WorldWideScience

Sample records for oxidative thermal treatment

  1. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-01-01

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 o C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  2. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shibin [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China); Chang, Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong (China); Li, Zhenjiang, E-mail: zjli126@126.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  3. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  4. Thermal oxidation of nuclear graphite: A large scale waste treatment option

    Science.gov (United States)

    Jones, Abbie N.; Marsden, Barry J.

    2017-01-01

    This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF). Particulate samples of Magnox Reactor Pile Grade-A (PGA) graphite, were oxidised in both air and 60% O2, over the temperature range 400–1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700–800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000–1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput. PMID:28793326

  5. Thermal oxidation of nuclear graphite: A large scale waste treatment option.

    Directory of Open Access Journals (Sweden)

    Alex Theodosiou

    Full Text Available This study has investigated the laboratory scale thermal oxidation of nuclear graphite, as a proof-of-concept for the treatment and decommissioning of reactor cores on a larger industrial scale. If showed to be effective, this technology could have promising international significance with a considerable impact on the nuclear waste management problem currently facing many countries worldwide. The use of thermal treatment of such graphite waste is seen as advantageous since it will decouple the need for an operational Geological Disposal Facility (GDF. Particulate samples of Magnox Reactor Pile Grade-A (PGA graphite, were oxidised in both air and 60% O2, over the temperature range 400-1200°C. Oxidation rates were found to increase with temperature, with a particular rise between 700-800°C, suggesting a change in oxidation mechanism. A second increase in oxidation rate was observed between 1000-1200°C and was found to correspond to a large increase in the CO/CO2 ratio, as confirmed through gas analysis. Increasing the oxidant flow rate gave a linear increase in oxidation rate, up to a certain point, and maximum rates of 23.3 and 69.6 mg / min for air and 60% O2 respectively were achieved at a flow of 250 ml / min and temperature of 1000°C. These promising results show that large-scale thermal treatment could be a potential option for the decommissioning of graphite cores, although the design of the plant would need careful consideration in order to achieve optimum efficiency and throughput.

  6. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  7. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Bender-Koch, C.; Starckpoole, M. M.

    2000-01-01

    Stabilization of air pollution control residues by coprecipitation with ferrous iron and subsequent thermal treatment (at 600 and 900 °C) has been examined as a means to reduce heavy metal leaching and to improve product stability. Changes in mineralogy and metal binding were analyzed using various...... analytical and environmental techniques. Ferrihydrite was formed initially but transformed upon thermal treatment to more stable and crystalline iron oxides (maghemite and hematite). For some metals leaching studies showed more substantial binding after thermal treatment, while other metals either....... Thermal treatment of the stabilized residues produced structures with an inherently better iron oxide stability. However, the concentration of metals in the leachate generally increased as a consequence of the decreased solubility of metals in the more stable iron oxide structure....

  8. Effects of thermal treatment on the anodic growth of tungsten oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Y., E-mail: yqchai85@gmail.com; Tam, C.W.; Beh, K.P.; Yam, F.K.; Hassan, Z.

    2015-08-03

    This work reports the investigation of the effects of thermal treatment on anodic growth tungsten oxide (WO{sub 3}). The increase of the thermal treatment temperature above 400 °C significantly influences WO{sub 3} film where high porosity structure reduces to more compact film. As-grown film is amorphous, which transforms to monoclinic/orthorhombic phase upon annealing at 300–600 °C. With the reducing of porous structure, preferential growth of (002) plane shifts to (020) plane at 600 °C with more than twentyfold increase of peak's intensity compared to the film annealed at 500 °C. Films annealed at low thermal treatment show better ion intercalation and reversibility during electrochemical measurements; however, it has larger optical band gap. Photoelectrochemical measurement reveals that film annealed at 400 °C exhibits the best photocatalytic performance among the films annealed at 300–600 °C. - Highlights: • Porosity of the WO{sub 3} reduces as annealing temperature increases above 400 °C. • As-grown film is amorphous which transforms to monoclinic/orthorhombic upon annealing. • As-grown film shows better ion intercalation in electrochemical process. • Optical band gap of WO{sub 3} reduces as the annealing temperature increases. • Film annealed at 400 °C exhibits best photocatalytic performance.

  9. Thermal Treatment of Iron Oxide Stabilized APC Residues from Waste Incineration and the Effect on Heavy Metal Binding

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Stackpoole, M.; Bender-Koch, C.

    2000-01-01

    Iron oxide stabilized APC residues from MSWI were heat treated at 600°C and 900°C. The thermal treatments resulted in a change in product stability by forcing a transformation in the mineralogical structures of the products. The treatments, moreover, simulated somewhat the natural aging processes...

  10. Analysis of thermal treatment effects upon optico-luminescent and scintillation characteristics of oxide and chalcogenide crystals

    International Nuclear Information System (INIS)

    Ryzhikov, Vladimir D.; Grinyov, Boris V.; Pirogov, Evgeniy N.; Galkin, Sergey N.; Nagornaya, Lyudmila L.; Bondar, Vladimir G.; Babiychuk, Inna P.; Krivoshein, Vadim I.; Silin, Vitaliy I.; Lalayants, Alexandr I.; Voronkin, Evgeniy F.; Katrunov, Konstantin A.; Onishchenko, Gennadiy M.; Vostretsov, Yuriy Ya.; Malyi, Pavel Yu.; Lisetskaya, Elena K.; Lisetskii, Longin N.

    2005-01-01

    This work has been aimed at analyzing the effects of various thermal treatment factors upon optical-luminescent, scintillation and other functional characteristics of complex oxide and chalcogenide crystals. The crystals considered in this work are scintillators with intrinsic (PWO, CWO, BGO), activator (GSO:Ce) or complex-defect ZnSe(Te) type of luminescence. Important factors of thermal treatment are not only the temperature and its variation with time, but also the chemical composition of the annealing medium, its oxidation-reduction properties

  11. Structural and microstructural changes in the zirconium-indium mixed oxide system during the thermal treatment

    Science.gov (United States)

    Štefanić, G.; Štefanić, I. I.; Musić, S.; Ivanda, M.

    2011-05-01

    The zirconium-indium mixed oxide systems on both the zirconium- and the indium-rich side of the concentration range were prepared by co-precipitation from aqueous solutions of the corresponding salts, followed by washing and heat-treatment. The thermal behavior (up to 1000 °C) of the dried samples was examined by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectrometry, differential thermal analysis and thermogravimetric measurements. The obtained results show that the increase in the amount of the second phase causes an increase of both the crystallization temperature of the amorphous precursors of ZrO 2, from 435 °C (0 mol.% of InO 1.5) to 476 °C (˜62 mol.% of InO 1.5), and of the topotactic transition temperature of cubic In(OH) 3 to cubic In 2O 3, from 259 °C (0 mol.% of ZrO 2) to 290 °C (˜25 mol.% of ZrO 2). The amorphous precursors of ZrO 2 phase exhibit an extended capability to incorporate In 3+ ions (more than 60 mol.%). With a rise in temperature the maximum solubility of In 3+ ions in the ZrO 2 lattice decreases from ˜55 mol.% in the crystallization products obtained after calcination at 400 °C to ˜10 mol.% after calcination at 1000 °C. The results of phase analysis indicate that the incorporation of In 3+ ions partially stabilized both the tetragonal and cubic ZrO 2 polymorphs. The maximum solubility of Zr 4+ ions in the starting In(OH) 3 lattice was estimated at ˜10 mol.%. Thermal treatment causes a small increase of Zr 4+ ion solubility limits, estimated at ˜15 mol.% in the cubic In 2O 3 lattice after calcination at 1000 °C. Precise lattice parameter measurements, by using Le Bail refinements of the powder diffraction patterns with added silicon as an internal standard, show that the incorporation of In 3+ ions caused a very small decrease of the cubic ZrO 2 lattice, while the incorporation of Zr 4+ ions had a negligible

  12. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  13. Aerial and liquid effluent treatment in BNFL's Thermal Oxide Reprocessing Plant (THORP)

    International Nuclear Information System (INIS)

    Hudson, P.I.; Buckley, C.P.

    1996-01-01

    British Nuclear Fuels plc (BNFL) completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of pound 1,850M. After Government and Regulatory approval, active commissioning was initiated in January 1994. Since then, the whole of the plant has been progressively commissioned and moved towards full operational status. From the outset, the need to protect the workforce, the public and the environment in general from the plant's discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to 'As Low as Reasonably Practicable' (ALARP). Furthermore no member of the most highly exposed (critical) group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met, concentrating mainly on aerial discharges. It describes the sub-division of the plant's ventilation system into a number of separate systems, according to the volume and source of the arising and the complexity of the treatment process. The dissolver off-gas, central off-gas, cell and building ventilation systems are described, together with the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. In addition wind tunnel tests were employed to assist dispersion modelling of the gases as they are discharged from the THORP stack. All the resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. (J.P.N.)

  14. Thermal Treatment of Cerium Oxide and Its Properties: Adsorption Ability versus Degradation Efficiency

    Directory of Open Access Journals (Sweden)

    Pavel Janoš

    2014-01-01

    Full Text Available Cerium oxide belongs to the most important heterogeneous catalysts, but its applicability as so-called reactive sorbent for the degradation of toxic chemicals was only recently discovered. For these purposes, cerium oxide is prepared by precipitation of insoluble cerium salts (carbonates with a subsequent thermal decomposition. Properties of cerium oxide prepared from the carbonate precursor are strongly affected by the temperature during the calcination. Main physicochemical properties of cerium oxide (specific surface area, crystallinity, and surface chemistry were examined in dependence on the calcination temperature. As the adsorptive properties of CeO2 are undoubtedly of great importance in the abovementioned applications, the adsorption ability was studied using an azo dye Acid Orange 7 (AO7 as a model compound. The highest sorption efficiency towards AO7 exhibited sorbents prepared at temperatures below 700°C, which was attributed mainly to the presence of hydroxyl groups on the oxide surface. A strong correlation was found between an adsorption efficiency of cerium oxides and their degradation efficiency for organophosphate pesticide parathion methyl. The >Ce–OH groups on the sorbent surface are responsible for the dye binding by the surface-complexation mechanism, and probably also for the nucleophilic cleavage of the P–O–aryl bond in the pesticide molecule.

  15. Fabrication of oxide-free graphene suspension and transparent thin films using amide solvent and thermal treatment

    International Nuclear Information System (INIS)

    Oh, Se Young; Kim, Sung Hwan; Chi, Yong Seung; Kang, Tae Jin

    2012-01-01

    Graphical abstract: New methodology for suspended graphene sheets of high-quality (oxide-free), high-yield (high concentration) using amide solvent exfoliation and thermal treatment at 800 °C. We confirmed that the van der Waals force between the graphene layers decreases as increasing thermal treatment temperatures as shown XRD data (b). Highlights: ► Propose of new methodology to prepare oxide-free graphene sheets suspension. ► The graphene suspension concentration is enhanced by thermal treatment. ► Decrease of van der Waals force between the graphene layers by high temperature and pressure. ► This method has the potential as technology for mass production. ► It could be applied in transparent and flexible electronic devices. - Abstract: High quality graphene sheets were produced from graphite by liquid phase exfoliation using N-methyl-2-pyrrolidone (NMP) and a subsequent thermal treatment to enhance the exfoliation. The exfoliation was enhanced by treatment with organic solvent and high thermal expansion producing high yields of the high-quality and defect-free graphene sheets. The graphene was successfully deposited on a flexible and transparent polymer film using the vacuum filtration method. SEM images of thin films of graphene treated at 800 °C showed uniform structure with no defects commonly found in films made of graphene produced by other techniques. Thin films of graphene prepared at higher temperatures showed superior transmittance and conductivity. The sheet-resistance of the graphene film treated at 800 °C was 2.8 × 10 3 kΩ/□ with 80% transmittance.

  16. Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils.

    Science.gov (United States)

    Usman, M; Chaudhary, A; Biache, C; Faure, P; Hanna, K

    2016-01-01

    This is the premier study designed to evaluate the impact of thermal pre-treatment on the availability of polycyclic aromatic hydrocarbons (PAHs) for successive removal by chemical oxidation. Experiments were conducted in two soils having different PAH distribution originating from former coking plant sites (Homécourt, H, and Neuves Maisons, NM) located in northeast of France. Soil samples were pre-heated at 60, 100, and 150 °C for 1 week under inert atmosphere (N2). Pre-heating resulted in slight removal of PAHs (soil samples were subjected to Fenton-like oxidation (H2O2 and magnetite) at room temperature. Chemical oxidation in soil without any pre-treatment showed almost no PAH degradation underscoring the unavailability of PAHs. However, chemical oxidation in pre-heated soils showed significant PAH degradation (19, 29, and 43% in NM soil and 31, 36, and 47% in H soil pre-treated at 60, 100, and 150 °C, respectively). No preferential removal of PAHs was observed after chemical oxidation in both soils. These results indicated the significant impact of pre-heating temperature on the availability of PAHs in contaminated soils and therefore may have strong implications in the remediation of contaminated soils especially where pollutant availability is a limiting factor.

  17. On the use of thermal NF3 as the fluorination and oxidation agent in treatment of used nuclear fuels

    Science.gov (United States)

    Scheele, Randall; McNamara, Bruce; Casella, Andrew M.; Kozelisky, Anne

    2012-05-01

    This paper presents results of our investigation on the use of nitrogen trifluoride as a fluorination or fluorination/oxidation agent for separating valuable constituents from used nuclear fuels by exploiting the different volatilities of the constituent fission product and actinide fluorides. Our thermodynamic calculations show that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from oxides and metals that can form volatile fluorides. Simultaneous thermogravimetric and differential thermal analyses show that the oxides of lanthanum, cerium, rhodium, and plutonium are fluorinated but do not form volatile fluorides when treated with nitrogen trifluoride at temperatures up to 550 °C. However, depending on temperature, volatile fluorides or oxyfluorides can form from nitrogen trifluoride treatment of the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. Thermoanalytical studies demonstrate near-quantitative separation of uranium from plutonium in a mixed 80% uranium and 20% plutonium oxide. Our studies of neat oxides and metals suggest that the reactivity of nitrogen trifluoride may be adjusted by temperature to selectively separate the major volatile fuel constituent uranium from minor volatile constituents, such as Mo, Tc, Ru and from the non-volatile fuel constituents based on differences in their reaction temperatures and kinetic behaviors. This reactivity is novel with respect to that reported for other fluorinating reagents F2, BrF5, ClF3.

  18. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments

    Science.gov (United States)

    Tak, Young Jun; Du Ahn, Byung; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-01-01

    Indium–gallium–zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M–O) bonds through the decomposition-rearrangement of M–O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm2/Vs, 3.96 × 107 to 1.03 × 108, and 11.2 to 7.2 V, respectively. PMID:26902863

  19. Activation of sputter-processed indium-gallium-zinc oxide films by simultaneous ultraviolet and thermal treatments.

    Science.gov (United States)

    Tak, Young Jun; Ahn, Byung Du; Park, Sung Pyo; Kim, Si Joon; Song, Ae Ran; Chung, Kwun-Bum; Kim, Hyun Jae

    2016-02-23

    Indium-gallium-zinc oxide (IGZO) films, deposited by sputtering at room temperature, still require activation to achieve satisfactory semiconductor characteristics. Thermal treatment is typically carried out at temperatures above 300 °C. Here, we propose activating sputter- processed IGZO films using simultaneous ultraviolet and thermal (SUT) treatments to decrease the required temperature and enhance their electrical characteristics and stability. SUT treatment effectively decreased the amount of carbon residues and the number of defect sites related to oxygen vacancies and increased the number of metal oxide (M-O) bonds through the decomposition-rearrangement of M-O bonds and oxygen radicals. Activation of IGZO TFTs using the SUT treatment reduced the processing temperature to 150 °C and improved various electrical performance metrics including mobility, on-off ratio, and threshold voltage shift (positive bias stress for 10,000 s) from 3.23 to 15.81 cm(2)/Vs, 3.96 × 10(7) to 1.03 × 10(8), and 11.2 to 7.2 V, respectively.

  20. Metal-Carbon Interactions on Reduced Graphene Oxide under Facile Thermal Treatment: Microbiological and Cell Assay

    Directory of Open Access Journals (Sweden)

    N. L. V. Carreño

    2017-01-01

    Full Text Available Silver-functionalized reduced graphene oxide (Ag-rGO nanosheets were prepared by single chemical and thermal processes, with very low concentration of silver. The resulting carbon framework consists of reduced graphene oxide (rGO sheets or 3D networks, decorated with anchored silver nanoparticles. The Ag-rGO nanosheets were dispersed into a polymer matrix and the composites evaluated for use as biological scaffolds. The rGO material in poly(dimethylsiloxane (PDMS has been tested for antimicrobial activity against Gram-positive Staphylococcus aureus (S. Aureus bacteria, after exposure times of 24 and 120 hours, as well as in the determination of cell viability on cultures of fibroblast cells (NIH/3T3. Using 1 mL of Ag-rGO in PDMS the antibacterial effectiveness against Staphylococcus aureus was limited, showing an increased amount of Colony Forming Units (CFU, after 24 hours of contact. In the cell viability assay, after 48 hours of contact, the group of 1 mL of Ag-rGO with PDMS was the only group that increased cell viability when compared to the control group. In this context, it is believed these behaviors are due to the increase in cell adhesion capacity promoted by the rGO. Thus, the Ag-rGO/PDMS hybrid nanocomposite films can be used as scaffolds for tissue engineering, as they limit antimicrobial activity.

  1. Investigation of the effect of support thermal treatment on gold-based catalysts' activity towards propene total oxidation

    International Nuclear Information System (INIS)

    Lamallem, M.; Cousin, R.; Thomas, R.; Siffert, St.; Aissi, F.; Aboukais, A.

    2009-01-01

    This paper reports a study on the effect of support thermal treatment on the activity of gold-based catalysts for the total oxidation of propene. Ce 0.3 Ti 0.7 O 2 supports were prepared using sol-gel method. These compounds are calcined at 400, 500 and 600 C. Physico-chemical properties of synthesized materials were characterized by means of XRD, DR/UV-vis and H 2 -TPR. Then gold was deposited on these supports by the deposition precipitation method. Thus the catalytic activity of these solids in the propene oxidation was evaluated. On the basis of the catalytic results, a better activity is obtained when gold is deposited on Ce 0.3 Ti 0.7 O 2 support previously calcined at 400 C under air. (authors)

  2. Hydrogen doping of Indium Tin Oxide due to thermal treatment of hetero-junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ritzau, Kurt-Ulrich, E-mail: kurt-ulrich.ritzau@ise.fraunhofer.de [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany); Behrendt, Torge [Infineon Technologies, Max-Planck-Straße 5, 59581 Warstein (Germany); Palaferri, Daniele [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, CNRS—UMR 7162, 75013 Paris (France); Bivour, Martin; Hermle, Martin [Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2016-01-29

    Indium Tin Oxide (ITO) layers in silicon hetero junction solar cells change their electrical and optical properties when exposed to temperature treatments. Hydrogen which effuses from underlying amorphous silicon layers is identified to dope the ITO layer. This leads to an additional increase in conductivity. In this way an almost isolating ITO can become degenerately doped through temperature treatments. The resulting carrier density in the range of 10{sup 20} cm{sup −3} leads to a substantial increase in free carrier absorption, which in turn leads to an increased parasitic absorption in the cell device. Thus hydrogen effusion in silicon hetero-junction (SHJ) solar cells does not only affect the degradation of amorphous silicon (a-Si:H) passivation of crystalline silicon (c-Si), but also the electrical and optical properties of both front and back ITO layers. This leads to the further design rule for SHJ solar cells, meaning that ITO properties have to be optimized in the state after modification during temperature treatment. - Highlights: • ITO is additionally doped by heat treatment of silicon hetero-junction solar cells. • The discovered effect turns an almost isolating ITO into a degenerately doped TCO. • TCO properties have to be considered as measured in the final cell.

  3. Thermal and oxidation effects

    Energy Technology Data Exchange (ETDEWEB)

    Adamcova, J.; Kolaoikova, I. [Prague Univ., Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles (Czech Republic); Adamcova, J. [Czech Geological Survey, Geologicka 6, Prague (Czech Republic); Kaufhold, S.; Dohrmann, R. [BGR, Federal Institute for Geoscience and Natural Resources, Hannover (Germany); Dohrmann, R. [LBEG, State Authority for Mining, Energy, and Geology, Hannover (Germany); Craen, M. de; Van Geet, M.; Honty, M.; Wang, L.; Weetjens, E. [CK-CEN - Belgian Nuclear Research Centre - Environment, Healt and Safety Institute, Mol (Belgium); Van Geet, M. [ONDRAF/NIRAS - Belgian Agency for Radioactive Waste and Enriched Fissile Materials, Brussel (Belgium); Pozzi, J.P.; Janots, D. [Ecole Normale Paris, CNRS Lab. de Geologie, 75 - Paris (France); Aubourg, C. [Universite Cergy Pontoise, CNRS Lab. de Tectonique, 95 (France); Cathelineau, M.; Rousset, D.; Ruck, R. [Nancy-1 Univ. Henri Poincare, CNRS G2R, 54 (France); Clauer, N. [Strasbourg-1 Univ., CNRS CGS, 67 (France); Liewig, N. [Institut Pluridisciplinaire Hubert Curien, CNRS, 67 - Strasbourg (France); Techer, I. [Nimes Univ., CNRS Cerege, 30 (France)

    2007-07-01

    This session gathers 4 articles dealing with: the alteration processes in bentonites: mineralogical and structural changes during long-term and short-term experiments (J. Adamcov, I. Kolarikova); the implications from the lot experiment regarding the selection of an optimum HLRW bentonite (S. Kaufhold, R. Dohrmann); the extent of oxidation in Boom clay as a result of excavation and ventilation of the HADES URF: Experimental and modelling assessments (M. De Craen, M. Van Geet, M. Honty, L. Wang, E. Weetjens); and the magnetic and mineralogical alterations under thermal stress at 95 deg. C of Callovo-Oxfordian clay-stones (Bure, France) and lower Dogger Mont Terri clay-stones, Switzerland (J.P. Pozzi, C. Aubourg, D. Janots, M. Cathelineau, N. Clauer, D. Rousset, R. Ruck, N. Liewig, I. Techer)

  4. Effect of thermal oxidation treatment on pH sensitivity of AlGaN/GaN heterostructure ion-sensitive field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Bu, Yuyu [Institute of Science and Technology, Tokushima University, Tokushima 770-8506 (Japan); Li, Liuan, E-mail: liliuan@mail.sysu.edu.cn [School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510275 (China); Ao, Jin-Ping, E-mail: jpao@ee.tokushima-u.ac.jp [Institute of Science and Technology, Tokushima University, Tokushima 770-8506 (Japan)

    2017-07-31

    Highlights: • AlGaN/GaN ISFETs were fabricated and evaluated with thermal oxidation treatment. • Sensitivity was improved to 57.7 mV/pH after 700 °C treatment. • Sensitivity became poor after 800 °C treatment. • The pure α-Al{sub 2}O{sub 3} crystal phase generated on the surface of the 700 °C treatment sample. • Ga{sub 2}O{sub 3} phase content in the metal oxide layer increased after 800 °C treatment. - Abstract: In this article, AlGaN/GaN heterostructure ion-sensitive field-effect transistors (ISFETs) were prepared and evaluated by thermal oxidation treatment on the AlGaN surface. The ISFETs were fabricated on the AlGaN/GaN heterostructure and then thermally oxidized with dry oxygen in 600, 700, and 800 °C, respectively. It indicates that the performance of the AlGaN/GaN heterostructure ISFETs, such as noise and sensitivity, has been improved owing to the thermal oxidation treatment process at different temperatures. The X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results indicate that after thermal oxidation treatment at different temperatures, hydroxide who possesses high surface state density will transfer to oxide owing to the higher chemical stability of the latter. Moreover, a crystalline α-Al{sub 2}O{sub 3} phase generated at 700 °C can not only provide a relatively smooth surface, but also improve the sensitivity to 57.7 mV/pH for the AlGaN/GaN heterostructure ISFETs, which is very close to the Nernstian limit.

  5. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    International Nuclear Information System (INIS)

    Cooper, J.F.; Ballazs G.B.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput

  6. Final Report: Fiscal Year 1997 demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation of organic solids and liquids using peroxydisulfate

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.

    1998-01-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment, chemical demilitarization and decontamination at LLNL since 1992. The process uses solutions of the peroxydisulfate ion (typically sodium or ammonium salts) to completely mineralize the organics to carbon dioxide and water. The expended oxidant may be electrolytically regenerated to minimize secondary waste. The paper briefly describes: free radical and secondary oxidant formation; electrochemical regeneration; offgas stream; and throughput.

  7. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  8. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    International Nuclear Information System (INIS)

    Hudson, P.I.; Buckley, C.P.; Miller, W.W.

    1995-01-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant's discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation

  9. The development and design of the off-gas treatment system for the thermal oxide reprocessing plant (THORP) at Sellafield

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, P.I. [British Nuclear Fuels, Sellafield (United Kingdom); Buckley, C.P.; Miller, W.W. [British Nuclear Fuels, Risley (United Kingdom)

    1995-02-01

    British Nuclear Fuels completed construction of its Thermal Oxide Reprocessing Plant (THORP) at Sellafield in 1992, at a cost of 1,850M. After Government and Regulatory approval, active commissioning was initiated on 17 January 1994. From the outset, the need to protect the workforce, the public and the environment in general from the plant`s discharges was clearly recognised. The design intent was to limit radiation exposure of members of the general public to As Low as Reasonably Practicable. Furthermore no member of the most highly exposed group should receive an annual dose exceeding 50 microsieverts from either the aerial or marine discharge routes. This paper describes how the design intent has been met with respect to aerial discharges. It outlines the development programme which was undertaken to address the more demanding aspects of the performance specification. This ranged from small-scale experiments with irradiated fuel to inactive pilot plant trials and full-scale plant measurements. The resulting information was then used, with the aid of mathematical models, in the design of an off-gas treatment system which could achieve the overall goal. The principal species requiring treatment in the THORP off-gas system are iodine-129, carbon-14, nitrogen oxides (NOx), fuel dust particles and aerosols containing plutonium or mixed fission products. The paper describes the combination of abatement equipment used in different parts of the plant, including counter-current absorption columns, electrostatic precipitators, dehumidifiers and High Efficiency Particulate Air filters. Because a number of separate off-gas streams are combined before discharge, special depression control systems were developed which have already proved successful during plant commissioning. BNFL is confident that the detailed attention given to the development and design phases of the THORP off-gas system will ensure good performance when the plant moves into fully radioactive operation.

  10. Criticality safety issues arising from the treatment of liquid effluent streams from the reprocessing of thermal oxide fuel

    International Nuclear Information System (INIS)

    Thorne, P.R.; Farrington, L.M.

    1991-01-01

    The BNFL THORP plant will reprocess irradiated oxide fuel from thermal reactors to recover plutonium dioxide and uranium trioxide in a pure form. A consequence of the reprocessing is that several liquid effluent streams are produced which can contain residual fissile material. Generally, the treatment of these effluent streams is carried out in large vessels which are not geometrically favourable with regard to nuclear safety. This is possible because the concentration of fissile material in solution is far less than the safely subcritical infinite sea concentrations. The situation is complicated by the presence of precipitated solids in some vessels and crud layers in others. Experimental measurements have been used to characterise these solids in order to extend the usual safe limits, and to provide an acceptable operating regime. Based on the experimental characterisation of the solids, the neutronics computer codes WIMS and MONK have been used to determine the optimum possible conditions existing, and to determine the safe fissile mass limits for these systems. The limits which are derived have been used to provide alarm and trip levels for instrumentation which has been employed in a novel way. It has been shown that the plant can be operated successfully and remains acceptably safe taking into account the presence of solids in the liquid effluent streams. (author)

  11. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  12. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  13. Influence of thermal treatment in N{sub 2} atmosphere on chemical, microstructural and optical properties of indium tin oxide and nitrogen doped indium tin oxide rf-sputtered thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stroescu, H.; Anastasescu, M.; Preda, S.; Nicolescu, M.; Stoica, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Stefan, N. [National Institute for Lasers, Plasma and Radiation Physics, Atomistilor 409, RO-77125, Bucharest-Magurele (Romania); Kampylafka, V.; Aperathitis, E. [FORTH-IESL, Crete (Greece); Modreanu, M. [Tyndall National Institute, University College Cork, Cork (Ireland); Zaharescu, M. [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Gartner, M., E-mail: mgartner@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania)

    2013-08-31

    We report the influence of the normal thermal treatment (TT) and of rapid thermal annealing (RTA) on the microstructural, optical and electrical properties of indium tin oxide (ITO) and nitrogen doped indium tin oxide (ITO:N) thin films. The TT was carried out for 1 h at 400 °C and the RTA for 1 min up to 400 °C, both in N{sub 2} atmosphere. The ITO and ITO:N films were deposited by reactive sputtering in Argon, and respectively Nitrogen plasma, on Si with (100) and (111) orientation. The present study brings data about the microstructural and optical properties of ITO thin films with thicknesses around 300–400 nm. Atomic Force Microscopy analysis showed the formation of continuous and homogeneous films, fully covered by quasi-spherical shaped particles, with higher roughness values on Si(100) as compared to Si(111). Spectroscopic ellipsometry allowed the determination of film thickness, optical band gap as well as of the dispersion curves of n and k optical constants. X-ray diffraction analysis revealed the presence of diffraction peaks corresponding to the same nominal bulk composition of ITO, but with different intensities and preferential orientation depending on the substrate, atmosphere of deposition and type of thermal treatment. - Highlights: ► Stability of the films can be monitored by experimental ellipsometric spectra. ► The refractive index of indium tin oxide film on 0.3–30 μm range is reported. ► Si(100) substrate induces rougher film surfaces than Si(111). ► Rapid thermal annealing and normal thermal treatment lead to stable conductive film. ► The samples have a higher preferential orientation after rapid thermal annealing.

  14. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  15. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    Science.gov (United States)

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  16. Room temperature chemically oxidized La2CuO4+y: Phase separation induced by thermal treatment

    DEFF Research Database (Denmark)

    Rial,C.; Moran, E.; Alario-Franco, M.A.

    1997-01-01

    The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured for this m......The structure of roam temperature chemically oxidized La2CuO4+y [y = 0.103(4)] has been refined from powder neutron diffraction data using the space group Bmab. The modifications induced in the CuO2 and the LaO planes by the insertion of oxygen are consistent with the high T-c measured...... a short treatment at 433 K, La2CuO4.103(4) undergoes a phase separation into two phases: phase 1, with estimated y(1) = 0.086(4) and T-cl = 30 K, and phase 2, with estimated y(2) = 0.12(1) and T-c2 = 17 K. By increasing the annealing times, phase 2 transforms to phase I and finally disappears. Therefore...

  17. Thermal Oxidation of Structured Silicon Dioxide

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann; Hansen, Ole; Jensen, Jørgen Arendt

    2014-01-01

    The topography of thermally oxidized, structured silicon dioxide is investigated through simulations, atomic force microscopy, and a proposed analytical model. A 357 nm thick oxide is structured by removing regions of the oxide in a masked etch with either reactive ion etching or hydrofluoric acid....... Subsequent thermal oxidation is performed in both dry and wet ambients in the temperature range 950◦C to 1100◦C growing a 205 ± 12 nm thick oxide in the etched mask windows. Lifting of the original oxide near the edge of the mask in the range 6 nm to 37 nm is seen with increased lifting for increasing...

  18. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  19. Synthesis of nanostructured iron oxides dispersed in carbon materials and in situ XRD study of the changes caused by thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Gustavo R.; Schettino, Miguel A. [Federal University of Espírito Santo, Laboratory of Carbon and Ceramic Materials, Department of Physics (Brazil); Morigaki, Milton K. [Federal University of Espírito Santo, Department of Chemistry (Brazil); Nunes, Evaristo; Cunha, Alfredo G.; Emmerich, Francisco G. [Federal University of Espírito Santo, Laboratory of Carbon and Ceramic Materials, Department of Physics (Brazil); Passamani, Edson C. [Federal University of Espírito Santo, Laboratory of Magnetometry and Mössbauer Spectroscopy, Department of Physics (Brazil); Baggio-Saitovitch, Elisa [Brazilian Center for Physical Research (CBPF) (Brazil); Freitas, Jair C. C., E-mail: jairccfreitas@yahoo.com.br [Federal University of Espírito Santo, Laboratory of Carbon and Ceramic Materials, Department of Physics (Brazil)

    2015-07-15

    Carbon-based magnetic nanocomposites are of large interest for applications in catalysis, magnetic separation, water cleaning, and magnetic resonance imaging, among others. This work describes the synthesis of nanocomposites consisting of iron oxides dispersed into a char (obtained from the carbonization at 700 °C of a lignocellulosic precursor) and the study of the thermal transformations occurring in these materials as a consequence of heat treatments. The materials were prepared by impregnation of the char with iron nitrate in the presence of ammonium hydroxide in aqueous suspension. X-ray diffraction experiments performed using synchrotron radiation and Mössbauer spectroscopy showed that the as-prepared material was composed of amorphous Fe{sup 3+} oxides. Scanning electron microscopy images combined with energy-dispersive X-ray spectrometry indicated a homogeneous dispersion of iron oxides and of silica particles (naturally present in the lignocellulosic precursor) throughout the char. X-ray diffractograms recorded in situ during the heat treatment of the as-prepared material showed the presence of small hematite crystallites (average size ∼22 nm) starting from ca. 300 °C. Further heating caused a progressive growth of the hematite crystallites up to ca. 500 °C, when the conversion to magnetite (Fe{sub 3}O{sub 4}) started to take place. At higher temperatures, wüstite (Fe{sub 1−x}O) was detected as an intermediate phase and austenitic iron (γ-Fe) became the dominant phase at temperatures from 900 °C. A steep weight loss was observed in the TG curve accompanying this last reduction stage; upon cooling, γ-Fe was converted into α-Fe (ferrite), which was the dominant phase at room temperature in this heat-treated sample.

  20. Synthesis of nanostructured iron oxides dispersed in carbon materials and in situ XRD study of the changes caused by thermal treatment

    Science.gov (United States)

    Gonçalves, Gustavo R.; Schettino, Miguel A.; Morigaki, Milton K.; Nunes, Evaristo; Cunha, Alfredo G.; Emmerich, Francisco G.; Passamani, Edson C.; Baggio-Saitovitch, Elisa; Freitas, Jair C. C.

    2015-07-01

    Carbon-based magnetic nanocomposites are of large interest for applications in catalysis, magnetic separation, water cleaning, and magnetic resonance imaging, among others. This work describes the synthesis of nanocomposites consisting of iron oxides dispersed into a char (obtained from the carbonization at 700 °C of a lignocellulosic precursor) and the study of the thermal transformations occurring in these materials as a consequence of heat treatments. The materials were prepared by impregnation of the char with iron nitrate in the presence of ammonium hydroxide in aqueous suspension. X-ray diffraction experiments performed using synchrotron radiation and Mössbauer spectroscopy showed that the as-prepared material was composed of amorphous Fe3+ oxides. Scanning electron microscopy images combined with energy-dispersive X-ray spectrometry indicated a homogeneous dispersion of iron oxides and of silica particles (naturally present in the lignocellulosic precursor) throughout the char. X-ray diffractograms recorded in situ during the heat treatment of the as-prepared material showed the presence of small hematite crystallites (average size 22 nm) starting from ca. 300 °C. Further heating caused a progressive growth of the hematite crystallites up to ca. 500 °C, when the conversion to magnetite (Fe3O4) started to take place. At higher temperatures, wüstite (Fe1-xO) was detected as an intermediate phase and austenitic iron (γ-Fe) became the dominant phase at temperatures from 900 °C. A steep weight loss was observed in the TG curve accompanying this last reduction stage; upon cooling, γ-Fe was converted into α-Fe (ferrite), which was the dominant phase at room temperature in this heat-treated sample.

  1. Influence of thermal treatments on the basic and catalytic properties of Mg,Al-mixed oxides derived from hydrotalcites

    Directory of Open Access Journals (Sweden)

    Bastiani R.

    2004-01-01

    Full Text Available This work studied the influence of calcination conditions on basic properties and catalytic performance of Mg,Al-mixed oxides derived from a hydrotalcite sample (Al/(Al+Mg=0.20. Various heating rates, calcination atmospheres and lengths of calcination at 723K were evaluated. TPD of CO2 and retroaldolization of diacetone alcohol (DAA were used to determine the basic properties of the mixed oxides. The basic site density determined by TPD of CO2 showed a better correlation with catalytic activity for acetone/citral aldol condensation than the relative basicity obtained from retroaldolization of DAA. Calcination atmosphere was the parameter that influenced most the basic and the catalytic properties of the Mg,Al-mixed oxides, with calcination under dry air being the best choice.

  2. Thermal oxidation for air toxics control

    International Nuclear Information System (INIS)

    Pennington, R.L.

    1991-01-01

    The Administration projects annual expenditures of $1.1 billion by 1995, increasing to $6.7 billion by 2005, in order to comply with the new Clean Air Act Title III hazardous air pollutant requirements. The Title III requirements include 189 hazardous air pollutants which must be reduced or eliminated by 2003. Twenty of the 189 listed pollutants account for approximately 75 percent of all hazardous air pollutant emissions. Ninety percent of these 20 pollutants can be effectively controlled through one or mote of the thermal oxidation technologies. This paper reports that the advantages and disadvantages of each thermal oxidation technology vary substantially and must be reviewed for each application in order to establish the most effective thermal oxidation solution. Effective thermal oxidation will meet MACT (maximum achievable control technology) emission standards

  3. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  4. Tire containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  5. Thermal oxidation of silicon with two oxidizing species

    International Nuclear Information System (INIS)

    Vild-Maior, A.A.; Filimon, S.

    1979-01-01

    A theoretical model for the thermal oxidation of silicon in wet oxygen is presented. It is shown that the presence of oxygen in the oxidation furnace has an important effect when the water temperature is not too high (less than about 65 deg C). The model is in good agreement with the experimental data. (author)

  6. Enhancement of wear and corrosion resistance of low modulus β-type Zr-20Nb-xTi (x=0, 3) dental alloys through thermal oxidation treatment.

    Science.gov (United States)

    Zhang, Jianfeng; Gan, Xiaxia; Tang, Hongqun; Zhan, Yongzhong

    2017-07-01

    In order to obtain material with low elastic modulus, good abrasion resistance and high corrosion stability as screw for dental implant, the biomedical Zr-20Nb and Zr-20Nb-3Ti alloy with low elastic modulus were thermal oxidized respectively at 700°C for 1h and 600°C for 1.25h to obtain the compact oxidized layer to improve its wear resistance and corrosion resistance. The results show that smooth compact oxidized layer (composed of monoclinic ZrO 2 , tetragonal ZrO 2 and 6ZrO 2 -Nb 2 O 5 ) with 22.6μm-43.5μm thickness and 1252-1306HV hardness can be in-situ formed on the surface of the Zr-20Nb-xTi (x=0, 3). The adhesion of oxidized layers to the substrates is determined to be 58.35-66.25N. The oxidized Zr-20Nb-xTi alloys reveal great improvement of the pitting corrosion resistance in comparison with the un-oxidized alloys. In addition, the oxidized Zr-20Nb-3Ti exhibits sharply reduction of the corrosion rates and the oxidized Zr-20Nb shows higher corrosion rates than un-oxidized alloys, which is relevant with the content of the t-ZrO 2 . Wear test in artificial saliva demonstrates that the wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) are superior to pure Ti. All of the un-oxidized Zr-20Nb-xTi (x=0, 3) alloys suffer from serious adhesive wear due to its high plasticity. Because of the protection from compact oxide layer with high adhesion and high hardness, the coefficients of friction and wear losses of the oxidized Zr-20Nb-xTi (x=0, 3) alloys decrease 50% and 95%, respectively. The defects on the oxidized Zr-20Nb have a negative effect on the friction and wear properties. In addition, after the thermal oxidation, compression test show that elastic modulus and strength of Zr-20Nb-xTi (x=0, 3) increase slightly with plastic deformation after 40% of transformation. Furthermore, stripping of the oxidized layer from the alloy matrix did not occur during the whole experiments. As the surface oxidized Zr-20Nb-3Ti alloy has a combination of excellent performance

  7. Enhancement of as-sputtered silver-tantalum oxide thin film coating on biomaterial stainless steel by surface thermal treatment

    Science.gov (United States)

    Alias, Rodianah; Mahmoodian, Reza; Shukor, Mohd Hamdi Abd; Yew, Been Seok; Muhamad, Martini

    2018-04-01

    Stainless steel 316L (SS316L) is extensively used as surgical/clinical tools due to its low carbon content and excellent mechanical characteristic. The fabrication of metal ceramic based on this metallic biomaterial favor its biofunctionality properties. However, instability phase of amorphous thin film lead to degradation, corrosion and oxidation. Thus, thin film coating requires elevated adhesion strength and higher surface hardness to meet clinical tools criteria. In this study, the SS316L was deposited with micron thickness of Ag-TaO thin film by using magnetron sputtering. The microstructure, elemental analysis and phase identification of Ag-TaO thin film were characterized by using FESEM, EDX and XRD, respectively; whereas the micro scratch test and micro hardness test were performed by using Micro Scratch Testing System and Vickers Micro Hardness Tester, respectively. It was found that the coating thin film's adhesion and hardness strength were improved from 672 to 2749 mN and 142 to 158 Hv respectively. It was found that the as-deposited surface were treated at 500 °C of temperatures with 2 °C/min ramping rate enhance 4.1 times of the adhesion strength value. Furthermore, FESEM characterization revealed coarsening structure of the thin film coating which can provide high durability service.

  8. Thermal oxidation of III-V compounds

    International Nuclear Information System (INIS)

    Monteiro, O.R.; Evans, J.W.

    1988-01-01

    The thermal oxidation of two important III-V compound semiconductor materials, namely GaAs and InP, has been studied between 300 and 600 0 C. In-situ TEM, cross-sectional TEM (XTEM) and SIMS analyses were used to characterize the reaction products. The first technique allows us to access the reactions at the very moment they are occurring. XTEM provides a clearer picture of the distribution of phases in the oxidized samples. SIMS gives us information on the dopant redistribution after oxidation as well as enrichment of group V element at the oxide semiconductor interface. Based on those results, the reaction products were characterized and reaction mechanisms proposed

  9. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  10. Oxidation and thermal behavior of Jatropha curcas biodiesel ...

    African Journals Online (AJOL)

    The thermal and oxidation behavior is also affected adversely by the container metal. The present paper is dealing with the study of oxidation and thermal behavior of JCB with respect to different metal contents. It was found that influence of metal was detrimental to thermal and oxidation stability. Even small concentrations ...

  11. Conceptual Thermal Treatment Technologies Feasibility Study

    International Nuclear Information System (INIS)

    Suer, A.

    1996-01-01

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects

  12. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pen-Cheng, E-mail: wangpc@ess.nthu.edu.tw [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liao, Yu-Chun [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Liu, Li-Hung [Department of Engineering and System Science, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Lai, Yu-Ling; Lin, Ying-Chang [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Hsu, Yao-Jane [Graduate Program for Science and Technology of Synchrotron Light Source, National Tsing Hua University, 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in I{sub on}/I{sub off} ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  13. Upgrading non-oxidized carbon nanotubes by thermally decomposed hydrazine

    Science.gov (United States)

    Wang, Pen-Cheng; Liao, Yu-Chun; Liu, Li-Hung; Lai, Yu-Ling; Lin, Ying-Chang; Hsu, Yao-Jane

    2014-06-01

    We found that the electrical properties of conductive thin films based on non-oxidized carbon nanotubes (CNTs) could be further improved when the CNTs consecutively underwent a mild hydrazine adsorption treatment and then a sufficiently effective thermal desorption treatment. We also found that, after several rounds of vapor-phase hydrazine treatments and baking treatments were applied to an inferior single-CNT field-effect transistor device, the device showed improvement in Ion/Ioff ratio and reduction in the extent of gate-sweeping hysteresis. Our experimental results indicate that, even though hydrazine is a well-known reducing agent, the characteristics of our hydrazine-exposed CNT samples subject to certain treatment conditions could become more graphenic than graphanic, suggesting that the improvement in the electrical and electronic properties of CNT samples could be related to the transient bonding and chemical scavenging of thermally decomposed hydrazine on the surface of CNTs.

  14. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    Science.gov (United States)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  15. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Youngseok Lee

    2012-01-01

    Full Text Available It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0 which improves the efficiency of HIT solar cell. The ultrathin thermal passivation silicon oxide (SiO2 layer was deposited by RTO system in the temperature range 500–950°C for 2 to 6 minutes. The thickness of the silicon oxide layer was affected by RTO annealing temperature and treatment time. The best value of surface recombination velocity was recorded for the sample treated at a temperature of 850°C for 6 minutes at O2 flow rate of 3 Lpm. A surface recombination velocity below 25 cm/s was obtained for the silicon oxide layer of 4 nm thickness. This ultrathin SiO2 layer was employed for the fabrication of HIT solar cell structure instead of a-Si:H, (i layer and the passivation and tunneling effects of the silicon oxide layer were exploited. The photocurrent was decreased with the increase of illumination intensity and SiO2 thickness.

  16. Effect of thermal annealing of lead oxide film

    International Nuclear Information System (INIS)

    Hwang, Oh Hyeon; Kim, Sang Su; Suh, Jong Hee; Cho, Shin Hang; Kim, Ki Hyun; Hong, Jin Ki; Kim, Sun Ung

    2011-01-01

    Oxygen partial pressure in a growth process of lead oxide determines chemical and physical properties as well as crystalline structure. In order to supply oxygen, two ring-shape suppliers have been installed in a growth chamber. Films have been deposited using vacuum thermal evaporation from a raw material of yellow lead oxide powder (5N). Growth rate is controlled to be about 400 A/s, and film thickness more than 50 μm has been achieved. After deposition, the film is annealed at various temperatures under an oxygen atmosphere. In this study, an optimum growth condition for a good X-ray detector has been achieved by fine control of oxygen flow-rate and by thermal treatment. An electrical resistivity of 4.5x10 12 Ω cm is measured, and is comparable with the best data of PbO.

  17. Oxide growth and damage evolution in thermal barrier coatings

    NARCIS (Netherlands)

    Hille, T.S.; Turteltaub, S.R.; Suiker, A.S.J.

    2011-01-01

    Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the

  18. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    Science.gov (United States)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  19. Treatment of Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  20. Thermal waste treatment; Thermische Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, M.; Urban, A.I.; Bilitewski, B. [eds.

    1998-09-01

    One effect of the enactment of the new Law on Recycling and Waste Management, in conjunction with the lowering of emission limit values, has been to bring thermal water treatment more and more into the focus of the discussion on optimal water utilisation. The present volume discusses the consequences of changing waste arisings and composition for various process combinations. [Deutsch] Durch das Inkrafttreten des neuen Kreislaufwirtschafts- und Abfallgesetzes und strengeren Emissionsgrenzwerten rueckt immer mehr die thermische Abfallbehandlung in den Vordergrund der Diskussionen um die optimale Abfallverwertung. Die Folgen der sich veraendernden Abfallmengen und -zusammensetzungen im Hinblick auf Anlagenauslastung, Feuerungstechnik, Rueckstaende und Kosten werden eroertert. Es werden verschiedene Verfahrenskombinationen vorgestellt und diskutiert. Verschiedene Moeglichkeiten der Klaerschlammbehandlung und der Einsatz der Reststoffe Asche und Schlacke in der Bauindustrie werden behandelt. (ABI)

  1. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...

  2. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  3. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs

  4. Alteration of diaspore by thermal treatment

    Institute of Scientific and Technical Information of China (English)

    杨华明; 胡岳华; 杨武国; 敖伟琴; 邱冠周

    2004-01-01

    Diaspore (α-AlOOH) was heated at various temperatures from 300 to 1000 ℃ for 2 h. The alteration of diaspore by thermal treatment was investigated by differential thermal analysis, thermogravimetric analysis and X-ray diffraction. The mechanism of thermal decomposition of diaspore was discussed according to the Coats-Redfern equation. It is found that after thermal treatment at 500 ℃, diaspore is transformed entirely to corundum (α-Al2O3). Combined with the mass loss ratio obtained from the thermogravimetric analysis data, the activation energies for the thermal treatment of diaspore are calculated as Ea=10.4 kJ/mol below 400 ℃ and Eb=47.5 kJ/mol above 400 ℃, respectively, which is directly related to the structural alteration of diaspore during the thermal treatment. The results indicate that the thermal decomposition of diaspore is conducted primarily by means of an interfacial reaction.

  5. Thermal treatment of moroccan phosphogypsum

    Directory of Open Access Journals (Sweden)

    El Issiouy S.

    2013-07-01

    Full Text Available Phosphogypsum (PG is produced as a by-product during treatment of phosphate rock with sulphuric acid to produce phosphoric acid according to the following simplified reaction: Ca10(PO26F2+10H2SO4 + 20H2O →70 à 80°C 6H3PO4 + 2HF + 10(CaSO4.2H2O$Ca_{10} (PO_2 _6 F_2 + 10H_2 SO_4 {m{ }} + {m{ }}20H_2 O{m{ }}uildrel {70{m{ }}`a {m{ }}80^circ C} over longrightarrow {m{ }}6H_3 PO_4 {m{ }} + {m{ }}2HF{m{ }} + {m{ }}10(CaSO_4 .2H_2 O$ Minerai Phosphogypse PG is mainly CaSO4·2H2O but also contains impurities such as free phosphoric acid, phosphates, fluorides and organic matter that adhere to the surface of the gypsum crystals. Phosphogypsum is discharged directly to the Sea or into the natural evaporation ponds. Previous studies have focused on reducing impurity levels in PG. Phosphogypsum impurities can be removed by simple techniques. Washing with water removes the soluble impurities. By cons, other contaminants (radioactive elements, heavy metals ... a specific treatment method required a complex technique where the treatment is likely to be expensive. In this study, we studied purification of phosphogypsum using water and the thermal behavior of the natural gypsum and Moroccan phosphogypsum to calculation of parameters for drying and dehydration reactions. Also, the effects of different heating temperature on the course of dehydration are investigated.

  6. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  7. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    The effects of copper oxide, aluminium oxide and graphite on the thermal and structural properties of the organic ... solar energy, and heat regulation of electronics, biomedical ..... We gratefully acknowledge the financial support provided by.

  8. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  9. Ni-doped (CeO{sub 2−δ})–YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)

    Energy Technology Data Exchange (ETDEWEB)

    Somacescu, Simona, E-mail: ssimona@icf.ro [Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry (Romania); Florea, Mihaela [University of Bucharest, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry (Romania); Osiceanu, Petre; Calderon-Moreno, Jose Maria [Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry (Romania); Ghica, Corneliu [National Institute of Materials Physics (Romania); Serra, Jose Manuel [Universidad Politécnica de Valencia - Consejo Superior de Investigaciones Científicas, Instituto de Tecnología Química (Spain)

    2015-11-15

    Ni-doped (CeO{sub 2−δ})–YSZ (5 mol% Ni oxide, 10 mol% ceria) mesoarchitectures (MA) with nanocrystalline framework have been synthesized by an original, facile and cheap approach based on Triton X100 nonionic surfactant as template and water as solvent at a strong basic pH value. Following the hydrothermal treatment under autogenous pressure (∼18 bars), Ni, Ce, Y, and Zr were well ordered as MA with nanocrystalline framework, assuring thermal stability. A comprehensive investigation of structure, texture, morphology, and surface chemistry was performed by means of a variety of complementary techniques (X-Ray Diffraction, XRD; Raman Spectroscopy, RS; Brunauer—Emmett—Teller, BET; Temperature—Programmed Reduction, TPR; Transmission Electron Microscopy, TEM and DF-STEM; X-ray Photoelectron Spectroscopy, XPS; Catalytic activity and selectivity). N{sub 2} sorption measurements highlighted that the mesoporous structure is formed at 600 °C and remains stable at 800 °C. At 900 °C, the MA collapses, favoring the formation of macropores. The XRD and Raman Spectroscopy of all samples showed the presence of a pure, single phase with fluorite-type structure. At 900 °C, an increased tetragonal distortion of the cubic lattice was observed. The surface chemistry probed by XPS exhibits a mixture of oxidation states (Ce{sup 3+} + Ce{sup 4+}) with high percentage of Ce{sup 3+} valence state ∼35 % and (Ni{sup 3+} and Ni{sup 2+}) oxidation states induced by the thermal treatment. These nanoparticles assembled into MA show high stability and selectivity over time in catalytic partial oxidation of methane (CPOM). These promising performances suggest an interesting prospect for introduction as anode within IT-SOFC assemblies.Graphical Abstract.

  10. Ni-doped (CeO2−δ)–YSZ mesoarchitectured with nanocrystalline framework: the effect of thermal treatment on structure, surface chemistry and catalytic properties in the partial oxidation of methane (CPOM)

    International Nuclear Information System (INIS)

    Somacescu, Simona; Florea, Mihaela; Osiceanu, Petre; Calderon-Moreno, Jose Maria; Ghica, Corneliu; Serra, Jose Manuel

    2015-01-01

    Ni-doped (CeO 2−δ )–YSZ (5 mol% Ni oxide, 10 mol% ceria) mesoarchitectures (MA) with nanocrystalline framework have been synthesized by an original, facile and cheap approach based on Triton X100 nonionic surfactant as template and water as solvent at a strong basic pH value. Following the hydrothermal treatment under autogenous pressure (∼18 bars), Ni, Ce, Y, and Zr were well ordered as MA with nanocrystalline framework, assuring thermal stability. A comprehensive investigation of structure, texture, morphology, and surface chemistry was performed by means of a variety of complementary techniques (X-Ray Diffraction, XRD; Raman Spectroscopy, RS; Brunauer—Emmett—Teller, BET; Temperature—Programmed Reduction, TPR; Transmission Electron Microscopy, TEM and DF-STEM; X-ray Photoelectron Spectroscopy, XPS; Catalytic activity and selectivity). N 2 sorption measurements highlighted that the mesoporous structure is formed at 600 °C and remains stable at 800 °C. At 900 °C, the MA collapses, favoring the formation of macropores. The XRD and Raman Spectroscopy of all samples showed the presence of a pure, single phase with fluorite-type structure. At 900 °C, an increased tetragonal distortion of the cubic lattice was observed. The surface chemistry probed by XPS exhibits a mixture of oxidation states (Ce 3+  + Ce 4+ ) with high percentage of Ce 3+ valence state ∼35 % and (Ni 3+ and Ni 2+ ) oxidation states induced by the thermal treatment. These nanoparticles assembled into MA show high stability and selectivity over time in catalytic partial oxidation of methane (CPOM). These promising performances suggest an interesting prospect for introduction as anode within IT-SOFC assemblies.Graphical Abstract

  11. Thermal treatment of petroleum contaminated soils - A case study

    International Nuclear Information System (INIS)

    Bubier, T.W.; Bilello. C.M.

    1993-01-01

    Thermal treatment is a cost-effective treatment method for removing chemicals from contaminated soils. However, detailed applicability studies are lacking. The goals of this paper are to (1) present the results of a thermal treatment study and (2) discuss the specific elements which must be evaluated prior to determining whether thermal treatment is a feasible option for a remediation project. Results of data collected during a pilot study involving thermal treatment of petroleum contaminated soils at a Marine Terminal are presented. The pilot study consisted of thermally treating the C8 through C40 + (gasoline, kerosene, diesel, motor oil, bunker fuel, etc.) hydrocarbon contaminated soils at treatment temperatures ranging from 250 degrees Fahrenheit (degree F) up to 550 degrees F. The low-temperature thermal treatment unit consisted of a rotary kiln with a temperature capacity of approximately 600 degrees F, a baghouse, and a catalytic oxidizer. The soil was monitored for concentrations of petroleum hydrocarbons and volatile organic compounds before and after treatment. The results of the pilot study were used to determine if thermal treatment technology is a cost-efficient and effective option of remediating the estimated 300,000 tons of petroleum contaminated soil to acceptable cleanup levels. The low-temperature thermal treatment pilot study was effective in desorbing the short chain hydrocarbons (gasoline and diesel) but was not effective in desorbing the long-chain petroleum hydrocarbons, such as motor oils and bunker fuels, from the soil. This was primarily due to the boiling points of motor oil and bunker fuels which were higher than the temperature capacity of the pilot study treatment equipment. Additional factors that influenced the effectiveness of the desorption process included configuration of the treatment equipment, soil moisture content, soil particle size, and type and concentration of petroleum hydrocarbons

  12. Unvented thermal process for treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Nelson, P.A.; Swift, W.M.

    1993-01-01

    An Unvented Thermal Process is being developed that does not release gases during the thermal treatment operation. The main unit in the process is a fluidized-bed processor containing a bed of calcined limestone (CaO), which reacts with gases given off during oxidation of organic materials. Gases that will react with CaO include CO 2 , SO 2 , HCI, HBr, and other acid gases. Water vapor formed during the oxidation process is carried off with the fluidizing gas and is removed in a condenser. Oxygen is added to the remaining gas (mainly nitrogen), which is recirculated to the oxidizer. The most flexible arrangement of equipment involves separating the processor into two units: An oxidizer, which may be any of a variety of types including standard incinerators, and a carbon dioxide sorber

  13. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  14. Thermal Oxidation Resistance of Rare Earth-Containing Composite Elastomer

    Institute of Scientific and Technical Information of China (English)

    邱关明; 张明; 周兰香; 中北里志; 井上真一; 冈本弘

    2001-01-01

    The rare earth-containing composite elastomer was obtained by the reaction of vinyl pyridine-SBR (PSBR) latex with rare earth alkoxides, and its thermal oxidation resistance was studied. After aging test, it is found that its retention rate of mechanical properties is far higher than that of the control sample. The results of thermogravimetric analysis show that its thermal-decomposing temperature rises largely. The analysis of oxidation mechanisms indicates that the main reasons for thermal oxidation resistance are that rare earth elements are of the utility to discontinue autoxidation chain reaction and that the formed complex structure has steric hindrance effect on oxidation.

  15. Thermal deoxygenation of graphite oxide at low temperature

    International Nuclear Information System (INIS)

    Kampars, V; Legzdina, M

    2015-01-01

    Synthesis of graphene via the deoxygenation of the graphite oxide (GO) is a method for the large-scale production of this nanomaterial possessing exceptional mechanical, electrical and translucent properties. Graphite oxide sheet contains at least four different oxygen atoms connected to the Csp 3 and Csp 2 atoms of the sheet in the form of hydroxyl, epoxy, carboxyl or carbonyl groups. Some of these functional groups are located at the surface but others situated at the edges of the platelets. To obtain the graphene nanoplatelets or the few-layer graphene the oxygen functionalities must be removed. Exfoliation and deoxygenation can be accomplished by the use of chemical reductants or heat. Thermal deoxygenation as greener and simpler approach is more preferable over chemical reduction approach. Usually a considerable mass loss of GO observed upon heating at temperatures starting at 200 °C and is attributed to the deoxygenation process. In order to avoid the defects of the obtained graphene sheets it is very important to find the methods for lowering the deoxygenation temperature of GO. Herein, we have investigated the way treatment of the Hummer's synthesis product with acetone and methyl tert-butyl ether under ultrasonication in order to lower the thermal stability of the graphite oxide and its deoxygenation temperature. The obtained results indicate that treatment of the graphite oxide with solvents mentioned above substantially reduces the reduction and exfoliation temperature (130 °C) under ambient atmosphere. The investigation of the composition of evolved gases by hyphenated Pyr/GC/MS method at different experimental conditions under helium atmosphere shows that without the expected H 2 O, CO and CO 2 also sulphur dioxide and acetone has been released

  16. Thermal Treatment Technologies: Lessons Learned

    Science.gov (United States)

    2011-11-01

    With contributions from: Gorm Heron, Ralph Baker, and Gregory Crisp (TerraTherm) Greg Smith (Thermal Remediation Services, Inc.) Phil La Mori...vapor is generated by boiling, and leaves the volume, carrying contaminant vapors H O H O2 2( )1 1c cw w w g w g d M C dM C dt dt   rate of change

  17. Thermal treatment for TRU waste sorting

    International Nuclear Information System (INIS)

    Sasaki, Toshiki; Aoyama, Yoshio; Yamashita, Toshiyuki

    2009-03-01

    A thermal treatment that can automatically unpack TRU waste and remove hazardous materials has been developed to reduce the risk of radiation exposure and save operation cost. The thermal treatment is a process of removing plastic wrapping and hazardous material from TRU waste by heating waste at 500 to 700degC. Plastic wrappings of simulated wastes were removed using a laboratory scale thermal treatment system. Celluloses and isoprene rubbers that must be removed from waste for disposal were pyrolyzed by the treatment. Although the thermal treatment can separate lead and aluminum from the waste, a further technical development is needed to separate lead and aluminum. A demonstration scale thermal treatment system that comprises a rotary kiln with a jacket water cooler and a rotating inner cage for lead and aluminum separation is discussed. A clogging prevention system against zinc chloride, a lead and aluminum accumulation system, and a detection system for spray cans that possibly cause explosion and fire are also discussed. Future technology development subjects for the TRU waste thermal treatment system are summarized. (author)

  18. Thermal treatment: The old and the new

    International Nuclear Information System (INIS)

    Hyfantis, G.J.

    1992-01-01

    Burning of wastes as a treatment method has been with us since the beginning of time. Our ancestors, however ancient they may be, used thermal processing primarily for volume reduction with very little regard, if any, for the secondary impacts created. Our contemporaries apply the various thermal treatment methods with strong consideration of the secondary impacts. Incineration is perhaps the best known form of thermal treatment and is a method which is frequently applied in the municipal waste management arena. Volume reduction is the primary purpose of most of these systems, but energy recovery (production) is a frequent secondary useful by-product of some systems. Incineration technologies have been widely applied to treatment of hazardous wastes and soils contaminated with hazardous materials. Incineration has been quite successful in the destruction of these chemicals. This paper compares the advantages and disadvantages of different incineration technologies which are currently available. Initial data requirements are described which aid in the selection of a thermal treatment technology. Costs and secondary impacts of these technologies are also presented. New thermal treatment technologies and new applications of old technologies are being developed. The author provides a brief introduction and evaluation of new technologies such as pyrolysis, low temperature thermal desorption, and plasma arc. The advantages and disadvantages and the availability for application to today's problems are discussed

  19. Silicon technologies ion implantation and thermal treatment

    CERN Document Server

    Baudrant, Annie

    2013-01-01

    The main purpose of this book is to remind new engineers in silicon foundry, the fundamental physical and chemical rules in major Front end treatments: oxidation, epitaxy, ion implantation and impurities diffusion.

  20. Enhancing composite durability : using thermal treatments

    Science.gov (United States)

    Jerrold E. Winandy; W. Ramsay Smith

    2007-01-01

    The use of thermal treatments to enhance the moisture resistance and aboveground durability of solid wood materials has been studied for years. Much work was done at the Forest Products Laboratory in the last 15 years on the fundamental process of both short-and long-term exposure to heat on wood materials and its interaction with various treatment chemicals. This work...

  1. Automotive body panel containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  2. Synthesis and characterization of thermally oxidized ZnO films

    Indian Academy of Sciences (India)

    Administrator

    Synthesis and characterization of thermally oxidized ZnO films. A P RAMBU1,* and N IFTIMIE2 .... R. −. Δ. = = (1) where Ra is the sensor resistance in the air and Rg is the .... ple, Aida and coworkers (2006) reported that the total oxidation is ...

  3. Effects of Thermal Annealing Conditions on Cupric Oxide Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Seon; Oh, Hee-bong; Ryu, Hyukhyun [Inje University, Gimhae (Korea, Republic of); Lee, Won-Jae [Dong-Eui University, Busan (Korea, Republic of)

    2015-07-15

    In this study, cupric oxide (CuO) thin films were grown on fluorine doped tin oxide(FTO) substrate by using spin coating method. We investigated the effects of thermal annealing temperature and thermal annealing duration on the morphological, structural, optical and photoelectrochemical properties of the CuO film. From the results, we could find that the morphologies, grain sizes, crystallinity and photoelectrochemical properties were dependent on the annealing conditions. As a result, the maximum photocurrent density of -1.47 mA/cm{sup 2} (vs. SCE) was obtained from the sample with the thermal annealing conditions of 500 ℃ and 40 min.

  4. Demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation using peroxydisulfate. Progress report SF2-3-MW-35, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.; Wang, F.; Krueger, R.; King, K.; Shell, T.; Farmer, J.C.; Adamson, M.

    1996-01-27

    Direct Chemical Oxidation is an emerging ``omnivorous`` waste destruction technique which uses one of the strongest known oxidants (ammonium peroxydisulfate) to convert organic solids or liquids to carbon dioxide and their mineral constituents. The process operates at ambient pressure and at moderate temperatures (80--100 C) where organic destruction is rapid without catalysts. The byproduct (ammonium sulfate) is benign and may be recycled using commercial electrolysis equipment. The authors have constructed and initially tested a bench-scale facility (batch prereactor and plug-flow reactor) which allows treatability tests on any solid or liquid organic waste surrogate, with off-gas analysis by mass spectroscopy. Shake-down tests of the plug flow reactor on model chemical ethylene glycol confirmed earlier predictive models. Pre-reactor tests on water-immiscible substances confirmed destruction of cotton rags (cellulose), kerosene, tributyl phosphate and triethylamine. The process is intended to provide an all-aqueous, ambient pressure destruction technique for difficult materials not suitable or fully accepted for conventional incineration. Such wastes include solid and liquid mixed wastes containing incinerator chars, halogenated and nitrogenated wastes, oils and greases, and chemical or biological warfare agents.

  5. Demonstration of omnivorous non-thermal mixed waste treatment: Direct chemical oxidation using peroxydisulfate. Progress report SF2-3-MW-35, October--December 1995

    International Nuclear Information System (INIS)

    Cooper, J.F.; Wang, F.; Krueger, R.; King, K.; Shell, T.; Farmer, J.C.; Adamson, M.

    1996-01-01

    Direct Chemical Oxidation is an emerging ''omnivorous'' waste destruction technique which uses one of the strongest known oxidants (ammonium peroxydisulfate) to convert organic solids or liquids to carbon dioxide and their mineral constituents. The process operates at ambient pressure and at moderate temperatures (80--100 C) where organic destruction is rapid without catalysts. The byproduct (ammonium sulfate) is benign and may be recycled using commercial electrolysis equipment. The authors have constructed and initially tested a bench-scale facility (batch prereactor and plug-flow reactor) which allows treatability tests on any solid or liquid organic waste surrogate, with off-gas analysis by mass spectroscopy. Shake-down tests of the plug flow reactor on model chemical ethylene glycol confirmed earlier predictive models. Pre-reactor tests on water-immiscible substances confirmed destruction of cotton rags (cellulose), kerosene, tributyl phosphate and triethylamine. The process is intended to provide an all-aqueous, ambient pressure destruction technique for difficult materials not suitable or fully accepted for conventional incineration. Such wastes include solid and liquid mixed wastes containing incinerator chars, halogenated and nitrogenated wastes, oils and greases, and chemical or biological warfare agents

  6. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  7. Carotenes in processed tomato after thermal treatment

    NARCIS (Netherlands)

    Luterotti, S.; Bicanic, D.D.; Markovic, K.; Franko, M.

    2015-01-01

    This report adds to the ongoing vivid dispute on the fate of carotenes in tomato upon thermal processing. Although many papers dealing with changes in the raw tomatoes during industrial treatment have already appeared, data on the fate of finished, processed tomato products when they are

  8. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P., E-mail: phorak@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Bejsovec, V.; Vacik, J.; Lavrentiev, V. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Vrnata, M. [Department of Physics and Measurements, The University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Kormunda, M. [Department of Physics, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Danis, S. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2016-12-15

    Highlights: • A rapid oxidation process of thin copper films. • Sheet resistance up to 10{sup 9} Ω/◊. • Mixed oxide phase at 200 °C with significant hydroxide presence. • Gas sensing response to 1000 ppm of hydrogen and methanol vapours. • Increased sensitivity with Pd and Au catalyst to hydrogen and methanol, respectively. - Abstract: Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C–600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C–600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu{sub 2}O phase was identified. However, the oxidation at 200 °C led to a more complicated composition − in the depth Cu{sub 2}O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH){sub 2}. A limited amount of Cu{sub 2}O was also found in samples annealed at 600 °C. The sheet resistance R{sub S} of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing R{sub S} was measured in the range 2.64 MΩ/□–2.45 GΩ/□. The highest R{sub S} values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the {sup 16}O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed

  9. Influence of feeding thermally peroxidized soybean oil on oxidative status in growing pigs

    Science.gov (United States)

    The objectives of this study were to determine whether feeding thermally processed peroxidized soybean oil (SO) induces markers of oxidative stress and alters antioxidant status in pig tissue, blood, and urine. Fifty-six barrows (25.3 ± 3.3 kg initial BW) were randomly assigned to dietary treatments...

  10. Application of graphene oxide in water treatment

    Science.gov (United States)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  11. Ultrathin Oxide Passivation Layer by Rapid Thermal Oxidation for the Silicon Heterojunction Solar Cell Applications

    OpenAIRE

    Lee, Youngseok; Oh, Woongkyo; Dao, Vinh Ai; Hussain, Shahzada Qamar; Yi, Junsin

    2012-01-01

    It is difficult to deposit extremely thin a-Si:H layer in heterojunction with intrinsic thin layer (HIT) solar cell due to thermal damage and tough process control. This study aims to understand oxide passivation mechanism of silicon surface using rapid thermal oxidation (RTO) process by examining surface effective lifetime and surface recombination velocity. The presence of thin insulating a-Si:H layer is the key to get high Voc by lowering the leakage current (I0) which improves the efficie...

  12. Revisiting the effects of organic solvents on the thermal reduction of graphite oxide

    International Nuclear Information System (INIS)

    Barroso-Bujans, Fabienne; Fierro, José Luis G.; Alegría, Angel; Colmenero, Juan

    2011-01-01

    Highlights: ► Retention of organic solvent on graphite oxide interlayer space. ► Decreasing exfoliation temperature. ► Close link between structure and thermal behavior of solvent treated graphite oxide. ► Restacking inhibition of thermally reduced graphite oxide sheets. ► Changes in kinetic mechanisms of thermal reduction. - Abstract: Treatment of graphite oxide (GO) with organic solvents via sorption from either liquid or gas phase, and subsequent desorption, induces profound changes in the layered GO structure: loss of stacking order, retention of trace amounts of solvents and decreasing decomposition temperature. This study presents new evidences of the effect of organic solvents on the thermal reduction of GO by means of thermogravimetric analysis, X-ray diffraction and X-ray photoelectron spectroscopy. The results reveal a relative higher decrease of the oxygen amounts in solvent-treated GO as compared to untreated GO and the restacking inhibition of the thermally reduced GO sheets upon slow heating. The kinetic experiments evidence changes occurring in the reduction mechanisms of the solvent-treated GO, which support the close link between GO structure and thermal properties.

  13. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    Science.gov (United States)

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  14. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion.

    Science.gov (United States)

    Wickman, B; Bastos Fanta, A; Burrows, A; Hellman, A; Wagner, J B; Iandolo, B

    2017-01-16

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes considerably. Herein, we present hematite thin films fabricated via one-step oxidation of Fe by rapid thermal processing (RTP). In particular, we investigate the effect of oxidation temperature on the PEC properties of hematite. Films prepared at 750 °C show the highest activity towards water oxidation. These films show the largest average grain size and the highest charge carrier density, as determined from electron microscopy and impedance spectroscopy analysis. We believe that the fast processing enabled by RTP makes this technique a preferred method for investigation of novel materials and architectures, potentially also on nanostructured electrodes, where retaining high surface area is crucial to maximize performance.

  15. Thermal oxidation vitrification flue gas elimination system

    International Nuclear Information System (INIS)

    Kephart, W.; Angelo, F.; Clemens, M.

    1995-01-01

    With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO x emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ''greenhouse gas'' contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition

  16. Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats

    Energy Technology Data Exchange (ETDEWEB)

    Spitsberg, Irene [Materials and Process Engineering Department, GE Aircraft Engines, Evendale, OH (United States)]. E-mail: irene.spitsberg@kennametal.com; More, Karren [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2006-02-15

    The role of pre-oxidation surface treatments on the oxide microstructure and the failure mechanism of multi-layer thermal barrier systems based on Pt-modified NiAl bond coats and electron beam deposited thermal barrier coatings (TBCs) have been studied. The primary pre-oxidation experimental variable was the partial pressure of oxygen in the pre-oxidizing atmosphere at constant temperature and bond coat composition. The durability of TBCs deposited on surfaces following different pre-oxidation treatments were measured and compared using furnace cycling tests. The oxide layers corresponding to different levels of TBC performance were characterized microstructurally, chemically, and compositionally using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. TBC performance was enhanced by the formation of a surface oxide having a coarse-grained columnar structure during the pre-oxidation process. Increased TBC durability was consistent with a slower oxide growth rate during exposure of the TBC to high-temperature, cyclic conditions, as was observed for this particular pre-oxidation condition. An oxide microstructure having fewer through-thickness transport pathways (grain boundaries) should also result in slower lateral oxide growth rates, consistent with a slowed rate of ratcheting as was observed in the pre-oxidized samples that had the best TBC performance. The desired surface oxide grain structure was achieved by pre-oxidizing the bond coat prior to TBC deposition at an intermediate partial pressure of oxygen.

  17. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  18. Effect of heat treatment temperature on binder thermal conductivities

    International Nuclear Information System (INIS)

    Wagner, P.

    1975-12-01

    The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature

  19. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Science.gov (United States)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  20. Thermal diffusivity and conductivity of thorium- uranium mixed oxides

    Science.gov (United States)

    Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.

    2018-03-01

    Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.

  1. Thermal imaging of solid oxide fuel cell anode processes

    Energy Technology Data Exchange (ETDEWEB)

    Pomfret, Michael B.; Kidwell, David A.; Owrutsky, Jeffrey C. [Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Steinhurst, Daniel A. [Nova Research Inc., Alexandria, VA 22308 (United States)

    2010-01-01

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H{sub 2} and carbon deposition lead to the fragment cooling by 5 {+-} 2 C and 16 {+-} 1 C, respectively. When air is flowed over the fragments, the temperature rises 24 {+-} 1 C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 {+-} 0.1 C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a {delta}T of +2.2 {+-} 0.2 C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial ({proportional_to}0.1 mm) and temperature ({proportional_to}0.1 C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs. (author)

  2. Thermal imaging of solid oxide fuel cell anode processes

    Science.gov (United States)

    Pomfret, Michael B.; Steinhurst, Daniel A.; Kidwell, David A.; Owrutsky, Jeffrey C.

    A Si-charge-coupled device (CCD), camera-based, near-infrared imaging system is demonstrated on Ni/yttria-stabilized zirconia (YSZ) fragments and the anodes of working solid oxide fuel cells (SOFCs). NiO reduction to Ni by H 2 and carbon deposition lead to the fragment cooling by 5 ± 2 °C and 16 ± 1 °C, respectively. When air is flowed over the fragments, the temperature rises 24 ± 1 °C as carbon and Ni are oxidized. In an operational SOFC, the decrease in temperature with carbon deposition is only 4.0 ± 0.1 °C as the process is moderated by the presence of oxides and water. Electrochemical oxidation of carbon deposits results in a Δ T of +2.2 ± 0.2 °C, demonstrating that electrochemical oxidation is less vigorous than atmospheric oxidation. While the high temperatures of SOFCs are challenging in many respects, they facilitate thermal imaging because their emission overlaps the spectral response of inexpensive Si-CCD cameras. Using Si-CCD cameras has advantages in terms of cost, resolution, and convenience compared to mid-infrared thermal cameras. High spatial (∼0.1 mm) and temperature (∼0.1 °C) resolutions are achieved in this system. This approach provides a convenient and effective analytical technique for investigating the effects of anode chemistry in operating SOFCs.

  3. Role of high-temperature creep stress in thermally grown oxide growth of thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K.; Nakao, Y.; Seo, D.; Miura, H.; Shoji, T. [Tohoku Univ., Sendai (Japan)

    2008-07-01

    Thermally grown oxide (TGO) grows at the top / bond coating interface of the thermal barrier coating (TBC) in service. It is supposed that the failures of the TBC occur due to thermal stress and the decrease of adhesive strength caused by the TGO growth. Recently, large local stress has been found to change both the diffusion constant of oxygen through an existing oxide and the rate of chemical reaction at the oxide / oxidized material interface. Since high thermal stress occurs in the TBC, the volume expansion of the newly grown oxide, and centrifugal force, the growth rate of the TGO may change depending on not only temperature but also the stress. The aim of this study is to make clear the influence of stress on the growth rate of the TGO quantitatively. As a result, the thickness of the TGO clearly increases with increase of the amplitude of the applied stress and temperature. The increase rate of the TGO thickness is approximately 23% when the applied stress is increased from 0 to 205 MPa at 900 C, and approximately 29% when the stress is increased from 0 to 150 MPa at 950 C. (orig.)

  4. Physicochemical Characteristics and Lipid Oxidation of Chicken Inner Fillets Subjected to Different Thermal Processing Types

    Directory of Open Access Journals (Sweden)

    NN Arguelo

    Full Text Available ABSTRACT The objective of this study was to evaluate the effects of different types of thermal processing on the physiochemical characteristics and lipid oxidation of chicken inner fillets. The study was divided into three assays. In the first assay, 50 chicken inner fillets were divided into five treatments, totaling 10 samples per treatment. Treatments consisted in cooking in water bath, electric oven, microwave oven, deep frying, or grilling. The analyzed variables were: cooking weight loss (CWL and lipid oxidation determined by thiobarbituric acid reactive substances (TBARS. In the second assay, 50 chicken inner fillets were divided into five treatments, totaling 10 samples per treatment. Each treatment consisted of the same cooking methods applied in the first assay, and storage for 48 hours under refrigeration and reheating in a microwave oven. The variable analyzed in the second assay was lipid oxidation (TBARS. In the third assay, 30 samples of chicken inner fillets were subjected to one, four and eight freeze-thaw cycles, after which meat pH, myofibrillar fragmentation index (MFI, water retention capacity (WRC, and lipid oxidation (TBARS were determined. Chicken inner fillets submitted to deep frying and cooked in a microwave oven presented greater lipid oxidation than the other cooking methods, and deep frying resulted in the highest cooking weight loss. Reheating chicken inner fillets in a microwave oven caused the highest meat lipid oxidation. Increasing the number of freeze-thaw cycles increases the pH, MFI, WRC and TBARS values of chicken inner fillets.

  5. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    Science.gov (United States)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  6. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  7. Ultrasound assisted, thermally activated persulfate oxidation of coal tar DNAPLs.

    Science.gov (United States)

    Peng, Libin; Wang, Li; Hu, Xingting; Wu, Peihui; Wang, Xueqing; Huang, Chumei; Wang, Xiangyang; Deng, Dayi

    2016-11-15

    The feasibility of ultrasound assisted, thermally activated persulfate for effective oxidation of twenty 2-6 ringed coal tar PAHs in a biphasic tar/water system and a triphasic tar/soil/water system were investigated and established. The results indicate that ultrasonic assistance, persulfate and elevated reaction temperature are all required to achieve effective oxidation of coal tar PAHs, while the heating needed can be provided by ultrasonic induced heating as well. Further kinetic analysis reveals that the oxidation of individual PAH in the biphasic tar/water system follows the first-order kinetics, and individual PAH oxidation rate is primary determined by the mass transfer coefficients, tar/water interfacial areas, the aqueous solubility of individual PAH and its concentration in coal tar. Based on the kinetic analysis and experimental results, the contributions of ultrasound, persulfate and elevated reaction temperature to PAHs oxidation were characterized, and the effects of ultrasonic intensity and oxidant dosage on PAHs oxidation efficiency were investigated. In addition, the results indicate that individual PAH degradability is closely related to its reactivity as well, and the high reactivity of 4-6 ringed PAHs substantially improves their degradability. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Thermal neutron detectors based on complex oxide crystals

    CERN Document Server

    Ryzhikov, V; Volkov, V; Chernikov, V; Zelenskaya, O

    2002-01-01

    The ways of improvement of spectrometric quality of CWO and GSO crystals have been investigated with the aim of their application in thermal neutron detectors based on radiation capture reactions. The efficiency of the neutron detection by these crystals was measured, and the obtained data were compared with the results for sup 6 LiI(Tl) crystals. It is shown that the use of complex oxide crystals and neutron-absorption filters for spectrometry of thermal and resonance neutrons could be a promising method in combination with computer data processing. Numerical calculations are reported for spectra of gamma-quanta due to radiation capture of the neutrons. To compensate for the gamma-background lines, we used a crystal pair of heavy complex oxides with different sensitivity to neutrons.

  9. Studies of physicochemical properties of graphite oxide and thermally exfoliated/reduced graphene oxide

    Directory of Open Access Journals (Sweden)

    Drewniak Sabina Elżbieta

    2015-12-01

    Full Text Available The aim of the experimental research studies was to determine some electrical properties of graphite oxide and thermally exfoliated/reduced graphene oxide. The authors tried to interpret the obtained physicochemical results. For that purpose, both resistance measurements and investigation studies were carried out in order to characterize the samples. The resistance was measured at various temperatures in the course of composition changes of gas atmospheres (which surround the samples. The studies were also supported by such methods as: scanning electron microscopy (SEM, Raman spectroscopy (RS, atomic force microscopy (AFM and thermogravimetry (TG. Moreover, during the experiments also the elemental analyses (EA of the tested samples (graphite oxide and thermally exfoliated/reduced graphene oxide were performed.

  10. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  11. Oxidation of coals in the course of mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Proidakov; G.A. Kalabin [Irkutsk State University, Irkutsk (Russian Federation)

    2009-04-15

    The results of a study of coal oxidation under stationary conditions and during mechanical treatment are presented. A considerable increase in the reaction rate constants of coal oxidation during mechanical treatment because of oxidative mechanical degradation was found.

  12. Oil sludge treatment using thermal and ash vitrification technology

    International Nuclear Information System (INIS)

    Rohyiza Baan; Sharifah Aishah, S.A.K.; Mohamad Puad Abu; Mohd Abdul Wahab Yusof

    2010-01-01

    In this paper, an experimental study of crude oil sludge terminal for volume reduction and radionuclide stability was treated by using integrated thermal treatment system. The pre-thermal treatment of oil sludge was carried out in fluidized bed combustor at temperature 500 degree Celsius, and then the ash produced from that process was vitrified in high temperature furnace at temperature above 1000 degree Celsius. The main contents of oil sludge are composed of 80% carbon, 11% sulphur, 50% volatile matter and 30% ash. The high heating value was 35,722 kJ/ kg. Analysis by gamma spectrometer was showed the radionuclide as Ra-226 (52.23 Bq/ kg), Ra-228 (47.48 Bq/ kg), K-40 (172.55 Bq/ kg), whereas analysis by neutron activation analysis (NAA) for U (0.5 μg/ g) and Th (0.5 μg/ g) was present in low concentration. Trace elements as Ba, Cd, Cr, Hg, As, Pb, Al, Zn, Ni was determine by using ICPMS. Thermal analysis has shown loss of mass and residual decomposition in the TG and DTA curves. The concentration of radionuclide in ash from fluidized bed combustor process was increased for Ra-226 (264.27 Bq/ kg) and Ra-228 (253.77 Bq/ kg). The slag was produced from ash vitrification process was characterized by X-ray fluorescence (XRF) and showed that silica oxide and potassium oxide were found. The slag characterization by X-ray diffraction (XRD) showed that slag composed of crystalline. The toxicity characteristic leaching procedure (TCLP) test showed that the slag resulted in very low leachability of heavy metals. Most of the toxic metals are fixed in the vitrification process and the leachate values meet the standard level of Malaysian Department of Environmental (DOE) of hazardous materials. The average concentration of each element varied between 1.5-14.0 mg/ kg. (author)

  13. Electrometallurgical treatment of oxide spent fuels

    International Nuclear Information System (INIS)

    Karell, E. J.

    1999-01-01

    The Department of Energy (DOE) inventory of spent nuclear fuel contains a wide variety of oxide fuel types that may be unsuitable for direct repository disposal in their current form. The molten-salt electrometallurgical treatment technique developed by Argonne National Laboratory (ANL) has the potential to simplify preparing and qualifying these fuels for disposal by converting them into three uniform product streams: uranium metal, a metal waste form, and a ceramic waste form. This paper describes the major steps in the electrometallurgical treatment process for oxide fuels and provides the results of recent experiments performed to develop and scale up the process

  14. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  15. Estudo do efeito de tratamentos térmicos em catalisadores de PtRu/C frente à reação de oxidação de hidrogênio na presença de CO Study of the effect of thermal treatments of PtRu/C catalysts on the hydrogen oxidation reaction in the presence of CO

    Directory of Open Access Journals (Sweden)

    Pietro Papa Lopes

    2007-10-01

    Full Text Available In this work the effects of time and temperature of thermal treatments under reducing atmosphere (H2 on PtRu/C catalysts for the hydrogen oxidation reaction (HOR in the presence of CO on a proton exchange membrane fuel cell (PEMFC single cells have been studied. It can be seen that the increase of the treatment temperature leads to an increasing sintering of the catalyst particles with reduction of the active area, although the catalyst treated at 550 ºC presents more CO tolerance for the HOR.

  16. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  17. Thermal treatment of municipal waste: An overview

    International Nuclear Information System (INIS)

    Sivaprasad, K.S.

    2010-01-01

    Waste generation, like a shadow accompanies all kinds of human activities. For a long time waste was ignored as of no consequence. Nevertheless in recent times the presence of Waste was felt by the adverse impact it began to have on human life. Attention was given to waste disposal. Various methods of disposal were developed. Actually a process of evolution was set in this area. Starting with Dumpsite it developed in to sanitary land fill. Adverse impact was beginning to be seen in leachate contaminating ground water, and long term emission of methane contributing to climate change. This set the thinking to seek other solutions. Waste was begun to be seen as a resource instead of a nuisance to be disposed off. Bio-methanation of waste for recovery of methane rich biogas was developed. The concept of thermal treatment of waste for disposal came in to being in order to reduce volume of disposal as only the ash will be disposed instead of the whole volume of waste when waste is subjected to thermal treatment. However, it was beset with certain pollution problems which needed to be addressed. Suitable pollution abatement systems were developed. In the meantime, with the increase in global population and lifestyle changes across the globe, demand for natural resources went up rapidly resulting in pressure on the finite resources of the earth. Emphasis shifted to recovery of value from waste while disposing. Recovery of Recyclables, and energy came in to focus. RDF technology was developed facilitating this making it possible to recover recyclables like plastics, metals etc besides generating the prepared fuel RDF for energy recovery. (Author)

  18. Waste treatment using molten salt oxidation

    International Nuclear Information System (INIS)

    Navratil, J.D.; Stewart, A.E.

    1996-01-01

    MSO technology can be characterized as a submerged oxidation process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The molten salt (usually sodium carbonate at 900-1000 C) provides four waste management functions: providing a heat transfer medium, catalyzing the oxidation reaction, preventing the formation of acid gases by forming stable salts, and efficiently capturing ash particles and radioactive materials by the combined effects of wetting, encapsulation and dissolution. The MSO process requires no wet scrubbing system for off-gas treatment. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous wastes). (author). 24 refs, 2 tabs, 2 figs

  19. Consumption of thermally oxidized palm oil diets alters biochemical indices in rats

    Directory of Open Access Journals (Sweden)

    Ayodeji Osmund Falade

    2015-06-01

    Full Text Available Palm oil is thermally oxidized to increase its palatability and this has been a usual practice in most homes. This study sought to assess the biochemical responses of rats to thermally oxidized palm oil diets. Therefore, Wistar strain albino rats (Rattus norveigicus were fed with fresh palm oil (control and thermally oxidized palm oil (test groups diets and water ad libitum for 30 days. Then, the malondialdehyde (MDA contents and total protein of the plasma and liver were determined. Subsequently, the plasma liver function markers [alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALP, albumin (ALB and total bilirubin (TBIL ] and the lipid profile [triglyceride (TRIG, total cholesterol (T-CHOL, high density lipoprotein (HDL-CHOL and low density lipoprotein (LDL-CHOL ] were assayed. The results of the study revealed that there was a significant decrease (P < 0.05 in the plasma and liver total protein, ALB, TRIG and HDL-CHOL of the test groups when compared with the control. Conversely, there was a significant increase (P < 0.05 in the activities of ALT, AST and ALP, TBIL, T-CHOL, LDL-CHOL and plasma/liver MDA of the test groups when compared with the control. These effects were most pronounced in rats fed with 20 min-thermally oxidized palm oil diet. Hence, consumption of thermally oxidized palm oil diets had deleterious effects on biochemical indices in rats. Therefore, cooking with and/or consumption of palm oil subjected to heat treatment for several long periods of time should be discouraged in our homes as this might have deleterious effects on human health.

  20. Changes in Acylglycerols composition, quality characteristics and in vivo effects of dietary pumpkin seed oil upon thermal oxidation

    Science.gov (United States)

    Zeb, Alam; Ahmad, Sultan

    2017-07-01

    This study was aimed to determine the acylglycerols composition, quality characteristics and protective role of dietary pumpkin seed oil in rabbits. Pumpkin seed oil was thermally oxidized and analyzed for quality characteristics and acylglycerols composition using reversed phase high performance liquid chromatography with diode array detection (HPLC-DAD). Oxidized and un-oxidized oil samples were fed to the rabbits in different doses for two weeks. The changes in the serum biochemistry, hematology, and liver histology were studied. The levels of quality parameters such peroxide value (PV), anisidine value (AV), total phenolic contents (TPC), thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and conjugated trienes (CT) significantly increased with thermal treatment. HPLC analyses revealed ten individual triacylglycerols (TAGs), total di-acylglycerols (DAGs), mono-acylglycerols (MAGs), and total oxidized TAGs. Trilinolein (LLL), 1-oleoyl-2,3-dilinolinoyl glycerol (OLL), triolein (OOO) and 1,2-distearoyl-3-palmitoyl glycerol (SSP) were present in higher amounts and decreased with thermal treatment. Animal's studies showed that oxidized oils decreased the whole body weight, which was ameliorated by the co-administration of un-oxidized oils. The levels of serum biochemical parameters were improved by co-administration of pumpkin seed oils. There were no significant effects of both oxidized and un-oxidized pumpkin seed oil on the hematological and histological parameters of rabbits. In conclusion, nutritionally important triacylglycerols were present in pumpkin seed oil with protective role against the toxicity of its corresponding oxidized oils.

  1. Changes in Acylglycerols Composition, Quality Characteristics and In vivo Effects of Dietary Pumpkin Seed Oil upon Thermal Oxidation

    Directory of Open Access Journals (Sweden)

    Alam Zeb

    2017-07-01

    Full Text Available This study was aimed to determine the acylglycerols composition, quality characteristics, and protective role of dietary pumpkin seed oil (PSO in rabbits. PSO was thermally oxidized and analyzed for quality characteristics and acylglycerols composition using reversed phase high performance liquid chromatography with diode array detection (HPLC-DAD. Oxidized and un-oxidized oil samples were fed to the rabbits in different doses for 2 weeks. The changes in the serum biochemistry, hematology, and liver histology were studied. The levels of quality parameters such peroxide value (PV, anisidine value (AV, total phenolic contents (TPC, thiobarbituric acid reactive substances (TBARS, conjugated dienes (CD and conjugated trienes (CT significantly increased with thermal treatment. HPLC analyses revealed 10 individual triacylglycerols (TAGs, total di-acylglycerols (DAGs, mono-acylglycerols (MAGs, and total oxidized TAGs. Trilinolein (LLL, 1-oleoyl-2,3-dilinolinoyl glycerol (OLL, triolein (OOO and 1,2-distearoyl-3-palmitoyl glycerol (SSP were present in higher amounts and decreased with thermal treatment. Animal's studies showed that oxidized oils decreased the whole body weight, which was ameliorated by the co-administration of un-oxidized oils. The levels of serum biochemical parameters were improved by co-administration of pumpkin seed oils. There were no significant effects of both oxidized and un-oxidized PSO on the hematological and histological parameters of rabbits. In conclusion, nutritionally important triacylglycerols were present in PSO with protective role against the toxicity of its corresponding oxidized oils.

  2. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  3. Role of thermal analysis in uranium oxide fuel fabrication process

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Yadav, R.B.

    2006-01-01

    The present paper discusses the application of thermal analysis, particularly, differential thermal analysis (Dta) at various stages of fuel fabrication process. The useful role of Dta in knowing the decomposition pattern and calcination temperature of Adu along with de-nitration temperature is explained. The decomposition pattern depends upon the type of drying process adopted for wet ADU cake (ADU C). Also, the paper highlights the utility of DTA in determining the APS and SSA of UO 2+x and U 3 O 8 powders as an alternate technique. Further, the temperature difference (ΔT max ) between the two exothermic peaks obtained in UO 2+x powder oxidation is related to sintered density of UO 2 pellets. (author)

  4. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  5. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-09-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol% TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol% it is approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999% HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  6. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-01-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol percent TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol percent approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999 percent HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  7. Studies on Thermal Oxidation Stability of Aviation Lubricating Oils

    Directory of Open Access Journals (Sweden)

    Wu Nan

    2017-01-01

    Full Text Available Simulating the operating condition of aviation engine via autoclave experiment of high temperature and pressure, we studied the physic-chemical property of poly-α-olefin base oil samples mixed with antioxidants of 2,6-di-tert-butyl-4-methylphenol and p,p’-diisooctyl diphenylamine at different temperature. The mechanism of degradation of PAO aviation lubricating oil was analyzed according to the oxidized products by modern analytical instruments. The results showed that the aviation lubricating oil produced a large number of low molecule compounds while increasing the temperature, and resulted in the viscosity decreasing and acid value increasing which indicated that the thermal oxidation of the oil sample underwent a radical process.

  8. SO2 oxidation catalyst model systems characterized by thermal methods

    DEFF Research Database (Denmark)

    Hatem, G; Eriksen, Kim Michael; Gaune-Escard, M

    2002-01-01

    The molten salts M2S2O7 and MHSO4, the binary molten salt Systems M2S2O7-MHSO4 and the molten salt-gas systems M2S2O7 V2O5 and M2S2O7-M2SO4 V2O5 (M = Na, K, Rb, Cs) in O-2, SO2 and At atmospheres have been investigated by thermal methods like calorimetry, Differential Enthalpic Analysis (DEA) and...... to the mechanism Of SO2 oxidation by V2O5 based industrial catalysts....

  9. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Comparison of radiation-induced and thermal oxidative aging of polyethylene in the presence of inhibitors

    International Nuclear Information System (INIS)

    Dalinkevich, A.A.; Piskarev, I.M.

    1996-01-01

    Thermal oxidative and radiation-induced oxidative aging of inhibited polyethylene of commercial brands with known properties was studied at 60, 80 and 140 deg C. Radiation-induced oxidative aging was carried out under X-ray radiation with E max = 25 keV at dose rates providing specimen oxidation in kinetic conditions. The value of activation energy of thermal oxidative destruction of inhibited polyethylene under natural conditions of its employment at 60-140 deg C (E a = 60 kJ/mol) was obtained by comparison of data for radiation-induced and thermal oxidative destruction

  11. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  12. Thermal oxidative degradation of wood modified with aminophenylborates

    Directory of Open Access Journals (Sweden)

    Klyachenkova Olga

    2016-01-01

    Full Text Available Comparative thermal analysis in the presence of oxygen was carried out for samples of native pine wood and wood samples modified with aminophenylborates. Significant decrease in the amount of heat released during thermal decomposition of the modified samples was established, which is due to the increase of carbonaceous residues on the surface. Reduction of heat release during decomposition of the modified samples may be explained by the lower yield of combustible volatile products as well as by thin film of boron oxide, formed on the surface of the modified wood, that partially reflects heat flow. Produced upon the modifier decomposition water vapor and inert nitrogen oxides dilute gaseous mixture near the wood surface and isolate it from oxygen. This enhances fire-resistance of wood modified with mono- and diethanolamine(N→Bphenylborates. Hydroxyl group at the sixth carbon atom of the glucopyranose ring of cellulose participates in reactions of cellulose modification, which prevents formation of flammable levoglucosan and, consequently, improves the fire-resistance of the modified wood.

  13. Nitrous oxide emissions from wastewater treatment processes

    Science.gov (United States)

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  14. Nonthermal effects in thermal treatment applications of nonionizing irradiation

    Science.gov (United States)

    Thomsen, Sharon

    2005-04-01

    Several non-thermal factors influence the primary and secondary effects of interstitial thermal treatments using various types of non-ionizing irradiation. Recognition and understanding of the influences of these various factors are important in choice of energy source, the configuration of the application instrument and the design of treatments.

  15. Effects of source, water conditioning and thermal treatment on ...

    African Journals Online (AJOL)

    at 15 % moisture content amounting to 61.3 MJ was the optimum thermal treatment for achieving germination of 69 %. R. heudelotii seeds soaked in water for 15 days at moisture content of 24 % over dry weight followed by thermal treatment improved germination by 22 %. The highest germination of 79 % was obtained for ...

  16. Effects of pressure on thermal transport in plutonium oxide powder

    International Nuclear Information System (INIS)

    Bielenberg, Patricia; Prenger, F. Coyne; Veirs, Douglas Kirk; Jones, Jerry

    2004-01-01

    Radial temperature profiles in plutonium oxide (PuO 2 ) powder were measured in a cylindrical vessel over a pressure range of 0.055 to 334.4 kPa with two different fill gases, helium and argon. The fine PuO 2 powder provides a very uniform self-heating medium amenable to relatively simple mathematical descriptions. At low pressures ( 2 powder has small particle sizes (on the order of 1 to 10 μm), random particle shapes, and high porosity so a more general model was required for this system. The model correctly predicts the temperature profiles of the powder over the wide pressure range for both argon and helium as fill gases. The effective thermal conductivity of the powder bed exhibits a pressure dependence at higher pressures because the pore sizes in the interparticle contact area are relatively small (less than 1 μm) and the Knudsen number remains above the continuum limit at these conditions for both fill gases. Also, the effective thermal conductivity with argon as a fill gas is higher than expected at higher pressures because the solid pathways account for over 80% of the effective powder conductivity. The results obtained from this model help to bring insight to the thermal conductivity of very fine ceramic powders with different fill gases.

  17. Thermal treatment of medical waste in a rotary kiln.

    Science.gov (United States)

    Bujak, J

    2015-10-01

    This paper presents the results of a study of an experimental system with thermal treatment (incineration) of medical waste conducted at a large complex of hospital facilities. The studies were conducted for a period of one month. The processing system was analysed in terms of the energy, environmental and economic aspects. A rotary combustion chamber was designed and built with the strictly assumed length to inner diameter ratio of 4:1. In terms of energy, the temperature distribution was tested in the rotary kiln, secondary combustion (afterburner) chamber and heat recovery system. Calorific value of medical waste was 25.0 MJ/kg and the thermal efficiency of the entire system equalled 66.8%. Next, measurements of the pollutant emissions into the atmosphere were performed. Due to the nature of the disposed waste, particular attention was paid to the one-minute average values of carbon oxide and volatile organic compounds as well as hydrochloride, hydrogen fluoride, sulphur dioxide and total dust. Maximum content of non-oxidized organic compounds in slag and bottom ash were also verified during the analyses. The best rotary speed for the combustion chamber was selected to obtain proper afterburning of the bottom slag. Total organic carbon content was 2.9%. The test results were used to determine the basic economic indicators of the test system for evaluating the profitability of its construction. Simple payback time (SPB) for capital expenditures on the implementation of the project was 4 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. In situ vitrification: An innovative thermal treatment technology

    International Nuclear Information System (INIS)

    Fitzpatrick, V.F.; Timmerman, C.L.; Buelt, J.L.

    1987-03-01

    In situ vitrification is a thermal treatment process that converts contaminated soil into a chemically inert, stable glass and crystalline product. A square array of four electrodes are inserted into the ground to the desired treatment depth. Because the soil is not electrically conductive once the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed among the electrodes to act as the starter path. An electrical potential is applied to the electrodes, which establishes an electrical current in the starter path. The resultant power heats the starter path and surrounding soil up to 3600 0 F, well above the initial melting temperature or fusion temperature of soils. The normal fusion temperature of soil ranges between 2000 and 2500 0 F. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is now electrically conductive. As the vitrified zone grows, it incorporates nonvolatile elements and destroys organic components by pyrolysis. The pyrolyzed byproducts migrate to the surface of the vitrified zone, where they combust in the presence of oxygen. A hood placed over the processing area provides confinement for the combustion gases, and the gases are drawn into the off-gas treatment system

  19. Thermal decomposition of nitrate salts liquid waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Kim, Y. K.; Lee, K. Y.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2004-01-01

    This study investigated the thermal decomposition property of nitrate salts liquid waste which is produced in a series of the processes for the sludge treatment. Thermal decomposition property was analyzed by TG/DTA and XRD. Most ammonium nitrate in the nitrate salts liquid waste was decomposed at 250 .deg. C and calcium nitrate was decomposed and converted into calcium oxide at 550 .deg. C. Sodium nitrate was decomposed at 700 .deg. C and converted into sodium oxide which reacts with water easily. But sodium oxide was able to convert into a stable compound by adding alumina. Therefore, nitrate salts liquid waste can be treated by two steps as follows. First, ammonium nitrate is decomposed at 250 .deg. C. Second, alumina is added in residual solid sodium nitrate and calcium nitrate and these are decomposed at 900 .deg. C. Final residue consists of calcium oxide and Na 2 O.Al 2 O 3 and can be stored stably

  20. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  1. Wet oxidative degradation of cellulosic wastes 5- chemical and thermal properties of the final waste forms

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2002-01-01

    In this study, the residual solution arising from the wet oxidative degradation of solid organic cellulosic materials, as one of the component of radioactive solid wastes, using hydrogen peroxide as oxidant. Were incorporated into ordinary Portland cement matrix. Leaching as well as thermal characterizations of the final solidified waste forms were evaluated to meet the final disposal requirements. Factors, such as the amount of the residual solution incorporated, types of leachant. Release of different radionuclides and freezing-thaw treatment, that may affect the leaching characterization. Were studied systematically from the data obtained, it was found that the final solid waste from containing 35% residual solution in tap water is higher than that in ground water or sea water. Based on the data obtained from thermal analysis, it could be concluded that incorporating the residual solution form the wet oxidative degradation of cellulosic materials has no negative effect on the hydration of cement materials and consequently on the thermal stability of the final solid waste from during the disposal process

  2. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  3. Thermal neutron scattering cross sections of beryllium and magnesium oxides

    International Nuclear Information System (INIS)

    Al-Qasir, Iyad; Jisrawi, Najeh; Gillette, Victor; Qteish, Abdallah

    2016-01-01

    Highlights: • Neutron thermalization in BeO and MgO was studied using Ab initio lattice dynamics. • The BeO phonon density of states used to generate the current ENDF library has issues. • The BeO cross sections can provide a more accurate ENDF library than the current one. • For MgO an ENDF library is lacking: a new accurate one can be built from our results. • BeO is a better filter than MgO, especially when cooled down to 77 K. - Abstract: Alkaline-earth beryllium and magnesium oxides are fundamental materials in nuclear industry and thermal neutron scattering applications. The calculation of the thermal neutron scattering cross sections requires a detailed knowledge of the lattice dynamics of the scattering medium. The vibrational properties of BeO and MgO are studied using first-principles calculations within the frame work of the density functional perturbation theory. Excellent agreement between the calculated phonon dispersion relations and the experimental data have been obtained. The phonon densities of states are utilized to calculate the scattering laws using the incoherent approximation. For BeO, there are concerns about the accuracy of the phonon density of states used to generate the current ENDF/B-VII.1 libraries. These concerns are identified, and their influences on the scattering law and inelastic scattering cross section are analyzed. For MgO, no up to date thermal neutron scattering cross section ENDF library is available, and our results represent a potential one for use in different applications. Moreover, the BeO and MgO efficiencies as neutron filters at different temperatures are investigated. BeO is found to be a better filter than MgO, especially when cooled down, and cooling MgO below 77 K does not significantly improve the filter’s efficiency.

  4. Thermal treatment of natural goethite: Thermal transformation and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haibo [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia); Chen, Tianhu, E-mail: chentianhu@hfut.edu.cn [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Zou, Xuehua; Qing, Chengsong [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia)

    2013-09-20

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier.

  5. Thermal treatment of natural goethite: Thermal transformation and physical properties

    International Nuclear Information System (INIS)

    Liu, Haibo; Chen, Tianhu; Zou, Xuehua; Qing, Chengsong; Frost, Ray L.

    2013-01-01

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier

  6. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    Science.gov (United States)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  7. Effect of the top coat on the phase transformation of thermally grown oxide in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Hashimoto, T. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)]. E-mail: ping.xiao@manchester.ac.uk

    2006-12-15

    The phase transformation of the thermally grown oxide (TGO) formed on a Pt enriched {gamma} + {gamma}' bond coat in electron beam physical vapour deposited thermal barrier coatings (TBCs) was studied by photo-stimulaluminescence spectroscopy. The presence of the TBC retards the {theta} to {alpha} transformation of the TGO and leads to a higher oxidation rate. The reasons for these phenomena are discussed.

  8. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    Science.gov (United States)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  9. Thermal Recycling of Waelz Oxide Using Concentrated Solar Energy

    Science.gov (United States)

    Tzouganatos, N.; Matter, R.; Wieckert, C.; Antrekowitsch, J.; Gamroth, M.; Steinfeld, A.

    2013-12-01

    The dominating Zn recycling process is the so-called Waelz process. Waelz oxide (WOX), containing 55-65% Zn in oxidic form, is mainly derived from electric arc furnace dust produced during recycling of galvanized steel. After its wash treatment to separate off chlorides, WOX is used as feedstock along with ZnS concentrates for the electrolytic production of high-grade zinc. Novel and environmentally cleaner routes for the purification of WOX and the production of Zn are investigated using concentrated solar energy as the source of high-temperature process heat. The solar-driven clinkering of WOX and its carbothermal reduction were experimentally demonstrated using a 10 kWth packed-bed solar reactor. Solar clinkering at above 1265°C reduced the amount of impurities below 0.1 wt.%. Solar carbothermal reduction using biocharcoal as reducing agent in the 1170-1320°C range yielded 90 wt.% Zn.

  10. Thermal and radiation induced polymerisation of carbon sub-oxide

    International Nuclear Information System (INIS)

    Schmidt, Michel

    1964-03-01

    This research thesis addresses the study of the polymerisation of carbon sub-oxide (C 3 O 2 ) in gaseous phase. As this work is related to other researches dealing with the reactions of the graphite-CO 2 system which occur in graphite-moderated nuclear reactors, a first intention was to study the behaviour of C 3 O 2 when submitted to radiations. Preliminary tests showed that the most remarkable result of this action was the formation of a polymer. It was also noticed that the polymerisation of this gas was spontaneous however slower at room temperature. The research thus focused on this polymerisation, and on the formula of the obtained polymer. After some generalities, the author reports the preparation, purification and storage and conservation of the carbon sub-oxide. The next parts report the kinetic study of thermal polymerisation, the study of polymerisation under γ rays, the study of the obtained polymer by using visible, UV and infrared spectroscopy, electronic paramagnetic resonance, and semi-conductivity measurements [fr

  11. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  12. Thermal-driven attachment of gold nanoparticles prepared with ascorbic acid onto indium tin oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Md. Abdul; Oyama, Munetaka, E-mail: oyama.munetaka.4m@kyoto-u.ac.jp [Kyoto University, Department of Material Chemistry, Graduate School of Engineering (Japan)

    2013-05-15

    Thermal-driven attachment of gold nanoparticles (AuNPs), of which size was less than 50 nm, onto the surfaces of indium tin oxide (ITO) is reported as a new phenomenon. This was permitted by preparing AuNPs via the reduction of hydrogen tetrachloroaurate (HAuCl{sub 4}) with ascorbic acid (AA). While the AuNPs prepared via the AA reduction sparsely attached on the surface of ITO even at room temperature, a heat-up treatment at ca. 75 Degree-Sign C caused denser attachment of AuNPs on ITO surfaces. The attached density and the homogeneity after the thermal treatment were better than those of AuNP/ITO prepared using 3-aminopropyl-trimethoxysilane linker molecules. The denser attachment was observed similarly both by the immersion of ITO samples after the preparations of AuNPs by AA and by the in situ preparation of AuNPs with AA together with ITO samples. Thus, it is considered that the thermal-driven attachment of AuNPs would occur after the formation of AuNPs in the aqueous solutions, not via the growth of AuNPs on ITO surfaces. The preparation of AuNPs with AA would be a key for the thermal-driven attachment because the same attachments were not observed for AuNPs prepared with citrate ions or commercially available tannic acid-capped AuNPs.

  13. Removal of Iron Oxide Scale from Feed-water in Thermal Power Plant by Using Magnetic Separation

    Science.gov (United States)

    Nakanishi, Motohiro; Shibatani, Saori; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2017-09-01

    One of the factors of deterioration in thermal power generation efficiency is adhesion of the scale to inner wall in feed-water system. Though thermal power plants have employed All Volatile Treatment (AVT) or Oxygen Treatment (OT) to prevent scale formation, these treatments cannot prevent it completely. In order to remove iron oxide scale, we proposed magnetic separation system using solenoidal superconducting magnet. Magnetic separation efficiency is influenced by component and morphology of scale which changes their property depending on the type of water treatment and temperature. In this study, we estimated component and morphology of iron oxide scale at each equipment in the feed-water system by analyzing simulated scale generated in the pressure vessel at 320 K to 550 K. Based on the results, we considered installation sites of the magnetic separation system.

  14. Retrieval/ex situ thermal treatment scoring interaction report

    Energy Technology Data Exchange (ETDEWEB)

    Raivo, B.D.; Richardson, J.G.

    1993-11-01

    A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.

  15. The future of thermal waste treatment; Zukunft der thermischen Restabfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Wiemer, K.; Kern, M. (eds.); Tappen, I.; Weber-Wied, R. (comps.)

    2001-07-01

    Contents: State of the art of energy-efficient thermal waste treatment processes and practical examples; Regional and economic aspects; Licensing problems of thermal waste treatment plants. [German] Der vorliegende Tagungsband zum 2. Stassfurter Abfall- und Energieforum beschreibt den aktuellen Stand energieeffizienter thermischer Abfallbehandlungsmethoden an praktischen Beispielen und stellt den Bezug dieser Massnahmen zum raeumlich-wirtschaftlichen Umfeld dar. Darueber hinaus werden vergaberechtliche Fragen im Zusammenhang mit der europaweiten Ausschreibungspflicht fuer die Errichtung thermischer Abfallbehandlungsanlagen aufgezeigt und eroertert. (orig.)

  16. Synthesis of Ceria Zirconia Oxides using Solvothermal Treatment

    Directory of Open Access Journals (Sweden)

    Machmudah Siti

    2018-01-01

    Full Text Available Ceria oxide (CeO2 is widely used as catalyst with high oxygen storage capacity at low temperature. The addition of zirconia oxide (ZrO2 to CeO2 can enhance oxygen storage capacity as well as thermal stability. In this work, ceria zirconia oxides has been synthesized via a low temperature solvothermal treatment in order to produce ceria zirconia oxides composite with high oxygen storage capacity as electrolyte of solid oxide fuel cells (SOFC. Under solvothermal conditions, solvent may control the direction of crystal growth, morphology, particle size and size distribution, because of the controllability of thermodynamics and transport properties by pressure and temperature. Water, mixed of water and ethanol (70/30 vol/vol, and mixed of water and ethylene glycol (70/30 vol/vol were used as solvent, while Ce(NO33 and ZrO(NO32 with 0.06 M concentration were used as precursor. The experiments were conducted at temperature of 150 °C and pressure for 2 h in a Teflon-lined autoclave of 100 mL volume. The synthesized products were dried at 60 °C for 6 and 12 h and then calcined at 900 °C for 6 h. The particle products were characterized using SEM, XRD, TG/DTA, and Potentiostat. The results showed that the morphology of particles formed were affected by the solvent. Solid plate shaped particles were produced in water, and tend to be pore with the addition of ethylene glycol. The addition of ethanol decreased the size of particles with sphere shaped. The XRD pattern indicated that ceria-zirconia oxides particles are uniformly distributed in the structure to form a homogeneous solid solution. Based on the electrochemical analysis, ceria zirconia oxides produced via solvothermal synthesis had high conductivity ion of 0.5594 S/cm, which is higher than minimum conductivity ion requirement of 0.01 S/cm for SOFC electrolyte. It indicated that ceria zirconia oxides produced via solvothermal synthesis is suitable for SOFC electrolyte.

  17. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer

    International Nuclear Information System (INIS)

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-01-01

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  18. Thermal oxidation effect on structural and optical properties of heavily doped phosphorus polycrystalline silicon films

    Energy Technology Data Exchange (ETDEWEB)

    Birouk, B.; Madi, D. [Universite de Jijel, Laboratoire d' Etudes et de Modelisation en Electrotechnique (LAMEL), Cite Ouled Aissa, BP 98, Jijel (Algeria)

    2011-08-15

    The study reported in this paper contributes to better understanding the thermal oxidation effect on structural and optical properties of polycrystalline silicon heavily in situ P-LPCVD films. The deposits, doped at levels 3 x 10{sup 19} and 1.6 x 10{sup 20} cm{sup -3}, have been elaborated from silane decomposition (400 mTorrs, 605 C) on monosilicon substrate oriented left angle 111 right angle. The thermal oxidation was performed at temperatures: 850 C during 1 hour, 1000, 1050, and 1100 C during 15 minutes. The XRD spectra analysis pointed out significant left angle 111 right angle texture evolution, while in the case of left angle 220 right angle and left angle 311 right angle textures, the intensities are practically invariant (variations fall in the uncertainty intervals). The optical characterizations showed that refractive index and absorption coefficient are very sensitive to the oxidation treatment, mainly when the doping level is not very high. We think that atomic oxygen acts as defects passivating agent leading to carriers' concentration increasing. Besides, the optical behavior is modeled in visible and near infrared, by a seven-term polynomial function n {sup 2}=f({lambda} {sup 2}), with alternate signs, instead of theoretically unlimited terms number from Drude's model. It has been shown that fitting parameters fall on Gaussian curves like they do in the theoretical model. (orig.)

  19. Integrated thermal treatment system sudy: Phase 2, Results

    Energy Technology Data Exchange (ETDEWEB)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  20. Integrated thermal treatment system sudy: Phase 2, Results

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr)

  1. Alternative method for steam generation for thermal oxidation of silicon

    Science.gov (United States)

    Spiegelman, Jeffrey J.

    2010-02-01

    Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.

  2. Oxidative reduction of glove box wipers with a downdraft thermal oxidation system

    International Nuclear Information System (INIS)

    Phelps, M.R.; Wilcox, W.A.

    1996-04-01

    Wipers (rags) used for decontamination and glove box cleanup in the Plutonium Finishing Plant often become soaked with acid and plutonium-rich solutions. After use, these wipers are rinsed in a dilute NaOH solution and dried, but the formation of unstable nitrates and the hydrogen gas caused by hydrolysis are concerns that still must be addressed. This report gives the results of testing with a small downdraft thermal oxidation system that was constructed by Pacific Northwest National Laboratory to stabilize glove wiper waste, reduce the waste volume, and reclaim plutonium. Proof-of-principle testing was conducted with eight runs using various combinations of rag moisture and chemical pretreatment. All runs went to planned completion. Results of these tests indicate that the thermal oxidation system has the potential for providing significant reductions in waste volume. Weight reductions of 150:1 were easily obtainable during this project. Modifications could result in weight reductions of over 200:1, with possible volume reductions of 500:1

  3. Low level mixed waste thermal treatment technical basis report

    Energy Technology Data Exchange (ETDEWEB)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  4. Low level mixed waste thermal treatment technical basis report

    International Nuclear Information System (INIS)

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated

  5. Surface and sub-surface thermal oxidation of thin ruthenium films

    Energy Technology Data Exchange (ETDEWEB)

    Coloma Ribera, R.; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kokke, S.; Zoethout, E. [FOM Dutch Institute for Fundamental Energy Research (DIFFER), P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2014-09-29

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low density and high density oxides. Nano-columns grow at the surface of the low density oxide layer, with the growth rate being limited by diffusion of ruthenium through the formed oxide film. Simultaneously, with the growth of the columns, sub-surface high density oxide continues to grow limited by diffusion of oxygen or ruthenium through the oxide film.

  6. Microwave enhanced oxidation treatment of organic fertilizers.

    Science.gov (United States)

    More, Abhilasha; Srinivasan, Asha; Liao, Ping Huang; Lo, Kwang Victor

    2017-08-01

    Liquid organic fertilizers (LOFs) are relatively easier to degrade than those of solid organic fertilizers, and the nutrients are readily available for plant uptake. Microwave enhanced advanced oxidation treatment (MW/H 2 O 2 -AOP) was used to convert solid organic fertilizers (insoluble blood meal, bone meal, feather meal, sunflower ash and a mixture) into LOF. After the MW/H 2 O 2 -AOP treatment, high soluble nitrogen (11-29%), soluble phosphorus (64%) and potassium (92%), as well as low total suspended solids content could be obtained. The resulting LOF would make the nutrients more bioavailable, and would provide some of them for the plant uptake immediately. Temperature and hydrogen peroxide dosage were found to be significant factors affecting nitrogen release from blood meal and feather meal, while temperature and pH were found to be significant factors for solubilizing phosphorus and potassium from bone meal and ash, respectively. The MW/H 2 O 2 -AOP reduced suspended solids, and released nutrients into solution; therefore, it was an effective treatment method to make LOFs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Thermal treatment of organic radioactive waste

    International Nuclear Information System (INIS)

    Chrubasik, A.; Stich, W.

    1993-01-01

    The organic radioactive waste which is generated in nuclear and isotope facilities (power plants, research centers and other) must be treated in order to achieve a waste form suitable for long term storage and disposal. Therefore the resulting waste treatment products should be stable under influence of temperature, time, radioactivity, chemical and biological activity. Another reason for the treatment of organic waste is the volume reduction with respect to the storage costs. For different kinds of waste, different treatment technologies have been developed and some are now used in industrial scale. The paper gives process descriptions for the treatment of solid organic radioactive waste of low beta/gamma activity and alpha-contaminated solid organic radioactive waste, and the pyrolysis of organic radioactive waste

  8. Control of nitrogen oxides at thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Hall, R.E.

    1991-01-01

    Reviews reports presented at the International symposium on reduction of NO{sub x} emissions from stationary pollutant sources, held in San Francisco (USA) in March 1989. Topics concentrated on the latest trends in power engineering in the USA and Europe. Reports were dedicated to test results of pilot plant equipment employing the increasingly popular LNB, OFA, Reburn, SNCR, and SCR technologies. The following conclusions are drawn on the basis of the symposium proceedings: The nitric oxide problem may be considered exaggerated in regard to thermal power plants because of errors made during flue gas composition analysis. The combination of new combustion chambers and staged air input with simultaneous redesigning of equipment is most widely employed in the USA (achieving a 50% NO{sub x} reduction with minimum effect on power plant operation and maintenance costs). Economic sense demands that primary methods of NO{sub x} removal be used prior to SCR implementation. The SCR technology reducing NO{sub x} emission by 60-80% with ammonia to less than 5 ppm is the most popular flue gas denitrification method. 15 refs.

  9. Processing of baby food using pressure-assisted thermal sterilization (PATS) and comparison with thermal treatment

    Science.gov (United States)

    Wang, Yubin; Ismail, Marliya; Farid, Mohammed

    2017-10-01

    Currently baby food is sterilized using retort processing that gives an extended shelf life. However, this type of heat processing leads to reduction of organoleptic and nutrition value. Alternatively, the combination of pressure and heat could be used to achieve sterilization at reduced temperatures. This study investigates the potential of pressure-assisted thermal sterilization (PATS) technology for baby food sterilization. Here, baby food (apple puree), inoculated with Bacillus subtilis spores was treated using PATS at different operating temperatures, pressures and times and was compared with thermal only treatment. The results revealed that the decimal reduction time of B. subtilis in PATS treatment was lower than that of thermal only treatment. At a similar spore inactivation, the retention of ascorbic acid of PATS-treated sample was higher than that of thermally treated sample. The results indicated that PATS could be a potential technology for baby food processing while minimizing quality deterioration.

  10. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    Science.gov (United States)

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  11. Thermal treatment of the minority game

    Science.gov (United States)

    Burgos, E.; Ceva, Horacio; Perazzo, R. P.

    2002-03-01

    We study a cost function for the aggregate behavior of all the agents involved in the minority game (MG) or the bar attendance model (BAM). The cost function allows us to define a deterministic, synchronous dynamic that yields results that have the main relevant features than those of the probabilistic, sequential dynamics used for the MG or the BAM. We define a temperature through a Langevin approach in terms of the fluctuations of the average attendance. We prove that the cost function is an extensive quantity that can play the role of an internal energy of the many-agent system while the temperature so defined is an intensive parameter. We compare the results of the thermal perturbation to the deterministic dynamics and prove that they agree with those obtained with the MG or BAM in the limit of very low temperature.

  12. Thermal power sludge – properties, treatment, utilization

    Directory of Open Access Journals (Sweden)

    Martin Sisol

    2005-11-01

    Full Text Available In this paper a knowledge about properties of thermal power sludge from coal combustion in smelting boilers is presented. The physical and technological properties of slag – granularity, density, specific, volume and pouring weight, hardness and decoupling – together with chemical properties influence its exploitation. The possibility of concentrating the Fe component by the mineral processing technologies (wet low-intenzity magnetic separation is verified. An industrial use of the slag in civil engineering, e.g. road construction, was realised. The slag-fly ashes are directly utilized in the cement production as a substitute of a part of natural raw materials. For the use of slag as the stoneware in the road construction, all the criteria are fulfilled.

  13. Formation and Thermal Stability of Large Precipitates and Oxides in Titanium and Niobium Microalloyed Steel

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xiao-jun; WOO Dae-hee; WANG Xin-hua; LEE Hae-geon

    2008-01-01

    As-cast CC slabs of microalloyed steels are prone to surface and sub-surface cracking. Precipitation phenomena in-itiated during solidification reduce ductility at high temperature. The unidirectional solidification unit is employed to sim-ulate the solidification process during continuous casting. Precipitation behavior and thermal stability are systemati-cally investigated. Samples of adding titanium and niobium to steels have been examined using field emission scanning electron microscope (FE-SEM), electron probe X-ray microanalyzer (EPMA), and transmission electron microscope (TEM). It has been found that the addition of titanium and niobium to high-strength low-alloyed (HSLA) steel resuited in undesirable large precipitation in the steels, i. e. , precipitation of large precipitates with various morphologies. The composition of the large precipitates has been determined. The effect of cooling rate on (Ti, Nb)(C, N) precipitate formation is investigated. With increasing the cooling rate, titanium-rich (Ti,Nb)(C, N) precipitates are transformed to niobium-rich (Ti,Nb)(C,N) precipitates. The thermal stability of these large precipitates and oxides have been assessed by carrying out various heat treatments such as holding and quenching from temperature at 800 and 1 200 ℃. It has been found that titanium-rich (Ti,Nb)(C,N) precipitate is stable at about 1 200 ℃ and niobi-um-rich (Ti,Nb)(C,N) precipitate is stable at about 800 ℃. After reheating at 1 200 ℃ for 1 h, (Ca, Mn)S and TiN are precipitated from Ca-Al oxide. However, during reheating at 800 ℃ for 1 h, Ca-Al-Ti oxide in specimens was stable. The thermodynamic calculation of simulating the thermal process is employed. The calculation results are in good agreement with the experimental results.

  14. Integrated thermal treatment systems study. Internal review panel report

    International Nuclear Information System (INIS)

    Cudahy, J.; Escarda, T.; Gimpel, R.

    1995-04-01

    The U.S. Department of Energy (DOE) Office of Technology Development (OTD) commissioned two studies to evaluate nineteen thermal treatment technologies for treatment of DOE mixed low-level waste. These studies were called the Integrated Thermal Treatment System (ITTS) Phase I and Phase II. With the help of the DOE Office of Environmental Management (EM) Mixed Waste Focus Group, OTD formed an ITTS Internal Review Panel to review and comment on the ITTS studies. This Panel was composed of scientists and engineers from throughout the DOE complex, the U.S. Environmental Protection Agency, the California EPA, and private experts. The Panel met from November 15-18, 1994 to review the ITTS studies and to make recommendations on the most promising thermal treatment systems for DOE mixed low-level wastes and on research and development necessary to prove the performance of the technologies. This report describes the findings and presents the recommendations of the Panel

  15. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  16. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  17. Improved the Surface Roughness of Silicon Nanophotonic Devices by Thermal Oxidation Method

    Energy Technology Data Exchange (ETDEWEB)

    Shi Zujun; Shao Shiqian; Wang Yi, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, No. 1037, Luoyu Street, Wuhan 430074 (China)

    2011-02-01

    The transmission loss of the silicon-on-insulator (SOI) waveguide and the coupling loss of the SOI grating are determined to a large extent by the surface roughness. In order to obtain smaller loss, thermal oxidation is a good choice to reduce the surface roughness of the SOI waveguide and grating. Before the thermal oxidation, the root mean square of the surface roughness is over 11 nm. After the thermal oxidation, the SEM figure shows that the bottom of the grating is as smooth as quartz surface, while the AFM shows that the root mean square of the surface is less than 5 nm.

  18. Thermal sensor based zinc oxide diode for low temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Ocaya, R.O. [Department of Physics, University of the Free State (South Africa); Al-Ghamdi, Ahmed [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); El-Tantawy, F. [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Farooq, W.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig, 23169 (Turkey)

    2016-07-25

    The device parameters of Al/p-Si/Zn{sub 1-x}Al{sub x}O-NiO/Al Schottky diode for x = 0.005 were investigated over the 50 K–400 K temperature range using direct current–voltage (I–V) and impedance spectroscopy. The films were prepared using the sol–gel method followed by spin-coating on p-Si substrate. The ideality factor, barrier height, resistance and capacitance of the diode were found to depend on temperature. The calculated barrier height has a mean. Capacitance–voltage (C–V) measurements show that the capacitance decreases with increasing frequency, suggesting a continuous distribution of interface states over the surveyed 100 kHz to 1 MHz frequency range. The interface state densities, N{sub ss}, of the diode were calculated and found to peak as functions of bias and temperature in two temperature regions of 50 K–300 K and 300 K–400 K. A peak value of approximately 10{sup 12}/eV cm{sup 2} was observed around 0.7 V bias for 350 K and at 3 × 10{sup 12}/eVcm{sup 2} around 2.2 V bias for 300 K. The relaxation time was found to average 4.7 μs over all the temperatures, but showing its lowest value of 1.58 μs at 300 K. It is seen that the interface states of the diode is controlled by the temperature. This suggests that Al/p-Si/Zn1-xAlxO-NiO/Al diode can be used as a thermal sensors for low temperature applications. - Highlights: • Al/pSi/Zn1-xAlxO-NiO/Al Schottky diode was fabricated by sol gel method. • The interface state density of the diode is controlled by the temperature. • Zinc oxide based diode can be used as a thermal sensor for low temperature applications.

  19. Oxygen transport and GeO2 stability during thermal oxidation of Ge

    Science.gov (United States)

    da Silva, S. R. M.; Rolim, G. K.; Soares, G. V.; Baumvol, I. J. R.; Krug, C.; Miotti, L.; Freire, F. L.; da Costa, M. E. H. M.; Radtke, C.

    2012-05-01

    Oxygen transport during thermal oxidation of Ge and desorption of the formed Ge oxide are investigated. Higher oxidation temperatures and lower oxygen pressures promote GeO desorption. An appreciable fraction of oxidized Ge desorbs during the growth of a GeO2 layer. The interplay between oxygen desorption and incorporation results in the exchange of O originally present in GeO2 by O from the gas phase throughout the oxide layer. This process is mediated by O vacancies generated at the GeO2/Ge interface. The formation of a substoichiometric oxide is shown to have direct relation with the GeO desorption.

  20. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    Science.gov (United States)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  1. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Saks, N.S.

    1996-01-01

    We have combined thermally stimulated-current (TSC) and capacitance endash voltage (C endash V) measurements to estimate oxide, interface, and effective border trap densities in 6 endash 23 nm thermal, N 2 O, and N 2 O-nitrided oxides exposed to ionizing radiation or high-field electron injection. Defect densities depend strongly on oxide processing, but radiation exposure and moderate high-field stress lead to similar trapped hole peak thermal energy distributions (between ∼1.7 and ∼2.0 eV) for all processes. This suggests that similar defects dominate the oxide charge trapping properties in these devices. Radiation-induced hole and interface trap generation efficiencies (0.1%endash 1%) in the best N 2 O and N 2 O-nitrided oxides are comparable to the best radiation hardened oxides in the literature. After ∼10 Mrad(SiO 2 ) x-ray irradiation or ∼10 mC/cm 2 constant current Fowler endash Nordheim injection, effective border trap densities as high as ∼5x10 11 cm -2 are inferred from C endash V hysteresis. These measurements suggest irradiation and high-field stress cause similar border trap energy distributions. In each case, even higher densities of compensating trapped electrons in the oxides (up to 2x10 12 cm -2 ) are inferred from combined TSC and C endash V measurements. These trapped electrons prevent conventional C endash V methods from providing accurate estimates of the total oxide trap charge density in many irradiation or high-field stress studies. Fewer compensating electrons per trapped hole (∼26%±5%) are found for irradiation of N 2 O and N 2 O-nitrided oxides than for thermal oxides (∼46%±7%). (Abstract Truncated)

  2. Monitoring thermally grown oxides under thermal barrier coatings using photoluminescence piezospectroscopy (PLPS)

    Energy Technology Data Exchange (ETDEWEB)

    Del Corno, A.; De Maria, L.; Rinaldi, C. [ERSE, Milan (Italy); Nalin, L.; Simms, N.J. [Cranfield Univ., Bedford (United Kingdom). Energy Technology Centre

    2010-07-01

    The use of thermal barrier coatings (TBCs) on cooled components in industrial gas turbine has enabled higher inlet gas temperatures to be used and hence higher efficiencies to be achieved, without increasing component metal temperatures. However TBCs have a complex coating structure that during high temperature exposure and thermal cycling modifies until TBC spalling which can result in dangerous over-heating of components. This paper reports the results of a TBC exposure programme planned to monitor TGOs development in an example TBC system in terms of both stress evolution within the TGOs and TGO growth. The COST538 reference TBC system was used: an yttria stabilised zirconia TBC applied to an Amdry 995 bond coat on an CMSX-4 substrate. Samples were in the form of 10 mm diameter bars, with the TBC applied to their curved surface. Coated samples were exposed in simulated combustion gases at temperatures 850, 900 and 950 C for periods of up to 10,000 hours. Every 1000 hours samples were cooled and weighed to monitor the progression of the oxidation: selected samples NDT inspected using PLPS and/or destructive examination. Cross-sections were prepared and examined in a scanning electron microscope (SEM) at multiple locations to determine TGO thickness distributions. PLPS spectra were measured and elaborated with a system self developed in ERSE, able to calculate and map the TGO residual stress values under columnar TBCs. So the positions could be evidenced where the damage of the TBC /TGO/BC interface is higher on the exposed bars. The data of TGO thickness distributions and PLPS stress measurement distributions were compared to the exposures carried out on samples to identify and quantify trends in their development. Metallography confirmed that the PLPs technique can reliably detect interface cracking before visible EB-PVD TBC spalling. (orig.)

  3. Thermally activated persulfate oxidation regeneration of NOM- and MTBE- spent granular activated carbon

    Science.gov (United States)

    Chemical oxidation is a developing technology used to regenerate contaminant-spent GAC. Chemical regeneration of GAC represents a viable option to thermal regeneration methods that are energy intensive resulting in significant consumption of fossil fuels and production of greenho...

  4. Interstitial pressure dependence of the thermal conductivity of some rare earth oxide powders

    International Nuclear Information System (INIS)

    Pradeep, P.

    1997-01-01

    Thermal transport properties of powdered materials depend upon interstitial gas pressure. The present study reports the experimental results for the effective thermal conductivity of three rare earth oxide powders viz. yttrium oxide, samarium oxide, and gadolinium oxide, at various interstitial pressures by using transient plane source (TPS) method. A theoretical model is also proposed for the interpretation of the variation of the effective thermal conductivity with interstitial gas pressure. Its validity is found to be good in low pressure range of 45 mm Hg to normal pressure when compared with the experimental results. Also an attempt has been made to calculate the variation of thermal conductivity with interstitial pressure in the high pressure range up to 2 kbar using the proposed model. (author)

  5. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxin [ORNL; Bhat, Vinay V [ORNL; Gallego, Nidia C [ORNL; Contescu, Cristian I [ORNL

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  6. Thermal oxidative degradation behaviours of flame-retardant thermotropic liquid crystal copolyester/PET blends

    International Nuclear Information System (INIS)

    Du Xiaohua; Zhao Chengshou; Wang Yuzhong; Zhou Qian; Deng Yi; Qu Minghai; Yang Bing

    2006-01-01

    The flame retardancy and the thermal oxidative degradation behaviors of the blend of poly(ethylene terephthalate) (PET) with a kind of phosphorus-containing thermotropic liquid crystal copolyester (TLCP) with high flame retardancy (limited oxygen index, 70%) have been investigated by oxygen index test (LOI), UL-94 rating and thermogravimetric analysis (TGA) in air. The results show that TLCP can dramatically improve the flame retardancy and the melt dripping behavior of PET. Moreover, the apparent activation energies of thermal oxidative degradation of the blends were evaluated using Kissinger and Flynn-Wall-Ozawa methods. It is found that addition of TLCP improve thermal stability and restrain thermal decomposition of PET in air, especially at the primary degradation stage. Py-GC/MS analysis shows that there are remarkable changes in the pyrolysis products when TLCP are blended into PET. The interaction between TLCP and PET has changed their thermal oxidative degradation mechanism

  7. Rapid synthesis of tin oxide nanostructures by microwave-assisted thermal oxidation for sensor applications

    Science.gov (United States)

    Phadungdhitidhada, S.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D.; Choopun, S.

    2017-09-01

    In the present work nanostructures of tin oxides were synthesized by a microwave-assisted thermal oxidation. Tin precursor powder was loaded into a cylindrical quartz tube and further radiated in a microwave oven. The as-synthesized products were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffractometer. The results showed that two different morphologies of SnO2 microwires (MWs) and nanoparticles (NPs) were obtained in one minute of microwave radiation under atmospheric ambient. A few tens of the SnO2 MWs with the length of 10-50 µm were found. Some parts of the MWs were decorated with the SnO2 NPs. However, most of the products were SnO2 NPs with the diameter ranging from 30-200 nm. Preparation under loosely closed system lead to mixed phase SnO-SnO2 NPs with diameter of 30-200 nm. The single-phase of SnO2 could be obtained by mixing the Sn precursor powders with CuO2. The products were mostly found to be SnO2 nanowires (NWs) and MWs. The diameter of SnO2 NWs was less than 50 nm. The SnO2 NPs, MWs, and NWs were in the cassiterite rutile structure phase. The SnO NPs was in the tetragonal structure phase. The growth direction of the SnO2 NWs was observed in (1 1 0) and (2 2 1) direction. The ethanol sensor performance of these tin oxide nanostructures showed that the SnO-SnO2 NPs exhibited extremely high sensitivity. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  8. X-ray absorption spectroscopy study on the thermal and hydrazine reduction of graphene oxide

    International Nuclear Information System (INIS)

    Liang, Xianqing; Wang, Yu; Zheng, Huiyuan; Wu, Ziyu

    2014-01-01

    Highlights: • XAS study of GO and reduced GO was performed. • Detailed evolution of the electronic structures and chemical bonding of GO was revealed. • A new efficient route for the reduction of GO is proposed. - Abstract: X-ray absorption spectroscopy (XAS) was applied to systemically investigate the deoxygenation of graphene oxide (GO) via annealing and hydrazine treatment. Detailed evolution of the electronic structures and chemical bonding of GO was presented. The enhanced intensity of π * resonance and the appearance of splitting σ * resonance in C K-edge XAS spectra suggest high extents of recoveries of π-conjugation upon reduction using thermal annealing or hydrazine. Experimental results revealed that the carboxyl as well as epoxide and hydroxyl groups on the surface of GO were thermally reduced first, followed by the more difficult removal of carbonyl and cyclic ether groups at higher temperatures. The hydrazine reduction could remove epoxide, hydroxyl and carboxyl groups effectively, whereas the carbonyl groups were partially reduced with the incorporation of nitrogen species simultaneously. The residual oxygen functional groups on hydrazine-reduced GO could be further removed after modest thermal annealing. It was proposed that a combination of both types of reductions would give the best deoxygenation efficiency for the production of graphene

  9. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  10. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, H.A.; Schmidt, L.J.; Erickson, T.A.; Sondreal, E.A.; Erjavec, J.; Steadman, E.N.; Fabrycky, W.J.; Wilson, J.S.; Musich, M.A.

    1996-07-01

    This report analyzes three systems engineering (SE) studies performed on integrated thermal treatment systems (ITTSs) and integrated nonthermal treatment systems (INTSs) for the remediation of mixed low-level waste (MLLW) stored throughout the US Department of Energy (DOE) weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center (EERC), Science Applications International Corporation (SAIC), the Waste Policy Institute (WPI), and Virginia Tech (VT). The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions taken in the studies might bias the resulting economic evaluations of both thermal and nonthermal systems, (2) identify the critical areas of the studies that would benefit from further investigation, and (3) develop a standard template that could be used in future studies to produce sound SE applications.

  11. Review of the integrated thermal and nonthermal treatment system studies

    International Nuclear Information System (INIS)

    1996-08-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The three studies reviewed were as follows: Integrated Thermal Treatment System Study, Phase 1--issued July 1994; Integrated Thermal Treatment System Study, Phase 2--issued February 1996; and Integrated Nonthermal Treatment System Study--drafted March 1996. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering

  12. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  13. Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion

    Science.gov (United States)

    Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...

  14. Infrared absorption study of ammonium uranates and uranium oxide powders formed during their thermal decomposition

    International Nuclear Information System (INIS)

    Rofail, N.H.; ELfekey, S.A.

    1992-01-01

    Ammonium uranates (AU) were precipitated from a nuclear-pure uranyl nitrate solution using different precipitating agents. IR spectra of the obtained uranates and oxides formed during their thermal decomposition have been studied. The results indicated that the precipitating agent, mode of stirring, washing and calcining temperature are important factors for a specific oxide formation.4 FIG., 3 TAB

  15. Surface and sub-surface thermal oxidation of thin ruthenium films

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Kokke, S.; Zoethout, E.; Yakshin, Andrey; Bijkerk, Frederik

    2014-01-01

    A mixed 2D (film) and 3D (nano-column) growth of ruthenium oxide has been experimentally observed for thermally oxidized polycrystalline ruthenium thin films. Furthermore, in situ x-ray reflectivity upon annealing allowed the detection of 2D film growth as two separate layers consisting of low

  16. Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture

    Science.gov (United States)

    Korkut, Sibel (Inventor); Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A painted polymer part containing a conductive polymer composition containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the painted polymer part has been electrospray painted.

  17. Treatment of hazardous wastes by DC thermal plasma arc discharge

    International Nuclear Information System (INIS)

    Toru, Iwao; Yafang, Liu; Furuta, N.; Tsuginori, Inaba

    2001-01-01

    The temperature of the DC thermal plasma arc discharge is discussed, and examples of the waste treatment for the inorganic compounds such as fly ash, asbestos, and for the organic compounds such as the toxic dioxines and TBT by using the DC plasma arc discharge are shown. In addition, the plasma treatment by using a radiant power emitted from the DC plasma arc discharge is also shown as another new kind of ones. (authors)

  18. Thermal treatment of radioactive wastes by the PLASMARC process

    International Nuclear Information System (INIS)

    Hoffelner, W.; Haefeli, V.; Fuenfschilling, M.R.

    1996-01-01

    The plasma plant for the thermal treatment of radioactive wastes to be supplied to ZWILAG is briefly described and the results of experiments with simulated waste are provided. The experiments led to the conclusion that the plant is well suited for handling low- and intermediate level radioactive wastes. (author) 1 fig., 3 tabs

  19. Thermal treatment technology at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hillary, J.M.

    1994-01-01

    Recent surveys of mixed wastes in interim storage throughout the 30-site Department of Energy complex indicate that only 12 of those sites account for 98% of such wastes by volume. Current inventories at the Idaho National Engineering Laboratory (INEL) account for 38% of total DOE wastes in interim storage, the largest of any single site. For a large percentage of these waste volumes, as well as the substantial amounts of buried and currently generated wastes, thermal treatment processes have been designated as the technologies of choice. Current facilities and a number of proposed strategies exist for thermal treatment of wastes of this nature at the INEL. High-level radioactive waste is solidified in the Waste Calciner Facility at the Idaho Central Processing Plant. Low-level solid wastes until recently have been processed at the Waste Experimental Reduction Facility (WERF), a compaction, size reduction, and controlled air incineration facility. WERF is currently undergoing process upgrading and RCRA Part B permitting. Recent systems studies have defined effective strategies, in the form of thermal process sequences, for treatment of wastes of the complex and heterogeneous nature in the INEL inventory. This presentation reviews the current status of operating facilities, active studies in this area, and proposed strategies for thermal treatment of INEL wastes

  20. Effect of substrate type, dopant and thermal treatment on ...

    Indian Academy of Sciences (India)

    Effect of substrate type, dopant and thermal treatment on physicochemical properties of TiO2–SnO2 sol–gel films. I STAMBOLOVA. ∗. , V BLASKOV, S VASSILEV†, M SHIPOCHKA and A LOUKANOV‡. Institute of General and Inorganic Chemistry, †Institute of Electrochemistry and Energy Systems, BAS,. Acad. G. Bonchev ...

  1. Oxidant and antioxidant parameters in the treatment of meningitis.

    Science.gov (United States)

    Aycicek, Ali; Iscan, Akin; Erel, Ozcan; Akcali, Mustafa; Ocak, Ali Riza

    2007-08-01

    The aim of this study was to assess the effects of meningitis treatment on the serum and cerebrospinal-fluid oxidant and antioxidant status in children with bacterial meningitis. Forty children with bacterial meningitis, at ages ranging from 4 months to 12 years (mean age, 4 years), were enrolled in the study. Within 8 hours after admission (before treatment) and 10 days after clinical and laboratory indications of recovery (after treatment), cerebrospinal fluid and venous blood were collected. Thirty-seven healthy children (mean age, 4 years) were enrolled as control subjects, and only venous blood was collected. Serum total oxidant status, lipid hydroperoxide, oxidative stress index, uric acid, albumin, and ceruloplasmin levels were lower in the patient group after treatment (Ptotal antioxidant capacity levels, vitamin C, total bilirubin, and catalase concentrations were not significantly altered by treatment (P>0.05). However, cerebrospinal fluid total oxidant status, lipid hydroperoxide, and oxidative stress index levels were higher, and cerebrospinal fluid total antioxidant capacity levels were lower after treatment than before treatment (P<0.05). In conclusion, we demonstrated that serum oxidative stress was lower, and cerebrospinal fluid oxidative stress was higher, after rather than before treatment in children with bacterial meningitis.

  2. Direct chemical oxidation: a non-thermal technology for the destruction of organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, G.B.; Cooper, J. F.; Lewis, P. R.; Adamson, M. G.

    1998-02-01

    Direct Chemical Oxidation (DCO) is a non-thermal, ambient pressure, aqueous-based technology for the oxidative destruction of the organic components of hazardous or mixed waste streams. The process has been developed for applications in waste treatment and chemical demilitarization and decontamination at LLNL since 1992, and is applicable to the destruction of virtually all solid or liquid organics, including: chlorosolvents, oils and greases, detergents, organic-contaminated soils or sludges, explosives, chemical and biological warfare agents, and PCB's. [1-15] The process normally operates at 80-100 C, a heating requirement which increases the difficulty of surface decontamination of large objects or, for example, treatment of a wide area contaminated soil site. The driver for DCO work in FY98 was thus to investigate the use of catalysts to demonstrate the effectiveness of the technology for organics destruction at temperatures closer to ambient. In addition, DCO is at a sufficiently mature stage of development that technology transfer to a commercial entity was a logical next step, and was thus included in FY98 tasks.

  3. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, Artak, E-mail: karapetyan@cinam.univ-mrs.fr [Aix Marseille Université, CINaM, 13288, Marseille (France); Institute for Physical Research of NAS of Armenia, Ashtarak-2 0203 (Armenia); Reymers, Anna [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Giorgio, Suzanne; Fauquet, Carole [Aix Marseille Université, CINaM, 13288, Marseille (France); Sajti, Laszlo [Laser Zentrum Hannover e.V. Hollerithallee 8, 30419 Hannover (Germany); Nitsche, Serge [Aix Marseille Université, CINaM, 13288, Marseille (France); Nersesyan, Manuk; Gevorgyan, Vladimir [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Marine, Wladimir [Aix Marseille Université, CINaM, 13288, Marseille (France)

    2015-03-15

    Structural and optical characterization of crystalline Cu{sub 2}O thin films obtained by thermal oxidation of Cu films at two different temperatures 800 °C and 900 °C are investigated in this work. X-ray diffraction measurements indicate that synthesized films consist of single Cu{sub 2}O phase without any interstitial phase and show a nano-grain structure. Scanning Electron Microscopy observations indicate that the Cu{sub 2}O films have a micro-scale roughness whereas High Resolution Transmission Electron Microscopy highlights that the nanocrystalline structure is formed by superposition of nearly spherical nanocrystals smaller than 30 nm. Photoluminescence spectra of these films exhibit at room temperature two well-resolved emission peaks at 1.34 eV due to defects energy levels and at 1.97 eV due to phonon-assisted recombination of the 1s orthoexciton in both film series. Emission characteristics depending on the laser power is deeply investigated to determine the origin of recorded emissions. Time-integrated spectra of the 1s orthoexciton emission reveals the presence of oxygen defects below the conduction band edge under non-resonant two-photon excitation using a wide range of excitations wavelengths. Optical absorption coefficients at room temperature are obtained from an accurate analysis of their transmission and reflection spectra, whereas the optical band gap energy is estimated at about 2.11 eV. Results obtained are of high relevance especially for potential applications in semiconductor devices such as solar cells, optical sources and detectors. - Highlights: • Nanostructured Cu{sub 2}O thin films were synthesized by thermal oxidation of Cu films. • The PL spectra of nanostructured thin films revealed two well-resolved emission peaks. • The PL properties were investigated under a broad range of experimental conditions. • Inter-band transition in the infrared range has been associated to V{sub Cu} and V{sub O} vacancies. • Absorption

  4. Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Science.gov (United States)

    Schooneveldt, Gerben; Bakker, Akke; Balidemaj, Edmond; Chopra, Rajiv; Crezee, Johannes; Geijsen, Elisabeth D; Hartmann, Josefin; Hulshof, Maarten C C M; Kok, H Petra; Paulides, Margarethus M; Sousa-Escandon, Alejandro; Stauffer, Paul R; Maccarini, Paolo F

    2016-06-01

    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.

  5. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Kedong, E-mail: lishi@mail.utexas.edu, E-mail: kedongbi@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189 (China); Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Weathers, Annie; Pettes, Michael T.; Shi, Li, E-mail: lishi@mail.utexas.edu, E-mail: kedongbi@seu.edu.cn [Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712 (United States); Matsushita, Satoshi; Akagi, Kazuo [Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510 (Japan); Goh, Munju [Department of Polymer Chemistry, Kyoto University, Kyoto 615-8510 (Japan); Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Eunha-ri san 101, Bondong-eup, Wanju-gun, Jeolabuk-do 565-905 (Korea, Republic of)

    2013-11-21

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m{sup −1} K{sup −1} near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion.

  6. Iodine doping effects on the lattice thermal conductivity of oxidized polyacetylene nanofibers

    International Nuclear Information System (INIS)

    Bi, Kedong; Weathers, Annie; Pettes, Michael T.; Shi, Li; Matsushita, Satoshi; Akagi, Kazuo; Goh, Munju

    2013-01-01

    Thermal transport in oxidized polyacetylene (PA) nanofibers with diameters in the range between 74 and 126 nm is measured with the use of a suspended micro heater device. With the error due to both radiation and contact thermal resistance corrected via a differential measurement procedure, the obtained thermal conductivity of oxidized PA nanofibers varies in the range between 0.84 and 1.24 W m −1  K −1 near room temperature, and decreases by 40%–70% after iodine doping. It is also found that the thermal conductivity of oxidized PA nanofibers increases with temperature between 100 and 350 K. Because of exposure to oxygen during sample preparation, the PA nanofibers are oxidized to be electrically insulating before and after iodine doping. The measurement results reveal that iodine doping can result in enhanced lattice disorder and reduced lattice thermal conductivity of PA nanofibers. If the oxidation issue can be addressed via further research to increase the electrical conductivity via doping, the observed suppressed lattice thermal conductivity in doped polymer nanofibers can be useful for the development of such conducting polymer nanostructures for thermoelectric energy conversion

  7. A recommendation for the thermal conductivity of oxide fuels

    International Nuclear Information System (INIS)

    Kang, K. H.; Ryu, H. J.; Song, K. C.; Yang, M. S.; Na, S. H.; Lee, Y. W.; Moon, H. S.; Kim, H. S.

    2004-01-01

    The thermal conductivity of nuclear fuel is one of the most important properties because it affects the fuel operating temperature. Therefore, it influences almost all the important processes occurred in nuclear fuel during irradiation, such as gas release, swelling and grain growth. The model of the thermal conductivity of nuclear fuel should be used in the codes to evaluate the performance of it analytically and be required in the nuclear fuel research and development. The thermal conductivity, k, of UO 2 depends on the deviation from stoichiometry, x, the burnup, b, and the fractional porosity, p, as well as the temperature, T: k = k(x, b, p, T), (1) Changes in thermal conductivity occur during irradiation because of fission-gas bubble formation, pores, cracks, fission product build-up and possible changes in the oxygen to uranium ratio (O/U). The dependence on temperature and porosity has been well studied and incorporated in computer codes used for the in-pile fuel behavior analysis. There are several studies on the effect of impurity on the thermal conductivity of UO 2 . In this paper, the variables affected on the thermal conductivity were studied. The available data of the thermal conductivity of UO 2 , UO 2+x , (U, Pu)O 2 , (U, Pu)O 2 and simulated fuel for irradiation fuel were reviewed and analyzed. The best models were recommended

  8. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    Energy Technology Data Exchange (ETDEWEB)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  9. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    International Nuclear Information System (INIS)

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios

  10. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  11. Thermally induced growth of ZnO nanocrystals on mixed metal oxide surfaces.

    Science.gov (United States)

    Inayat, Alexandra; Makky, Ayman; Giraldo, Jose; Kuhnt, Andreas; Busse, Corinna; Schwieger, Wilhelm

    2014-06-23

    An in situ method for the growth of ZnO nanocrystals on Zn/Al mixed metal oxide (MMO) surfaces is presented. The key to this method is the thermal treatment of Zn/Al layered double hydroxides (Zn/Al LDHs) in the presence of nitrate anions, which results in partial demixing of the LDH/MMO structure and the subsequent crystallization of ZnO crystals on the surface of the forming MMO layers. In a first experimental series, thermal treatment of Zn/Al LDHs with different fractions of nitrate and carbonate in the interlayer space was examined by thermogravimetry coupled with mass spectrometry (TG-MS) and in situ XRD. In a second experimental series, Zn/Al LDHs with only carbonate in the interlayer space were thermally treated in the presence of different amounts of an external nitrate source (NH4NO3). All obtained Zn/Al MMO samples were analysed by electron microscopy, nitrogen physisorption and powder X-ray diffraction. The gas phase formed during nitrate decomposition turned out to be responsible for the formation of crystalline ZnO nanoparticles. Accordingly, both interlayer nitrate and the presence of ammonium nitrate led to the formation of supported ZnO nanocrystals with mean diameters between 100 and 400 nm, and both methods offer the possibility to tailor the amount and size of the ZnO crystals by means of the amount of nitrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermal oxidation of tungsten-based sputtered coatings

    International Nuclear Information System (INIS)

    Louro, C.; Cavaleiro, A.

    1997-01-01

    The effect of the addition of nickel, titanium, and nitrogen on the air oxidation behavior of W-based sputtered coatings in the temperature range 600 to 800 C was studied. In some cases these additions significantly improved the oxidation resistance of the tungsten coatings. As reported for bulk tungsten, all the coatings studied were oxidized by layers following a parabolic law. Besides WO 3 and WO x phases detected in all the oxidized coatings, TiO 2 and NiWO 4 were also detected for W-Ti and W-Ni films, respectively. WO x was present as an inner protective compact layer covered by the porous WO 3 oxide. The best oxidation resistance was found for W-Ti and W-N-Ni coatings which also presented the highest activation energies (E a = 234 and 218 kJ/mol, respectively, as opposed to E a ∼ 188 kJ/mol for the other coatings). These lower oxidation weight gains were attributed to the greater difficulty of the inward diffusion of oxygen ions for W-Ti films, owing to the formation of fine particles of TiO 2 , and the formation of the external, more protective layer of NiWO 4 for W-N-Ni coatings

  13. Thermal processing and native oxidation of silicon nanoparticles

    International Nuclear Information System (INIS)

    Winters, Brandon J.; Holm, Jason; Roberts, Jeffrey T.

    2011-01-01

    In this study, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS) were used to investigate in-air oxidation of silicon nanoparticles ca. 11 nm in diameter. Particle samples were prepared first by extracting them from an RF plasma synthesis reactor, and then heating them in an inert carrier gas stream. The resulting particles had varying surface hydrogen coverages and relative amounts of SiH x (x = 1, 2, and 3), depending on the temperature to which they had been heated. The particles were allowed to oxidize in-air for several weeks. FTIR, XPS, and EELS analyses that were performed during this period clearly establish that adsorbed hydrogen retards oxidation, although in complex ways. In particular, particles that have been heated to intermediate hydrogen coverages oxidize more slowly in air than do freshly generated particles that have a much higher hydrogen content. In addition, the loss of surface hydride species at high processing temperatures results in fast initial oxidation and the formation of a self-limiting oxide layer. Analogous measurements made on deuterium-covered particles show broadly similar behavior; i.e., that oxidation is the slowest at some intermediate coverage of adsorbed deuterium.

  14. Mosaic-shaped cathode for highly durable solid oxide fuel cell under thermal stress

    Science.gov (United States)

    Joo, Jong Hoon; Jeong, Jaewon; Kim, Se Young; Yoo, Chung-Yul; Jung, Doh Won; Park, Hee Jung; Kwak, Chan; Yu, Ji Haeng

    2014-02-01

    In this study, we propose a novel "mosaic structure" for a SOFC (solid oxide fuel cell) cathode with high thermal expansion to improve the stability against thermal stress. Self-organizing mosaic-shaped cathode has been successfully achieved by controlling the amount of binder in the dip-coating solution. The anode-supported cell with mosaic-shaped cathode shows itself to be highly durable performance for rapid thermal cycles, however, the performance of the cell with a non-mosaic cathode exhibits severe deterioration originated from the delamination at the cathode/electrolyte interface after 7 thermal cycles. The thermal stability of an SOFC cathode can be evidently improved by controlling the surface morphology. In view of the importance of the thermal expansion properties of the cathode, the effects of cathode morphology on the thermal stress stability are discussed.

  15. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  16. Oxygen isotopic exchange occurring during dry thermal oxidation of 6H SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vickridge, I.C. E-mail: vickridge@gps.jussieu.fr; Tromson, D.; Trimaille, I.; Ganem, J.-J.; Szilagyi, E.; Battistig, G

    2002-05-01

    SiC is a large band gap semiconductor, promising for high power and high frequency devices. The thermal oxide is SiO{sub 2} however the growth rates of thermal oxide on SiC are substantially slower than on Si, and different along the polar directions (<0 0 0 1-bar> and <0 0 0 1> in the hexagonal polytypes). Thorough understanding of the oxide growth mechanisms may give us new insights into the nature of the SiO{sub 2}/SiC interface, crucial for device applications. We have determined growth kinetics for ultra-dry thermal oxidation of 6H SiC at 1100 deg. C for pressures from 3 to 200 mbar. At 3 mbar, the lowest pressure studied, the oxide growth rates along the two polar directions are virtually the same. At higher pressures growth is faster on the carbon-terminated (0 0 0 1-bar) face. After consecutive oxidations at 1100 deg. C and 100 mbar in {sup 18}O{sub 2} and {sup 16}O{sub 2} gases, {sup 18}O depth profiles show significant isotopic exchange and oxygen movement within the oxide during oxidation.

  17. The effect of thermal pre-treatment of titanium hydride (TiH2) powder in argon condition

    Science.gov (United States)

    Franciska P., L.; Erryani, Aprilia; Annur, Dhyah; Kartika, Ika

    2018-04-01

    Titanium hydride (TiH2) powders are used to enhance the foaming process in the formation of a highly porous metallic material with a cellular structure. But, the low temperature of hydrogen release is one of its problems. The present study, different thermal pre-treatment temperatures were employed to investigate the decomposition behavior of TiH2 to retard or delay a hydrogen gas release process during foaming. As a foaming agent, TiH2 was subjected to various heat treatments prior at 450 and 500°C during 2 hours in argon condition. To study the formation mechanism, the thermal behavior of titanium hydride and hydrogen release are investigated by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The morphology of pre-treated titanium hydride powders were examined using Scanning Electron Microscope (SEM) while unsure mapping and elemental composition of the pre-treated powders processed by Energy Dispersive Spectroscopy (EDS). To study the phase formation was characterized by X-ray diffraction analysis (XRD). In accordance with the results, an increase in pre-treatment temperature of TiH2 to higher degrees are changing the process of releasing hydrogen from titanium hydride powder. DTA/TGA results showed that thermal pre-treatment TiH2 at 450°C, released the hydrogen gas at 560°C in heat treatment when foaming process. Meanwhile, thermal pre-treatment in TiH2 at 500°C, released the hydrogen gas at 670°C when foaming process. There is plenty of direct evidence for the existence of oxide layers that showed by EDS analysis obtained in SEM. As oxygen is a light element and qualitative proof shows that the higher pre-treatment temperature produces more and thicker oxygen layers on the surface of the TiH2 powder particles. It might the thickness of oxide layer are different from different pre-treatment temperatures, which leading to the differences in the decomposition temperature. But from SEM result that oxidation of the powder does not

  18. Thermal oxidation of reactively sputtered amorphous W80N20 films

    International Nuclear Information System (INIS)

    Vu, Q.T.; Pokela, P.J.; Garden, C.L.; Kolawa, E.; Raud, S.; Nicolet, M.

    1990-01-01

    The oxidation behavior of reactively sputtered amorphous tungsten nitride of composition W 80 N 20 was investigated in dry and wet oxidizing ambient in the temperature range of 450 degree C--575 degree C. A single WO 3 oxide phase is observed. The growth of the oxide follows a parabolic time dependence which is attributed to a process controlled by the diffusivity of the oxidant in the oxide. The oxidation process is thermally activated with an activation energy of 2.5±0.05 eV for dry ambient and 2.35±0.05 eV for wet ambient. The pre-exponential factor of the reaction constant for dry ambient is 1.1x10 21 A 2 /min; that for wet ambient is only about 10 times less and is equal to 1.3x10 20 A 2 /min

  19. Perspective of Micro Process Engineering for Thermal Food Treatment.

    Science.gov (United States)

    Mathys, Alexander

    2018-01-01

    Micro process engineering as a process synthesis and intensification tool enables an ultra-short thermal treatment of foods within milliseconds (ms) using very high surface-area-to-volume ratios. The innovative application of ultra-short pasteurization and sterilization at high temperatures, but with holding times within the range of ms would allow the preservation of liquid foods with higher qualities, thereby avoiding many unwanted reactions with different temperature-time characteristics. Process challenges, such as fouling, clogging, and potential temperature gradients during such conditions need to be assessed on a case by case basis and optimized accordingly. Owing to the modularity, flexibility, and continuous operation of micro process engineering, thermal processes from the lab to the pilot and industrial scales can be more effectively upscaled. A case study on thermal inactivation demonstrated the feasibility of transferring lab results to the pilot scale. It was shown that micro process engineering applications in thermal food treatment may be relevant to both research and industrial operations. Scaling of micro structured devices is made possible through the use of numbering-up approaches; however, reduced investment costs and a hygienic design must be assured.

  20. Influence of oxidation treatment on ballistic electron surface-emitting display of porous silicon

    International Nuclear Information System (INIS)

    Du, Wentao; Zhang, Xiaoning; Zhang, Yujuan; Wang, Wenjiang; Duan, Xiaotao

    2012-01-01

    Two groups of porous silicon (PS) samples are treated by rapid thermal oxidation (RTO) and electrochemical oxidation (ECO), respectively. Scanning electron microscopy images show that PS samples are segmented into two layers. Oxidized film layer is formed on the top surface of PS samples treated by RTO while at the bottom of PS samples treated by ECO. Both ECO and RTO treatment can make emission current density, diode current density, and emission efficiency of PS increase with the bias voltage increasing. The emission current density and the field emission enhancement factor β of PS sample treated by RTO are larger than that treated by ECO. The Fowler–Nordheim curves of RTO and ECO samples are linear which indicates that high electric field exists on the oxidized layer and field emission occurs whether PS is treated by RTO or ECO.

  1. Site-Specific Technical Report for the Evaluation of Thermatrix GS Series Flameless Thermal Oxidizer for Off-Gas Treatment of Soil Vapors with Volatile Organic Compounds at the Source Area Reduction System, Former Lowry Air Force Base, Colorado

    National Research Council Canada - National Science Library

    Archabal, Steven

    1998-01-01

    The Air Force Center for Environmental Excellence (AFCEE) has sponsored an ongoing program to promote the use of cost-effective soil vapor treatment technologies in conjunction with soil vapor extraction (SVE...

  2. Treatment of off-gas from lagoon sludge thermal decomposition

    International Nuclear Information System (INIS)

    Hwang, D. S.; Oh, J. H.; Choi, Y. D.; Hwang, S. T.; Park, J. H.; Ga, M. J.

    2005-01-01

    Korea Atomic Energy Research Institute (KAERI) has launched a decommissioning program of the uranium conversion plant in 2001. The treatment of the sludge waste, which was generated during the operation of the plant and stored in the lagoon, is one of the most important tasks in the decommissioning program of the plant. The major compounds of the lagoon sludge are ammonium nitrate, sodium nitrate, calcium nitrate, calcium carbonate, and uranium compounds. The minor compounds are iron, magnesium, aluminum, silicon and phosphorus. A treatment process of the sludge was developed as figure 1 based on the results of the sludge characteristics and the developed treatment technologies. A treatment of off-gas evolved from the nitrate salts thermal decomposition is one of the important process. Off-gas treatment by using a selective catalytic reduction (SCR) method was investigated in this study

  3. Deuterium permeation behavior of HTUPS4 steel with thermal oxidation layer

    International Nuclear Information System (INIS)

    Xu, Yu-Ping; Liu, Feng; Zhao, Si-Xiang; Li, Xiao-Chun; Wang, Jing; An, Zhong-Qing; Lu, Tao; Liu, Hao-Dong; Ding, Fang; Zhou, Hai-Shan; Luo, Guang-Nan

    2016-01-01

    The permeation behavior of creep-resistant, Al 2 O 3 -forming HTUPS austenitic stainless steels was studied using a gas driven permeation (GDP) device. The steel samples were first thermal oxidized at air condition, followed by GDP experiments. The permeability and diffusion coefficients of oxidized samples and bare 316L steels were derived and compared. In order to characterize the oxide layer, X-ray photoelectron spectroscopy was performed. An oxide layer with a thickness of 200 nm which mainly consists of Al 2 O 3 was detected.

  4. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas.

    Science.gov (United States)

    Poh, Hwee Ling; Šimek, Petr; Sofer, Zdeněk; Pumera, Martin

    2013-06-25

    Doping of graphene with heteroatoms is an effective way to tailor its properties. Here we describe a simple and scalable method of doping graphene lattice with sulfur atoms during the thermal exfoliation process of graphite oxides. The graphite oxides were first prepared by Staudenmaier, Hofmann, and Hummers methods followed by treatments in hydrogen sulfide, sulfur dioxide, or carbon disulfide. The doped materials were characterized by scanning electron microscopy, high-resolution X-ray photoelectron spectroscopy, combustible elemental analysis, and Raman spectroscopy. The ζ-potential and conductivity of sulfur-doped graphenes were also investigated in this paper. It was found that the level of doping is more dramatically influenced by the type of graphite oxide used rather than the type of sulfur-containing gas used during exfoliation. Resulting sulfur-doped graphenes act as metal-free electrocatalysts for an oxygen reduction reaction.

  5. Successful treatment with supercritical water oxidation

    International Nuclear Information System (INIS)

    Jensen, R.

    1994-01-01

    Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described

  6. Effects of solid fission products forming dissolved oxide (Nd) and metallic precipitate (Ru) on the thermal conductivity of uranium base oxide fuel

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Yang, Jae-Ho; Kim, Jong-Hun; Rhee, Young-Woo; Kang, Ki-Won; Kim, Keon-Sik; Song, Kun-Woo

    2007-01-01

    The effects of solid fission products on the thermal conductivity of uranium base oxide nuclear fuel were experimentally investigated. Neodymium (Nd) and ruthenium (Ru) were added to represent the physical states of solid fission products such as 'dissolved oxide' and 'metallic precipitate', respectively. Thermal conductivity was determined on the basis of the thermal diffusivity, density and specific heat values. The effects of the additives on the thermal conductivity were quantified in the form of the thermal resistivity equation - the reciprocal of the phonon conduction equation - which was determined from the measured data. It is concluded that the thermal conductivity of the irradiated nuclear fuel is affected by both the 'dissolved oxide' and the 'metallic precipitate', however, the effects are in the opposite direction and the 'dissolved oxide' influences the thermal conductivity more significantly than that of the 'metallic precipitate'

  7. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    Science.gov (United States)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  8. The oxidation behavior of classical thermal barrier coatings exposed to extreme temperature

    Directory of Open Access Journals (Sweden)

    Alina DRAGOMIRESCU

    2017-03-01

    Full Text Available Thermal barrier coatings (TBC are designed to protect metal surfaces from extreme temperatures and improve their resistance to oxidation during service. Currently, the most commonly used systems are those that have the TBC structure bond coat (BC / top coat (TC layers. The top coat layer is a ceramic layer. Oxidation tests are designed to identify the dynamics of the thermally oxide layer (TGO growth at the interface of bond coat / top coat layers, delamination mechanism and the TBC structural changes induced by thermal conditions. This paper is a short study on the evolution of aluminum oxide protective layer along with prolonged exposure to the testing temperature. There have been tested rectangular specimens of metal super alloy with four surfaces coated with a duplex thermal barrier coating system. The specimens were microscopically and EDAX analyzed before and after the tests. In order to determine the oxide type, the samples were analyzed using X-ray diffraction. The results of the investigation are encouraging for future studies. The results show a direct relationship between the development of the oxide layer and long exposure to the test temperature. Future research will focus on changing the testing temperature to compare the results.

  9. Review of the integrated thermal and nonthermal treatment system studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering.

  10. Review of the integrated thermal and nonthermal treatment system studies

    International Nuclear Information System (INIS)

    1996-01-01

    This report contains a review and evaluation of three systems analysis studies performed by LITCO on integrated thermal treatment systems and integrated nonthermal treatment systems for the remediation of mixed low-level waste stored throughout the US Department of Energy weapons complex. The review was performed by an independent team of nine researchers from the Energy and Environmental Research Center, Science Applications International Corporation, the Waste Policy Institute, and Virginia Tech. The purpose of this review was to (1) determine whether the assumptions of the studies were adequate to produce an unbiased review of both thermal and nonthermal systems, (2) to identify the critical areas of the studies that would benefit from further investigation, and (3) to develop a standard template that could be used in future studies to assure a sound application of systems engineering

  11. Pyrolysis and thermal oxidation kinetics of sugar mill press mud

    International Nuclear Information System (INIS)

    Gangavati, P.B.; Safi, M.J.; Singh, A.; Prasad, B.; Mishra, I.M.

    2005-01-01

    Press mud, a solid waste obtained from the sugar mills, has the potential of energy generation through pyrolysis and gasification. The paper reports its proximate and ultimate analyses, deformation and fusion ash temperatures, lower and higher heating values, physico-chemical and thermal degradation in nitrogen and air atmospheres. The thermal degradation was conducted in a thermogravimetric analyzer from room temperature to 900 deg C at heating rates of 20 and 40 K min -1 . The thermogravimetric, derivative thermogravimetric and differential thermal analyses were carried out to determine the rate of volatiles evolution, the effect of heating rates on the thermal degradation characteristics and to determine the global mass loss kinetics of thermal degradation. The thermal degradation was found to occur in several distinct phases: each phase giving volatile evolution in an independent parallel lump. Each decomposition phase was modeled by a single irreversible reaction with respect to the solid mass. Global mass loss kinetics was also determined for the entire decomposition process, as if occurring in one single step. The integral and differential techniques were used for the determination of kinetic parameters. Using the method of Agrawal and Sivasubramanian [R.K. Agrawal, M.S. Sivasubramanian, AIChE J. 33 (1987) 7] for the total degradation zone, the orders of reaction were found in the range of 1.00-2.50 in both the atmospheres (i.e. nitrogen and air) and the activation energy in the range of 27.84-33.44 and 57.41-88.92 kJ mol -1 in nitrogen and air, respectively. The pre-exponential factor was found in the range of 32.1-95.1 and 5.10 x 10 4 to 5.46 x 10 9 min -1 in nitrogen and air atmospheres, respectively

  12. Tribological performance of titanium samples oxidized by fs-laser radiation, thermal heating, or electrochemical anodization

    Science.gov (United States)

    Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.

    2018-04-01

    Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.

  13. Recycling supercapacitors based on shredding and mild thermal treatment.

    Science.gov (United States)

    Jiang, Guozhan; Pickering, Stephen J

    2016-02-01

    Supercapacitors are widely used in electric and hybrid vehicles, wind farm and low-power equipment due to their high specific power density and huge number of charge-discharge cycles. Waste supercapacitors should be recycled according to EU directive 2002/96/EC on waste electric and electronic equipment. This paper describes a recycling approach for end-of-life supercapacitors based on shredding and mild thermal treatment. At first, supercapacitors are shredded using a Retsch cutting mill. The shredded mixture is then undergone thermal treatment at 200°C to recycle the organic solvent contained in the activated carbon electrodes. After the thermal treatment, the mixture is roughly separated using a fluidized bed method to remove the aluminium foil particles and paper particles from the activated carbon particles, which is subsequently put into water for a wet shredding into fine particles that can be re-used. The recycled activated carbon has a BET surface area of up to 1200m(2)/g and the recycled acetonitrile has a high purity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Comparative environmental analysis of waste brominated plastic thermal treatments

    International Nuclear Information System (INIS)

    Bientinesi, M.; Petarca, L.

    2009-01-01

    The aim of this research activity is to investigate the environmental impact of different thermal treatments of waste electric and electronic equipment (WEEE), applying a life cycle assessment methodology. Two scenarios were assessed, which both allow the recovery of bromine: (A) the co-combustion of WEEE and green waste in a municipal solid waste combustion plant, and (B) the staged-gasification of WEEE and combustion of produced syngas in gas turbines. Mass and energy balances on the two scenarios were set and the analysis of the life cycle inventory and the life cycle impact assessment were conducted. Two impact assessment methods (Ecoindicator 99 and Impact 2002+) were slightly modified and then used with both scenarios. The results showed that scenario B (staged-gasification) had a potentially smaller environmental impact than scenario A (co-combustion). In particular, the thermal treatment of staged-gasification was more energy efficient than co-combustion, and therefore scenario B performed better than scenario A, mainly in the impact categories of 'fossil fuels' and 'climate change'. Moreover, the results showed that scenario B allows a higher recovery of bromine than scenario A; however, Br recovery leads to environmental benefits for both the scenarios. Finally the study demonstrates that WEEE thermal treatment for energy and matter recovery is an eco-efficient way to dispose of this kind of waste

  15. Nanoparticles in treatment of thermal injured rats: Is it safe?

    International Nuclear Information System (INIS)

    Melo, P S; Ferreira, I R; Marcato, P D; Paula, L B de; Duran, N; Alves, O L; Huber, S C; Almeida, A B A; Torsoni, S; Seabra, A B

    2011-01-01

    The aim of this study was to assess whether thermal trauma induced oxidative stress altered the balance between oxidant and antioxidant systems in the blood of burn wound rats in the absence and presence of silver nanoparticles and S-nitrosoglutathione, GSNO. Free silver nanoparticles, free GSNO and silver nanoparticles + GSNO had no cytotoxic effects. Under anesthesia, the shaved dorsum of the rats was exposed to 90 0 C (burn group) water bath. Studied compounds were administered topically immediately and at 28 days after the burn injury, four times a day. Silver nanoparticles and silver nanoparticles + GSNO were no toxic in vitro and in vivo. There were no significant differences in the levels of urea, creatinine, aminotransferases and hematological parameters, in control-burn groups (free silver nanoparticles) and treated-burn groups (free GSNO or silver nanoparticles + GSNO). There were no differences in lipid peroxidation and in the levels of protein carbonyls and glutathione, used as oxidative stress markers. A little inflammatory cell response, papillary dermis vascularization, fibroblasts differentiated into contractile myofibroblasts and the presence of a large amount of extracellular matrix were evidenced in treated groups following skin injury. These results indicate that silver nanoparticles and GSNO may provide an effective action on wound healing.

  16. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    Science.gov (United States)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  17. Effect of ultrathin GeOx interfacial layer formed by thermal oxidation on Al2O3 capped Ge

    International Nuclear Information System (INIS)

    Han Le; Zhang Xiong; Wang Sheng-Kai; Xue Bai-Qing; Liu Hong-Gang; Wu Wang-Ran; Zhao Yi

    2014-01-01

    We propose a modified thermal oxidation method in which an Al 2 O 3 capping layer is used as an oxygen blocking layer (OBL) to form an ultrathin GeO x interfacial layer, and obtain a superior Al 2 O 3 /GeO x /Ge gate stack. The GeO x interfacial layer is formed in oxidation reaction by oxygen passing through the Al 2 O 3 OBL, in which the Al 2 O 3 layer could restrain the oxygen diffusion and suppress the GeO desorption during thermal treatment. The thickness of the GeO x interfacial layer would dramatically decrease as the thickness of Al 2 O 3 OBL increases, which is beneficial to achieving an ultrathin GeO x interfacial layer to satisfy the demand for small equivalent oxide thickness (EOT). In addition, the thickness of the GeO x interfacial layer has little influence on the passivation effect of the Al 2 O 3 /Ge interface. Ge (100) p-channel metal–oxide–semiconductor field-effect transistors (pMOSFETs) using the Al 2 O 3 /GeO x /Ge gate stacks exhibit excellent electrical characteristics; that is, a drain current on-off (I on /I off ) ratio of above 1×10 4 , a subthreshold slope of ∼ 120 mV/dec, and a peak hole mobility of 265 cm 2 /V·s are achieved. (condensed matter: structural, mechanical, and thermal properties)

  18. Characteristics of ceramic oxide nanoparticles synthesized using radio frequency produced thermal plasma

    International Nuclear Information System (INIS)

    Dhamale, Gayatri D.; Mathe, V.L.; Bhoraskar, S.V.; Ghorui, S.

    2015-01-01

    Thermal plasma devices with their unique processing capabilities due to extremely high temperature and steep temperature gradient play an important role in synthesis of ultrafine powders in the range of 100nm or less. High temperature gas phase synthesis in Radio Frequency (RF) thermal plasma reactor is an attractive route for mass production of refractory nanoparticles, especially in the case of rare earth oxides. Here we report synthesis of Yttrium Oxide (Y_2O_3), Neodymium Oxide (Nd_2O_3) and Aluminum Oxide (Al_2O_3) in an inductively coupled radio frequency thermal plasma reactor. Synthesized nanoparticles find wide application in various fields like gate dielectrics, photocatalytic applications, laser devices and photonics. Nano sized Yttrium oxide, Neodymium Oxide and Aluminum oxide powders were separately synthesized in an RF plasma reactor starting with micron sized irregular shaped precursor powders. The system was operated at 3MHz in atmospheric pressure at different power levels. Synthesized powders were scrapped out from different deposition locations inside the reactor and characterized for their phase, morphology, particle size, crystallinity and other characteristic features. Highly crystalline nature of the synthesized particles, narrow size distribution, location dependent phase formation, and distinct variation in the inherent defect states compared to the bulk are some of the important characteristic features observed

  19. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    International Nuclear Information System (INIS)

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-01-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO 2 was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  20. A study on oxidation treatment of uranium metal chip under controlling atmosphere for safe storage

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Ji, Chul Goo; Bae, Sang Oh; Woo, Yoon Myeoung; Kim, Jong Goo; Ha, Yeong Keong

    2011-01-01

    The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than 300 .deg. C and tested for oxidation at various temperatures, which are 300 .deg. C, 400 .deg. C, and 500 .deg. C. When the oxidation temperature was 400 .deg. C, the oxidized sample for 7 hours showed a temperature rise of 60 .deg. C in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of 7 .deg. C representing a stable behavior in the self-ignition test. When the temperature was 500 .deg. C, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported

  1. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Science.gov (United States)

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Role of oxides and porosity on high temperature oxidation of liquid fuelled HVOF thermal sprayed Ni50Cr coatings

    OpenAIRE

    Song, B.; Bai, M.; Voisey, K.T.; Hussain, Tanvir

    2017-01-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid fuelled high velocity oxy-fuel (HVOF) thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using...

  3. Behavior of sorption and thermal desorption of fission products from loaded metal oxide exchangers

    International Nuclear Information System (INIS)

    Buerck, J.

    1986-08-01

    A new sublimation method for the concentration and purification of 99 Mo, produced by the fission of 235 U with thermal neutrons, has been developed to replace the present final decontamination steps in the various well established 99 Mo separation processes. A distinct simplification and shortening of the actual procedure is obtained by combining the chromatographic sorption on the SnO 2 -exchanger with the direct thermal desorption of the Mo product from the oxide. (orig./PW) [de

  4. Behavior of mixed-oxide fuel subjected to multiple thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Neimark, L.A.; Poeppel, R.B.; Hofman, G.L.

    1985-01-01

    The microstructural behavior of irradiated mixed-oxide fuel subjected to multiple, mild thermal transients was investigated using direct electrical heating. The results demonstrate that significant intergranular porosity, accompanied by large-scale (>90%) release of the retained fission gas, developed as a result of the cyclic heating. Microstructural examination of the fuel indicated that thermal-shock-induced cracking of the fuel contributed significantly to the increased swelling and gas release. 29 refs., 12 figs

  5. Behavior of mixed-oxide fuel subjected to multiple thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Hofman, G.L.; Neimark, L.A.; Poeppel, R.B.

    1983-11-01

    The microstructural behavior of irradiated mixed-oxide fuel subjected to multiple, mild thermal transients was investigated using direct electrical heating. The results demonstrate that significant intergranular porosity, accompanied by large-scale (>90%) release of the retained fission gas, developed as a result of the cyclic heating. Microstructural examination of the fuel indicated that thermal-shock-induced cracking of the fuel contributed significantly to the increased swelling and gas release

  6. Thermally induced all-optical inverter and dynamic hysteresis loops in graphene oxide dispersions.

    Science.gov (United States)

    Melle, Sonia; Calderón, Oscar G; Egatz-Gómez, Ana; Cabrera-Granado, E; Carreño, F; Antón, M A

    2015-11-01

    We experimentally study the temporal dynamics of amplitude-modulated laser beams propagating through a water dispersion of graphene oxide sheets in a fiber-to-fiber U-bench. Nonlinear refraction induced in the sample by thermal effects leads to both phase reversing of the transmitted signals and dynamic hysteresis in the input-output power curves. A theoretical model including beam propagation and thermal lensing dynamics reproduces the experimental findings.

  7. Measurement of the diffusion length of thermal neutrons in the beryllium oxide

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Martelly, J.; Duggal, V.P.

    1955-01-01

    The diffusion length of thermal neutrons in the beryllium oxide has been obtained while studying the spatial distribution of the neutrons in a massive parallelepiped of this matter placed before the thermal column of the reactor core of Saclay. The mean density of the beryllium oxide (BeO) is 2,95 gr/cm 3 , the mean density of the massif is 2,92 gr/cm 3 . The value of the diffusion length, deducted of the done measures, is: L = 32,7 ± 0,5 cm (likely gap). Some remarks are formulated about the influence of the spectral distribution of the neutrons flux used. (authors) [fr

  8. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Yuan, E-mail: cyho@cycu.edu.tw [Department of Mechanical Engineering, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Wang, Hong-Wen [Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung Yuan Christian University, Chung-Li, Taiwan (China); Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan (China)

    2015-12-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP{sub 250} as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  9. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    International Nuclear Information System (INIS)

    Ho, Ching-Yuan; Wang, Hong-Wen

    2015-01-01

    Graphical abstract: Experimental process: (1) graphite oxidized to graphene oxide; (2) thermal reduction from graphene oxide to graphene; (3) applying to DSSC counter electrode. - Highlights: • Intercalated defects were eliminated by increasing reduction temperature of GO. • High reduction temperature of tGP has lower resistance, high the electron lifetime. • Higher thermal reduction of GO proposes electrocatalytic properties. • DSSC using tGP 250 as counter electrode has energy conversion efficiency of 3.4%. - Abstract: Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  10. Gas-generated thermal oxidation of a coordination cluster for an anion-doped mesoporous metal oxide.

    Science.gov (United States)

    Hirai, Kenji; Isobe, Shigehito; Sada, Kazuki

    2015-12-18

    Central in material design of metal oxides is the increase of surface area and control of intrinsic electronic and optical properties, because of potential applications for energy storage, photocatalysis and photovoltaics. Here, we disclose a facile method, inspired by geochemical process, which gives rise to mesoporous anion-doped metal oxides. As a model system, we demonstrate that simple calcination of a multinuclear coordination cluster results in synchronic chemical reactions: thermal oxidation of Ti8O10(4-aminobenzoate)12 and generation of gases including amino-group fragments. The gas generation during the thermal oxidation of Ti8O10(4-aminobenzoate)12 creates mesoporosity in TiO2. Concurrently, nitrogen atoms contained in the gases are doped into TiO2, thus leading to the formation of mesoporous N-doped TiO2. The mesoporous N-doped TiO2 can be easily synthesized by calcination of the multinuclear coordination cluster, but shows better photocatalytic activity than the one prepared by a conventional sol-gel method. Owing to an intrinsic designability of coordination compounds, this facile synthetic will be applicable to a wide range of metal oxides and anion dopants.

  11. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    Science.gov (United States)

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Microstructure of oxides in thermal barrier coatings grown under dry/humid atmosphere

    International Nuclear Information System (INIS)

    Zhou Zhaohui; Guo Hongbo; Wang Juan; Abbas, Musharaf; Gong Shengkai

    2011-01-01

    Graphical abstract: The presence of water vapor promoted the formation of spinels in the TBC. Highlights: → Thermal barrier coatings are produced by electron beam physical vapour deposition. → Oxidation behaviour of the coatings at 1100 deg. C has been investigated in dry/humid O 2 . → Thermally grown oxides formed in the coatings are characterized. → The presence of water vapour promotes the formation of spinel in the TBCs. - Abstract: The microstructure of thermally grown oxide (TGO) in thermal barrier coatings (TBCs) oxidized under dry/humid atmosphere at 1100 deg. C has been characterized by transmission electron microscopy. A thin and continuous oxide layer is formed in the as-deposited TBCs produced by electron beam physical vapor deposition. The TGO formed in dry atmosphere consists of an outer layer of fine α-alumina, zirconia grains and an inner layer of columnar α-alumina grains. However, a small amount of spinel is observed in the TGO under humid atmosphere. The presence of water vapour promotes the formation of spinel.

  13. Potential Health Implications of the Consumption of Thermally-Oxidized Cooking Oils – a Review

    Directory of Open Access Journals (Sweden)

    Falade Ayodeji Osmund

    2017-06-01

    Full Text Available Cooking oils are an integral part of a human diet as they are used in almost all types of culinary practices. They serve as sources of lipids with a significant nutritive value and health benefits which can be attributed to their fatty acid compositions and biological antioxidants. However, cooking oils are usually subjected to thermal oxidation which occurs when fresh cooking oil is heated at high temperatures during various food preparations. Repeated use of cooking oils in the commercial food industry is also common to maximize profit. Thermal oxidation of edible oils had since attracted great attention of nutritionist and researchers given the deteriorative effect such as generation of very cytotoxic compounds, loss of carotenoid, phenolics and vitamins thus reducing the overall antioxidant properties of the oils. Furthermore, several in vivo studies had suggested that consumption of thermally-oxidized cooking oils might not be healthy as it might negatively influence the lipid profile (increased low density lipoprotein (LDL, decreased high density lipoprotein (HDL and elevated cholesterol level, haematological system (alteration in concentration of heamoglobin (Hb, packed cell volume (PCV, white blood cell (WBC count, neutrophil and lymphocyte counts, kidney function, and induce lipid peroxidation and oxidative stress which have been associated with the pathogenesis of various degenerative diseases. Therefore, thermal oxidation seems not to provide any health benefit, as it deteriorates cooking oils and the consumption of the oils may predispose consumers to various disease conditions that may ensue from free radical generation, thereby having deleterious effect on human health.

  14. Increase of Long-chain Branching by Thermo-oxidative Treatment of LDPE

    Science.gov (United States)

    Rolón-Garrido, Víctor H.; Luo, Jinji; Wagner, Manfred H.

    2011-07-01

    Low-density polyethylene (LDPE) was exposed to thermal and thermo-oxidative treatment at 170 °C, and subsequently characterized by linear-viscoelastic measurements and in uniaxial extension. The Molecular Stress Function (MSF) model was used to quantify the elongational viscosities measured. For the thermally treated samples, exposure times between 2 and 6 hours were applied. Formation of long-chain branching (LCB) was found to occur only during the first two hours of thermal treatment. At longer exposure times, no difference in the level of strain hardening was observed. This was quantified by use of the MSF model: the nonlinear parameter fmax2 increased from fmax2 = 14 for the virgin sample to fmax2 = 22 for the samples thermally treated between 2 and 6 hours. For the thermo-oxidatively treated samples, which were exposed to air during thermal treatment between 30 and 90 minutes, the level of strain hardening increases drastically up to fmax2 = 55 with increasing exposure times from 30 up to 75 min due to LCB formation, and then decreases for an exposure time of 90 minutes due to chain scission dominating LCB formation. The nonlinear parameter β of the MSF model was found to be β = 2 for all samples, indicating that the general type of the random branching structure remains the same under all thermal conditions. Consequently only the parameter fmax2 of the MSF model and the linear-viscoelastic spectra were required to describe quantitatively the experimental observations. The strain hardening index, which is sometimes used to quantify strain hardening, follows accurately the trend of the MSF model parameter fmax2.

  15. High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask

    International Nuclear Information System (INIS)

    Chen, L Q; Chan-Park, Mary B; Yan, Y H; Zhang Qing; Li, C M; Zhang Jun

    2007-01-01

    Nanomoulding is simple and economical but moulds with nanoscale features are usually prohibitively expensive to fabricate because nanolithographic techniques are mostly serial and time-consuming for large-area patterning. This paper describes a novel, simple and inexpensive parallel technique for fabricating nanoscale pattern moulds by silicon etching followed by thermal oxidation. The mask pattern can be made by direct photolithography or photolithography followed by metal overetching for submicron- and nanoscale features, respectively. To successfully make nanoscale channels having a post-oxidation cross-sectional shape similar to that of the original channel, an oxidation mask to promote unidirectional (specifically horizontal) oxide growth is found to be essential. A silicon nitride or metal mask layer prevents vertical oxidation of the Si directly beneath it. Without this mask, rectangular channels become smaller but are V-shaped after oxidation. By controlling the silicon etch depth and oxidation time, moulds with high aspect ratio channels having widths ranging from 500 to 50 nm and smaller can be obtained. The nanomould, when passivated with a Teflon-like layer, can be used for first-generation replication using ultraviolet (UV) nanoembossing and second-generation replication in other materials, such as polydimethylsiloxane (PDMS). The PDMS stamp, which was subsequently coated with Au, was used for transfer printing of Au electrodes with a 600 nm gap which will find applications in plastics nanoelectronics

  16. Thermal oxidation of Zr–Cu–Al–Ni amorphous metal thin films

    International Nuclear Information System (INIS)

    Oleksak, R.P.; Hostetler, E.B.; Flynn, B.T.; McGlone, J.M.; Landau, N.P.; Wager, J.F.; Stickle, W.F.; Herman, G.S.

    2015-01-01

    The initial stages of thermal oxidation for Zr–Cu–Al–Ni amorphous metal thin films were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The as-deposited films had oxygen incorporated during sputter deposition, which helped to stabilize the amorphous phase. After annealing in air at 300 °C for short times (5 min) this oxygen was found to segregate to the surface or buried interface. Annealing at 300 °C for longer times leads to significant composition variation in both vertical and lateral directions, and formation of a surface oxide layer that consists primarily of Zr and Al oxides. Surface oxide formation was initially limited by back-diffusion of Cu and Ni ( 30 min). The oxidation properties are largely consistent with previous observations of Zr–Cu–Al–Ni metallic glasses, however some discrepancies were observed which could be explained by the unique sample geometry of the amorphous metal thin films. - Highlights: • Thermal oxidation of amorphous Zr–Cu–Al–Ni thin films was investigated. • Significant short-range inhomogeneities were observed in the amorphous films. • An accumulation of Cu and Ni occurs at the oxide/metal interface. • Diffusion of Zr was found to limit oxide film growth.

  17. Treatment of mixed wastes by thermal plasma discharges

    International Nuclear Information System (INIS)

    Diaz A, L.V.

    2007-01-01

    The present study has as purpose to apply the technology of thermal plasma in the destruction of certain type of waste generated in the ININ. As first instance, origin, classification and disposition of the radioactive waste generated in the ININ is identified. Once identified the waste, the waste to treat is determined based on: the easiness of treating him with plasma, classification and importance. Later on, a substance or compound settles down (sample model) that serves as indicative of the waste for its physical-chemical characteristics, this is made because in the Thermal Plasma Applications Laboratory is not had the license to work with radioactive material. The sample model and the material to form the vitreous matrix are characterized before and after the treatment in order to evaluating their degradation and vitrification. During the treatment by means of the thermal plasma, the appropriate conditions are determined for the degradation and vitrification of the waste. Also, it is carried out an energy balance in the system to know the capacity to fuse the material depending the transfer of existent heat between the plasma and the material to treat. Obtaining favorable results, it thought about to climb in the project and by this way to help to solve one of the environmental problems in Mexico, as they are it the mixed wastes. (Author)

  18. Chromium behavior during thermal treatment of MSW fly ash.

    Science.gov (United States)

    Kirk, Donald W; Chan, Chris C Y; Marsh, Hilary

    2002-02-14

    Energy-from-waste incineration has been promoted as an environmentally responsible method for handling non-recyclable waste from households. Despite the benefits of energy production, elimination of organic residues and reduction of volume of waste to be landfilled, there is concern about fly ash disposal. Fly ash from an incinerator contains toxic species such as Pb, Zn, Cd and Cr which may leach into soil and ground water if landfilled. Thermal treatment of the fly ash from municipal solid waste has been tested and proposed as a treatment option for removal of metal species such as Pb, Cd and Zn, via thermal re-volatilization. However, Cr is an element that remains in the residue of the heat treated fly ash and appears to become more soluble. This Cr solubilization is of concern if it exceeds the regulatory limit for hazardous waste. Hence, this unexpected behavior of Cr was investigated. The initial work involved microscopic characterization of Cr in untreated and thermally-treated MSW fly ash. This was followed by determining leaching characteristics using standard protocol leaching tests and characterization leaching methods (sequential extraction). Finally, a mechanism explaining the increased solubilization was proposed and tested by reactions of synthetic chemicals.

  19. Integrated thermal treatment system study: Phase 1 results. Volume 1

    International Nuclear Information System (INIS)

    Feizollahi, F.; Quapp, W.J.; Hempill, H.G.; Groffie, F.J.

    1994-07-01

    An integrated systems engineering approach is used for uniform comparison of widely varying thermal treatment technologies proposed for management of contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. Ten different systems encompassing several incineration design options are studied. All subsystems, including facilities, equipment, and methods needed for integration of each of the ten systems are identified. Typical subsystems needed for complete treatment of MLLW are incoming waste receiving and preparation (characterization, sorting, sizing, and separation), thermal treatment, air pollution control, primary and secondary stabilization, metal decontamination, metal melting, mercury recovery, lead recovery, and special waste and aqueous waste treatment. The evaluation is performed by developing a preconceptual design package and planning life-cycle cost (PLCC) estimates for each system. As part of the preconceptual design process, functional and operational requirements, flow sheets and mass balances, and conceptual equipment layouts are developed for each system. The PLCC components estimated are technology development, production facility construction, pre-operation, operation and maintenance, and decontamination and decommissioning. Preconceptual design data and other technology information gathered during the study are examined and areas requiring further development, testing, and evaluation are identified and recommended. Using a qualitative method, each of the ten systems are ranked

  20. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay

    Energy Technology Data Exchange (ETDEWEB)

    Singh, I.B. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)]. E-mail: ibsingh58@yahoo.com; Chaturvedi, K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Morchhale, R.K. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India); Yegneswaran, A.H. [Regional Research Laboratory, Council of Scientific and Industrial Research, Hoshangabad Road, Bhopal 462026 (India)

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 deg. C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 deg. C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 deg. C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  1. Graphene oxide immobilized enzymes show high thermal and solvent stability

    Czech Academy of Sciences Publication Activity Database

    Hermanová, S.; Zarevúcka, Marie; Bouša, D.; Pumera, M.; Sofer, Z.

    2015-01-01

    Roč. 7, č. 13 (2015), s. 5852-5858 ISSN 2040-3364 R&D Projects: GA ČR(CZ) GA15-09001S Grant - others:GA AV ČR(CZ) M200551203 Institutional support: RVO:61388963 Keywords : graphene oxide * lipase * immobilization Subject RIV: CC - Organic Chemistry Impact factor: 7.760, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/nr/c5nr00438a

  2. Thermal oxidation of seeds for the hydrothermal growth of WO3 nanorods on ITO glass substrate

    International Nuclear Information System (INIS)

    Ng, Chai Yan; Abdul Razak, Khairunisak; Lockman, Zainovia

    2015-01-01

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO 3 ) nanorods. A WO 3 seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm −2 ) than compact film (lower current density of − 0.54 and + 0.28 mA cm −2 ). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO 3 nanorods exhibited higher electrochromic current density than WO 3 compact film.

  3. Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition

    International Nuclear Information System (INIS)

    Chen, Li; Yang, Bing; Xu, Yuxiang; Pei, Fei; Zhou, Liangcai; Du, Yong

    2014-01-01

    Addition of Si is very effective in upgrading the machining performance and thermal properties of Al–Ti–N coating. Here, we concentrate on the thermal stability and oxidation resistance of Al–Ti–Si–N coating. Alloying with Si favors the growth of wurtzite phase, and thereby causes a drop in hardness from ∼ 34.5 to 28.7 GPa. However, Si-containing coating retards the formation of w-AlN during thermal annealing, and thereby behaves a high hardness value of ∼ 31.3 GPa after annealing at T a = 1100 °C. After 10 h exposure in air at 850 °C, Al–Ti–N coating is fully oxidized. Incorporation of Si significantly improves the oxidation resistance of Al–Ti–N due to the combined effects with the promoted formation of Al-oxide rich top-scale and retarded transformation of anatase (a-) TiO 2 into rutile (r-) TiO 2 , where only ∼ 1.43 μm oxide scale is shown after oxidation at 1100 °C for 15 h. Noticeable is that the worst oxidation resistance of Al–Ti–Si–N coating in the temperature range from 800 to 1100 °C is obtained at 950 °C with oxide scale of ∼ 1.76 μm due to the fast formation of r-TiO 2 . Additionally, a pre-oxidation at 1000 °C has a positive effect on the oxidation resistance of Al–Ti–Si–N coating, which is attributed to the formation of Al-oxide rich top-scale, and thus inhibits the outward diffusion of metal atoms and inward diffusion of O. - Highlights: • Si as a substitutional solid solution and via the formation of a-Si 3 N 4 coexists. • Si addition favors the growth of wurtzite phase and causes a decreased hardness. • Alloying with Si improves the oxidation resistance of AlTiN. • AlTiSiN behaves the worst oxidation resistance at 950 °C from 800 to 1100 °C. • A pre-oxidation at 1000 °C improves the oxidation resistance of AlTiSiN coating

  4. Treatment of Some Hazardous Industrial Pollutants by Simple Oxidation Techniques

    International Nuclear Information System (INIS)

    Abd El-Rahman, N.M.

    1999-01-01

    Central treatment of Industrial wastewater requires pretreatment of some specific pollutants which may be not effectively degraded in down stream processes in central treatment unit. Some of the hazardous pollutants in industrial wastewater including acrylonitrile, pesticides and some commonly used dyes (active and acid dyes) have been subjected individually to oxidation using hydrogen peroxide catalyzed by ferrous ions in acidic solution. Treatment efficiency was monitored by chemical oxygen demand (COD) removal using a specially developed concentration/COD curves. Initial concentrations (in terms of COD) were 910 PPM, 1348 and 530 ppm and the respective COD reductions were 91, 98 and 99%, for the pesticide, acrylonitrile and the reactive dye. Oxidative degradation of polared and acid green also reduced COD by 99 and 100% respectively. The obtained results confirm the appropriateness of oxidative degradation as a pretreatment for some hazardous pollutants prior to treatment in central facilities or municipal activated sludge stations

  5. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Interim status thermal treatment...

  6. Treatment of toxic and hazardous organic wastes by wet oxidation process with oxygenated water at low temperature

    International Nuclear Information System (INIS)

    Piccinno, T.; Salluzzo, A.; Nardi, L.; Gili, M.; Luce, A.; Troiani, F.; Cornacchia, G.

    1989-11-01

    The wet oxidation process using air or molecular oxygen is a well-known process from long time. It is suitable to oxidize several types of waste refractory to the usual biological, thermal and chemical treatments. The drastic operating conditions (high pressures and temperatures) prevented its industrial development. In the last years a new interest was assigned to the process for the treatment of nuclear wastes (organic resins and exhaust organic wastes); the treatment is carried out at widely reduced operating conditions (atmospheric pressure and boiling temperature) by means of metallic catalysts and hydrogen peroxide. With some limits, the wet oxidation with hydrogen peroxide at low temperature can be applied to conventional waste waters containing toxic organic compounds. In the present report are summarized the activities developed at ENEA Fuel Cycle Department by the task force 'Deox' constituted by laboratory and plant specialists in order to verify the application of the wet oxidation process to the treatment of the toxic wastes. (author)

  7. Evaluation of thermal properties of sintered beryllium oxide produced from Indian beryl ore

    International Nuclear Information System (INIS)

    Nair, Sathi R.; Ghanwat, S.J.; Patro, P.K.; Syambabu, M.; Mawal, N.E.; Mahata, T.; Sinha, P.K.

    2014-01-01

    Beryllium oxide (BeO) ceramics possess many interesting properties such as good thermal conductivity, high electrical resistivity, high chemical and thermal stability, low dielectric constant, low dielectric loss and low neutron absorption coefficient. These properties lead to its wide use in vacuum electronics technology, nuclear technology, microelectronics and photoelectron technology. The above properties depend on the purity of the material as well as density and microstructure of the sintered body. For high temperature application thermal conductivity and thermal expansion are two important parameters. In the present study, high purity fine BeO powder has been prepared by beryllate route starting with crude beryllium hydroxide. The powder has been sintered at 1550℃ and sintered samples have been evaluated for its thermal properties

  8. Modification of graphite structure by irradiation, revealed by thermal oxidation. Examination by electronic microscopy

    International Nuclear Information System (INIS)

    Rouaud, Michel

    1969-01-01

    Based on the analysis of images obtained by electronic microscopy, this document reports the comparative study of the action of neutrons on three different graphites: a natural one (Ticonderoga) and two pyrolytic ones (Carbone-Lorraine and Raytheon). The approach is based on the modification of features of thermal oxidation of graphites by dry air after irradiation. Different corrosion features are identified. The author states that there seems to be a relationship between the number and shape of these features, and defects existing on the irradiated graphite before oxidation. For low doses, the feature aspect varies with depth at which oxidation occurs. For higher doses, the aspect remains the same [fr

  9. Thermal oxidation of InP surfaces modified with NiO + PbO mixtures

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Tomina, E.V.; Samsonov, A.A.; Lukin, A.N.; Simonov, S.P.

    2005-01-01

    The oxidation kinetics of (NiO + PbO)/InP, NiO/InP and PbO/InP structures in an oxygen flow is studied in the temperature range of 400-550 deg C. It is shown by IR spectroscopy that the thermal oxidation of (NiO + PbO)/InP structures leads to the formation of nickel and lead polyphosphates and indium ortho- and metaphosphates. The nickel phosphates may then gradually transform into diphosphates, depending on the oxidation temperature, whereas the lead phosphates undergo no changes [ru

  10. Advanced oxidation technologies : photocatalytic treatment of wastewater

    NARCIS (Netherlands)

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application.

  11. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  12. The proposed combustion standards and DOE thermal treatment systems

    International Nuclear Information System (INIS)

    McFee, J.; Hinman, M.B.; Eaton, D.; NcNeel, K.

    1997-01-01

    Under the provisions of the Clean Air Act (CAA) concerning emission of hazardous air pollutants (HAPs), the Environmental Protection Agency (EPA) published the proposed Revised Standards for Hazardous Waste Combustors on April 19, 1996 (EPA, 1996). These standards would apply to the existing Department of Energy (DOE) radioactive and mixed waste incinerators, and may be applied to several developing alternatives to incineration. The DOE has reviewed the basis for these regulations and prepared extensive comments to present concerns about the bases and implications of the standards. DOE is now discussing compliance options with the EPA for regulation of radioactive and mixed waste thermal treatment systems

  13. The effects of Bifidobacteria on the lipid profile and oxidative stress biomarkers of male rats fed thermally oxidized soybean oil.

    Science.gov (United States)

    Awney, Hala A

    2011-08-01

    Over the years, there has been concern about the changes taking place in heated oils and the effects on individuals consuming them. The present study investigated the effects of a diet containing thermally oxidized soybean oil (TO) or TO supplemented with probiotic Bifidobacteria (TO+Pro) on the serum lipid profile and oxidative stress biomarkers of male rats. The data showed several indicators of oil deterioration after thermal processing, including high levels of % free fatty acid (FFA; 15-fold), acid value (AV; 14-fold), peroxide value (8-fold), p-anisidine value (AnV; 39-fold), total oxidation value (TOTOX; 19-fold), thiobarbituric acid-reactive substances (TBARS) value (8.5-fold), and trans-FA (TFA) isomers (2.5-fold) compared to the control. The rats that were fed a diet containing TO showed a significant (p blood serum samples. High levels of TBARS, superoxide dismutase (SOD), and glutathione reductase (GR) activities were also detected in the livers, kidneys, testes, and brains of rats. Interestingly, a diet containing TO+Pro restored all biological parameters to their control values. The present data suggested that Bifidobacteria may ameliorate the serum lipid profile and oxidative stress biomarkers that are generated in animals that are fed a TO diet.

  14. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  15. Legislative measures for suppressing emission of nitrogen oxides from thermal power stations

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.

    1987-11-01

    Reviews measures taken by some countries to control emission of nitrogen oxides from thermal power stations run on solid fuels, mazout and gas. Refers to maximum permissible concentrations of nitrogen oxides in USA (100 mg/m/sup 3/), Canada (460 mg/m/sup 3/), Japan (41-62 mg/m/sup 3/) and several European countries. Discusses legislative measures in FRG (Federal Regulations BImSchG), particularly Instruction No. 13 BImSchV concerning large boilers run on solid fuels or mazout (continuous monitoring of nitrogen oxide emission into atmosphere, equipping old boilers with means of reducing nitrogen oxide emission, reduction of acid rain). Gives maximum permissible concentrations of nitrogen oxides for new boilers agreed by various countries. 5 refs.

  16. Optoelectronic properties of expanding thermal plasma deposited textured zinc oxide : effect of aluminum doping

    NARCIS (Netherlands)

    Groenen, R.; Kieft, E.R.; Linden, J.L.; Sanden, van de M.C.M.

    2006-01-01

    Aluminum-doped zinc oxide films exhibiting a rough surface morphol. are deposited on glass substrates utilizing expanding thermal plasma. Spectroscopic ellipsometry is used to evaluate optical and electronic film properties. The presence of aluminum donors in doped films is confirmed by a shift in

  17. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    Science.gov (United States)

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  18. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  19. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  20. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Czech Academy of Sciences Publication Activity Database

    Luňáček, J.; Životský, O.; Jirásková, Yvonna; Buršík, Jiří; Janoš, P.

    2016-01-01

    Roč. 120, OCT (2016), s. 295-303 ISSN 1044-5803 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Oxide -nano-composites * Mössbauer spectroscopy * TEM * Cerium oxide * Magnetic parameters Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.714, year: 2016

  1. Summary of comparative results integrated nonthermal treatment and integrated thermal treatment systems studies

    International Nuclear Information System (INIS)

    1996-12-01

    In July 1994, the Idaho National Engineering Laboratory (INEL), under a contract from U.S. Department of Energy's (DOE) Environment Management Office of Science and Technology (OST, EM-50) published a report entitled open-quotes Integrated Thermal Treatment System Study - Phase 1 Resultsclose quotes (EGG-MS-11211). This report was the culmination of over a year of analysis involving scientists and engineers within the DOE complex and from private industry. The purpose of that study was open-quotes to conduct a systematic engineering evaluation of a variety of mixed low level waste (MLLW) treatment system alternatives.close quotes The study also open-quotes identified the research and development, demonstrations, and testing and evaluation needed to assure unit operability in the most promising alternative system.close quotes This study evaluated ten primary thermal treatment technologies, organized into complete open-quotes cradle-to-graveclose quotes systems (including complete engineering flow sheets), to treat DOE MLLW and calculated mass balances and 20-year total life cycle costs (TLCC) for all systems. The waste input used was a representative heterogenous mixture of typical DOE MLLW. An additional study was conducted, and then, based on response to these studies, additional work was started to investigate and evaluate non-thermal treatment options on a footing comparable to the effort devoted to thermal options. This report attempts to present a summary overview of the thermal and non-thermal treatment technologies which were examined in detail in the process of the above mentioned reviews

  2. Thermal treatment and non-thermal technologies for remediation of manufactured gas plant sites

    International Nuclear Information System (INIS)

    McGowan, T.F.; Greer, B.A.; Lawless, M.

    1996-01-01

    More than 1,500 manufactured gas plant (MGP) sites exist throughout the US. Many are contaminated with coal tar from coal-fueled gas works which produced town gas from the mid-1800s through the 1950s. Virtually all old US cities have such sites. Most are in downtown areas as they were installed for central distribution of manufactured gas. While a few sites are CERCLA/Superfund, most are not. However, the contaminants and methods used for remediation are similar to those used for Superfund clean-ups of coal tar contamination from wood-treating and coke oven facilities. Clean-up of sites is triggered by regulatory pressure, property transfers and re-development as well as releases to the environment--in particular, via groundwater migration. Due to utility de-regulation, site clean-ups may also be triggered by sale of a utility or of a specific utility site to other utilities. Utilities have used two approaches in dealing with their MGP sites. The first is do nothing and hope for the best. History suggests that, sooner or later, these sites become a bigger problem via a release, citizen lawsuit or regulatory/public service commission intervention. The second, far better approach is to define the problem now and make plans /for waste treatment or immobilization. This paper describes recent experience with a high capacity/low cost thermal desorption process for this waste and reviews non-thermal technology, such as bio-treatment, capping, recycling, and dig and haul. Cost data are provided for all technologies, and a case study for thermal treatment is also presented

  3. Microstructural characterization of thermal barrier coating on Inconel 617 after high temperature oxidation

    Directory of Open Access Journals (Sweden)

    Mohammadreza Daroonparvar

    2013-06-01

    Full Text Available A turbine blade was protected against high temperature corrosion and oxidation by thermal barrier coatings (TBCsusing atmospheric plasma spraying technique (APS on a Ni-based superalloy (Inconel 617. The coatings (NiCr6AlY/ YSZ and NiCr10AlY/YSZ consist of laminar structure with substantial interconnected porosity transferred oxygen from Yittria stabilized Zirconia (YSZ layer toward the bond coat (NiCrAlY. Hence, a thermally grown oxide layer (TGO was formed on the metallic bond coat and internal oxidation of the bond coat occurred during oxidation. The TBC systems were oxidized in a normal electrically heated furnace at 1150 °C for 18, 22, 26, 32 and 40h.Microstructural characterization of coatings demonstrated that the growth of the TGO layer on the nickel alloy with 6wt. % Al is more rapid than TGO with 10wt. % Al. In addition, many micro-cracks were observed at the interface of NiCr6AlY/YSZ. X-ray diffraction analysis (XRD showed the existence of detrimental oxides such as NiCr2O4, NiCrO3 and NiCrO4 in the bond coat containing 6wt. % Al, accompanied by rapid volume expansion causing the destruction of TBC. In contrast, in the bond coat with 10wt. % Al, NiO, Al2O3and Cr2O3 oxides were formed while very low volume expansion occurred. The oxygen could not penetrate into the TGO layer of bond coat with 10 wt. % Al during high temperature oxidation and the detrimental oxides were not extensively formed within the bond coat as more oxygen was needed. The YSZ with higher Al content showed higher oxidation resistance.

  4. Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN: Insulating gallium oxide layer produced by thermal oxidation of gallium-polar GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, T. [Kansas State Univ., Manhattan, KS (United States); Wei, D. [Kansas State Univ., Manhattan, KS (United States); Nepal, N. [Naval Research Lab. (NRL), Washington, DC (United States); Garces, N. Y. [Naval Research Lab. (NRL), Washington, DC (United States); Hite, J. K. [Naval Research Lab. (NRL), Washington, DC (United States); Meyer, H. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eddy, C. R. [Naval Research Lab. (NRL), Washington, DC (United States); Baker, Troy [Nitride Solutions, Wichita, KS (United States); Mayo, Ashley [Nitride Solutions, Wichita, KS (United States); Schmitt, Jason [Nitride Solutions, Wichita, KS (United States); Edgar, J. H. [Kansas State Univ., Manhattan, KS (United States)

    2014-02-24

    We report the benefits of dry oxidation of n -GaN for the fabrication of metal-oxide-semiconductor structures. GaN thin films grown on sapphire by MOCVD were thermally oxidized for 30, 45 and 60 minutes in a pure oxygen atmosphere at 850 °C to produce thin, smooth GaOx layers. Moreover, the GaN sample oxidized for 30 minutes had the best properties. Its surface roughness (0.595 nm) as measured by atomic force microscopy (AFM) was the lowest. Capacitance-voltage measurements showed it had the best saturation in accumulation region and the sharpest transition from accumulation to depletion regions. Under gate voltage sweep, capacitance-voltage hysteresis was completely absent. The interface trap density was minimum (Dit = 2.75×1010 cm–2eV–1) for sample oxidized for 30 mins. These results demonstrate a high quality GaOx layer is beneficial for GaN MOSFETs.

  5. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond

    International Nuclear Information System (INIS)

    Xu Xiangyang; Yu Zhiming; Zhu Yongwei; Wang Baichun

    2005-01-01

    In order to improve the dispersion of detonation nanodiamonds (ND) in aqueous and non-aqueous media, a series of thermal treatments have been conducted in air ambient to modify ND surface. Small angle X-ray scattering (SAXS) technique and high resolution transmission electron microscopy (HRTEM) were introduced to observe the primary size of ND. Differential thermal analysis (DTA), X-ray diffraction (XRD) methodology, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were adopted to analyze the structure, bonds at surfaces of the treated ND. Malvern instrument Zetasizer3000HS was used for measuring the surface electric potential and the size distribution of ND. As thermal treatments can cause graphitization and oxidization of functional groups at the surface, ND treated at high temperature is correspondingly more negatively charged in an aqueous medium, and the increased absolute value of zeta potential ensures the electrostatic stability of ND particles. Specially, after being treated at a temperature more than 850K, ND can be well dispersed in various media

  6. Measurement of thermal conductivity of the oxide coating on autoclaved monel-400

    International Nuclear Information System (INIS)

    Dua, A.K.; George, V.C.; Agarwala, R.P.

    1982-01-01

    Thermal conductivity of the oxide coating on monel-400 has been measured by a direct method. The oxide coating is applied on an electrically conducting wire having stable characteristics. The wire is placed in a constant temperature bath and a constant direct current is passed through it. The wire gets heated and loses heat to the surrounding. Temperature is measured by considering it as a resistance thermometer. A convection heat transfer coefficient, which is difficult to measure experimentally but is involved in the analytical expression for thermal conductivity, is eliminated by connecting a second uncoated wire of a noble metal having similar surface finish as that of the coated wire in series with it. The accuracy of the method is nearly six percent. However, the method is not easily applicable for very thin (thickness <= 1μ), highly porous coatings and materials having relatively large thermal conductivity. (M.G.B.)

  7. Graphene oxide-loaded shortening as an environmentally friendly heat transfer fluid with high thermal conductivity

    Directory of Open Access Journals (Sweden)

    Vongsetskul Thammasit

    2017-01-01

    Full Text Available Graphene oxide-loaded shortening (GOS, an environmentally friendly heat transfer fluid with high thermal conductivity, was successfully prepared by mixing graphene oxide (GO with a shortening. Scanning electron microscopy revealed that GO particles, prepared by the modified Hummer’s method, dispersed well in the shortening. In addition, the latent heat of GOS decreased while their viscosity and thermal conductivity increased with increasing the amount of loaded GO. The thermal conductivity of the GOS with 4% GO was higher than that of pure shortening of ca. three times, from 0.1751 to 0.6022 W/mK, and increased with increasing temperature. The GOS started to be degraded at ca. 360°C. After being heated and cooled at 100°C for 100 cycles, its viscosity slightly decreased and no chemical degradation was observed. Therefore, the prepared GOS is potentially used as environmentally friendly heat transfer fluid at high temperature.

  8. Standard Test Method for Thermal Oxidative Resistance of Carbon Fibers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1982-01-01

    1.1 This test method covers the apparatus and procedure for the determination of the weight loss of carbon fibers, exposed to ambient hot air, as a means of characterizing their oxidative resistance. 1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units which are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard information, see Section 8.

  9. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  10. A highly sensitive and durable electrical sensor for liquid ethanol using thermally-oxidized mesoporous silicon

    Science.gov (United States)

    Harraz, Farid A.; Ismail, Adel A.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S.

    2016-12-01

    A capacitive detection of liquid ethanol using reactive, thermally oxidized films constructed from electrochemically synthesized porous silicon (PSi) is demonstrated. The sensor elements are fabricated as meso-PSi (pore sizes hydrophobic PSi surface exhibited almost a half sensitivity of the thermal oxide sensor. The response to water is achieved only at the oxidized surface and found to be ∼one quarter of the ethanol sensitivity, dependent on parameters such as vapor pressure and surface tension. The capacitance response retains ∼92% of its initial value after continuous nine cyclic runs and the sensors presumably keep long-term stability after three weeks storage, demonstrating excellent durability and storage stability. The observed behavior in current system is likely explained by the interface interaction due to dipole moment effect. The results suggest that the current sensor structure and design can be easily made to produce notably higher sensitivities for reversible detection of various analytes.

  11. Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Phillip C.; Dunn, Jr., Kenneth J.

    2015-09-01

    A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.

  12. Numerical treatment of the unsteady hydromagnetic thermal boundary layer problem

    International Nuclear Information System (INIS)

    Drymonitou, M.A.; Geroyannis, V.S.; Goudas, C.L.

    1980-01-01

    This paper presents a suitable numerical method for the treatment of the unsteady hydromagnetic thermal boundary layer problem for flows past an infinite porous flat plate, the motion of which is governed by a general time-dependent law, under the influence of a transverse externally set magnetic field. The normal velocity of suction/injection at the plate is also assumed to be time-dependent. The results obtained on the basis of numerical approximations seem to compare favourably with earlier results (Pande et al., 1976; Tokis, 1978). Analytical approximations are given for the cases of a plate (i) generally accelerated and (ii) harmonically oscillating. The direct numerical treatment is obviously advantageous since it allows handling of cases where the known methods for analytical approximations are not applicable. This problem is closely related to the motions and heat transfer occurring locally on the surfaces of stars. (orig.)

  13. The improvement of SiO2 nanotubes electrochemical behavior by hydrogen atmosphere thermal treatment

    Science.gov (United States)

    Spataru, Nicolae; Anastasescu, Crina; Radu, Mihai Marian; Balint, Ioan; Negrila, Catalin; Spataru, Tanta; Fujishima, Akira

    2018-06-01

    Highly defected SiO2 nanotubes (SiO2-NT) were obtained by a simple sol-gel procedure followed by calcination. Boron-doped diamond (BDD) polycrystalline films coated with SiO2-NT were used as working electrodes and, unexpectedly, cyclic voltammetric experiments have shown that the concentration of both positive and negative defects at the surface is high enough to enable redox processes involving positively charged Ru(bpy)32+/3+ to occur. Conversely, no electrochemical activity was put into evidence for Fe(CN)63-/4- species, most likely as a result of the strong electrostatic repulsion exerted by the negatively charged SiO2 surface. The concentration of surface defects was further increased by a subsequent thermal treatment in a hydrogen atmosphere which, as EIS measurements have shown, significantly promotes Ru(bpy)32+ anodic oxidation. Digital simulation of the voltammetric responses demonstrated that this treatment does not lead to a similar increase of the number of electron-donor sites. It was also found that methanol anodic oxidation at hydrogenated SiO2-NT-supported platinum results in Tafel slopes of 116-220 mV decade-1, comparable to those reported for both conventional PtRu and Pt-oxide catalysts.

  14. Evaluation of the synergistic interaction between Decarbomobiphenyl Oxide and alumina on the flammability and thermal behavior of unsaturated polyester resin

    International Nuclear Information System (INIS)

    Al-Owias, A.; Al-Haizan, A.; Khattab, M. A.

    2005-01-01

    The bromine performance of decarbomobiphenyl oxide (DBBO) as a flame retardant for unsaturated polyester resin (UP) had been investigated in its own and in the presence of aluminum oxide (Al2O3) using UL-94V and Limiting Oxygen Index (LOI). Thermal behaviors of the resulted systems were evaluated using thermal analysis technique. DBBO showed a satisfactory fire retardant performance for UP, particularly when used at a loading higher than 30 wt%. In contrast aluminum oxide has no significant effect on the reduction of the flammability. Treatment of UP with mixtures containing different portioned of DBBO and alumina showed that, the best performance of these mixtures as a flame retardant occurred when the mixture is rich in DBBO. The maximum synergism between the two additives has been observed to occur at a weight ratio of DBBO to Al2O3 of 5:6. A possible explanation for the observed synergism between the two additives was given. The synergism was partly attributed to the formation of aluminum halide species which enhance the rate of halogen released from the halogenated compound and consequently reduce the flammability of the resin. (author)

  15. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J. [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Dorge, S., E-mail: sophie.dorge@uha.fr [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Trouve, G. [Laboratoire Gestion des Risques et Environnement, 25 rue de Chemnitz, 68200 Mulhouse (France); Venditti, D.; Durecu, S. [TREDI Departement de Recherche, Technopole de Nancy-Brabois, 9 avenue de la Foret de Haye, BP 184, 54505 Vandoeuvre-les-Nancy (France)

    2009-07-30

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 deg. C and 1100 deg. C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was {approx}64%, while a {approx}36% fraction remained in the residual bottom ashes. But interestingly, while at 850 {sup o}C, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 {sup o}C favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in less toxic species.

  16. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste

    International Nuclear Information System (INIS)

    Klein, J.; Dorge, S.; Trouve, G.; Venditti, D.; Durecu, S.

    2009-01-01

    Antimony compounds have a wide range of industrial applications, particularly as additives in flame retardants. To ensure environmentally friendly waste incineration of Sb-rich wastes, it is essential to strengthen the knowledge about the fate of antimony and the potential formation of harmful species. Investigations should be conducted particularly in relation with the main operational parameters controlling the process, chiefly temperature, residence time and air supply in the oven and in the post-combustion zone, prior final adapted cleaning of the flue-gas stream. Experimental studies focusing on antimony behaviour were undertaken through laboratory-scale thermal treatment at 850 deg. C and 1100 deg. C of a Sb-rich halogenated waste, originating from the sector of flame retardants formulation. The configuration of our laboratory experimental device allowed to achieve only low oxidative conditions in the waste bed, but high oxidative strength coupled with high temperature and sufficient gas residence time in the post-combustion zone, as prescribed during the incineration of hazardous wastes. Atomic absorption spectroscopy was used to assess the partition of antimony in the different compartments of the process. The oxidation degree of antimony in the gas-phase was determined by the use of electrochemical techniques, namely polarography coupled with anodic stripping voltamperometry. The partition of antimony between the residual ash and the gas-phase under moderate oxidative conditions in the waste bed was constant, whatever the temperature: the volatilization rate for antimony was ∼64%, while a ∼36% fraction remained in the residual bottom ashes. But interestingly, while at 850 o C, antimony was mainly present in the gas-phase at a +III oxidation degree, an increase in temperature of 250 o C favoured the presence of antimony to its highest oxidation degree +V in the flue-gas stream, a valence known to be involved in less toxic species.

  17. Thermal durability of OPC pastes admixed with nano iron oxide

    Directory of Open Access Journals (Sweden)

    Ahmed A. Amer

    2015-08-01

    Full Text Available Nanotechnology helps in producing materials with prospective properties, for each field of science (physics, chemistry, bio-science as well as construction materials. Nanoparticles belong to the materials in the field of civil engineering which have a high surface area to provide high chemical reactivity. Some researchers have employed nanoparticles into cementitious materials based on ordinary Portland cement to modify the properties of this system. They have important advantages for the hydration and microstructure of cement paste to increase the rate of hydration and the amount of formed CSH gel. The aim of this work is to investigate the influence of NF on the fire resistance of OPC pastes. The NF was synthesized by thermal decomposition of basic ferric acetate fired at 275, 600 and 800 °C. The crystal size of the prepared NF as previously determined was 14.6, 16.98 and 18.68 nm, respectively. OPC admixed with 1 wt% NF prepared at 275 °C gives the higher fire resistance than those admixed with 2 or 3 wt%. It shows the higher bulk density, compressive strength and lower porosity up to 450 °C than the blank OPC. As the firing temperature of NF increases the fire resistance diminishes.

  18. Calcium incorporation in graphene oxide particles: A morphological, chemical, electrical, and thermal study

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Kelly L.S. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, 21941-909 Rio de Janeiro (Brazil); Curti, Raphael V.; Araujo, Joyce R.; Landi, Sandra M.; Ferreira, Erlon H.M.; Neves, Rodrigo S.; Kuznetsov, Alexei; Sena, Lidia A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Archanjo, Braulio S., E-mail: bsarchanjo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Achete, Carlos A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias (Brazil); Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro (Brazil)

    2016-07-01

    Surface chemical modification and functionalization are common strategies used to provide new properties or functionalities to a material or to enhance existing ones. In this work, graphene oxide prepared using Hummers' method has been chemically modified with calcium ions by immersion in a calcium carbonate solution. Transmission electron microscopy analyses showed that graphene oxide (GO) and calcium incorporated graphene oxide have a morphology similar to an ultra-thin membrane composed of overlapping sheets. X-ray diffraction and Fourier-infrared spectroscopy show that calcium carbonate residue was completely removed by hydrochloric acid washes. Energy dispersive X-ray spectroscopy mapping showed spatially homogeneous calcium in Ca-incorporated graphene oxide sample after HCl washing. This Ca is mainly ionic according to X-ray photoelectron spectroscopy, and its incorporation promoted a small reduction in the graphene oxide structure, corroborated also by four-point probe measurements. A thermal study shows a remarkable increase in the GO stability with the presence of Ca{sup 2+} ions. - Highlights: • Graphene oxide has been chemically modified with Ca ions by immersion in a CaCO{sub 3} solution. • GO–Ca has morphology similar to an ultra-thin membrane composed of overlapping sheets. • CaCO{sub 3} residue was completely removed by acid washes, leaving only ionic calcium. • EDS maps show that Ca incorporation is spatially homogeneous in GO structure. • Thermal analyses show a remarkable increase in GO stability after Ca incorporation.

  19. Calcium incorporation in graphene oxide particles: A morphological, chemical, electrical, and thermal study

    International Nuclear Information System (INIS)

    Castro, Kelly L.S.; Curti, Raphael V.; Araujo, Joyce R.; Landi, Sandra M.; Ferreira, Erlon H.M.; Neves, Rodrigo S.; Kuznetsov, Alexei; Sena, Lidia A.; Archanjo, Braulio S.; Achete, Carlos A.

    2016-01-01

    Surface chemical modification and functionalization are common strategies used to provide new properties or functionalities to a material or to enhance existing ones. In this work, graphene oxide prepared using Hummers' method has been chemically modified with calcium ions by immersion in a calcium carbonate solution. Transmission electron microscopy analyses showed that graphene oxide (GO) and calcium incorporated graphene oxide have a morphology similar to an ultra-thin membrane composed of overlapping sheets. X-ray diffraction and Fourier-infrared spectroscopy show that calcium carbonate residue was completely removed by hydrochloric acid washes. Energy dispersive X-ray spectroscopy mapping showed spatially homogeneous calcium in Ca-incorporated graphene oxide sample after HCl washing. This Ca is mainly ionic according to X-ray photoelectron spectroscopy, and its incorporation promoted a small reduction in the graphene oxide structure, corroborated also by four-point probe measurements. A thermal study shows a remarkable increase in the GO stability with the presence of Ca"2"+ ions. - Highlights: • Graphene oxide has been chemically modified with Ca ions by immersion in a CaCO_3 solution. • GO–Ca has morphology similar to an ultra-thin membrane composed of overlapping sheets. • CaCO_3 residue was completely removed by acid washes, leaving only ionic calcium. • EDS maps show that Ca incorporation is spatially homogeneous in GO structure. • Thermal analyses show a remarkable increase in GO stability after Ca incorporation.

  20. Changes in physical properties of graphene oxide with thermal reduction

    Science.gov (United States)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee

    2017-08-01

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable twodimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 °C in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 °C, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 °C, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  1. Changes in Physical Properties of Graphene Oxide with Thermal Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Bhishma; Jo, Chang Hee; Joo, Kwan Seon; Cho, Jaehee [Chonbuk National University, Jeonju (Korea, Republic of)

    2017-08-15

    Reduced graphene oxide (rGO) has attracted significant attention as an easily fabricable two dimensional material. Depending on the oxygen-containing functional groups (OFGs) in an rGO specimen, the optical and electrical properties can vary significantly, directly affecting the performance of devices in which rGO is implemented. Here, we investigated the optical and electrical properties of GO treated with various annealing (reduction) temperatures from 350 to 950 ℃ in H2 ambient. Using diverse characteristic tools, we found that the transmittance, nanoscale domain size, OFGs in GO and rGO, and Schottky barrier height (SBH) measured on n-type GaN are significantly influenced by the annealing temperature. The relative intensity of the defect-induced band in Raman spectroscopy showed a minimum at the annealing temperature of approximately 350 ℃, before the OFGs in rGO showed vigorous changes in relative content. When the domain size of rGO reached a minimum at the annealing temperature of 650 ℃, the SBH of rGO/GaN showed the maximum value of 1.07 eV.

  2. Anaerobic digestion of waste activated sludge—comparison of thermal pretreatments with thermal inter-stage treatments

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Thygesen, Anders; Thomsen, Anne Belinda

    2011-01-01

    BACKGROUND: Treatment methods for improved anaerobic digestion (AD) of waste activated sludge were evaluated. Pretreatments at moderate thermal (water bath at 80 °C), high thermal (loop autoclave at 130–170 °C) and thermo-chemical (170 °C/pH 10) conditions prior to AD in batch vials (40 days/37 °....... CONCLUSION: Thermal treatment of waste activated sludge for improved anaerobic digestion seems more effective when applied as an inter-stage treatment rather than a pretreatment. Copyright © 2010 Society of Chemical Industry...

  3. An assessment of off-gas treatment technologies for application to thermal treatment of Department of Energy wastes

    International Nuclear Information System (INIS)

    Dalton, J.D.; Gillins, R.L.; Harris, T.L.; Wollerman, A.L.

    1992-09-01

    The purpose of this report is to describe available air pollution control technologies for pollutants generated by thermal treatment of DOE wastes. A basic process for selecting air pollution control devices is summarized. Types of air pollutants generated by thermal treatment units are described, as well as the factors that influence the types and quantities of pollutants generated. This report also reviews applicable regulatory emission requirements. A listing of available and emerging air pollution control technologies and a brief introduction to the basic engineering principles involved in collecting each of the pollutants are presented. Section 7 of this report contains two types of evaluations for air pollution control devices. First, comparative evaluations of individual technologies are presented, based upon criteria generally relevant to DOE facilities. Using this evaluation system, the spray dryer absorber received the highest rating for acid-gas removal; high-efficiency particulate air (HEPA) filters received the highest rating for particulate removal; activated carbon adsorption received the highest rating for the removal of both toxic metals and residual hydrocarbons; and selective catalytic reduction received the highest rating for nitrogen oxide abatement. Also evaluated in Sect. 7 is the expected performance of different types of pollution control systems on two hypothetical waste streams. The waste streams were defined based upon typical DOE wastes and thermal treatment technologies. Section 8 presents conclusions for this report. Two appendixes are included with this report. The first appendix contains a brief description of all the technologies evaluated and the second lists of some of the vendors for each of the technologies that was evaluated

  4. Uranium dioxide and beryllium oxide enhanced thermal conductivity nuclear fuel development

    International Nuclear Information System (INIS)

    Andrade, Antonio Santos; Ferreira, Ricardo Alberto Neto

    2007-01-01

    The uranium dioxide is the most used substance as nuclear reactor fuel for presenting many advantages such as: high stability even when it is in contact with water in high temperatures, high fusion point, and high capacity to retain fission products. The conventional fuel is made with ceramic sintered pellets of uranium dioxide stacked inside fuel rods, and presents disadvantages because its low thermal conductivity causes large and dangerous temperature gradients. Besides, the thermal conductivity decreases further as the fuel burns, what limits a pellet operational lifetime. This research developed a new kind of fuel pellets fabricated with uranium dioxide kernels and beryllium oxide filling the empty spaces between them. This fuel has a great advantage because of its higher thermal conductivity in relation to the conventional fuel. Pellets of this kind were produced, and had their thermophysical properties measured by the flash laser method, to compare with the thermal conductivity of the conventional uranium dioxide nuclear fuel. (author) (author)

  5. Thermal bubble inkjet printing of water-based graphene oxide and graphene inks on heated substrate

    Science.gov (United States)

    Huang, Simin; Shen, Ruoxi; Qian, Bo; Li, Lingying; Wang, Wenhao; Lin, Guanghui; Zhang, Xiaofei; Li, Peng; Xie, Yonglin

    2018-04-01

    Stable-jetting water-based graphene oxide (GO) and graphene (GR) inks without any surfactant or stabilizer are prepared from an unstable-jetting water-based starting solvent, with many thermal bubble inkjet satellite drops, by simply increasing the material concentration. The concentration-dependent thermal bubble inkjet droplet generation process is studied in detail. To overcome the low concentration properties of water-based thermal bubble inkjet inks, the substrate temperature is tuned below 60 °C to achieve high-quality print lines. Due to the difference in hydrophilicity and hydrophobicity of the 2D materials, the printed GO lines show a different forming mechanism from that of the GR lines. The printed GO lines are reduced by thermal annealing and by ascorbic acid, respectively. The reduced GO lines exhibit electrical conductivity of the same order of magnitude as that of the GR lines.

  6. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  7. The disclosed transformation of pre-sputtered Ti films into nanoparticles via controlled thermal oxidation

    Science.gov (United States)

    Awad, M. A.; Raaif, M.

    2018-05-01

    Nanoparticles of TiO2 were successfully prepared from pre-sputtered Ti films using the controlled thermal oxidation. The effect of oxidation temperature on structural, morphological and optical properties in addition to photocatalysis activity of the sputtered films was tested and explained. Analysis of XRD and EDAX elucidated the enhancement in crystallization and oxygen content with the increase of oxidation temperature. SEM depicted the formation of very fine nanoparticles with no specific border on the films oxidized at 550 and 600 °C, whilst crystallites with larger size of approximately from 16 to 23 nm have been observed for the film oxidized at 650 °C. Both optical transmission and refractive index were increased with increasing the oxidation temperature. A red shift in the absorption edge was obtained for the films oxidized at 650 °C compared to that oxidized at 600 °C. The photocatalysis tests demonstrated the priority of 600 °C nanoparticle films to decompose methyl orange (MO) more than 650 °C treated film.

  8. Effects of X irradiation and high field electron injection of the electrical properties of rapid thermal oxides

    International Nuclear Information System (INIS)

    Schubert, W.K.; Seager, C.H.

    1988-01-01

    Rapid thermal oxidation (RTO) is a promising tool for fabricating the thin gate oxides (5 to 15 nm) that will be needed in future submicron integrated circuits, because of its inherently superior time-temperature control when compared to conventional oxidation methods. It is important to demonstrate that RTO can be used without adversely affecting the radiation hardness or high field properties of the oxide. Beyond this demonstration, rapid thermal processing makes it possible to determine more precisely how the kinetics of oxidation and post oxidation annealing affect the device properties. Information of this type should prove useful in modeling relevant defect formation mechanisms. The present paper is part of a systematic study of the effect of rapid thermal processing on the radiation and high field response of thin oxides

  9. Percutaneous treatment of bone tumors by radiofrequency thermal ablation

    International Nuclear Information System (INIS)

    Ruiz Santiago, Fernando; Mar Castellano Garcia, Maria del; Guzman Alvarez, Luis; Martinez Montes, Jose Luis; Ruiz Garcia, Manuel; Tristan Fernandez, Juan MIguel

    2011-01-01

    We present our experience of the treatment of bone tumors with radiofrequency thermal ablation (RFTA). Over the past 4 years, we have treated 26 cases (22 benign and 4 malignant) using CT-guided RFTA. RFTA was the sole treatment in 19 cases and was combined with percutaneous cementation during the same session in the remaining seven cases. Our approach to the tumors was simplified, using a single point of entrance for both RFTA and percutaneous osteoplasty. In the benign cases, clinical success was defined as resolution of pain within 1 month of the procedure and no recurrence during the follow-up period. It was achieved in 19 out of the 21 patients in which curative treatment was attempted. The two non-resolved cases were a patient with osteoid osteoma who developed a symptomatic bone infarct after a symptom-free period of 2 months and another with femoral diaphysis osteoblastoma who suffered a pathological fracture after 8 months without symptoms. The procedure was considered clinically successful in the five cases (4 malign and 1 benign) in which palliative treatment was attempted, because there was a mean (±SD) reduction in visual analogue scale (VAS) pain score from 9.0 ± 0.4 before the procedure to <4 during the follow-up period.

  10. Percutaneous treatment of bone tumors by radiofrequency thermal ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Santiago, Fernando, E-mail: ferusan@ono.com [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Mar Castellano Garcia, Maria del; Guzman Alvarez, Luis [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Martinez Montes, Jose Luis [Department of Traumatology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain); Ruiz Garcia, Manuel; Tristan Fernandez, Juan MIguel [Department of Radiology, Hospital of Traumatology (Ciudad Sanitaria Virgen de las Nieves), Carretera de Jaen SN, 18013 Granada (Spain)

    2011-01-15

    We present our experience of the treatment of bone tumors with radiofrequency thermal ablation (RFTA). Over the past 4 years, we have treated 26 cases (22 benign and 4 malignant) using CT-guided RFTA. RFTA was the sole treatment in 19 cases and was combined with percutaneous cementation during the same session in the remaining seven cases. Our approach to the tumors was simplified, using a single point of entrance for both RFTA and percutaneous osteoplasty. In the benign cases, clinical success was defined as resolution of pain within 1 month of the procedure and no recurrence during the follow-up period. It was achieved in 19 out of the 21 patients in which curative treatment was attempted. The two non-resolved cases were a patient with osteoid osteoma who developed a symptomatic bone infarct after a symptom-free period of 2 months and another with femoral diaphysis osteoblastoma who suffered a pathological fracture after 8 months without symptoms. The procedure was considered clinically successful in the five cases (4 malign and 1 benign) in which palliative treatment was attempted, because there was a mean ({+-}SD) reduction in visual analogue scale (VAS) pain score from 9.0 {+-} 0.4 before the procedure to <4 during the follow-up period.

  11. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  12. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Shoucheng, Wen

    2014-01-01

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  13. Physical and electrical properties of thermal oxidized Sm{sub 2}O{sub 3} gate oxide thin film on Si substrate: Influence of oxidation durations

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Kian Heng; Haseeb, A.S.M.A.; Wong, Yew Hoong, E-mail: yhwong@um.edu.my

    2016-05-01

    Growth of 150 nm Sm{sub 2}O{sub 3} films by sputtered pure samarium metal film on silicon substrates and followed by thermal oxidation process in oxygen ambient at 700 °C through various oxidation durations (5 min, 10 min, 15 min and 20 min) has been carried out. The crystallinity of Sm{sub 2}O{sub 3} film and existence of interfacial layer have been evaluated by X-ray diffraction, Fourier transform infrared and Raman analysis. Crystallite size and microstrain of Sm{sub 2}O{sub 3} were estimated by Williamson–Hall plot analysis. Calculated crystallite size of Sm{sub 2}O{sub 3} from Scherrer equation has similar trend with the value from Williamson–Hall plot. The presence of interfacial layer is supported by composition line scan by energy dispersive X-ray spectroscopy analysis. The surface roughness and surface topography of Sm{sub 2}O{sub 3} film were examined by atomic force microscopy analysis. The electrical characterization revealed that 15 min of oxidation durations with smoothest surface has highest breakdown voltage, lowest leakage current density and highest barrier height value. - Highlights: • Thermal oxidation of sputtered pure metallic Sm in oxygen ambient • Formation of polycrystalline Sm{sub 2}O{sub 3} and semi-polycrystalline interfacial layers • Optimization of oxidation duration of pure metallic Sm in oxygen ambient • Enhanced electrical performance with smooth surface and increased barrier height.

  14. Thermal-grating contributions to degenerate four-wave mixing in nitric oxide

    International Nuclear Information System (INIS)

    Danehy, P.M.; Paul, P.H.; Farrow, R.L.

    1995-01-01

    We report investigations of degenerate four-wave mixing (DFWM) line intensities in the A 2 Σ + left-arrow X 2 Π electronic transitions of nitric oxide. Contributions from population gratings (spatially varying perturbations in the level populations of absorbing species) and thermal gratings (spatially varying perturbations in the overall density) were distinguished and compared by several experimental and analytical techniques. For small quantities of nitric oxide in a strongly quenching buffer gas (carbon dioxide), we found that thermal-grating contributions dominated at room temperature for gas pressures of ∼0.5 atm and higher. In a nearly nonquenching buffer (nitrogen) the population-grating mechanism dominated at pressures of ∼1.0 atm and lower. At higher temperatures in an atmospheric-pressure methane/air flame, population gratings of nitric oxide also dominated. We propose a simple model for the ratio of thermal- to population-grating scattering intensities that varies as P 4 T -4.4 . Preliminary investigations of the temperature dependence and detailed studies of the pressure dependence are in agreement with this model. Measurements of the temporal evolution and the peak intensity of isolated thermal-grating signals are in detailed agreement with calculations based on a linearized hydrodynamic model [J. Opt. Soc. Am. B 12, 384 (1995)]. copyright 1995 Optical Society of America

  15. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.

    Science.gov (United States)

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-06-27

    Graphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. These results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving its specific capacitance, energy, and power density.

  16. Influence of heat treatment temperature on bonding and oxidation ...

    Indian Academy of Sciences (India)

    The effects of heat treatment temperature on the morphology, composition, chemical bonds, oxidation resistance and compressive strength of diamond particles coated with TiO2 films were characterized through scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, X-ray diffraction analysis, X-ray ...

  17. Influence of heat treatment temperature on bonding and oxidation ...

    Indian Academy of Sciences (India)

    Administrator

    Diamond; TiO2 film; heat treatment temperature; anti-oxidation; mechanical properties. 1. Introduction. Due to its ..... figure 4a, which was due to the change of chemical envi- ronment of ... graphite, diamond, diamond-like carbon and carbon.10.

  18. Detection of oxidative hair treatment using fluorescence microscopy.

    Science.gov (United States)

    Witt, Silvana; Wunder, Cora; Paulke, Alexander; Verhoff, Marcel A; Schubert-Zsilavecz, Manfred; Toennes, Stefan W

    2016-08-01

    In assessing abstinence from drug or alcohol abuse, hair analysis plays an important role. Cosmetic hair treatment influences the content of deposited drugs which is not always detectable during analysis. Since oxidation of melanin leads to an increase in fluorescence, a microscopic method was developed to distinguish natural from cosmetically treated hair. For validation, natural hair samples were treated with different types of cosmetics and inspected by fluorescence microscopy. Hair samples from 20 volunteers with documented cosmetic treatment and as a proof of concept 100 hair samples from forensic cases were analyzed by this method. Apart from autofluorescence with excitation at 365 nm, no obvious fluorescence was observed in untreated hair samples. Tinting and a natural plant product had no influence on fluorescence, but dyeing procedures including oxidation led to a marked increase in fluorescence. Proof of cosmetic treatment was achieved in hair samples from the 20 volunteers. In 100 forensic cases, 13 samples were characterized as oxidatively treated, which was in accordance with the respective disclosure except for one case where treatment was not admitted. This fluorescence microscopic procedure proved to be fast, easy, and reliable to identify oxidatively treated hair samples, which must be considered especially in evaluating cases of negative drug results. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Thermal and oxidative degradation studies of formulated C-ethers by gel-permeation chromatography

    Science.gov (United States)

    Jones, W. R., Jr.; Morales, W.

    1982-01-01

    Gel-permeation chromatography was used to analyze C-ether lubricant formulations from high-temperature bearing tests and from micro-oxidation tests. Three mu-styragel columns (one 500 and two 100 A) and a tetrahydrofuran mobile phase were found to adequately separate the C-ether degradation products. The micro-oxidation tests yielded degradation results qualitatively similar to those observed from the bearing tests. Micro-oxidation tests conducted in air yielded more degradation than did tests in nitrogen. No great differences were observed between the thermal-oxidative stabilities of the two C-ether formulations or between the catalytic degradation activities of silver and M-50 steel. C-ether formulation I did yield more degradation than did formulation II in 111- and 25-hour bearing tests, respectively.

  20. Local electrical properties of thermally grown oxide films formed on duplex stainless steel surfaces

    Science.gov (United States)

    Guo, L. Q.; Yang, B. J.; He, J. Y.; Qiao, L. J.

    2018-06-01

    The local electrical properties of thermally grown oxide films formed on ferrite and austenite surfaces of duplex stainless steel at different temperatures were investigated by Current sensing atomic force microscopy, X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The current maps and XPS/AES analyses show that the oxide films covering austenite and ferrite surfaces formed at different temperatures exhibit different local electrical characteristics, thickness and composition. The dependence of electrical conductivity of oxide films covering austenite and ferrite surface on the formation temperature is attributed to the film thickness and semiconducting structures, which is intrinsically related to thermodynamics and kinetics process of film grown at different temperature. This is well elucidated by corresponding semiconductor band structures of oxide films formed on austenite and ferrite phases at different temperature.

  1. Accelerated thermal and radiation-oxidation combined degradation of electric cable insulation materials

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Seguchi, Tadao; Yoshida, Kenzo

    1986-03-01

    For the development of accelerated testing methodology to estimate the life time of electric cable, which is installed in radiation field such as a nuclear reactor containment vessel, radiation and thermal combined degradation of cable insulation and jacketing materials was studied. The materials were two types of formulated polyethylene, ethylene-propylene rubber, Hypalon, and Neoprene. With Co-60 γ-rays the materials were irradiated up to 0.5 MGy under vacuum and in oxygen under pressure, then exposed to thermal aging at elevated temperature in oxygen. The degradation was investigated by the tensile test, gelfraction, and swelling measurements. The thermal degradation rate for each sample increases with increase of oxygen concentration, i.e. oxygen pressure, during the aging, and tends to saturate above 0.2 MPa of oxygen pressure. Then, the effects of irradiation and the temperature on the thermal degradation rate were investigated at the oxygen pressure of 0.2 MPa in the temperature range from 110 deg C to 150 deg C. For all of samples irradiated in oxygen, the following thermal degradation rate was accelerated by several times comparing with unirradiated samples, while the rate of thermal degradation for the sample except Neoprene irradiated under vacuum was nearly equal to that of unirradiated one. By the analysis of thermal degradation rate against temperature using Arrhenius equation, it was found that the activation energy tends to decrease for the samples irradiated in oxidation condition. (author)

  2. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Luňáček, J., E-mail: jiri.lunacek@vsb.cz [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Životský, O. [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Jirásková, Y. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Buršík, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Janoš, P. [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2016-10-15

    The present paper is devoted to detailed study of the magnetically separable sorbents based on a cerium dioxide/iron oxide composite annealed at temperatures T{sub a} = 773 K, 873 K, and 973 K. The X-ray diffraction and high resolution transmission electron microscopy are used to determine the phase composition and microstructure morphology. Mössbauer spectroscopy at room (300 K) and low (5 K) temperatures has contributed to more exact identification of iron oxides and their transformations Fe{sub 3}O{sub 4} → γ-Fe{sub 2}O{sub 3} (ε-Fe{sub 2}O{sub 3}) → α-Fe{sub 2}O{sub 3} in dependence on calcination temperature. Different iron oxide phase compositions and grain size distributions influence the magnetic characteristics determined from the room- and low-temperature hysteresis loop measurements. The results are supported by zero-field-cooled and field-cooled magnetization measurements allowing a quantitative estimation of the grain size distribution and its effect on the iron oxide transformations. - Highlights: •Magnetically separable sorbents based on a CeO{sub 2}/Fe{sub 2}O{sub 3} composite were investigated. •Microstructure of sorbents was determined by XRD, TEM and Mössbauer spectroscopy. •Magnetic properties were studied by hysteresis loops at room- and low-temperatures. •Phase transitions of iron oxides with increasing annealing temperature are observed.

  3. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H 2 O or O 2 . The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  4. Effect of germination and thermal treatments on folates in rye.

    Science.gov (United States)

    Kariluoto, Susanna; Liukkonen, Kirsi-Helena; Myllymäki, Olavi; Vahteristo, Liisa; Kaukovirta-Norja, Anu; Piironen, Vieno

    2006-12-13

    Effects of germination conditions and thermal processes on folate contents of rye were investigated. Total folate contents were determined microbiologically with Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism, and individual folates were determined by high-performance liquid chromatography after affinity chromatographic purification. Germination increased the folate content by 1.7-3.8-fold, depending on germination temperature, with a maximum content of 250 micro g/100 g dry matter. Hypocotylar roots with their notably high folate concentrations (600-1180 micro g/100 g dry matter) contributed 30-50% of the folate contents of germinated grains. Germination altered the proportions of folates, increasing the proportion of 5-methyltetrahydrofolate and decreasing the proportion of formylated folate compounds. Thermal treatments (extrusion, autoclaving and puffing, and IR and toasting) resulted in significant folate losses. However, folate levels in grains that were germinated and then were heat processed were higher than for native (nongerminated) grains. Opportunities to optimize rye processing to enhance folate levels in rye-based foods are discussed.

  5. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  6. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  7. Ionic Conductance, Thermal and Morphological Behavior of PEO-Graphene Oxide-Salts Composites

    Directory of Open Access Journals (Sweden)

    Mohammad Saleem Khan

    2015-01-01

    Full Text Available Thin films composites of poly(ethylene oxide-graphene oxide were fabricated with and without lithium salts by solvent cast method. The ionic conductivity of these composites was studied at various concentrations of salt polymer-GO complexes and at different temperatures. The effects of temperature and graphene oxide concentration were measured from Arrhenius conductance plots. It is shown that the addition of salts in pure PEO increases conductance many times. The graphene oxide addition has enhanced the conductance approximately 1000 times as compared to that of pure PEO. The activation energies were determined for all the systems which gave higher values for pure PEO and the value decreased with the addition of LiClO4 and LiCl salts and further decreases with the addition of graphene oxide. The composite has also lowered the activation energy values which mean that incorporation of GO in PEO has decreased crystallinity and the amorphous region has increased the local mobility of polymer chains resulting in lower activation energies. SEM analysis shows uniform distribution of GO in polymer matrix. The thermal stability studies reveal that incorporation of GO has somewhat enhanced the thermal stability of the films.

  8. Natural printed silk substrate circuit fabricated via surface modification using one step thermal transfer and reduction graphene oxide

    Science.gov (United States)

    Cao, Jiliang; Huang, Zhan; Wang, Chaoxia

    2018-05-01

    Graphene conductive silk substrate is a preferred material because of its biocompatibility, flexibility and comfort. A flexible natural printed silk substrate circuit was fabricated by one step transfer of graphene oxide (GO) paste from transfer paper to the surface of silk fabric and reduction of the GO to reduced graphene oxide (RGO) using a simple hot press treatment. The GO paste was obtained through ultrasonic stirring exfoliation under low temperature, and presented excellent printing rheological properties at high concentration. The silk fabric was obtained a surface electric resistance as low as 12.15 KΩ cm-1, in the concentration of GO 50 g L-1 and hot press at 220 °C for 120 s. Though the whiteness and strength decreased with the increasing of hot press temperature and time slowly, the electric conductivity of RGO surface modification silk substrate improved obviously. The surface electric resistance of RGO/silk fabrics increased from 12.15 KΩ cm-1 to 18.05 KΩ cm-1, 28.54 KΩ cm-1 and 32.53 KΩ cm-1 after 10, 20 and 30 washing cycles, respectively. The results showed that the printed silk substrate circuit has excellent washability. This process requires no chemical reductant, and the reduction efficiency and reduction degree of GO is high. This time-effective and environmentally-friendly one step thermal transfer and reduction graphene oxide onto natural silk substrate method can be easily used to production of reduced graphene oxide (RGO) based flexible printed circuit.

  9. Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes

    Science.gov (United States)

    Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.

    2018-06-01

    To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.

  10. Volatilisation of ruthenium in vitrification. Isothermal calcination studies of 'Magnox' and thermal oxide simulates

    International Nuclear Information System (INIS)

    Cains, P.W.; Hay, D.A.

    1982-12-01

    Ru volatilities have been measured for the static, isothermal calcination of ''Magnox'' and Thermal Oxide HAL's (Highly Active Liquors) at temperatures up to 600 0 C. Model solutions containing Ru, HNO 3 , and nitrates of important individual cations have also been investigated. Experimental design was primarily based on the requirements of rotary calcination process development. The results have been interpreted in terms of a reaction model involving competition between the simple degradation of Ru(NO) complexes to RuO 2 and oxidative decomposition to volatile species (e.g. RuO 4 ). (author)

  11. Novel Materials through Non-Hydrolytic Sol-Gel Processing: Negative Thermal Expansion Oxides and Beyond

    Directory of Open Access Journals (Sweden)

    Cora Lind

    2010-04-01

    Full Text Available Low temperature methods have been applied to the synthesis of many advanced materials. Non-hydrolytic sol-gel (NHSG processes offer an elegant route to stable and metastable phases at low temperatures. Excellent atomic level homogeneity gives access to polymorphs that are difficult or impossible to obtain by other methods. The NHSG approach is most commonly applied to the preparation of metal oxides, but can be easily extended to metal sulfides. Exploration of experimental variables allows control over product stoichiometry and crystal structure. This paper reviews the application of NHSG chemistry to the synthesis of negative thermal expansion oxides and selected metal sulfides.

  12. Technology assessment of thermal treatment technologies using ORWARE

    International Nuclear Information System (INIS)

    Assefa, G.; Eriksson, O.; Frostell, B.

    2005-01-01

    A technology assessment of thermal treatment technologies for wastes was performed in the form of scenarios of chains of technologies. The Swedish assessment tool, ORWARE, was used for the assessment. The scenarios of chains of thermal technologies assessed were gasification with catalytic combustion, gasification with flame combustion, incineration and landfilling. The landfilling scenario was used as a reference for comparison. The technologies were assessed from ecological and economic points of view. The results are presented in terms of global warming potential, acidification potential, eutrophication potential, consumption of primary energy carriers and welfare costs. From the simulations, gasification followed by catalytic combustion with energy recovery in a combined cycle appeared to be the most competitive technology from an ecological point of view. On the other hand, this alternative was more expensive than incineration. A sensitivity analysis was done regarding electricity prices to show which technology wins at what value of the unit price of electricity (SEK/kW h). Within this study, it was possible to make a comparison both between a combined cycle and a Rankine cycle (a system pair) and at the same time between flame combustion and catalytic combustion (a technology pair). To use gasification just as a treatment technology is not more appealing than incineration, but the possibility of combining gasification with a combined cycle is attractive in terms of electricity production. This research was done in connection with an empirical R and D work on both gasification of waste and catalytic combustion of the gasified waste at the Division of Chemical Technology, Royal Institute of Technology (KTH), Sweden

  13. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass

    International Nuclear Information System (INIS)

    Anstey, Andrew; Vivekanandhan, Singaravelu; Rodriguez-Uribe, Arturo; Misra, Manjusri; Mohanty, Amar Kumar

    2016-01-01

    Oxidative acid treatments of biochar produced from Miscanthus were performed in this study using nitric acid, sulfuric acid, and a mixture of both. The structural and morphological changes of the acid-treated biochar were investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, organic elemental analysis and energy-dispersive X-ray spectroscopy (EDS). Improved surface functionality of the treated biochars was observed in their respective FT-IR spectra through the presence of nitro and carboxylic acid functional groups. SEM–EDS and elemental analysis revealed a large increase in the oxygen to carbon ratio in the biochar, which was evidence of chemical oxidation from the acid treatment. Further, TGA study showed the reduced thermal stability of acid-treated biochar over 200 °C due to the increased oxygen content. Acid treatments also influenced the graphitic structure of the biochar, as observed in the Raman spectra. The results suggest that biochar can be successfully functionalized for composite applications and provide a sustainable alternative to petroleum-based carbon additives. - Highlights: • Biochar was investigated as a candidate for renewable functionalized carbon. • Oxidative acid treatment was used to modify the carbon structure. • The chemical and morphological properties of the treated biochar were examined. • Successful chemical modification of biochar was verified through characterization. • Biochar shows potential as a sustainable carbon additive for polymer composites.

  14. Oxidative acid treatment and characterization of new biocarbon from sustainable Miscanthus biomass

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Andrew [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Vivekanandhan, Singaravelu [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Sustainable Materials and Nanotechnology Lab, Department of Physics, VHNSN College, Virudhunagar 626 001, Tamilnadu (India); Rodriguez-Uribe, Arturo [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Misra, Manjusri [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Mohanty, Amar Kumar, E-mail: mohanty@uoguelph.ca [Bioproducts Discovery and Development Centre (BDDC), Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, Guelph, ON N1G 2W1 (Canada)

    2016-04-15

    Oxidative acid treatments of biochar produced from Miscanthus were performed in this study using nitric acid, sulfuric acid, and a mixture of both. The structural and morphological changes of the acid-treated biochar were investigated using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, organic elemental analysis and energy-dispersive X-ray spectroscopy (EDS). Improved surface functionality of the treated biochars was observed in their respective FT-IR spectra through the presence of nitro and carboxylic acid functional groups. SEM–EDS and elemental analysis revealed a large increase in the oxygen to carbon ratio in the biochar, which was evidence of chemical oxidation from the acid treatment. Further, TGA study showed the reduced thermal stability of acid-treated biochar over 200 °C due to the increased oxygen content. Acid treatments also influenced the graphitic structure of the biochar, as observed in the Raman spectra. The results suggest that biochar can be successfully functionalized for composite applications and provide a sustainable alternative to petroleum-based carbon additives. - Highlights: • Biochar was investigated as a candidate for renewable functionalized carbon. • Oxidative acid treatment was used to modify the carbon structure. • The chemical and morphological properties of the treated biochar were examined. • Successful chemical modification of biochar was verified through characterization. • Biochar shows potential as a sustainable carbon additive for polymer composites.

  15. The Coadministration of Unoxidized and Oxidized Desi Ghee Ameliorates the Toxic Effects of Thermally Oxidized Ghee in Rabbits

    Directory of Open Access Journals (Sweden)

    Alam Zeb

    2017-01-01

    Full Text Available Desi Ghee was thermally oxidized at 160°C for 9 h and characterized for peroxide value (PV, free fatty acid (FFA, thiobarbituric acid reactive substances (TBARS, radical scavenging activity (RSA, and fatty acid and cholesterol composition using GC-MS. Oxidized (OG and normal ghee (NG were fed to rabbits in different doses. Blood was collected for hematology and biochemical analyses after 7 and 14 days. The oxidation of desi ghee increased the PV, FFA, and TBARS values and showed a decline in the RSA values. GC-MS revealed that desi ghee was rich in saturated fatty acids (55.9 g/100 g and significant amounts of oleic acid (26.2 g/100 g. The OG significantly decreased the body weight, which was normalized by the coadministration of NG. Serum lipid profile showed a dose dependent increase in total cholesterol, triglycerides, and low density lipoproteins (LDL and decrease in RBCs count, hematocrit, glucose, and hemoglobin concentration with OG feeding. These parameters were normalized by coadministration of NG. Liver histopathology of OG fed groups showed bile duct dilation and necrotic changes, while normal architecture showed in NG groups, compared to control. These results indicate that NG has no significant effect on rabbits comparing with OG and that it was beneficial when coadministered with oxidized ghee.

  16. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production

    KAUST Repository

    Garcia Esparza, Angel T.; Limkrailassiri, Kevin; Leroy, Fré dé ric; Rasul, Shahid; Yu, Weili; Lin, Liwei; Takanabe, Kazuhiro

    2014-01-01

    We report the use of a facile and highly scalable synthesis process to control growth products of earth-abundant Cu-based oxides and their application in relevant photoelectrochemical and electrochemical solar fuel generation systems. Characterization of the synthesized Cu(I)/Cu(II) oxides indicates that their surface morphology and chemical composition can be simply tuned by varying two synthesis parameters (time and temperature). UV-Vis spectroscopy and impedance spectroscopy studies are performed to estimate the band structures and electronic properties of these p-type semiconductor materials. Photoelectrodes made of Cu oxides possess favorable energy band structures for production of hydrogen from water; the position of their conduction band is ≈1 V more negative than the water-reduction potential. High acceptor concentrations on the order of 1018-1019 cm-3 are obtained, producing large electric fields at the semiconductor-electrolyte interface and thereby enhancing charge separation. The highly crystalline pristine samples used as photocathodes in photoelectrochemical cells exhibit high photocurrents under AM 1.5G simulated illumination. When the samples are electrochemically reduced under galvanostatic conditions, the co-existence of the oxide with metallic Cu on the surface seems to function as an effective catalyst for the selective electrochemical reduction of CO2. © the Partner Organisations 2014.

  17. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Directory of Open Access Journals (Sweden)

    M. Cihan Çakır

    2016-09-01

    Full Text Available Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  18. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    Science.gov (United States)

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  19. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  20. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Inder Pal Singh; Srivastava, Pratibha; Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur (India)

    2009-08-15

    Nanocrystalline transition metal oxides (NTMOs) have been successfully prepared by three different methods: novel quick precipitation method (Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}); surfactant mediated method (CuO), and reduction of metal complexes with hydrazine as reducing agent (Mn{sub 2}O{sub 3}). The nano particles have been characterized by X-ray diffraction (XRD) which shows an average particle diameter of 35-54 nm. Their catalytic activity was measured in the thermal decomposition of ammonium perchlorate (AP). AP decomposition undergoes a two step process where the addition of metal oxide nanocrystals led to a shifting of the high temperature decomposition peak toward lower temperature. The kinetics of the thermal decomposition of AP and catalyzed AP has also been evaluated using model fitting and isoconversional method. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  1. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Latibari, Sara Tahan; Mehrali, Mehdi; Indra Mahlia, Teuku Meurah; Cornelis Metselaar, Hendrik Simon

    2013-01-01

    PA/GO (palmitic acid/graphene oxide) as PCMs (phase change materials) prepared by vacuum impregnation method, have high thermal conductivity. The GO (graphene oxide) composite was used as supporting material to improve thermal conductivity and shape stabilization of composite PCM (phase change material). SEM (Scanning electronic microscope), FT-IR (Fourier transformation infrared spectroscope) and XRD (X-ray diffractometer) were applied to determine microstructure, chemical structure and crystalloid phase of palmitic acid/GO composites, respectively. DSC (Differential scanning calorimeter) test was done to investigate thermal properties which include melting and solidifying temperatures and latent heat. FT-IR analysis represented that the composite instruction of porous palmitic acid and GO were physical. The temperatures of melting, freezing and latent heats of the composite measured through DSC analysis were 60.45, 60.05 °C, 101.23 and 101.49 kJ/kg, respectively. Thermal cycling test showed that the form-stable composite PCM has good thermal reliability and chemical stability. Thermal conductivity of the composite PCM was improved by more than three times from 0.21 to 1.02. As a result, due to their acceptable thermal properties, good thermal reliability, chemical stability and great thermal conductivities, we can consider the prepared form-stable composites as highly conductive PCMs for thermal energy storage applications. - Highlights: • Novel composite PCM with high thermal conductivity and latent heat storage. • New thermal cycling test for thermal reliability of composite PCMs. • Increasing thermal conductivity of composite PCM with graphene oxide. • Increasing thermal stability of phase change material by adding graphene oxide

  2. Unique Crystal Orientation of Poly(ethylene oxide) Thin Films by Crystallization Using a Thermal Gradient

    DEFF Research Database (Denmark)

    Gbabode, Gabin; Delvaux, Maxime; Schweicher, Guillaume

    2017-01-01

    Poly(ethylene oxide), (PEO), thin films of different thicknesses (220, 450, and 1500 nm) and molecular masses (4000, 8000, and 20000 g/mol) have been fabricated by spin-coating of methanol solutions onto glass substrates. All these samples have been recrystallized from the melt using a directional......, to significantly decrease the distribution of crystal orientation obtained after crystallization using the thermal gradient technique....

  3. Heat recovery investigation from dryer–thermal oxidizer system in corn-ethanol plants

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2015-01-01

    In recent years, annual corn ethanol production in the U.S. has exceeded 13,298,000,000 gallons. However, net energy balance for this sector became a subject of controversy in many discussions. The aim of the presented research is an investigation of thermal improvement opportunities in a corn ethanol plant. For this purpose, a complex mathematical model was developed for a dryer–thermal oxidizer system. Three variants were subjected thermodynamic analyses: one state of the art system and two proposed system modifications. The properties of humid gas, a mixture of combustion products and moisture evaporated from distiller's grain, were updated based on the steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. All calculations were performed by uniquely-developed C++ code. The results indicate major potential for improvement in the following areas: (i) water recovery from humid gas; (ii) heat recovery from moisture condensation – max. 44% of total primary energy usage (TPEU); and (iii) fuel savings by reduction of humid gas flow through a thermal oxidizer – max. 1.4% of TPEU. Also the presented analysis can be a starting point for further modifications in real corn ethanol manufacturing applications, leading towards pilot system implementation. - Highlights: • Mathematical model for dryer–oxidizer system in a corn ethanol plant was proposed. • Three configurations were discussed: with intercooler, regenerator, and recuperator. • Recovery rate of water condensed at various conditions and locations was quantified. • Heat recovery possibilities at various temperatures and locations have been assessed. • Energy savings in thermal oxidizer due to preliminary condensation were calculated

  4. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    OpenAIRE

    Nitai Chandra Adak; Suman Chhetri; Naresh Chandra Murmu; Pranab Samanta; Tapas Kuila

    2018-01-01

    Thermally reduced graphene oxide (TRGO) was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF)/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spe...

  5. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  6. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    Science.gov (United States)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  7. Thermal transport properties of polycrystalline tin-doped indium oxide films

    International Nuclear Information System (INIS)

    Ashida, Toru; Miyamura, Amica; Oka, Nobuto; Sato, Yasushi; Shigesato, Yuzo; Yagi, Takashi; Taketoshi, Naoyuki; Baba, Tetsuya

    2009-01-01

    Thermal diffusivity of polycrystalline tin-doped indium oxide (ITO) films with a thickness of 200 nm has been characterized quantitatively by subnanosecond laser pulse irradiation and thermoreflectance measurement. ITO films sandwiched by molybdenum (Mo) films were prepared on a fused silica substrate by dc magnetron sputtering using an oxide ceramic ITO target (90 wt %In 2 O 3 and 10 wt %SnO 2 ). The resistivity and carrier density of the ITO films ranged from 2.9x10 -4 to 3.2x10 -3 Ω cm and from 1.9x10 20 to 1.2x10 21 cm -3 , respectively. The thermal diffusivity of the ITO films was (1.5-2.2)x10 -6 m 2 /s, depending on the electrical conductivity. The thermal conductivity carried by free electrons was estimated using the Wiedemann-Franz law. The phonon contribution to the heat transfer in ITO films with various resistivities was found to be almost constant (λ ph =3.95 W/m K), which was about twice that for amorphous indium zinc oxide films

  8. The fabrication and thermal properties of bismuth-aluminum oxide nanothermometers.

    Science.gov (United States)

    Wang, Chiu-Yen; Chen, Shih-Hsun; Tsai, Ping-Hsin; Chiou, Chung-Han; Hsieh, Sheng-Jen

    2017-01-27

    Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al 2 O 3 ) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al 2 O 3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al 2 O 3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al 2 O 3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

  9. Numerical investigation of influence thermal preparation coal on nitric oxides formation in combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Chernetskaya, N. [Siberian Federal Univ., Krasnoyarsk (Russian Federation); Chernetsky, M.; Dekterev, A. [Siberian Federal Univ., Krasnoyarsk (Russian Federation); Kutateladze Institute of Thermophysics, Novosibirsk (Russian Federation)

    2013-07-01

    Emissions of nitrogen oxides from coal combustion are a major environmental problem because they have been shown to contribute to the formation of acid rain and photochemical smog. Coal thermalpreparation before furnace delivery is effective method to reduce NOx emissions, shown by experiments in small-scale facilities (Babiy VI, Alaverdov PI, Influence of thermal preparation pulverized coal on nitric oxides outlet for combustion different metamorphized coal. ATI, 1983). This paper presents the mathematical model of burning thermal preparation coal. Validation of the model was carried out on laboratory-scale plant of All-Russia thermal engineering institute. Modeling of low-emissive burner with preliminary heating coal dust is made for the purpose of search of burner optimal constructions which provides low concentration of nitric oxides in the boiler. For modeling are used in-house CFD code ''{sigma}Flow'' (Dekterev AA, Gavrilov AA, Harlamov EB, Litvintcev KY, J Comput Technol 8(Part 1):250-255, 2003).

  10. Feasibility of electrochemical oxidation process for treatment of saline wastewater

    Directory of Open Access Journals (Sweden)

    Kavoos Dindarloo

    2015-09-01

    Full Text Available Background: High concentration of salt makes biological treatment impossible due to bacterial plasmolysis. The present research studies the process of electrochemical oxidation efficiency and optimal levels as important factors affecting pH, salt concentration, reaction time and applied voltage. Methods: The sample included graphite electrodes with specifications of 2.5 cm diameter and 15 cm height using a reactor with an optimum capacity of 1 L. Sixty samples were obtained with the aid of the experiments carried out in triplicates for each factor at 5 different levels. The entire experiments were performed based on standard methods for water and waste water treatments. Results: Analysis of variance carried out on effect of pH, salt concentration, reaction time and flow intensity in elimination of chemical oxygen demand (COD showed that they are significant factors affecting this process and reduce COD with a coefficient interval of 95% and test power of 80%. Scheffe test showed that at optimal level, a reaction time of 1 hour, 10 g/L concentration, pH = 9 and 15 V electrical potential difference were obtained. Conclusion: Waste waters containing salt may contribute to the electro-oxidation process due to its cations and anions. Therefore, the process of electrochemical oxidation with graphite electrodes could be a proper strategy for the treatment of saline wastewater where biological treatment is not possible.

  11. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Bejšovec, Václav; Vacík, Jiří; Lavrentiev, Vasyl; Vrňata, M.; Kormunda, M.; Daniš, S.

    2016-01-01

    Roč. 389, DEC (2016), s. 751-759 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : Copper oxide * ion beam sputtering * Van der Pauw * nuclear reaction analysis * gas sensing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  12. Development of uranium dioxide fuel pellets with addition of beryllium oxide for increasing of thermal conductivity

    International Nuclear Information System (INIS)

    Queiroz, Carolinne Mol; Ferreira, Ricardo Alberto Neto

    2011-01-01

    The CDTN - Centro de Desenvolvimento de Tecnologia Nuclear presents a project named 'Beryllium Project' viewing to increasing the thermal conductivity of UO 2 fuel pellets, increasing the lifetime of those pellets in the reactor, generating a greater economy. This increase of conductivity is obtained by means of Be O addition to the UO 2 fuel pellets, which is very used for the production of nuclear energy. The UO 2 pellets however present a thermal conductivity relatively low, generating a high temperature gradient between the center and his side surface. The addition of beryllium oxide, with higher thermal conductivity gives pellets which will present lower temperature gradient and, consequently, more durability and better utilization of energy potential of the pellet in the reactor. (author)

  13. Formation of polymerization compounds during thermal oxidation of cottonseed oil, partially hydrogenated cottonseed oil and their blends

    Directory of Open Access Journals (Sweden)

    Barrera-Arellano, D. Laboratório de Óleos e Gorduras, Departa

    2006-09-01

    Full Text Available Samples of cottonseed oil, partially hydrogenated cottonseed oil and their blends, with iodine values between 60 and 110, tocopherol-stripped or not by aluminium oxide treatment, were submitted to thermal oxidation, at 180 °C, for 10 hours. Samples were collected at 0, 2, 5, 8 and 10 hours, for the determination of dimers and polymers (degradation compounds and of tocopherols. The influence of the degree of hydrogenation on the formation of dimers and polymers and the role of originally present tocopherols in the protection of fats and oils against thermal degradation was verified. The degradation curves for tocopherols showed a fast destruction rate for the tocopherols present in cottonseed fats and oil (α and γ-tocopherols, with residual levels close to zero after 10 hours under thermal oxidation conditions. Nevertheless, samples with their natural tocopherols presented a slower rate of thermal degradation. The unsaturation degree was apparently more important in the protection against thermal degradation than the content of tocopherolsMuestras de aceite de algodón, aceite de algodón parcialmente hidrogenado y sus mezclas, con índices de yodo de 60 a 110, tratadas o no con óxido de aluminio, fueron sometidas a termoxidación, a 180 °C, durante 10 horas. Se retiraron muestras en los tiempos 0, 2, 5, 8 y 10 horas, para determinación de dímeros y polímeros (compuestos de degradación y de tocoferoles. Se verificó la influencia del grado de hidrogenación sobre la formación de dímeros y polímeros, y también el papel de los tocoferoles originalmente presentes en el aceite y en las grasas, en la protección contra la degradación térmica. Las curvas de degradación de los tocoferoles mostraron una destrucción bastante rápida de los tocoferoles presentes en el aceite y en las grasas de algodón (α y γ-tocoferoles, con niveles residuales próximos a cero después de 10 horas de termoxidación. Aún así, muestras con sus

  14. Fatigue and Oxidative Stress in Children Undergoing Leukemia Treatment.

    Science.gov (United States)

    Rodgers, Cheryl; Sanborn, Chelse; Taylor, Olga; Gundy, Patricia; Pasvogel, Alice; Moore, Ida M Ki; Hockenberry, Marilyn J

    2016-10-01

    Fatigue is a frequent and distressing symptom in children undergoing leukemia treatment; however, little is known about factors influencing this symptom. Antioxidants such as glutathione can decrease symptom severity in adult oncology patients, but no study has evaluated antioxidants' effects on symptoms in pediatric oncology patients. This study describes fatigue patterns and associations of fatigue with antioxidants represented by reduced glutathione (GSH) and the reduced/oxidized glutathione (GSH/GSSG) ratio among children receiving leukemia treatment. A repeated measures design assessed fatigue and antioxidants among 38 children from two large U.S. cancer centers. Fatigue was assessed among school-age children and by parent proxy among young children. Antioxidants (GSH and GSH/GSSG ratio) were assessed from cerebrospinal fluid at four phases during leukemia treatment. Young children had a steady decline of fatigue from the end of induction treatment through the continuation phase of treatment, but no significant changes were noted among the school-age children. Mean antioxidant scores varied slightly over time; however, the GSH/GSSG ratios in these children were significantly lower than the normal ratio. Mean GSH/GSSG ratios significantly correlated to fatigue scores of the school-age children during early phases of treatment. Children with low mean GSH/GSSG ratios demonstrated oxidative stress. The low ratios noted early in therapy were significantly correlated with higher fatigue scores during induction and postinduction treatment phases. This finding suggests that increased oxidative stress during the more intensive phases of therapy may explain the experience of fatigue children report. © The Author(s) 2016.

  15. Synthesis, characterization and thermal expansion studies on thorium-praseodymium mixed oxide solid solutions

    International Nuclear Information System (INIS)

    Panneerselvam, G.; Antony, M.P.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Full text: Thorium-praseodymium mixed oxide solid solutions containing 15, 25, 40 and 55 mole percent of praseodymia were synthesized by mixing the solutions of thorium nitrate in water and praseodymium oxide (Pr 6 O 11 ) in conc. HNO 3 . Subsequently, their hydroxides were co-precipitated by the addition of aqueous ammonia. Further the precipitate was dried at 50 deg C, calcined at 600 deg C for 4 hours and sintered at 1200 deg C for 6 h in air. X-ray diffraction measurements were performed for phase identification and lattice parameter derivation. Single-phase fluorite structure was observed for all the compositions. Bulk and theoretical densities of solid solutions were also determined by immersion and X-ray techniques. Thermal expansion coefficients and percentage linear thermal expansion of the solid solutions were determined using high temperature X-ray diffraction technique in the temperature range 300 to 1700 K for the first time. The room temperature lattice constants estimated for above compositions are 0.5578, 0.5565, 0.5545 and 0.5526 nm, respectively. The mean linear thermal expansion coefficients for the solid solutions are 15.48 x 10 -6 K -1 , 18.35 x 10 -6 K -1 , 22.65 x 10 -6 K -1 and 26.95 x 10 -6 K -1 , respectively. The percentage linear thermal expansions in this temperature range are 1.68, 1.89, 2.21 and 2.51 respectively. It is seen that the solid solutions are stable up to 1700 K. It is also seen that the effect and nature of the dopant are the important parameters influencing the thermal expansion of the ThO 2 . The lattice parameter of the solid solutions exhibited a decreasing trend with respect to praseodymia addition. The percentage linear thermal expansion of the solid solutions increases steadily with increasing temperature

  16. The effect of ethyl pyruvate on oxidative stress in intestine and bacterial translocation after thermal injury.

    Science.gov (United States)

    Karabeyoğlu, Melih; Unal, Bülent; Bozkurt, Betül; Dolapçi, Iştar; Bilgihan, Ayşe; Karabeyoğlu, Işil; Cengiz, Omer

    2008-01-01

    Thermal injury causes a breakdown in the intestinal mucosal barrier due to ischemia reperfusion injury, which can induce bacterial translocation (BT), sepsis, and multiple organ failure in burn patients. The aim of this study was to investigate the effect of ethyl pyruvate (EP) on intestinal oxidant damage and BT in burn injury. Thirty-two rats were randomly divided into four groups. The sham group was exposed to 21 degrees C water and injected intraperitoneal with saline (1 mL/100 g). The sham + EP group received EP (40 mg/kg) intraperitoneally 6 h after the sham procedure. The burn group was exposed to thermal injury and given intraperitoneal saline injection (1 mL/100 g). The burn + EP group received EP (40 mg/kg) intraperitoneally 6 h after thermal injury. Twenty-four hours later, tissue samples were obtained from mesenteric lymph nodes, spleen, and liver for microbiological analysis and ileum samples were harvested for biochemical analysis. Thermal injury caused severe BT in burn group. EP supplementation decreased BT in mesenteric lymph nodes and spleen in the burn + EP group compared with the burn group (P < 0.05). Also, burn caused BT in liver, but this finding was not statistically significant among all groups. Thermal injury caused a statistically significant increase in malondialdehyde and myeloperoxidase levels, and EP prevented this effects in the burn + EP group compared with the burn group (P < 0.05). Our data suggested that EP can inhibit the BT and myeloperoxidase and malondialdehyde production in intestine following thermal injury, suggesting anti-inflammatory and anti-oxidant properties of EP.

  17. Fabrication and thermal oxidation of ZnO nano fibers prepared via electro spinning technique

    International Nuclear Information System (INIS)

    Baek, Jeongha; Park, Juyun; Kim, Don; Kang, Yongcheol; Koh, Sungwi; Kang, Jisoo

    2012-01-01

    Materials on the scale of nano scale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nano fibers using the electro spinning method for potential uses of solar cells and sensors. After ZnO nano fibers were obtained, calcination temperature effects on the ZnO nano fibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nano fibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nano fibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nano fibers. These techniques have helped US deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nano fibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised

  18. Increase of thermal conductivity of uranium dioxide nuclear fuel pellets with beryllium oxide addition

    International Nuclear Information System (INIS)

    Camarano, D.M.; Mansur, F.A.; Santos, A.M.M. dos; Ferraz, W.B.

    2016-01-01

    The UO_2 fuel is one of the most used nuclear fuel in thermal reactors and has many advantages such as high melting point, chemical compatibility with cladding, etc. However, its thermal conductivity is relatively low, which leads to a premature degradation of the fuel pellets due to a high radial temperature gradient during reactor operation. An alternative to avoid this problem is to increase the thermal conductivity of the fuel pellets, by adding beryllium oxide (BeO). Pellets of UO_2 and UO_2-BeO were obtained from a homogenized mixture of powders of UO_2 and BeO, containing 2% and 3% by weight of BeO and sintering at 1750 °C for 3 h under H_2 atmosphere after uniaxial pressing at 400 MPa. The pellet densities were obtained by xylol penetration-immersion method and the thermal diffusivity, specific heat and thermal conductivity were determined according to ASTM E-1461 at room temperature (25 deg C) and 100 deg C. The thermal diffusivity measurements were carried out employing the laser flash method. The thermal conductivity obtained at 25 deg C showed an increase with the addition of 2% and 3% of BeO corresponding to 19% and 28%, respectively. As for the measurements carried out at 100 deg C, there was an increase in the thermal conductivity for the same BeO contents of 20% and 31%. These values as a percentage of increased conductivity were obtained in relation to the UO_2 pellets. (author)

  19. Thermal analysis of thermo-gravimetric measurements of spent nuclear fuel oxidation rates

    International Nuclear Information System (INIS)

    Cramer, E.R.

    1997-01-01

    A detailed thermal analysis was completed of the sample temperatures in the Thermo-Gravimetric Analysis (TGA) system used to measure irradiated N Reactor fuel oxidation rates. Sample temperatures during the oxidation process did not show the increase which was postulated as a result of the exothermic reactions. The analysis shows the axial conduction of heat in the sample holder effectively removes the added heat and only a very small, i.e., <10 C, increase in temperature is calculated. A room temperature evaporation test with water showed the sample thermocouple sensitivity to be more than adequate to account for a temperature change of approximately 5 C. Therefore, measured temperatures in the TGA are within approximately 10 C of the actual sample temperatures and no adjustments to reported data to account for the heat input from the oxidation process are necessary

  20. Thermal performance of fresh mixed-oxide fuel in a fast flux LMR [liquid metal reactor

    International Nuclear Information System (INIS)

    Ethridge, J.L.; Baker, R.B.

    1985-01-01

    A test was designed and irradiated to provide power-to-melt (heat generation rate necessary to initiate centerline fuel melting) data for fresh mixed-oxide UO 2 -PuO 2 fuel irradiated in a fast neutron flux under prototypic liquid metal reactor (LMR) conditions. The fuel pin parameters were selected to envelope allowable fabrication ranges and address mass production of LMR fuel using sintered-to-size techniques. The test included fuel pins with variations in fabrication technique, pellet density, fuel-to-cladding gap, Pu concentration, and fuel oxygen-to-metal ratios. The resulting data base has reestablished the expected power-to-melt in mixed-oxide fuels during initial reactor startup when the fuel temperatures are expected to be the highest. Calibration of heat transfer models of fuel pin performance codes with these data are providing more accurate capability for predicting steady-state thermal behavior of current and future mixed-oxide LMR fuels

  1. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — Key steps to ensure identification of relevant effluent treatment technologies for Nuclear Thermal Propulsion (NTP) testing include the following. 1. Review of...

  2. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  3. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system

    Directory of Open Access Journals (Sweden)

    Daniel I. Hădărugă

    2014-11-01

    Full Text Available Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed–uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC–MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  4. Thermal and oxidative stability of the Ocimum basilicum L. essential oil/β-cyclodextrin supramolecular system.

    Science.gov (United States)

    Hădărugă, Daniel I; Hădărugă, Nicoleta G; Costescu, Corina I; David, Ioan; Gruia, Alexandra T

    2014-01-01

    Ocimum basilicum L. essential oil and its β-cyclodextrin (β-CD) complex have been investigated with respect to their stability against the degradative action of air/oxygen and temperature. This supramolecular system was obtained by a crystallization method in order to achieve the equilibrium of complexed-uncomplexed volatile compounds in an ethanol/water solution at 50 °C. Both the raw essential oil and its β-CD complex have been subjected to thermal and oxidative degradation conditions in order to evaluate the protective capacity of β-CD. The relative concentration of the O. basilicum L. essential oil compounds, as determined by GC-MS, varies accordingly with their sensitivity to the thermal and/or oxidative degradation conditions imposed. Furthermore, the relative concentration of the volatile O. basilicum L. compounds found in the β-CD complex is quite different in comparison with the raw material. An increase of the relative concentration of linalool oxide from 0.3% to 1.1%, in addition to many sesquiterpene oxides, has been observed. β-CD complexation of the O. basilicum essential oil modifies the relative concentration of the encapsulated volatile compounds. Thus, linalool was better encapsulated in β-CD, while methylchavicol (estragole) was encapsulated in β-CD at a concentration close to that of the raw essential oil. Higher relative concentrations from the degradation of the oxygenated compounds such as linalool oxide and aromadendren oxide were determined in the raw O. basilicum L. essential oil in comparison with the corresponding β-CD complex. For the first time, the protective capability of natural β-CD for labile basil essential oil compounds has been demonstrated.

  5. Treatment of uranium turning with the controllable oxidizing process

    International Nuclear Information System (INIS)

    Shen Bingyi; Zhang Yonggang; Zhen Huikuan

    1989-02-01

    The concept, procedure and safety measures of the controllable oxidizing for uranium turning is described. The feasibility study on technological process has been made. The process provided several advantages such as: simplicity of operation, no pollution environment, safety, high efficiency and low energy consumption. The process can yield nuclear pure uranium dioxide under making no use of a great number of chemical reagent. It may supply raw material for fluoration and provide a simply method of treatment for safe store of uranium turning

  6. The effect of thermal treatment on the quality changes of Antartic krill meal during the manufacturing process: High processing temperatures decrease product quality

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, Inge; Ale, Marcel Tutor

    2015-01-01

    The quality of krill products is influenced by their manufacturing process and could be evaluated by their degradation products from lipid oxidation and non-enzymatic browning reactions. The main objectives of this study were: (i) to investigate the effect of thermal treatment on these two reacti...

  7. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.

    Science.gov (United States)

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-11-01

    Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Non-Parametric Kinetic (NPK Analysis of Thermal Oxidation of Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Azadeh Seifi

    2017-05-01

    Full Text Available In recent years, much attention has been paid to aerogel materials (especially carbon aerogels due to their potential uses in energy-related applications, such as thermal energy storage and thermal protection systems. These open cell carbon-based porous materials (carbon aerogels can strongly react with oxygen at relatively low temperatures (~ 400°C. Therefore, it is necessary to evaluate the thermal performance of carbon aerogels in view of their energy-related applications at high temperatures and under thermal oxidation conditions. The objective of this paper is to study theoretically and experimentally the oxidation reaction kinetics of carbon aerogel using the non-parametric kinetic (NPK as a powerful method. For this purpose, a non-isothermal thermogravimetric analysis, at three different heating rates, was performed on three samples each with its specific pore structure, density and specific surface area. The most significant feature of this method, in comparison with the model-free isoconversional methods, is its ability to separate the functionality of the reaction rate with the degree of conversion and temperature by the direct use of thermogravimetric data. Using this method, it was observed that the Nomen-Sempere model could provide the best fit to the data, while the temperature dependence of the rate constant was best explained by a Vogel-Fulcher relationship, where the reference temperature was the onset temperature of oxidation. Moreover, it was found from the results of this work that the assumption of the Arrhenius relation for the temperature dependence of the rate constant led to over-estimation of the apparent activation energy (up to 160 kJ/mol that was considerably different from the values (up to 3.5 kJ/mol predicted by the Vogel-Fulcher relationship in isoconversional methods

  9. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  10. Thermal waste treatment in China; Die thermische Abfallbehandlung in China

    Energy Technology Data Exchange (ETDEWEB)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa [Zhejiang Univ. (China). Dept. of Energy Engineering; Vehlow, Juergen [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Technische Chemie

    2011-08-15

    Increasing industrialisation and urbanisation as well as fast changing consumption habits in China entail a dramatic increase in waste generation. This development goes along with a severe lack in landfill sites, especially in densely populated areas. In combination with today's growing demand for aftercare free disposal the Chinese government decided to focus on thermal treatment, preferentially with energy recovery, of all types of waste as the only environmentally compatible pre-treatment option prior to final disposal. This principle is followed by the authorities despite entailing costs and recently in few places emerging public concern over this technology. The first incineration plant for municipal solid waste in China using imported technology was commissioned in 1988. Further such plants built during the following years had severe problems with the low calorific value of Chinese waste and failed often to achieve acceptable burnout. This fact and the high costs initiated at the end of the last century the development of a circulating fluidised bed incinerator at the University of Zhejiang which burns residential waste with an addition of 20 % of coal to increase its heating value. This strategy enables a well controlled combustion with burnout as well as emission figures, including those for dioxins, which easily comply with the actual Chinese air emission limits. These are to a great extent comparable with those of the EU Incineration Directive. This technology has successfully entered the market between 2000 and 2010 and will most likely, together with a similar type developed by the Tsinghua University, become the backbone of Chinese waste incineration in future due to its moderate costs and excellent performance. (orig.)

  11. Thermal plasma treatment of cell-phone waste : preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Ruj, B. [Central Mechanical Engineering Research Inst., Durgapur (India). Thermal Engineering Group; Chang, J.S.; Li, O.L. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Pietsch, G. [RWTH Aachen Univ., Aachen (Germany)

    2010-07-01

    The cell phone is an indispensable service facilitator, however, the disposal and recycling of cell phones is a major problem. While the potential life span of a mobile phone, excluding batteries, is over 10 years, most of the users upgrade their phones approximately four times during this period. Cell phone waste is significantly more hazardous than many other municipal wastes as it contains thousands of components made of toxic chemicals and metals like lead, cadmium, chromium, mercury, polyvinyl chlorides (PVC), brominated flame retardants, beryllium, antimony and phthalates. Cell phones also use many expensive rare metals. Since cell phones are made up of plastics, metals, ceramics, and trace other substances, primitive recycling or disposal of cell phone waste to landfills and incinerators creates irreversible environmental damage by polluting water and soil, and contaminating air. In order to minimize releases into the environment and threat to human health, the disposal of cell phones needs to be managed in an environmentally friendly way. This paper discussed a safer method of reducing the generation of syngas and hydrocarbons and metal recovery through the treatment of cell phone wastes by a thermal plasma. The presentation discussed the experiment, with particular reference to sample preparation; experimental set-up; and results four samples with different experimental conditions. It was concluded that the plasma treatment of cell phone waste in reduced condition generates gaseous components such as hydrogen, carbon monoxide, and hydrocarbons which are combustible. Therefore, this system is an energy recovery system that contributes to resource conservation and reduction of climate change gases. 5 refs., 2 tabs., 2 figs.

  12. Final treatment of spent batteries by thermal plasma.

    Science.gov (United States)

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries. Copyright © 2015. Published by Elsevier Ltd.

  13. Influence of thermal treatment on OSL regeneration in potassium chloride

    International Nuclear Information System (INIS)

    Majgier, Renata; Biernacka, Magdalena; Mandowski, Arkadiusz

    2016-01-01

    Optically stimulated luminescence (OSL) of pure analytical potassium chloride (KCl) prepared in two different forms (crystals and pellets) was studied. The occurrence of regeneration effect (self-renewal of the OSL signal) in the material was examined. The experiments using the variable delay OSL (VD-OSL) method were carried out. Performed measurements allowed to determine time scale of the phenomenon, as well as quantitative changes of regeneration depending on thermal treatment before and after irradiation. Significant increase of the OSL regeneration was noticeable for pellets after the application of the annealing before irradiation, while for crystals a substantial decrease of regeneration was observed. Preheating applied after irradiation caused that self-renewal of OSL signal was drastically reduced or completely suppressed depending on the form of KCl samples. - Highlights: • Optically stimulated luminescence (OSL) of potassium chloride (KCl) was studied. • The measurements were performed using the variable delay OSL method (VD-OSL). • It was found that regeneration of OSL intensity in KCl could be as high as 2000%. • Annealing caused reduction of OSL renewal for crystals and its increase for pellets. • Preheating after irradiation removed or significantly reduced the OSL regeneration.

  14. Evaluation of the properties of anodized aluminum 6061 subjected to thermal cycling treatment using electrochemical impedance spectroscopy (EIS)

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yuelong [Corrosion and Environmental Effects Laboratory (CEEL), Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States); Shih Hong [Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA 94538 (United States)], E-mail: hong.shih@lamrc.com; Daugherty, John [Lam Research Corporation, 4400 Cushing Parkway, Fremont, CA 94538 (United States); Mansfeld, Florian [Corrosion and Environmental Effects Laboratory (CEEL), Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States)], E-mail: mansfeld@usc.edu

    2009-10-15

    The corrosion resistance of anodized Al 6061 produced by two different anodizing and sealing processes was evaluated for 30 days during exposure to 3.5 wt% NaCl using EIS. Thermal cycling treatments at 120, 160 and 200 deg. C have been applied for the two types of samples. The degradation of the properties of the anodized layers has been determined by thorough analysis of the EIS data for control samples and samples that had undergone thermal cycling. Scanning electron microscopy has been used to evaluate the damage to the anodized aluminum layers due to thermal cycling. It was found that the thermal treatment produced considerable damage of both the porous layer and the barrier layer. The EIS data suggest that some cracks extended into the bare metal. The damage of the oxide layers increased with increasing thermal cycling temperature for both types of samples. Self-sealing of the porous layer and the barrier layer occurred during immersion in NaCl.

  15. First-principles calculations of orientation dependence of Si thermal oxidation based on Si emission model

    Science.gov (United States)

    Nagura, Takuya; Kawachi, Shingo; Chokawa, Kenta; Shirakawa, Hiroki; Araidai, Masaaki; Kageshima, Hiroyuki; Endoh, Tetsuo; Shiraishi, Kenji

    2018-04-01

    It is expected that the off-state leakage current of MOSFETs can be reduced by employing vertical body channel MOSFETs (V-MOSFETs). However, in fabricating these devices, the structure of the Si pillars sometimes cannot be maintained during oxidation, since Si atoms sometimes disappear from the Si/oxide interface (Si missing). Thus, in this study, we used first-principles calculations based on the density functional theory, and investigated the Si emission behavior at the various interfaces on the basis of the Si emission model including its atomistic structure and dependence on Si crystal orientation. The results show that the order in which Si atoms are more likely to be emitted during thermal oxidation is (111) > (110) > (310) > (100). Moreover, the emission of Si atoms is enhanced as the compressive strain increases. Therefore, the emission of Si atoms occurs more easily in V-MOSFETs than in planar MOSFETs. To reduce Si missing in V-MOSFETs, oxidation processes that induce less strain, such as wet or pyrogenic oxidation, are necessary.

  16. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  17. A novel advanced oxidation process——wet electrocatalytic oxidation for high concentrated organic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    DAI QiZhou; ZHOU MingHua; LEI LeCheng; ZHANG Xing Wang

    2007-01-01

    A novel advanced oxidation process-wet electrocatalytic oxidation(WEO)was studied with p-nitrophenol as model pollutant and β-PbO2 electrode as the anode.Compared with the effect of the individual wet air oxidation(WAO)and electrochemical oxidation(EO),the effect of WEO showed synergistic effect on COD removal under the conditions of temperature 160℃,C=1000mg·L-1,PN2=0.50MPa,Po2=0.9 MPa,current density=3 mA·cm-2,Na2SO4 3 g·L-1.And the synergistic factor got the best value of 0.98 within 120 min after 180 min treatment.The synergistic factor was studied after 120 min treatment at 100℃,120℃,140℃and 160℃,and the effect of 120℃was the best with the value of 1.26.Possible mechanism for the synergistic effect was discussed based on the analysis of free-radical generation and intermediates detected by HPLC and GC/MS.

  18. The effect of the thermal reduction temperature on the structure and sorption capacity of reduced graphene oxide materials

    Energy Technology Data Exchange (ETDEWEB)

    Dolbin, Alexandr V., E-mail: dolbin@ilt.kharkov.ua [B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov 61103 (Ukraine); Khlistyuck, Maria V.; Esel' son, Valentin B.; Gavrilko, Viktor G.; Vinnikov, Nikolay A.; Basnukaeva, Razet M. [B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov 61103 (Ukraine); Maluenda, Irene; Maser, Wolfgang K.; Benito, Ana M. [Instituto de Carboquímica, ICB-CSIC, Miguel Luesma Castán, 4, E-50018 Zaragoza (Spain)

    2016-01-15

    Graphical abstract: - Abstract: The influence of reduction temperatures on the structure and the sorption capacity of thermally reduced graphene (TRGO) has been investigated systematically. A set of TRGO materials were prepared by thermal treatment of parent graphene oxide (GO) at five temperatures (T = 200, 300, 500, 700, and 900 °C). Investigations of these materials by X-ray diffraction, Raman spectroscopy and X-ray photoemission spectroscopy methods have shown that both the structure and the residual oxygen functional groups on the TRGO surface can be controlled by varying the temperature of the thermal treatment. The data on the sorption and desorption of {sup 4}He, H{sub 2}, N{sub 2}, Ne and Kr gases in the temperature interval T = 2–290 K clearly demonstrate that the sorption capacity of TRGO is closely related to the structural changes induced by the treatment temperatures. It is important that the sorption capacities of TRGOs treated at 300 °C and at 900 °C significantly increase for all the gases used. The prominent increase in the sorption capacity at 300 °C is attributed to the structural disorder and liberation of the pores caused by the removal of intercalated water and labile oxygen functional groups (oFGs) favored at this temperature. At 900 °C the sorption capacity increases due to the generation of new defects on the TRGO surface, which provide additional access to the internal space between the folds and sheets of the TRGO structure. By tailoring the structural properties we emphasize the potential of TRGO as a highly efficient sorbent.

  19. Studying the processes relating to oxidation of organic substances contained in the coolant of thermal and nuclear power stations

    Science.gov (United States)

    Khodyrev, B. N.; Krichevtsov, A. L.; Sokolyuk, A. A.

    2010-07-01

    A radical-chain mechanism governing thermal-oxidation destruction of organic substances contained in the coolant of thermal and nuclear power stations is considered. Hypotheses on the chemical nature of antioxidation properties of amines are presented. Theoretical conjectures about the fundamental processes through which protective amine films are formed on the surface of metals are suggested.

  20. Comparison of different test methods to assess thermal stresses of metal oxide surge arresters under pollution conditions

    International Nuclear Information System (INIS)

    Bargigia, A.; de Nigris, M.; Pigini, A.; Sironi, A.

    1992-01-01

    The report deals with the research conducted by ENEL, the Italian Electricity Board, to assess the performance of zinc oxide surge arresters under pollution condition, with special reference to the consequent thermal stress on internal active parts which can affect the energy handling capabality of the arrester and may lead, in particular conditions, even to thermal runaway

  1. A lumped model of venting during thermal runaway in a cylindrical lithium cobalt oxide lithium-ion cell

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Rayman, Sean; White, Ralph

    2016-01-01

    This paper presents a mathematical model built for analyzing the intricate thermal behavior of a 18650 LCO (Lithium Cobalt Oxide) battery cell during thermal runaway when venting of the electrolyte and contents of the jelly roll (ejecta) is considered. The model consists of different ODEs (Ordinary...

  2. Curvature and Strength of Ni-YSZ Solid Oxide Half-Cells After Redox Treatments

    DEFF Research Database (Denmark)

    Faes, Antonin; Frandsen, Henrik Lund; Pihlatie, Mikko

    2010-01-01

    One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel-yttria-stabilized-zi......One of the main drawbacks of anode-supported solid oxide fuel cell technology is the limited capability to withstand reduction and oxidation (“RedOx”) of the Ni phase. This study compares the effect of RedOx cycles on curvature and strength of half-cells, composed of a nickel...... it is calculated analytically from the force. In this calculation the thermal stresses are estimated from the curvature of the half-cell. For each treatment, more than 30 samples are tested. About 20 ball-on-ring samples are laser cut from one original 12×12 cm2 half-cell. Curvature and porosity are measured...

  3. Gadolinium oxide coated fully depleted silicon-on-insulator transistors for thermal neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, Steven A., E-mail: steven.vitale@ll.mit.edu; Gouker, Pascale M.

    2013-09-01

    Fully depleted silicon-on-insulator transistors coated with gadolinium oxide are shown to be effective thermal neutron dosimeters. The theoretical neutron detection efficiency is calculated to be higher for Gd{sub 2}O{sub 3} than for other practical converter materials. Proof-of-concept dosimeter devices were fabricated and tested during thermal neutron irradiation. The transistor current changes linearly with neutron dose, consistent with increasing positive charge in the SOI buried oxide layer generated by ionization from high energy {sup 157}Gd(n,γ){sup 158}Gd conversion electrons. The measured neutron sensitivity is approximately 1/6 the maximum theoretical value, possibly due to electron–hole recombination or conversion electron loss in interconnect wiring above the transistors. -- Highlights: • A novel Gd{sub 2}O{sub 3} coated FDSOI MOSFET thermal neutron dosimeter is presented. • Dosimeter can detect charges generated from {sup 157}Gd(n,γ){sup 158}Gd conversion electrons. • Measured neutron sensitivity is comparable to that calculated theoretically. • Dosimeter requires zero power during operation, enabling new application areas.

  4. Thermal oxidation of InP in the presence of nitrates and sulfates of the 4-th group

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Shchukarev, A.V.; Soshnikov, V.V.; Kashkarov, V.M.

    1999-01-01

    Kinetics and thermal oxidation of indium phosphide were investigated in gas phase of 4 group metal (lead and zirconium) salts. These compound promotors were determined to accelerate oxidation. The mechanism of the effect of promoter cation and anion constituents on formation of the resultant heterostructure were discussed [ru

  5. Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Diogo S. [Universidade Federal de Pelotas (UFPel), RS (Brazil). Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos; Pazinato, Julia C.O.; Freitas, Mauricio A. de; Radtke, Claudio; Garcia, Irene T.S., E-mail: irene@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Quimica; Dorneles, Lucio S. [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Centro de Ciencias Naturais e Exatas

    2014-05-15

    Tungsten oxides show different stoichiometries, crystal lattices and morphologies. These characteristics are important mainly when they are used as photocatalysts. In this work tungsten oxide thin films were obtained by thermal evaporation on (100) silicon substrates covered with gold and heated at 350 and 600 °C, with different deposition times. The stoichiometry of the films, morphology, crystal structure and resistance to leaching were characterized through X-ray photoelectron spectroscopy, micro-Raman spectroscopy, scanning and transmission electron microscopy, X-ray diffractometry, Rutherford backscattering spectrometry and O{sup 16} (α,α')O{sup 16} resonant nuclear reaction. Films obtained at higher temperatures show well-defined spherical nanometric structure; they are composed of WO{sub 3.1} and the presence of hydrated tungsten oxide was also observed. The major crystal structure observed is the hexagonal. Thin films obtained through thermal evaporation present resistance to leaching in aqueous media and excellent performance as photocatalysts, evaluated through the degradation of the methyl orange dye. (author)

  6. Non-Thermal Plasma (NTP) session overview: Second International Symposium on Environmental Applications of Advanced Oxidation Technologies (AOTs)

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1996-01-01

    Advanced Oxidation Technologies (used in pollution control and treating hazardous wastes) has expanded from using hydroxyl radicals to treat organic compounds in water, to using reductive free radicals as well, and to application to pollutants in both gases and aqueous media. Non-Thermal Plasma (NTP) is created in a gas by an electrical discharge or energetic electron injection. Highly reactive species (O atoms, OH, N radicals, plasma electrons) react with entrained hazardous organic chemicals in the gas, converting them to CO2, H2O, etc. NTP can be used to simultaneously remove different kinds of pollutants (eg, VOCs, SOx, NOx in flue gases). This paper presents an overview of NTP technology for pollution control and hazardous waste treatment; it is intended as an introduction to the NTP session of the symposium

  7. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    International Nuclear Information System (INIS)

    Elsaadany, Mostafa; Subramanian, Gayathri; Ayan, Halim; Yildirim-Ayan, Eda

    2015-01-01

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N 2 dissociated into NO under typical DBD voltage–current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases. (paper)

  8. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  9. Thermal treatment of luteolin-7-O-β-glucoside improves its immunomodulatory and antioxidant potencies.

    Science.gov (United States)

    Maatouk, Mouna; Mustapha, Nadia; Mokdad-Bzeouich, Imen; Chaaban, Hind; Abed, Besma; Iaonnou, Irina; Ghedira, Kamel; Ghoul, Mohamed; Ghedira, Leila Chekir

    2017-11-01

    Phytochemicals extracted from flowers, roots and bark, leaves, and other plant sources have been used extensively throughout human history with varying levels of efficacy in prevention and treatment of disease. Recently, advanced methods for characterization and clinical use of these materials have allowed modern understanding of their properties to be used as immunomodulatory agents that act by enhancement of endogenous cytoprotective mechanisms, avoiding interference with normal physiologic signaling and highly effective medical treatment with minimal adverse side effects. Simple methods have been identified for improving their biological effects, such as thermal conditioning by heating or freezing-prominent example being heat treatment of lycopene and tetrahydrocannabinol. The present investigation shows improvement of the ability of heat to augment splenocyte proliferation, natural killer (NK) cell activities, and antioxidant capacity of the flavonoid luteolin-7-O-β-glucoside (L7G) in comparison with the native (non heat-treated) molecule, while further demonstrating that both the native and the heat-treated variants exhibit comparable antioxidant properties, as evidenced by their effects in macrophages by inhibition of nitric oxide production and lysosomal enzyme activity in experiments that strengthen lysosomal membrane integrity. Outcomes of these studies suggest that heat-treated L7G shows promise for use in immunotherapy, including anti-cancer regimens, as shown by its improvement of NK cell cytotoxicity.

  10. Application of Fenton oxidation to cosmetic wastewaters treatment.

    Science.gov (United States)

    Bautista, P; Mohedano, A F; Gilarranz, M A; Casas, J A; Rodriguez, J J

    2007-05-08

    The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.

  11. Thermal Oxidation of Tail Gases from the Production of Oil-furnace Carbon Black

    Directory of Open Access Journals (Sweden)

    Bosak, Z.

    2009-01-01

    Full Text Available This paper describes the production technology of oil-furnace carbon black, as well as the selected solution for preventing the emissions of this process from contaminating the environment.The products of industrial oil-furnace carbon black production are different grades of carbon black and process tail gases. The qualitative composition of these tail gases during the production of oil-furnace carbon black are: carbon(IV oxide, carbon(II oxide, hydrogen, methane, hydrogen sulfide, nitrogen, oxygen, and water vapor.The quantitative composition and lower caloric value of process tail gases change depending on the type of feedstock used in the production, as well as the type of process. The lower caloric value of process tail gases is relatively small with values ranging between 1500 and 2300 kJ m–3.In the conventional production of oil-furnace carbon black, process tail gases purified from carbon black dust are freely released into the atmosphere untreated. In this manner, the process tail gases pollute the air in the town of Kutina, because their quantitative values are much higher than the prescribed emissions limits for hydrogen sulfide and carbon(II oxide. A logical solution for the prevention of such air pollution is combustion of the process tail gases, i. e. their thermal oxidation. For this purpose, a specially designed flare system has been developed. Consuming minimum amounts of natural gas needed for oxidation, the flare system is designed to combust low caloric process tail gases with 99 % efficiency. Thus, the toxic and flammable components of the tail gases (hydrogen sulfide, hydrogen, carbon(II oxide, methane and other trace hydrocarbons would be transformed into environmentally acceptable components (sulfur(IV oxide, water, carbon(IV oxide and nitrogen(IV oxide, which are in compliance with the emissions limit values prescribed by law.Proper operation of this flare system in the production of oil-furnace carbon black would solve

  12. Treatment of plutonium process residues by molten salt oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  13. Treatment of plutonium process residues by molten salt oxidation

    International Nuclear Information System (INIS)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.

    1999-01-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible 238 Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na 2 SO 4 , Na 3 PO 4 and NaAsO 2 or Na 3 AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the 238 Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox

  14. Thermally stimulated currents between 300 K and 800 K in beryllium oxide

    International Nuclear Information System (INIS)

    Martinelli, J.R.

    1979-01-01

    Thermally Stimulated Polarization/Depolarization Currents (ISPC/ISDC) have been measured in ceramic Beryllium Oxide in the temperature range RT-800 K. Specimens dc biased above RT show a Thermoelectret behaviour at RT. The thermal destruction of the thermoelectret state gives rise to a TSDC spectrum with at least three current maxima. Two contributions to the induced polarization are found: one volumetric uniform and another due to space charge formation. These polarizations are related to the impurity content (mainly Si and Al) as well as to the microstructure (average grain size, grain boundary distribution, pore distribution, glassy phases) of the ceramic specimens. Some mechanisms, based on Al 3+ - compensation vacancies and charge carriers transport via grain boundaries (through pore glassy phases) are proposed to explain the observed TSDC Spectra and the electrical conductivity results. (Author) [pt

  15. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    Directory of Open Access Journals (Sweden)

    Samir Mahmmod Ahmad

    Full Text Available Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50–150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3. Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells. Keywords: Crystalline Si solar cells, Phosphoric acid spin-on doping, Screen printing, Thermal oxide passivation

  16. Characteristics of phase-change materials containing oxide nano-additives for thermal storage.

    Science.gov (United States)

    Teng, Tun-Ping; Yu, Chao-Chieh

    2012-11-06

    In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

  17. Efficient reduction of graphene oxide film by low temperature heat treatment and its effect on electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xuebing; Chen, Zheng [Jingdezhen Ceramic Institute, Jingdezhen (China). Key Lab. of Inorganic Membrane; Yu, Yun [Shanghai Institute of Ceramics, Shanghai (China). Key Lab. of Inorganic Coating Materials; Zhang, Xiaozhen; Wang, Yongqing; Zhou, Jianer [Jingdezhen Ceramic Institute, Jingdezhen (China). Dept. of Materials Engineering

    2018-03-01

    Graphene-based conductive films have already attracted great attention due to their unique and outstanding physical properties. In this work, in order to develop a novel, effective method to produce these films with good electrical conductivity, a simple and green method is reported to rapidly and effectively reduce graphene oxide film using a low temperature heat treatment. The reduction of graphene oxide film is verified by XRD, FT-IR and Raman spectroscopy. Compared with graphene oxide film, the obtained reduced graphene oxide film has better electrical conductivity and its sheet resistance decreases from 25.3 kΩ x sq{sup -1} to 3.3 kΩ x sq{sup -1} after the heat treatment from 160 to 230 C. The mechanism of thermal reduction of the graphene oxide film mainly results from the removal of the oxygen-containing functional groups and the structural changes. All these results indicate that the low temperature heat treatment is a suitable and effective method for the reduction of graphene oxide film.

  18. Uniform photoresponse in thermally oxidized Ni and MoS2 heterostructures

    International Nuclear Information System (INIS)

    Luo, Wei; Peng, Gang; Wang, Fei; Miao, Feng; Zhang, Xue-Ao; Qin, Shiqiao

    2017-01-01

    Non-uniform photocurrent is usually generated at the overlapped region of the heterostructures, and its potential applications may be hindered by the spatial uniformity issue of the device photoresponse. Here, nearly a uniform photoresponse at the overlapped region of the thermally oxidized Ni and molybdenum disulphide (MoS 2 ) heterostructures is obtained. Further characterizations reveal that several nanometers Ni is rightly under the NiO x layer formed at the surface of the film in the oxidation process. The heterostructures based on layered MoS 2 /NiO x /Ni with highly conductive bottom Ni show a high uniform photoresponse with an external quantum efficiency (EQE) of 1.4% at 532 nm. Moreover, successful integration of multiple devices suggests a great priority for such a structure for highly integrated uniform photodetectors. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Effect of grain alignment on interface trap density of thermally oxidized aligned-crystalline silicon films

    Science.gov (United States)

    Choi, Woong; Lee, Jung-Kun; Findikoglu, Alp T.

    2006-12-01

    The authors report studies of the effect of grain alignment on interface trap density of thermally oxidized aligned-crystalline silicon (ACSi) films by means of capacitance-voltage (C-V) measurements. C-V curves were measured on metal-oxide-semiconductor (MOS) capacitors fabricated on ⟨001⟩-oriented ACSi films on polycrystalline substrates. From high-frequency C-V curves, the authors calculated a decrease of interface trap density from 2×1012to1×1011cm-2eV-1 as the grain mosaic spread in ACSi films improved from 13.7° to 6.5°. These results demonstrate the effectiveness of grain alignment as a process technique to achieve significantly enhanced performance in small-grained (⩽1μm ) polycrystalline Si MOS-type devices.

  20. Uniform photoresponse in thermally oxidized Ni and MoS{sub 2} heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei [College of Science, National University of Defense Technology, Changsha (China); National Laboratory of Solid State Microstructures, School of Physics, Nanjing University (China); Peng, Gang; Wang, Fei [College of Science, National University of Defense Technology, Changsha (China); Miao, Feng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University (China); Zhang, Xue-Ao; Qin, Shiqiao [College of Science, National University of Defense Technology, Changsha (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha (China)

    2017-09-15

    Non-uniform photocurrent is usually generated at the overlapped region of the heterostructures, and its potential applications may be hindered by the spatial uniformity issue of the device photoresponse. Here, nearly a uniform photoresponse at the overlapped region of the thermally oxidized Ni and molybdenum disulphide (MoS{sub 2}) heterostructures is obtained. Further characterizations reveal that several nanometers Ni is rightly under the NiO{sub x} layer formed at the surface of the film in the oxidation process. The heterostructures based on layered MoS{sub 2}/NiO{sub x}/Ni with highly conductive bottom Ni show a high uniform photoresponse with an external quantum efficiency (EQE) of 1.4% at 532 nm. Moreover, successful integration of multiple devices suggests a great priority for such a structure for highly integrated uniform photodetectors. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    Science.gov (United States)

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  2. Effluent treatment for nuclear thermal propulsion ground testing

    Science.gov (United States)

    Shipers, Larry R.

    1993-01-01

    The objectives are to define treatment functions, review concept options, discuss PIPET effluent treatment system (ETS), and outline future activities. The topics covered include the following: reactor exhaust; effluent treatment functions; effluent treatment categories; effluent treatment options; concept evaluation; PIPETS ETS envelope; PIPET effluent treatment concept; and future activities.

  3. Thermally oxidized aluminum as catalyst-support layer for vertically aligned single-walled carbon nanotube growth using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Mohd Asyadi, E-mail: asyadi@jaist.ac.jp [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Fujiwara, Akihiko [Research and Utilization Division, Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Sayo, Hyogo 679-5198 (Japan); Shimoda, Tatsuya [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2011-11-01

    Characteristics and role of Al oxide (Al-O) films used as catalyst-support layer for vertical growth of single-walled carbon nanotubes (SWCNTs) were studied. EB-deposited Al films (20 nm) were thermally oxidized at 400 deg. C (10 min, static air) to produce the most appropriate surface structure of Al-O. Al-O catalyst-support layers were characterized using various analytical measurements, i.e., atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and spectroscopy ellipsometry (SE). The thermally oxidized Al-O has a highly roughened surface, and also has the most suitable surface chemical states compared to other type of Al-O support layers. We suggest that the surface of thermally oxidized Al-O characterized in this work enhanced Co catalyst activity to promote the vertically aligned SWCNT growth.

  4. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  5. Implementation of advanced electrochemical oxidation for radiochemical concentrate treatment

    International Nuclear Information System (INIS)

    Velin, Anna; Bengtsson, Bernt; Lundblad, Magnus

    2012-09-01

    Water treatments in Nuclear Power Plants include ion exchange, evaporation and mechanical filtration techniques. These technologies are used to control the chemical release and to treat coolant in light water reactor types from chemicals and most importantly, from radioactive nuclides. Most of the conventional methods are efficient, but at the same time producing aqueous concentrates with high organic load. Before final storage, the level of organic content of those concentrates must be reduced. Advanced electrochemical oxidation with Boron Doped Diamond (BDD) electrodes are being investigated in laboratory- and pilot scale for treatment of dilute and concentrated aqueous waste streams at Vattenfall-Ringhals NPP. BDD anodes and cathodes are having high over potential against water electrolysis, and therefore well suitable for oxidation of organics. Dilute wastewater, such as laundry water, which has an initial COD level of around 500 mg/l, was reduced to a level of < 20 mg/l in the laboratory. Evaporator concentrates, with a TS content of 3% and pH of 7-8, were treated in pilot scale of 800 liters, working in batch operation mode, at temperatures between 25-50 deg. C. Initial COD levels between 2500 and 8000 mg/l in concentrate was reduced to < 100 mg/l at the first tests and later to < 300 mg/l. The advanced electrochemical oxidation is proven to be a promising technique for radioactive concentrate treatment. Long-term operation is still ongoing to evaluate the performance of the electrodes, cell components and overall process efficiency. (authors)

  6. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    KAUST Repository

    Naganuma, Tamaki

    2014-01-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce 3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce 3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce 3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. © The Royal Society of Chemistry 2014.

  7. Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond.

    Science.gov (United States)

    Molavi, Hossein; Shojaei, Akbar; Pourghaderi, Alireza

    2018-03-27

    In the present study, capability of nanodiamond (ND) for the adsorption of anionic (methyl orange, MO) and cationic (methylene blue, MB) dyes from aqueous solution was investigated. Employing fourier transform infrared (FTIR) spectroscopy, Boehm titration method and zeta potential, it was found that the simple thermal oxidation of ND at 425 °C, increased the content of carboxylic acid of ND and accordingly the zeta potential of ND decreased considerably. Therefore, a series of oxidized NDs (OND) at various oxidation times and as-received untreated ND (UND) was used as adsorbents of MO and MB. The adsorption experiments exhibited that UND had large adsorption capacity, very fast adsorption kinetics and excellent selectivity for MO over MB. These results suggested that the adsorption tendency of UND toward anionic MO dye followed not only by electrostatic interactions but also via the chemical interaction caused by the strong hydrogen bond between the sulfonate groups of MO and the oxygen containing groups on the surface of UND. In contrast, ONDs exhibited higher adsorption capacity for cationic MB whose tendency toward MB increased by increasing the thermal oxidation time due to the promotion of the negative charge on the surface of OND leading to the higher electrostatic attraction. The adsorption rate of MB on ONDs was also very high. Kinetics data was well fitted with the pseudo- second-order model for most of the adsorbents. The adsorption selectivity analysis revealed that ONDs displayed more adsorption capacity for MB compared with MO which was also attributed to high electrostatic interactions of cationic dye with negative charges of ONDs. Finally, the release behavior of NDs was also demonstrated after soaking in ethanol and acetone. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The effect of thermal oxidation on the luminescence properties of nanostructured silicon.

    Science.gov (United States)

    Liu, Lijia; Sham, Tsun-Kong

    2012-08-06

    Herein is reported a detailed study of the luminescence properties of nanostructured Si using X-ray excited optical luminescence (XEOL) in combination with X-ray absorption near-edge structures (XANES). P-type Si nanowires synthesized via electroless chemical etching from Si wafers of different doping levels and porous Si synthesized using electrochemical method are examined under X-ray excitation across the Si K-, L(3,2) -, and O K-edges. It is found that while as-prepared Si nanostructures are weak light emitters, intense visible luminescence is observed from thermally oxidized Si nanowires and porous Si. The luminescence mechanism of Si upon oxidation is investigated by oxidizing nanostructured Si at different temperatures. Interestingly, the two luminescence bands observed show different response with the variation of absorption coefficient upon Si and O core-electron excitation in elemental silicon and silicon oxide. A correlation between luminescence properties and electronic structures is thus established. The implications of the finding are discussed in terms of the behavior of the oxygen deficient center (OCD) and non-bridging oxygen hole center (NBOHC). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The kinetics and properties of thermal oxidation of silicon in TCA-O/sub 2/

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, E.

    1993-01-01

    The oxidation of silicon using dry O/sub 2/ is now well established as a key process for the fabrication of electronic devices in the semiconductor industry. However, this process is complicated by its sensitivity to impurities which reduce device yields. HCl can be added to O/sub 2/ to remove these impurities but due to its highly corrosive nature a safer and cleaner alternative such as trichloroethane (TCA) is desirable. In this paper, the thermal oxidation of silicon using a mixture of TCA-O/sub 2/ has been investigated in a large scale industrial system. The growth kinetics and the properties of these films have been studies and compared to oxides produced from dry 2. The addition of TCA generates HCl in situ, enhances the oxidation rate by approximately 54% nd improves the electrical properties. It was found that a 1 mol.% mixture gives the optimum process. An analysis of the data suggests that a liner parabolic growth model is applicable and provides a valuable insight into the physical phenomena governing this important process. (author)

  10. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Rajini P., E-mail: raji.anna@gmail.com; Preethi, L.K.; Gupta, Bhavana; Mathews, Tom, E-mail: tom@igcar.gov.in; Dash, S.; Tyagi, A.K.

    2015-10-15

    Highlights: • Synthesis of Pt–RGO nanohybrids of very high electrochemically active surface area. • Electrocatalytic activity-cum-stability: ∼10 times that of commercial Pt-C catalyst. • TEM confirms narrow size distribution and excellent dispersion of Pt nanoparticles. • SAED and XRD indicate (1 1 1) orientation of Pt nanoparticles. • Methanol oxidation EIS reveal decrease in charge transfer resistance with potential - Abstract: High quality thermally exfoliated reduced graphene oxide (RGO) nanosheets decorated with platinum nanocrystals have been synthesized using a simple environmentally benign process. The electrocatalytic behaviour of the Pt–RGO nanohybrid for methanol oxidation was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. High resolution transmission electron microscopy shows uniform dispersion of Pt nanoparticles of ∼2–4 nm size. X-ray diffraction and selected area diffraction studies reveal (1 1 1) orientation of the platinum nanoparticles. The cyclic voltammetry and chronoamperometry results indicate higher catalytic activity and stability for Pt–RGO compared to commercial Pt-C. The electrochemical active surface area of Pt–RGO (52.16 m{sup 2}/g) is found to be 1.5 times that of commercial Pt-C. Impedance spectroscopy shows different impedance behaviour at different potential regions, indicating change in methanol oxidation reaction mechanism with potential. The reversal of impedance pattern to the second quadrant, at potentials higher than ∼0.40 V, indicates change in the rate determining reaction.

  11. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    International Nuclear Information System (INIS)

    Kim, Seong Woo; Choi, Hyun Muk

    2016-01-01

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  12. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    Science.gov (United States)

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An experimental correlation approach for predicting thermal conductivity of water-EG based nanofluids of zinc oxide

    Science.gov (United States)

    Ahmadi Nadooshan, Afshin

    2017-03-01

    In this study, the effects of temperature (20 °Cthermal conductivity of zinc oxide/ethylene glycol-water nanofluid have been presented. Nanofluid samples were prepared by a two-step method and thermal conductivity measurements were performed by a KD2 pro instrument. Results showed that the thermal conductivity increases uniformly with increasing solid volume fraction and temperature. The results also revealed that the thermal conductivity of nanofluids significantly increases with increasing solid volume fraction at higher temperatures. Moreover, it can be seen that for more concentrated samples, the effect of temperature was more tangible. Experimental thermal conductivity enhancement of the nanofluid in comparison with the Maxwell model indicated that Maxwell model was unable to predict the thermal conductivity of the present nanofluid. Therefore, a new correlation was presented for predicting the thermal conductivity of ZnO/EG-water nanofluid.

  14. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    Science.gov (United States)

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  15. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    Science.gov (United States)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  16. A treatment of thermal efficiency improvement in the Brayton cycle

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji; Nakanishi, Shigeyasu; Inoue, Kiyoshi; Ishigai, Seikan.

    1982-01-01

    So far, as the working fluid for power-generating plants, mainly water and air (combustion gas) have been used. In this study, in regeneration and isothermal compression processes being considered as the means for the efficiency improvement in Brayton cycle, the investigation of equivalent graphical presentation method with T-S diagrams, the introduction of the new characteristic number expressing the possibility of thermal efficiency improvement by regeneration, and the investigation of the effect of the difference of working fluid on thermal efficiency were carried out. Next, as the cycle approximately realizing isothermal compression process with condensation process, the super-critical pressure cycle with liquid phase compression was rated, and four working fluids, NH 3 , SO 2 , CO 2 and H 2 O were examined as perfect gas and real gas. The advantage of CO 2 regeneration for the thermal efficiency improvement was clarified by using the dimensionless characteristic number. The graphical presentation of effective work, the thermal efficiency improvement by regeneration, the thermal efficiency improvement by making compression process isothermal, the effect on thermal efficiency due to various factors and working fluids, the characteristic number by regeneration, and the application to real working fluids are reported. (Kako, I.)

  17. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    Science.gov (United States)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  18. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.

    Science.gov (United States)

    Schwamb, Timo; Burg, Brian R; Schirmer, Niklas C; Poulikakos, Dimos

    2009-10-07

    This paper introduces an electrical four-point measurement method enabling thermal and electrical conductivity measurements of nanoscale materials. The method was applied to determine the thermal and electrical conductivity of reduced graphene oxide flakes. The dielectrophoretically deposited samples exhibited thermal conductivities in the range of 0.14-2.87 W m(-1) K(-1) and electrical conductivities in the range of 6.2 x 10(2)-6.2 x 10(3) Omega(-1) m(-1). The measured properties of each flake were found to be dependent on the duration of the thermal reduction and are in this sense controllable.

  19. Thermal Oxidation of a Carbon Condensate Formed in High-Frequency Carbon and Carbon-Nickel Plasma Flow

    Science.gov (United States)

    Churilov, G. N.; Nikolaev, N. S.; Cherepakhin, A. V.; Dudnik, A. I.; Tomashevich, E. V.; Trenikhin, M. V.; Bulina, N. G.

    2018-02-01

    We have reported on the comparative characteristics of thermal oxidation of a carbon condensate prepared by high-frequency arc evaporation of graphite rods and a rod with a hollow center filled with nickel powder. In the latter case, along with different forms of nanodisperse carbon, nickel particles with nickel core-carbon shell structures are formed. It has been found that the processes of the thermal oxidation of carbon condensates with and without nickel differ significantly. Nickel particles with the carbon shell exhibit catalytic properties with respect to the oxidation of nanosized carbon structures. A noticeable difference between the temperatures of the end of the oxidation process for various carbon nanoparticles and nickel particles with the carbon shell has been established. The study is aimed at investigations of the effect of nickel nanoparticles on the dynamics of carbon condensate oxidation upon heating in the argon-oxygen flow.

  20. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  1. US - European Workshop on Thermal Waste Treatment for Naval Vessels

    Science.gov (United States)

    1997-01-01

    France Overview of Technologies Using Sub- or Supercritical Water Oxidation TECHNOLOGIES USING SUB OR SUPERCRITICAL WATER OXYDATION ZIMPRO SUBCRITICAL T...temperature et de la masse volumique. OXYDATION PROCESS STUDY OF MOLECULE TYPE REACTION DIAGRkM The oxidation reaction diagram in liquid phase of an organic...compound is hereunder specified. (02) Organic compound peroxide • (High P. and T) alcohol ceton acetic acid CO 2N 2 H 20 9 fig.-4 DEGRADATION DE L’ORTHO

  2. Global Kinetic Constants for Thermal Oxidative Degradation of a Cellulosic Paper

    Science.gov (United States)

    Kashiwagi, Takashi; Nambu, Hidesaburo

    1992-01-01

    Values of global kinetic constants for pyrolysis, thermal oxidative degradation, and char oxidation of a cellulosic paper were determined by a derivative thermal gravimetric study. The study was conducted at heating rates of 0.5, 1, 1.5, 3, and 5 C/min in ambient atmospheres of nitrogen, 0.28, 1.08, 5.2 percent oxygen concentrations, and air. Sample weight loss rate, concentrations of CO, CO2, and H2O in the degradation products, and oxygen consumption were continuously measured during the experiment. Values of activation energy, preexponential factor, orders of reaction, and yields of CO, CO2, H2O, total hydrocarbons, and char for each degradation reaction were derived from the results. Heat of reaction for each reaction was determined by differential scanning calorimetry. A comparison of the calculated CO, CO2, H2O, total hydrocarbons, sample weight loss rate, and oxygen consumption was made with the measured results using the derived kinetic constants, and the accuracy of the values of kinetic constants was discussed.

  3. Thermal treatment of solid residues from WtE units: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Daniel, E-mail: daniel.lindberg@abo.fi; Molin, Camilla, E-mail: camilla.molin@abo.fi; Hupa, Mikko, E-mail: mikko.hupa@abo.fi

    2015-03-15

    Highlights: • We review the thermal treatment methods for ashes and residues from WtE plants. • We review the results from extensive laboratory work on vitrification, melting and vaporization of ash. • We analyze the results from the extensive patent literature on thermal treatment. • We review industrial concepts for thermal treatment of ash. - Abstract: Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field.

  4. Thermal treatment of solid residues from WtE units: A review

    International Nuclear Information System (INIS)

    Lindberg, Daniel; Molin, Camilla; Hupa, Mikko

    2015-01-01

    Highlights: • We review the thermal treatment methods for ashes and residues from WtE plants. • We review the results from extensive laboratory work on vitrification, melting and vaporization of ash. • We analyze the results from the extensive patent literature on thermal treatment. • We review industrial concepts for thermal treatment of ash. - Abstract: Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field

  5. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    Science.gov (United States)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  6. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  7. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  8. Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees

    Science.gov (United States)

    Xue, Xiaodong; Yin, Qing; Jia, Hongbing; Zhang, Xuming; Wen, Yanwei; Ji, Qingmin; Xu, Zhaodong

    2017-11-01

    Graphene oxide (GO) with various oxidation degrees were prepared through a modified Hummer's method by varying the dosage of oxidizing agent. Styrene-butadiene rubber (SBR)/carboxylated acrylonitrile butadiene rubber (XNBR)/GO nanocomposites were fabricated by aqueous-phase mixing of GO colloidal dispersion with SBR latex and a small loading of XNBR latex, followed by co-coagulation. Effects of GO oxidation degree on the morphology, structure, mechanical and thermal properties of nanocomposites were thoroughly investigated. The results showed that the mechanical strength of nanocomposites were enhanced with the increase of oxidation degree of GO. Especially, when the weight ratio of KMnO4 to graphite was 15/5, the tensile strength, tear strength and thermal conductivity of SBR/XNBR/GO filled with 3 phr (parts per hundred rubber) GO increased by 255.3%, 141.5% and 22.8%, respectively, compared to those of neat SBR/XNBR blend. In addition, the thermal stability and the solvent resistance of the nanocomposites were also improved significantly. This work suggested that GO with higher oxidation degree could effectively improve the properties of SBR/XNBR blend.

  9. Enhanced thermal properties with graphene oxide in the urea-formaldehyde microcapsules containing paraffin PCMs.

    Science.gov (United States)

    Qiao, Zhen; Mao, Jian

    2017-02-01

    In this study, compact urea-formaldehyde microcapsules containing paraffin (UFP) phase change materials (PCMs) were prepared via in situ polymerisation. The thermal conductivity of the PCMs was enhanced without influencing their enthalpy by adding graphene oxide (GO). Two modification methods were investigated: One in which GO is added to the inside of microcapsules, defined as "paraffin/GO@UF composite"; and another in which GO is coated onto the surface of shell, defined as "paraffin@UF/GO composite". The GO sheets were visible in scanning electron microscope (SEM) images of paraffin@UF/GO composite. The thermal conductivity was 0.2236 ± 0.0003 W/(m·K) for UFP particles, was 0.2517 ± 0.0003 W/(m·K) for the paraffin/GO@UF composite (10 wt%), and was 1.0670 ± 0.0020 W/(m·K) for paraffin@UF/GO composite (10 wt%), respectively. The encapsulation efficiency of all samples exceeded 80% (w/w) and all samples exhibited favourable thermal stability and reliability. The IR emissivity of paraffin@UF/GO was lower than that of paraffin/GO@UF when the same GO amount was added to the composite.

  10. Thermal stability of pulsed laser deposited iridium oxide thin films at low oxygen atmosphere

    Science.gov (United States)

    Gong, Yansheng; Wang, Chuanbin; Shen, Qiang; Zhang, Lianmeng

    2013-11-01

    Iridium oxide (IrO2) thin films have been regarded as a leading candidate for bottom electrode and diffusion barrier of ferroelectric capacitors, some process related issues need to be considered before integrating ferroelectric capacitors into memory cells. This paper presents the thermal stability of pulsed laser deposited IrO2 thin films at low oxygen atmosphere. Emphasis was given on the effect of post-deposition annealing temperature at different oxygen pressure (PO2) on the crystal structure, surface morphology, electrical resistivity, carrier concentration and mobility of IrO2 thin films. The results showed that the thermal stability of IrO2 thin films was strongly dependent on the oxygen pressure and annealing temperature. IrO2 thin films can stably exist below 923 K at PO2 = 1 Pa, which had a higher stability than the previous reported results. The surface morphology of IrO2 thin films depended on PO2 and annealing temperature, showing a flat and uniform surface for the annealed films. Electrical properties were found to be sensitive to both the annealing temperature and oxygen pressure. The room-temperature resistivity of IrO2 thin films with a value of 49-58 μΩ cm increased with annealing temperature at PO2 = 1 Pa. The thermal stability of IrO2 thin films as a function of oxygen pressure and annealing temperature was almost consistent with thermodynamic calculation.

  11. Magnetic properties of thermally reduced graphene oxide decorated with PtNi nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huízar-Félix, A.M. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); BC Materials, Basque Centre for Materials, Applications and Nanostructures, 48160 Derio (Spain); Cruz-Silva, R. [Research Center for Exotic NanoCarbon, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Barandiarán, J.M. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); BC Materials, Basque Centre for Materials, Applications and Nanostructures, 48160 Derio (Spain); García-Gutiérrez, D.I. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Orue, I. [SGIKER Medidas Magnéticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); and others

    2016-09-05

    Nanocomposites of reduced graphene oxide (RGO) with PtNi nanoparticles were obtained by in situ thermal reduction of a physical mixture of GO and metallic precursors. RGO and PtNiRGO nanocomposites were studied by differential thermal analysis and thermogravimetry, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), as well as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The method presented here is a one-step thermal reduction procedure that allows the deposition of bimetallic PtNi nanoparticles with tetragonal crystalline structure and particle size ranging from 3 nm to 30 nm on RGO. The magnetic properties of the RGO and PtNiRGO nanocomposites were measured by vibrating sample magnetometry, which revealed that the RGO exhibited diamagnetism at room temperature and paramagnetism at temperatures below 10 K. PtNiRGO nanocomposites show hysteresis and ferromagnetic ordering at room temperature with a Curie temperature of 658 K. In addition, its magnetic properties at low temperature were strongly influenced by the paramagnetic contribution of RGO and the morphology of the bimetallic nanoparticles. - Highlights: • Simultaneous synthesis method for growth of PtNi nanoparticles on RGO. • Microstructural features of PtNiRGO nanocomposite were studied with extensive characterization. • Diamagnetic behavior of RGO and ferromagnetic ordering for PtNiRGO nanocomposite.

  12. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide

    Science.gov (United States)

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m-1 K-1, which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  13. Dispersion of Co/CNTs via strong electrostatic adsorption method: Thermal treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, Omid, E-mail: omid.akbarzadeh63@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my; Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    The effect of different thermal treatment temperature on the structure of multi-walled carbon nanotubes (MWCNTs) and Co particle dispersion on CNTs support is studied using Strong electrostatic adsorption (SEA) method. The samples tested by N{sub 2}-adsorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). N{sub 2}-adsorption results showed BET surface area increased using thermal treatment and TEM images showed that increasing the thermal treatment temperature lead to flaky CNTs and defects introduced on the outer surface and Co particle dispersion increased.

  14. Advanced oxidation-based treatment of furniture industry wastewater.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Grybauskas, Arturas; Jankūnaitė, Dalia; Račys, Viktoras; Martuzevičius, Dainius

    2017-07-16

    The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO 2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.

  15. Thermal Epiphysiodesis Made with RFA. A New Treatment for LLD?

    DEFF Research Database (Denmark)

    Shiguetomi Medina, Juan Manuel; Rahbek, Ole; Stødkilde-Jørgensen, Hans

    equalization. Current techniques involve opening cortical windows, usage of staples or tension devices, and destruction with curettes or drills. Complications such as breaching of the cortex, damage to the metaphysis, and vascular or nerve injury have potentially serious consequences. Therefore, RFA may...... be a method which neutralizes these complications. RFA involves the application of energy in the radio wave frequency resulting in local thermal coagulative necrosis. It has been shown to be a reliable technique for creating thermally induced coagulation necrosis. The experience with this technique has been...

  16. Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid

    Energy Technology Data Exchange (ETDEWEB)

    Arfaoui, M.A. [CTT Group, Saint-Hyacinthe (Canada); Department of Mechanical Engineering, Ecole de technologie supérieure, Montréal (Canada); Dolez, P.I., E-mail: pdolez@gcttg.com [CTT Group, Saint-Hyacinthe (Canada); Dubé, M.; David, É. [Department of Mechanical Engineering, Ecole de technologie supérieure, Montréal (Canada)

    2017-03-01

    Highlights: • A hydrophobic treatment based on zinc oxide nanoparticles and stearic acid was developed for recycled jute fibres. • The water contact angle was increased from 33° for the scoured fibre to 148° after the ZnO nanorod/stearic acid hydrothermal treatment. • The fibre thermal degradation temperature remained the same throughout the treatment at around 315 °C. • A reduction in the fibre breaking force of 32% was observed between the as-received and the ZnO nanorod/stearic acid treated fibres. - Abstract: This work aims at developing a hydrophobic treatment for jute fibres based on the grafting and growth of zinc oxide (ZnO) nanorods on the fibre surface. The first step consists in removing impurities from the fibre surface with a scouring treatment. In the second step, the jute fibres are coated with a layer of ZnO nanoseeds. A hydrothermal process is carried out as a third step to ensure a uniform growth of ZnO nanorods on the surface of the jute fibres. Finally, a hydrophobic treatment is performed on the ZnO nanorod-covered jute fibres using stearic acid (SA), i.e., a typical fatty acid. A large improvement in the fibre hydrophobicity was obtained without any negative effect on thermal stability and limited reduction in strength. Complementary measurements by scanning electron microscopy and X-ray diffraction were also performed and revealed a hexagonal system for the ZnO nanorods.

  17. Thermal and magnetic properties of iron oxide colloids: influence of surfactants

    International Nuclear Information System (INIS)

    I P Soares, Paula; Lochte, Frederik; Echeverria, Coro; M M Ferreira, Isabel; P M R Borges, João; C J Pereira, Laura; T Coutinho, Joana; M M Novo, Carlos

    2015-01-01

    Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41–45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles’ average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe_3O_4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe_3O_4 samples do not reduce cell viability. However, oleic acid Fe_3O_4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature. (paper)

  18. Ultrathin SiO{sub 2} layer formed by the nitric acid oxidation of Si (NAOS) method to improve the thermal-SiO{sub 2}/Si interface for crystalline Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Taketoshi; Nakajima, Hiroki; Irishika, Daichi; Nonaka, Takaaki; Imamura, Kentaro; Kobayashi, Hikaru, E-mail: h.kobayashi@sanken.osaka-u.ac.jp

    2017-02-15

    Highlights: • The density of interface states at the SiO{sub 2}/Si interface is decreased by NAOS. • The minority carrier lifetime is increased by the NAOS treatment. • Great interfacial properties of the NAOS layer are kept after thermal oxidation. - Abstract: A combination of the nitric acid oxidation of Si (NAOS) method and post-thermal oxidation is found to efficiently passivate the SiO{sub 2}/n-Si(100) interface. Thermal oxidation at 925 °C and annealing at 450 °C in pure hydrogen atmosphere increases the minority carrier lifetime by three orders of magnitude, and it is attributed to elimination of Si dangling bond interface states. Fabrication of an ultrathin, i.e., 1.1 nm, NAOS SiO{sub 2} layer before thermal oxidation and H{sub 2} annealing further increases the minority carrier lifetime by 30% from 8.6 to 11.1 ms, and decreased the interface state density by 10% from 6.9 × 10{sup 9} to 6.3 × 10{sup 9}eV{sup −1} cm{sup −2}. After thermal oxidation at 800 °C, the SiO{sub 2} layer on the NAOS-SiO{sub 2}/Si(100) structure is 2.26 nm thick, i.e., 0.24 nm thicker than that on the Si(100) surface, while after thermal oxidation at 925 °C, it is 4.2 nm thick, i.e., 0.4 nm thinner than that on Si(100). The chemical stability results from the higher atomic density of a NAOS SiO{sub 2} layer than that of a thermal oxide layer as reported in Ref. [28] (Asuha et al., 2002). Higher minority carrier lifetime in the presence of the NAOS layer indicates that the NAOS-SiO{sub 2}/Si interface with a low interface state density is preserved after thermal oxidation, which supports out-diffusion oxidation mechanism, by which a thermal oxide layer is formed on the NAOS SiO{sub 2} layer.

  19. Enhanced mechanical properties of chitosan/nanodiamond composites by improving interphase using thermal oxidation of nanodiamond.

    Science.gov (United States)

    Delavar, Zahra; Shojaei, Akbar

    2017-07-01

    Polymer composite films based on chitosan (CS) and nanodimaond (ND) were prepared using solution casting method. ND with variable contents of carboxylic functional group was prepared using thermal oxidation at temperature of 420°C under air atmosphere at various durations of 1.5 and 4.5h. The interfacial interaction between NDs and CS and morphological evolution of CS in presence of NDs were investigated by Fourier transform infrared (FTIR), differential scanning calorimeter (DSC) and X-ray diffraction (XRD) analyses. A significant improvement in tensile strength (∼85%) and tensile modulus (∼125%) of CS was achieved by oxidized ND (OND) obtained at higher oxidation time of 4.5 at low concentrations (below 1.5wt%). Theoretical analyses based on micromechanical models showed that the ND with higher degree of carboxylic functionality provided thicker and stronger interphase region which was reflected in higher mechanical properties. The equilibrium water uptake of CS decreased by incorporating ND and increasing its degree of carboxyl functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Studies on the optoelectronic properties of the thermally evaporated tin-doped indium oxide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ko-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Lin, Liang-Da [Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China); Chang, Li-Wei [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Shih, Han C., E-mail: hcshih@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan, ROC (China)

    2013-05-15

    Indium oxide (In{sub 2}O{sub 3}) nanorods, nanotowers and tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods have been fabricated by thermal evaporation. The morphology, microstructure and chemical composition of these three nanoproducts are characterized by FE-SEM, HRTEM and XPS. To further investigate the optoelectronic properties, the I–V curves and cathodoluminescence (CL) spectra are measured. The electrical resistivity of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods are 1.32 kΩ, 0.65 kΩ and 0.063 kΩ, respectively. CL spectra of these three nanoproducts clearly indicate that tin-doped (Sn:In = 1:100) indium oxide (ITO) nanorods cause a blue shift. No doubt ITO nanorods obtain the highest performance among these three nanoproducts, and this also means that Sn-doped In{sub 2}O{sub 3} nanostructures would be the best way to enhance the optoelectronic properties. Additionally, the growing mechanism and the optoelectronic properties of these three nanostructures are discussed. This study is beneficial to the applications of In{sub 2}O{sub 3} nanorods, nanotowers and ITO nanorods in optoelectronic nanodevices.

  1. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  2. Improved oxidation of air pollutants in a non-thermal plasma

    International Nuclear Information System (INIS)

    Roland, U.; Holzer, F.; Kopinke, F.-D.

    2002-01-01

    The performance of non-thermal plasma (NTP) for the removal of organic air pollutants (especially in low concentrations) is improved by the introduction of ferroelectric and catalytically active materials into the discharge zone of an NTP reactor. Experiments with model systems (various contaminants and packed-bed materials) have shown that such a modification of a homogeneous gas-phase plasma can overcome the most serious restrictions of the NTP technique at its present state of the art: the incomplete total oxidation (i.e. the low selectivity to CO 2 ) and the energetic inefficiency. Placing a ferroelectric packed-bed material in the discharge zone was shown to result in a lowering of the energy input required. The main effects of plasma catalysis enabled by the introduction of a catalytically active material were an enhanced conversion of pollutants and a higher CO 2 selectivity. These improvements are based on the presence of short-lived oxidising species in the inner volume of porous catalysts. Additionally, the formation of a reservoir of adsorbed oxidants in the NTP zone could be shown. The combination of both modifications (ferroelectric packed-bed materials and plasma catalysis) is a promising method to support the NTP-initiated oxidation of air pollutants

  3. Bright electroluminescence from a chelate phosphine oxide Eu{sup III} complex with high thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Hui [School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, Nangang District, Harbin 150080, Heilongjiang Province (China); Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Yin Kun; Wang Lianhui [Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Huang Wei [Institute of Advanced Materials (IAM), Fudan University, 220 Handan Road, Shanghai 200433 (China)], E-mail: wei-huang@njupt.edu.cn

    2008-10-01

    The chelate phosphine oxide ligand 1,8-bis(diphenylphosphino)naphthalene oxide (NaPO) was used to prepare complex 1 tris(2-thenoyltrifluoroacetonate)(1,8-bis(diphenylphosphino)naphthalene oxide)europium(III). The rigid structure of NaPO makes 1 have more compact structure resulting in a temperature of glass transition as high as 147 deg. C, which is the highest in luminescent Eu{sup III} complexes, and a higher decomposition temperature of 349 deg. C. The improvement of carrier transfer ability of NaPO was proved by Gaussian simulation. The multi-layered electroluminescent device based on 1 had a low turn-on voltage of 6.0 V, the maximum brightness of 601 cd m{sup -2} at 21.5 V and 481.4 mA cm{sup -2}, and the excellent voltage-independent spectral stability. These properties demonstrated NaPO cannot only be favorable to form the rigid and compact complex structure, and increase the thermal and morphological stability of the complex, but also reduce the formation of the exciplex.

  4. A facile strategy for the reduction of graphene oxide and its effect on thermal conductivity of epoxy based composites

    Directory of Open Access Journals (Sweden)

    F. Xie

    2016-06-01

    Full Text Available A facile and efficient approach to reduce graphene oxide with Al particles and potassium hydroxide was developed at moderate temperature and the graphene/epoxy composite was prepared by mould casting method. The as-prepared graphene has been confirmed by Transmission electron microscopy, Fourier transform infrared spectrometer, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Thermal gravimetric analysis. This provides a new green way to synthesize graphene with high surface area and opens another opportunity for the production of graphene. Effects of graphene on thermal conductivity, thermal stability and microstructures of the epoxy-based composite were also investigated. The results showed that thermal conductivity of the composite exhibited a remarkable improvement with increasing content of graphene and thermal conductivity could reach 1.192 W/(m*K when filled with 3 wt% graphene. Moreover, graphene/epoxy composite exhibits good thermal stability with 3 wt% graphene.

  5. GAPCON-THERMAL-2: a computer program for calculating the thermal behavior of an oxide fuel rod

    International Nuclear Information System (INIS)

    Beyer, C.E.; Hann, C.R.; Lanning, D.D.; Panisko, F.E.; Parchen, L.J.

    1975-11-01

    A description is presented of the computer code GAPCON THERMAL-2, a light water reactor (LWR) fuel thermal performance prediction code. GAPCON-THERMAL-2, is intended to be used as a calculational tool for reactor fuel steady-state thermal performance and to provide input for accident analyses. Some models used in the code provide best estimate as well as conservative predictions. Each of the individual models in the code is based on the best available data

  6. A novel thermal decomposition approach for the synthesis of silica-iron oxide core–shell nanoparticles

    International Nuclear Information System (INIS)

    Kishore, P.N.R.; Jeevanandam, P.

    2012-01-01

    Highlights: ► Silica-iron oxide core–shell nanoparticles have been synthesized by a novel thermal decomposition approach. ► The silica-iron oxide core–shell nanoparticles are superparamagnetic at room temperature. ► The silica-iron oxide core–shell nanoparticles serve as good photocatalyst for the degradation of Rhodamine B. - Abstract: A simple thermal decomposition approach for the synthesis of magnetic nanoparticles consisting of silica as core and iron oxide nanoparticles as shell has been reported. The iron oxide nanoparticles were deposited on the silica spheres (mean diameter = 244 ± 13 nm) by the thermal decomposition of iron (III) acetylacetonate, in diphenyl ether, in the presence of SiO 2 . The core–shell nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, field emission-scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy, diffuse reflectance spectroscopy, and magnetic measurements. The results confirm the presence of iron oxide nanoparticles on the silica core. The core–shell nanoparticles are superparamagnetic at room temperature indicating the presence of iron oxide nanoparticles on silica. The core–shell nanoparticles have been demonstrated as good photocatalyst for the degradation of Rhodamine B.

  7. EFFECTS OF THERMAL TREATMENTS ON THE CHEMICAL REACTIVITY OF TRICHLOROETHYLENE

    Science.gov (United States)

    A series of experiments was completed to investigate abiotic degradation and reaction product formation of trichloroethylene (TCE) when heated. A quartz-tube apparatus was used to study short residence time and high temperature conditions that are thought to occur during thermal ...

  8. Synthesis of nickel oxide - zirconia composites by coprecipitation route followed by hydrothermal treatment

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Paschoal, Jose Octavio Armani

    2009-01-01

    Nickel oxide-yttria stabilized zirconia (NiO-YSZ) for use as solid oxide fuel cell anode were synthesized by coprecipitation to obtain amorphous zirconia and crystallized β-nickel gels of the corresponding metal hydroxides. Hydrothermal treatment at 200°C and 220 psi from 2 up to 16 hours, under stirring, was performed to produce nanocrystalline powder. The as-synthesized powders were uniaxially pressed and sintered in air. Powders were characterized by X-ray diffraction, laser scattering, scanning and transmission electron microscopy (SEM/TEM), gas adsorption technique (BET) and TGDTA thermal analysis. Ceramic samples were characterized by dilatometric analysis and density measurements by Archimedes method. The characteristics of hydrothermally synthesized powders and compacts were compared to those produced without temperature and pressure application. Crystalline powders were obtained after hydrothermal process, excluding the calcination step from this route. The specific surface area of powders decreases with increasing time of hydrothermal treatment while the agglomerate mean size is not affected by this parameter. (author)

  9. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    Science.gov (United States)

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Characterization of Hf/Mg co-doped ZnO thin films after thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chih-Hung; Chung, Hantsun [Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Jian-Zhang, E-mail: jchen@ntu.edu.tw [Graduate Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan (China); Cheng, I-Chun, E-mail: iccheng@ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-11-03

    Rf-sputtered Mg{sub 0.05}Zn{sub 0.95}O thin films become amorphous/nanocrystalline with the addition of hafnium oxide. All films (thickness: ∼ 100 nm) sputter-deposited from Hf{sub x}Mg{sub 0.05}Zn{sub 0.95−x}O targets are highly transparent (> 80%) from 400 to 800 nm. The Tauc bandgap ΔE (eV) increases with the Hf content. However, the bandgap decreases after thermal treatment. The reduction in the bandgap is positively correlated with the Hf content and annealing temperature. The residual stresses of films sputtered from Mg{sub 0.05}Zn{sub 0.95}O and Hf{sub 0.025}Mg{sub 0.05}Zn{sub 0.925}O targets are determined based on X-ray diffraction (XRD) data using a bi-axial stress model. The residual stresses of as-deposited films are compressive. As the annealing temperature increases, the residual stresses are relaxed and even become tensile. The bandgap narrowing after thermal treatment is attributed to the stress relaxation that changes the repulsion between the oxygen 2p and zinc 4s bands. Slight grain growth may also result in bandgap reduction because bandgap modification caused by the quantum confinement effect becomes significant in amorphous/nanocrystalline materials. The amorphous thin films reveal good thermal stability after 600 °C annealing for up to 2 h, as evidenced by the XRD and transmission spectra. - Highlights: • Thin films are sputtered from Hf{sub x}Mg{sub 0.05}Zn{sub 0.95−x}O targets at room temperature. • Bandgap increases with Hf content but decreases with post-annealing temperature. • Bandgap narrowing after annealing partly results from the relaxation of stresses. • Bandgap narrowing partly results from quantum confinement effect by nanomaterials. • Hf doping increases resistivity due to the lattice disorder and enlarged bandgap.

  11. Treatment of hazardous waste landfill leachate using Fenton oxidation process

    Science.gov (United States)

    Singa, Pradeep Kumar; Hasnain Isa, Mohamed; Ho, Yeek-Chia; Lim, Jun-Wei

    2018-03-01

    The efficiency of Fenton's oxidation was assessed in this study for hazardous waste landfill leachate treatment. The two major reagents, which are generally employed in Fenton's process are H2O2 as oxidizing agent and Fe2+ as catalyst. Batch experiments were conducted to determine the effect of experimental conditions viz., reaction time, molar ratio, and Fenton reagent dosages, which are significant parameters that influence the degradation efficiencies of Fenton process were examined. It was found that under the favorable experimental conditions, maximum COD removal was 56.49%. The optimum experimental conditions were pH=3, H2O2/Fe2+ molar ratio = 3 and reaction time = 150 minutes. The optimal amount of hydrogen peroxide and iron were 0.12 mol/L and 0.04 mol/L respectively. High dosages of H2O2 and iron resulted in scavenging effects on OH• radicals and lowered degradation efficiency of organic compounds in the hazardous waste landfill leachate.

  12. Application of advanced oxidative process in treatment radioactive waste

    International Nuclear Information System (INIS)

    Kim, Catia; Sakata, Solange K.; Ferreira, Rafael V.P.; Marumo, Julio T.

    2009-01-01

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H 2 O 2 / Fe +2 ) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H 2O 2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO 3 as a white precipitate resulting from the reaction between the Ba(OH) 2 and the CO 2 from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe +2 /H 2 O 2 30%) at 100 deg C after 2 hours. (author)

  13. Thermal treatment of sewage sludge from waste water. Tratamiento termico de lodos procedentes de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Andreottola, G. (Universidad de Trento (Italy)); Canziani, R.; Ragazzi, M. (Politicnico de Milan (Italy))

    1994-01-01

    Thermal Treatment of sewage sludge can be beneficial as a pre-treatment step of many treatment/disposal options, but above all, it allows the recovery of the energetic content sludge. Energy recovery from sewage sludge can be performed in many ways; direct incineration thermal drying followed by incineration and co-combustion with municipal solid wastes or other non conventional fuels. Another option is the recovery of waste energy (e.g. from an endo thermal engine using biogas as fuel) to dry sludge wich, in turn can be used as a fuel. The paper will evaluate several options of thermal treatment of sewage sludge, with particular emphasis on the energetic yield from different processes. (Author)

  14. Prognostic factors for the success of thermal balloon ablation in the treatment of menorrhagia

    NARCIS (Netherlands)

    Bongers, M. Y.; Mol, B. W. J.; Brölmann, H. A. M.

    2002-01-01

    OBJECTIVE: To identify predictive factors that will ensure successful menorrhagia treatment using hot fluid balloon endometrial ablation. METHODS: This is a prospective study on patients referred for menorrhagia and treated with hot fluid thermal balloon ablation. Potential prognostic factors for

  15. Thermal oxidation of cesium loaded Prussian blue as a precaution for exothermic phase change in extreme conditions

    International Nuclear Information System (INIS)

    Parajuli, Durga; Tanaka, Hisashi; Takahashi, Akira; Kawamoto, Tohru

    2013-01-01

    Cesium adsorbed Prussian blue is studied for the thermal oxidation. The TG-DTA shows exothermic phase change of micro aggregates of nano-PB at above 270°C. For this reason, Cs loaded PB was heated between 180 to 260°C. Heating at 180 removed only the water. Neither the oxidation of Iron nor the removal of cyanide is observed at this temperature. Oxidation of cyanide is observed upon heating above 200°C while loaded Cs is released after heating at >250°C followed by washing with water. Thermal oxidation between 200 to 220°C for more than 2 h showed control on exothermic phase change and loaded Cs is also not solubilized. (author)

  16. Mixed oxide thermal behaviour at BOL: COMETHE III-J models and impact on power-to-melt

    International Nuclear Information System (INIS)

    Vliet, J. van

    1979-01-01

    The mixed oxide thermal behaviour at beginning of life is very important because it can impose a limitation to the fuel pin peak power, and therefore to the reactor thermal output. The relevant physical processes leading to fuel restructuring are modelled in COMETHE III-J in a kinetic way. This ensures that the temperature and power history are properly taken into account. These models are described and their impact on the calculated power to melt early in life is analysed. (author)

  17. Iron oxide nanoparticle hyperthermia and chemotherapy cancer treatment

    Science.gov (United States)

    Petryk, A. A.; Giustini, A. J.; Ryan, P.; Strawbridge, R. R.; Hoopes, P. J.

    2009-02-01

    The benefit of combining hyperthermia and chemotherapy to treat cancer is well established. However, combined therapy has not yet achieved standard of care status. The reasons are numerous and varied, however the lack of significantly greater tumor cell sensitivity to heat (as compared to normal cells) and the inability to deliver heat to the tumor in a precise manner have been major factors. Iron oxide nanoparticle (IONP) hyperthermia, alone and combined with other modalities, offers a new direction in hyperthermia cancer therapy via improved tumor targeting and an improved therapeutic ratio. Our preliminary studies have demonstrated tumor cell cytotoxicity (in vitro and in vivo) with IONP heat and cisplatinum (CDDP) doses lower than those necessary when using conventional heating techniques or cisplatinum alone. Ongoing studies suggest such treatment could be further improved through the use of targeted nanoparticles.

  18. Tuning the Electrical and Thermal Conductivities of Thermoelectric Oxides through Impurity Doping

    Science.gov (United States)

    Torres Arango, Maria A.

    Waste heat and thermal gradients available at power plants can be harvested to power wireless networks and sensors by using thermoelectric (TE) generators that directly transform temperature differentials into electrical power. Oxide materials are promising for TE applications in harsh industrial environments for waste heat recovery at high temperatures in air, because they are lightweight, cheaply produced, highly efficient, and stable at high temperatures in air. Ca3Co4O9(CCO) with layered structure is a promising p-type thermoelectric oxide with extrapolated ZT value of 0.87 in single crystal form [1]. However the ZT values for the polycrystalline ceramics remain low of ˜0.1-0.3. In this research, nanostructure engineering approaches including doping and addition of nanoinclusions were applied to the polycrystalline CCO ceramic to improve the energy conversion efficiency. Polycrystalline CCO samples with various Bi doping levels were prepared through the sol-gel chemical route synthesis of powders, pressing and sintering of the pellets. Microstructure features of Bi doped ceramic bulk samples such as porosity, development of crystal texture, grain boundary dislocations and segregation of Bi dopants at various grain boundaries are investigated from microns to atomic scale. The results of the present study show that the Bi-doping is affecting both the electrical conductivity and thermal conductivity simultaneously, and the optimum Bi doping level is strongly correlated with the microstructure and the processing conditions of the ceramic samples. At the optimum doping level and processing conditions of the ceramic samples, the Bi substitution of Ca results in the increase of the electrical conductivity, decrease of the thermal conductivity, and improvement of the crystal texture. The atomic resolution Scanning Transmission Electron Microscopy (STEM) Z-contrast imaging and the chemistry analysis also reveal the Bi-segregation at grain boundaries of CCO

  19. Effect of block composition on thermal properties and melt viscosity of poly[2-(dimethylaminoethyl methacrylate], poly(ethylene oxide and poly(propylene oxide block co-polymers

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available To modify the rheological properties of certain commercial polymers, a set of block copolymers were synthesized through oxyanionic polymerization of 2-(dimethylaminoethyl methacrylate to the chain ends of commercial prepolymers, namely poly(ethylene oxide (PEO, poly(ethylene oxide-block-poly(propylene oxide-block-poly(ethylene oxide (PEO-PPO-PEO, and poly(propylene oxide (PPO. The formed block copolymers were analysed with size exclusion chromatography and nuclear magnetic resonance spectroscopy in order to confirm block formation. Thermal characterization of the resulting polymers was done with differential scanning calorimetry. Thermal transition points were also confirmed with rotational rheometry, which was primarily used to measure melt strength properties of the resulting block co-polymers. It was observed that the synthesised poly[2-(dimethylaminoethyl methacrylate]-block (PDM affected slightly the thermal transition points of crystalline PEO-block but the influence was stronger on amorphous PPO-blocks. Frequency sweeps measured above the melting temperatures for the materials confirmed that the pre-polymers (PEO and PEO-PPO-PEO behave as Newtonian fluids whereas polymers with a PDM block structure exhibit clear shear thinning behaviour. In addition, the PDM block increased the melt viscosity when compared with that one of the pre-polymer. As a final result, it became obvious that pre-polymers modified with PDM were in entangled form, in the melted state as well in the solidified form.

  20. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    Science.gov (United States)

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  1. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    Science.gov (United States)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  2. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  3. Growth of thermal oxide layers on GaAs and InP in the presence of ammonium heptamolybdate

    International Nuclear Information System (INIS)

    Mittova, I.Ya.; Lavrushina, S.S.; Afonchikova, A.V.

    2004-01-01

    Processes of thermal oxidation of GaAs and InP in the presence of ammonium heptamolybdate were studied using the methods of X-ray fluorescence analysis and IR spectroscopy at temperatures 480-580 Deg C. It was ascertained that introduction of the activator into the system results in accelerated growth of layers on semiconductors due to participation of anionic component of the chemostimulator in oxidation processes. The activator is integrated into the salts formed [ru

  4. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    International Nuclear Information System (INIS)

    Hsu, P.C.

    1997-01-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment

  5. Ozonation and Thermal Pre-Treatment of Municipal Sewage Sludge-Implications for Toxicity and Methane Potential

    DEFF Research Database (Denmark)

    Davidsson, A.; Eriksson, Eva; Fick, J.

    2013-01-01

    The aim of this study was to determine effects on methane potential and overall sludge quality from two different sludge pre-treatment technologies (ozonation high/low dosage and thermal treatment 55/70 degrees C). In general both treatments produced increased methane potential. Thermal treatment...... by ozone treatment and digestion. No statistical significant reduction in concentrations of included pharmaceuticals could be observed....

  6. A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide

    Directory of Open Access Journals (Sweden)

    S. Riedel

    2016-09-01

    Full Text Available Ferroelectric properties in hafnium oxide based thin films have recovered the scaling potential for ferroelectric memories due to their ultra-thin-film- and CMOS-compatibility. However, the variety of physical phenomena connected to ferroelectricity allows a wider range of applications for these materials than ferroelectric memory. Especially mixed HfxZr1-xO2 thin films exhibit a broad compositional range of ferroelectric phase stability and provide the possibility to tailor material properties for multiple applications. Here it is shown that the limited thermal stability and thick-film capability of HfxZr1-xO2 can be overcome by a laminated approach using alumina interlayers.

  7. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Yong [Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, National Lab of Solid State Microstructure, ERERC, Nanjing University, Nanjing 210093 (China); Pei, Chonghua, E-mail: peichonghua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-02-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS {sup 13}C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g.

  8. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui; Zhou, Yong; Pei, Chonghua

    2014-01-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS 13 C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g

  9. The Influence of the Interlayer Distance on the Performance of Thermally Reduced Graphene Oxide Supercapacitors

    Directory of Open Access Journals (Sweden)

    Jun-Hong Lin

    2018-02-01

    Full Text Available In this paper, cationic surfactant cetyltrimethylammonium bromide (CTAB was employed to prevent the restack of the thermally reduce graphene oxide (TRG sheets. A facile approach was demonstrated to effectively enlarge the interlayer distance of the TRG sheets through the ionic interaction between the intercalated CTAB and ionic liquids (ILs. The morphology of the composites and the interaction between the intercalated ionic species were systematically characterized by SEM, SAXS, XRD, TGA, and FTIR. In addition, the performance of the EDLC cells based on these TRG composites was evaluated. It was found that due to the increased interlayer distance (0.41 nm to 2.51 nm that enlarges the accessible surface area for the IL electrolyte, the energy density of the cell can be significantly improved (23.1 Wh/kg to 62.5 Wh/kg.

  10. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    Science.gov (United States)

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  11. Thermal oxidation of seeds for the hydrothermal growth of WO{sub 3} nanorods on ITO glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Chai Yan [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lockman, Zainovia, E-mail: zainovia@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2015-11-30

    This work reports a simple seed formation method for the hydrothermal growth of tungsten oxide (WO{sub 3}) nanorods. A WO{sub 3} seed layer was prepared by thermal oxidation, where a W-sputtered substrate was heated and oxidized in a furnace. Oxidation temperatures and periods were varied at 400–550 °C and 5–60 min, respectively, to determine an appropriate seed layer for nanorod growth. Thermal oxidation at 500 °C for 15 min was found to produce a seed layer with sufficient crystallinity and good adhesion to the substrate. These properties prevented the seed from peeling off during the hydrothermal process, thereby allowing nanorod growth on the seed. The nanorod film showed better electrochromic behavior (higher current density of − 1.11 and + 0.65 mA cm{sup −2}) than compact film (lower current density of − 0.54 and + 0.28 mA cm{sup −2}). - Highlights: • A simple seed formation method (thermal oxidation) on sputtered W film is reported. • Crystalline seed with good adhesion to substrate is required for nanorod growth. • The appropriate temperature and period for seed formation were 500 °C and 15 min. • WO{sub 3} nanorods exhibited higher electrochromic current density than WO{sub 3} compact film.

  12. Iron doping of lithium niobate by thermal diffusion from thin film: study of the treatment effect

    Energy Technology Data Exchange (ETDEWEB)

    Ciampolillo, Maria Vittoria; Zaltron, Annamaria; Bazzan, Marco; Argiolas, Nicola; Sada, Cinzia [Universita di Padova (Italy); CNISM, Dipartimento di Fisica ' ' G. Galilei' ' , Padova (Italy); Mignoni, Sabrina; Fontana, Marc [Universite de Metz et Supelec, Laboratoire Materiaux Optiques, Photoniques et Systemes, UMR CNRS 7132, Metz (France)

    2011-07-15

    Thermal diffusion from thin film is one of the most widespread approaches to prepare iron doped regions in lithium niobate with limited size for photorefractive applications. In this work, we investigate the doping process with the aim of determining the best process conditions giving a doped region with the characteristics required for photorefractive applications. Six samples were prepared by changing the atmosphere employed in the diffusion treatment in order to obtain different combination of diffusion profiles and reduction degrees and also to check the effect of employing a wet atmosphere. The compositional, optical, and structural properties are then extensively characterized by combining Secondary ion Mass Spectrometry, UV, visible and IR spectrophotometry, High Resolution X-Rays Diffraction, and Micro-Raman Spectroscopy. Moreover, the sample topography was checked by Atomic Force Microscopy. An analysis of all our data shows that the best results are obtained performing a double step process, i.e. diffusion in oxidizing atmosphere and subsequent reduction at lower temperature in an hydrogen-containing atmosphere. (orig.)

  13. Determination of Polybutadiene Unsaturation Content in Thermal and Thermo-Oxidative Degradation Processes by NMR

    Directory of Open Access Journals (Sweden)

    Farshid Ziaee

    2013-01-01

    Full Text Available The unsaturation content of various polybutadiene (PBD types of 1,4-cis, 1,4-trans and 1,2-vinyl isomers with different molecular weights was investigated. An important parameter for unsaturation content of polybutadiene would be the determination of olefnic and aliphatic contents for three types of isomers. For this purpose, proton and carbon nuclear magnetic resonance spectroscopy methods were employed for determination of 1,4-cis, 1,4-trans and 1,2-vinyl contents. A change of adjustable parameter of NMR software was made for accurate integrals giving better results. The accuracy in calculation of low molecular weight PBD, surface area of chain end group decreased in aliphatic region. Furthermore, the changing of unsaturation content versus time was considered for 1,2-PBD and 1,4-PBD in thermal degradation conditions at 250°C. NMR results showed that during heating, the unsaturation content decreased for 1,2-PBD and was not changed for 1,4-PBD. In fact, the basic factor responsible for changing of unsaturation content in thermal degradation of PBD may be due to the presence of 1,2-vinyl isomer. Finally, changing in unsaturation content versus time was observed for 1,2-PBD and 1,4-PBD in thermo-oxidative degradation conditions at 100°C. The NMR results showed that at extended time, the unsaturation content decreased for 1,4-PBD and was not changed for 1,2-PBD. Moreover, the basic factor for changes in unsaturation content in thermo-oxidative degradation of PBD is due to the presence of 1,4-cis and 1,4-trans isomers.

  14. In-depth investigation of spin-on doped solar cells with thermally grown oxide passivation

    Science.gov (United States)

    Ahmad, Samir Mahmmod; Cheow, Siu Leong; Ludin, Norasikin A.; Sopian, K.; Zaidi, Saleem H.

    Solar cell industrial manufacturing, based largely on proven semiconductor processing technologies supported by significant advancements in automation, has reached a plateau in terms of cost and efficiency. However, solar cell manufacturing cost (dollar/watt) is still substantially higher than fossil fuels. The route to lowering cost may not lie with continuing automation and economies of scale. Alternate fabrication processes with lower cost and environmental-sustainability coupled with self-reliance, simplicity, and affordability may lead to price compatibility with carbon-based fuels. In this paper, a custom-designed formulation of phosphoric acid has been investigated, for n-type doping in p-type substrates, as a function of concentration and drive-in temperature. For post-diffusion surface passivation and anti-reflection, thermally-grown oxide films in 50-150-nm thickness were grown. These fabrication methods facilitate process simplicity, reduced costs, and environmental sustainability by elimination of poisonous chemicals and toxic gases (POCl3, SiH4, NH3). Simultaneous fire-through contact formation process based on screen-printed front surface Ag and back surface through thermally grown oxide films was optimized as a function of the peak temperature in conveyor belt furnace. Highest efficiency solar cells fabricated exhibited efficiency of ∼13%. Analysis of results based on internal quantum efficiency and minority carried measurements reveals three contributing factors: high front surface recombination, low minority carrier lifetime, and higher reflection. Solar cell simulations based on PC1D showed that, with improved passivation, lower reflection, and high lifetimes, efficiency can be enhanced to match with commercially-produced PECVD SiN-coated solar cells.

  15. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice.

    Science.gov (United States)

    Chen, Yong; Boettger, Michael K; Reif, Andreas; Schmitt, Angelika; Uçeyler, Nurcan; Sommer, Claudia

    2010-03-02

    Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1beta), and interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1beta. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1beta, and IL-10 following CFA, overall corroborating the inhibitor data. These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  16. Nitric oxide synthase modulates CFA-induced thermal hyperalgesia through cytokine regulation in mice

    Directory of Open Access Journals (Sweden)

    Üçeyler Nurcan

    2010-03-01

    Full Text Available Abstract Background Although it has been largely demonstrated that nitric oxide synthase (NOS, a key enzyme for nitric oxide (NO production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process. Results Intraperitoneal (i.p. pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS inhibitor, aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor, L-N(G-nitroarginine methyl ester (L-NAME, a non-selective NOS inhibitor, but not L-N(5-(1-iminoethyl-ornithine (L-NIO, a selective endothelial NOS inhibitor, significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl. injection of complete Freund's adjuvant (CFA. Real-time reverse transcription-polymerase chain reaction (RT-PCR revealed a significant increase of nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF, interleukin-1 beta (IL-1β, and interleukin-10 (IL-10 gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1β. The increase of the anti-inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO mice had lower gene expression of TNF, IL-1β, and IL-10 following CFA, overall corroborating the inhibitor data. Conclusion These findings lead us to propose that inhibition of NOS modulates inflammatory thermal hyperalgesia by regulating cytokine expression.

  17. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  18. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    International Nuclear Information System (INIS)

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ''ideas''. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ''cradle-to-grave'' systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ''downselection'' of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW

  19. Effects of thermal aging on thermo-mechanical behavior of a glass sealant for solid oxide cell applications

    DEFF Research Database (Denmark)

    Abdoli, Hamid; Alizadeh, Parvin; Boccaccini, Dino

    2014-01-01

    Thermo-mechanical properties of a silicate based glass and its potential use for sealing application in intermediate temperature solid oxide cell (SOC) are presented in this paper. Effects of thermal aging are discussed on structural and microstructural evolution, thermal expansion, viscosity......'s modulus in which a transition between a slow softening (elastic) regime and a rapid softening one was observed. Crystallization induced by thermal aging led to higher creep resistance, but lower capability of crack healing when inspected by electron microscopy. However, potential of stress relaxation...

  20. Effects of thermal treatments and germination on physico-chemical ...

    African Journals Online (AJOL)

    Certain physico-chemical properties including viscoelasticity, crystallinity and maltose content of corn depends on the gelatinization of starch under different treatments. Three different treatments were performed; boiling in water, steam heating, and germination. The effects of gelatinization on viscoelastic property of corn ...

  1. Ultrasound assisted simultaneous reduction and direct functionalization of graphene oxide with thermal and cytotoxicity profile.

    Science.gov (United States)

    Maktedar, Shrikant S; Avashthi, Gopal; Singh, Man

    2017-01-01

    The new sonochemical approach for simultaneous reduction and direct functionalization of graphene oxide (GrO) has been developed. The GrO was functionalized with 2-Aminobenzoxazole (2-ABOZ) in twenty min with complete deletion of hazardous steps. The significance of ultrasound was exemplified with the comparative conventional methods. The newly prepared f-(2-ABOZ)GrO was extensively characterized with near edge X-ray absorption fine structure (NEXAFS) spectroscopy, 13 C solid state NMR, XPS, XRD, HRTEM, SAED, AFM, Raman, UV-vis, FTIR and TGA. The thermal stability of f-(2-ABOZ)GrO was confirmed with total percentage weight loss in TGA. The biological activity of f-(2-ABOZ)GrO was explored with MCF-7 and Vero cell lines. The inherent cytotoxicity was evaluated with SRB assay at 10, 20, 40 and 80μgmL -1 . The estimated cell viabilities were >78% with f-(2-ABOZ) GrO. A high cytocompatibility of f-(2-ABOZ)GrO was ensured with in vitro evaluation on living cell lines, and low toxicity of f-(2-ABOZ)GrO was confirmed its excellent biocompatibility. The morphological effect on Vero cell line evidently supports the formation of biocompatible f-(2-ABOZ)GrO. Therefore, f-(2-ABOZ)GrO was emerged as an advanced functional material for thermally stable biocompatible coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Shinde, P.S.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► The ecofriendly deposition of Ga-doped zinc oxide. ► Influence of Ga doping onto physicochemical properties in aqueous media. ► Electron–phonon coupling by Raman. ► Chemical bonding structure and valence band analysis by XPS. - Abstract: Ga-doped ZnO thin films are synthesized by chemical spray pyrolysis onto corning glass substrates in aqueous media. The influence of gallium doping on to the photoelectrochemical, structural, Raman, XPS, morphological, optical, electrical, photoluminescence and thermal properties have been investigated in order to achieve good quality films. X-ray diffraction study depicts the films are polycrystalline and fit well with hexagonal (wurtzite) crystal structure with strong orientations along the (0 0 2) and (1 0 1) planes. Presence of E 2 high mode in Raman spectra indicates that the gallium doping does not change the wurtzite structure. The coupling strength between electron and LO phonon has experimentally estimated. In order to understand the chemical bonding structure and electronic states of the Ga-doped ZnO thin films XPS analysis have been studied. SEM images shows the films are adherent, compact, densely packed with hexagonal flakes and spherical grains. Optical transmittance and reflectance measurements have been carried out. Room temperature PL spectra depict violet, blue and green emission in deposited films. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in these polycrystalline films.

  3. Nitrogen oxides emissions from thermal power plants in china: current status and future predictions.

    Science.gov (United States)

    Tian, Hezhong; Liu, Kaiyun; Hao, Jiming; Wang, Yan; Gao, Jiajia; Qiu, Peipei; Zhu, Chuanyong

    2013-10-01

    Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.

  4. Radio-frequency magnetron sputtering and wet thermal oxidation of ZnO thin film

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-01-01

    The authors studied the growth and wet thermal oxidation (WTO) of ZnO thin films using a radio-frequency magnetron sputtering technique. X-ray diffraction reveals a preferred orientation of [1010]ZnO(0002)//[1120]Al 2 O 3 (0002) coexisted with a small amount of ZnO (1011) and ZnO (1013) crystals on the Al 2 O 3 (0001) substrate. The ZnO (1011) and ZnO (1013) crystals, as well as the in-plane preferred orientation, are absent from the growth of ZnO on the GaAs(001) substrate. WTO at 550 deg. C improves the crystalline and the photoluminescence more significantly than annealing in air, N 2 and O 2 ambient; it also tends to convert the crystal from ZnO (1011) and ZnO (1013) to ZnO (0002). The evolution of the photoluminescence upon WTO and annealing reveals that the green and orange emissions, centered at 520 and 650 nm, are likely originated from oxygen vacancies and oxygen interstitials, respectively; while the 420 nm emission, which is very sensitive to the postgrowth thermal processing regardless of the substrate and the ambient gas, is likely originated from the surface-state related defects

  5. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  6. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1994-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  7. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Tingey, Joel M.; Jones, Susan A.

    2005-01-01

    Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at

  8. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yunkang [Department of Mathematics and Physics, Nanjing Institute of technology, Nanjing, 211167 (China); Chen, Jing, E-mail: chenjingmoon@gmail.com [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Zichen, E-mail: zz241@ime.ac.cn [Integrated system for Laser applications Group, Institute of Microelectronics of Chinese Academy of Sciences, 100029, Beijing (China)

    2017-02-28

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning