other factors. Failure to properly consider this response can possibly result in errors that could affect the heat balance in calorimetry and temperature measurement experiments. Measurements of this response under varying voltage, temperature, and electrolyte conductivity conditions are reported. A plausible scenario in which the temperature dependence of the effective cell resistance can either exaggerate or ameliorate novel exothermic processes is suggested

  18. Electrochemical oxidation of 4-morpholinoaniline in aqueous solutions: Synthesis of a new trimer of 4-morpholinoaniline

    International Nuclear Information System (INIS)

    Esmaili, Roya; Nematollahi, Davood

    2011-01-01

    Research highlights: → Electrochemical study of 4-morpholinoaniline in various pHs. → Electrochemical trimerization of 4-morpholinoaniline in aqueous solution. → Green method for the synthesis of '4-morpholinoaniline-trimer'. → Potential-pH diagram for 4-morpholinoaniline. - Abstract: Electrochemical oxidation of 4-morpholinoaniline has been studied in various pHs using cyclic voltammetry and controlled-potential coulometry. The electrochemical trimerization of 4-morpholinoaniline is described and its mechanism has been studied in aqueous solution. This method provides a green, reagent-less, and environmentally friendly procedure with high atom economy, for the synthesis of '4-morpholinoaniline-trimer' using a carbon electrode in an undivided cell in good yield and purity.

  19. Low temperature oxidation of hydrocarbons using an electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide

    conversion was a complex function of multiple variables: the microstructure of the backbone, the polarization resistance of the electrodes, both at OCV and under polarization, the electrical and morphological properties of the infiltrated material and the specific reaction conditions like the propene......This study investigated the use of a ceramic porous electrochemical reactor for the deep oxidation of propene. Two electrode composites, La0.85Sr0.15MnO3±d/Ce0.9Gd0.1O1.95 (LSM/CGO) and La0.85Sr0.15FeMnO3/Ce0.9Gd0.1O1.95 (LSF/CGO), were produced in a 5 single cells stacked configuration and used...... prolonged polarization was able to partially counteract the instability of the infiltrated Ce0.9Gd0.1O1.95. This project demonstrated the possibility to enhance the oxidation of propene by polarization in a porous ceramic reactor. The infiltration of different active materials helped to increase...

  20. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  1. Electrochemical oxidation of niclosamide at a glassy carbon ...

    African Journals Online (AJOL)

    Cyclic voltammetry, square-wave voltammetry and controlled potential electrolysis have been used to study the electrochemical oxidation behaviour of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions have been ...

  2. Fractional surface termination of diamond by electrochemical oxidation.

    Science.gov (United States)

    Hoffmann, René; Obloh, Harald; Tokuda, Norio; Yang, Nianjun; Nebel, Christoph E

    2012-01-10

    The crystalline form of sp(3)-hybridized carbon, diamond, offers various electrolyte-stable surface terminations. The H-termination-selective attachment of nitrophenyl diazonium, imaged by AFM, shows that electrochemical oxidation can control the fractional hydrogen/oxygen surface termination of diamond on the nanometer scale. This is of particular interest for all applications relying on interfacial electrochemistry, especially for biointerfaces.

  3. Electrochemical activity of heavy metal oxides in the process of ...

    Indian Academy of Sciences (India)

    Unknown

    2002-02-02

    Feb 2, 2002 ... Electrochemical activity of heavy metal oxides in the process of chloride induced .... decrease of pH value by MeOx, a synergism of acidic and chloride ... inhibitors and their influence on the physical properties of. Portland ...

  4. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  5. Electrochemical performance of Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 cermet anodes with functionally graded structures for intermediate-temperature solid oxide fuel cell fueled with syngas

    Science.gov (United States)

    Miyake, Michihiro; Iwami, Makoto; Takeuchi, Mizue; Nishimoto, Shunsuke; Kameshima, Yoshikazu

    2018-06-01

    The electrochemical performance of layered Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 (GDC) cermet anodes is investigated for intermediate-temperature solid oxide fuel cells (IT-SOFCs) at 600 °C using humidified (3% H2O) model syngas with a molar ratio of H2/CO = 3/2 as the fuel. From the results obtained, the electrochemical performance of the functionally graded multi-layered anodes is found to be superior to the mono-layered anodes. The test cell with a bi-layered anode consisting of 100 mass% Ni0.8Cu0.2/0 mass% GDC (10M/0E) and 70 mass% Ni0.8Cu0.2/30 mass% GDC (7M/3E) exhibits high power density. The test cell with a tri-layered anode consisting of 10M/0E, 7M/3E, and 50 mass% Ni0.8Cu0.2/50 mass% GDC (5M/5E) exhibits an even higher power density, suggesting that 10M/0E and 5M/5E layers contribute to the current collecting part and active part, respectively.

  6. Effects of Salts and Metal Oxides on Electrochemical and Optical Properties of Streptococcus mutans

    Science.gov (United States)

    Kawai, Tsuyoshi; Nagame, Seigo; Kambara, Masaki; Yoshino, Katsumi

    1994-10-01

    The effects of calcium salts and metal oxide powders on electrochemical, optical and biological properties of Streptococcus mutans have been studied as a novel method to determine the strain. Electrochemical signals of Streptococcus mutans show remarkable decrease in the presence of saturated calcium salts such as CaHPO4, Ca3(PO4)2, and Ca5(PO4)3OH depending on the strains of Streptococcus mutans: Ingbritt, NCTC-10449, or GS-5. The number of viable cells also decreases upon addition of these powders. The effects of metal oxides such as ZnO and BaTiO3 on the electrochemical characteristics and photoluminescence of Streptococcus mutans have also been studied.

  7. Electrochemical reduction of actinides oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.

    2011-01-01

    Reactive metals are currently produced from their oxide by multiple steps reduction techniques. A one step route from the oxide to the metal has been suggested for metallic titanium production by electrolysis in high temperature molten chloride salts. In the so-called FFC process, titanium oxide is electrochemically reduced at the cathode, generating O 2- ions, which are converted on a graphite anode into carbon oxide or dioxide. After this process, the spent salt can in principle be reused for several batches which is particularly attractive for a nuclear application in terms of waste minimization. In this work, the electrochemical reduction process of cerium oxide (IV) is studied in CaCl 2 and CaCl 2 -KCl melts to understand the oxide reduction mechanism. Cerium is used as a chemical analogue of actinides. Electrolysis on 10 grams of cerium oxide are made to find optimal conditions for the conversion of actinides oxides into metals. The scale-up to hundred grams of oxide is also discussed. (author) [fr

  8. Electrochemical preparation of new uranium oxide phases

    International Nuclear Information System (INIS)

    Smolenskij, V.V.; Lyalyushkin, N.V.; Bove, A.L.; Komarov, V.K.; Kapshukov, I.I.

    1992-01-01

    Behaviour of uranium ions in oxidation states 3+ and 4+ in molten chlorides of alkali metals in the temperature range of 700-900 degC in the atmosphere of an inert gas was studied by the method of cyclic voltametry. It is shown that as a result of introduction of crystal uranium dioxide into the salt melt formation of uranium oxide ions of the composition UO + and UO 2+ occurs, the ions participating in electrode reactions and bringing about formation of the following uranium oxides on the cathode: UO and, presumably, U 3 O 4 . Oxides UO and U 3 O 4 are thermodynamically unstable at low temperatures and decompose into uranium oxide of the composition UO 2-x , where x varies from 0 to 0.05, and metal uranium

  9. Electrochemical Oxidation by Square-Wave Potential Pulses in the Imitation of Oxidative Drug Metabolism

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Permentier, Hjalmar P.; Bischoff, Rainer; Bruins, Andries P.

    2011-01-01

    Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of

  10. Zinc oxide nanostructures for electrochemical cortisol biosensing

    Science.gov (United States)

    Vabbina, Phani Kiran; Kaushik, Ajeet; Tracy, Kathryn; Bhansali, Shekhar; Pala, Nezih

    2014-05-01

    In this paper, we report on fabrication of a label free, highly sensitive and selective electrochemical cortisol immunosensors using one dimensional (1D) ZnO nanorods (ZnO-NRs) and two dimensional nanoflakes (ZnO-NFs) as immobilizing matrix. The synthesized ZnO nanostructures (NSs) were characterized using scanning electron microscopy (SEM), selective area diffraction (SAED) and photoluminescence spectra (PL) which showed that both ZnO-NRs and ZnO-NFs are single crystalline and oriented in [0001] direction. Anti-cortisol antibody (Anti-Cab) are used as primary capture antibodies to detect cortisol using electrochemical impedance spectroscopy (EIS). The charge transfer resistance increases linearly with increase in cortisol concentration and exhibits a sensitivity of 3.078 KΩ. M-1 for ZnO-NRs and 540 Ω. M -1 for ZnO-NFs. The developed ZnO-NSs based immunosensor is capable of detecting cortisol at 1 pM. The observed sensing parameters are in physiological range. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat to detect cortisol at point-of-care.

  11. Structural, electrical, and electrochemical characterization of Ni--Pr oxide thick films

    Energy Technology Data Exchange (ETDEWEB)

    Mari, C; Scolari, V; Fiori, G; Pizzini, S

    1977-03-01

    Oxides with metallic conductivity could and have been used instead of noble metals as insert electrodes in aqueous solutions as well as electrodes for high temperature fuel cells and electrolyzers and as catalysts for the conversion of exhaust gases from internal combustion engines. The aim of this paper is to report the results of a physico-chemical characterization (structure, morphology, electrochemical behavior) of Ni--Pr oxides which have been proposed as electrode materials for high temperature fuel cells. The electrochemical characterization was carried out in aqueous solutions at room temperature and with solid electrolytes at high temperature. Evidence has been found in the former case for an oxide electrode type of behavior. In the high temperature case, very low overvoltage values have been observed during cathodic oxygen reduction, while the electrode undergoes a reaction with oxygen during anodic oxygen evolution.

  12. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    International Nuclear Information System (INIS)

    Balazs, G.B.; Lewis, P.R.

    1999-01-01

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs

  13. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  14. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  15. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ramimoghadam, Donya; Bagheri, Samira; Hamid, Sharifah Bee Abd

    2014-01-01

    Recently, magnetic iron oxide particles have been emerged as significant nanomaterials due to its extensive range of application in various fields. In this regard, synthesis of iron oxide nanoparticles with desirable properties and high potential applications are greatly demanded. Therefore, investigation on different iron oxide phases and their magnetic properties along with various commonly used synthetic techniques are remarked and thoroughly described in this review. Electrochemical synthesis as a newfound method with unique advantages is elaborated, followed by design approaches and key parameters to control the properties of the iron oxide nanoparticles. Additionally, since the dispersion of iron oxide nanoparticles is as important as its preparation, surface modification issue has been a serious challenge which is comprehensively discussed using different surfactants. Despite the advantages of the electrochemical synthesis method, this technique has been poorly studied and requires deep investigations on effectual parameters such as current density, pH, electrolyte concentration etc. - Highlights: • IONPs are applied in chemical industries, medicine, magnetic storage etc. • Electrochemical synthesis (EC) is convenient, eco-friendly, selective and low-cost. • EC key factors are current density, pH, electrolyte concentration, electrode type. • Organic, inorganic and biological materials can be used to modify IONPs’ surface. • The physicochemical properties of IONPs can be controlled by adding surfactants

  16. Electrochemical Multi-Coloration of Molybdenum Oxide Bronzes

    International Nuclear Information System (INIS)

    Lee, Sangmin; Saji, Viswanathan S.; Lee, Chiwoo

    2013-01-01

    We report a simple electrochemical approach in fabricating multiple colored molybdenum (Mo) oxide bronzes on the surface of a Mo-quartz electrode. A three step electrochemical batch process consisting of linear sweep voltammetry and anodic oxidation followed by cathodic reduction in neutral K 2 SO 4 electrolyte at different end potentials, viz. -0.62, -0.80 and -1.60 V (vs. Hg/HgSO 4 ) yielded red, blue and yellow colored bronzes. The samples produced were analyzed by XRD, EDS, and SIMS. The color variation was suggested to be associated with the cations intercalation into the oxide formed and the simultaneous structural changes that occurred during the cathodic reduction in neutral aqueous medium

  17. Electrochemical Multi-Coloration of Molybdenum Oxide Bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangmin; Saji, Viswanathan S.; Lee, Chiwoo [Korea Univ., Seoul (Korea, Republic of)

    2013-08-15

    We report a simple electrochemical approach in fabricating multiple colored molybdenum (Mo) oxide bronzes on the surface of a Mo-quartz electrode. A three step electrochemical batch process consisting of linear sweep voltammetry and anodic oxidation followed by cathodic reduction in neutral K{sub 2}SO{sub 4} electrolyte at different end potentials, viz. -0.62, -0.80 and -1.60 V (vs. Hg/HgSO{sub 4}) yielded red, blue and yellow colored bronzes. The samples produced were analyzed by XRD, EDS, and SIMS. The color variation was suggested to be associated with the cations intercalation into the oxide formed and the simultaneous structural changes that occurred during the cathodic reduction in neutral aqueous medium.

  18. Electrochemical cell assembled in discharged state

    Science.gov (United States)

    Yao, Neng-Ping; Walsh, William J.

    1976-01-01

    A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

  19. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  20. Electrochemical characterization of infiltrated Bi2V0.9Cu0.1O5.35 cathodes for use in low temperature solid oxide fuel cells

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Søgaard, Martin; Bonanos, Nikolaos

    2012-01-01

    the dense CGO electrolyte and a possible reaction layer between the LSC infiltrate material and the BICUVOX backbone. The poor chemical compatibility of BICUVOX with LSC even by using a low temperature processing for the LSC using the infiltration method greatly undermines the motivation to continue...... the exploration of the combination of these materials for use in solid oxide fuel cells. © 2012 Elsevier B.V. All rights reserved...

  1. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    Science.gov (United States)

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  2. Preparation of the electrochemically formed spinel-lithium manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Katsumi; Wada, Kohei; Kajiki, Yoshiyuki; Yamamoto, Akiko [Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamotokoriyama, Nara 639-1080 (Japan); Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2009-04-01

    Electrochemically formed spinel-lithium manganese oxides were synthesized from manganese hydroxides prepared by a cathodic electrochemical precipitation from various concentrations of manganese nitrate solutions. Two types of manganese hydroxides were formed from diluted and concentrated Mn(NO{sub 3}){sub 2} aqueous solutions. Uniform and equi-sized disk shaped Mn(OH){sub 2} crystals of 0.2-5 {mu}m in diameter were obtained on a Pt substrate after the electrochemical precipitation from lower concentration of ranging from 2 mmol dm{sup -3} to 2 mol dm{sup -3} Mn(NO{sub 3}){sub 2} aq., while the grass blade-like precipitate which is ascribed to manganese hydroxide with 20-80 {mu}m long and 1-5 {mu}m wide were formed from concentrated Mn(NO{sub 3}){sub 2} aq. Both manganese hydroxides gave the electrochemically formed spinel-LiMn{sub 2}O{sub 4} onto a Pt sheet, which is ready for electrochemical measurement, after calcination of the Li incorporated precipitate at 750 C without any additives. While the shape and size of the secondary particle frameworks (aggregates) of the electrochemically formed spinel-LiMn{sub 2}O{sub 4} can be controlled by the electrolysis conditions, the nanostructured primary crystals of 200 nm in diameter were obtained in all cases except that the fiber-like nanostructured spinel-LiMn{sub 2}O{sub 4} crystals with 200 nm in diameter were obtained from concentrated Mn(NO{sub 3}){sub 2} aq. Though these two types of electrochemically formed spinel-LiMn{sub 2}O{sub 4} showed well-shaped CVs even in higher scan rates, it would be suitable for high power density battery applications. These behaviors are assumed to be ascribed to the crystal size and shape of the processed spinel-LiMn{sub 2}O{sub 4}. (author)

  3. Direct Coal Oxidation in Modified Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Gil, Vanesa; Ippolito, Davide

    2015-01-01

    Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon-carbonate s......Hybrid direct carbon fuel cells employ a classical solid oxide fuel cell together with carbon dispersed in a carbonate melt on the anode side. In a European project, the utilization of various coals has been investigated with and without addition of an oxidation catalyst to the carbon......-carbonate slurry or anode layer. The nature of the coal affects both open circuit voltage and power output. Highest OCV and power densities were observed for bituminous coal and by adding manganese oxide or praseodymium-doped ceria to the carbon/carbonate mixture. Comparing the carbon black fueled performance...... bituminous coal (73 mW/cm2). © 2015 ECS - The Electrochemical Society...

  4. Electrochemical studies on vanadium oxides, 9

    International Nuclear Information System (INIS)

    Miura, Takashi; Yamamoto, Masahiro; Takahashi, Hirobumi; Kishi, Tomiya; Nagai, Takashi

    1979-01-01

    The mechanism of the anodic oxidation of various organic compounds-including methanol, formaldehyde, formic acid, ethanol, acetaldehyde and acetic acid-at illuminated vanadium pentoxide (V 2 O 5 ) single crystal electrodes were investigated in aqueous solutions of an H 2 SO 4 -K 2 SO 4 system of about pH 2, in which oxygen evolution from water molecules had previously been confirmed to occur with a current efficiency of about 100%. It was shown that all the organics were oxidized by the so called hole-current doubling mechanism, and that the oxygen evolution reaction, which competed with the above oxidation reaction at the hole-capturing step from the valence band of the electrode, proceeded by the simple hole-capturing mechanism, not followed by an electron injection step into the conduction band. Furthermore, it is considered that chloride ions added to the electrolytes tended to hinder hole-current doubling oxidation owing to their reactivity with the holes at the illuminated V 2 O 5 electrodes. (author)

  5. Electrochemical Impedance Spectroscopy on Industrially-Relevant Solid Oxide Electrolyzer Cell Stacks: A Powerful Tool for in-Situ Investigations of Degradation Mechanisms

    DEFF Research Database (Denmark)

    Zielke, Philipp; Høgh, Jens Valdemar Thorvald; Chen, Ming

    2016-01-01

    that energy services can be covered in a stable and affordable manner. One promising solution is the synthetic fuel production by solid oxide electrolyzers. Electricity can be stored in a power-to-gas process during times of excess electricity production and then further converted to liquid fuels for e.......g. transportation, or at high demands converted back to electricity by either conventional power plants or fuel cells. One of today’s biggest hurdles for a successful commercialization of solid oxide electrolyzers is the stack’s lifetime with current industry targets in the order of five to ten years. To identify......In the current efforts of moving energy production to renewable sources, wind and solar energy are widely considered as the key technologies to cover our growing demands. However, the fluctuating nature of these sources requires a flexible energy system and storage technologies to ensure...

  6. Frequency response of electrochemical cells

    Science.gov (United States)

    Thomas, Daniel L.

    1990-01-01

    The main objective was to examine the feasibility of using frequency response techniques (1) as a tool in destructive physical analysis of batteries, particularly for estimating electrode structural parameters such as specific area, porosity, and tortuosity and (2) as a non-destructive testing technique for obtaining information such as state of charge and acceptability for space flight. The phenomena that contribute to the frequency response of an electrode include: (1) double layer capacitance; (2) Faradaic reaction resistance; (3) mass transfer of Warburg impedance; and (4) ohmic solution resistance. Nickel cadmium cells were investigated in solutions of KOH. A significant amount of data was acquired. Quantitative data analysis, using the developed software, is planned for the future.

  7. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  8. Writing nanopatterns with electrochemical oxidation on redox responsive organometallic multilayers by AFM

    NARCIS (Netherlands)

    Song, Jing; Hempenius, Mark A.; Chung, H.J.; Vancso, Gyula J.

    2015-01-01

    Nanoelectrochemical patterning of redox responsive organometallic poly(ferrocenylsilane) (PFS) multilayers is demonstrated by electrochemical dip pen lithography (EDPN). Local electrochemical oxidation and Joule heating of PFS multilayers from the tip are considered as relevant mechanisms related to

  9. Destruction of commercial pesticides by cerium redox couple mediated electrochemical oxidation process in continuous feed mode

    International Nuclear Information System (INIS)

    Balaji, Subramanian; Chung, Sang Joon; Ryu, Jae-Yong; Moon, Il Shik

    2009-01-01

    Mediated electrochemical oxidation was carried out for the destruction of commercial pesticide formulations using cerium(IV) in nitric acid as the mediator electrolyte solution in a bench scale set up. The mediator oxidant was regenerated in situ using an electrochemical cell. The real application of this sustainable process for toxic organic pollutant destruction lies in its ability for long term continuous operation with continuous organic feeding and oxidant regeneration with feed water removal. In this report we present the results of fully integrated MEO system. The task of operating the continuous feed MEO system for a long time was made possible by continuously removing the feed water using an evaporator set up. The rate of Ce(IV) regeneration in the electrochemical cell and the consumption for the pesticide destruction was matched based on carbon content of the pesticides. It was found that under the optimized experimental conditions for Ce(III) oxidation, organic addition and water removal destruction efficiency of ca. 99% was obtained for all pesticides studied. It was observed that the Ce(IV) concentration was maintained nearly the same throughout the experiment. The stable operation for 6 h proved that the process can be used for real applications and for possible scale up for the destruction of larger volumes of toxic organic wastes.

  10. Characterization of a stirred tank electrochemical cell for water disinfection processes

    International Nuclear Information System (INIS)

    Polcaro, A.M.; Vacca, A.; Mascia, M.; Palmas, S.; Pompei, R.; Laconi, S.

    2007-01-01

    Laboratory experiments were performed to characterize the behaviour of an electrochemical cell equipped with boron-doped diamond anodes and to verify its effectiveness in water disinfection. The hydrodynamic regime was determined when the cell worked either in batch or in continuous mode. Galvanostatic electrolyses of aqueous 1 mM Na 2 SO 4 solutions were performed to investigate on the oxidant production in different experimental conditions. The same solutions contaminated by E. coli, enterococci and coliforms were used as test media to verify the effectiveness of the system in the disinfection process. Experimental results indicated that the major inactivation mechanism of bacteria in the electrochemical cell is a disinfection by electrochemically generated oxidants, however a cooperative effect of superficial reaction has to be taken into account. The great capability of BDD anode to produce reactive oxygen species (ROS) and other oxidizing species during the electrolysis allows to establish a chlorine-free disinfection process

  11. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    OpenAIRE

    Rheaume, Jonathan Michael

    2010-01-01

    Solid state electrochemical sensors that measure nitrogen oxides (NOx) in lean exhaust have been investigated in order to help meet future on-board diagnostic (OBD) regulations for diesel vehicles. This impedancemetric detection technology consists of a planar, single cell sensor design with various sensing electrode materials and yttria-stabilized zirconia (YSZ) as the electrolyte. No reference to ambient air is required. An impedance analysis method yields a signal that is proportional to t...

  12. Preparation and Characterization of a PEDOT-Manganese Oxide Composite, and Its Application to Electrochemical Sensing

    International Nuclear Information System (INIS)

    Arena, A.

    2016-01-01

    Stable and transparent aqueous dispersions of a hybrid organic-inorganic composite, are prepared by electrochemically doping Manganese Oxide into Polyethylendioxythiophene (PEDOT). Films deposited from the PEDOT-MnOx dispersions, are characterized by means of electrical and optical measurements, and by means of Atomic Force Microscopy (AFM) investigations. The PEDOT-MnOx composite is then used to modify one of the gold electrodes of a simple electrochemical cell, in which Nafion is used as a solid electrolyte. The cell is characterized using time domain electrical measurements. It is found that distinguishable redox peaks arise in the current-voltage loops of the cell, as nanomolar amounts of either acetic acid and ammonia, are added to the deionized water into which the cell is immersed. The intensity of such current peaks, is linearly related to the concentration of the analytes, in the nanomolar range of concentrations. (paper)

  13. Electrochemical Oxidation of PAHs in Water from Harbor Sediment Purification

    DEFF Research Database (Denmark)

    Muff, Jens; Søgaard, Erik Gydesen

    2010-01-01

    generated oxidant solution with a free chlorine concentration of 2 gL-1. Both strategies resulted in a successful degradation of 5 PAHs to fulfil the discharge limit on 0.010 µgL-1. The intermixing-with-oxidant approach can also be applied as a method to address the actual sediment matrix....... of the discharge water addressing primarily polycyclic aromatic hydrocarbons (PAHs). PAHs are by-products of incomplete combustion of organic materials with recalcitrant and strong mutagenic/carcinogenic properties, due to their benzene analogue structures. PAHs are hydrophobic compounds and their persistence...... evidence for the importance of the indirect oxidation mechanism in the degradation of the PAHs. The proof-of-concept study was conducted both by a direct treatment approach and an intermixing-with-oxidant approach, where the contaminated water was intermixed in different ratios with an electrochemically...

  14. Electrical, thermal and electrochemical properties of SmBa_1_−_xSr_xCo_2O_5_+_δ cathode materials for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Subardi, Adi; Chen, Ching-Cheng; Cheng, Meng-Hsien; Chang, Wen-Ku; Fu, Yen-Pei

    2016-01-01

    The effects of Sr doping on the Ba-site of SmBaCo_2O_5_+_δ in term of structure characteristics, thermal expansion coefficients (TECs), electrical properties and electrochemical performance have been investigated as cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The TECs of SBSC-based cathodes are calculated from 19.8 − 20.5 × 10"−"6 K"−"1 in the temperature range of 100–800 °C, and the TEC values decrease with increasing Sr content. The oxygen content and the average oxidation state of cobalt increase with increasing Sr content determined by the X-ray photoelectron spectroscopy (XPS) and Thermogravimetry analysis (TGA) results. At a given temperature, the electrical conductivity values are in the order as follows: SBSC55 > SBSC73 > SBSC91. This behavior might be due to the increase in electronic hole. The electrical conductivities of SBSC55 at 600 °C are distributed in the range of 660 S/cm of p(O_2) = 0.01 atm to 1168 S/cm of p(O_2) = 0.21 atm, indicating that the cathode can endure reducing atmosphere. SBSC55 with high electrical conductivity in p(O_2) = 0.01 atm is ascribed to SBSC55 with stable double-perovskite structure at such low oxygen partial pressure. The SBSC55 cathode showed the highest power density of 304 mW/cm"2 at operating temperature of 700 °C. Based on the electrochemical properties, SBSC55 is a potential cathode for IT-SOFCs.

  15. Methods and systems for fuel production in electrochemical cells and reactors

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.

    2018-01-30

    Methods and systems for fuel, chemical, and/or electricity production from electrochemical cells are disclosed. A voltage is applied between an anode and a cathode of an electrochemical cell. The anode includes a metal or metal oxide electrocatalyst. Oxygen is supplied to the cathode, producing oxygen ions. The anode electrocatalyst is at least partially oxidized by the oxygen ions transported through an electrolyte from the cathode to the anode. A feed gas stream is supplied to the anode electrocatalyst, which is converted to a liquid fuel. The anode electrocatalyst is re-oxidized to higher valency oxides, or a mixture of oxide phases, by supplying the oxygen ions to the anode. The re-oxidation by the ions is controlled or regulated by the amount of voltage applied.

  16. Design of an electrochemical cell for in situ XAS studies

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, N. [Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP), Box 6154, CEP 13083-970, Campinas, SP (Brazil); Morais, J. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Goncalves, 9500, Bairro Agronomia, CP 15051, CEP 91501-970, Porto Alegre, RS (Brazil); Alves, M.C.M. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Goncalves, 9500, Bairro Agronomia, CP 15003, CEP 91501-970, Porto Alegre, RS (Brazil)], E-mail: maria@iq.ufrgs.br

    2007-05-15

    In situ X-ray absorption spectroscopy (XAS) studies have been carried out on the electrochemical insertion of Co metal particles in polypyrrole. This has become possible due to the development of an electrochemical cell to allow XAS studies in fluorescence geometry under steady-state conditions. The experimental set-up allows the in situ monitoring of the structural and electronic changes of the selected atom in a matrix. The project of the electrochemical cell is presented with the results obtained at different stages of the electrochemical process. XANES and EXAFS results showed that the initial stage of the cobalt insertion in polypyrrole took place in an ionic form, like [-[(C{sub 4}H{sub 2}N){sub 3}CH{sub 3}(CH{sub 2}){sub 11}OSO{sub 3}{sup -}]{sub 6}Co{sup 2+}] with posterior reduction to a metallic form. The quantitative analysis of the first shell shows that, at -0.60 V, the cobalt atoms are surrounded by 6 ({+-}0.5) atoms located at 2.12 ({+-}0.05) A with a large Debye-Waller factor ({sigma}{sup 2}) value of 0.0368 ({+-}0.0074). At -0.80 V, two distances of R = 1.99 ({+-}0.01) and R = 2.50 ({+-}0.01) A show the coexistence of cobalt in the oxidized and reduced (Co{sup 0}) forms. The Co-Co distance corresponds to that of bulk cobalt. At -1.20 V, the obtained values of N = 12 ({+-}0.5) and R = 2.56 ({+-}0.01) A and a Debye-Waller factor of 0.0176 ({+-}0.0004) suggest the formation of metallic cobalt in a quite disordered form.

  17. Mechanisms of electrochemical reduction and oxidation of nitric oxide

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Beltramo, G.L.; Riet, van B.; Veen, van J.A.R.; Koper, M.T.M.

    2004-01-01

    A summary is given of recent work on the reactivity of nitric oxide on various metal electrodes. The significant differences between the reactivity of adsorbed NO and NO in solution are pointed out, both for the reduction and the oxidation reaction(s). Whereas adsorbed NO can be reduced only to

  18. Surface Characterization and Electrochemical Oxidation of Metal Doped Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmook; Kim, Jandee; Youn, Young-Sang; Kim, Jong-Goo; Ha, Yeong-Keong; Kim, Jong-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Trivalent element in UO{sub 2} matrix makes the oxygen vacancy from loss of oxygen for charge compensation. Tetravalent element alters lattice parameter of UO{sub 2} due to diameter difference between the tetravalent element and replaced U. These structural changes have significant effect on not only relevant fuel performance but also the kinetics of fuel oxidation. Park and Olander explained the stabilization of Ln (III)-doped UO{sub 2} against oxidation based on oxygen potential calculations. In this work, we have been investigated the effect of Gd{sup 3+} and Th{sup 4+} doping on the UO{sub 2} structure with Raman spectroscopy and X-ray diffraction to characterize the surface structure of nuclear fuel material. For Gd doped UO{sub 2}, its electrochemical oxidation behaviors are also investigated. The Gd and Th doped uranium dioxide solid solution pellets with various doping level were investigated by XRD, Raman spectroscopy, SEM, electrochemical experiments to investigate surface structure and electro chemical oxidation behaviors. The lattice parameter evaluated from XRD spectra indicated the formation of solid solutions. Raman spectra showed the existence of the oxygen vacancy. SEM images showed the grain structure on the surface of Gd doped uranium dioxide depending on doping level and oxygen-to-metal ratio.

  19. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León

    2014-12-01

    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  20. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    Science.gov (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  1. Hydrogen storage material, electrochemically active material, electrochemical cell and electronic equipment

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a hydrogen storage material comprising an alloy of magnesium. The invention further relates to an electrochemically active material and an electrochemical cell provided with at least one electrode comprising such a hydrogen storage material. Also, the invention relates to

  2. One step paired electrochemical synthesis of iron and iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ordoukhanian Juliet

    2016-09-01

    Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.

  3. Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

    Energy Technology Data Exchange (ETDEWEB)

    Bonomo, Matteo [Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Marrani, Andrea Giacomo, E-mail: andrea.marrani@uniroma1.it [Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Novelli, Vittoria [Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Awais, Muhammad [Department of Industrial Engineering, “King Abdulaziz” University, Rabigh (Saudi Arabia); Solar Energy Conversion Strategic Research Cluster, University College Dublin (UCD), Belfield, Dublin 4 (Ireland); Dowling, Denis P. [Solar Energy Conversion Strategic Research Cluster, University College Dublin (UCD), Belfield, Dublin 4 (Ireland); School of Mechanical and Materials Engineering, University College Dublin (UCD), Belfield, Dublin 4 (Ireland); Vos, Johannes G. [School of Chemical Sciences, Dublin City University (DCU), Glasnevin, Dublin 9 (Ireland); Dini, Danilo [Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome (Italy); Solar Energy Conversion Strategic Research Cluster, University College Dublin (UCD), Belfield, Dublin 4 (Ireland)

    2017-05-01

    Highlights: • NiO porous thin films were prepared via RDS technique. • NiO electrodes were characterized in a nitrile based electrochemical cell. • NiO electrodes were studied by means of XPS. • The XP spectra excluded the formation of phases other than NiO. • The presence of ClO{sub 4}{sup −} as charge balancing species was evidenced. - Abstract: Nanostructured nickel oxide (NiO) was deposited in the configuration of thin film (thickness, l = 2–6 μm) onto fluorine-doped tin oxide (FTO) substrates via plasma-assisted rapid discharge sintering (RDS). Electrochemical cycling of RDS NiO in 3-methoxy-propionitrile (3-MPN) revealed two characteristic peaks of NiO oxidation which were associated to the surface-confined redox processes Ni(II) → Ni(III) and Ni(III) → Ni(IV). Grazing angle X-ray photoelectron spectroscopy (XPS) was conducted ex-situ on NiO electrodes in both pristine and oxidized states. Oxidized NiO samples for XPS experiments were obtained in the potentiostatic mode through the polarization of NiO at its two characteristic potentials of oxidation. The XPS analysis allowed to ascertain the electronic structure of the nanoporous NiO framework, and verify the adsorption of perchlorate and chloride anions onto NiO surface due to the compensation of the charge stored in oxidized NiO. XPS also revealed that the spectrum within the region characteristic of Ni 2p ionization does not vary considerably with the state of charge of the nickel centres. This finding is in evident contrast to what has been observed for the same system when it undergoes electrochemical oxidation in aqueous electrolyte.

  4. Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

    International Nuclear Information System (INIS)

    Bonomo, Matteo; Marrani, Andrea Giacomo; Novelli, Vittoria; Awais, Muhammad; Dowling, Denis P.; Vos, Johannes G.; Dini, Danilo

    2017-01-01

    Highlights: • NiO porous thin films were prepared via RDS technique. • NiO electrodes were characterized in a nitrile based electrochemical cell. • NiO electrodes were studied by means of XPS. • The XP spectra excluded the formation of phases other than NiO. • The presence of ClO 4 − as charge balancing species was evidenced. - Abstract: Nanostructured nickel oxide (NiO) was deposited in the configuration of thin film (thickness, l = 2–6 μm) onto fluorine-doped tin oxide (FTO) substrates via plasma-assisted rapid discharge sintering (RDS). Electrochemical cycling of RDS NiO in 3-methoxy-propionitrile (3-MPN) revealed two characteristic peaks of NiO oxidation which were associated to the surface-confined redox processes Ni(II) → Ni(III) and Ni(III) → Ni(IV). Grazing angle X-ray photoelectron spectroscopy (XPS) was conducted ex-situ on NiO electrodes in both pristine and oxidized states. Oxidized NiO samples for XPS experiments were obtained in the potentiostatic mode through the polarization of NiO at its two characteristic potentials of oxidation. The XPS analysis allowed to ascertain the electronic structure of the nanoporous NiO framework, and verify the adsorption of perchlorate and chloride anions onto NiO surface due to the compensation of the charge stored in oxidized NiO. XPS also revealed that the spectrum within the region characteristic of Ni 2p ionization does not vary considerably with the state of charge of the nickel centres. This finding is in evident contrast to what has been observed for the same system when it undergoes electrochemical oxidation in aqueous electrolyte.

  5. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro; La Mantia, Fabio; Cui, Yi

    2010-01-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  6. Electrochemical oxidation of methanol on Pt3Co bulk alloy

    Directory of Open Access Journals (Sweden)

    S. LJ. GOJKOVIC

    2003-11-01

    Full Text Available The electrochemical oxidation of methanol was investigated on a Pt3Co bulk alloy in acid solutions. Kinetic parameters such as transfer coefficient, reaction orders with respect to methanol and H+ ions and energy of activation were determined. It was found that the rate of methanol oxidation is significantly diminished by rotation of the electrode. This effect was attributed to the diffusion of formaldehyde and formic acid from the electrode surface. Stirring of the electrolyte also influenced the kinetic parameters of the reaction. It was speculated that the predominant reaction pathway and rate determining step are different in the quiescent and in the stirred electrolyte. Cobalt did not show a promoting effect on the rate of methanol oxidation on the Pt3Co bulk alloy with respect to a pure Pt surface.

  7. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro

    2010-08-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  8. Thermal regeneration of an electrochemical concentration cell

    Science.gov (United States)

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  9. Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Di Blasi, O.; Briguglio, N.; Busacca, C.; Ferraro, M.; Antonucci, V.; Di Blasi, A.

    2015-01-01

    Highlights: • Graphene oxide is synthesized at high temperatures in a reducing environment. • Treated graphene oxide-based electrodes are prepared by the wet impregnation method. • Electrochemical performance is evaluated as a function of the physico-chemical properties. - Abstract: Thermically treated graphene oxides (TT-GOs) are synthesized at different temperatures, 100 °C, 150 °C, 200 °C and 300 °C in a reducing environment (20% H 2 /He) and investigated as electrode materials for vanadium redox flow battery (VRFB) applications. The treated graphene oxide-based electrodes are prepared by the wet impregnation method using carbon felt (CF) as support. The main aim is to achieve a suitable distribution of the dispersed graphene oxides on the CF surface in order to investigate the electrocatalytic activity for the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions in the perspective of a feasible large area electrodes scale-up for battery configuration of practical interest. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are carried out in a three electrode half-cell to characterize the electrochemical properties of the TT-GO-based electrodes. Physico-chemical characterizations are carried out to corroborate the electrochemical results. The TT-GO sample treated at 100 °C (TT-GO-100) shows the highest electrocatalytic activity in terms of peak to peak separation (ΔE = 0.03 V) and current density intensity (∼0.24 A cm −2 at 30 mV/s) both toward the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions. This result is correlated to the presence of hydroxyl (−OH) and carboxyl (−COOH) species that act as active sites. A valid candidate is individuated as effective anode and cathode electrode in the perspective of electrodes scale-up for battery configuration of practical interest

  10. Feasibility of electrochemical oxidation process for treatment of saline wastewater

    Directory of Open Access Journals (Sweden)

    Kavoos Dindarloo

    2015-09-01

    Full Text Available Background: High concentration of salt makes biological treatment impossible due to bacterial plasmolysis. The present research studies the process of electrochemical oxidation efficiency and optimal levels as important factors affecting pH, salt concentration, reaction time and applied voltage. Methods: The sample included graphite electrodes with specifications of 2.5 cm diameter and 15 cm height using a reactor with an optimum capacity of 1 L. Sixty samples were obtained with the aid of the experiments carried out in triplicates for each factor at 5 different levels. The entire experiments were performed based on standard methods for water and waste water treatments. Results: Analysis of variance carried out on effect of pH, salt concentration, reaction time and flow intensity in elimination of chemical oxygen demand (COD showed that they are significant factors affecting this process and reduce COD with a coefficient interval of 95% and test power of 80%. Scheffe test showed that at optimal level, a reaction time of 1 hour, 10 g/L concentration, pH = 9 and 15 V electrical potential difference were obtained. Conclusion: Waste waters containing salt may contribute to the electro-oxidation process due to its cations and anions. Therefore, the process of electrochemical oxidation with graphite electrodes could be a proper strategy for the treatment of saline wastewater where biological treatment is not possible.

  11. Fuel Cell/Electrochemical Cell Voltage Monitor

    Science.gov (United States)

    Vasquez, Arturo

    2012-01-01

    A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.

  12. Manganese oxide/graphene oxide composites for high-energyaqueous asymmetric electrochemical capacitors

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-11-01

    Full Text Available A high-energy aqueous asymmetric electrochemical capacitor was developed using manganese diox-ide ( -MnO2)/graphene oxide (GO) nanocomposites. The nanostructured -MnO2was prepared frommicron-sized commercial electrolytic manganese dioxide (EMD) via...

  13. Electrochemical cell and negative electrode therefor

    Science.gov (United States)

    Kaun, Thomas D.

    1982-01-01

    A secondary electrochemical cell with the positive and negative electrodes separated by a molten salt electrolyte with the negative electrode comprising a particulate mixture of lithium-aluminum alloy and electrolyte and an additive selected from graphitized carbon, Raney iron or mixtures thereof. The lithium-aluminum alloy is present in the range of from about 45 to about 80 percent by volume of the negative electrode, and the electrolyte is present in an amount not less than about 10 percent by volume of the negative electrode. The additive of graphitized carbon is present in the range of from about 1 to about 10 percent by volume of the negative electrode, and the Raney iron additive is present in the range of from about 3 to about 10 percent by volume of the negative electrode.

  14. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    Science.gov (United States)

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  15. Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide.

    Science.gov (United States)

    Cao, Jianyun; He, Pei; Mohammed, Mahdi A; Zhao, Xin; Young, Robert J; Derby, Brian; Kinloch, Ian A; Dryfe, Robert A W

    2017-12-06

    Conventional chemical oxidation routes for the production of graphene oxide (GO), such as the Hummers' method, suffer from environmental and safety issues due to their use of hazardous and explosive chemicals. These issues are addressed by electrochemical oxidation methods, but such approaches typically have a low yield due to inhomogeneous oxidation. Herein we report a two-step electrochemical intercalation and oxidation approach to produce GO on the large laboratory scale (tens of grams) comprising (1) forming a stage 1 graphite intercalation compound (GIC) in concentrated sulfuric acid and (2) oxidizing and exfoliating the stage 1 GIC in an aqueous solution of 0.1 M ammonium sulfate. This two-step approach leads to GO with a high yield (>70 wt %), good quality (>90%, monolayer), and reasonable oxygen content (17.7 at. %). Moreover, the as-produced GO can be subsequently deeply reduced (3.2 at. % oxygen; C/O ratio 30.2) to yield highly conductive (54 600 S m -1 ) reduced GO. Electrochemical capacitors based on the reduced GO showed an ultrahigh rate capability of up to 10 V s -1 due to this high conductivity.

  16. Electrochemical Oxidation of Cyanide Using Platinized Ti Electrodes

    Directory of Open Access Journals (Sweden)

    Aušra VALIŪNIENĖ

    2013-12-01

    Full Text Available The cyanide-containing effluents are dangerous ecological hazards and must be treated before discharging into the environment. Anodic oxidation is one of the best ways to degrade cyanides. Pt anodes as the most efficient material for the cyanide electrochemical degradation are widely used. However, these electrodes are too expensive for industrial purposes. In this work Ti electrodes covered with nano-sized Pt particle layer were prepared and used for the anodic oxidation of cyanide ions. Surface images of Ti electrodes and Ti electrodes covered with different thickness layer of Pt were compared and characterized by the atomic force microscopy (AFM. The products formed in the solution during the CN- ions electrooxidation were examined by the Raman spectroscopy. An electrochemical Fast Fourier transformation (FFT impedance spectroscopy was used to estimate the parameters that reflect real surface roughness of Pt-modified Ti electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2514

  17. Electrochemical Characterization of TiO 2 Blocking Layers for Dye-Sensitized Solar Cells

    KAUST Repository

    Kavan, Ladislav; Té treault, Nicolas; Moehl, Thomas; Grä tzel, Michael

    2014-01-01

    Thin compact layers of TiO2 are grown by thermal oxidation of Ti, by spray pyrolysis, by electrochemical deposition, and by atomic layer deposition. These layers are used in dye-sensitized solar cells to prevent recombination of electrons from

  18. Estimation of current constriction losses via 3D tomography reconstructions in electrochemical devices: a case study of a solid oxide cell electrode/electrolyte interface

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jørgensen, Peter Stanley

    2017-01-01

    In the present study, the methodology for accurate estimations of the current constriction resistance in solid state electrochemical devices via 3D tomography reconstructions is developed. The methodology is used to determine the current constriction resistances at the Ni:YSZ anode/YSZ electrolyte...... of the electrolyte thickness. The obtained results on current constriction resistances from numerical calculations on a 3D reconstruction of a Ni:YSZ anode/YSZ electrolyte assembly is compared with existing models with analytical expressions. The comparison shows, that the assumptions of existing models are by far...

  19. Preparation and characterization of Pt-Sn/C and Pt-Ir/C catalysts for the electrochemical oxidation of ethanol in polymer electrolyte membrane fuel cell

    CSIR Research Space (South Africa)

    Masombuka, T

    2007-11-01

    Full Text Available oxidation is still low. Development of new active catalysts able to break C-C bond and complete oxidation of ethanol into CO 2 is of fundamental importance. Generally, a third metal is added to the best binary Pt-Sn catalyst to improve CO tolerance...

  20. Crystal size effect on the electrochemical oxidation of formate on carbon-supported palladium nanoparticles

    International Nuclear Information System (INIS)

    Santos, Rayana Marcela Izidoro da Silva; Nakazato, Roberto Zenhei; Ciapina, Eduardo Goncalves

    2016-01-01

    Full text: The electrochemical oxidation of formate in alkaline electrolytes has emerged an a promising anodic reaction in the Direct Formate Fuel Cells[1]. Although palladium is considered to be one of the best electro catalyst for the oxidation of formate, important structure-activity relationships are still not understood. In the present work, we investigated the effect of the size of the palladium crystals in the electrochemical oxidation of formate in 0.1 mol L -1 KOH. Carbon-supported palladium nanoparticles (Pd/C) were prepared by chemical reduction of palladium (II) chloride in aqueous media by sodium borohydride in the presence of varying quantities of sodium citrate in the reaction media to obtain metallic crystals with distinct sizes. Analysis of the X-ray diffraction profile revealed the presence of palladium crystals in the range of 6 to 19 nm. Potentiostatic oxidation of formate on the distinct Pd/C samples revealed a volcano-like dependence of the specific activity with the size of the palladium crystals, presenting the highest activity for crystals around 7.5 nm. Reference: [1] A.M. Bartrom, J.L. Haan, The direct formate fuel cell with an alkaline anion exchange membrane, J. Power Sources. 214 (2012) 68-74. (author)

  1. MEMS-based dynamic cell-to-cell culture platforms using electrochemical surface modifications

    International Nuclear Information System (INIS)

    Chang, Jiyoung; Lin, Liwei; Yoon, Sang-Hee; Mofrad, Mohammad R K

    2011-01-01

    MEMS-based biological platforms with the capability of both spatial placements and time releases of living cells for cell-to-cell culture experiments have been designed and demonstrated utilizing electrochemical surface modification effects. The spatial placement is accomplished by electrochemical surface modification of substrate surfaces to be either adhesive or non-adhesive for living cells. The time control is achieved by the electrical activation of the selective indium tin oxide co-culture electrode to allow the migration of living cells onto the electrode to start the cell-to-cell culture studies. Prototype devices have a three-electrode design with an electrode size of 50 × 50 µm 2 and the separation gaps of 2 µm between them. An electrical voltage of −1.5 V has been used to activate the electrodes independently and sequentially to demonstrate the dynamic cell-to-cell culture experiments of NIH 3T3 fibroblast and Madin Darby canine kidney cells. As such, this MEMS platform could be a basic yet versatile tool to characterize transient cell-to-cell interactions

  2. Electrochemical treatment of an oxide material, application to superconductors, and obtained superconductors

    International Nuclear Information System (INIS)

    Grenier, J.C.; Pouchard, M.; Wattiaux, A.

    1991-01-01

    The present invention describes the electrochemical treatment of a superconductor oxide so as to modify its stoichiometry. These materials comprise in their anionic lattice oxygenated and hydrogenated species. These treated materials are prepared by an electrochemical process in which the oxide is an electrode in a liquid electrolysis. 3 refs., 3 figs

  3. Metallic oxide reduction in molten chlorides: electrochemical solvent regeneration

    International Nuclear Information System (INIS)

    Martin, A.

    2005-11-01

    We consider the reaction MeO 2 + 2 Ca → Me + 2 CaO in CaCl 2 at 850 C. We want to re-use the molten media, which is a CaO-CaCl 2 melt at the end of the reaction. For that we want to de-oxidize it. When we electrolyse CaO we obtain Ca and O 2 ; it presents three difficult points that we want to solve: (1) it is difficult to oxidize O 2 - without oxidizing Cl - because their oxidation potential are very closed, (2) the chemical or electrochemical anodic corrosion, (3) the anodically produced gas dissolution in the mell One way of avoiding chlorine gas evolution is to prevent chloride ions from reaching the anode, for example using a selective membrane. Furthermore, the best prevention of the anodically produced gas dissolution in the melt can be done with a compartment, physically separating the anode from the rest of the reactional media. Thus in this work we have used an yttria stabilized zirconia membrane as a selective membrane for the deoxidation of a CaO-CaCl 2 melt at 850 C. (author)

  4. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, Yusuf [Anadolu Universitesi, Cevre Sor. Uyg. ve Aras. Merkezi, Eskisehir (Turkey); Koparal, A. Savas [Anadolu Universitesi, Cevre Sor. Uyg. ve Aras. Merkezi, Eskisehir (Turkey)]. E-mail: askopara@anadolu.edu.tr

    2006-08-21

    In this study, electrochemical oxidation of phenol was carried out in a parallel plate reactor using ruthenium mixed metal oxide electrode. The effects of initial pH, temperature, supporting electrolyte concentration, current density, flow rate and initial phenol concentration on the removal efficiency were investigated. Model wastewater prepared with distilled water and phenol, was recirculated to the electrochemical reactor by a peristaltic pump. Sodium sulfate was used as supporting electrolyte. The Microtox'' (registered) bioassay was also used to measure the toxicity of the model wastewater during the study. As a result of the study, removal efficiency of 99.7% and 88.9% were achieved for the initial phenol concentration of 200 mg/L and chemical oxygen demand (COD) of 480 mg/L, respectively. In the same study, specific energy consumption of 1.88 kWh/g phenol removed and, mass transfer coefficient of 8.62 x 10{sup -6} m/s were reached at the current density of 15 mA/cm{sup 2}. Electrochemical oxygen demand (EOD), which can be defined as the amount of electrochemically formed oxygen used for the oxidation of organic pollutants, was 2.13 g O{sub 2}/g phenol. Electrochemical oxidation of petroleum refinery wastewater was also studied at the optimum experimental conditions obtained. Phenol removal of 94.5% and COD removal of 70.1% were reached at the current density of 20 mA/cm{sup 2} for the petroleum refinery wastewater.

  5. Electrochemical Behaviour of a PPy(DBS)/Polyacrylonitrile (PAN):LITF:EC:PC/ Li Cell

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    The electrochemical behaviour of Li rechargeable cells with Polypyrrole (PPy) as the cathode material was investigated using cyclic voltammetry. The PPy used was doped with the large surfactant anion dodecyl benzenesulphonate (DBS-). The cells were constructed with PAN:LiTF:EC:PC gel electrolyte...... with Li as anode. The results indicate that during the first reduction, cations are inserted into the PPy film forming LiDBS neutral salt. During the next oxidation/reduction cycles, the mechanism then switches to anion movement. Cyclic voltammetry studies also verified that complete electrochemical...

  6. Study for electrochemical behavior of uranium oxide in a molten LiCl-Li2O system

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Jung, Ki Jung; Park, Seong Won

    2005-01-01

    Interest in the electrolytic reduction of uranium oxide is increasing in the treatment of spent fuel oxides. With complicated and expensive procedures many reactive metals can be prepared in a pure metal form, the electrochemical reduction of a metal oxide has been recently proposed in metallurgy. The electrochemical reduction process is simple and rapid when compared to the conventional processes. The process can reduce the production costs and be applicable to a wide range of metal oxides. Chen et al. proposed the direct electrochemical reduction of titanium dioxide to titanium in a molten calcium chloride. Argonne National Laboratory (ANL) has reported the experimental results of an electrochemical reduction of the uranium oxide fuel in a bench-scale apparatus with a cyclic voltammetry, and has designed high-capacity reduction (HCR) cells and conducted three kg-scale UO 2 reduction runs. Gourishankar et al. classified the mechanisms of the electrolytic reduction of the metal oxides in a LiCl-Li 2 O molten salt system into two types; the simultaneous reduction and the direct electrochemical reduction. The uranium oxide in LiCl-Li 2 O molten salt was converted to uranium metal according to two mechanisms. Korea Atomic Energy Research Institute (KAERI) has developed the Advanced Spent Fuel Conditioning Process (ACP) to be an innovative technology in handling the PWR spent fuel. As part of ACP, the electrolytic reduction process (ER process) is the electrochemical reduction process of uranium oxide to uranium metal in molten salt. The ER process has advantages in a technical stability, an economic potential and a good proliferation resistance. KAERI has reported on the good experimental results of an electrochemical reduction of the uranium oxide in a 20 kg HM/batch lab-scale. In this work, cyclic voltammograms for a LiCl-3 wt% Li 2 O system and an U 3 O 8 -LiCl-3 wt% Li 2 O system with the integrated cathode assembly have been obtained. From the cyclic

  7. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    International Nuclear Information System (INIS)

    Garagounis, Ioannis; Kyriakou, Vasileios; Skodra, Aglaia; Vasileiou, Eirini; Stoukides, Michael

    2014-01-01

    Developed in the early 1900s, the “Haber–Bosch” synthesis is the dominant NH 3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13 × 10 -8 mol s -1 cm -2 , obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe 0.7 Cu 0.1 Ni 0.2 O 3 , cathode. At high temperatures (>500°C), the maximum rate was 9.5 × 10 −9 mol s -1 cm -2 using Ce 0.8 Y 0.2 O 2-δ –[Ca 3 (PO 4 ) 2 –K 3 PO 4 ] as electrolyte and Ag–Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs. the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level are discussed.

  8. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Energy Technology Data Exchange (ETDEWEB)

    Garagounis, Ioannis; Kyriakou, Vasileios [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece); Skodra, Aglaia [Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece); Vasileiou, Eirini; Stoukides, Michael, E-mail: stoukidi@cperi.certh.gr [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece)

    2014-01-17

    Developed in the early 1900s, the “Haber–Bosch” synthesis is the dominant NH{sub 3} synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13 × 10{sup -8} mol s{sup -1} cm{sup -2}, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe{sub 0.7}Cu{sub 0.1}Ni{sub 0.2}O{sub 3}, cathode. At high temperatures (>500°C), the maximum rate was 9.5 × 10{sup −9} mol s{sup -1} cm{sup -2} using Ce{sub 0.8}Y{sub 0.2}O{sub 2-δ}–[Ca{sub 3}(PO{sub 4}){sub 2}–K{sub 3}PO{sub 4}] as electrolyte and Ag–Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs. the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level are discussed.

  9. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Directory of Open Access Journals (Sweden)

    Ioannis eGaragounis

    2014-01-01

    Full Text Available Developed in the early 1900's, the Haber-Bosch synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS, more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13×10−8 mol s−1 cm−2, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe0.7Cu0.1Ni0.2O3, cathode. At high temperatures (>500oC the maximum rate was 9.5*10-9 mol s−1 cm−2 using Ce0.8Y0.2O2-δ -[Ca3(PO42 -K3PO4] as electrolyte and Ag-Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level, are discussed.

  10. Cell-surface engineering by a conjugation-and-release approach based on the formation and cleavage of oxime linkages upon mild electrochemical oxidation and reduction.

    Science.gov (United States)

    Pulsipher, Abigail; Dutta, Debjit; Luo, Wei; Yousaf, Muhammad N

    2014-09-01

    We report a strategy to rewire cell surfaces for the dynamic control of ligand composition on cell membranes and the modulation of cell-cell interactions to generate three-dimensional (3D) tissue structures applied to stem-cell differentiation, cell-surface tailoring, and tissue engineering. We tailored cell surfaces with bioorthogonal chemical groups on the basis of a liposome-fusion and -delivery method to create dynamic, electroactive, and switchable cell-tissue assemblies through chemistry involving chemoselective conjugation and release. Each step to modify the cell surface: activation, conjugation, release, and regeneration, can be monitored and modulated by noninvasive, label-free analytical techniques. We demonstrate the utility of this methodology by the conjugation and release of small molecules to and from cell surfaces and by the generation of 3D coculture spheroids and multilayered cell tissues that can be programmed to undergo assembly and disassembly on demand. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Research Update: Nanoscale electrochemical transistors in correlated oxides

    Directory of Open Access Journals (Sweden)

    Teruo Kanki

    2017-04-01

    Full Text Available Large reversible changes of the electronic transport properties of solid-state oxide materials induced by electrochemical fields have received much attention as a new research avenue in iontronics. In this research update, dramatic transport changes in vanadium dioxide (VO2 nanowires were demonstrated by electric field-induced hydrogenation at room temperature through the nanogaps separated by humid air in a field-effect transistor structure with planar-type gates. This unique structure allowed us to investigate hydrogen intercalation and diffusion behavior in VO2 channels with respect to both time and space. Our results will contribute to further strategic researches to examine fundamental chemical and physical properties of devices and develop iontronic applications, as well as offering new directions to explore emerging functions for sensing, energy, and neuromorphologic devices combining ionic and electronic behaviors in solid-state materials.

  12. Obtention of superconductivity by room temperature electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Casan-Pastor, N.; Fuertes, A.; Gomez-Romero, P.

    1993-01-01

    The undoped oxide La2CuO4 has required traditionally synthesis under high pressure of oxygen (and high temperatures) to incorporate excess oxygen into its structure and become a superconductor. The electrochemical oxidation of this same oxide at room temperature and pressure constitutes a striking example of the use of an alternative driving force for the oxidation of oxides to become superconductors. Electrochemical treatment of oxides has been frequently applied to their reduction with cationic intercalation. Oxidations of these solid with the concomitant intercalation of anions into their lattice shows also great promises. The paper reports recent results in the electrochemical oxidation of La2CuO4 and other cuprates, showing also the important role of post-oxidation thermal treatments on the properties of the resulting solids

  13. Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Kolchina, L.M.; Lyskov, N.V.; Petukhov, D.I.; Mazo, G.N.

    2014-01-01

    Highlights: • PCO–GDC composites are studied as a cathode for SOFCs. • The rate-determined step of the overall electrode process vs. temperature was defined. • PCO–GDC33 composite gave the lowest area surface resistance of 0.41 Ω cm 2 at 700 °C. • PCO–GDC33 is preferred to use as a cathode material for IT-SOFCs. - Abstract: Pr 2 CuO 4 –Ce 0.9 Gd 0.1 O 1.95 (PCO–GDC) composites screen printed on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte were considered as a cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs). Phase composition, microstructure and electrochemical properties were investigated by X-ray powder diffraction (XRD), scanning electron microscopy and AC impedance spectroscopy, respectively. The oxygen reduction on porous PCO–GDC electrode applied on CGO electrolyte was studied in a symmetrical cell configuration by AC impedance spectroscopy at OCV conditions at 670–730 °C and p O 2 =10 -2 -0.21atm. The charge transfer process and the dissociation of adsorbed molecular oxygen were found to be rate-determining steps of the oxygen reduction reaction. Results reveal that both GDC addition and electrode morphology have strong influence on area specific resistance (ASR) of the electrode/electrolyte interface. The lowest ASR value of 0.41 Ω cm 2 was achieved for the composition containing 33 wt.% GDC at 700 °S in air. The data obtained allow to consider the PCO–GDC33 composite as a promising cathode material for IT-SOFCs

  14. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  15. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan [School of Environment, Northeast Normal University, Changchun 130117 (China); Yuan, Xing, E-mail: yuanx@nenu.edu.cn [School of Environment, Northeast Normal University, Changchun 130117 (China); Li, Baikun, E-mail: baikun@engr.uconn.edu [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2017-02-15

    Highlights: • Graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed. • The cytotoxicity detection vessel was miniaturized to the 96-well plate. • The electrochemical behavior of HepG2 cell was investigated for the first time. • The mixture signal of adenine and hypoxanthine was separated successfully. • The biosensor was used to assess the toxicity of heavy metals and phenols. - Abstract: The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24 h IC{sub 50} values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology.

  16. Mediated electrochemical oxidation treatment for Rocky Flats combustible low-level mixed waste. Final report, FY 1993 and 1994

    International Nuclear Information System (INIS)

    Chiba, Z.; Lewis, P.R.; Murguia, L.C.

    1994-09-01

    Mediated Electrochemical Oxidation (MEO) is an aqueous process which destroys hazardous organics by oxidizing a mediator at the anode of an electrochemical cell; the mediator in turn oxidizes the organics within the bulk of the electrolyte. With this process organics can be nearly completely destroyed, that is, the carbon and hydrogen present in the hydrocarbon are almost entirely mineralized to carbon dioxide and water. The MEO process is also capable of dissolving radioactive materials, including difficult-to-dissolve compounds such as plutonium oxide. Hence, this process can treat mixed wastes, by destroying the hazardous organic components of the waste, and dissolving the radioactive components. The radioactive material can be recovered if desired, or disposed of as non-mixed radioactive waste. The process is inherently safe, since the hazardous and radioactive materials are completely contained in the aqueous phase, and the system operates at low temperatures (below 80 degree C) and at ambient pressures

  17. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants.

    Science.gov (United States)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan; Yuan, Xing; Li, Baikun

    2017-02-15

    The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24h IC 50 values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Electrochemical oxidation of butein at glassy carbon electrodes.

    Science.gov (United States)

    Tesio, Alvaro Yamil; Robledo, Sebastián Noel; Fernández, Héctor; Zon, María Alicia

    2013-06-01

    The electrochemical oxidation of flavonoid butein is studied at glassy carbon electrodes in phosphate and citrate buffer solutions of different pH values, and 1M perchloric acid aqueous solutions by cyclic and square wave voltammetries. The oxidation peak corresponds to the 2e(-), 2H(+) oxidation of the 3,4-dihydroxy group in B ring of butein, given the corresponding quinone species. The overall electrode process shows a quasi-reversible behavior and an adsorption/diffusion mixed control at high butein bulk concentrations. At low butein concentrations, the electrode process shows mainly an adsorption control. Butein surface concentration values were obtained from the charge associated with the adsorbed butein oxidation peaks, which are in agreement with those values expected for the formation of a monolayer of adsorbate in the concentration range from 1 to 5μM. Square wave voltammetry was used to perform a full thermodynamic and kinetics characterization of the butein surface redox couple. Therefore, from the combination of the "quasi-reversible maximum" and the "splitting of the net square wave voltammetric peak" methods, values of (0.386±0.003) V, (0.46±0.04), and 2.7×10(2)s(-1) were calculated for the formal potential, the anodic transfer coefficient, and the formal rate constant, respectively, of the butein overall surface redox process in pH4.00 citrate buffer solutions. These results will be then used to study the interaction of butein, and other flavonoids with the deoxyribonucleic acid, in order to better understand the potential therapeutic applications of these compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    Science.gov (United States)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through π-π interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  20. The use of electrochemical impedance spectroscopy (EIS) in the evaluation of the electrochemical properties of a microbial fuel cell.

    Science.gov (United States)

    Manohar, Aswin K; Bretschger, Orianna; Nealson, Kenneth H; Mansfeld, Florian

    2008-04-01

    Electrochemical impedance spectroscopy (EIS) has been used to determine several electrochemical properties of the anode and cathode of a mediator-less microbial fuel cell (MFC) under different operational conditions. These operational conditions included a system with and without the bacterial catalyst and EIS measurements at the open-circuit potential of the anode and the cathode or at an applied cell voltage. In all cases the impedance spectra followed a simple one-time-constant model (OTCM) in which the solution resistance is in series with a parallel combination of the polarization resistance and the electrode capacitance. Analysis of the impedance spectra showed that addition of Shewanella oneidensis MR-1 to a solution of buffer and lactate greatly increased the rate of the lactate oxidation at the anode under open-circuit conditions. The large decrease of open-circuit potential of the anode increased the cell voltage of the MFC and its power output. Measurements of impedance spectra for the MFC at different cell voltages resulted in determining the internal resistance (R(int)) of the MFC and it was found that R(int) is a function of cell voltage. Additionally, R(int) was equal to R(ext) at the cell voltage corresponding to maximum power, where R(ext) is the external resistance that must be applied across the circuit to obtain the maximum power output.

  1. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    Science.gov (United States)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  2. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  3. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique

    International Nuclear Information System (INIS)

    He Zeqiang; Li Xinhai; Xiong Lizhi; Wu Xianming; Xiao Zhuobing; Ma Mingyou

    2005-01-01

    Novel rheological technique was developed to synthesize tin oxide-based composites. The microstructure, morphology, and electrochemical performance of the materials were investigated by X-ray diffraction, scanning electron microscopy and electrochemical methods. The particles of tin oxide-based materials form an inactive matrix. The average size of the particles is about 150 nm. The material delivers a charge capacity of more than 570 mAh g -1 . The capacity loss per cycle is about 0.15% after being cycled 30 times. The good electrochemical performance indicates that this kind of tin oxide-based material is promising anode for lithium-ion battery

  4. Electrochemical catalytic activities of nanoporous palladium rods for methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2010-10-01

    A novel electrocatalyst, nanoporous palladium (npPd) rods can be facilely fabricated by dealloying a binary Al{sub 80}Pd{sub 20} alloy in a 5 wt.% HCl aqueous solution under free corrosion conditions. The microstructure of these nanoporous palladium rods has been characterized using scanning electron microscopy and transmission electron microscopy. The results show that each Pd rod is several microns in length and several hundred nanometers in diameter. Moreover, all the rods exhibit a typical three-dimensional bicontinuous interpenetrating ligament-channel structure with length scale of 15-20 nm. The electrochemical experiments demonstrate that these peculiar nanoporous palladium rods (mixed with Vulcan XC-72 carbon powders to form a npPd/C catalyst) reveal a superior electrocatalytic performance toward methanol oxidation in the alkaline media. In addition, the electrocatalytic activity obviously depends on the metal loading on the electrode and will reach to the highest level (223.52 mA mg{sup -1}) when applying 0.4 mg cm{sup -2} metal loading on the electrode. Moreover, a competing adsorption mechanism should exist when performing methanol oxidation on the surface of npPd rods, and the electro-oxidation reaction is a diffusion-controlled electrochemical process. Due to the advantages of simplicity and high efficiency in the mass production, the npPd rods can act as a promising candidate for the anode catalyst for direct methanol fuel cells (DMFCs). (author)

  5. Photo-assisted electrochemical oxidation of the urea onto TiO2-nanotubes modified by hematite

    Directory of Open Access Journals (Sweden)

    Waleed M. Omymen

    2017-12-01

    Full Text Available The electrochemical oxidation of the urea in near neutral pH is investigated on platinum electrode. It is shown that oxidation reaction is practically inhibited up to the potentials of ∼0.9 V. The same reaction is investigated onto electrochemically obtained titanium dioxide nanotubes modified by hematite using facile, low-cost successive ion layer adsorption and reaction (SILAR method. It is shown that such system possesses electrocatalytic activity at very low potentials, and activity can be further improved by the illumination of the electrode in the photo-assisted reaction. The possible application of the photoactive anode is considered in the application of urea based water electrolysis and urea based fuel cell. Keywords: Photoelectrochemical cell, Water electrolysis, Fuel cell, SILAR

  6. Electrochemical synthesis of magnetic nanostructures using anodic aluminum oxide templates

    Science.gov (United States)

    Gong, Jie

    In this dissertation, template electrodeposition was employed to fabricate high quality magnetic nanostructures suited for the reliable investigation of novel spintronics phenomena such as CIMS, BMR, and CPP-GMR. Several critical aspects/steps relating to the synthesis process were investigated in this work. In order to obtain high quality magnetic nanostructures, free-standing and Si-supported anodic aluminum oxide templates with closely controlled pore diameters, lengths, as well as constriction sizes, were synthesized by anodization, followed by appropriate post-processing. The pore opening size on the barrier layer can be controlled down to 5 nm by ion beam etching. After optimization of the compositional, structural, and magnetic properties of homogeneous FeCoNiCu layers electrodeposited under different conditions, the pulsed deposition process of FeCoNI/Cu multilayers on n-Si was studied. The influence of Cu deposition potential and Fe2+ concentration on microstructure, chemical and electrochemical properties, magnetic properties, and hence magnetotransport properties were assessed. The dissolution of the FM layer during potential transition was minimized in order to control interface sharpness. Combined with the systematic sublayer thickness and FM layer composition optimization, unprecedented GMR sensitivity of 0.11%/Oe at 5-15 Oe was obtained. Growth of multilayer nanowires was performed, and contact to a single wire was attempted using an electrochemical technique. We succeeded in addressing a small number of nanowires and measured a CPP-GMR of 17%. Template electrodeposition thus provides a promising way to repeatably fabricate prototypes for spin dependent transport studies.

  7. Performance Evaluation of Solid Oxide Fuel Cell by Computer ...

    African Journals Online (AJOL)

    The search for sustainable energy source that can compete with the existing one led to the discovery and acceptance of fuel cell technologies as a perfect replacement for fossil fuel. The ability of Solid Oxide Fuel Cells (SOFC) to capture the heat generation during the process of energy generation from electrochemical ...

  8. Cell structure for electrochemical devices and method of making same

    Science.gov (United States)

    Kaun, Thomas D.

    1993-01-01

    An electrochemical device comprises a plurality of cells, each cell including a laminate cell membrane, made up of a separator/electrolyte means interposed between alternating positive and negative electrodes, each type of electrode being respectively in common contact to a single current collector.

  9. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  10. Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications

    International Nuclear Information System (INIS)

    Kim, Dae Kyom; Hwang, Minsik; Ko, Dongjin; Kang, Jeongmin; Seong, Kwang-dong; Piao, Yuanzhe

    2017-01-01

    Graphical abstract: The paper reported the Ni-Co oxide/electrochemically exfoliated graphene nanocomposites with 3D porous nano-architectures (NC-EEG) using a simple low temperature solution method combined with a thermal annealing treatment. 3D porous architectures provide large surface areas and shorten electron diffusion pathways for high performance asymmetric supercapacitors. Display Omitted -- Highlights: •A simple low temperature solution method was used for preparing NC-EEG. •Graphene sheets were obtained by electrochemically exfoliation process. •A high capacity of NC-EEG in a three-electrode system, as high as 649 C g −1 , was recorded. •Asymmetric supercapacitor based on NC-EEG exhibited excellent energy density and power density. -- Abstract: Ni-Co oxide, one of the binary metal oxides, has many advantages for use in high-performance supercapacitor electrode materials due to its relatively high electronic conductivity and improved electrochemical performance. In this work, Ni-Co oxide/electrochemically exfoliated graphene nanocomposites (NC-EEG) are successfully synthesized using a simple low temperature solution method combined with a thermal annealing treatment. Graphene sheets are directly obtained by an electrochemical exfoliation process with graphite foil, which is very simple, environmentally friendly, and has a relatively short reaction time. This electrochemically exfoliated graphene (EEG) can improve the electrical conductivity of the Ni-Co oxide nanostructures. The as-prepared NC-EEG nanocomposites have 3D porous architectures that can provide large surface areas and shorten electron diffusion pathways. Electrochemical properties were performed by cyclic voltammetry and galvanostatic charge/discharge in a 6 M KOH electrolyte. The NC-EEG nanocomposites exhibited a high capacity value of 649 C g −1 at a current density of 1.0 A g −1 . The asymmetric supercapacitors, manufactured on the basis of NC-EEG nanocomposites as a positive

  11. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  12. Electrochemical processes in macro and microfluidic cells for the abatement of chloroacetic acid from water

    International Nuclear Information System (INIS)

    Scialdone, O.; Corrado, E.; Galia, A.; Sirés, I.

    2014-01-01

    Highlights: • The electrochemical abatement of chloroacetic acid in water was studied. • The performance of both macro and microfluidic reactors was examined. • Cathodic reduction and anodic oxidation was studied in detail. • Mediated oxidation by electro-Fenton and active chlorine was carried out. • Anodic oxidation at BDD gave better performances. • Microfluidic reactors gave better performances compared to conventional cells. - Abstract: The remediation of solutions contaminated with monochloroacetic acid (CAA), which is one of the most resistant haloacetic acids (HAAs) to chemical degradation, dramatically depends on the adopted electrochemical approach: (i) CAA is only poorly oxidized either by homogeneous hydroxyl radical in electro-Fenton (EF), electrogenerated active chlorine or electro-oxidation on Pt anode; (ii) it is moderately abated by direct reduction on silver or compact graphite cathodes (from 30% in macro cells to 60% in the microfluidic devices); (iii) it is quantitatively removed by direct electro-oxidation on a boron-doped diamond (BDD) anode. The use of a microreactor enables operation in the absence of supporting electrolyte and drastically enhances the performance of the cathodic process. Simultaneously performing direct oxidation on BDD and reduction on graphite in a microfluidic cell yields the fastest CAA removal with 100% abatement at low current densities (∼5 mA cm −2 )

  13. Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Maheshwari, Arpit; Heck, Michael; Santarelli, Massimo

    2018-01-01

    The cycle aging of a commercial 18650 lithium-ion battery with graphite anode and lithium nickel manganese cobalt (NMC) oxide-based cathode at defined operating conditions is studied by regular electrochemical characterization, electrochemical impedance spectroscopy (EIS) and post-mortem analysis.

  14. Electrochemical cell structure and method of making the same

    Science.gov (United States)

    Schick, Louis Andrew; Libby, Cara Suzanne; Bowen, John Henry; Bourgeois, Richard Scott

    2012-09-25

    An electrochemical cell structure is provided which includes an anode, a cathode spaced apart from said anode, an electrolyte in ionic communication with each of said anode and said cathode and a nonconductive frame. The nonconductive frame includes at least two components that support each of said anode, said cathode and said electrolyte and define at least one flowpath for working fluids and for products of electrochemical reaction.

  15. Electroendocytosis is driven by the binding of electrochemically produced protons to the cell's surface.

    Directory of Open Access Journals (Sweden)

    Nadav Ben-Dov

    Full Text Available Electroendocytosis involves the exposure of cells to pulsed low electric field and is emerging as a complementary method to electroporation for the incorporation of macromolecules into cells. The present study explores the underlying mechanism of electroendocytosis and its dependence on electrochemical byproducts formed at the electrode interface. Cell suspensions were exposed to pulsed low electric field in a partitioned device where cells are spatially restricted relative to the electrodes. The cellular uptake of dextran-FITC was analyzed by flow cytometery and visualized by confocal microscopy. We first show that uptake occurs only in cells adjacent to the anode. The enhanced uptake near the anode is found to depend on electric current density rather than on electric field strength, in the range of 5 to 65 V/cm. Electrochemically produced oxidative species that impose intracellular oxidative stress, do not play any role in the stimulated uptake. An inverse dependence is found between electrically induced uptake and the solution's buffer capacity. Electroendocytosis can be mimicked by chemically acidifying the extracellular solution which promotes the enhanced uptake of dextran polymers and the uptake of plasmid DNA. Electrochemical production of protons at the anode interface is responsible for inducing uptake of macromolecules into cells exposed to a pulsed low electric field. Expanding the understanding of the mechanism involved in electric fields induced drug-delivery into cells, is expected to contribute to clinical therapy applications in the future.

  16. Electrochemical oxidation of 3,5-di-tert-butylcatechol: Synthesis and characterization of the formed ortho-benzoquinhydrone derivative

    International Nuclear Information System (INIS)

    Nematollahi, D.; Shayani-Jam, H.

    2006-01-01

    Electrochemical oxidation of 3,5-di-tert-butylcatechol (1) has been studied in ethanol/water mixtures by means of cyclic voltammetry and controlled-potential coulometry. The results revealed that 3,5-di-tert-butyl-1,2-benenzoquinone (2) derived from oxidation of 3,5-di-tert-butylcatechol participate in noncovalently linked interactions with 1 converted to an ortho-benzoquinhydrone (3). The structure of 3 was characterized by MS, IR, 1 H NMR and 13 C NMR. The 1 H NMR studies reveal that the benzoquinhydrone complex 3 is stabilized by one H-bonding interaction. In this work we derived a novel ortho-bezoquinhydrone type complex (3) based on electrochemical oxidation of 3,5-di-tert-butylcatechol at carbon electrode in an undivided cell

  17. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  18. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  19. Permeability, strength and electrochemical studies on ceramic multilayers for solid-state electrochemical cells

    DEFF Research Database (Denmark)

    Andersen, Kjeld Bøhm; Charlas, Benoit; Stamate, Eugen

    2017-01-01

    An electrochemical reactor can be used to purify flue gasses. Such a reactor can be a multilayer structure consisting of alternating layers of porous electrodes and electrolytes (a porous cell stack). In this work optimization of such a unit has been done by changing the pore former composition...

  20. Characterization of electro-oxidation catalysts using scanning electrochemical and mass spectral methods

    Science.gov (United States)

    Jambunathan, Krishnakumar

    Low temperature fuel cells have many potential benefits, including high efficiency, high energy density and environmental friendliness. However, logistically appealing fuels for this system, such as reformed hydrocarbons or alcohols, exhibit poor performance because of catalyst poisoning that occurs during oxidation at the anode. This research focuses on the analysis of several model fuels and catalyst materials to understand the impact of catalyst poisoning on reactivity. Two novel experimental tools were developed based upon the local measurement of catalyst performance using scanning, reactivity mapping probes. The Scanning Electrochemical Microscope (SECM) was used to directly measure the rate constant for hydrogen oxidation in the presence and absence of dissolved CO. The Scanning Differential Electrochemical Mass Spectrometer (SDEMS) was exploited to measure the partial and complete oxidation products of methanol and ethanol oxidation. The reactivity of Pt and Pt/Ru catalysts towards the hydrogen oxidation reaction in the absence and presence of adsorbed CO was elucidated using the SECM. Steady state rate constant measurements in the absence of CO showed that the rate of hydrogen oxidation reaction exceeded 1 cms-1 . Steady state rate constant measurements in the presence of CO indicated that the platinum surface is completely inactive due to adsorbed CO. Addition of as little as 6% Ru to the Pt electrode was found to significantly improve the activity of the electrode towards CO removal. SDEMS was used to study the electro-oxidation of methanol on Pt xRuy electrodes at different electrode potentials and temperatures. Screening measurements performed with the SDEMS showed that PtxRu y electrodes containing 6--40% Ru had the highest activity for methanol oxidation. Current efficiencies for CO2 were also calculated under different conditions. SDEMS was also used to study the electro-oxidation of ethanol on Pt xRuy electrodes. The reaction was found to occur

  1. Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments

    International Nuclear Information System (INIS)

    Scialdone, Onofrio; Guarisco, Chiara; Galia, Alessandro

    2011-01-01

    The electrochemical oxidation of organics in water performed in micro reactors on boron doped diamond (BDD) anode was investigated both theoretically and experimentally in order to find the influence of various operative parameters on the conversion and the current efficiency CE of the process. The electrochemical oxidation of formic acid (FA) was selected as a model case. High conversions for a single passage of the electrolytic solution inside the cell were obtained by operating with proper residence times and low distances between cathode and anode. The effect of initial concentration, flow rate and current density was investigated in detail. Theoretical predictions were in very good agreement with experimental results for both mass transfer control, oxidation reaction control and mixed kinetic regimes in spite of the fact that no adjustable parameters was used. Mass transfer process was successfully modelled by considering for simplicity a constant Sh number (e.g., a constant mass transfer coefficient k m ) for a process performed with no high values of the current intensity to minimize the effect of the gas bubbling on the flowdynamic pattern. For mixed kinetic regimes, two different modelling approaches were used. In the first one, the oxidation of organics at BDD was assumed to be mass transfer controlled and to occur with an intrinsic 100% CE when applied current density is higher than the limiting current density. In the second case, the CE of the process was modelled assuming that the competition between organic and water oxidation depends only on the electrodic material and on the nature and the concentration of the organic. In the latter case a better agreement between experimental data and theoretical predictions was observed.

  2. Corrosion-electrochemical characteristics of oxide-carbide and oxide-nitride coatings formed by electrolytic plasma

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Chukalovskaya, T.V.; Medova, I.L.; Duradzhi, V.N.; Plavnik, G.M.

    1990-01-01

    The composition, structure, microhardness and corrosion-electrochemical properties of oxide-carbide and oxide-nitride coatings on titanium in 5n H 2 SO 4 , 50 deg, produced by the method of chemical-heat treatment in electrolytic plasma, containing saturation components of nitrogen and carbon, were investigated. It is shown that the coatings produced have increased hardness, possess high corrosion resistance in sulfuric acid solution at increased temperature, as to their electrochemcial behaviour they are similar to titanium carbide and nitride respectively. It is shown that high corrosion resistance is ensured by electrochemical mechanism of the oxide-carbide and oxide-nitride coating protection

  3. Polarization characteristics of composite electrodes in electrochemical cells with solid electrolytes based on CeO2 and LaGaO3

    International Nuclear Information System (INIS)

    Yaroslavtsev, I. Yu.; Kuzin, B. L.; Bronin, D. I.; Bogdanovich, N. M.

    2005-01-01

    For two types of electrochemical cells with oxygen-conducting solid electrolytes based on lanthanum gallate (LSGM) and cerium oxide (SDC) studied are the temperature dependences of the polarization conductivity of air electrodes prepared from lanthanum strontium manganite (LSM) and composites LSM-LSGM, LSM-SDC, and LSM-SSZ (SSZ is zirconium dioxide-based electrolyte). Effect of praseodymium oxide, added into these electrodes as a modifier, on their electrochemical properties is examined. Electrochemical systems with an LSM/LSGM interface exhibit low electrochemical activity toward the oxygen reaction, because during the formation of electrodes, LSM interacts with LSGM to form a poorly conducting product [ru

  4. In situ chemical synthesis of ruthenium oxide/reduced graphene oxide nanocomposites for electrochemical capacitor applications.

    Science.gov (United States)

    Kim, Ji-Young; Kim, Kwang-Heon; Yoon, Seung-Beom; Kim, Hyun-Kyung; Park, Sang-Hoon; Kim, Kwang-Bum

    2013-08-07

    An in situ chemical synthesis approach has been developed to prepare ruthenium oxide/reduced graphene oxide (RGO) nanocomposites. It is found that as the C/O ratio increases, the number density of RuO2 nanoparticles decreases, because the chemical interaction between the Ru ions and the oxygen-containing functional groups provides anchoring sites where the nucleation of particles takes place. For electrochemical capacitor applications, the microwave-hydrothermal process was carried out to improve the conductivity of RGO in RuO2/RGO nanocomposites. The significant improvement in capacitance and high rate capability might result from the RuO2 nanoparticles used as spacers that make the interior layers of the reduced graphene oxide electrode available for electrolyte access.

  5. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors

    Science.gov (United States)

    Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2011-04-01

    Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO2 could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO2 (10-5-10-6 S cm-1) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO2 have enhanced conductivity, resulting in a specific capacitance of the constituent MnO2 (~1,145 F g-1) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO2, and facilitates fast ion diffusion between the MnO2 and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery.

  6. Electrochemical and antimicrobial activity of tellurium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pramod K. [Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi 110067 (India); Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067 (India); Sharma, Prem Prakash; Sharma, Anshu [Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067 (India); Khan, Zishan H., E-mail: zishan_hk@yahoo.co.in [Department of Applied Sciences and Humanities, Jamia Millia Islamia, New Delhi 110067 (India); Solanki, Pratima R., E-mail: pratimarsolanki@gmail.com [Special Centre for Nanosciences, Jawaharlal Nehru University, New Delhi 110067 (India)

    2016-09-15

    Highlights: • TeO{sub 2} NPs synthesized without using any catalyst by chemical vapour deposition method. • The growth temperature was 410 °C with continuous flow of O{sub 2.} • TeO{sub 2} NPs have anti-bacterial activity against E. coli, K. pneumoniae and S. aureus while enhances the growth of S. pyogenes. • TeO{sub 2} shows maximum redox current at pH 7 for phosphate buffer solution. - Abstract: Thin film of tellurium oxide (TeO{sub 2}) has been synthesized by chemical vapour deposition method onto indium tin oxide (ITO) coated glass substrate without using any catalyst. XRD pattern of TeO{sub 2} thin film suggests that the structure of TeO{sub 2} changes from amorphous to crystalline (paratellurite) on dispersing into deionized water. Zeta potential measurement reveals a positive surface potential of 28.8 mV. TEM images shows spherical shaped TeO{sub 2} nanoparticles having average particle size of 65 nm. Electrochemical studies of TeO{sub 2}/ITO electrode exhibit improved electron transfer owing to its inherent electron transfer property at pH 7.0 of phosphate buffer. Antimicrobial activity of TeO{sub 2} has been studied for gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram negative (Escherichia coli and Klebsiella pneumoniae) bacterial and fungal strains (Aspergillus nizer and Candida albicans). These studies suggest that the TeO{sub 2} NPs inhibit the growth of E. coli, K. pneumoniae and S. aureus bacteria, whereas the same particles enhance the growth of S. pyogenes bacteria.

  7. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    Science.gov (United States)

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  8. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels

    National Research Council Canada - National Science Library

    Dong, Winny

    2001-01-01

    .... Traditional composite electrode structures have prevented truly quantitative analysis of surface area effects in nanoscale battery materials, as well as a study of their innate electrochemical behavior...

  9. Electrochemical disinfection of bacteria-laden water using antimony-doped tin-tungsten-oxide electrodes.

    Science.gov (United States)

    Ghasemian, Saloumeh; Asadishad, Bahareh; Omanovic, Sasha; Tufenkji, Nathalie

    2017-12-01

    Electrochemical disinfection has been shown to be an efficient method with a shortrequired contact time for treatment of drinking water supplies, industrial raw water supplies, liquid foodstuffs, and wastewater effluents. In the present work, the electrochemical disinfection of saline water contaminated with bacteria was investigated in chloride-containing solutions using Sb-doped Sn 80% -W 20% -oxide anodes. The influence of current density, bacterial load, initial chloride concentration, solution pH, and the type of bacteria (E. coli D21, E. coli O157:H7, and E. faecalis) on disinfection efficacy was systematically examined. The impact of natural organic matter and a radical scavenger on the disinfection process was also examined. The electrochemical system was highly effective in bacterial inactivation for a 0.1 M NaCl solution contaminated with ∼10 7  CFU/mL bacteria by applying a current density ≥1 mA/cm 2 through the cell.100% inactivation of E. coli D21 was achieved with a contact time of less than 60 s and power consumption of 48 Wh/m 3 , by applying a current density of 6 mA/cm 2 in a 0.1 M NaCl solution contaminated with ∼10 7 CFU/mL. Reactive chlorine species as well as reactive oxygen species (e.g. hydroxyl radicals) generated in situ during the electrochemical process were determined to be responsible for inactivation of bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    Science.gov (United States)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  12. Electrochemical promotion of oxidative coupling of methane on platinum/polybenzimidazole catalyst

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Bjerrum, Niels

    2002-01-01

    The electrochemical promotion of catalytic methane oxidation was studied using a (CH4,O-2,Ar), Pt\\polybenzimidazole (PBI)-H3PO4\\Pt,(H-2,Ar) fuel cell at 135degreesC. It has been found that C2H2, CO2, and water are the main oxidation products. Without polarization the yield of C2H2 was 0......, meaning that there was a maximum promotion effect at a polarization of -0.15 V, or 0.45 V catalyst potential vs. a hydrogen electrode (3.8% C2H2 yield). The catalytic rate enhancement ratio, r(C-2)/r(o)(C-2), at this maximum was 4.2. There was no C2H2 production at polarization greater than or equal to0.......9% and the yield of CO2 was 7.3%. This means that C-2 open-circuit selectivity was approximately 11%. Open-circuit voltage was around 0.6 V. It has been shown that the CH4 --> C2H2 catalytic reaction can be electrochemically promoted at negative polarization and exhibits a clear "volcano-type'' promotion behavior...

  13. The nanostructure of microbially-reduced graphene oxide fosters thick and highly-performing electrochemically-active biofilms

    Science.gov (United States)

    Virdis, Bernardino; Dennis, Paul G.

    2017-07-01

    Biofilms of electrochemically-active organisms are used in microbial electrochemical technologies (METs) to catalyze bioreactions otherwise not possible at bare electrodes. At present, however, achievable current outputs are still below levels considered sufficient for economic viability of large-scale METs implementations. Here, we report three-dimensional, self-aggregating biofilm composites comprising of microbial cells embedded with microbially-reduced graphene oxide (rGO) nanoparticles to form a thick macro-porous network with superior electrochemical properties. In the presence of metabolic substrate, these hybrid biofilms are capable of producing up to five times more catalytic current than the control biofilms. Cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy, show that in spite of the increased thickness, the biofilms amended with GO display lower polarization/charge transfer resistance compared to the controls, which we ascribe to the incorporation of rGO into the biofilms, which (1) promotes fast electron transfer, yet conserving a macroporous structure that allows free diffusion of reactants and products, and (2) enhances the interfacial dynamics by allowing a higher load of microbial cells per electrode surface area. These results suggest an easy-to-apply and cost-effective method to produce high-performing electrochemically-active biofilms in situ.

  14. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  15. Metal Oxide Materials and Collector Efficiency in Electrochemical Supercapacitors

    Science.gov (United States)

    2010-12-01

    However, even if thick tita - nium films and/or nanostructured layers were obtained using these methods, they were composed of non-conducting titanium...following electrochemical reduction in LiClO4/acetonitrile. Table 1 reports the electrochemical parameters and the atomic composition of the tita - nium

  16. Review of Fabrication Methods, Physical Properties, and Applications of Nanostructured Copper Oxides Formed via Electrochemical Oxidation

    Directory of Open Access Journals (Sweden)

    Wojciech J. Stepniowski

    2018-05-01

    Full Text Available Typically, anodic oxidation of metals results in the formation of hexagonally arranged nanoporous or nanotubular oxide, with a specific oxidation state of the transition metal. Recently, the majority of transition metals have been anodized; however, the formation of copper oxides by electrochemical oxidation is yet unexplored and offers numerous, unique properties and applications. Nanowires formed by copper electrochemical oxidation are crystalline and composed of cuprous (CuO or cupric oxide (Cu2O, bringing varied physical and chemical properties to the nanostructured morphology and different band gaps: 1.44 and 2.22 eV, respectively. According to its Pourbaix (potential-pH diagram, the passivity of copper occurs at ambient and alkaline pH. In order to grow oxide nanostructures on copper, alkaline electrolytes like NaOH and KOH are used. To date, no systemic study has yet been reported on the influence of the operating conditions, such as the type of electrolyte, its temperature, and applied potential, on the morphology of the grown nanostructures. However, the numerous reports gathered in this paper will provide a certain view on the matter. After passivation, the formed nanostructures can be also post-treated. Post-treatments employ calcinations or chemical reactions, including the chemical reduction of the grown oxides. Nanostructures made of CuO or Cu2O have a broad range of potential applications. On one hand, with the use of surface morphology, the wetting contact angle is tuned. On the other hand, the chemical composition (pure Cu2O and high surface area make such materials attractive for renewable energy harvesting, including water splitting. While compared to other fabrication techniques, self-organized anodization is a facile, easy to scale-up, time-efficient approach, providing high-aspect ratio one-dimensional (1D nanostructures. Despite these advantages, there are still numerous challenges that have to be faced, including the

  17. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    Directory of Open Access Journals (Sweden)

    Shiue-Lin eLi

    2015-02-01

    Full Text Available Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at + mV (vs. SHE at all pH ranges tested (from pH = 4 to 8, while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte equipped with carbon-felt electrodes. In both cases, when potentials of +630 or 130 mV (vs. SHE were applied, currents were consistently higher at +630 then at 0 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter not well known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes.

  18. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    Science.gov (United States)

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  19. Electrochemical oxidation of propene by use of LSM15/CGO10 electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    The propene catalytic oxidation was studied over an 11-layers porous electrochemical reactor made by La0.85Sr0.15MnO3 and Ce0.9Gd0.1O1.95 with the objective to simulate the abatement of exhaust gases emitted from Diesel engines. This work shows the possibility to enhance the catalytic activity th...... of catalysis (EPOC) was found at low temperature....

  20. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells.

    Science.gov (United States)

    Blanc, Frédéric; Leskes, Michal; Grey, Clare P

    2013-09-17

    prevent dendrite formation. The in situ method was also applied to monitor (by (11)B NMR) electrochemical double-layer formation in supercapacitors in real time. Though this method is useful, it comes with challenges. The separation of the contributions from the different cell components in the NMR spectra is not trivial because of overlapping resonances. In addition, orientation-dependent NMR interactions, including the spatial- and orientation-dependent bulk magnetic susceptibility (BMS) effects, can lead to resonance broadening. Efforts to understand and mitigate these BMS effects are discussed in this Account. The in situ NMR investigation of fuel cells initially focused on the surface electrochemistry at the electrodes and the electrochemical oxidation of methanol and CO to CO2 on the Pt cathode. On the basis of the (13)C and (195)Pt NMR spectra of the adsorbates and electrodes, CO adsorbed on Pt and other reaction intermediates and complete oxidation products were detected and their mode of binding to the electrodes investigated. Appropriate design and engineering of the NMR hardware has allowed researchers to integrate intact direct methanol fuel cells into NMR probes. Chemical transformations of the circulating methanol could be followed and reaction intermediates could be detected in real time by either (2)H or (13)C NMR spectroscopy. By use of the in situ NMR approach, factors that control fuel cell performance, such as methanol cross over and catalyst performance, were identified.

  1. Tuning the Electronic Structure of Titanium Oxide Support to Enhance the Electrochemical Activity of Platinum Nanoparticles

    KAUST Repository

    Shi, Feifei

    2013-09-11

    Two times higher activity and three times higher stability in methanol oxidation reaction, a 0.12 V negative shift of the CO oxidation peak potential, and a 0.07 V positive shift of the oxygen reaction potential compared to Pt nanoparticles on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context of an electronic structure model, showing an improvement in electrochemical activity when the Fermi level of the support material in Pt/TiOx systems is close to the Pt Fermi level and the redox potential of the reaction. The present approach provides guidance for the selection of the support material of Pt/TiOx systems and may be applied to other metal-oxide support materials, thus having direct implications in the design and optimization of fuel cell catalyst supports. © 2013 American Chemical Society.

  2. Solid Oxide Electrolyser Cell

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard

    Solid oxide fuel cells (SOFCs) produced at Risø National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 °C and a cell voltage of 1.48V the current density was -3.6A/cm2 with app. 30% H2 + 70% H2O in the inlet...... it is possible to achieve a production price of 0.7 US$/kg H2 with an electricity price of 1.3 US¢/kWh. The cell voltage was measured as function of time. In test ofabout two month of duration a long-term degradation was observed. At 850 °C, -0.5 A/cm2 with 50 vol% H2 the degradation rate was app. 20 mV/1000h...

  3. Fabrication of Electrochemically Reduced Graphene Oxide Modified Gas Diffusion Electrode for In-situ Electrochemical Advanced Oxidation Process under Mild Conditions

    International Nuclear Information System (INIS)

    Dong, Heng; Su, Huimin; Chen, Ze; Yu, Han; Yu, Hongbing

    2016-01-01

    With aim to develop an efficient heterogeneous metal-free cathodic electrochemical advance oxidation process (CEAOP) for persistent organic pollutants (POPs) removal from wastewater under mild conditions, electrochemically reduced graphene oxide (ERGO)-modified gas diffusion electrode (GDE) was prepared for oxygen-containing radicals production via electrochemical oxygen reduction reaction (ORR). A detailed physical characterization was carried out by SEM, Raman spectroscopy, XRD and XPS. The electrocatalytic behavior for ORR was investigated by electrochemical measurements and electrolysis experiments under constant current density. Bisphenol A (BPA) of 20 mg L −1 was used as a model of POPs to evaluate the performance of the CEAOP with ERGO-modified GDE. The results showed that the defects concentration and electrochemical active sites of the ERGO was increased as the reduction time (30 min, 60 min and 120 min), leading to different catalysis on ORR. ·O 2 generation via one-electron ORR was found under the electrocatalysis of ERGO (60 min and 120 min), contributing to a complete degradation of BPA within 20 min and a mineralization current efficiency (MCE) of 74.60%. An alternative metal-free CEAOP independent of Fenton reaction was established based on ERGO-modified GDE for POPs removal from wastewater under mild conditions.

  4. Microstructural evolution of nanograin nickel-zirconia cermet anode materials for solid oxide fuel cell applications

    International Nuclear Information System (INIS)

    Nayak, Bibhuti Bhusan

    2012-01-01

    The aim of the study is to study the structure, microstructure, porosity, thermal expansion, electrical conductivity and electrochemical behavior of the anode material thus synthesized in order to find its suitability for solid oxide fuel cell (SOFC) anode application

  5. Synthesis of graphene oxide through different oxidation degrees for solar cells

    Science.gov (United States)

    Zhang, Xiaoshan; Wang, Huan; Huang, Tianjiao; Wen, Lingling; Zhou, Liya

    2018-03-01

    Graphene is known as an electro-chemical material and widely used in electro-chemical devices, especially in solar cell. Decreasing the thickness of the layer is a critical way to improve the electrochemical property of solar cells as far as possible. Among the various oxidation approaches, presented herein is a facile approach, which is easier, less cost and more effective, environmental benign with the greener processing and without any requirement for post purification, towards the synthesis of graphene oxide (GO) with different oxidation degrees by potassium ferrate (K2FeO4). A modified method using less amount of oxidizing agent is reported herein. It is the pretreatment of the synthesis of graphite, which maintains the thermal cycle of the system. This novel reports to compound GO with controlled oxidation degrees can not only increase the quantity of oxygen-containing functional groups on GO surface, increase space between graphene oxide layer and facilitate the dispersion of graphene in aqueous solution. Thus, the modified method shows prospect for large-scale production of graphene oxide and its novel application, in addition to its derivative and market potential for solar cells.

  6. Electrocatalytic activity mapping of model fuel cell catalyst films using scanning electrochemical microscopy

    International Nuclear Information System (INIS)

    Nicholson, P.G.; Zhou, S.; Hinds, G.; Wain, A.J.; Turnbull, A.

    2009-01-01

    Scanning electrochemical microscopy has been employed to spatially map the electrocatalytic activity of model proton exchange membrane fuel cell (PEMFC) catalyst films towards the hydrogen oxidation reaction (the PEMFC anode reaction). The catalyst films were composed of platinum-loaded carbon nanoparticles, similar to those typically used in PEMFCs. The electrochemical characterisation was correlated with a detailed physical characterisation using dynamic light scattering, transmission electron microscopy and field-emission scanning electron microscopy. The nanoparticles were found to be reasonably mono-dispersed, with a tendency to agglomerate into porous bead-type structures when spun-cast. The number of carbon nanoparticles with little or no platinum was surprisingly higher than would be expected based on the platinum-carbon mass ratio. Furthermore, the platinum-rich carbon particles tended to agglomerate and the clusters formed were non-uniformly distributed. This morphology was reflected in a high degree of heterogeneity in the film activity towards the hydrogen oxidation reaction.

  7. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    Science.gov (United States)

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Electrochemical Oxidation and Detection of Sodium Urate in ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    3 Delft University of Technology, 2600 GA Delft, The Netherlands. ABSTRACT: ... both sodium urate and mixture of urate and tartrate as a cumulative response, in alkaline media, the target ..... electrochemical oxygen demand (EOD) using a.

  9. Optimization of reaction parameters for the electrochemical oxidation of lidocaine with a Design of Experiments approach

    NARCIS (Netherlands)

    Gul, Turan; Bischoff, Rainer; Permentier, Hjalmar

    2015-01-01

    Identification of potentially toxic oxidative drug metabolites is a crucial step in the development of new drugs. Electrochemical methods are useful to study oxidative drug metabolism, but are not widely used to synthesize metabolites for follow-up studies. Careful optimization of reaction

  10. Increased electrochemical properties of ruthenium oxide and graphene/ruthenium oxide hybrid dispersed by polyvinylpyrrolidone

    International Nuclear Information System (INIS)

    Chen, Yao; Zhang, Xiong; Zhang, Dacheng; Ma, Yanwei

    2012-01-01

    Highlights: ► A good dispersion of RuO 2 and graphene/RuO 2 is obtained by polyvinylpyrrolidone. ► PVP as a dispersant also can prevent the formation of metal Ru in graphene/RuO 2 . ► The max capacitances of the hybrid and RuO 2 reach 435 and 597 F g −1 at 0.2 A g −1 . ► The hybrid shows the best rate capability of 39% at 50 A g −1 . - Abstract: Ruthenium oxide has been prepared by a sol–gel method. Polyvinylpyrrolidone (PVP) as an excellent polymeric dispersant is adopted to prevent aggregation of ruthenium oxide. In order to enhance the rate capability of ruthenium oxide, graphene with residual oxygen functional groups as a 2D support has been merged into ruthenium oxide. These oxygen functional groups not only favor to form stable few layers of graphene colloids, but also offer the sites to anchor ruthenium oxide nanoparticles. X-ray diffraction infers that PVP can also hinder the partial formation of Ru by blocking the direct contact between the Ru 3+ and the graphene in the sol–gel synthesis of the hybrids. The ruthenium oxide and the graphene/ruthenium oxide hybrids dispersed by PVP have superior electrochemical properties due to good dispersing and protecting ability of PVP. Especially, the hybrids using PVP exhibit the best rate capability, indicating that the composites possess an advanced structure of combining sheets and particles in nano-scale.

  11. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1983-01-04

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  12. Coating for lithium anode, thionyl chloride active cathode electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Catanzarite, V.O.

    1981-10-20

    Electrochemical power cells having a cathode current collector, a combination liquid active cathode depolarizer electrolyte solvent and an anode that forms surface compounds when in intimate contact with the liquid cathode are enhanced by the addition of a passivation limiting film contiguous to said anode. The passivating film is a member of the cyanoacrilate family of organic compounds.

  13. Electrochemical oxidation of sulfites by DWCNTs, MWCNTs, higher fullerenes and manganese

    Science.gov (United States)

    Uzun, Dzhamal; Pchelarov, George; Dimitrov, Ognian; Vassilev, Sasho; Obretenov, Willi; Petrov, Konstantin

    2018-03-01

    Different electrocatalysts were tested for oxidation of sulfites to sulfates, namely, manganese thin films deposited on fullerenes and carbon nanotubes. The results presented clearly show that electrodes containing HFs (higher fullerenes), DWCNTs (double-wall carbon nanotubes) and manganese acetate are effective catalysts in S/O2 fuel cells. HFs and DWCNTs have high catalytic activity and can be employed as standalone catalysts. Manganese was deposited on DWCNTs, HFs and fullerenes C60/C70 by a thermal process. The electrocatalysts were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical testing was carried out by plotting the E/V polarization curve. The polarization curves of the electrodes composed of pristine DWCNTs showed the lowest overpotentials.

  14. Clean and Green Synthesis of New Benzothiazole Derivatives via Electrochemical Oxidation of Catechol Derivatives

    Directory of Open Access Journals (Sweden)

    Mansour Arab Chamjangali

    2016-06-01

    Full Text Available Electrochemical oxidation of the catechols 1a and 1b is studied in the presence of 6-methyl-2-thouracil (3b and 6-propyl-2-thiouracil (3a as nucleophiles in a phosphate buffer (0.15 mol L−1, pH = 6.8/DMF (95:5 solution using cyclic voltammetry and controlled-potential coulometry. The results obtained indicate that the quinones derived from the catechols participate in 1,4-Michael-addition reactions with the nucleophiles to form the corresponding new benzothiazole compounds. In this work, we derive a variety of products with good yields using controlled potential at graphite electrodes in an undivided cell. This work is licensed under a Creative Commons Attribution 4.0 International License.

  15. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    OpenAIRE

    Terence K. S. Wong; Siarhei Zhuk; Saeid Masudy-Panah; Goutam K. Dalapati

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion e...

  16. Effect of exopolymers on oxidative dissolution of natural rhodochrosite by Pseudomonas putida strain MnB1: An electrochemical study

    International Nuclear Information System (INIS)

    Wang, Huawei; Zhang, Daoyong; Song, Wenjuan; Pan, Xiangliang; Al-Misned, Fahad A.; Golam Mortuza, M.

    2015-01-01

    Highlights: • The biogeochemical behavior of natural rhodochrosite was investigated by electrochemical methods. • Bacterial exopolymers contributed to the increasing dissolution of natural rhodochrosite. • Oxidative dissolution of natural rhodochrosite was well explained by Tafel and EIS analysis. - Abstract: Oxidative dissolution of natural rhodochrosite by the Mn(II) oxidizing bacterium Pseudomonas putida strain MnB1 was investigated based on batch and electrochemical experiments using natural rhodochrosite as the working electrode. Tafel curves and batch experiments revealed that bacterial exopolymers (EPS) significantly increased dissolution of natural rhodochrosite. The corrosion current significantly increased with reaction time for EPS treatment. However, the corrosion process was blocked in the presence of cells plus extra EPS due to formation of the passivation layer. Moreover, the scanning electron microscopy and the energy dispersive spectroscopy (SEM–EDS) results showed that the surface of the natural rhodochrosite was notably changed in the presence of EPS alone or/and bacterial cells. This study is helpful for understanding the role of EPS in bacterially oxidation of Mn(II). It also indicates that the Mn(II) oxidizing bacteria may exert their effects on Mn(II) cycle and other biological and biogeochemical processes much beyond their local ambient environment because of the catalytically dissolution of solid Mn(II) by EPS and the possible long distance transport of the detached EPS

  17. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo

    2013-01-01

    We have analyzed the aptitude of several metal oxide supports (TiO2, SnO2, NbO2, ZrO2, SiO2, Ta2O5 and Nb2O5) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in ...

  18. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    OpenAIRE

    Iwasita Teresa

    2002-01-01

    Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH). In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishi...

  19. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts

    International Nuclear Information System (INIS)

    Li, Zhe-Fei; Wang, Yuxuan; Botte, Gerardine G.

    2017-01-01

    Highlights: • A procedure to pretreat electrocatalysts to study the ammonia oxidation is provided. • N ads and O/OH ads were identified as the major deactivation species that prevent ammonia oxidatoin. • The electrocatalytic activity, thermodynamics, and possible deactivation mechanisms for ammonia oxidation were elucidated. • The onset potential for ammonia oxidation is related to the hydrogen binding energy of the catalyst. • Ammonia electro-oxidation involves a complex decoupled electron and proton transfer process. - Abstract: The ammonia electro-oxidation reaction (AOR) has been studied due to its promising applications in ammonia electrolysis, wastewater remediation, direct ammonia fuel cells, and sensors. However, it is difficult to compare and analyze the reported electrocatalytic activity of AOR reliably, likely due to the variation in catalyst synthesis, electrode composition, electrode morphology, and testing protocol. In this paper, the electro-oxidation of ammonia on different carbon-supported precious metal nanoparticle catalysts was revisited. The effect of experimental conditions, electrochemical test parameters, electrocatalytic activity, thermodynamics, and possible deactivation mechanism of the catalysts were investigated. Pt/C catalyst possesses the highest electrocatalytic activity, while Ir/C and Rh/C show lower overpotential. The onset potential of the AOR is related to the hydrogen binding energy of the catalyst. N ads is one major cause of deactivation accompanied with the formation of surface O/OH ads at high potentials. The coulombic efficiency of N ads formation on Pt is about 1% initially and gradually decreases with reaction time. Increase in ammonia concentration leads to increase in current density, while increase in hydroxyl ions concentration can enhance the current density and reduce the overpotential simultaneously. The slopes of AOR onset potential and hydrogen adsorption/desorption potential of Pt/C as a function of p

  20. Studies on room temperature electrochemical oxidation and its effect on the transport properties of TBCCO films

    International Nuclear Information System (INIS)

    Shirage, P M; Shivagan, D D; Pawar, S H

    2004-01-01

    A novel room temperature electrochemical process for the synthesis of single-phase Tl 2 Ba 2 Ca 2 Cu 3 O 10 (TBCCO/Tl-2223) superconducting films has been developed. Electrochemical parameters were optimized by studying linear sweep voltammetry (LSV), cyclic voltammetry (CV) and chronoamperometry (CA) for the deposition of Tl-Ba-Ca-Cu alloy at room temperature. The superconducting films of the TBCCO were obtained by two oxidation techniques. In the first technique, the electrodeposited Tl-Ba-Ca-Cu alloyed films were oxidized at various temperatures in flowing oxygen atmosphere. In the second technique, stoichiometric electrocrystallization to get Tl 2 Ba 2 Ca 2 Cu 3 O 10 (Tl-2223) was completed by electrochemically intercalating oxygen species into Tl-Ba-Ca-Cu alloy at room temperature for various lengths of time. The oxygen content in the samples was varied by varying the electrochemical oxidation period, and the changes in the crystal structure, superconducting transition temperature (T c ) and critical current density (J c ) were recorded. The high temperature furnace oxidation technique was replaced by the room temperature electrochemical oxidation technique. The dependence of superconducting parameters on oxygen content is correlated with structure-property relations

  1. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  2. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  3. Electropolishing of AISI-304 stainless steel using an oxidizing solution originally used for electrochemical coloration

    International Nuclear Information System (INIS)

    Andrade, Leonardo S.; Xavier, Sandro C.; Rocha-Filho, Romeu C.; Bocchi, Nerilso; Biaggio, Sonia R.

    2005-01-01

    Chemical polishing or electropolishing, instead of mechanical polishing, are recommended for the attainment of metallic surface polishes without the introduction of contaminants or tensions in the surface layers of the metal. The fundamental difference between the chemical and electrochemical polishing processes is that in the latter anodic currents/potentials are used to help in the dissolution and passivation of the metal. In this paper, the use of an oxidizing electrolytic solution (2.5 mol L -1 CrO 3 + 5.0 mol L -1 H 2 SO 4 ) originally employed in electrochemical coloration processes is reported for the electropolishing of AISI-314 stainless steel. Parameters involved in this electropolishing process, such as temperature, current density and time, were optimized so as to attain the best possible results evaluated by the obtained surface brightness measured by reflectance spectra. Surface analyses by scanning electron microscopy allowed a clear correlation between obtained brightness and surface smoothing. The best conditions obtained for the electropolishing process are: temperature of 45 deg. C, electrolysis time of 10 min and current density of around 25 A dm -2 . It should be pointed out that an electropolishing process signature (periodic oscillations of the cell potential) was established; this may be an important tool for optimizing and monitoring electropolishing processes

  4. Electrochemical evaluation of electrocatalysts for fuel cell applications : a practical approach

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, M.H. [General Motors R and D Technical Center, Warren, MI (United States); Gyenge, E.L. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Northwood, D.O. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2010-07-01

    Various electrochemical techniques were used to investigate supported nano-size electrocatalysts during the oxidation of a specific fuel for fuel cell applications. Cyclic voltammetry (CV) on static and dynamic rotating disc electrodes (RDE) and fuel cell station tests demonstrated that the most active catalyst showed the most negative oxidation peak potential. A Tafel equation indicated that a low anodic/cathodic overpotential was a clear indication of higher catalytic activity. The lower overpotential was achieved for a specific current load by ensuring a low Tafel slope and as high an exchange current density as possible. The RDE and fuel cell station tests showed that the best performance was recorded for electrocatalysts with the Tafel slope values and exchange current densities that gave rise to the lowest overpotential. The study demonstrated that RDE and CV can be used to reliably assess electrocatalysts prior to full fuel cell testing. 52 refs., 3 tabs., 6 figs.

  5. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  6. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  7. Electrochemical Characterization of TiO 2 Blocking Layers for Dye-Sensitized Solar Cells

    KAUST Repository

    Kavan, Ladislav

    2014-07-31

    Thin compact layers of TiO2 are grown by thermal oxidation of Ti, by spray pyrolysis, by electrochemical deposition, and by atomic layer deposition. These layers are used in dye-sensitized solar cells to prevent recombination of electrons from the substrate (FTO or Ti) with the hole-conducting medium at this interface. The quality of blocking is evaluated electrochemically by methylviologen, ferro/ferricyanide, and spiro-OMeTAD as the model redox probes. Two types of pinholes in the blocking layers are classified, and their effective area is quantified. Frequency-independent Mott-Schottky plots are fitted from electrochemical impedance spectroscopy. Certain films of the thicknesses of several nanometers allow distinguishing the depletion layer formation both in the TiO2 film and in the FTO substrate underneath the titania film. The excellent blocking function of thermally oxidized Ti, electrodeposited film (60 nm), and atomic-layer-deposited films (>6 nm) is documented by the relative pinhole area of less than 1%. However, the blocking behavior of electrodeposited and atomic-layer-deposited films is strongly reduced upon calcination at 500 °C. The blocking function of spray-pyrolyzed films is less good but also less sensitive to calcination. The thermally oxidized Ti is well blocking and insensitive to calcination. © 2014 American Chemical Society.

  8. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    Science.gov (United States)

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of electrochemical oxidation of a viscose rayon based ...

    African Journals Online (AJOL)

    A viscose rayon based activated carbon cloth (ACC) was electrochemically oxidised to enhance its cation sorption capacity for comparison with as-received ACC. ACCs were characterised by sodium capacity measurement, pH titration, zeta potential measurement, elemental analysis, Brunauer-Emmet- Teller surface area ...

  10. Preparation, characterization, and electrochemical application of mesoporous copper oxide

    International Nuclear Information System (INIS)

    Cheng, Liang; Shao, Mingwang; Chen, Dayan; Zhang, Yuzhong

    2010-01-01

    Mesoporous CuO was successfully synthesized via thermal decomposition of CuC 2 O 4 precursors. These products had ring-like morphology, which was made up of nanoparticles with the average diameter of 40 nm. The electrochemical experiments showed that the mesoporous CuO decreased the overvoltage of the electrode and increased electron transference in the measurement of dopamine.

  11. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    Science.gov (United States)

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  12. Electrochemical potentials of layered oxide and olivine phosphate ...

    Indian Academy of Sciences (India)

    Lithium ion battery; cathodes; density functional theory; density of states; Bader charge analysis; electrochemical ... voltage, ionic diffusion coefficient, phase stability and charge ... routes to synthesis and fabrication techniques. .... from the lithiated one. ..... Ebner W, Fouchard D and Xie L 1994 Solid State Ionics 69 238.

  13. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Thang, Cao Xuan

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO 2 nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO 2 nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) 6 ] 3−/4− as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10 2 CFU/mL to 1.0 × 10 4 CFU/mL. The detection limit of the immunosensor was 1.0 × 10 2 CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL −1 . Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10 2 CFU/mL to 1.0 × 10 4 CFU/mL. • The detection limit of the immunosensor was 1.0 × 10 2 CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL −1 .

  14. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: phuongdinhtam@gmail.com; Thang, Cao Xuan, E-mail: thang.caoxuan@hust.edu.vn

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO{sub 2} nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO{sub 2} nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) {sub 6}] {sup 3−/4−} as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL{sup −1}. Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. • The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL{sup −1}.

  15. Improved conversion rates in drug screening applications using miniaturized electrochemical cells with frit channels.

    Science.gov (United States)

    Odijk, Mathieu; Olthuis, Wouter; van den Berg, A; Qiao, Liang; Girault, Hubert

    2012-11-06

    This paper reports a novel design of a miniaturized three-electrode electrochemical cell, the purpose of which is aimed at generating drug metabolites with a high conversion efficiency. The working electrode and the counter electrode are placed in two separate channels to isolate the reaction products generated at both electrodes. The novel design includes connecting channels between these two electrode channels to provide a uniform distribution of the current density over the entire working electrode. In addition, the effect of ohmic drop is decreased. Moreover, two flow resistors are included to ensure an equal flow of analyte through both electrode channels. Total conversion of fast reacting ions is achieved at flow rates up to at least 8 μL/min, while the internal chip volume is only 175 nL. Using this electrochemical chip, the metabolism of mitoxantrone is studied by microchip electrospray ionization-mass spectrometry. At an oxidation potential of 700 mV, all known metabolites from direct oxidation are observed. The electrochemical chip performs equally well, compared to a commercially available cell, but at a 30-fold lower flow of reagents.

  16. Small-angle neutron scattering and cyclic voltammetry study on electrochemically oxidized and reduced pyrolytic carbon

    International Nuclear Information System (INIS)

    Braun, A.; Kohlbrecher, J.; Baertsch, M.; Schnyder, B.; Koetz, R.; Haas, O.; Wokaun, A.

    2004-01-01

    The electrochemical double layer capacitance and internal surface area of a pyrolytic carbon material after electrochemical oxidation and subsequent reduction was studied with cyclic voltammetry and small-angle neutron scattering. Oxidation yields an enhanced internal surface area (activation), and subsequent reduction causes a decrease of this internal surface area. The change of the Porod constant, as obtained from small-angle neutron scattering, reveals that the decrease in internal surface area is not caused merely by a closing or narrowing of the pores, but by a partial collapse of the pore network

  17. Waste treatment in NUCEF facility with silver mediated electrochemical oxidation technique

    International Nuclear Information System (INIS)

    Umeda, M.; Sugikawa, S.

    2000-01-01

    Silver mediated electrochemical oxidation technique has been considered one of promising candidates for alpha-bearing waste treatment. Destruction tests of organic compounds, such as insoluble tannin, TBP and dodecane, were carried out by this technique and the experimental data such as destruction rates, current efficiencies and intermediates were obtained. These compounds could be completely mineralized without the formation of reactive organic nitrate associated to safety hazards. On the basis of these results, the applicability of silver mediated electrochemical oxidation technique to waste treatment in NUCEF was evaluated. (authors)

  18. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    International Nuclear Information System (INIS)

    Gupta, Vinay; Kawaguchi, Toshikazu; Miura, Norio

    2009-01-01

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co 3 O 4 , NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm 2 current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides

  19. Fabrication of electrolytic cell for online post-column electrochemical derivatization in ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shuchao [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Xu Wei [State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310028, Zhejiang (China); Yang Bingcheng [School of Pharmacy, East China University of Science and Technology, Shanghai 200237 (China); Ye Mingli [Thermofisher scientific (China), Shanghai 201203 (China); Zhang Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Shentu Chao [College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015 (China); Zhu Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)

    2012-07-20

    Highlight: Black-Right-Pointing-Pointer An electrolytic cell including ruthenium modified titanium electrode was fabricated. Black-Right-Pointing-Pointer Ion chromatography/electrochemical derivatization/fluorescence detection was developed. Black-Right-Pointing-Pointer Strong oxidation capacity of this EC was obtained by using the Ru/Ti electrode with large surface area. - Abstract: An electrolytic cell (EC), composed of two ruthenium-plated titanium electrodes separated by cation-exchange membranes, was fabricated and evaluated for online postcolumn derivatization in ion chromatography (IC). Folic acid (FA) and methotrexate (MTX) were preliminarily used as prototype analytes to test the performance of EC. After separation by an anion exchange column, FA and MTX, which emit very weak fluorescence when excited, were electrochemically oxidized online in the anode chamber of the EC. The compounds with strong fluorescence, which are oxidation products, were detected by the fluorescence detector. The phosphate buffer solution (100 mM KH{sub 2}PO{sub 4}) served as an optimal eluent for anion exchange chromatographic separation and a suitable supporting electrolyte for electro-oxidation, leading to ideal compatibility between IC separation and the postcolumn electrochemical derivatization. For the presently proposed method, the linear ranges were from 0.01 mg L{sup -1} to 5 mg L{sup -1} for both FA and MTX. The detection limits of FA and MTX were 1.8 and 2.1 {mu}g L{sup -1}, and the relative standard deviations (RSD, n = 7) were 2.9% and 3.6%, respectively. The method was applied for the simultaneous determination of FA and MTX in the plasma of patients being treated for rheumatoid arthritis. The determination of MTX in the urine of the patients of diffuse large B cell lymphoma was also demonstrated.

  20. Oxidation mechanism of flavanone taxifolin. Electrochemical and spectroelectrochemical investigation

    International Nuclear Information System (INIS)

    Kocábová, Jana; Fiedler, Jan; Degano, Ilaria; Sokolová, Romana

    2016-01-01

    Highlights: • The oxidation mechanism of flavanone taxifolin was proposed. • The oxidation is specific and differs from oxidation of flavonol quercetin. • A benzofuranon common for quercetin is NOT the taxifolin oxidation product. • The absence of C2–C3 double bond is crucial in taxifolin oxidation. - Abstract: The oxidation of taxifolin on glassy carbon electrode in acetonitrile was studied by cyclic voltammetry, UV–vis and IR spectroelectrochemistry. The oxidation products were identified using HPLC-ESI-MS/MS. The two-electron oxidation mechanism differs from that of flavonols (e.g. quercetin) due to the absence of the double bond between atoms C-2 and C-3. As confirmed by IR spectroelectrochemistry, quinone at ring B is formed as low stable intermediate. The oxidation pathway leads to the formation of hydroxylated derivative of taxifolin 2′,3,3′,4′,5,7-hexahydroxyflavone accompanied by the 2,3-desaturation.

  1. Characterization of Schottky barrier diodes fabricated from electrochemical oxidation of {alpha} phase brass

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.u [Forensic Research Centre, University of Leicester, Leicester LE1 7 EA (United Kingdom)

    2011-04-01

    By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of {alpha} phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.

  2. Electrochemical performance of Nd1.8Ce0.2CuO4+δ:Ce0.9Gd0.1O2 composite cathode for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Khandale, A.P.; Bhoga, S.S.

    2012-01-01

    Intermediate temperature solid oxide fuel cells (IT-SOFCs) are viewed as a promising power generation systems with high efficiency and low pollution. Recently, mixed ionic-electronic conductors (MIECs), with K 2 NiF 4 - type structure, attracted much attention as cathode for IT-SOFC

  3. Electrochemical Modeling and Performance of a Lithium- and Manganese-Rich Layered Transition-Metal Oxide Positive Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Dennis W.; Abraham, Daniel P; Lu, Wenquan; Gallagher, Kevin G.; Bettge, Martin; Jansen, Andrew N

    2015-01-21

    The impedance of a lithium- and manganese-rich layered transition-metal oxide (MR-NMC) positive electrode, specifically Li1.2Ni0.15Mn0.55Co0.1O2, is compared to two other transition-metal layered oxide materials, specifically LiNi0.8Co0.15Al0.05O2 (NCA) and Li1.05(Ni1/3Co1/3Mn1/3)0.95O2 (NMC). A more detailed electrochemical impedance spectroscopy (EIS) study is conducted on the LMR-NMC electrode, which includes a range of states-of-charge (SOCs) for both current directions (i.e. charge and discharge) and two relaxation times (i.e. hours and one hundred hours) before the EIS sweep. The LMR-NMC electrode EIS studies are supported by half-cell constant current and galvanostatic intermittent titration technique (GITT) studies. Two types of electrochemical models are utilized to examine the results. The first type is a lithium ion cell electrochemical model for intercalation active material electrodes that includes a complex active material/electrolyte interfacial structure. In conclusion, the other is a lithium ion half-cell electrochemical model that focuses on the unique composite structure of the bulk LMR-NMC materials.

  4. Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time scales

    KAUST Repository

    Ren, Zhiyong; Yan, Hengjing; Wang, Wei; Mench, Matthew M.; Regan, John M.

    2011-01-01

    The variable biocatalyst density in a microbial fuel cell (MFC) anode biofilm is a unique feature of MFCs relative to other electrochemical systems, yet performance characterizations of MFCs typically involve analyses at electrochemically relevant

  5. An electrochemical study of the flow rate effect on the oxide film of SA106 Gr.C piping

    International Nuclear Information System (INIS)

    Hong, S. M.; Kim, J. H.; Kim, I. S.

    2002-01-01

    Effect of water flow rate on the oxide film of SA106 Gr.C piping was evaluated quantitatively through electrochemical method. It was carried out with weight change experiments, polarization tests, and EIS tests with rig that simulates water flow. Without water flow, the oxide film is so stable that it effectively blocks current exchange. With water flow, the oxide film was damaged and electrochemical current density and oxide film properties, C dl and R p were significantly changed

  6. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    Science.gov (United States)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  7. Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors

    International Nuclear Information System (INIS)

    Shou Qingliang; Cheng Jipeng; Zhang Li; Nelson, Bradley J.; Zhang Xiaobin

    2012-01-01

    We report a one-step synthesis of a nanocomposite of goethite (α-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge–discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g −1 with an excellent recycling capability making the material promising for electrochemical capacitors. - Graphical abstract: The reduced graphene oxide sheets are decorated with goethite nanorods. The as-prepared composite exhibits a high electrochemical capacitance with good recycling capability, which is promising for supercapacitor applications. Higlights: ► Ferrous ions act as reductant of graphite oxide and precursor of goethite nanorods. ► Goethite nanorods are attached on both sides of the reduced graphene oxide sheets. ► Composite exhibits a high specific capacitance and a good recycling capability. ► Composite is promising for supercapacitor applications.

  8. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater.

    Science.gov (United States)

    Liu, Pengxiao; Zhang, Hanmin; Feng, Yujie; Shen, Chao; Yang, Fenglin

    2015-10-15

    During the rejection of trace pharmaceutical contaminants from wastewater by forward osmosis (FO), disposal of the FO concentrate was still an unsolved issue. In this study, by integrating the advantages of forward osmosis and electrochemical oxidation, a forward osmosis process with the function of electrochemical oxidation (FOwEO) was established for the first time to achieve the aim of rejection of trace antibiotics from wastewater and treatment of the concentrate at the same time. Results demonstrated that FOwEO (current density J=1 mA cm(-2)) exhibited excellent rejections of antibiotics (>98%) regardless of different operation conditions, and above all, antibiotics in the concentrate were well degraded (>99%) at the end of experiment (after 3h). A synergetic effect between forward osmosis and electrochemical oxidation was observed in FOwEO, which lies in that antibiotic rejections by FO were enhanced due to the degradation of antibiotics in the concentrate, while the electrochemical oxidation capacity was improved in the FOwEO channel, of which good mass transfer and the assist of indirect oxidation owing to the reverse NaCl from draw solution were supposed to be the mechanism. This study demonstrated that the FOwEO has the capability to thoroughly remove trace antibiotics from wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    Science.gov (United States)

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  10. Characterising of solid state electrochemical cells under operation

    DEFF Research Database (Denmark)

    Holtappels, Peter

    2014-01-01

    Compared to significant progress in PEMFC especially regarding the utilization of complex fuels such as methanol significant progress has been made by applying spectroscopic / differential IR and spectrometric techniques to working fuel cells, the processes in solid state high temperature...... electrochemical cells are still a "black box". In order to identify local reaction sites, surface coverage and potential/current introduced materials and surface modifications, in situ techniques are needed to gain a better understanding of the elementary and performance limiting steps for these cells...

  11. V2O5 xerogel-poly(ethylene oxide) hybrid material: Synthesis, characterization, and electrochemical properties

    International Nuclear Information System (INIS)

    Guerra, Elidia M.; Ciuffi, Katia J.; Oliveira, Herenilton P.

    2006-01-01

    In this work, we report the synthesis, characterization, and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) (PEO) hybrid materials obtained by varying the average molecular weight of the organic component as well as the components' ratios. The materials were characterized by X-ray diffraction, ultraviolet/visible and infrared spectroscopies, thermogravimetric analysis, scanning electron microscopy, electron paramagnetic resonance, and cyclic voltammetry. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved, with increase in the interplanar spacing, giving evidence of a low-crystalline structure. We found that the electrochemical behaviour of the hybrid materials is quite similar to that found for the V 2 O 5 xerogel alone, and we verified that PEO leads to stabilization and reproducibility of the Li + electrochemical insertion/de-insertion into the V 2 O 5 xerogel structure, which makes these materials potential components of lithium ion batteries. - Graphical abstract: The synthesis, structural and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) hybrid materials have been described. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved. The cyclic voltammetry technique demonstrated that PEO intercalation provides an improvement in the electrochemical properties, mainly with respect to the lithium electroinsertion process into the oxide matrix

  12. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    International Nuclear Information System (INIS)

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-01-01

    Graphical abstract: Nanocomposites by introducing graphene oxide (GO) into chitosan (CS) matrix were prepared and the effect of GO on the crystallization, thermal stability and mechanical properties of the films were investigated. In addition, the electrochemical behavior of the CS/GO modified electrode was comparatively studied with that of the neat CS-modified electrode. - Highlights: • Graphene oxide (GO) with well dispersion in the biopolymer chitosan (CS) matrix. • Detectable interactions do exist between the GO nanosheets and CS segments. • The addition of minor GO can improve the electrochemical activity of the neat CS. - Abstract: A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors

  13. Electrochemical oxidation of organic carbonate based electrolyte solutions at lithium metal oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, R; Novak, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The oxidative decomposition of carbonate based electrolyte solutions at practical lithium metal oxide composite electrodes was studied by differential electrochemical mass spectrometry. For propylene carbonate (PC), CO{sub 2} evolution was detected at LiNiO{sub 2}, LiCoO{sub 2}, and LiMn{sub 2}O{sub 4} composite electrodes. The starting point of gas evolution was 4.2 V vs. Li/Li{sup +} at LiNiO{sub 2}, whereas at LiCoO{sub 2} and LiMn{sub 2}O{sub 4}, CO{sub 2} evolution was only observed above 4.8 V vs. Li/Li{sup +}. In addition, various other volatile electrolyte decomposition products of PC were detected when using LiCoO{sub 2}, LiMn{sub 2}O4, and carbon black electrodes. In ethylene carbonate / dimethyl carbonate, CO{sub 2} evolution was only detected at LiNiO{sub 2} electrodes, again starting at about 4.2 V vs. Li/Li{sup +}. (author) 3 figs., 2 refs.

  14. Electrochemical energy conversion: methanol fuel cell as example

    Directory of Open Access Journals (Sweden)

    Vielstich Wolf

    2003-01-01

    Full Text Available Thermodynamic and kinetic limitations of the electrochemical energy conversion are presented for the case of a methanol/oxygen fuel cell. The detection of intermediates and products is demonstrated using insitu FTIR spectroscopy and online mass spectrometry. The bifunctional catalysis of methanol oxydation by PtRu model surfaces is explained. The formation of HCOOH and HCHO via parallel reaction pathways is discussed. An example of DMFC system technology is presented.

  15. Spectroelectrochemical cell for in situ studies of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Hagen, Anke; Lund Traulsen, Marie; Kiebach, Wolff-Ragnar; Johansen, Bjoern Sejr

    2012-01-01

    Solid oxide fuel cells (SOFCs) are able to produce electricity and heat from hydrogen- or carbon-containing fuels with high efficiencies and are considered important cornerstones for future sustainable energy systems. Performance, activation and degradation processes are crucial parameters to control before the technology can achieve breakthrough. They have been widely studied, predominately by electrochemical testing with subsequent micro-structural analysis. In order to be able to develop better SOFCs, it is important to understand how the measured electrochemical performance depends on materials and structural properties, preferably at the atomic level. A characterization of these properties under operation is desired. As SOFCs operate at temperatures around 1073 K, this is a challenge. A spectroelectrochemical cell was designed that is able to study SOFCs at operating temperatures and in the presence of relevant gases. Simultaneous spectroscopic and electrochemical evaluation by using X-ray absorption spectroscopy and electrochemical impedance spectroscopy is possible. (orig.)

  16. Aluminum Oxide Formation On Fecral Catalyst Support By Electro-Chemical Coating

    Directory of Open Access Journals (Sweden)

    Yang H.S.

    2015-06-01

    Full Text Available FeCrAl is comprised essentially of Fe, Cr, Al and generally considered as metallic substrates for catalyst support because of its advantage in the high-temperature corrosion resistance, high mechanical strength, and ductility. Oxidation film and its adhesion on FeCrAl surface with aluminum are important for catalyst life. Therefore various appropriate surface treatments such as thermal oxidation, Sol, PVD, CVD has studied. In this research, PEO (plasma electrolytic oxidation process was applied to form the aluminum oxide on FeCrAl surface, and the formed oxide particle according to process conditions such as electric energy and oxidation time were investigated. Microstructure and aluminum oxide particle on FeCrAl surface after PEO process was observed by FE-SEM and EDS with element mapping analysis. The study presents possibility of aluminum oxide formation by electro-chemical coating process without any pretreatment of FeCrAl.

  17. Electrochemical characterization of the bacterial cell surface

    NARCIS (Netherlands)

    Wal, van der A.

    1996-01-01


    Bacterial cells are ubiquitous in natural environments and also play important roles in domestic and industrial processes. They are found either suspended in the aqueous phase or attached to solid particles. The adhesion behaviour of bacteria is influenced by the physico-chemical

  18. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, A.I.; Kim, YoungSam; Im, Hyunsik [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Pawar, S.M.; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Hyungsang [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2011-02-15

    A porous nickel oxide film is successfully synthesized by means of a chemical bath deposition technique from an aqueous nickel nitrate solution. The formation of a rock salt NiO structure is confirmed with XRD measurements. The electrochemical supercapacitor properties of the nickel oxide film are examined using cyclic voltammetery (CV), galvanostatic and impedance measurements in two different electrolytes, namely, NaOH and KOH. A specific capacitance of {proportional_to}129.5 F g{sup -1} in the NaOH electrolyte and {proportional_to}69.8 F g{sup -1} in the KOH electrolyte is obtained from a cyclic voltammetery study. The electrochemical stability of the NiO electrode is observed for 1500 charge-discharge cycles. The capacitative behaviour of the NiO electrode is confirmed from electrochemical impedance measurements. (author)

  19. Optical and structural properties of porous zinc oxide fabricated via electrochemical etching method

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ooi, P.K.; Ng, S.S.; Hassan, Z.; Hassan, H. Abu; Abdullah, M.J.

    2013-01-01

    Highlights: • Hillock like porous structure zinc oxide was obtained via electrochemical etching. • Anisotropic dominance etching process by KOH etchant. • Reststrahlen features are sensitive to multilayer porous structure. • Determination of porosity from IR reflectance spectrum. -- Abstract: We investigated the optical and structural properties of porous zinc oxide (ZnO) thin film fabricated by ultraviolet light-assisted electrochemical etching. This fabrication process used 10 wt% potassium hydroxide solution as an electrolyte. Hillock-like porous ZnO films were successfully fabricated according to the field emission scanning electron microscopy results. The cross-sectional study of the sample indicated that anisotropic-dominated etching process occurred. However, the atomic force microscopic results showed an increase in surface roughness of the sample after electrochemical etching. A resonance hump induced by the porous structure was observed in the infrared reflectance spectrum. Using theoretical modeling technique, ZnO porosification was verified, and the porosity of the sample was determined

  20. Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huajun [State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China); ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Tang, Fengqiu; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou (Max) Lu, Gao Qing [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Lim, Melvin [Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore)

    2010-01-15

    Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g{sup -1}) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors. (author)

  1. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    Science.gov (United States)

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  2. Bidirectional threshold switching characteristics in Ag/ZrO{sub 2}/Pt electrochemical metallization cells

    Energy Technology Data Exchange (ETDEWEB)

    Du, Gang, E-mail: dugang@hdu.edu.cn; Li, Hongxia; Mao, Qinan; Ji, Zhenguo [College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Chao [Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Ruoshui Road 398, Suzhou 215123 (China)

    2016-08-15

    A bidirectional threshold switching (TS) characteristic was demonstrated in Ag/ZrO{sub 2}/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼10{sup 7} by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag{sup +} ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO{sub 2}/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  3. Bidirectional threshold switching characteristics in Ag/ZrO2/Pt electrochemical metallization cells

    Directory of Open Access Journals (Sweden)

    Gang Du

    2016-08-01

    Full Text Available A bidirectional threshold switching (TS characteristic was demonstrated in Ag/ZrO2/Pt electrochemical metallization cells by using the electrochemical active Ag electrode and appropriate programming operation strategies The volatile TS was stable and reproducible and the rectify ratio could be tuned to ∼107 by engineering the compliance current. We infer that the volatile behavior is essentially due to the moisture absorption in the electron beam evaporated films, which remarkably improved the anodic oxidation as well as the migration of Ag+ ions. The resultant electromotive force would act as a driving force for the metal filaments dissolution, leading to the spontaneous volatile characteristics. Moreover, conductance quantization behaviors were also achieved owing to formation and annihilation of atomic scale metal filaments in the film matrix. Our results illustrate that the Ag/ZrO2/Pt device with superior TS performances is a promising candidate for selector applications in passive crossbar arrays.

  4. Study on structural refinement and electrochemical behaviour of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFC)

    Science.gov (United States)

    Kautkar, Pranay R.; Shirbhate, Shraddha C.; Acharya, Smita A.

    2018-05-01

    Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) was prepared by ethylene glycol-citrate combined sol-gel combustion route and calcined at optimized temperature 1050°C. The X-ray Diffraction (XRD) data revealing the crystal purity of BSCF cathode was refined by the Cubic-type structure having the space group Pm-3m by Rietveld analysis. Refined lattice parameter of BSCF cathode is a = 3.9759 Å and unit cell volume is 62.85 (4) Å3, Co/Fe-O bond length from VESTA program figured out to be 1.987 (3) Å. Electron density distribution (EDD) of the unit cell of BSCF cathode shows the bonding feature with oxygen ions, this could represent oxygen vacancies are present in the lattice. These results reflected in electrochemical impedance spectra measurement of symmetric cell. Area of specific resistance (ASR) of the BSCF cathode was found to be 0.17 Ω.cm2 at 700°C and respective activation energy (Ea) 1.15 eV. It shows surface exchange at cathode interface, surface diffusion and self-diffusion happened through Ce0.85Sd0.15O1.95 (SDC15) electrolyte.

  5. Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors

    International Nuclear Information System (INIS)

    Wu, M.-S.; Hsieh, H.-H.

    2008-01-01

    Nickel hydroxide powder prepared by directly chemical precipitation method at room temperature has a nanoplatelet-like morphology and could be converted into nickel oxide at annealing temperature higher than 300 deg. C, confirmed by the thermal gravimetric analysis and X-ray diffraction. Annealing temperature influences significantly both the electrical conductivity and the specific surface area of nickel oxide/hydroxide powder, and consequently determines the capacitor behavior. Electrochemical capacitive behavior of the synthesized nickel hydroxide/oxide film is investigated by cyclic voltammetry and electrochemical impedance spectroscope methods. After 300 deg. C annealing, the highest specific capacitance of 108 F g -1 is obtained at scan rate of 10 mV s -1 . When annealing temperature is lower than 300 deg. C, the electrical conductivity of nickel hydroxide dominates primarily the capacitive behavior. When annealing temperature is higher than 300 deg. C, both electrical conductivity and specific surface area of the nickel oxide dominate the capacitive behavior

  6. Solid oxide electrolyser cell

    Energy Technology Data Exchange (ETDEWEB)

    Hoejgaard Jensen, S.

    2006-12-15

    Solid oxide fuel cells (SOFCs) produced at Riso National Laboratory was tested as steam electrolysers under various current densities, operating temperatures and steam partial pressures. At 950 deg. C and a cell voltage of 1.48V the current density was -3.6 A/cm{sup 2} with app. 30% H{sub 2} + 70% H{sub 2}O in the inlet gas and a H{sub 2}O utilization of app. 40%. The tested SOECs were also used for CO{sub 2} electrolysis. Economy studies of CO and H2 production show that especially H{sub 2} production can be competitive in areas with cheap electricity. Assuming the above described initial performance and a lifetime of 10 years it is possible to achieve a production price of 0.7 US dollar/kg H{sub 2} with an electricity price of 1.3 US cent/kWh. The cell voltage was measured as function of time. In test of about two month of duration a long-term degradation was observed. At 850 deg. C, -0.5 A/cm{sup 2} with 50 vol% H{sub 2} the degradation rate was app. 20 mV/1000h. It was shown that the degradation happens at Ni/YSZ-electrode. The long term degradation is probably caused by coarsening of the Ni-particles. After onset of electrolysis operation a transient passivation/reactivation phenomena with duration of several days was observed. It was shown that the phenomenon is attributed to the SiO{sub 2} contamination at the Ni/YSZ electrode-electrolyte interface. The SiO{sub 2} arises from the albite glass sealing (NaAlSi{sub 3}O{sub 8}) that surrounds the electrode. Si may enter the Ni/YSZ electrode via the reaction Si(OH){sub 4}(g) {r_reversible} SiO{sub 2}(l)+H{sub 2}O(g). At the active sites of the Ni/YSZ electrode steam is reduced via the reaction H{sub 2}O - 2e {yields} H{sub 2}+O{sup 2-} . This shifts the equilibrium of the first reaction to form SiO{sub 2}(l) at the active sites. After a certain time the sealing crystallizes and the SiO{sub 2}(l) evaporates from the active sites and the cell reactivates. The passivation is shown to relate to a build up of a

  7. A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Hongyan Gao

    2017-11-01

    Full Text Available Iron cobalt oxides, such as typical FeCo2O4 and CoFe2O4, are two spinel structured transitional metal oxide materials with excellent electrochemical performance. As the electrodes, they have been widely applied in the current energy storage and conversion processes such as supercapacitors, Lithium-ion batteries and fuel cells. Based on synthesis approaches and controlled conditions, these two materials exhibited broad morphologies and nanostructures and thus distinct electrochemical performance. Some of them have shown promising applications as electrodes in energy storage and conversion. The incorporation with other materials to form composites further improved their performance. This review briefly summarized the recent applications of FeCo2O4 and CoFe2O4 in energy storage and conversion, current understandings on mechanisms and especially the relevance of morphologies and structures and composites to electrochemical performance. Some recommendations were finally put forward addressing current issues and future prospects on electrodes of FeCo2O4 and CoFe2O4 based materials in energy storage and conversion, implying there was still space to further optimize their performance.

  8. Development of a Photosynthetic Microbial Electrochemical Cell (PMEC Reactor Coupled with Dark Fermentation of Organic Wastes: Medium Term Perspectives

    Directory of Open Access Journals (Sweden)

    Samir Bensaid

    2015-01-01

    Full Text Available In this article the concept, the materials and the exploitation potential of a photosynthetic microbial electrochemical cell for the production of hydrogen driven by solar power are investigated. In a photosynthetic microbial electrochemical cell, which is based on photosynthetic microorganisms confined to an anode and heterotrophic bacteria confined to a cathode, water is split by bacteria hosted in the anode bioactive film. The generated electrons are conveyed through external “bio-appendages” developed by the bacteria to transparent nano-pillars made of indium tin oxide (ITO, Fluorine-doped tin oxide (FTO or other conducting materials, and then transferred to the cathode. On the other hand, the generated protons diffuse to the cathode via a polymer electrolyte membrane, where they are reduced by the electrons by heterotrophic bacteria growing attached to a similar pillared structure as that envisaged for the anode and supplemented with a specific low cost substrate (e.g., organic waste, anaerobic digestion outlet. The generated oxygen is released to the atmosphere or stored, while the produced pure hydrogen leaves the electrode through the porous layers. In addition, the integration of the photosynthetic microbial electrochemical cell system with dark fermentation as acidogenic step of anaerobic digester, which is able to produce additional H2, and the use of microbial fuel cell, feed with the residues of dark fermentation (mainly volatile fatty acids, to produce the necessary extra-bias for the photosynthetic microbial electrochemical cell is here analyzed to reveal the potential benefits to this novel integrated technology.

  9. Boron-Doped Diamond Electrodes for the Electrochemical Oxidation and Cleavage of Peptides

    NARCIS (Netherlands)

    Roeser, Julien; Alting, Niels F. A.; Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer

    2013-01-01

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy

  10. High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide

    CSIR Research Space (South Africa)

    Bello, A

    2013-01-01

    Full Text Available We have fabricated a symmetric electrochemical capacitor with high energy and power densities based on a composite of graphene foam (GF) with 80 wt% of manganese oxide (MnO(sub2)) deposited by hydrothermal synthesis. Raman spectroscopy and X...

  11. Electrochemical stability and transformations of fluorinated poly(2,6-dimethyl-1,4-phenylene oxide)

    NARCIS (Netherlands)

    Pud, A.A.; Rogalsky, S.P.; Ghapoval, G.S.; Kharitonov, A.P.; Kemperman, Antonius J.B.

    2000-01-01

    Fluorination of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) leads to narrowing of its window of electrochemical stability in a cathodic range of potentials. It is found this is connected with appearance of both perfluorinated and incompletely fluorinated units in the polymer. The former units are

  12. Novel Insights into the Electrochemical Detection of Nitric Oxide in Biological Systems

    Czech Academy of Sciences Publication Activity Database

    Pekarová, Michaela; Lojek, Antonín; Hrbáč, J.; Kuchta, R.; Kadlec, J.; Kubala, Lukáš

    2014-01-01

    Roč. 60, č. 1 (2014), s. 8-12 ISSN 0015-5500 R&D Projects: GA MŠk(CZ) EE2.3.30.0030; GA ČR(CZ) GP13-40882P Institutional support: RVO:68081707 Keywords : nitric oxide * electrochemical detector * biological systems Subject RIV: BO - Biophysics Impact factor: 1.000, year: 2014

  13. Continuous electrochemical oxidation of biomass derived 5-(hydroxymethyl)furfural into 2,5-furandicarboxylic acid

    NARCIS (Netherlands)

    Latsuzbaia, R.; Bisselink, R.; Anastasopol, A.; Meer, van der H.; Heck, van R.; Yagüe, M.S.; Zijlstra, M.; Roelands, M.; Crockatt, M.; Goetheer, E.; Giling, E.

    2018-01-01

    Abstract: A continuous electrochemical process with integrated product separation has been developed for production of 2,5-furandicarboxylic acid (FDCA) by oxidation of 5-(hydroxymethyl)furfural (HMF) in aqueous alkaline media on non-noble Ni/NiOOH foam electrodes at ambient conditions. Initially,

  14. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  15. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  16. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal, E-mail: nirmalprabhakar@gmail.com; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-05

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV–Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80–92% recovery of malathion from the lettuce leaves and soil sample. - Highlights: • An electrochemical aptasensor for the detection of Malathion has been developed. • Chitosan-iron oxide NP deposited FTO sheets provides platform for aptamer immobilization. • Aptasensor has efficiency to detect malathion upto 0.001 ng/mL within 15 min.

  17. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    Science.gov (United States)

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  18. Development of remote electrochemical decontamination for hot cell applications

    International Nuclear Information System (INIS)

    Turner, A.D.; Lain, M.J.; Fletcher, P.A.; Dawson, R.K.; Pottinger, J.S.

    1989-01-01

    The primary aim of the programme is to develop and evaluate remote electrochemical decontamination systems for metal surfaces. The bulk of the waste volume should be reduced to a reuse or low-level waste disposal category, while concentrating most of the activity in a small volume suitable for immobilisation. The goal of the development programme is to test these techniques in both alpha-active and alpha-beta-gamma hot cells in order to ascertain their usefulness as a component of an overall decommissioning strategy. As a result of the radiological environment, particular emphasis will be placed on remote operation in order to reduce occupational radiation exposure. Two types of technique based on the electrochemical dissolution of thin surface layers of the substrate will be investigated: immersion of small items in tanks for electroetching and in situ electropolishing. In both cases, reagents will be chosen with their subsequent disposal in mind. (Author)

  19. Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite

    Science.gov (United States)

    Radoń, Adrian; Włodarczyk, Patryk; Łukowiec, Dariusz

    2018-05-01

    The article presents the influence of reduction by hydrogen in statu nascendi and modification by hydrogen peroxide on the structure and electrical conductivity of electrochemically exfoliated graphite. It was confirmed that the electrochemical exfoliation can be used to produce oxidized nanographite with an average number of 25 graphene layers. The modified electrochemical exfoliated graphite and reduced electrochemical exfoliated graphite were characterized by high thermal stability, what was associated with removing of labile oxygen-containing groups. The presence of oxygen-containing groups was confirmed using Fourier-transform infrared spectroscopy. Influence of chemical modification by hydrogen and hydrogen peroxide on the electrical conductivity was determined in wide frequency (0.1 Hz-10 kHz) and temperature range (-50 °C-100 °C). Material modified by hydrogen peroxide (0.29 mS/cm at 0 °C) had the lowest electrical conductivity. This can be associated with oxidation of unstable functional groups and was also confirmed by analysis of Raman spectra. The removal of oxygen-containing functional groups by hydrogen in statu nascendi resulted in a 1000-fold increase in the electrical conductivity compared to the electrochemical exfoliated graphite.

  20. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.

    Science.gov (United States)

    Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2013-07-16

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics.

  1. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers.

    Science.gov (United States)

    Lin, Hui-Wen; Kustermans, Caroline; Vaiopoulou, Eleni; Prévoteau, Antonin; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2017-07-01

    The addition of iron salts is one of the most commonly used dosing strategies for sulfide control in sewers. However, iron salts decrease the sewage pH which not only reduces the effectiveness of sulfide precipitation but also enhances the release of residual sulfide to the sewer atmosphere. Equally important, concentrated iron salt solutions are corrosive and their frequent transport, handling, and on-site storage often come with Occupational Health and Safety (OH&S) concerns. Here, we experimentally demonstrated a novel sulfide control approach using electrochemical systems with parallel placed iron electrodes. This enabled combining anodic dissolved iron species release with cathodic hydroxyl anion production, which alleviates all the aforementioned concerns. A long-term experiment was successfully carried out achieving an average sulfide removal efficiency of 95.4 ± 4.4% at low voltage input of 2.90 ± 0.54 V over the course of 8 weeks. This electrochemical method was demonstrated to successfully achieve efficient sulfide control. In addition, it increases the sewage pH, thereby overcoming the drawbacks associated with the pH decrease in the case of conventional iron salt dosing. Ferrous ions were produced at an overall coulombic efficiency (CE) of 98.2 ± 1.2%, whereas oxygen evolution and direct sulfide oxidation were not observed. Short-term experiments showed that increasing either inter-electrode gap or current density increased the cell voltage associated with the increase in the ohmic drop of the system. Overall, this study highlights the practical potential of in-situ generation of dissolved iron species and simultaneous hydroxyl anion generation for efficient sulfide control in sewers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Low cost bipolar current collector-separator for electrochemical cells

    International Nuclear Information System (INIS)

    Lawrence, R.

    1980-01-01

    A bipolar current collecting, cell separating element for electrochemical cells for conducting current from the anode electrode of one cell unit to cathode electrode of the adjacent cell unit comprises: (A) a pressure mold aggregate of electrically conductive carbon/graphite particles and thermoplastic fluorocarbon polymer resin particles in a weight ratio of 2.5:1 to 16:1 whereby said molded aggregated has a bulk resistivity which is less than 4x10 -3 ohm/inch, (B) said molded aggregate having a fluid imprevious main body, at least one recessed chamber on one side of said main body and a plurality of spaced, conductive projections extending from the base of said chamber for contacting and permitting current flow between the electrode of adjacent cell unit, and (C) means communicating with said recessed chambers to permit introduction and removal of fluids

  3. Comparative Study of Commercial Oxide Electrodes Performance in Electrochemical Degradation of Organics in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Pelegrino Rosângela L.

    2002-01-01

    Full Text Available In this paper the potentiality of two types of DSAâ commercial electrodes, for electrochemical treatment of effluents, is investigated. Oxide anodes, with nominal composition of 70TiO2/30RuO2 and 45IrO2/55Ta2O5, were used in a flow-cell reactor for the electrooxidation of phenol. Comparative results were presented as phenol concentration decay as a function of electrolysis time, as well as COD and TOC concentration reduction. The cell reactor was operated at current densities, ranging from 15 to 150 mA cm-2 and solution linear velocity was 0.24 m s-1. Results reported in this paper showed that phenol and quinones were degraded to a very low concentration, besides only a small portion of the organic carbon is reduced. Starting from 100 mg L-1, after five hours of electrolysis at 100 mA cm-2, concentrations reached 0.4 mg L-1 of phenol, 1 mg L-1 of hydroquinone, 7 mg L-1 of benzoquinone and TOC was reduced by 35%.

  4. Electrochemical and biological characterization of coatings formed on Ti-15Mo alloy by plasma electrolytic oxidation.

    Science.gov (United States)

    Kazek-Kęsik, Alicja; Krok-Borkowicz, Małgorzata; Pamuła, Elżbieta; Simka, Wojciech

    2014-10-01

    β-Type titanium alloys are considered the future materials for bone implants. To improve the bioactivity of Ti-15Mo, the surface was modified using the plasma electrolytic oxidation (PEO) process. Tricalcium phosphate (TCP, Ca3PO4), wollastonite (CaSiO3) and silica (SiO2) were selected as additives in the anodizing bath to enhance the bioactivity of the coatings formed during the PEO process. Electrochemical analysis of the samples was performed in Ringer's solution at 37°C. The open-circuit potential (EOCP) as a function of time, corrosion potential (ECORR), corrosion current density (jCORR) and polarization resistance (Rp) of the samples were determined. Surface modification improved the corrosion resistance of Ti-15Mo in Ringer's solution. In vitro studies with MG-63 osteoblast-like cells were performed for 1, 3 and 7 days. After 24h, the cells were well adhered on the entire surfaces, and their number increased with increasing culture time. The coatings formed in basic solution with wollastonite exhibited better biological performance compared with the as-ground sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Co-extrusion of electrolyte/anode functional layer/anode triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells-electrochemical performance study

    Science.gov (United States)

    Li, Tao; Wu, Zhentao; Li, K.

    2015-01-01

    In this study, the effects of an anode functional layer (AFL) with controlled thickness on physical and electrochemical properties of a micro-tubular SOFC have been systematically studied. A series of electrolyte/AFL/anode triple-layer hollow fibres with controllable AFL thicknesses (16.9-52.7 μm) have been fabricated via a single-step phase-inversion assisted co-extrusion technique. Both robustness of the cell and gas-tightness of the electrolyte layer are considerably improved by introducing the AFL of this type. The fracture force of the sample with the thickest AFL (9.67 N) almost doubles when compared to the electrolyte/anode dual-layer counterpart (5.24 N). Gas-tightness of the electrolyte layer is also considerably increased as AFL contributes to better-matched sintering behaviours between different components. Moreover, the formation of an AFL simultaneously with electrolyte and anode significantly improves the cell performances. The sample with the thinnest AFL (approximately 16.9 μm, 6% of the total anode thickness) leads to a 30% (from 0.89 to 1.21 W cm-2) increase in maximum power density, due to increased triple-phase boundaries (TPB). However, further increase in TPB from a thicker AFL is less effective for improving the cell performance, due to the substantially increased fuel diffusion resistance and subsequently higher concentration polarization. This indicates that the control over the AFL thickness is critically important in avoiding offsetting the benefits of extended TPB and consequently decreased cell performances.

  6. Synthesis and Microstructural Characterization of Manganese Oxide Electrodes for Application as Electrochemical Supercapacitors

    Science.gov (United States)

    Babakhani, Banafsheh

    The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected

  7. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  8. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Fumihiko; Oshima, Yoshito [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Otomo, Junichiro, E-mail: otomo@k.u-tokyo.ac.jp [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2011-11-30

    Highlights: > High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. > High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. > Low selectivity for CH{sub 4} in ethylene glycol electro-oxidation. > High selectivity for CO{sub 2} according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 {sup o}C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH{sub 2}PO{sub 4}, which has high proton conductivity (>10{sup -2} S cm{sup -1}) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H{sub 2}, CO{sub 2}, CO and a small amount of CH{sub 4} formation was also observed. On the other hand, the amounts of C{sub 2} products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  9. Electrochemical reduction of cerium oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.; Serp, J.; Fouletier, J.

    2011-01-01

    This brief article describes a pyrochemical process that is used by CEA to turn actinide oxides into metal actinides. This process is applied to Cerium oxides (CeO 2 ) that simulate actinide oxides well chemically as cerium belongs to the lanthanide family. The process is in fact an electrolysis of cerium oxide in a bath of molten calcium chloride salt whose temperature is between 800 and 900 Celsius degrees. At those temperatures calcium chloride becomes a ionic liquid (Ca 2+ and Cl - ) that is a good electrical conductor and is particularly well-adapted as solvent to an electrolytic process. The electrolysis current allows the transformation of solvent Ca 2+ ions into metal calcium which, in turn, can reduce cerium oxide into metal cerium through chromatically. Experimental data shows the reduction of up to 90% of 10 g samples of CeO 2 in a 6 hour long electrolysis while the best reduction rate ever known was 80% so far. This result is all the more promising that cerium oxides are more difficult to reduce than actinide oxides from the thermodynamical perspective

  10. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    Science.gov (United States)

    Reichner, Philip; Dollard, Walter J.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  11. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water.

    Science.gov (United States)

    Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra; Nørskov, Jens K; Bell, Alexis T

    2013-09-11

    The presence of layered cobalt oxides has been identified experimentally in Co-based anodes under oxygen-evolving conditions. In this work, we report the results of theoretical investigations of the relative stability of layered and spinel bulk phases of Co oxides, as well as the stability of selected surfaces as a function of applied potential and pH. We then study the oxygen evolution reaction (OER) on these surfaces and obtain activity trends at experimentally relevant electro-chemical conditions. Our calculated volume Pourbaix diagram shows that β-CoOOH is the active phase where the OER occurs in alkaline media. We calculate relative surface stabilities and adsorbate coverages of the most stable low-index surfaces of β-CoOOH: (0001), (0112), and (1014). We find that at low applied potentials, the (1014) surface is the most stable, while the (0112) surface is the more stable at higher potentials. Next, we compare the theoretical overpotentials for all three surfaces and find that the (1014) surface is the most active one as characterized by an overpotential of η = 0.48 V. The high activity of the (1014) surface can be attributed to the observation that the resting state of Co in the active site is Co(3+) during the OER, whereas Co is in the Co(4+) state in the less active surfaces. Lastly, we demonstrate that the overpotential of the (1014) surface can be lowered further by surface substitution of Co by Ni. This finding could explain the experimentally observed enhancement in the OER activity of Ni(y)Co(1-y)O(x) thin films with increasing Ni content. All energetics in this work were obtained from density functional theory using the Hubbard-U correction.

  12. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage

    Science.gov (United States)

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2013-12-01

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  13. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  14. Electrochemical and theoretical characterization of the electro-oxidation of dimethoxycurcumin

    Science.gov (United States)

    Arrue, Lily; Barra, Tomas; Camarada, María Belén; Zarate, Ximena; Schott, Eduardo

    2017-06-01

    Dimethoxycurcumin (DMC) ((1E,6E)-1-(3,4-dimethoxycyclohexyl)-7-(3,4-dimethoxyphenyl) hepta-1,6- diene-3,5-dione) is a natural polyphenolic compound that appears together with curcumin in turmeric. Both molecules have wide range biological activities as antioxidant, anti-inflammatory and anti-carcinogenic agent. To evaluate the oxidation process and kinetics for DMC, the rate constant, electron transfer and diffusion coefficients for the electrochemical oxidation were determined. Therefore, its electrochemical behavior over a platinum electrode in anhydrous media was investigated. Furthermore, DFT calculations were performed to give a rational explanation to the obtained results. All the results support the fact that the central sbnd CH2sbnd group is the most reactive against an oxidation process.

  15. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  17. Electrochemical Oxidation of Phenol using a Flow-through Micro ...

    African Journals Online (AJOL)

    NICO

    plate automotive type and the industrial tubular electrode either by dry oxide or .... HPLC pump that allowed careful control of the flow of solutions containing the ... chromatographic separation was done using a Waters micro. RESEARCH ...

  18. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors.

    Science.gov (United States)

    Kumar, Nanjundan Ashok; Choi, Hyun-Jung; Shin, Yeon Ran; Chang, Dong Wook; Dai, Liming; Baek, Jong-Beom

    2012-02-28

    An alternative and effective route to prepare conducting polyaniline-grafted reduced graphene oxide (PANi-g-rGO) composite with highly enhanced properties is reported. In order to prepare PANi-g-rGO, amine-protected 4-aminophenol was initially grafted to graphite oxide (GO) via acyl chemistry where a concomitant partial reduction of GO occurred due to the refluxing and exposure of GO to thionyl chloride vapors and heating. Following the deprotection of amine groups, an in situ chemical oxidative grafting of aniline in the presence of an oxidizing agent was carried out to yield highly conducting PANi-g-rGO. Electron microscopic studies demonstrated that the resultant composite has fibrillar morphology with a room-temperature electrical conductivity as high as 8.66 S/cm and capacitance of 250 F/g with good cycling stability.

  19. Electrochemical Water-Splitting Based on Hypochlorite Oxidation

    Czech Academy of Sciences Publication Activity Database

    Minhová Macounová, Kateřina; Simic, N.; Ahlberg, E.; Krtil, Petr

    2015-01-01

    Roč. 137, č. 23 (2015), s. 7262-7265 ISSN 0002-7863 Institutional support: RVO:61388955 Keywords : electrochemistry * hypochlorite oxidation * water-splitting Subject RIV: CG - Electrochemistry Impact factor: 13.038, year: 2015

  20. Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes

    International Nuclear Information System (INIS)

    Faouzi Elahmadi, Mohammed; Bensalah, Nasr; Gadri, Abdellatif

    2009-01-01

    Synthetic aqueous wastes polluted with Congo Red (CR) have been treated by two advanced oxidation processes: electrochemical oxidation on boron doped diamond anodes (BDD-EO) and ozonation under alkaline conditions. For same concentrations, galvanostatic electrolyses have led to total COD and TOC removals but ozonation process can reach only 85% and 81% of COD and TOC removals, respectively. UV-vis qualitative analyses have shown different behaviors of CR molecules towards ozonation and electrochemical oxidation. Rapid discoloration has been observed during ozonation, whereas color persistence till the end of galvanostatic electrolyses has been seen during BDD-EO process. It seems that the oxidation mechanisms involved in the two processes are different: simultaneous destruction of azoic groups is suggested during ozonation process but consecutive destruction of these groups is proposed during BDD-EO. However, energetic study has evidenced that BDD-EO appears more efficient and more economic than ozonation in terms of TOC removals. These results have been explained by the fact that during BDD-EO, other strong oxidants electrogenerated from the electrolyte oxidation such as persulfates and direct-oxidation of CR and its byproducts on BDD anodes complement the hydroxyl radicals mediated oxidation to accomplish the total mineralization of organics.

  1. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides

    Science.gov (United States)

    Salerno, Marco

    2010-09-01

    Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K3[Fe(CN)6] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO3 form.

  2. Surface properties of nanostructured NiO undergoing electrochemical oxidation in 3-methoxy-propionitrile

    Science.gov (United States)

    Bonomo, Matteo; Marrani, Andrea Giacomo; Novelli, Vittoria; Awais, Muhammad; Dowling, Denis P.; Vos, Johannes G.; Dini, Danilo

    2017-05-01

    Nanostructured nickel oxide (NiO) was deposited in the configuration of thin film (thickness, l = 2-6 μm) onto fluorine-doped tin oxide (FTO) substrates via plasma-assisted rapid discharge sintering (RDS). Electrochemical cycling of RDS NiO in 3-methoxy-propionitrile (3-MPN) revealed two characteristic peaks of NiO oxidation which were associated to the surface-confined redox processes Ni(II) → Ni(III) and Ni(III) → Ni(IV). Grazing angle X-ray photoelectron spectroscopy (XPS) was conducted ex-situ on NiO electrodes in both pristine and oxidized states. Oxidized NiO samples for XPS experiments were obtained in the potentiostatic mode through the polarization of NiO at its two characteristic potentials of oxidation. The XPS analysis allowed to ascertain the electronic structure of the nanoporous NiO framework, and verify the adsorption of perchlorate and chloride anions onto NiO surface due to the compensation of the charge stored in oxidized NiO. XPS also revealed that the spectrum within the region characteristic of Ni 2p ionization does not vary considerably with the state of charge of the nickel centres. This finding is in evident contrast to what has been observed for the same system when it undergoes electrochemical oxidation in aqueous electrolyte.

  3. Electrochemical Properties of Graphene-vanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors

    International Nuclear Information System (INIS)

    Jeong, Heeyoung; Jeong, Sang Mun

    2015-01-01

    The nanostructural graphene/vanadium oxide (graphene/V 2 O 5 ) composite with enhanced capacitance was synthesized by the electro-deposition in 0.5 M VOSO 4 solution. The morphology of composites was characterized using scanning electron microscopy (SEM), x-ray diffraction pattern (XRD), and x-ray photoelectron spectroscopy (XPS). The oxidation states of the electro-deposited vanadium oxide was found to be V 5+ and V 4+ . The morphology of the prepared graphene/V 2 O 5 composite exhibits a netlike nano-structure with V 2 O 5 nanorods in about 100 nm diameter, which could lead a better contact between electrolyte an electrode. The composite with a deposition time of 4,000 s exhibits the specific capacitance of 854 mF/cm 2 at a scan rate of 20 mV/s and the capacitance retention of 53% after 1000 CV cycles

  4. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  5. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  6. Effect of graphene oxide nanoplatelets on electrochemical properties of steel substrate in saline media

    International Nuclear Information System (INIS)

    Chaudhry, A.U.; Mittal, Vikas; Mishra, Brajendra

    2015-01-01

    There has been increased interest in using graphene oxide (GO) in various industrial applications such as working fluids, lubricants, oil and gas fields, heavy metal removal from water, anticorrosion paints and coatings etc. We studied electrochemical properties of steel in the presence of suspended GO in saline media. GO suspension has been characterized using Transmission electron microscopy (TEM) and X-ray diffractometer (XRD). We measured the effect of the GO concentration (0–15 ppm) on electrochemical properties of steel using different techniques: open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) and potentiodynamic (PD) methods. Results indicate that the suppression of corrosion is directly proportional to increasing GO concentrations in saline environments. Surface morphology of corroded samples was examined using Scanning Electron Microscopy (SEM). Identification of the elements at accumulated layer was estimated from peaks of energy dispersive x-ray spectroscopy (EDX) and XRD. Increased protection abilities with increasing GO concentration have been attributed to the domination of salt layer presence at the surface of steel which occurs via precipitation of sodium chloride. Surface analysis confirm that there is no direct effect of GO on the protection behavior of steel. The presence of GO in the solution can enhance the precipitation of NaCl due to the decreased solubility NaCl which further slows down the corrosion. The pourbaix diagram shows that GO forms an anionic compound with sodium which may enhance the precipitation at working electrode. - Graphical abstract: Display Omitted - Highlights: • Electrochemical properties of steel in saline media containing nano graphene oxide. • Effect of concentration of graphene oxide on electrochemical properties. • Mechanism of corrosion reduction due to the presence of graphene oxide

  7. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Bo, E-mail: 357436235@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yu, Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wei, Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Long, HangYu, E-mail: 55686385@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xie, Youneng, E-mail: 1187272844@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Yijia, E-mail: 503630433@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-07-30

    Highlights: • High quality boron-doped diamond film electrodes were synthesized on Nb substrates. • Electrochemical oxidation on boron-doped diamond anode is an effective method for treating landfill leachate concentrates. • Optimal operating conditions for electrochemical oxidation of landfill leachate concentrates is determined. • 87.5% COD removal and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment. - Abstract: In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH{sub 3}−N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm{sup −2}, pH 5.16, flow velocity 6 L h{sup −1}. Under these conditions, 87.5% COD and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m{sup −3}. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  8. Microfabricated microbial fuel cell arrays reveal electrochemically active microbes.

    Directory of Open Access Journals (Sweden)

    Huijie Hou

    Full Text Available Microbial fuel cells (MFCs are remarkable "green energy" devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.

  9. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Liu Jinping

    2010-01-01

    Full Text Available Abstract SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2, low detection limit (0.2 μM and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  10. Method of preparing an electrochemical cell in uncharged state

    Science.gov (United States)

    Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.

    1977-02-01

    A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.

  11. 3,5-Diamino-1,2,4-triazole@electrochemically reduced graphene oxide film modified electrode for the electrochemical determination of 4-nitrophenol

    International Nuclear Information System (INIS)

    Kumar, Deivasigamani Ranjith; Kesavan, Srinivasan; Baynosa, Marjorie Lara; Shim, Jae-Jin

    2017-01-01

    Highlights: •Triazole film was formed on electrochemically reduced graphene oxide. •pDAT@ERGO/GC was utilized for the electrochemical determination of 4-nitrophenol. •pDAT@ERGO/GC electrode offered wide concentration and nanomolar detection limit. •The fabricated electrode was employed in water sample analyses. -- Abstract: In this study, an eco-friendly benign method for the modification of electrochemically reduced graphene oxide (ERGO) on glassy carbon (GC) surface and electrochemical polymerized 3,5-diamino-1,2,4-triazole (DAT) film composite (pDAT@ERGO/GC) electrode was developed. The surface morphologies of the pDAT@ERGO/GC modified electrode were analyzed by field emission scanning electron microscopy (FESEM). FESEM images indicated that the ERGO supported pDAT has an almost homogeneous morphology structure with a size of 70 to 80 nm. It is due to the water oxidation reaction occurred while pDAT@ERGO/GC fabrication peak at +1.4 V leads to O 2 evolution and oxygen functional group functionalization on ERGO, which confirmed by X-ray photoelectron spectroscopy (XPS). In contrast, the bare GC modified with pDAT showed randomly arranged irregular bulky morphology structure compared to those of pDAT@ERGO/GC. Electrochemical reduction of graphene oxide was confirmed by Raman spectroscopy, XPS, and electrochemical impedance spectroscopy (EIS). The pDAT@ERGO/GC modified electrode was used for the electrochemical determination of 4-nitrophenol (4-NP). The 4-NP oxidation peak was observed at +0.25 V, and the differential pulse voltammetry demonstrated wide concentration range (5–1500 μM), high sensitivity (0.7113 μA μM −1 ), and low limit of detection (37 nM). Moreover, the pDAT@ERGO/GC electrode was applied to real water sample analysis by standard addition method, where in good recoveries (97.8% to 102.4%) were obtained.

  12. Performance Characterization of Solid Oxide Cells Under High Pressure

    DEFF Research Database (Denmark)

    Sun, Xiufu; Bonaccorso, Alfredo Damiano; Graves, Christopher R.

    2015-01-01

    on partial pressures (oxygen, steam and hydrogen) were affected by increasing the pressure. In electrolysis mode at low current density, the performance improvement was counteracted by the increase in open circuit voltage, but it has to be borne in mind that the pressurized gas contains higher molar free......In this work, recent pressurized test results of a planar Ni- YSZ (YSZ: Yttria stabilized Zirconia) supported solid oxide cell are presented. Measurements were performed at 800 C in both fuel cell and electrolysis mode at different pressures. A comparison of the electrochemical performance...... of the cell at 1 and 3 bar shows a significant and equal performance gain at higher pressure in both fuel cell mode and electrolysis mode. Electrochemical impedance spectroscopy revealed that the serial resistance was not affected by the operation pressure; all the other processes that are dependent...

  13. Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor.

    Science.gov (United States)

    Liu, Xiaobo; Marrakchi, Mouna; Jahne, Michael; Rogers, Shane; Andreescu, Silvana

    2016-02-01

    The involvement of oxidative stress in the mechanism of antibiotics-meditated cell death is unclear and subject to debate. The kinetic profile and a quantitative relationship between the release of reactive oxygen species (ROS), bacteria and antibiotic type remain elusive. Here we report direct measurements and analytical quantification of the release of superoxide radicals (O2(·-)), a major contributor to ROS, in antibiotics-treated bacterial cultures using a cytochrome c electrochemical biosensor. The specificity of electrochemical measurements was established by the addition of superoxide dismutase (SOD) which decreased the O2(·-) signal. Measurements using a general ROS-specific fluorescence dye and colony forming units (CFU) assays were performed side-by-side to determine the total ROS and establish the relationship between ROS and the degree of lethality. Exposure of Escherichia coli and Listeria monocytogenes cultures to antibiotics increased the release of O2(·-) radicals in a dose-dependent manner, suggesting that the transmembrane generation of ROS may occur as part of the antibiotic action. The study provides a quantitative methodology and fundamental knowledge to further explore the role of oxidative stress in antibiotics-meditated bacterial death and to assess physiological changes associated with the complex metabolic events related to oxidative stress and bacterial resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    Science.gov (United States)

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  15. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    Science.gov (United States)

    McClintock, Carlee S; Hettich, Robert L

    2013-01-02

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins.

  16. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    International Nuclear Information System (INIS)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-01-01

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution

  17. Nano-electrochemical deposition of fuel cells electrocatalysts

    CSIR Research Space (South Africa)

    Mathe

    2008-11-01

    Full Text Available stream_source_info Mathe_2008.pdf.txt stream_content_type text/plain stream_size 34594 Content-Encoding UTF-8 stream_name Mathe_2008.pdf.txt Content-Type text/plain; charset=UTF-8 1 Nano-electrochemical deposition... of fuel cells electrocatalysts MK MATHE a,*, TS MKWIZU a,b, I CUKROWSKI b * ,aCSIR Materials Science and Manufacturing, Energy and Processes, PO Box 395, Pretoria, 0001 bDepartment of Chemistry, University of Pretoria, Pretoria, 0002 Email: kmathe...

  18. Circulation of electrolyte in an electrochemical cell, using Taylor vortices

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, J D

    1990-05-30

    In an electrochemical cell for decomposition of organic waste liquids having an anode compartment and a cathode compartment separated by a porous pot, the anode is driven by a shaft having an axial passage extending from an upper inlet in the vicinity of the liquid level to a lower outlet adjacent a turbine. The rotating anode produces Taylor vortices in annular space and liquid is drawn from layer through passage and emerges to contact the anode. In one use, organic solvent such as tributyl phosphate/odourless kerosene is destroyed. Fresh solvent is added through an inlet. A helical cooler may also be provided. (author).

  19. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

    Science.gov (United States)

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S

    2012-06-27

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min.

  20. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection.

    Science.gov (United States)

    Li, Bing; Pan, Genhua; Avent, Neil D; Lowry, Roy B; Madgett, Tracey E; Waines, Paul L

    2015-10-15

    A novel printed graphene electrode modified with electrochemically reduced graphene oxide was developed for the detection of a specific oligonucleotide sequence. The graphene oxide was immobilized onto the surface of a graphene electrode via π-π bonds and electrochemical reduction of graphene oxide was achieved by cyclic voltammetry. A much higher redox current was observed from the reduced graphene oxide-graphene double-layer electrode, a 42% and 36.7% increase, respectively, in comparison with that of a bare printed graphene or reduced graphene oxide electrode. The good electron transfer activity is attributed to a combination of the large number of electroactive sites in reduced graphene oxide and the high conductivity nature of graphene. The probe ssDNA was further immobilized onto the surface of the reduced graphene oxide-graphene double-layer electrode via π-π bonds and then hybridized with its target cDNA. The change of peak current due to the hybridized dsDNA could be used for quantitative sensing of DNA concentration. It has been demonstrated that a linear range from 10(-7)M to 10(-12)M is achievable for the detection of human immunodeficiency virus 1 gene with a detection limit of 1.58 × 10(-13)M as determined by three times standard deviation of zero DNA concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes.

    Science.gov (United States)

    Enache, T A; Oliveira-Brett, A M

    2013-02-01

    The direct electrochemical behaviour of peptide methionine sulfoxide reductase A (MsrA) adsorbed on glassy carbon and boron doped diamond electrodes surface, was studied over a wide pH range by cyclic and differential pulse voltammetry. MsrA oxidation mechanism occurs in three consecutive, pH dependent steps, corresponding to the oxidation of tyrosine, tryptophan and histidine amino acid residues. At the glassy carbon electrode, the first step corresponds to the oxidation of tyrosine and tryptophan residues and occurs for the same potential. The advantage of boron doped diamond electrode was to enable the separation of tyrosine and tryptophan oxidation peaks. On the second step occurs the histidine oxidation, and on the third, at higher potentials, the second tryptophan oxidation. MsrA adsorbs on the hydrophobic carbon electrode surface preferentially through the three hydrophobic domains, C1, C2 and C3, which contain the tyrosine, tryptophan and histidine residues, and tryptophan exists only in these regions, and undergo electrochemical oxidation. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Carbon Nanotube Thread Electrochemical Cell: Detection of Heavy Metals.

    Science.gov (United States)

    Zhao, Daoli; Siebold, David; Alvarez, Noe T; Shanov, Vesselin N; Heineman, William R

    2017-09-19

    In this work, all three electrodes in an electrochemical cell were fabricated based on carbon nanotube (CNT) thread. CNT thread partially insulated with a thin polystyrene coating to define the microelectrode area was used as the working electrode; bare CNT thread was used as the auxiliary electrode; and a micro quasi-reference electrode was fabricated by electroplating CNT thread with Ag and then anodizing it in chloride solution to form a layer of AgCl. The Ag|AgCl coated CNT thread electrode provided a stable potential comparable to the conventional liquid-junction type Ag|AgCl reference electrode. The CNT thread auxiliary electrode provided a stable current, which is comparable to a Pt wire auxiliary electrode. This all-CNT thread three electrode cell has been evaluated as a microsensor for the simultaneous determination of trace levels of heavy metal ions by anodic stripping voltammetry (ASV). Hg 2+ , Cu 2+ , and Pb 2+ were used as a representative system for this study. The calculated detection limits (based on the 3σ method) with a 120 s deposition time are 1.05, 0.53, and 0.57 nM for Hg 2+ , Cu 2+ , and Pb 2+ , respectively. These electrodes significantly reduce the dimensions of the conventional three electrode electrochemical cell to the microscale.

  3. Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells

    Directory of Open Access Journals (Sweden)

    Fei Zhuge

    2015-05-01

    Full Text Available It has been reported that in chalcogenide-based electrochemical metallization (ECM memory cells (e.g., As2S3:Ag, GeS:Cu, and Ag2S, the metal filament grows from the cathode (e.g., Pt and W towards the anode (e.g., Cu and Ag, whereas filament growth along the opposite direction has been observed in oxide-based ECM cells (e.g., ZnO, ZrO2, and SiO2. The growth direction difference has been ascribed to a high ion diffusion coefficient in chalcogenides in comparison with oxides. In this paper, upon analysis of OFF state I–V characteristics of ZnS-based ECM cells, we find that the metal filament grows from the anode towards the cathode and the filament rupture and rejuvenation occur at the cathodic interface, similar to the case of oxide-based ECM cells. It is inferred that in ECM cells based on the chalcogenides such as As2S3:Ag, GeS:Cu, and Ag2S, the filament growth from the cathode towards the anode is due to the existence of an abundance of ready-made mobile metal ions in the chalcogenides rather than to the high ion diffusion coefficient.

  4. Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors

    Science.gov (United States)

    Peng, Yu-Jung; Wu, Tzu-Ho; Hsu, Chun-Tsung; Li, Shin-Ming; Chen, Ming-Guan; Hu, Chi-Chang

    2014-12-01

    Polypyrrole (PPy) has been polymerized onto reduced graphene oxide/carbon nanotube (rGO/CNT) to form an rGO/CNT/PPy composite using the chemical oxidation method. The electrochemical characteristics of the above composite in various aqueous electrolytes are systematically compared for the asymmetric supercapacitor application. The electrochemical characteristics of rGO/CNT/PPy in the electrolytes containing K+ show improved reversibility and higher stability. Introducing XC-72 in preparing the electrode has been found to enhance the specific capacitance and the cycle stability of rGO/CNT/PPy. The charge storage stability of rGO/CNT/PPy + XC-72 in various potential windows has been evaluated through the potential bias stress test. An asymmetric supercapacitor (ASC) with a positive electrode of Mn3O4 and a negative electrode of rGO/CNT/PPy + XC-72 is successfully demonstrated, which shows specific energy and power of 14. Wh kg-1 and 6.62 kW kg-1 with a cell voltage of 1.6 V. This ASC with a cell voltage of 1.6 V shows excellent charge-discharge cycle stability and ideal capacitive behavior in NaNO3 even after the application of 3250 charge-discharge cycles.

  5. Comparative study of electrochemical oxidation of herbicide 2,4,5-T: Kinetics, parametric optimization and mineralization pathway

    Directory of Open Access Journals (Sweden)

    Hicham Zazou

    2017-01-01

    Full Text Available Oxidative degradation of herbicide 2,4,5-T was studied by electrochemical advanced oxidation processes anodic oxidation and electro-Fenton (EF using Pt/carbon felt and BDD/carbon felt cells. The effect of main operating parameters on oxidation of 2,4,5-T and mineralization of its aqueous solution were investigated. The rate constant for oxidation of 2,4,5-T by ·≡OH was determined as (3.7 ± 0.2 × 109 M−1 s−1 using competition kinetics method. The EF process with BDD anode was shown to be very efficient reaching 94% mineralization in 3 h treatment. Based on identified aromatic intermediates, short-chain carboxylic acids, released inorganic ions and total organic carbon removal measurements, a plausible oxidation pathway for mineralization of 2,4,5-T by hydroxyl radical was proposed. In addition, the evolution of solution toxicity during treatment was monitored by Microtox method showing the formation of toxic aromatic/cyclic intermediates. The results showed also that EF process was able to remove efficiently toxic intermediates and consequently solution toxicity.

  6. Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhou, Chengkun; Huang, Lei; Wang, Xiwen; Qu, Yaohui; Lai, Yanqing; Li, Jie

    2013-01-01

    Graphical abstract: The Bi 2 S 3 /reduced graphene oxide composites were synthesized by a one-pot hydrothermal route and exhibited an extraordinary capacity of 1073.1 mAh g −1 with excellent cycling stability and high rate capability as anode material of lithium ion battery. The enhancement in the electrochemical performance could be attributed to the introduction of RGO sheets that not only buffer the large volume changes during the alloy/dealloy reaction of Li and Bi, but also provide a highly conductive network for rapid electron transport in electrode during electrochemical reaction. -- Highlights: •Bi 2 S 3 /RGO composites were in situ prepared by one-pot hydrothermal route. •The Bi 2 S 3 nanoparticles are homogeneous dispersion on the RGO sheets. •Bi 2 S 3 /RGO exhibits excellent cycling stability and high rate capability. •This work will also of interest for supercapacitor and solar cells. -- Abstract: A simple one-pot hydrothermal route was developed to synthesize bismuth sulfide/reduced graphene oxide composites (Bi 2 S 3 /RGO composites) in this work. The morphology and crystalline structure of the obtained products were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high resolution transmission electron microscopy (HRTEM). The results of Raman spectra and Fourier transform infrared (FTIR) spectra demonstrated that graphite oxide (GO) sheets were in situ reduced to a certain extent. Transmission electron microscopy (TEM) observation indicated that the Bi 2 S 3 nanoparticles, with a size of 80–100 nm in length, are anchored on RGO sheets. Electrochemical tests show the Bi 2 S 3 /RGO composite exhibits an extraordinary capacity of 1073.1 mAh g −1 with excellent cycling stability and high rate capability compared to pure Bi 2 S 3 particles prepared by a similar route in the absence of GO. The enhancement in the electrochemical performance could be attributed to the introduction of RGO sheets

  7. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    Science.gov (United States)

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  8. Enhanced electrochemical water oxidation: the impact of nanoclusters and nanocavities

    NARCIS (Netherlands)

    Zhang, X.; Cao, C.; Bieberle, A.

    2017-01-01

    The structures of transition metal surfaces and metal oxides are commonly believed to have a significant effect on the catalytic reactions. Density functional theory calculations are therefore used in this study to investigate the oxygen evolution reaction (OER) over nanostructured, i.e. nanocluster

  9. CONDUCTIVITY STUDIES OF (PEO +KHCO3 SOLID ELECTROLYTE SYSTEM AND ITS APPLICATION AS AN ELECTROCHEMICAL CELL

    Directory of Open Access Journals (Sweden)

    K. VIJAY KUMAR

    2010-06-01

    Full Text Available Solid polymer electrolyte system, polyethylene oxide (PEO complexed with potassium bicarbonate (KHCO3 salt was prepared by solution-cast technique. Several experimental techniques such as infrared radiation (IR, differential scanning calorimeter (DSC, and composition dependence conductivity, temperature dependence conductivity in the temperature range of 308–368 K and transport number measurements were employed to characterize this polymer electrolyte system. The conductivity of the (PEO+KHCO3 electrolyte was found to be about 3 times larger than that of pure PEO at room temperature. The transference data indicated that the charge transport in these polymer electrolyte systems is predominantly due to K+ ions. Using this polymer electrolyte an electrochemical cell with configuration K+/(PEO+KHCO3/(I2+C+electrolyte was fabricated and its discharge characteristics are studied. A number of other cell parameters associated with the cell were evaluated and are reported in this paper.

  10. Zn2+-Doped Polyaniline/Graphene Oxide as Electrode Material for Electrochemical Supercapacitors

    Science.gov (United States)

    Xu, Hui; Tang, Jing; Chen, Yong; Liu, Jian; Pu, Jinjuan; Li, Qi

    2017-10-01

    Electrodes based on Zn2+-doped polyaniline/graphene oxide (Zn2+/PANI/GO) were synthesized on stainless steel mesh substrates in H2SO4 solution via electrochemical codeposition. Different concentrations of graphene oxide (GO) were incorporated into the films to improve the electrochemical performance of the electrodes. Electrochemical properties of the films were tested by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, in a three-electrode system. The maximum specific capacitance of the Zn2+/PANI/GO film with a GO concentration of 15 mg L-1 was found to be 1266 F g-1 at a scan rate of 3 mV s-1. This value was higher than that of a Zn2+ doped polyaniline (Zn2+/PANI) film (814 F g-1). The Zn2+/PANI/GO film also showed good cycling stability, retaining over 86% of its initial capacitance after 1000 cycles. These results indicate that the Zn2+/PANI/GO composites can be applied as high performance supercapacitor electrodes.

  11. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  12. Label-free electrochemical immunoassay for neuron specific enolase based on 3D macroporous reduced graphene oxide/polyaniline film.

    Science.gov (United States)

    Zhang, Qi; Li, Xiaoyan; Qian, Chunhua; Dou, Li; Cui, Feng; Chen, Xiaojun

    2018-01-01

    The content of neuron specific enolase (NSE) in serum is considered to be an essential indicator of small cell lung cancer (SCLC). Here, a novel label-free electrochemical immunoassay for the detection of NSE based on the three dimensionally macroporous reduced graphene oxide/polyaniline (3DM rGO/PANI) film has been proposed. The 3DM rGO/PANI film was constructed by electrochemical co-deposition of GO and aniline into the interspaces of a sacrificial silica opal template modified Au slice. During the co-deposition, GO was successfully reduced by aniline and PANI could be deposited on the surfaces of rGO sheets. The ratio of rGO and PANI in the composite was also optimized to achieve the maximum electrochemical performance. The 3DM rGO/PANI composite provided larger specific surface area for the antibody immobilization, exhibited enhanced conductivity for electron transfer, and more important was that PANI acted as the electroactive probe for indicating the NSE concentration. Under the optimal conditions, a linear current response of PANI to NSE concentration was obtained over 0.5 pg mL -1 -10.0 ng mL -1 with a detection limit of 0.1 pg mL -1 . Moreover, the immunosensor showed excellent selectivity, good stability, satisfactory reproducibility and regeneration, and was employed to detect NSE in clinical serum specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Facile synthesis of cuprous oxide nanowires decorated graphene oxide nanosheets nanocomposites and its application in label-free electrochemical immunosensor.

    Science.gov (United States)

    Wang, Huan; Zhang, Yong; Wang, Yulan; Ma, Hongmin; Du, Bin; Wei, Qin

    2017-01-15

    In this work, the assembly between one-dimensional (1D) nanomaterials and two-dimensional (2D) nanomaterials was achieved by a simple method. Cuprous oxide nanowires decorated graphene oxide nanosheets (Cu 2 O@GO) nanocomposites were synthesized for the first time by a simple electrostatic self-assembly process. The nanostructure was well confirmed by scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Taking advantages of good electrocatalytic activity and high specific surface area of Cu 2 O@GO nanocomposites, a label-free electrochemical immunosensor was developed by employing Cu 2 O@GO as signal amplification platform for the quantitative detection of alpha fetoprotein (AFP). In addition, toluidine blue (TB) was used as the electron transfer mediator to provide the electrochemical signal, which was adsorbed on graphene oxide nanosheets (GO NSs) by electrostatic attraction. The detection mechanism was based on the monitoring of the electrochemical current response change of TB by the square wave voltammetry (SWV) when immunoreaction occurred on the surface of electrode. Under optimal conditions, the proposed immunosensor displayed a high sensitivity and a low detection limit. This designed method may provide an effective method in the clinical diagnosis of AFP and other tumor markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  15. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    Science.gov (United States)

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  16. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  17. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    International Nuclear Information System (INIS)

    Sasson, Moshe Ben; Calmano, Wolfgang; Adin, Avner

    2009-01-01

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m 2 ). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe 2+ (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe 2+ (ferrous) to Fe 3+ (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  18. Electrodeposition of Manganese-Nickel Oxide Films on a Graphite Sheet for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hae-Min Lee

    2014-01-01

    Full Text Available Manganese-nickel (Mn-Ni oxide films were electrodeposited on a graphite sheet in a bath consisting of manganese acetate and nickel chloride, and the structural, morphological, and electrochemical properties of these films were investigated. The electrodeposited Mn-Ni oxide films had porous structures covered with nanofibers. The X-ray diffractometer pattern revealed the presence of separate manganese oxide (g-MnO2 and nickel oxide (NiO in the films. The electrodeposited Mn-Ni oxide electrode exhibited a specific capacitance of 424 F/g in Na2SO4 electrolyte. This electrode maintained 86% of its initial specific capacitance over 2000 cycles of the charge-discharge operation, showing good cycling stability.

  19. Durability of Solid Oxide Cells

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hauch, Anne; Hjelm, Johan

    2011-01-01

    In recent years extended focus has been placed on monitoring and understanding degradation mechanisms in both solid oxide fuel cells and solid oxide electrolysis cells. The time-consuming nature of degradation experiments and the disparate conclusions from experiment reproductions indicates...... that not all degradation mechanisms are fully understood. Traditionally, cell degradation has been attributed to the materials, processing and cell operating conditions. More recently, focus has been placed on the effect of raw material and gas impurities and their long-term effect on cell degradation. Minor...... impurities have been found to play a significant role in degradation and in some cases can overshadow the cell operation condition related degradation phenomenon. In this review, several degradation diagnostic tools are discussed, a benchmark for a desirable degradation rate is proposed and degradation...

  20. Oxidative polymerization of 5-hydroxytryptamine to physically and chemically immobilize glucose oxidase for electrochemical biosensing.

    Science.gov (United States)

    Huang, Ting; Liu, Zaichun; Li, Yunlong; Li, Yanqiu; Chao, Long; Chen, Chao; Tan, Yueming; Xie, Qingji; Yao, Shouzhuo; Wu, Yuping

    2018-07-12

    Poly(5-hydroxytryptamine) (poly(5-HT)) is exploited as a new and efficient enzyme-immobilization matrix for amperometric and biofuel cell (BFC)-based biosensing. A GOx-poly(5-HT)-Pd nanoparticles (PdNPs) bionanocomposite is prepared by Na 2 PdCl 4 -initiated oxidized polymerization of 5-hydroxytryptamine (5-HT) in a neutral aqueous solution containing glucose oxidase (GOx), and this bionanocomposite and then chitosan (CS) are cast-coated on a Pd-plated Au electrode to yield a CS/GOx-poly(5-HT)-PdNPs/Pd plate /Au enzyme electrode. Scanning/transmission electron microscopy, UV-vis spectrophotometry and electrochemical quartz crystal microbalance are employed for material characterization and/or process monitoring. Under optimized conditions, the amperometric response of the enzyme electrode is linear with glucose concentration from 2.0 μM to 6.66 mM with a sensitivity of 110 μA mM -1  cm -2 , a limit of detection of 0.2 μM, and excellent operation/storage stability in the first-generation biosensing mode. The sensitivity is larger than those of some conventional electrodes under identical conditions. The enzyme electrode also works well in the second-generation biosensing mode. By using the enzyme electrode as the anode for glucose oxidation and a Pd plate /Au electrode as the cathode for KMnO 4 reduction, a monopolar BFC is constructed as a self-powered biosensor, the current response of which is linear with glucose concentration from 50 μM to 34.5 mM. Experiments also show that poly(5-HT) is a physical and chemical dual-immobilization matrix of enzyme, since the abundant amino groups in poly(5-HT) can be used for chemical bonding of GOx. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huanwen [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Hu Zhongai, E-mail: zhongai@nwnu.edu.c [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying [Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2010-12-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 {sup o}C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g{sup -1} (based on composite) is obtained at a specific current of 1 A g{sup -1} as compared with 71 F g{sup -1} for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g{sup -1} even at 10 A g{sup -1}. In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  2. Facile solvothermal synthesis of a graphene nanosheet-bismuth oxide composite and its electrochemical characteristics

    International Nuclear Information System (INIS)

    Wang Huanwen; Hu Zhongai; Chang Yanqin; Chen Yanli; Lei Ziqiang; Zhang Ziyu; Yang Yuying

    2010-01-01

    This work demonstrates a novel and facile route for preparing graphene-based composites comprising of metal oxide nanoparticles and graphene. A graphene nanosheet-bismuth oxide composite as electrode materials of supercapacitors was firstly synthesized by thermally treating the graphene-bismuth composite, which was obtained through simultaneous solvothermal reduction of the colloidal dispersions of negatively charged graphene oxide sheets in N,N-dimethyl formamide (DMF) solution of bismuth cations at 180 o C. The morphology, composition, and microstructure of the composites together with pure graphite oxide, and graphene were characterized using powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetry and differential thermogravimetry (TG-DTG). The electrochemical behaviors were measured by cyclic voltammogram (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The specific capacitance of 255 F g -1 (based on composite) is obtained at a specific current of 1 A g -1 as compared with 71 F g -1 for pure graphene. The loaded-bismuth oxide achieves a specific capacitance as high as 757 F g -1 even at 10 A g -1 . In addition, the graphene nanosheet-bismuth oxide composite electrode exhibits the excellent rate capability and well reversibility.

  3. Electrochemical treatment of wastewater: A case study of reduction of DNT and oxidation of chlorinated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.D.; Bunce, N.J.; Jedral, W.

    1999-07-01

    Electrochemical treatment is under consideration as a treatment option for several recalcitrant compounds. In this work the authors investigate the oxidation of chlorophenols and the reduction of nitroaromatics. In the case of chlorinated phenols, they explore the problem of anode fouling which has hampered electrolytic treatment of phenolic compounds by examining phenols differing in the extent of chlorination, according to the mechanism of oxidation at different electrode types. Linear sweep voltammograms at a Pt anode were interpreted in terms of deposition of oligomers on the anode surface. Passivation increased in parallel with the uncompensated resistance of the solution and occurred only at potentials at which water is oxidized, suggesting that the formation of the oligomer film involves attack of hydroxyl radicals on electrochemically oxidized substrate. Relative reactivities of congeners were anode-dependent, due to different mechanisms of oxidation: direct electron transfer oxidation at PbO{sub 2} and hydroxyl radical attack at SnO{sub 2} and IrO{sub 2}. Voltammetry of 2,6-dinitrotoluene (DNT) was consistent with literature values. DNT was reduced at several cathodes with the most promising result at Ni-plated Ni wire. At current densities {lt} 0.1 mA cm{sup {minus}2}, current efficiencies {gt} 50% could be achieved with 4-chlorophenol at all three anodes and for 2,6-DNT at Ni-plated Ni wire.

  4. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-07-28

    Carbon nanocoil (CNC) based electrodes are shown to be promising candidates for electrochemical energy storage applications, provided the CNCs are properly functionalized. In the present study, nanocrystalline metal oxide (RuO 2, MnO2, and SnO2) dispersed CNCs were investigated as electrodes for supercapacitor applications using different electrochemical methods. In the two electrode configuration, the samples exhibited high specific capacitance with values reaching up to 311, 212, and 134 F/g for RuO2/CNCs, MnO2/CNCs, and SnO2/CNCs, respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be superior to those reported for metal oxide dispersed multiwalled carbon nanotubes in two electrode configuration. In addition, the fabricated supercapacitors retained excellent cycle life with ∼88% of the initial specific capacitance retained after 2000 cycles. © 2011 American Chemical Society.

  5. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    Science.gov (United States)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  6. A Molecularly Imprinted Polymer with Incorporated Graphene Oxide for Electrochemical Determination of Quercetin

    Directory of Open Access Journals (Sweden)

    Xiwen He

    2013-04-01

    Full Text Available The molecularly imprinted polymer based on polypyrrole film with incorporated graphene oxide was fabricated and used for electrochemical determination of quercetin. The electrochemical behavior of quercetin on the modified electrode was studied in detail using differential pulse voltammetry. The oxidation peak current of quercetin in B-R buffer solution (pH = 3.5 at the modified electrode was regressed with the concentration in the range from 6.0 × 10−7 to 1.5 × 10−5 mol/L (r2 = 0.997 with a detection limit of 4.8 × 10−8 mol/L (S/N = 3. This electrode showed good stability and reproducibility. In the above mentioned range, rutin or morin which has similar structures and at the same concentration as quercetin did not interfere with the determination of quercetin. The applicability of the method for complex matrix analysis was also evaluated.

  7. Electrochemical oxidation of some basic alcohols on multiwalled ...

    Indian Academy of Sciences (India)

    interest and research activities on the clean and renewable energy. The need of these clean and renewable power sources is pushing up the commercialization of fuel cells. The fuel cell is an important energy conversion system, which can directly change chemical energy to electric energy with- out charge–discharge ...

  8. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  10. Intrinsic periodic and aperiodic stochastic resonance in an electrochemical cell

    Science.gov (United States)

    Tiwari, Ishant; Phogat, Richa; Parmananda, P.; Ocampo-Espindola, J. L.; Rivera, M.

    2016-08-01

    In this paper we show the interaction of a composite of a periodic or aperiodic signal and intrinsic electrochemical noise with the nonlinear dynamics of an electrochemical cell configured to study the corrosion of iron in an acidic media. The anodic voltage setpoint (V0) in the cell is chosen such that the anodic current (I ) exhibits excitable fixed point behavior in the absence of noise. The subthreshold periodic (aperiodic) signal consists of a train of rectangular pulses with a fixed amplitude and width, separated by regular (irregular) time intervals. The irregular time intervals chosen are of deterministic and stochastic origins. The amplitude of the intrinsic internal noise, regulated by the concentration of chloride ions, is then monotonically increased, and the provoked dynamics are analyzed. The signal to noise ratio and the cross-correlation coefficient versus the chloride ions' concentration curves have a unimodal shape indicating the emergence of an intrinsic periodic or aperiodic stochastic resonance. The abscissa for the maxima of these unimodal curves correspond to the optimum value of intrinsic noise where maximum regularity of the invoked dynamics is observed. In the particular case of the intrinsic periodic stochastic resonance, the scanning electron microscope images for the electrode metal surfaces are shown for certain values of chloride ions' concentrations. These images, qualitatively, corroborate the emergence of order as a result of the interaction between the nonlinear dynamics and the composite signal.

  11. A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW

    Directory of Open Access Journals (Sweden)

    PREDRAG M. ŽIVKOVIĆ

    2011-06-01

    Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.

  12. Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO: a spectroscopic and electrochemical study

    Directory of Open Access Journals (Sweden)

    İlknur Gergin

    2017-08-01

    Full Text Available In this study, a precursor for carbon nanofibers (CNF was fabricated via electrospinning and carbonized through a thermal process. Before carbonization, oxidative stabilization should be applied, and the oxidation mechanism also plays an important role during carbonization. Thus, the understanding of the oxidation mechanism is an essential part of the production of CNF. The oxidation process of polyacrylonitrile was studied and nanofiber webs containing graphene oxide (GO are obtained to improve the electrochemical properties of CNF. Structural and morphological characterizations of the webs are carried out by using attenuated total reflectance Fourier transform infrared spectroscopy and Raman spectroscopy, scanning electron microscopy, atomic force microscopy and transmission electron microscopy. Mechanical tests are performed with a dynamic mechanical analyzer, and thermal studies are conducted by using thermogravimetric analysis. Electrochemical impedance spectroscopy, and cyclic voltammetry are used to investigate capacitive behavior of the products. The proposed equivalent circuit model was consistent with charge-transfer processes taking place at interior pores filled with electrolyte.

  13. Non-destructive delamination detection in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gazzarri, J.I.; Kesler, O. [Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4 (Canada)

    2007-05-15

    A finite element model has been developed to simulate the steady state and impedance behaviour of a single operating solid oxide fuel cell (SOFC). The model results suggest that electrode delamination can be detected minimally-invasively by using electrochemical impedance spectroscopy. The presence of cathode delamination causes changes in the cell impedance spectrum that are characteristic of this type of degradation mechanism. These changes include the simultaneous increase in both the series and polarization resistances, in proportion to the delaminated area. Parametric studies show the dependence of these changes on the extent of delamination, on the operating point, and on the kinetic characteristics of the fuel cell under study. (author)

  14. Written-in conductive patterns on robust graphene oxide biopaper by electrochemical microstamping.

    Science.gov (United States)

    Hu, Kesong; Tolentino, Lorenzo S; Kulkarni, Dhaval D; Ye, Chunhong; Kumar, Satish; Tsukruk, Vladimir V

    2013-12-16

    The silk road: By employing silk fibroin as a binder between graphene oxide films and aluminum foil for a facile, highly localized reduction process, conductive paper is reinvented. The flexible, robust biographene papers have high toughness and electrical conductivity. This electrochemical written-in approach is readily applicable for the fabrication of conductive patterned papers with complex circuitries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, Elena; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Cabot, Pere-Lluis; Arias, Conchita; Centellas, Francesc [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric, E-mail: brillas@ub.ed [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-02-15

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na{sub 2}SO{sub 4} of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H{sub 2}O{sub 2} (AO-H{sub 2}O{sub 2}), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H{sub 2}O{sub 2} from O{sub 2} reduction. In EF, PEF and SPEF, hydroxyl radical (centre dotOH) is formed from Fenton's reaction between added catalytic Fe{sup 2+} and generated H{sub 2}O{sub 2}. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with centre dotOH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since centre dotOH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H{sub 2}O{sub 2} with BDD yields the poorest mineralization because pollutants are only removed with centre dotOH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of centre dotOH at its surface. Enrofloxacin

  16. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    International Nuclear Information System (INIS)

    Guinea, Elena; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Cabot, Pere-Lluis; Arias, Conchita; Centellas, Francesc; Brillas, Enric

    2010-01-01

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na 2 SO 4 of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H 2 O 2 from O 2 reduction. In EF, PEF and SPEF, hydroxyl radical (·OH) is formed from Fenton's reaction between added catalytic Fe 2+ and generated H 2 O 2 . Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with ·OH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since ·OH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H 2 O 2 with BDD yields the poorest mineralization because pollutants are only removed with ·OH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of ·OH at its surface. Enrofloxacin decay always follows a pseudo first-order reaction. Its primary aromatic by-products and short intermediates

  17. Lanthanum Manganate Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Jørgensen, Mette Juhl

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained...... five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one...

  18. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    forming the active surfaces on a porous backbone with embedded electronic current collector material, yielding one of the highest performances reported for an electrode that operates either on fuel or oxidant. The second is a nano-Ce0.9Gd0.1O2-δ thin film prepared by spin-coating, which provides......In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...

  19. Electrochemical degradation of clofibric acid in water by anodic oxidation

    International Nuclear Information System (INIS)

    Sires, Ignasi; Cabot, Pere Lluis; Centellas, Francesc; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Brillas, Enric

    2006-01-01

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical (·OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl 2 . Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with ·OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO 2 with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed

  20. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  1. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Alver, Ü., E-mail: ualver@ktu.edu.tr [Karadeniz Technical University, Dept. of Metallurgical and Materials Engineering, 61080 Trabzon (Turkey); Tanrıverdi, A. [Kahramanmaras Sutcu Imam University, Department of Physics, 46100 Kahramanmaraş (Turkey)

    2016-08-15

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  2. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Alver, Ü.; Tanrıverdi, A.

    2016-01-01

    Highlights: • Boron doped ZnO particles are fabricated and embedded into reduced graphene oxide (RGO) by hydrothermal method. • RGO/ZnO:B composites are used as electrodes for supercapacitors. • Presence of boron in RGO/ZnO composites caused increasing the stability and specific capacitance of electrodes. - Abstract: In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  3. Electrochemical study on the cationic promotion of the catalytic SO2 oxidation in pyrosulfate melts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cappeln, Frederik Vilhelm

    1998-01-01

    The electrochemical behavior of the molten V2O5-M2S2O7 (M = K, Cs, or Na) system was studied using a gold working electrode at 440 degrees C in argon and air atmosphere. The aim of the present investigation was to find a possible correlation between the promoting effect of Cs+ and Na+ ions...... on the catalytic oxidation of SO2 in the V2O5-M2S2O7 system and the effect of these alkali cations on the electrochemical behavior of V2O5 in the alkali pyrosulfate melts It has been shown that Na+ ions had a promoting effect on the V(V) reversible arrow V(IV) electrochemical reaction. Sodium ions accelerate both...... in the catalytic SO, oxidation most likely is the oxidation of V(IV) to V(V) and the Na+ and Cs+ promoting effect is based on the acceleration of this stage. It has also been proposed that voltammetric measurements can be used for fast optimization of the composition of the vanadium catalyst (which...

  4. Indirect Electrochemical Oxidation with Multi Carbon Electrodes for Restaurant Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    I Dewa Ketut Sastrawidana

    2018-01-01

    Full Text Available The removal of organic matter from the restaurant wastewater was investigated using the electrochemical oxida-tion method with multi carbon electrodes in a parallel construction. The degradation process was monitored by the measurement of COD concentration as a function of electrolysis time. The effectof operating parameter conditions on COD removal were investigated including initial pH, distance between electrodes, and the applied voltage difference.The results showed that the treatment of restaurant wastewater containing 2 g/L chloride ion using the electrochemical oxidation technique at the operation conditions characterized by: pH 5, distance between electrode of 10 cm and applied voltage of 12 V, enabled to obtained COD removal of 92.84% within 90 min electrolysis time. It is can be concluded that the indirect electrochemical oxidation method with multi carbon electrodes can be used effectivelyas an alternative technology for reducing COD and may be potentially applied for removal organic pollutants from wastewater at the industrial scale.

  5. Fabrication of a miniaturized cell using microsystem technologies for electrochemical applications

    International Nuclear Information System (INIS)

    Lakard, Boris; Jeannot, Jean-Claude; Spajer, Michel; Herlem, Guillaume; Labachelerie, Michel de; Blind, Pascal; Fahys, Bernard

    2005-01-01

    A new type of electrochemical cell has been developed for use in electrochemical, chemical and biological applications. Using a platinum microelectrode as working electrode, this cell incorporates a silver microelectrode as reference electrode. These microelectrodes, whose area is equal to 1 μm 2 , were fabricated using photolithography, sputtering, and focused ion beam (FIB) technologies since these micro-fabrication techniques allow us to develop miniaturized electrochemical cells useful either for nanoelectrochemistry or biosensors applications. In this study, we show it is possible to coat a surface by chemical or biological compounds by immersing the microelectrodes in a solution, then setting a difference of potential between the two microelectrodes of the cell. For example, we used this miniaturized cell to realize the electrochemical polymerization of aniline into polyaniline to show that this electrochemical cell is efficient to coat a surface with a thin film of polymer

  6. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  7. Challenge for lowering concentration polarization in solid oxide fuel cells

    Science.gov (United States)

    Shimada, Hiroyuki; Suzuki, Toshio; Yamaguchi, Toshiaki; Sumi, Hirofumi; Hamamoto, Koichi; Fujishiro, Yoshinobu

    2016-01-01

    In the scope of electrochemical phenomena, concentration polarization at electrodes is theoretically inevitable, and lowering the concentration overpotential to improve the performance of electrochemical cells has been a continuing challenge. Electrodes with highly controlled microstructure, i.e., high porosity and uniform large pores are therefore essential to achieve high performance electrochemical cells. In this study, state-of-the-art technology for controlling the microstructure of electrodes has been developed for realizing high performance support electrodes of solid oxide fuel cells (SOFCs). The key is controlling the porosity and pore size distribution to improve gas diffusion, while maintaining the integrity of the electrolyte and the structural strength of actual sized electrode supports needed for the target application. Planar anode-supported SOFCs developed in this study realize 5 μm thick dense electrolyte (yttria-stabilized zirconia: YSZ) and the anode substrate (Ni-YSZ) of 53.6 vol.% porosity with a large median pore diameter of 0.911 μm. Electrochemical measurements reveal that the performance of the anode-supported SOFCs improves with increasing anode porosity. This Ni-YSZ anode minimizes the concentration polarization, resulting in a maximum power density of 3.09 W cm-2 at 800 °C using humidified hydrogen fuel without any electrode functional layers.

  8. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  9. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  10. Demonstration Of Electrochemical Oxidation Of Oils Using Boron-Doped Diamond Electrodes And Its Potential Role In The Disposal Of Radioactively Contaminated Waste Lubricants

    International Nuclear Information System (INIS)

    Taylor, G.T.; Newey, A.W.E.; Bates, C.J.; King, C.R.; Dawes, K.

    2009-01-01

    Electrochemical oxidation using a boron-doped diamond (BDD) anode is being investigated as a possible method for treating radiologically-contaminated oils. It has the potential to oxidise oils to carbon dioxide and water, and it would be particularly beneficial for oils contaminated with plutonium. It was found that simultaneous application of sonication and electro-oxidation produced and maintained an oil emulsion, so enabling its oxidation. This treatment was shown to be effective with 3 different oils: an unused hydraulic oil, an unused vacuum pump oil and a waste used machine tool oil, although the addition of a small amount of surfactant was required for the effective emulsification and oxidation of the vacuum pump oil. Essentially complete oxidation of the hydraulic oil in the absence of other organic material was demonstrated. The rate of oxidation appeared to be limited by the applied current when the concentration of oil was high and the current was low. Similarly, it was limited by the oil concentration when the concentration of oil was low and the current was relatively high. The required scale-up from a laboratory electrochemical cell is estimated to be 10,000 fold, which could entail a cell with a total BDD surface area of 3 m 2 , drawing a current of about 2000 A. It is anticipated that it should be possible to minimise the size of the cell by optimisation during the design of the prototype equipment. (authors)

  11. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kun; Miao, Peng; Tang, Yuguo, E-mail: tangyg@sibet.ac.cn [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tong, Hui; Zhu, Xiaoli [Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Tao; Cheng, Wenbo [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China)

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  12. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    OpenAIRE

    Fengling Zhang; Tianyi Cai; Liang Ma; Liyuan Zhan; Hong Liu

    2017-01-01

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensin...

  14. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Science.gov (United States)

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  15. Characterization and optimization of cathodic conditions for H2O2 synthesis in microbial electrochemical cells

    Science.gov (United States)

    Cathode potential and O2 supply methods were investigated to improve H2O2 synthesis in an electrochemical cell, and optimal cathode conditions were applied for microbial electrochemical cells (MECs). Using aqueous O2 for the cathode significantly improved current density, but H2...

  16. Direct electrochemical reduction of solid uranium oxide in molten fluoride salts

    Science.gov (United States)

    Gibilaro, Mathieu; Cassayre, Laurent; Lemoine, Olivier; Massot, Laurent; Dugne, Olivier; Malmbeck, Rikard; Chamelot, Pierre

    2011-07-01

    The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+2 mass.% Li 2O) at 850 °C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, oxidation of oxide ions present in the melt yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets were performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to oxide direct reduction were observed at a potential 150 mV more positive in comparison to the solvent reduction. Subsequent, galvanostatic electrolyses runs were carried out and products were characterised by SEM-EDX, EPMA/WDS, XRD and microhardness measurements. In one of the runs, uranium oxide was partially reduced and three phases were observed: nonreduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides.

  17. Structures and electrochemical performances of pyrolized carbons from graphite oxides for electric double-layer capacitor

    Science.gov (United States)

    Kim, Ick-Jun; Yang, Sunhye; Jeon, Min-Je; Moon, Seong-In; Kim, Hyun-Soo; Lee, Yoon-Pyo; An, Kye-Hyeok; Lee, Young-Hee

    The structural features and the electrochemical performances of pyrolized needle cokes from oxidized cokes are examined and compared with those of KOH-activated needle coke. The structure of needle coke is changed to a single phase of graphite oxide after oxidation treatment with an acidic solution having an NaClO 3/needle coke composition ratio of above 7.5, and the inter-layer distance of the oxidized needle coke is expanded to 6.9 Å with increasing oxygen content. After heating at 200 °C, the oxidized needle coke is reduced to a graphite structure with an inter-layer distance of 3.6 Å. By contrast, a change in the inter-layer distance in KOH-activated needle coke is not observed. An intercalation of pyrolized needle coke, observed on first charge, occurs at 1.0 V. This value is lower than that of KOH-activation needle coke. A capacitor using pyrolized needle coke exhibits a lower internal resistance of 0.57 Ω in 1 kHz, and a larger capacitance per weight and volume of 30.3 F g -1 and 26.9 F ml -1, in the two-electrode system over the potential range 0-2.5 V compared with those of a capacitor using KOH-activation of needle coke. This better electrochemical performance is attributed to a distorted graphene layer structure derived from the process of the inter-layer expansion and shrinkage.

  18. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    KAUST Repository

    de Ruiter, J. M.

    2016-09-20

    One of the key challenges in designing light-driven artificial photosynthesis devices is the optimization of the catalytic water oxidation process. For this optimization it is crucial to establish the catalytic mechanism and the intermediates of the catalytic cycle, yet a full description is often difficult to obtain using only experimental data. Here we consider a series of mononuclear ruthenium water oxidation catalysts of the form [Ru(cy)(L)(H2O)](2+) (cy = p-cymene, L = 2,2\\'-bipyridine and its derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst is investigated using online electrochemical mass spectrometry (OLEMS). The comparison between the calculated absorption spectra of the proposed intermediates with experimental spectra, as well as free energy calculations with electrochemical data, provides strong evidence for the proposed pathway: a water oxidation catalytic cycle involving four proton-coupled electron transfer (PCET) steps. The thermodynamic bottleneck is identified as the third PCET step, which involves O-O bond formation. The good agreement between the optical and thermodynamic data and DFT predictions further confirms the general applicability of this methodology as a powerful tool in the characterization of water oxidation catalysts and for the interpretation of experimental observables.

  19. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  20. Electrochemical characterization of nano-sized Pd-based catalysts as cathode materials in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    To improve the catalytic activity of palladium (Pd) as a cathode catalyst in direct methanol fuel cells (DMFCs), we prepared palladium-titanium oxide (Pd-TiO2) catalysts which the Pd and TiO2 nanoparticles were simultaneously impregnated on carbon. We selected Pd and TiO2 as catalytic materials because of their electrochemical stability in acid solution. The crystal structure and the loading amount of Pd and TiO2 on carbon were characterized by X-ray diffraction (XRD) and energy dispersive X-ray microanalysis (EDX). The electrochemical characterization of Pd-TiO2/C catalysts for the oxygen reduction reaction was carried out in half and single cell systems. The catalytic activities of the Pd-TiO2 catalysts were strongly influenced by the TiO2 content. In the single cell test, the Pd-TiO2 catalysts showed very comparable performance to the Pt catalyst.

  1. Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater

    Science.gov (United States)

    Gu, Di; Gao, Simeng; Jiang, TingTing; Wang, Baohui

    2017-01-01

    To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process. PMID:28294180

  2. Synthesis, characterisation and electrochemical evaluation of reduced graphene oxide modified antimony nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silwana, Bongiwe; Horst, Charlton van der [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa); SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Iwuoha, Emmanuel [SensorLab, Department of Chemistry, University of the Western Cape, Bellville 7535 (South Africa); Somerset, Vernon, E-mail: vsomerset@csir.co.za [Natural Resources and the Environment (NRE), Council for Scientific and Industrial Research (CSIR), Stellenbosch 7600 (South Africa)

    2015-10-01

    This paper demonstrates some aspects on the synthesis and characterisation of nanoparticles of metallic alloys using polyvinyl alcohol as a stabiliser, which combines high surface area and superior hybrid properties. The present experimental design was to synthesise a nanocomposite of reduced graphene oxide and antimony nanoparticles to be used as thin films for macro- and micro-carbon electrodes for enhancing sensing of different toxic metal pollutants in the environment. The synthetic process of reduced graphene oxide was done using the modified Hummers method while antimony pentachloride was reduced with sodium borohydride into nanoparticles of antimony using polyvinyl-alcohol as a stabiliser. The systematic investigation of morphology was done by scanning electron microscopy and high resolution-transmission electron microscope, which revealed the synthesis of a product, consists of reduced graphene oxide antimony nanoparticles. The electrochemical behaviour of the reduced graphene oxide antimony nanoparticles coated on a glassy carbon electrode was performed using voltammetric and impedance techniques. Electrochemical impedance measurements showed that the overall resistance, including the charge–transfer resistance, was smaller with reduced graphene oxide antimony nanoparticles than reduced graphene oxide and antimony nanoparticles, on their own. Evaluation of the reduced graphene oxide antimony nanoparticle sensor in the stripping voltammetry has shown a linear working range for concentration of platinum (II) between 6.0 × 10{sup −6}–5.4 × 10{sup −5} μg L{sup −1} with limit of detection of 6 × 10{sup −6} μg L{sup −1} (signal-to-noise ratio = 3), which is below the World Health Organisation guidelines for freshwater. - Highlights: • Reduced graphene oxide modified antimony nanoparticles were chemically synthesised. • TEM results show rGO-Sb nanoparticles with a diameter range of between 2 and 20 nm. • Impedance results confirm

  3. Organic electrochemical transistors for cell-based impedance sensing

    International Nuclear Information System (INIS)

    Rivnay, Jonathan; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M.; Leleux, Pierre

    2015-01-01

    Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal

  4. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  5. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  6. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    Science.gov (United States)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  7. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films.

    Science.gov (United States)

    Fiz, Raquel; Appel, Linus; Gutiérrez-Pardo, Antonio; Ramírez-Rico, Joaquín; Mathur, Sanjay

    2016-08-24

    We report here on the controlled synthesis, characterization, and electrochemical properties of different polymorphs of niobium pentoxide grown by CVD of new single-source precursors. Nb2O5 films deposited at different temperatures showed systematic phase evolution from low-temperature tetragonal (TT-Nb2O5, T-Nb2O5) to high temperature monoclinic modifications (H-Nb2O5). Optimization of the precursor flux and substrate temperature enabled phase-selective growth of Nb2O5 nanorods and films on conductive mesoporous biomorphic carbon matrices (BioC). Nb2O5 thin films deposited on monolithic BioC scaffolds produced composite materials integrating the high surface area and conductivity of the carbonaceous matrix with the intrinsically high capacitance of nanostructured niobium oxide. Heterojunctions in Nb2O5/BioC composites were found to be beneficial in electrochemical capacitance. Electrochemical characterization of Nb2O5/BioC composites showed that small amounts of Nb2O5 (as low as 5%) in conjunction with BioCarbon resulted in a 7-fold increase in the electrode capacitance, from 15 to 104 F g(-1), while imparting good cycling stability, making these materials ideally suited for electrochemical energy storage applications.

  8. Design of a visible light driven photo-electrochemical/electro-Fenton coupling oxidation system for wastewater treatment

    International Nuclear Information System (INIS)

    Ding, Xing; Ai, Zhihui; Zhang, Lizhi

    2012-01-01

    Highlights: ► Coupling PEC and EF oxidation significantly improves pollutant degradation efficiency. ► The degradation of the PEC/EF system was increased by 154%. ► The instantaneous current efficiency of the PEC/EF system was increased by 26%. - Abstract: In this study, we report on a photo-electrochemical/electro-Fenton oxidation (PEC/EF) system by coupling visible light driven photo-electrochemical oxidation (PEC) and electro-Fenton oxidation (EF) in an undivided cell. Bi 2 WO 6 nanoplates deposited on FTO glass (Bi 2 WO 6 /FTO) and Fe-Fe 2 O 3 core–shell nanowires supported on activated carbon fiber (Fe-Fe 2 O 3 /ACF) were used as the anode and the cathode in the PEC/EF system, respectively. This novel PEC/EF system showed much higher activity than the single PEC and EF systems on degradation of rhodamine B in aqueous solution at natural pH. Moreover, the degradation and the instantaneous current efficiencies of the PEC/EF system were increased by 154% and 26% in comparison with the sum of those of single PEC and EF systems, respectively. These significant enhancements could be attributed to the synergetic effect from better separation of photo-generated carriers in the photo-anode and the transfer of photo-electrons to the oxygen diffusion cathode to generate more electro-generated H 2 O 2 and hydroxyl radicals on the Fenton cathode. The better separation of photo-generated carriers contribute more to the overall degradation enhancement than the photo-electrons generated H 2 O 2 and the subsequent Fenton reaction on the cathode during the PEC/EF process.

  9. Coupling ultraviolet light and ultrasound irradiation with Conductive-Diamond Electrochemical Oxidation for the removal of progesterone

    International Nuclear Information System (INIS)

    Vidales, María J. Martín de; Barba, Silvia; Sáez, Cristina; Cañizares, Pablo; Rodrigo, Manuel A.

    2014-01-01

    Highlights: • Single sonolysis and photolysis technologies entail a slight progesterone removal and nil mineralization. • Synergistic effects of irradiating UV light and US are clearly observed in the oxidation rate. • The energy required by CDSEO and CDSPEO prevents against their application. • CDSEO mainly favors the mass transfer of organics to the conductive-diamond surface. • CDPEO promotes the formation of radicals in the bulk solution. - Abstract: This work focusses on the improvement of the efficiency of Conductive Diamond Electrochemical Oxidation (CDEO) by coupling US and UV irradiation in the degradation of progesterone from wastewater. Results show that CDEO is a promising technology for the degradation of progesterone, just the opposite of that observed for single sonolysis and photolysis technologies, which only entail a slight removal of progesterone and nil mineralization. Coupling UV light and US irradiations with CDEO seems to have a very positive effect, improving results obtained by single CDEO very significantly. Conductive Diamond Sono Electrochemical Oxidation (CDSEO) mainly seems to improve the transfer of pollutants to the conductive-diamond surface, while Conductive Diamond Photo Electrochemical Oxidation (CDPEO) seems to promote the formation of radicals from oxidants produced electrochemically. Soft oxidation conditions are obtained with the single application of both irradiation technologies, whereas an efficient mineralization is attained with CDEO, CDSEO, CDPEO and Conductive Diamond Sono-Photo Electrochemical Oxidation (CDSPEO). However, the high energy demands of US irradiation technologies advices against the use of CDSEO and CDSPEO

  10. Model-supported interpretation of the electrochemical characteristics of solid oxide fuel cells with Ni/YSZ cermet anodes; Modellgestuetzte Interpretation der elektrochemischen Charakteristik von Festoxid-Brennstoffzellen mit Ni/YSZ-Cermetanoden

    Energy Technology Data Exchange (ETDEWEB)

    Gewies, Stefan

    2009-01-29

    This work presents the development, validation and application of a multiscale model for the detailed description of a solid oxide fuel cell (SOFC) with a Ni/YSZ (nickel/yttria-stabilized zirconia) cermet anode. The aim of the study is the identification of the physico-chemical loss processes, as seen in impedance spectra and polarization curves. The model consists of an elementary kinetic description of the electrochemistry including the development of an electrical double layer at the electrode/electrolyte interface of the cermet anode, a homogenized description of charge and gas-phase transport in the electrodes as well as a macroscopic description of convective and diffusive mass transport in the gas phase above the electrodes. For the rst time this study allows for a complete description of the impedance spectra of a diffusively fuel-supplied cermet anode. By comparing simulations with experiments on symmetrical cells (University of Karlsruhe) three dominant loss processes could be identified. The model was extended to account for the description of segmented SOFCs. In correspondence with experimental data (German Aerospace Center) the simulations show strong gradients in current densities and gas concentrations. (orig.)

  11. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen.

    Science.gov (United States)

    Yeo, Boon Siang; Bell, Alexis T

    2011-04-13

    Scanning electron microscopy, linear sweep voltammetry, chronoamperometry, and in situ surface-enhanced Raman spectroscopy were used to investigate the electrochemical oxygen evolution reaction (OER) occurring on cobalt oxide films deposited on Au and other metal substrates. All experiments were carried out in 0.1 M KOH. A remarkable finding is that the turnover frequency for the OER exhibited by ∼0.4 ML of cobalt oxide deposited on Au is 40 times higher than that of bulk cobalt oxide. The activity of small amounts of cobalt oxide deposited on Pt, Pd, Cu, and Co decreased monotonically in the order Au > Pt > Pd > Cu > Co, paralleling the decreasing electronegativity of the substrate metal. Another notable finding is that the OER turnover frequency for ∼0.4 ML of cobalt oxide deposited on Au is nearly three times higher than that for bulk Ir. Raman spectroscopy revealed that the as-deposited cobalt oxide is present as Co(3)O(4) but undergoes progressive oxidation to CoO(OH) with increasing anodic potential. The higher OER activity of cobalt oxide deposited on Au is attributed to an increase in fraction of the Co sites present as Co(IV) cations, a state of cobalt believed to be essential for OER to occur. A hypothesis for how Co(IV) cations contribute to OER is proposed and discussed. © 2011 American Chemical Society

  12. Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors

    Science.gov (United States)

    Alver, Ü.; Tanrıverdi, A.

    2016-08-01

    In this work, reduced graphene oxide/boron doped zinc oxide (RGO/ZnO:B) composites were fabricated by a hydrothermal process and their electrochemical properties were investigated as a function of dopant concentration. First, boron doped ZnO (ZnO:B) particles was fabricated with different boron concentrations (5, 10, 15 and 20 wt%) and then ZnO:B particles were embedded into RGO sheets. The physical properties of sensitized composites were characterized by XRD and SEM. Characterization indicated that the ZnO:B particles with plate-like structure in the composite were dispersed on graphene sheets. The electrochemical properties of the RGO/ZnO:B composite were investigated through cyclic voltammetry, galvanostatic charge/discharge measurements in a 6 M KOH electrolyte. Electrochemical measurements show that the specific capacitance values of RGO/ZnO:B electrodes increase with increasing boron concentration. RGO/ZnO:B composite electrodes (20 wt% B) display the specific capacitance as high as 230.50 F/g at 5 mV/s, which is almost five times higher than that of RGO/ZnO (52.71 F/g).

  13. Surface Properties of PAN-based Carbon Fibers Modified by Electrochemical Oxidization in Organic Electrolyte Systems

    Directory of Open Access Journals (Sweden)

    WU Bo

    2016-09-01

    Full Text Available PAN-based carbon fibers were modified by electrochemical oxidization using fatty alcohol polyoxyethylene ether phosphate (O3P, triethanolamine (TEOA and fatty alcohol polyoxyethylene ether ammonium phosphate (O3PNH4 as organic electrolyte respectively. Titration analysis, single fiber fracture strength measurement and field emission scanning electron microscopy (FE-SEM were used to evaluate the content of acidic functional group on the surface, mechanical properties and surface morphology of carbon fiber. The optimum process of electrochemical treatment obtained is at 50℃ for 2min and O3PNH4 (5%, mass fraction as the electrolyte with current density of 2A/g. In addition, the surface properties of modified carbon fibers were characterized by X-ray photoelectron spectroscopy (XPS and single fiber contact angle test. The results show that the hydrophilic acidic functional groups on the surface of carbon fiber which can enhance the surface energy are increased by the electrochemical oxidation using O3PNH4 as electrolyte, almost without any weakening to the mechanical properties of carbon fiber.

  14. LIGHT INTENSITY INFLUENCE ON STRONTIUM TITANATE BASED PHOTO- ELECTROCHEMICAL CELLS

    Directory of Open Access Journals (Sweden)

    D. Hertkorn

    2017-07-01

    Full Text Available The influence of light intensity on photo-electrochemical cells (PECs consisting of an n-type strontium titanate (SrTiO₃ photoanode and nickel cathode in potassium hydroxide electrolyte is studied. The band levels of an electrolyte-metal-semiconductor-electrolyte system are presented and the effect of different light intensities on the energy levels is investigated. Photocurrent density, quantum efficiency, and open circuit potential measurements are performed on the processed PECs under different light intensities (375 nm. It is demonstrated that a threshold value of the light intensity has to be reached in order to obtain positive photo activity and that beyond this value the performance remains nearly constant.

  15. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments

    International Nuclear Information System (INIS)

    Wang Hui; Wang Jianlong

    2008-01-01

    By using a self-made carbon/polytetrafluoroethylene (C/PTFE) O 2 -fed as the cathode and Ti/IrO 2 /RuO 2 as the anode, the degradation of three organic compounds (phenol, 4-chlorophenol, and 2,4-dichlorophenol) was investigated in the diaphragm (with terylene as diaphragm material) electrolysis device by electrochemical oxidation process. The result indicated that the concentration of hydrogen peroxide (H 2 O 2 ) was 8.3 mg/L, and hydroxyl radical (HO·) was determined in the cathodic compartment by electron spin resonance spectrum (ESR). The removal efficiency for organic compounds reached about 90% after 120 min, conforming to the sequence of phenol, 4-chlorophenol, and 2,4-dichlorophenol. And the dechlorination degree of 4-chlorophenol exceeded 90% after 80 min. For H 2 O 2 , HO· existed in the catholyte and reduction dechlorination at the cathode, the mineralization of organics in the cathodic compartment was better than that in the anodic compartment. The degradation of organics was supposed to be cooperative oxidation by direct or indirect electrochemical oxidation at the anode and H 2 O 2 , HO· produced by oxygen reduction at the cathode. High-performance liquid chromatography (HPLC) allowed identifying phenol as the dechlorination product of 4-chlorophenol in the cathodic compartment, and hydroquinone, 4-chlorocatechol, benzoquinone, maleic, fumaric, oxalic, and formic acids as the main oxidation intermediates in the cathodic and anodic compartments. A reaction scheme involving all these intermediates was proposed

  16. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  17. Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shaoyang; Pineda-Galvan, Yuliana; Maza, William A.; Epley, Charity C.; Zhu, Jie; Kessinger, Matthew C.; Pushkar, Yulia; Morris, Amanda J. (VP); (Purdue)

    2016-12-15

    Water oxidation, a key component in artificial photosynthesis, requires high overpotentials and exhibits slow reaction kinetics that necessitates the use of stable and efficient heterogeneous water-oxidation catalysts (WOCs). Here, we report the synthesis of UiO-67 metal–organic framework (MOF) thin films doped with [Ru(tpy)(dcbpy)OH2]2+ (tpy=2,2':6',2''-terpyridine, dcbpy=5,5'-dicarboxy-2,2'-bipyridine) on conducting surfaces and their propensity for electrochemical water oxidation. The electrocatalyst oxidized water with a turnover frequency (TOF) of (0.2±0.1) s-1 at 1.71 V versus the normal hydrogen electrode (NHE) in buffered solution (pH~7) and exhibited structural and electrochemical stability. The electroactive sites were distributed throughout the MOF thin film on the basis of scan-ratedependent voltammetry studies. This work demonstrates a promising way to immobilize large concentrations of electroactive WOCs into a highly robust MOF scaffold and paves the way for future photoelectrochemical water-splitting systems.

  18. Electrochemical sensing of glucose by reduced graphene oxide-zinc ferrospinels

    Energy Technology Data Exchange (ETDEWEB)

    Shahnavaz, Zohreh, E-mail: zohreh.shahnavaz@siswa.um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Woi, Pei Meng, E-mail: pmwoi@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Ionic Liquids, University of Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Yatimah, E-mail: yatimah70@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Ionic Liquids, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-30

    Highlights: • A facile in situ hydrothermal method for ZnFe{sub 2}O{sub 4} nanoparticles incorporation into graphene oxide sheets. • Excellent selectivity, reproducibility and stability properties compared to others Zn-based glucose sensor. • Amount of reduced graphene oxide directly affected the electro-catalytic activity of ZnFe{sub 2}O{sub 4}/rGO nanocomposite towards glucose detection. - Abstract: We have developed ZnFe{sub 2}O{sub 4} magnetic nanoparticles/reduced graphene oxide nanosheets modified glassy carbon (ZnFe{sub 2}O{sub 4}/rGO/GCE) electrode as a novel system for the electrochemical glucose sensing. Via a facile in situ hydrothermal route, the reduction of GO and the formation of ZnFe{sub 2}O{sub 4} nanoparticles occurred simultaneously. This enables the ZnFe{sub 2}O{sub 4} nanoparticles dispersed on the reduced graphene sheet. Characterization of nanocomposite by X-ray diffraction (XRD) and transmission electron microscopy (TEM) clearly demonstrate the successful attachment of ZnFe{sub 2}O{sub 4} nanoparticles to graphene sheets. Electrochemical studies revealed that the ZnFe{sub 2}O{sub 4}/rGO/GCE possess excellent electrocatalytic activities toward the oxidation of glucose and the performance of sensor is enhanced by integration of graphene nanosheets with ZnFe{sub 2}O{sub 4} nanoparticles.

  19. Electrochemical Oxidation of Sulfamethazine on Multi-Walled Nanotube Film Coated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    L. Fotouhi

    2014-04-01

    Full Text Available The electrochemical oxidation of sulfamethazine (SMZ has been studied at a multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE by cyclic voltammetry. This modified electrode (MWCNT-GCE exhibited excellent electrocatalytic behavior toward the oxidation of SMZ as evidenced by the enhancement of the oxidation peak current and the shift in the anodic potential to less positive values (170 mV in comparison with the bare GCE. The formal potential, E0', of SMZ is pH dependent with a slope of 54 mV per unit of pH, close to the anticipated Nerstian value of 59 mV for a 2-electron and 2-proton oxidation process. A detailed analysis of cyclic voltammograms gave fundamental electrochemical parameters including the electroactive surface coverage (Г, the transfer coefficient (a, the heterogeneous rate constant (ks. Under the selected conditions, the peak current shows two dynamic linear ranges of 10-200 mM and 300-3000 mM with the detection limit of 6.1 mM. The method was successfully applied to analyze SMZ in serum sample

  20. Electrochemical oxidation of drug residues in water by the example of tetracycline, gentamicin and Aspirin {sup trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Weichgrebe, D.; Danilova, E.; Rosenwinkel, K.H. [Inst. of Water Quality and Waste Management, Univ. of Hannover, Hannover (Germany); Vedenjapin, A.; Baturova, M. [Inst. of Organic Chemistry, Russian Academy of Science, Moscow (Russian Federation)

    2003-07-01

    The electrochemical oxidation as a method to destroy drug residues like Aspirin {sup trademark}, tetracycline or gentamicin in water was investigated with C-Anode (modified by manganese oxides) and Pt Anode. The mechanism of Aspirin {sup trademark} and tetracycline oxidation and the influence of the biocide effect was observed using GC-MS and three different microbiological tests. In general the biological availability increases with progressive oxidation of the antibiotics. (orig.)

  1. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H.; Campbell, S. [Ballard Power Systems Inc., 9000 Glenlyon Parkway, Burnaby, BC V5J 5J8 (Canada); Kesler, O. [Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada)

    2006-10-27

    The oxidation of carbon catalyst supports causes degradation in catalyst performance in proton exchange membrane fuel cells (PEMFCs). Indium tin oxide (ITO) is considered as a candidate for an alternative catalyst support. The electrochemical stability of ITO was studied by use of a rotating disk electrode (RDE). Oxidation cycles between +0.6 and +1.8V were applied to ITO supporting a Pt catalyst. Cyclic voltammograms (CVs) both before and after the oxidation cycles were obtained for Pt on ITO, Hispec 4000 (a commercially available catalyst), and 40wt.% Pt dispersed in-house on Vulcan XC-72R. Pt on ITO showed significantly better electrochemical stability, as determined by the relative change in electrochemically active surface area after cycling. Hydrogen desorption peaks in the CVs existed even after 100 cycles from 0.6 to 1.8V for Pt on ITO. On the other hand, most of the active surface area was lost after 100 cycles of the Hispec 4000 catalyst. The 40wt.% Pt on Vulcan made in-house also lost most of its active area after only 50 cycles. Pt on ITO was significantly more electrochemically stable than both Hispec 4000 and Pt on Vulcan XC-72R. In this study, it was found that the Pt on ITO had average crystallite sizes of 13nm for Pt and 38nm for ITO. Pt on ITO showed extremely high thermal stability, with only {approx}1wt.% loss of material for ITO versus {approx}57wt.% for Hispec 4000 on heating to 1000{sup o}C. The TEM data show Pt clusters dispersed on small crystalline ITO particles. The SEM data show octahedral shaped ITO particles supporting Pt. (author)

  3. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid......Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  4. Direct versus indirect electrochemical oxidation of pesticide polluted drainage water containing sodium chloride

    DEFF Research Database (Denmark)

    Muff, Jens; Erichsen, Rasmus; Damgaard, Christian

    2008-01-01

    Drainage water from a depot of chemical waste, polluted with a mixture of organophosphates and degradation products was treated by a direct as well as an indirect electrochemical method using a Ti/Pt-Ir anode and Stainless Steel 304 cathode. With a concentration of 0.7%, sodium chloride...... the treatment. Indirect electrochemical treatment, where a highly oxidized brine solution was added to the drainage water, revealed immediately reduction in COD, and similar to the direct treatment, degradation of all of the pesticide pollutants was obtained except for the O,O,O-triethyl-phosphoric acid...... concentrations. Analyses of the actual pollutants, Me-Parathion, parathion, malathion and degradation products, confirmed that the concentrations of all initial pollutants were eliminated during the treatment. The only exception was O,O,O-triethyl-phosphoric acid, a degradation product which was formed during...

  5. Electrochemical behavior of thin anodic oxide films on Zircaloy-4: Role of the mobile defects

    International Nuclear Information System (INIS)

    Salot, R.; Lefebvre-Joud, F.; Baroux, B.

    1996-01-01

    The first stages of the electrochemical oxidation of Zircaloy-4 are investigated using simple electrochemical tests and modeling the passive film modifications occurring as a result of contact with the electrolyte. Variations in electrode potential (open-circuit conditions) or current density (potentiodynamic scans) can be simply explained by a high field (F ∼ 10 6 V/cm) assisted passive film growth. Under open-circuit conditions, this field does not vary with exposure time (in the 2 h to 48 h range). The minimum electric field for the onset of high-field behavior is also evaluated and found smaller than the theoretical value which can be explained by a variation in the concentration of mobile defects throughout the film. Measurements of the electrode potential decay after a potentiodynamic scan confirm this model, allowing interpretation of the film modification as a combination of two separate phenomena: film growth under a high electric field and point defect annihilation

  6. Amplified electrochemical determination of maltol in food based on graphene oxide-wrapped tin oxide@carbon nanospheres.

    Science.gov (United States)

    Gan, Tian; Sun, Junyong; Yu, Miaomiao; Wang, Kaili; Lv, Zhen; Liu, Yanming

    2017-01-01

    The study presents a new approach for rapid and ultrasensitive detection of maltol using a glassy carbon electrode (GCE) modified with graphene oxide-wrapped tin oxide@carbon nanospheres (SnO2@C@GO). The morphological and components properties of SnO2@C@GO nanocomposites were investigated by means of X-ray diffraction spectroscopy, Raman spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and electrochemical impedance spectroscopy. SnO2@C@GO nanocomposite on a GCE had a synergetic effect on the electrochemical oxidation of maltol by means of square wave voltammetry. Under the optimum conditions, anodic peak current response of maltol was linear with its concentration in the range of 80nM-10μM, and a detection limit of 12nM was achieved for maltol. The experiment results presented that the method showed good selectivity, sensitivity, reproducibility, and long-term stability, as well as excellent potential for use as an ideal inexpensive voltammetric method applicable for complex food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Behaviour of zirconium oxidation and is oxide films in alkali halide solutions as studied by electrochemical techniques

    International Nuclear Information System (INIS)

    Saleh, H.E.M.

    1996-01-01

    Study of the properties of Zr electrode and the oxide films that cover the metal surface is of extreme importance due to their wide applications in chemical and nuclear industry. In this thesis the electrochemical behaviour of Zr electrode in alkali halide solutions and with various surface conditions was studied, Also the galvanostatic oxidation of the metal in addition to the open circuit and impedance measurements were employed. Chapter I is a literature survey of the electrochemistry of Zr metal with particular emphasis on the stability and growth process of Zr in different media. Chapter II contains the experimental part, including details of the electrochemical techniques used in the measurements. The electrode impedance was always balanced as a series capacitance Cs and resistance Rs.Chapter III includes the experimental results and discussion. It is divide into sections, A and B. Section A includes the results of some experimental parameters which affect the reactivity of the oxide growth process on the zirconium surface, such as surface pre - treatment, electrolyte composition, the effect of different alkali halide anions, as well as the triiodide ion. 9 tabs.,26 figs.,67 refs

  8. Investigation of the direct and indirect electrochemical oxidation of hydrazine in nitric acid medium on platinum

    International Nuclear Information System (INIS)

    Cames, B.

    1997-01-01

    In nuclear fuel processing by the PUREX process, the purification of plutonium in nitric acid medium requires the oxidation of Pu(III) to Pu(IV), and of hydrazinium nitrate to nitrogen. The study helped to characterize the electrochemical behavior of the oxidation of hydrazinium nitrate and the reduction of nitric acid to nitrous acid, a compound which can chemically oxidize hydrazinium nitrate and Pu(III). Electro-analytical studies on polycrystalline platinum showed that hydrazine is oxidized in two potential zones, which depend on the surface texture of the platinum anode. Electrolysis in separate compartments, carried out in medium-acid media (2 and 4 mo/l) in the potential zone where these processes take place, showed that, at 0.9 V/ECS, the hydrazine oxidation reactions involved are: a four-electron process (75 %) with nitrogen formation and a one-electron process (25 %) with formation of nitrogen and ammonium ion. By contrast, electrolysis carried out at 0.65 V/ECS (with reactivation of the electrode at - 0.2 V/ECS to remove the poison from the platinum) allowed the selective oxidation of hydrazine to nitrogen by the four-electron reaction. Nitric acid can only be reduced to nitrous acid in the absence of hydrazine. For medium-acid media (≤ 6 mol/l), this reaction takes place at potentials below - 0.2 V/ECS. However, the production rate of nitrous acid (partial order 0 with respect to nitric acid) is very low compared with the values obtained for strongly-acid media (6 to 10 mol/l) at the potential of - 0.1 V/ECS. Note that, in concentrated nitric medium, the selectivity of the reduction reaction is 47 to 85 % for nitrous acid, depending on the nitric acid concentration (6 to 10 mol/l) and the potential imposed (- 0.1 ≤ E ≤ 0.6 V/ECS). A kinetic study helped to determine the hydrazine oxidation rates as a function of the operating conditions. In all cases, the reaction rate is of partial order 0 with respect to hydrazine. These studies accordingly

  9. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Teo Peik-See

    2014-08-01

    Full Text Available The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE and its simultaneous detection of dopamine (DA and ascorbic acid (AA is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV and differential pulse voltammetry (DPV analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3 was found to be 0.42 and 0.12 µM for AA and DA, respectively.

  10. Method of bonding a conductive layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Bowker, Jeffrey C.; Singh, Prabhakar

    1989-01-01

    A dense, electronically conductive interconnection layer 26 is bonded onto a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface 24, without the use of pressure, particles of LaCrO.sub.3 doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300.degree. C. to 1,550.degree. C., without the application of pressure, to provide a dense, sintered, interconnection material 26 bonded to the air electrode 16, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO.sub.3. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  11. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo, E-mail: wushuo@dlut.edu.cn; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-04

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H{sub 2}O{sub 2}. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL{sup −1} to 100 ng mL{sup −1} and a low limit of detection of 0.037 pg mL{sup −1}. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. - Highlights: • An enzyme-free electrochemical immunosensor is reported for detecting proteins. • A silver nanocluster/graphene oxide composite is synthesized as nanotag. • The nanotags exhibit highly catalytic activity to the electro-reduction of H{sub 2}O{sub 2}. • The as-fabricated immunosensor could detect protein in serum samples.

  12. The Strategic Electrochemical Research Center in Denmark

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels

    2011-01-01

    A 6-year strategic electrochemistry research center (SERC) in fundamental and applied aspects of electrochemical cells with a main emphasis on solid oxide cells was started in Denmark on January 1st, 2007 in cooperation with other Danish and Swedish Universities. Furthermore, 8 Danish companies...... are presented. ©2011 COPYRIGHT ECS - The Electrochemical Society...

  13. On the behavior of reduced graphene oxide based electrodes coated with dispersed platinum by alternate current methods in the electrochemical degradation of reactive dyes.

    Science.gov (United States)

    Del Río, A I; García, C; Molina, J; Fernández, J; Bonastre, J; Cases, F

    2017-09-01

    The electrochemical behavior of different carbon-based electrodes with and without nanoparticles of platinum electrochemically dispersed on their surface has been studied. Among others, reduced graphene oxide based electrodes was used to determine the best conditions for the decolorization/degradation of the reactive dye C.I. Reactive Orange 4 in sulfuric medium. Firstly, the electrochemical behavior was evaluated by cyclic voltammetry. Secondly, different electrolyses were performed using two cell configurations: cell with anodic and cathodic compartments separated (divided configuration) and without any separation (undivided configuration). The best results were obtained when reduced graphene oxide based anodes were used. The degree of decolorization was monitored by spectroscopic methods and high performance liquid chromatography. It was found that all of them followed pseudo-first order kinetics. When reduced graphene oxide-based electrodes coated with dispersed platinum by alternate current methods electrodes were used, the lowest energy consumption and the higher decolorization kinetics rate were obtained. Scanning Electronic Microscopy was used to observe the morphological surface differences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In-situ electrochemical impedance spectroscopy measurements of zirconium alloy oxide conductivity: Relationship to hydrogen pickup

    International Nuclear Information System (INIS)

    Couet, Adrien; Motta, Arthur T.; Ambard, Antoine; Livigni, Didier

    2017-01-01

    Highlights: • In-situ electrochemistry on zirconium alloys in 360 °C pure water show oxide layer resistivity changes during corrosion. • A linear relationship is observed between oxide resistivity and instantaneous hydrogen pickup fraction. • The resistivity of the oxide layer formed on Zircaloy-4 (and thus its hydrogen pickup fraction) is higher than on Zr-2.5Nb. - Abstract: Hydrogen pickup during nuclear fuel cladding corrosion is a critical life-limiting degradation mechanism for nuclear fuel. Following a program dedicated to zirconium alloys, corrosion, it has been hypothesized that oxide electronic resistivity determines hydrogen pickup. In-situ electrochemical impedance spectroscopy experiments were performed on Zircaloy-4 and Zr-2.5Nb alloys in 360 °C water. The oxide resistivity was measured as function of time. The results show that as the oxide resistivity increases so does the hydrogen pickup fraction. The resistivity of the oxide layer formed on Zircaloy-4 is higher than on Zr-2.5Nb, resulting in a higher hydrogen pickup fraction of Zircaloy-4, compared to Zr-2.5Nb.

  15. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 2. Bulk electrolysis experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G

    2004-08-15

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO{sub 2} and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency.

  16. Influence of anode material on the electrochemical oxidation of 2-naphthol. Pt. 2. Bulk electrolysis experiments

    Energy Technology Data Exchange (ETDEWEB)

    Panizza, M.; Cerisola, G. [Genoa Univ. (Italy). Dept. of Chemical and Process Engineering

    2004-08-15

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO{sub 2} and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency. (author)

  17. Influence of anode material on the electrochemical oxidation of 2-naphthol Part 2. Bulk electrolysis experiments

    International Nuclear Information System (INIS)

    Panizza, M.; Cerisola, G.

    2004-01-01

    The electrochemical oxidation of 2-naphthol has been studied by galvanostatic electrolysis, using a range of electrode materials such as lead dioxide, boron-doped diamond (BDD) and Ti-Ru-Sn ternary oxide anodes. The influence of some operating parameters, such as current density, flow-rate and chloride concentration on naphthol oxidation has been investigated in order to find the optimum experimental conditions. Measurements of chemical oxygen demand, HPLC and total organic carbon have been used to follow the oxidation. The experimental data indicate that on PbO 2 and BDD, naphthol oxidation takes place by reaction with electrogenerated hydroxyl radicals and is favoured by low current density and high flow-rate. On the contrary, on a Ti-Ru-Sn ternary oxide the mineralisation of naphthol occurs only in the presence of chloride ions that act as redox mediators and COD removal is affected by chloride concentration and is not significantly influenced by the current density and mass-transfer coefficient. From a comparison of the results of the three electrodes it has been found that boron-doped diamond gives a faster oxidation rate and better current efficiency

  18. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  19. Electrochemical and mass variation behaviour of rhodium oxide electrodes prepared by the polymeric precursor method

    International Nuclear Information System (INIS)

    Santos, M.C.; Oliveira, R.T.S.; Pereira, E.C.; Bulhoes, L.O.S.

    2005-01-01

    This paper describes an investigation of the charging processes of Rh 2 O 3 electrodes in acidic medium using Electrochemical Quartz Crystal Microbalance. The Rh 2 O 3 was prepared by the Pechini method. The microstructural characterization of the rhodium oxide was performed using Scanning Electron Microscopy and the structure was determined by X-ray diffraction. The Rh 2 O 3 oxidizes at potentials higher than 0.8 V. A mass loss of 60 ng was observed during the anodic sweep. The same amount is gained during the cathodic sweep indicating that the process is reversible. From the mass versus charge plots a slope of 8.5 g mol -1 is calculated. Considering a process that involves a two-electron transfer, the oxidation of Rh 2 O 3 to RhO 2 with the loss of a water molecule (18 g mol -1 ) is proposed

  20. MnO2-Graphene Oxide-PEDOT:PSS Nanocomposite for an Electrochemical Supercapacitor

    Science.gov (United States)

    Patil, Dipali S.; Pawar, Sachin A.; Shin, Jae Cheol; Kim, Hyo Jin

    2018-04-01

    A ternary nanocomposite with poly (3,4 ethylene dioxythiophene:poly(styrene sulfonate) (PEDOT:PSS)-MnO2 nanowires-graphene oxide (PMn-GO) was synthesized by using simple chemical route. The formation of the nanocomposite was analyzed by using X-ray diffraction and X-ray photoelectron spectroscopy. Field-emission scanning microscopy (FESEM) revealed the formation of MnO2 nanowires and graphene oxide nanosheets. The highest specific capacitance (areal capacitance) of 841 Fg -1 (177 mFcm -2) at 10 mVs -1 and energy density of 0.593 kWhkg -1 at 0.5 mA were observed for PMn-GO, indicating a constructive synergistic effect of PEDOT:PSS, MnO2 nanowires and graphene oxide. The achieved promising electrochemical characteristics showed that this ternary nanocomposite is a good alternative as an electrode material for supercapacitor.

  1. Solid Oxide Fuel Cell Experimental Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  2. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  3. Platinum redispersion on metal oxides in low temperature fuel cells.

    Science.gov (United States)

    Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-03-07

    We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.

  4. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy

    KAUST Repository

    Zhang, Zhonghai

    2012-01-01

    . Thus, the electrochemical strategy proposed in this study for the synthesis of the Cu 2O/CuO composite opens a new way to use copper oxides as photocathode materials in PEC cells for a highly stable and effective water splitting. © 2012 The Royal Society of Chemistry.

  5. Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption.

    Science.gov (United States)

    Zou, Jiaxiu; Peng, Xiaolan; Li, Miao; Xiong, Ying; Wang, Bing; Dong, Faqin; Wang, Bin

    2017-03-01

    In the present study, the electrochemical oxidation of real wastewaters discharged by textile industry was carried out using a boron-doped diamond (BDD) anode. The effect of operational variables, such as applied current density (20-100 mA·cm -2 ), NaCl concentration added to the real wastewaters (0-3 g·L -1 ), and pH value (2.0-10.0), on the kinetics of COD oxidation and on the energy consumption was carefully investigated. The obtained experimental results could be well matched with a proposed kinetic model, in which the indirect oxidation mediated by electrogenerated strong oxidants would be described through a pseudo-first-order kinetic constant k. Values of k exhibited a linear increase with increasing applied current density and decreasing pH value, and an exponential increase with NaCl concentration. Furthermore, high oxidation kinetics resulted in low specific energy consumption, but this conclusion was not suitable to the results obtained under different applied current density. Under the optimum operational conditions, it only took 3 h to complete remove the COD in the real textile wastewaters and the specific energy consumption could be as low as 11.12 kWh·kg -1  COD. The obtained results, low energy consumption and short electrolysis time, allowed to conclude that the electrochemical oxidation based on BDD anodes would have practical industrial application for the treatment of real textile wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes

    International Nuclear Information System (INIS)

    Wang, Wenjun; Wei, Zengfu; Su, Wei; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei; Zeng, Chaoliu

    2016-01-01

    Highlights: • The VO_2"+/VO"2"+ redox reaction of the electrode could be facilitated to some extent with the increasing anodic corrosion. • A real reaction kinetic equation for the oxidation of VO"2"+ on the electrochemically oxidized electrode has been firstly obtained. • The establishment of the kinetic equation is conducive to predict polarization behaviors of the electrodes in engineering application. - Abstract: The morphology, surface composition, wettability and the kinetic parameters of the electrochemically oxidized graphite electrodes obtained under different anodic polarization conditions have been examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, steady-state polarization and cyclic voltammetry (CV) tests, with an attempt to investigate the inherent correlation between the physicochemical properties and the kinetic characteristics for carbon electrodes used in an all-vanadium redox flow battery (VRFB). When the anodic polarization potential raises up to 1.8 V vs. SCE, the anodic corrosion of the graphite might happen and a large number of oxygen-containing functional groups generate. The VO_2"+/VO"2"+ redox reaction can be facilitated and the reaction reversibility tends to become better with the increasing anodic potential, possibly owing to the increased surface oxides and the resulting improved wettability of the electrode. Based on this, a real reaction kinetic equation for the oxidation of VO"2"+ has been obtained on the electrode polarized at 1.8 V vs. SCE and it can be also well used to predict the polarization behavior of the oxidized electrode in vanadium (IV) acidic solutions.

  7. A new way for preparing superconducting materials: the electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Wattiaux, A.; Park, J.C.; Grenier, J.C.; Pouchard, M.

    1990-01-01

    The electrochemical oxidation in alkaline medium is described as a new way for preparing superconducting oxides at room temperature. The application of this method to La 2 CuO 4 gave rise to a metallic material with a superconducting behaviour below 39 K and whose physical and chemical features appear as quite promising [fr

  8. Electrochemical protein cleavage in a microfluidic cell with integrated boron doped diamond electrodes

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Zhang, Tao; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Permentier, Hjalmar P.; Bischoff, Rainer P.H.; van den Berg, Albert

    2015-01-01

    We present a microfluidic electrochemical cell with integrated boron doped diamond (BDD) electrodes which is designed for high electrochemical conversion efficiencies. With our newest developments, we aim to exploit the benefits of BDD as a novel electrode material to conduct tyrosine- and

  9. Electrochemically Formed Ultrafine Metal Oxide Nanocatalysts for High-Performance Lithium–Oxygen Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Yan, Pengfei; Xu, Wu; Zheng, Jianming; He, Yang; Luo, Langli; Bowden, Mark E.; Wang, Chong-Min; Zhang, Ji-Guang

    2016-08-10

    Lithium-oxygen (Li-O2) battery has an extremely high theoretical specific energy density as compared with conventional energy storage systems. However, practical application of Li-O2 battery system still faces significant challenges, especially its poor cyclability. In this work, we report a new approach to synthesis ultrafine metal oxide nanocatalysts through an electrochemical pre-lithiation process. This process reduces the size of NiCo2O4 (NCO) particles from 20~30 nm to a uniformly distributed domain of ~ 2 nm and largely improved their catalytic activity. Structurally, the pre-lithiated NCO NWs are featured by ultrafine NiO/CoO nanoparticles, which show high stability during prolonged cycles in terms of morphology and the particle size, therefore maintaining an excellent catalytic effect to oxygen reduction and evolution reactions. Li-O2 battery using this catalyst has demonstrated an initial capacity of 29,280 mAh g-1 and has retained a stable capacity of over 1,000 mAh g-1 after 100 cycles based on the weight of NCO active material. Direct in-situ TEM observation conclusively reveals the lithiation/delithiation process of as-prepared NCO NWs, clarifying the NCO/Li electrochemical reaction mechanism that can be extended to other transition-metal oxides and providing the in depth understandings on the catalysts and battery chemistries of other ternary transition-metal oxides.

  10. Enhanced photocatalytic performance of ZnO nanostructures by electrochemical hybridization with graphene oxide

    Science.gov (United States)

    Pruna, A.; Wu, Z.; Zapien, J. A.; Li, Y. Y.; Ruotolo, A.

    2018-05-01

    Synthesis of zinc oxide (ZnO) nanostructures is reported by electrochemical deposition from an aqueous electrolyte in presence of graphene oxide (GO) with varying oxidation degree. The properties of hybrids were investigated by scanning electron microscopy, X-ray diffraction, Raman, Fourier-Transform Infrared and X-ray photoelectron spectroscopy techniques and photocatalytic measurements. The results indicated the electrodeposition of ZnO in presence of GO with increased oxygen content led to marked differences in the morphology while Raman measurements indicated an increased defect level both in the ZnO and the electrochemically reduced GO (ErGO) within the hybrids. The decrease in C/O atomic ratio of GO (from 0.79 to 0.71) employed for the electrodeposition of ZnO resulted in an increase in photocatalytic efficiency for methylene blue degradation under UV irradiation from 4-folds to 10-folds with respect to non-hybridized ZnO. The observed synergetic effect of cathodic deposition potential and oxygen content in GO towards improving the photocatalytic activity of immobilized ZnO is expected to contribute to further development of more effective deposition approaches for the preparation of high performance hybrid nanostructures.

  11. Electrochemical Corrosion Behavior of Oxidation Layer on Fe30Mn5Al Alloy

    Directory of Open Access Journals (Sweden)

    ZHU Xue-mei

    2017-08-01

    Full Text Available The Fe30Mn5Al alloy was oxidized at 800℃ in air for 160h, the oxidation-induced layer about 15μm thick near the scale-metal interface was induced to transform to ferrite and become enriched in Fe and depletion in Mn. The effect of the oxidation-induced Mn depletion layer on the electrochemical corrosion behavior of Fe30Mn5Al alloy was evaluated. The results show that in 1mol·L-1 Na2SO4 solution, the anodic polarization curve of the Mn depletion layer exhibits self-passivation, compared with Fe30Mn5Al austenitic alloy, and the corrosion potential Evs SCE is increased to -130mV from -750mV and the passive current density ip is decreased to 29μA/cm2 from 310μA/cm2. The electrochemical impedance spectroscopy(EIS of the Mn depletion layer has the larger diameter of capacitive arc, the higher impedance modulus|Z|, and the wider phase degree range, and the fitted polarization resistant Rt is increased to 9.9kΩ·cm2 from 2.7kΩ·cm2 by using an equivalent electric circuit of Rs-(Rt//CPE. The high insulation of the Mn depletion layer leads to an improved corrosion resistance of Fe30Mn5Al austenitic alloy.

  12. High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide

    Directory of Open Access Journals (Sweden)

    Abdulhakeem Bello

    2013-08-01

    Full Text Available We have fabricated a symmetric electrochemical capacitor with high energy and power densities based on a composite of graphene foam (GF with ∼80 wt% of manganese oxide (MnO2 deposited by hydrothermal synthesis. Raman spectroscopy and X-ray diffraction measurements showed the presence of nanocrystalline MnO2 on the GF, while scanning and transmission electron microscopies showed needle-like manganese oxide coated and anchored onto the surface of graphene. Electrochemical measurements of the composite electrode gave a specific capacitance of 240 Fg−1 at a current density of 0.1 Ag−1 for symmetric supercapacitors using a two-electrode configuration. A maximum energy density of 8.3 Whkg−1 was obtained, with power density of 20 kWkg−1 and no capacitance loss after 1000 cycles. GF is an excellent support for pseudo-capacitive oxide materials such as MnO2, and the composite electrode provided a high energy density due to a combination of double-layer and redox capacitance mechanisms.

  13. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    Science.gov (United States)

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Study and optimisation of manganese oxide-based electrodes for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Staiti, P.; Lufrano, F. [CNR-ITAE, Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' , Via Salita S. Lucia n. 5, 98126 S. Lucia, Messina (Italy)

    2009-02-01

    A manganese oxide material was synthesised by an easy precipitation method based on reduction of potassium permanganate(VII) with a manganese(II) salt. The material was treated at different temperatures to study the effect of thermal treatment on capacitive property. The best capacitive performance was obtained with the material treated at 200 C. This material was used to prepare electrodes with different amounts of polymer binder, carbon black and graphite fibres to individuate the optimal composition that gave the best electrochemical performances. It was found that graphite fibres improve the electrochemical performance of electrodes. The highest specific capacitance (267 F g{sup -1} MnO{sub x}) was obtained with an electrode containing 70% of MnO{sub x}, 15% of carbon black, 10% of graphite fibres and 5% of PVDF. This electrode, with CB/GF ratio of 1.5, showed a higher utilization of manganese oxide. The results reported in the present paper further confirmed that manganese oxide is a very interesting material for supercapacitor application. (author)

  15. Designer interphases for the lithium-oxygen electrochemical cell

    KAUST Repository

    Choudhury, Snehashis; Wan, Charles Tai-Chieh; Al Sadat, Wajdi I.; Tu, Zhengyuan; Lau, Sampson; Zachman, Michael J.; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.

  16. Designer interphases for the lithium-oxygen electrochemical cell

    KAUST Repository

    Choudhury, Snehashis

    2017-04-20

    An electrochemical cell based on the reversible oxygen reduction reaction: 2Li+ + 2e− + O2 ↔ Li2O2, provides among the most energy dense platforms for portable electrical energy storage. Such Lithium-Oxygen (Li-O2) cells offer specific energies competitive with fossil fuels and are considered promising for electrified transportation. Multiple, fundamental challenges with the cathode, anode, and electrolyte have limited practical interest in Li-O2 cells because these problems lead to as many practical shortcomings, including poor rechargeability, high overpotentials, and specific energies well below theoretical expectations. We create and study in-situ formation of solid-electrolyte interphases (SEIs) based on bromide ionomers tethered to a Li anode that take advantage of three powerful processes for overcoming the most stubborn of these challenges. The ionomer SEIs are shown to protect the Li anode against parasitic reactions and also stabilize Li electrodeposition during cell recharge. Bromine species liberated during the anchoring reaction also function as redox mediators at the cathode, reducing the charge overpotential. Finally, the ionomer SEI forms a stable interphase with Li, which protects the metal in high Gutmann donor number liquid electrolytes. Such electrolytes have been reported to exhibit rare stability against nucleophilic attack by Li2O2 and other cathode reaction intermediates, but also react spontaneously with Li metal anodes. We conclude that rationally designed SEIs able to regulate transport of matter and ions at the electrolyte/anode interface provide a promising platform for addressing three major technical barriers to practical Li-O2 cells.

  17. In situ electrochemical high-energy X-ray diffraction using a capillary working electrode cell geometry

    Energy Technology Data Exchange (ETDEWEB)

    Young, Matthias J.; Bedford, Nicholas M.; Jiang, Naisheng; Lin, Deqing; Dai, Liming

    2017-05-26

    The ability to generate new electrochemically active materials for energy generation and storage with improved properties will likely be derived from an understanding of atomic-scale structure/function relationships during electrochemical events. Here, the design and implementation of a new capillary electrochemical cell designed specifically forin situhigh-energy X-ray diffraction measurements is described. By increasing the amount of electrochemically active material in the X-ray path while implementing low-Zcell materials with anisotropic scattering profiles, an order of magnitude enhancement in diffracted X-ray signal over traditional cell geometries for multiple electrochemically active materials is demonstrated. This signal improvement is crucial for high-energy X-ray diffraction measurements and subsequent Fourier transformation into atomic pair distribution functions for atomic-scale structural analysis. As an example, clear structural changes in LiCoO2under reductive and oxidative conditions using the capillary cell are demonstrated, which agree with prior studies. Accurate modeling of the LiCoO2diffraction data using reverse Monte Carlo simulations further verifies accurate background subtraction and strong signal from the electrochemically active material, enabled by the capillary working electrode geometry.

  18. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell

    Science.gov (United States)

    Miceli, Joseph F.; Garcia-Peña, Ines; Parameswaran, Prathap; Torres, César I.; Krajmalnik-Brown, Rosa

    2014-01-01

    Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (~11 A/m2) and Coulombic efficiency (~70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ~80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed micro bial cultures containing complementing biochemical pathways. PMID:25048958

  19. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn

    2006-01-01

    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  20. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    Science.gov (United States)

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.