WorldWideScience

Sample records for oxidative stress pro-inflammatory

  1. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter.

    Science.gov (United States)

    Michael, S; Montag, M; Dott, W

    2013-12-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0-100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. [The degree of chronic renal failure is associated with the rate of pro-inflammatory cytokines, hyperhomocysteinemia and with oxidative stress].

    Science.gov (United States)

    Tbahriti, H F; Messaoudi, A; Kaddous, A; Bouchenak, M; Mekki, K

    2014-06-01

    To evaluate pro-inflammatory cytokines, homocysteinemia and markers of oxidative status in the course of chronic renal failure. One hundred and two patients (male/female: 38/64; age: 45±07 years) with chronic renal failure were divided into 4 groups according to the National Kidney Foundation classification. They included 28 primary stage renal failure patients, 28 moderate stage renal failure, 28 severe stage renal failure and 18 end stage renal failure. The inflammatory status was evaluated by the determination of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) and total homocysteine. Pro-oxidant status was assessed by assaying thiobarbituric acid reactive substances, hydroperoxides, and protein carbonyls. Antioxidant defence was performed by analysis of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase. Inflammatory markers were elevated in the end stage renal failure group compared to the other groups (Prenal failure group in comparison with the other groups (Prenal function is closely associated with the elevation of inflammatory markers leading to both increased markers of oxidative stress and decreased antioxidant defense. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter

    International Nuclear Information System (INIS)

    Michael, S.; Montag, M.; Dott, W.

    2013-01-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0–100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. -- Highlights: ► The study compares the toxicological effects of different source-related particles with regard to their chemical composition. ► The chemical characterization of the coarse particles revealed clear differences in elemental, TC and PAH composition. ► Equal mass concentrations of urban traffic and rural PM caused different toxicological responses. ► The observations confirm the hypothesis that particle composition, as well as origin, influence the PM-induced toxicity. -- The toxicological responses of lung epithelial cells and macrophages differ significantly after an exposure to equal mass concentrations of urban traffic and rural PM

  4. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    Science.gov (United States)

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  5. Pro-inflammatory cytokines and leukocyte oxidative burst in chronic kidney disease: culprits or innocent bystanders?

    Science.gov (United States)

    Neirynck, Nathalie; Glorieux, Griet; Schepers, Eva; Dhondt, Annemieke; Verbeke, Francis; Vanholder, Raymond

    2015-06-01

    Pro-inflammatory cytokines are elevated in chronic kidney disease (CKD), a condition characterized by microinflammation with oxidative stress as key feature. However, their role in the inflammatory response at uraemic concentrations has not yet been defined. In this study, the contribution of cytokines on induction of leukocyte oxidative stress was investigated. Whole blood from healthy donors was incubated with 20-1400 pg/mL TNFα, 5-102.8 pg/mL IL-6, 20-400 pg/mL IL-1β and 75-1200 pg/mL IL-18 separately or in combination. Oxidative burst was measured, at baseline and after stimulation with fMLP (Phagoburst™). The effect of the TNFα blocker, adalimumab (Ada), was evaluated on TNFα-induced ROS production. Finally, the association between TNFα and the composite end point all-cause mortality or first cardiovascular event was analysed in a CKD population stage 4-5 (n = 121). While interleukin (IL)-6, IL-1β and IL-18 alone induced no ROS activation of normal leukocytes, irrespective of concentrations, TNFα induced ROS activation at baseline (P < 0.01) and after fMLP stimulation (P < 0.05), but only at uraemic concentrations in the high range (400 and 1400 pg/mL). A similar pattern was observed with all cytokines in combination, but already at intermediate uraemic concentrations (all P < 0.05, except for monocytes after fMLP stimulation: n.s.), suggesting synergism between cytokines. ROS production induced by TNFα (400 pg/mL) and the cytokine combination was blocked with Ada. Uraemia-related oxidative stress in leukocytes of haemodialysis patients was however not blocked by Ada. In patients, TNFα was not associated to adverse events (HR: 1.52, 95% CI 0.81-2.85, P = 0.13). Among several pro-inflammatory cytokines, TNFα alone was pro-oxidative but only at high-range uraemic concentrations. Adding a TNFα blocker, Ada, blocked this ROS production, but not the oxidative stress in blood samples from haemodialysis patients, suggesting that other uraemic toxins than

  6. Oak kombucha protects against oxidative stress and inflammatory processes.

    Science.gov (United States)

    Vázquez-Cabral, B D; Larrosa-Pérez, M; Gallegos-Infante, J A; Moreno-Jiménez, M R; González-Laredo, R F; Rutiaga-Quiñones, J G; Gamboa-Gómez, C I; Rocha-Guzmán, N E

    2017-06-25

    Black tea infusion is the common substrate for preparing kombucha; however other sources such as oak leaves infusions can be used for the same purpose. Almost any white oak species have been used for medicinal applications by some ethnic groups in Mexico and could be also suitable for preparing kombucha analogues from oak (KAO). The objective of this research was to investigate the antioxidant activity and anti-inflammatory effects of KAO by examining its modulation ability on macrophage-derived TNF-alpha and IL-6. Herbal infusions from oak and black tea were fermented by kombucha consortium during seven days at 28 °C. Chemical composition was determined by LC-ESI-MS/MS. The antioxidant activity of samples against oxidative damage caused by H 2 O 2 in monocytes activated (macrophages) was explored. Additionally, it was determined the anti-inflammatory activity using lipopolysaccharide (LPS) - stimulated macrophages; in particular, the nitric oxide (NO), TNF-alpha, and IL-6 production was assessed. Levels of pro-inflammatory cytokines IL-6 and TNF-alpha were significantly reduced by the sample treatment. Likewise, NO production was lower in treatment with kombucha and KAO compared with LPS-stimulated macrophages. Fermented beverages of oak effectively down-regulated the production of NO, while pro-inflammatory cytokines (TNF-alpha and IL-6) in macrophages were stimulated with LPS. Additionally, phytochemical compounds present in KAO decrease oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    Science.gov (United States)

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Pulsed ultrasound associated with gold nanoparticle gel reduces oxidative stress parameters and expression of pro-inflammatory molecules in an animal model of muscle injury

    Directory of Open Access Journals (Sweden)

    Victor Eduardo G

    2012-03-01

    Full Text Available Abstract Background Nanogold has been investigated in a wide variety of biomedical applications because of the anti-inflammatory properties. The purpose of this study was to evaluate the effects of TPU (Therapeutic Pulsed Ultrasound with gold nanoparticles (GNP on oxidative stress parameters and the expression of pro-inflammatory molecules after traumatic muscle injury. Materials and methods Animals were divided in nine groups: sham (uninjured muscle; muscle injury without treatment; muscle injury + DMSO; muscle injury + GNP; muscle injury + DMSO + GNP; muscle injury + TPU; muscle injury + TPU + DMSO; muscle injury + TPU + GNP; muscle injury + TPU + DMSO + GNP. The ROS production was determined by concentration of superoxide anion, modulation of antioxidant defenses was determined by the activity of superoxide dismutase, catalase and glutathione peroxidase enzymes, oxidative damage determined by formation of thiobarbituric acid-reactive substance and protein carbonyls. The levels of interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α were measured as inflammatory parameters. Results Compared to muscle injury without treatment group, the muscle injury + TPU + DMSO + GNP gel group promoted a significant decrease in superoxide anion production and lipid peroxidation levels (p Conclusions Our results suggest that TPU + DMSO + GNP gel presents beneficial effects on the muscular healing process, inducing a reduction in the production of ROS and also the expression of pro-inflammatory molecules.

  9. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Zhenying Han

    Full Text Available Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1 and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist, methyllycaconitine (MLA, nAchR antagonist, or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO. Behavior test, lesion volume, CD68(+, M1 (CD11b(+/Iba1(+ and M2 (CD206/Iba1+ microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68(+ and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA's effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect.

  10. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    Science.gov (United States)

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. A pro-inflammatory diet is associated with increased risk of developing hypertension among middle-aged women

    NARCIS (Netherlands)

    Vissers, L E T; Waller, M; van der Schouw, Y T; Hébert, J R; Shivappa, N; Schoenaker, D A J M; Mishra, G D

    BACKGROUND AND AIMS: A pro-inflammatory diet is thought to lead to hypertension through oxidative stress and vessel wall inflammation. We therefore investigated the association between the dietary inflammatory index (DII) and developing hypertension in a population-based cohort of middle-aged women.

  12. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Quaroni, Andrea [Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853–6401 (United States); Autore, Giuseppina [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Severino, Lorella [Department of Pathology and Animal Health, Division of Toxicology, School of Veterinary Medicine, University of Naples “Federico II”, Via Delpino 1, 80137 Naples (Italy); Marzocco, Stefania, E-mail: smarzocco@unisa.it [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy)

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  13. IL-23 Promotes Myocardial I/R Injury by Increasing the Inflammatory Responses and Oxidative Stress Reactions

    Directory of Open Access Journals (Sweden)

    Xiaorong Hu

    2016-05-01

    Full Text Available Background/Aims: Inflammation and oxidative stress play an important role in myocardial ischemia and reperfusion (I/R injury. We hypothesized that IL-23, a pro-inflammatory cytokine, could promote myocardial I/R injury by increasing the inflammatory response and oxidative stress. Methods: Male Sprague-Dawley rats were randomly assigned into sham operated control (SO group, ischemia and reperfusion (I/R group, (IL-23 + I/R group and (anti-IL-23 + I/R group. At 4 h after reperfusion, the serum concentration of lactate dehydrogenase (LDH, creatine kinase (CK and the tissue MDA concentration and SOD activity were measured. The infarcte size was measured by TTC staining. Apoptosis in heart sections were measured by TUNEL staining. The expression of HMGB1 and IL-17A were detected by Western Blotting and the expression of TNF-α and IL-6 were detected by Elisa. Results: After 4 h reperfusion, compared with the I/R group, IL-23 significantly increased the infarct size, the apoptosis of cardiomyocytes and the levels of LDH and CK (all P 0.05. All these effects were abolished by anti-IL-23 administration. Conclusion: The present study suggested that IL-23 may promote myocardial I/R injury by increasing the inflammatory responses and oxidative stress reaction.

  14. Acetaminophen inhibits neuronal inflammation and protects neurons from oxidative stress

    Directory of Open Access Journals (Sweden)

    Grammas Paula

    2009-03-01

    Full Text Available Abstract Background Recent studies have demonstrated a link between the inflammatory response, increased cytokine formation, and neurodegeneration in the brain. The beneficial effects of anti-inflammatory drugs in neurodegenerative diseases, such as Alzheimer's disease (AD, have been documented. Increasing evidence suggests that acetaminophen has unappreciated anti-oxidant and anti-inflammatory properties. The objectives of this study are to determine the effects of acetaminophen on cultured brain neuronal survival and inflammatory factor expression when exposed to oxidative stress. Methods Cerebral cortical cultured neurons are pretreated with acetaminophen and then exposed to the superoxide-generating compound menadione (5 μM. Cell survival is assessed by MTT assay and inflammatory protein (tumor necrosis factor alpha, interleukin-1, macrophage inflammatory protein alpha, and RANTES release quantitated by ELISA. Expression of pro- and anti-apoptotic proteins is assessed by western blots. Results Acetaminophen has pro-survival effects on neurons in culture. Menadione, a superoxide releasing oxidant stressor, causes a significant (p Conclusion These data show that acetaminophen has anti-oxidant and anti-inflammatory effects on neurons and suggest a heretofore unappreciated therapeutic potential for this drug in neurodegenerative diseases such as AD that are characterized by oxidant and inflammatory stress.

  15. Better cognitive control of emotional information is associated with reduced pro-inflammatory cytokine reactivity to emotional stress.

    Science.gov (United States)

    Shields, Grant S; Kuchenbecker, Shari Young; Pressman, Sarah D; Sumida, Ken D; Slavich, George M

    2016-01-01

    Stress is strongly associated with several mental and physical health problems that involve inflammation, including asthma, cardiovascular disease, certain types of cancer, and depression. It has been hypothesized that better cognitive control of emotional information may lead to reduced inflammatory reactivity to stress and thus better health, but to date no studies have examined whether differences in cognitive control predict pro-inflammatory cytokine responses to stress. To address this issue, we conducted a laboratory-based experimental study in which we randomly assigned healthy young-adult females to either an acute emotional stress (emotionally evocative video) or no-stress (control video) condition. Salivary levels of the key pro-inflammatory cytokines IL-1β, IL-6, and IL-8 were measured before and after the experimental manipulation, and following the last cytokine sample, we assessed participants' cognitive control of emotional information using an emotional Stroop task. We also assessed participants' cortisol levels before and after the manipulation to verify that documented effects were specific to cytokines and not simply due to increased nonwater salivary output. As hypothesized, the emotional stressor triggered significant increases in IL-1β, IL-6, and IL-8. Moreover, even in fully adjusted models, better cognitive control following the emotional (but not control) video predicted less pronounced cytokine responses to that stressor. In contrast, no effects were observed for cortisol. These data thus indicate that better cognitive control specifically following an emotional stressor is uniquely associated with less pronounced pro-inflammatory cytokine reactivity to such stress. These findings may therefore help explain why superior cognitive control portends better health over the lifespan.

  16. Pro-inflammatory adipocytokines, oxidative stress, insulin, Zn and Cu: Interrelations with obesity in Egyptian non-diabetic obese children and adolescents.

    Science.gov (United States)

    Habib, Salem A; Saad, Entsar A; Elsharkawy, Ashraf A; Attia, Zeinab R

    2015-09-01

    To investigate the inter-relationships between adipocytokines, oxidative stress, insulin, Zn and Cu and obesity among Egyptian obese non-diabetic children and adolescents. 72 obese children and adolescents of both sexes (5-17 years) were recruited for the study. 40 healthy normal non-obese persons of matched ages and sexes were used as control group. Lipid profile, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and leptin levels were measured. Malondialdehyde (MDA) and reduced glutathione (GSH) concentrations and superoxide dismutase (SOD) activity were estimated. Micronutrients (Zn and Cu) concentrations in addition to insulin and fasting blood sugar (FBS) levels were also evaluated. Estimation of insulin resistance (homeostatic model assessment (HOMA-IR)) was derived from FBS measurements. Significant elevations (Pobese individuals as compared with control group. Insulin and triglyceride levels were significantly increased in obese male children and HDL-cholesterol level was increased significantly in obese adolescent females compared to controls. However, total cholesterol and LDL-cholesterol levels were significantly high in all obese cases as compared with controls. Insulin resistance was detected in 100% of the patients. We concluded that obesity with pro-inflammatory adipocytokines and hypozincemia together by many mechanisms participate in excessive oxidative stress and are highly associated with inflammation and the development of obesity-related complications. Obesity represents a critical risk factor for development of insulin resistance status. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Anti-inflammatory homoeopathic drug dilutions restrain lipopolysaccharide-induced release of pro-inflammatory cytokines: In vitro and in vivo evidence

    Directory of Open Access Journals (Sweden)

    Umesh B Mahajan

    2017-01-01

    Full Text Available Context: The lipopolysaccharide (LPS-induced cytokine release and oxidative stress are validated experimental parameters used to test anti-inflammatory activity. We investigated the effects of homoeopathic mother tinctures, 6 CH, 30 CH and 200 CH dilutions of Arnica montana, Thuja occidentalis and Bryonia alba against LPS (1 μg/ml-induced cytokine release from RAW-264.7 cells and human whole-blood culture. Materials and Methods: For in vivo evaluations, mice were orally treated with 0.1 ml drug dilutions twice a day for 5 days followed by an intraperitoneal injection of 0.5 mg/kg LPS. After 24 h, the mice were sacrificed and serum levels of pro-inflammatory cytokines and nitric oxide were determined. The extent of oxidative stress was determined in the liver homogenates as contents of reduced glutathione, malondialdehyde, superoxide dismutase and catalase. Results: The tested drug dilutions significantly reduced in vitro LPS-induced release of tumour necrosis factor-α, interleukin-1 (IL-1 and IL-6 from the RAW-264.7 cells and human whole blood culture. Similar suppression of cytokines was evident in mice serum samples. These drugs also protected mice from the LPS-induced oxidative stress in liver tissue. Conclusions: Our findings substantiate the protective effects of Arnica, Thuja and Bryonia homoeopathic dilutions against LPS-induced cytokine elevations and oxidative stress. This study authenticates the claims of anti-inflammatory efficacy of these homoeopathic drugs.

  18. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    Science.gov (United States)

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  19. Lysergic acid diethylamide causes photoreceptor cell damage through inducing inflammatory response and oxidative stress.

    Science.gov (United States)

    Hu, Qi-Di; Xu, Ling-Li; Gong, Yan; Wu, Guo-Hai; Wang, Yu-Wen; Wu, Shan-Jun; Zhang, Zhe; Mao, Wei; Zhou, Yu-Sheng; Li, Qin-Bo; Yuan, Jian-Shu

    2018-01-19

    Lysergic acid diethylamide (LSD), a classical hallucinogen, was used as a popular and notorious substance of abuse in various parts of the world. Its abuse could result in long-lasting abnormalities in retina and little is known about the exact mechanism. This study was to investigate the effect of LSD on macrophage activation state at non-toxic concentration and its resultant toxicity to photoreceptor cells. Results showed that cytotoxicity was caused by LSD on 661 W cells after co-culturing with RAW264.7 cells. Treatment with LSD-induced RAW264.7 cells to the M1 phenotype, releasing more pro-inflammatory cytokines, and increasing the M1-related gene expression. Moreover, after co-culturing with RAW264.7 cells, significant oxidative stress in 661 W cells treated with LSD was observed, by increasing the level of malondialdehyde (MDA) and reactive oxygen species (ROS), and decreasing the level of glutathione (GSH) and the activity of superoxide dismutase (SOD). Our study demonstrated that LSD caused photoreceptor cell damage by inducing inflammatory response and resultant oxidative stress, providing the scientific rationale for the toxicity of LSD to retina.

  20. Reductive Stress in Inflammation-Associated Diseases and the Pro-Oxidant Effect of Antioxidant Agents

    Directory of Open Access Journals (Sweden)

    Israel Pérez-Torres

    2017-10-01

    Full Text Available Abstract: Reductive stress (RS is the counterpart oxidative stress (OS, and can occur in response to conditions that shift the redox balance of important biological redox couples, such as the NAD+/NADH, NADP+/NADPH, and GSH/GSSG, to a more reducing state. Overexpression of antioxidant enzymatic systems leads to excess reducing equivalents that can deplete reactive oxidative species, driving the cells to RS. A feedback regulation is established in which chronic RS induces OS, which in turn, stimulates again RS. Excess reducing equivalents may regulate cellular signaling pathways, modify transcriptional activity, induce alterations in the formation of disulfide bonds in proteins, reduce mitochondrial function, decrease cellular metabolism, and thus, contribute to the development of some diseases in which NF-κB, a redox-sensitive transcription factor, participates. Here, we described the diseases in which an inflammatory condition is associated to RS, and where delayed folding, disordered transport, failed oxidation, and aggregation are found. Some of these diseases are aggregation protein cardiomyopathy, hypertrophic cardiomyopathy, muscular dystrophy, pulmonary hypertension, rheumatoid arthritis, Alzheimer’s disease, and metabolic syndrome, among others. Moreover, chronic consumption of antioxidant supplements, such as vitamins and/or flavonoids, may have pro-oxidant effects that may alter the redox cellular equilibrium and contribute to RS, even diminishing life expectancy.

  1. Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation.

    Science.gov (United States)

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X; Villoslada, Pablo

    2013-01-01

    Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of oxidative stress and pro-inflammatory cytokines

  2. The shared role of oxidative stress and inflammation in major depressive disorder and nicotine dependence.

    Science.gov (United States)

    Nunes, Sandra Odebrecht Vargas; Vargas, Heber Odebrecht; Prado, Eduardo; Barbosa, Decio Sabbatini; de Melo, Luiz Picoli; Moylan, Steven; Dodd, Seetal; Berk, Michael

    2013-09-01

    Nicotine dependence is common in people with mood disorders; however the operative pathways are not well understood. This paper reviews the contribution of inflammation and oxidative stress pathways to the co-association of depressive disorder and nicotine dependence, including increased levels of pro-inflammatory cytokines, increased acute phase proteins, decreased levels of antioxidants and increased oxidative stress. These could be some of the potential pathophysiological mechanisms involved in neuroprogression. The shared inflammatory and oxidative stress pathways by which smoking may increase the risk for development of depressive disorders are in part mediated by increased levels of pro-inflammatory cytokines, diverse neurotransmitter systems, activation the hypothalamic-pituitary-adrenal (HPA) axis, microglial activation, increased production of oxidative stress and decreased levels of antioxidants. Depressive disorder and nicotine dependence are additionally linked imbalance between neuroprotective and neurodegenerative metabolites in the kynurenine pathway that contribute to neuroprogression. These pathways provide a mechanistic framework for understanding the interaction between nicotine dependence and depressive disorder. Copyright © 2013. Published by Elsevier Ltd.

  3. Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration.

    Science.gov (United States)

    Singh, Ashish; Tripathi, Pratibha; Prakash, Om; Singh, Mahendra Pratap

    2016-12-01

    Cypermethrin induces oxidative stress, microglial activation, inflammation and apoptosis leading to Parkinsonism in rats. While ibuprofen, a non-steroidal anti-inflammatory drug, relieves from inflammation, its efficacy against cypermethrin-induced Parkinsonism has not yet been investigated. The study aimed to explore the protective role of ibuprofen in cypermethrin-induced Parkinsonism, an environmentally relevant model of Parkinson's disease (PD), along with its underlying mechanism. Animals were treated with/without cypermethrin in the presence/absence of ibuprofen. Behavioural, immunohistochemical and biochemical parameters of Parkinsonism and expression of pro-inflammatory and pro-apoptotic proteins along with mitogen-activated protein kinases (MAPKs) were determined. Ibuprofen resisted cypermethrin-induced behavioural impairments, striatal dopamine depletion, oxidative stress in the nigrostriatal tissues and loss of the nigral dopamine producing cells and increase in microglial activation along with atypical expression of pro-inflammatory and apoptotic proteins that include cyclooxygenase-2, tumour necrosis factor-α, MAPKs (c-Jun N-terminal kinase, p38 and extracellular signal-regulated kinase), B cell lymphoma 2-associated protein X, tumour suppressor protein p53, cytochrome c and caspase-3 in the nigrostriatal tissue. The results obtained thus demonstrate that ibuprofen lessens inflammation and regulates MAPKs expression thereby averts cypermethrin-induced Parkinsonism.

  4. Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response

    Science.gov (United States)

    Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2012-10-01

    The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major

  5. Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation

    Science.gov (United States)

    di Penta, Alessandra; Moreno, Beatriz; Reix, Stephanie; Fernandez-Diez, Begoña; Villanueva, Maite; Errea, Oihana; Escala, Nagore; Vandenbroeck, Koen; Comella, Joan X.; Villoslada, Pablo

    2013-01-01

    Background Demyelination and axonal damage are critical processes in the pathogenesis of multiple sclerosis (MS). Oxidative stress and pro-inflammatory cytokines elicited by inflammation mediates tissue damage. Methods/Principal Findings To monitor the demyelination and axonal injury associated with microglia activation we employed a model using cerebellar organotypic cultures stimulated with lipopolysaccharide (LPS). Microglia activated by LPS released pro-inflammatory cytokines (IL-1β, IL-6 and TNFα), and increased the expression of inducible nitric oxide synthase (iNOS) and production of reactive oxygen species (ROS). This activation was associated with demyelination and axonal damage in cerebellar cultures. Axonal damage, as revealed by the presence of non-phosphorylated neurofilaments, mitochondrial accumulation in axonal spheroids, and axonal transection, was associated with stronger iNOS expression and concomitant increases in ROS. Moreover, we analyzed the contribution of pro-inflammatory cytokines and oxidative stress in demyelination and axonal degeneration using the iNOS inhibitor ethyl pyruvate, a free-scavenger and xanthine oxidase inhibitor allopurinol, as well as via blockage of pro-inflammatory cytokines using a Fc-TNFR1 construct. We found that blocking microglia activation with ethyl pyruvate or allopurinol significantly decreased axonal damage, and to a lesser extent, demyelination. Blocking TNFα significantly decreased demyelination but did not prevented axonal damage. Moreover, the most common therapy for MS, interferon-beta, was used as an example of an immunomodulator compound that can be tested in this model. In vitro, interferon-beta treatment decreased oxidative stress (iNOS and ROS levels) and the release of pro-inflammatory cytokines after LPS stimulation, reducing axonal damage. Conclusion The model of neuroinflammation using cerebellar culture stimulated with endotoxin mimicked myelin and axonal damage mediated by the combination of

  6. Anti-Inflammatory and Gastroprotective Roles of Rabdosia inflexa through Downregulation of Pro-Inflammatory Cytokines and MAPK/NF-κB Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Md Rashedunnabi Akanda

    2018-02-01

    Full Text Available Globally, gastric ulcer is a vital health hazard for a human. Rabdosia inflexa (RI has been used in traditional medicine for inflammatory diseases. The present study aimed to investigate the protective effect and related molecular mechanism of RI using lipopolysaccharide (LPS-induced inflammation in RAW 246.7 cells and HCl/EtOH-induced gastric ulcer in mice. We applied 3-(4,5-dimethyl-thiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, nitric oxide (NO, reactive oxygen species (ROS, histopathology, malondialdehyde (MDA, quantitative real-time polymerase chain reaction (qPCR, immunohistochemistry (IHC, and Western blot analyses to evaluate the protective role of RI. Study revealed that RI effectively attenuated LPS-promoted NO and ROS production in RAW 246.7 cells. In addition, RI mitigated gastric oxidative stress by inhibiting lipid peroxidation, elevating NO, and decreasing gastric inflammation. RI significantly halted elevated gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, inducible nitric oxide synthetase (iNOS, and cyclooxygenase-2 (COX-2 in gastric tissue. Likewise, RI markedly attenuated the mitogen-activated protein kinases (MAPKs phosphorylation, COX-2 expression, phosphorylation and degradation of inhibitor kappa B (IκBα and activation of nuclear factor kappa B (NF-κB. Thus, experimental findings suggested that the anti-inflammatory and gastroprotective activities of RI might contribute to regulating pro-inflammatory cytokines and MAPK/NF-κB signaling pathways.

  7. Nutritionally Mediated Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz

    2013-01-01

    Full Text Available There are many sources of nutritionally mediated oxidative stress that trigger inflammatory cascades along short and long time frames. These events are primarily mediated via NFκB. On the short-term scale postprandial inflammation is characterized by an increase in circulating levels of IL-6 and TNF-α and is mirrored on the long-term by proinflammatory gene expression changes in the adipocytes and peripheral blood mononuclear cells (PBMCs of obese individuals. Specifically the upregulation of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL2/MIP-2α, and CXCL3/MIP-2β is noted because these changes have been observed in both adipocytes and PBMC of obese humans. In comparing numerous human intervention studies it is clear that pro-inflammatory and anti-inflammatory consumption choices mediate gene expression in humans adipocytes and peripheral blood mononuclear cells. Arachidonic acid and saturated fatty acids (SFAs both demonstrate an ability to increase pro-inflammatory IL-8 along with numerous other inflammatory factors including IL-6, TNFα, IL-1β, and CXCL1 for arachidonic acid and IGB2 and CTSS for SFA. Antioxidant rich foods including olive oil, fruits, and vegetables all demonstrate an ability to lower levels of IL-6 in PBMCs. Thus, dietary choices play a complex role in the mediation of unavoidable oxidative stress and can serve to exacerbate or dampen the level of inflammation.

  8. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    Science.gov (United States)

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p stress groups. Malondialdehyde (MDA) content was significantly increased (p stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  9. Oxidized LDL Promotes Apoptosis and Expression of Pro ...

    African Journals Online (AJOL)

    Accumulation of lipid within non-adipose tissues can induce inflammation by promoting macrophage infiltration and activation. Oxidized lipoproteins (oxLDL) have been known to induce cellular dysfunction in resident macrophages through pro-inflammatory and pro-apoptotic properties. However research into the ...

  10. Inhibition of human polimorfonuclear leucocyte migration by clofazimine: a new pro-oxidative anti-inflammatory agent

    International Nuclear Information System (INIS)

    Jansen van Rensburg, C.E.

    1986-10-01

    Preliminary studies on the in vitro and in vivo effects of clofazimine on the function of polymorphonuclear leucocytes (PMNL) from normal individuals and patients with lepromatous leprosy showed that clofazimine caused a progressive dose-dependent inhibition of both random mortality of PMNL as well as migration of PMNL induced by the leucoattractant endotoxin-activated serum (EAS). The drug also increased chemiluminescence as well as hexose monophosphate shunt (HMS). These studies on clofazimine include the use of radiolabelling with 14 C, 125 I and 3 H. Clofazimine-mediated inhibition of PMNL migration is dependent on intact membrane-associated oxidative metabolism. Clofazimine is therefore a pro-oxidative anti-inflammatory agent

  11. Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial.

    Science.gov (United States)

    Creswell, J David; Irwin, Michael R; Burklund, Lisa J; Lieberman, Matthew D; Arevalo, Jesusa M G; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W

    2012-10-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N = 40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35) = 7.86, p = .008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33) = 3.39, p = .075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Sevoflurane posttreatment prevents oxidative and inflammatory injury in ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Julie Wagner

    Full Text Available Mechanical ventilation is a life-saving clinical treatment but it can induce or aggravate lung injury. New therapeutic strategies, aimed at reducing the negative effects of mechanical ventilation such as excessive production of reactive oxygen species, release of pro-inflammatory cytokines, and transmigration as well as activation of neutrophil cells, are needed to improve the clinical outcome of ventilated patients. Though the inhaled anesthetic sevoflurane is known to exert organ-protective effects, little is known about the potential of sevoflurane therapy in ventilator-induced lung injury. This study focused on the effects of delayed sevoflurane application in mechanically ventilated C57BL/6N mice. Lung function, lung injury, oxidative stress, and inflammatory parameters were analyzed and compared between non-ventilated and ventilated groups with or without sevoflurane anesthesia. Mechanical ventilation led to a substantial induction of lung injury, reactive oxygen species production, pro-inflammatory cytokine release, and neutrophil influx. In contrast, sevoflurane posttreatment time dependently reduced histological signs of lung injury. Most interestingly, increased production of reactive oxygen species was clearly inhibited in all sevoflurane posttreatment groups. Likewise, the release of the pro-inflammatory cytokines interleukin-1β and MIP-1β and neutrophil transmigration were completely prevented by sevoflurane independent of the onset of sevoflurane administration. In conclusion, sevoflurane posttreatment time dependently limits lung injury, and oxidative and pro-inflammatory responses are clearly prevented by sevoflurane irrespective of the onset of posttreatment. These findings underline the therapeutic potential of sevoflurane treatment in ventilator-induced lung injury.

  13. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    Science.gov (United States)

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the

  14. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation.

    Directory of Open Access Journals (Sweden)

    Melissa A Badding

    Full Text Available Indium-tin oxide (ITO is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO, and ventilation dust particles activated nuclear factor kappa B (NFκB within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8 within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue.

  15. Impact of weight loss on oxidative stress and inflammatory cytokines ...

    African Journals Online (AJOL)

    Background: Type 2 diabetes mellitus is associated with abnormal markers of inflammatory cytokines and oxidative stress markers. Although, these abnormalities could be modulated with weight reduction; there is limitation in clinical studies that have addressed the beneficial effects of weight reduction in modulating ...

  16. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis.

    Science.gov (United States)

    Mahmood, Dler Faieeq Darweesh; Abderrazak, Amna; Couchie, Dominique; Lunov, Oleg; Diderot, Vimala; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Gosselet, Fabien; Simmet, Thomas; Rouis, Mustapha; El Hadri, Khadija

    2013-07-01

    Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. Copyright © 2013 Wiley Periodicals, Inc.

  17. Anti-Inflammatory Lactobacillus rhamnosus CNCM I-3690 Strain Protects against Oxidative Stress and Increases Lifespan in Caenorhabditis elegans

    Science.gov (United States)

    Grompone, Gianfranco; Martorell, Patricia; Llopis, Silvia; González, Núria; Genovés, Salvador; Mulet, Ana Paula; Fernández-Calero, Tamara; Tiscornia, Inés; Bollati-Fogolín, Mariela; Chambaud, Isabelle; Foligné, Benoit; Montserrat, Agustín; Ramón, Daniel

    2012-01-01

    Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total) and nematode viability was assessed after oxidative stress (3 mM and 5 mM H2O2). One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans. PMID:23300685

  18. Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Gianfranco Grompone

    Full Text Available Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabditis elegans as host. C. elegans were fed on different LAB strains (78 in total and nematode viability was assessed after oxidative stress (3 mM and 5 mM H(2O(2. One strain, identified as Lactobacillus rhamnosus CNCM I-3690, protected worms by increasing their viability by 30% and, also, increased average worm lifespan by 20%. Moreover, transcriptomic analysis of C. elegans fed with this strain showed that increased lifespan is correlated with differential expression of the DAF-16/insulin-like pathway, which is highly conserved in humans. This strain also had a clear anti-inflammatory profile when co-cultured with HT-29 cells, stimulated by pro-inflammatory cytokines, and co-culture systems with HT-29 cells and DC in the presence of LPS. Finally, this Lactobacillus strain reduced inflammation in a murine model of colitis. This work suggests that C. elegans is a fast, predictive and convenient screening tool to identify new potential antioxidant probiotic strains for subsequent use in humans.

  19. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice

    International Nuclear Information System (INIS)

    Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna; Chowdhury, Abhijit; Boyer, James L.; Santra, Amal

    2011-01-01

    Arsenic is an environmental toxicant and carcinogen. Exposure to arsenic is associated with development of liver fibrosis and portal hypertension through ill defined mechanisms. We evaluated hepatic fibrogenesis after long term arsenic exposure in a murine model. BALB/c mice were exposed to arsenic by daily gavages of 6 μg/gm body weight for 1 year and were evaluated for markers of hepatic oxidative stress and fibrosis, as well as pro-inflammatory, pro-apoptotic and pro-fibrogenic factors at 9 and 12 months. Hepatic NADPH oxidase activity progressively increased in arsenic exposure with concomitant development of hepatic oxidative stress. Hepatic steatosis with occasional collection of mononuclear inflammatory cells and mild portal fibrosis were the predominant liver lesion observed after 9 months of arsenic exposure, while at 12 months, the changes included mild hepatic steatosis, inflammation, necrosis and significant fibrosis in periportal areas. The pathologic changes in the liver were associated with markers of hepatic stellate cells (HSCs) activation, matrix reorganization and fibrosis including α-smooth muscle actin, transforming growth factor-β1, PDGF-Rβ, pro-inflammatory cytokines and enhanced expression of tissue inhibitor of metalloproteinase-1 and pro(α) collagen type I. Moreover, pro-apoptotic protein Bax was dominantly expressed and Bcl-2 was down-regulated along with increased number of TUNEL positive hepatocytes in liver of arsenic exposed mice. Furthermore, HSCs activation due to increased hepatic oxidative stress observed after in vivo arsenic exposure was recapitulated in co-culture model of isolated HSCs and hepatocytes exposed to arsenic. These findings have implications not only for the understanding of the pathology of arsenic related liver fibrosis but also for the design of preventive strategies in chronic arsenicosis.

  20. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    Energy Technology Data Exchange (ETDEWEB)

    Marín-Prida, Javier [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Pavón-Fuentes, Nancy [International Centre for Neurological Restoration (CIREN), Ave. 25 e/ 158 y 160, Playa, PO Box: 11300, Havana (Cuba); Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R. [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Delgado-Roche, Liván [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pardo-Andreu, Gilberto L. [Centre for Research and Biological Evaluations (CEIEB), Institute of Pharmacy and Food, University of Havana, Ave. 23 e/ 214 y 222, La Lisa, PO Box: 430, Havana (Cuba); Polentarutti, Nadia [Istituto Clinico Humanitas (IRCCS), Rozzano (Italy); Riva, Federica [Department of Veterinary Science and Public Health (DIVET), University of Milano (Italy); Pentón-Arias, Eduardo [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba); Pentón-Rol, Giselle [Centre for Genetic Engineering and Biotechnology (CIGB), Ave. 31 e/158 y 190, Playa, PO Box: 6162, Havana (Cuba)

    2013-10-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H{sub 2}O{sub 2} and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H{sub 2}O{sub 2} and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy.

  1. Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats

    International Nuclear Information System (INIS)

    Marín-Prida, Javier; Pavón-Fuentes, Nancy; Llópiz-Arzuaga, Alexey; Fernández-Massó, Julio R.; Delgado-Roche, Liván; Mendoza-Marí, Yssel; Santana, Seydi Pedroso; Cruz-Ramírez, Alieski; Valenzuela-Silva, Carmen; Nazábal-Gálvez, Marcelo; Cintado-Benítez, Alberto; Pardo-Andreu, Gilberto L.; Polentarutti, Nadia; Riva, Federica; Pentón-Arias, Eduardo; Pentón-Rol, Giselle

    2013-01-01

    Since the inflammatory response and oxidative stress are involved in the stroke cascade, we evaluated here the effects of Phycocyanobilin (PCB, the C-Phycocyanin linked tetrapyrrole) on PC12 cell survival, the gene expression and the oxidative status of hypoperfused rat brain. After the permanent bilateral common carotid arteries occlusion (BCCAo), the animals were treated with saline or PCB, taking samples 24 h post-surgery. Global gene expression was analyzed with GeneChip Rat Gene ST 1.1 from Affymetrix; the expression of particular genes was assessed by the Fast SYBR Green RT-PCR Master Mix and Bioplex methods; and redox markers (MDA, PP, CAT, SOD) were evaluated spectrophotometrically. The PCB treatment prevented the H 2 O 2 and glutamate induced PC12 cell injury assessed by the MTT assay, and modulated 190 genes (93 up- and 97 down-regulated) associated to several immunological and inflammatory processes in BCCAo rats. Furthermore, PCB positively modulated 19 genes mostly related to a detrimental pro-inflammatory environment and counteracted the oxidative imbalance in the treated BCCAo animals. Our results support the view of an effective influence of PCB on major inflammatory mediators in acute cerebral hypoperfusion. These results suggest that PCB has a potential to be a treatment for ischemic stroke for which further studies are needed. - Highlights: • Phycocyanobilin (PCB) prevents H 2 O 2 and glutamate induced PC12 cell viability loss. • Anterior cortex and striatum are highly vulnerable to cerebral hypoperfusion (CH). • PCB modulates 190 genes associated to inflammation in acute CH. • PCB regulates 19 genes mostly related to a detrimental pro-inflammatory environment. • PCB restores redox and immune balances showing promise as potential stroke therapy

  2. Duloxetine prevents the effects of prenatal stress on depressive-like and anxiety-like behavior and hippocampal expression of pro-inflammatory cytokines in adult male offspring rats.

    Science.gov (United States)

    Zhang, Xiaosong; Wang, Qi; Wang, Yan; Hu, Jingmin; Jiang, Han; Cheng, Wenwen; Ma, Yuchao; Liu, Mengxi; Sun, Anji; Zhang, Xinxin; Li, Xiaobai

    2016-12-01

    Stress during pregnancy may cause neurodevelopmental and psychiatric disorders. However, the mechanisms are largely unknown. Currently, pro-inflammatory cytokines have been identified as a risk factor for depression and anxiety disorder. Unfortunately, there is very little research on the long-term effects of prenatal stress on the neuroinflammatory system of offspring. Moreover, the relationship between antidepressant treatment and cytokines in the central nervous system, especially in the hippocampus, an important emotion modulation center, is unclear. Therefore, the aim of this study was to determine the effects of prenatal chronic mild stress during development on affective-like behaviors and hippocampal cytokines in adult offspring, and to verify whether antidepressant (duloxetine) administration from early adulthood could prevent the harmful consequences. To do so, prenatally stressed and non-stressed Sprague-Dawley rats were treated with either duloxetine (10mg/kg/day) or vehicle from postnatal day 60 for 21days. Adult offspring were divided into four groups: 1) prenatal stress+duloxetine treatment, 2) prenatal stress+vehicle, 3) duloxetine treatment alone, and 4) vehicle alone. Adult offspring were assessed for anxiety-like behavior using the open field test and depression-like behavior using the forced swim test. Brains were analyzed for pro-inflammatory cytokine markers in the hippocampus via real-time PCR. Results demonstrate that prenatal stress-induced anxiety- and depression-like behaviors are associated with an increase in hippocampal inflammatory mediators, and duloxetine administration prevents the increased hippocampal pro-inflammatory cytokine interleukin-6 and anxiety- and depression-like behavior in prenatally stressed adult offspring. This research provides important evidence on the long-term effect of PNS exposure during development in a model of maternal adversity to study the pathogenesis of depression and its therapeutic interventions

  3. Anti-inflammatory effects of insulin.

    Science.gov (United States)

    Dandona, Paresh; Chaudhuri, Ajay; Mohanty, Priya; Ghanim, Husam

    2007-07-01

    This review deals with the recent observations on the pro-inflammatory effects of glucose and the anti-inflammatory actions of insulin. Apart from being novel, they are central to our understanding of why hyperglycemia is a prognosticator of bad clinical outcomes including patients with acute coronary syndromes, stroke and in patients in the intensive care unit. The pro-inflammatory effect of glucose as well as that of other macronutrients including fast food meals provides the basis of chronic oxidative stress and inflammation in the obese and their propensity to atherosclerotic disease. The anti-inflammatory action of insulin provides a neutralizing effect to balance macronutrient induced inflammation on the one hand and the possibility of using insulin as an anti-inflammatory drug on the other. The actions of macronutrients and insulin described above explain why insulin resistant states like obesity and type 2 diabetes are associated with oxidative stress, inflammation and atherosclerosis. They also suggest that insulin may be antiatherogenic.

  4. Selol, an organic selenium donor, prevents lipopolysaccharide-induced oxidative stress and inflammatory reaction in the rat brain.

    Science.gov (United States)

    Dominiak, Agnieszka; Wilkaniec, Anna; Jęśko, Henryk; Czapski, Grzegorz A; Lenkiewicz, Anna M; Kurek, Eliza; Wroczyński, Piotr; Adamczyk, Agata

    2017-09-01

    Neuroinflammation and oxidative stress are key intertwined pathological factors in many neurological, particularly neurodegenerative diseases, such as Alzheimer's and Parkinson's disorders as well as autism. The present study was conducted to evaluate the protective effects of Selol, an organic selenium donor, against lipopolysaccharide (LPS)-mediated inflammation in rat brain. The results demonstrated that the peripheral administration of LPS in a dose of 100 μg/kg b.w. evoked typical pathological reaction known as systemic inflammatory response. Moreover, we observed elevated blood levels of thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress, as well as increased concentration of tumor necrosis factor-α (TNF-α) in LPS-treated animals. Selol significantly prevented these LPS-evoked changes. Subsequently, Selol protected against LPS-induced up-regulation of proinflammatory cytokines (Tnfa, Ifng, Il6) in rat brain cortex. The molecular mechanisms through which Selol prevented the neuroinflammation were associated with the inhibition of oxidized glutathione (GSSG) accumulation and with an increase of glutathione-associated enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR) as well as thioredoxin reductase (TrxR) activity and expression. Finally, we observed that Selol administration effectively protected against LPS-induced changes in the expression of brain-derived neurotrophic factor (Bdnf). In conclusion, our studies indicated that Selol effectively protects against LPS-induced neuroinflammation by inhibiting pro-inflammatory cytokine release, by boosting antioxidant systems, and by augmenting BDNF level. Therefore, Selol could be a multi-potent and effective drug useful in the treatment and prevention of brain disorders associated with neuroinflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Giovanni, Marcella; Yue, Junqi; Zhang, Lifeng; Xie, Jianping; Ong, Choon Nam; Leong, David Tai

    2015-01-01

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10 −6 –10 −3 μg mL −1 . However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL −1 , through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10 −7 μg mL −1 . This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general

  6. Condition of pro-oxidant and antioxidant systems in guinea pigs’ lungs under the condition of immobilization stress

    Directory of Open Access Journals (Sweden)

    Mykhailo Stepanovych Reheda

    2017-11-01

    Full Text Available We have investigated the results of alterations in indices of pro-oxidant (conjugated diene and malondialdehyde and antioxidant (superoxide dismutase, ceruloplasmin, catalase systems in guinea pigs’ lungs  under the conditions of immobilization stress. The experiment was conducted on 40 female guinea pigs weighing 0.18-0.20 kg. The animals were divided into 4 groups, each contained 10 guinea pigs: I – intact guinea pigs ( control, II–guinea pigs with model of IS on1st day of experiment;Ш–animals on 2nd  day of experiment;IV- group of animals on 34th day of experimental model of IS. The results of our experimental work showed  a significant accumulation of lipid peroxidation products in the lung`s tissure in different periods ( on 1st, 2nd and 34th days of immobilization stress. The state of antioxidant defence was characterized by moderate decrease of inzymes activity (superoxide dismutase, catalase and ceruloplasmin. disorders of balance between pro-oxidant and antioxidant systems couse oxidative stress development.

  7. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    Science.gov (United States)

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Commonly used air filters fail to eliminate secondhand smoke induced oxidative stress and inflammatory responses.

    Science.gov (United States)

    Muthumalage, Thivanka; Pritsos, Karen; Hunter, Kenneth; Pritsos, Chris

    2017-07-01

    Secondhand smoke (SHS) causes approximately 50,000 deaths per year. Despite all the health warnings, smoking is still allowed indoors in many states exposing both workers and patrons to SHS on a daily basis. The opponents of smoking bans suggest that present day air filtration systems remove the health hazards of exposure to SHS. In this study, using an acute SHS exposure model, we looked at the impact of commonly used air filters (MERV-8 pleated and MERV-8 pleated activated charcoal) on SHS by assessing the inflammatory response and the oxidative stress response in C57BL/6 mice. In order to assess the inflammatory response, we looked at the tumor necrosis factor alpha (TNF-α) cytokine production by alveolar macrophages (AMs), and for the oxidative response, we quantified the products of lipid peroxidation and the total glutathione (tGSH) production in lung homogenates. Our results showed that SHS caused significant immune and oxidative stress responses. The tested filters resulted in only a modest alleviation of inflammatory and oxidative responses due to SHS exposure. Our data show that these air filters cannot eliminate the risk of SHS exposure and that a short-term exposure to SHS is sufficient to alter the inflammatory cytokine response and to initiate a complex oxidative stress response. Our results are consistent with the statement made by the Surgeon General's reports that there is no risk free level of exposure to SHS.

  9. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  10. Pro-inflammatory responses of RAW264.7 macrophages when treated with ultralow concentrations of silver, titanium dioxide, and zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni, Marcella [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Yue, Junqi; Zhang, Lifeng [PUB, 40 Scotts Road, Singapore 228231 (Singapore); Xie, Jianping [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore); Ong, Choon Nam [Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore 117549 (Singapore); NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411 (Singapore); Leong, David Tai, E-mail: cheltwd@nus.edu.sg [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585 (Singapore)

    2015-10-30

    Highlights: • Ultralow levels of common nanoparticles exist in environment and consumer products. • Common nanoparticles at ultralow levels induce mild pro-inflammation by macrophages. • The nanoparticles are cytotoxic only at high doses. - Abstract: To cellular systems, nanoparticles are considered as foreign particles. Upon particles and cells contact, innate immune system responds by activating the inflammatory pathway. However, excessive inflammation had been linked to various diseases ranging from allergic responses to cancer. Common nanoparticles, namely silver, titanium dioxide, and zinc oxide exist in the environment as well as in consumer products at ultralow level of 10{sup −6}–10{sup −3} μg mL{sup −1}. However, so far the risks of such low NPs concentrations remain unexplored. Therefore, we attempted to screen the pro-inflammatory responses after ultralow concentration treatments of the three nanoparticles on RAW264.7 macrophages, which are a part of the immune system, at both cellular and gene levels. Even though cytotoxicity was only observed at nanoparticles concentrations as high as 10 μg mL{sup −1}, through the level of NF-κB and upregulation of pro-inflammatory genes, we observed activation of the induction of genes encoding pro-inflammatory cytokines starting already at 10{sup −7} μg mL{sup −1}. This calls for more thorough characterization of nanoparticles in the environment as well as in consumer products to ascertain the health and safety of the consumers and living systems in general.

  11. Age-Specific Determinants of Pulse Wave Velocity among Metabolic Syndrome Components, Inflammatory Markers, and Oxidative Stress.

    Science.gov (United States)

    Kim, Minkyung; Kim, Minjoo; Yoo, Hye Jin; Lee, Seung Yeon; Lee, Sang-Hyun; Lee, Jong Ho

    2018-02-01

    Pulse wave velocity (PWV) is thought to have different relationships with metabolic syndrome (MS) components, inflammatory markers, and oxidative stress, according to age. However, age-specific determinants of PWV have not yet been studied. We investigated age-dependent relationships among PWV and MS components, inflammatory markers, and oxidative stress. A total of 4,318 subjects were divided into 4 groups: 19-34 y (n=687), 35-44 y (n=1,413), 45-54 y (n=1,384), and 55-79 y (n=834). MS components, brachial-ankle PWV (baPWV), high-sensitivity C-reactive protein (hs-CRP), and oxidative stress markers were measured. There were age-related increases in MS, body mass index (BMI), waist circumference, systolic blood pressure (SBP), diastolic BP (DBP), triglycerides, glucose, hs-CRP, oxidized low-density lipoprotein (LDL), 8-epi-prostaglandin F 2α (8-epi-PGF 2α ), and baPWV. BaPWV was significantly associated with sex and elevated BP in the 19-34 y group; with age, sex, BMI, elevated BP and triglycerides in the 35-44 y group; with age, sex, elevated BP, fasting glucose, hs-CRP and oxidized LDL in the 45-54 y group; and with age, BMI, elevated BP, fasting glucose and oxidized LDL in the 55-79 y group. Our results show that age-related increases in baPWV are associated with age-related changes in MS components, inflammatory markers, and oxidative stress. However, each of these factors has an age-specific, different impact on arterial stiffness. In particular, oxidative stress may be independently associated with arterial stiffness in individuals older than 45 y.

  12. A new approach to oxidative stress and inflammatory signaling during labour in healthy mothers and neonates.

    Science.gov (United States)

    Díaz-Castro, Javier; Florido, Jesus; Kajarabille, Naroa; Prados, Sonia; de Paco, Catalina; Ocon, Olga; Pulido-Moran, Mario; Ochoa, Julio J

    2015-01-01

    The objective of the current study was to investigate for the first time and simultaneously the oxidative stress and inflammatory signaling induced during the delivery in healthy mothers and their neonates. 56 mothers with normal gestational course and spontaneous delivery were selected. Blood samples were taken from mother (before and after delivery) both from vein and artery of umbilical cord. Lower antioxidant enzymes activities were observed in neonates compared with their mothers and lower oxidative stress in umbilical cord artery with respect to vein. There was an overexpression of inflammatory cytokines in the mother, such as IL-6 and TNF-α, and, in addition, PGE2 was also increased. Neonates showed lower levels of IL-6 and TNF-α and higher values of sTNF-RII and PGE2 in comparison with their mothers. Parturition increases oxidative damage in the mother, although the indicators of oxidative damage were lower in umbilical cord artery with respect to umbilical vein. The overexpression of inflammatory cytokines reveals that fetus suffers its own inflammatory process during parturition.

  13. A New Approach to Oxidative Stress and Inflammatory Signaling during Labour in Healthy Mothers and Neonates

    Directory of Open Access Journals (Sweden)

    Javier Díaz-Castro

    2015-01-01

    Full Text Available The objective of the current study was to investigate for the first time and simultaneously the oxidative stress and inflammatory signaling induced during the delivery in healthy mothers and their neonates. 56 mothers with normal gestational course and spontaneous delivery were selected. Blood samples were taken from mother (before and after delivery both from vein and artery of umbilical cord. Lower antioxidant enzymes activities were observed in neonates compared with their mothers and lower oxidative stress in umbilical cord artery with respect to vein. There was an overexpression of inflammatory cytokines in the mother, such as IL-6 and TNF-α, and, in addition, PGE2 was also increased. Neonates showed lower levels of IL-6 and TNF-α and higher values of sTNF-RII and PGE2 in comparison with their mothers. Parturition increases oxidative damage in the mother, although the indicators of oxidative damage were lower in umbilical cord artery with respect to umbilical vein. The overexpression of inflammatory cytokines reveals that fetus suffers its own inflammatory process during parturition.

  14. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Nino Maćešić

    2017-01-01

    Full Text Available Mastitis is one of the most frequent diseases of dairy cows throughout the world, therefore it causes the greatest economic losses in dairy cattle industry. These losses are reflected through: reduced milk production, increased costs of medication and the other animal health services, reduced fertility, early culling of animals and the value of discarded milk. Mastitis is also important from the aspects of public health, milk processing and animal welfare. In the pathogenesis of mastitis the key role plays the innate immune response which is the first line of defence against the pathogen invasion of the udder. The innate immune response generates an inflammatory reaction which is the elementary response of an organism to the tissue trauma induced by any physical, chemical or biological causative agent, but primarily it is the protective mechanism of a vital significance which includes increased phagocytic activity, secretion of antimicrobial substances, fibrosis as well as the alterations in tissue structure of affected organ or body cavity. The release of a number of inflammatory mediators as well as reactive oxygen species (ROS is an important part of inflammatory response. In dairy cows, the metabolic challenge that occurred during the transition from dry period to early lactation may additionally increase the release of ROS which may contribute to development of oxidative stress and inflammatory response. Oxidative stress is defined as a shift in the balance from cellular oxidation-reduction reactions towards oxidation, i.e. to the state of excessive release of oxidants when their removal by antioxidants is impaired and even insufficient. During peripartum period antioxidantive status of dairy cows is seriously impaired and consequently both the oxidative stress and inflammatory response may present the predisposing factors to their higher susceptibility to intramammary infections (IMI and mastitis. This association between oxidative stress

  15. The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows

    Directory of Open Access Journals (Sweden)

    Romana Turk

    2017-04-01

    Full Text Available Mastitis is one of the most frequent diseases of dairy cows throughout the world, therefore it causes the greatest economic losses in dairy cattle industry. These losses are reflected through: reduced milk production, increased costs of medication and the other animal health services, reduced fertility, early culling of animals and the value of discarded milk. Mastitis is also important from the aspects of public health, milk processing and animal welfare. In the pathogenesis of mastitis the key role plays the innate immune response which is the first line of defence against the pathogen invasion of the udder. The innate immune response generates an inflammatory reaction which is the elementary response of an organism to the tissue trauma induced by any physical, chemical or biological causative agent, but primarily it is the protective mechanism of a vital significance which includes increased phagocytic activity, secretion of antimicrobial substances, fibrosis as well as the alterations in tissue structure of affected organ or body cavity. The release of a number of inflammatory mediators as well as reactive oxygen species (ROS is an important part of inflammatory response. In dairy cows, the metabolic challenge that occurred during the transition from dry period to early lactation may additionally increase the release of ROS which may contribute to development of oxidative stress and inflammatory response. Oxidative stress is defined as a shift in the balance from cellular oxidation-reduction reactions towards oxidation, i.e. to the state of excessive release of oxidants when their removal by antioxidants is impaired and even insufficient. During peripartum period antioxidantive status of dairy cows is seriously impaired and consequently both the oxidative stress and inflammatory response may present the predisposing factors to their higher susceptibility to intramammary infections (IMI and mastitis. This association between oxidative stress

  16. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    International Nuclear Information System (INIS)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min; Xing, Mingyou; Liu, Liegang; Yao, Ping

    2013-01-01

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD

  17. Carbon monoxide alleviates ethanol-induced oxidative damage and inflammatory stress through activating p38 MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanyan; Gao, Chao; Shi, Yanru; Tang, Yuhan; Liu, Liang; Xiong, Ting; Du, Min [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Xing, Mingyou [Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Liu, Liegang [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Yao, Ping, E-mail: yaoping@mails.tjmu.edu.cn [Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Ministry of Education Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China); Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030 (China)

    2013-11-15

    Stress-inducible protein heme oxygenase-1(HO-1) is well-appreciative to counteract oxidative damage and inflammatory stress involving the pathogenesis of alcoholic liver diseases (ALD). The potential role and signaling pathways of HO-1 metabolite carbon monoxide (CO), however, still remained unclear. To explore the precise mechanisms, ethanol-dosed adult male Balb/c mice (5.0 g/kg.bw.) or ethanol-incubated primary rat hepatocytes (100 mmol/L) were pretreated by tricarbonyldichlororuthenium (II) dimmer (CORM-2, 8 mg/kg for mice or 20 μmol/L for hepatocytes), as well as other pharmacological reagents. Our data showed that CO released from HO-1 induction by quercetin prevented ethanol-derived oxidative injury, which was abolished by CO scavenger hemoglobin. The protection was mimicked by CORM-2 with the attenuation of GSH depletion, SOD inactivation, MDA overproduction, and the leakage of AST, ALT or LDH in serum and culture medium induced by ethanol. Moreover, CORM-2 injection or incubation stimulated p38 phosphorylation and suppressed abnormal Tnfa and IL-6, accompanying the alleviation of redox imbalance induced by ethanol and aggravated by inflammatory factors. The protective role of CORM-2 was abolished by SB203580 (p38 inhibitor) but not by PD98059 (ERK inhibitor) or SP600125 (JNK inhibitor). Thus, HO-1 released CO prevented ethanol-elicited hepatic oxidative damage and inflammatory stress through activating p38 MAPK pathway, suggesting a potential therapeutic role of gaseous signal molecule on ALD induced by naturally occurring phytochemicals. - Highlights: • CO alleviated ethanol-derived liver oxidative and inflammatory stress in mice. • CO eased ethanol and inflammatory factor-induced oxidative damage in hepatocytes. • The p38 MAPK is a key signaling mechanism for the protective function of CO in ALD.

  18. A realistic in vitro exposure revealed seasonal differences in (pro-)inflammatory effects from ambient air in Fribourg, Switzerland.

    Science.gov (United States)

    Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2018-01-01

    Ambient air pollutant levels vary widely in space and time, therefore thorough local evaluation of possible effects is needed. In vitro approaches using lung cell cultures grown at the air-liquid interface and directly exposed to ambient air can offer a reliable addition to animal experimentations and epidemiological studies. To evaluate the adverse effects of ambient air in summer and winter a multi-cellular lung model (16HBE14o-, macrophages, and dendritic cells) was exposed in a mobile cell exposure system. Cells were exposed on up to three consecutive days each 12 h to ambient air from Fribourg, Switzerland, during summer and winter seasons. Higher particle number, particulate matter mass, and nitrogen oxide levels were observed in winter ambient air compared to summer. Good cell viability was seen in cells exposed to summer air and short-term winter air, but cells exposed three days to winter air were compromised. Exposure of summer ambient air revealed no significant upregulation of oxidative stress or pro-inflammatory genes. On the opposite, the winter ambient air exposure led to an increased oxidative stress after two exposure days, and an increase in three assessed pro-inflammatory genes already after 12 h of exposure. We found that even with a short exposure time of 12 h adverse effects in vitro were observed only during exposure to winter but not summer ambient air. With this work we have demonstrated that our simple, fast, and cost-effective approach can be used to assess (adverse) effects of ambient air.

  19. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  20. Supplementation with vitamin A enhances oxidative stress in the lungs of rats submitted to aerobic exercise.

    Science.gov (United States)

    Gasparotto, Juciano; Petiz, Lyvia Lintzmaier; Girardi, Carolina Saibro; Bortolin, Rafael Calixto; de Vargas, Amanda Rodrigues; Henkin, Bernardo Saldanha; Chaves, Paloma Rodrigues; Roncato, Sabrina; Matté, Cristiane; Zanotto-Filho, Alfeu; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-12-01

    Exercise training induces reactive oxygen species production and low levels of oxidative damage, which are required for induction of antioxidant defenses and tissue adaptation. This process is physiological and essential to improve physical conditioning and performance. During exercise, endogenous antioxidants are recruited to prevent excessive oxidative stress, demanding appropriate intake of antioxidants from diet or supplements; in this context, the search for vitamin supplements that enhance the antioxidant defenses and improve exercise performance has been continuously increasing. On the other hand, excess of antioxidants may hinder the pro-oxidant signals necessary for this process of adaptation. The aim of this study was to investigate the effects of vitamin A supplementation (2000 IU/kg, oral) upon oxidative stress and parameters of pro-inflammatory signaling in lungs of rats submitted to aerobic exercise (swimming protocol). When combined with exercise, vitamin A inhibited biochemical parameters of adaptation/conditioning by attenuating exercise-induced antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing the content of the receptor for advanced glycation end-products. Increased oxidative damage to proteins (carbonylation) and lipids (lipoperoxidation) was also observed in these animals. In sedentary animals, vitamin A decreased superoxide dismutase and increased lipoperoxidation. Vitamin A also enhanced the levels of tumor necrosis factor alpha and decreased interleukin-10, effects partially reversed by aerobic training. Taken together, the results presented herein point to negative effects associated with vitamin A supplementation at the specific dose here used upon oxidative stress and pro-inflammatory cytokines in lung tissues of rats submitted to aerobic exercise.

  1. Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages.

    Science.gov (United States)

    Haddad, George; Belosevic, Miodrag

    2009-02-01

    We examined the induction of macrophage pro-inflammatory responses by transferrin-derived synthetic peptide originally identified following digestion of transferrin from different species (murine, bovine, human N-lobe and goldfish) using elastase. The mass spectrometry analysis of elastase-digested murine transferrin identified a 31 amino acid peptide located in the N2 sub-domain of the transferrin N-lobe, that we named TMAP. TMAP was synthetically produced and shown to induce a number of pro-inflammatory genes by quantitative PCR. TMAP induced chemotaxis, a potent nitric oxide response, and TNF-alpha secretion in different macrophage populations; P338D1 macrophage-like cells, mouse peritoneal macrophages, mouse bone marrow-derived macrophages (BMDM) and goldfish macrophages. The treatment of BMDM cultures with TMAP stimulated the production of nine cytokines and chemokines (IL-6, MCP-5, MIP-1 alpha, MIP-1 gamma, MIP-2, GCSF, KC, VEGF, and RANTES) that was measured using cytokine antibody array and confirmed by Western blot. Our results indicate that transferrin-derived peptide, TMAP, is an immunomodulating molecule capable of inducing pro-inflammatory responses in lower and higher vertebrates.

  2. ß-Hydroxybutyrate Activates the NF-κB Signaling Pathway to Promote the Expression of Pro-Inflammatory Factors in Calf Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xiaoxia Shi

    2014-01-01

    Full Text Available Background/Aims: ß-hydroxybutyrate (BHBA is the major component of ketone bodies in ketosis. Dairy cows with ketosis often undergo oxidative stress. BHBA is related to the inflammation involved in other diseases of dairy cattle. However, whether BHBA can induce inflammatory injury in dairy cow hepatocytes and the potential mechanism of this induction are not clear. The NF-κB pathway plays a vital role in the inflammatory response. Methods: Therefore, this study evaluated the oxidative stress, pro-inflammatory factors and NF-κB pathway in cultured calf hepatocytes treated with different concentrations of BHBA, pyrrolidine dithiocarbamate (PDTC, an NF-κB pathway inhibitor and N-acetylcysteine (NAC, antioxidant. Results: The results showed that BHBA could significantly increase the levels of oxidation indicators (MDA, NO and iNOS, whereas the levels of antioxidation indicators (GSH-Px, CAT and SOD were markedly decreased in hepatocytes. The IKKß activity and phospho-IκBa (p-IκBa contents were increased in BHBA-treated hepatocytes. This increase was accompanied by the increased expression level and transcription activity of p65. The expression levels of NF-κB-regulated inflammatory cytokines, namely TNF-a, IL-6 and IL-1ß, were markedly increased after BHBA treatment, while significantly decreased after NAC treatment. However, the p-IκBa level and the expression and activity of p65 and its target genes were markedly decreased in the PDTC + BHBA group compared with the BHBA (1.8 mM group. Moreover, immunocytofluorescence of p65 showed a similar trend. Conclusion: The present data indicate that higher concentrations of BHBA can induce cattle hepatocyte inflammatory injury through the NF-κB signaling pathway, which may be activated by oxidative stress.

  3. Evaluation of Oxidative Stress Response Related Genetic Variants, Pro-oxidants, Antioxidants and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Nicole Lavender

    2015-09-01

    Full Text Available Background: Oxidative stress and detoxification mechanisms have been commonly studied in Prostate Cancer (PCa due to their function in the detoxification of potentially damaging reactive oxygen species (ROS and carcinogens. However, findings have been either inconsistent or inconclusive. These mixed findings may, in part, relate to failure to consider interactions among oxidative stress response related genetic variants along with pro- and antioxidant factors. Methods: We examined the effects of 33 genetic and 26 environmental oxidative stress and defense factors on PCa risk and disease aggressiveness among 2,286 men from the Cancer Genetic Markers of Susceptibility project (1,175 cases, 1,111 controls. Single and joint effects were analyzed using a comprehensive statistical approach involving logistic regression, multi-dimensionality reduction, and entropy graphs. Results: Inheritance of one CYP2C8 rs7909236 T or two SOD2 rs2758331 A alleles was linked to a 1.3- and 1.4-fold increase in risk of developing PCa, respectively (p-value = 0.006-0.013. Carriers of CYP1B1 rs1800440GG, CYP2C8 rs1058932TC and, NAT2 (rs1208GG, rs1390358CC, rs7832071TT genotypes were associated with a 1.3 to 2.2-fold increase in aggressive PCa [p-value = 0.04-0.001, FDR 0.088-0.939]. We observed a 23% reduction in aggressive disease linked to inheritance of one or more NAT2 rs4646247 A alleles (p = 0.04, FDR = 0.405. Only three NAT2 sequence variants remained significant after adjusting for multiple hypotheses testing, namely NAT2 rs1208, rs1390358, and rs7832071. Lastly, there were no significant gene-environment or gene-gene interactions associated with PCa outcomes. Conclusions: Variations in genes involved in oxidative stress and defense pathways may modify PCa. Our findings do not firmly support the role of oxidative stress genetic variants combined with lifestyle/environmental factors as modifiers of PCa and disease progression. However, additional multi

  4. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung.

    Directory of Open Access Journals (Sweden)

    Chad A Lerner

    Full Text Available Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used, and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292 in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that

  5. Evaluation of pro-oxidant-antioxidant balance (PAB) and its association with inflammatory cytokines in polycystic ovary syndrome (PCOS).

    Science.gov (United States)

    Artimani, T; Karimi, J; Mehdizadeh, M; Yavangi, M; Khanlarzadeh, E; Ghorbani, M; Asadi, S; Kheiripour, N

    2018-02-01

    Chronic low-grade inflammation has been suggested as a key contributor of the pathogenesis and development of polycystic ovary syndrome (PCOS). To investigate the association between oxidative stress status and inflammatory cytokines in follicular fluid of 21 PCOS women compared to 21 women with normal ovarian function who underwent intra-cytoplasmic sperm injection. Concentration of IL-6, IL-8, IL-10, and TNF-α was measured using sandwich ELISA. Oxidative stress was examined by measuring total oxidant status (TOS), malondialdehyde (MDA), total antioxidant capacity (TAC), and thiol groups. PCOS women had an elevated concentration of MDA and TOS compared to controls. Levels of TAC and thiol groups were lower in PCOS compared to controls. PCOS patients had a higher concentration of IL-6, IL-8, and TNF-α compared to controls. Concentration of IL-10 was lower in PCOS compared to controls. Significant correlations were found between MDA and TOS concentration with TNF-α and between IL-6 and MDA, IL-8 and TAC, IL-10 and TOS levels and also between IL-10 and TAC levels. TAC and thiol groups were negatively correlated with TNF-α. Increased oxidative stress in PCOS is associated with inflammation which is closely linked. Inflammation can induce production of inflammatory cytokines in this syndrome and directly stimulates excess ovarian androgen production.

  6. Kaempferol modulates pro-inflammatory NF-κB activation by suppressing advanced glycation endproducts-induced NADPH oxidase

    Science.gov (United States)

    Kim, Ji Min; Lee, Eun Kyeong; Kim, Dae Hyun; Yu, Byung Pal

    2010-01-01

    Advanced glycation endproducts (AGE) are oxidative products formed from the reaction between carbohydrates and a free amino group of proteins that are provoked by reactive species (RS). It is also known that AGE enhance the generation of RS and that the binding of AGE to a specific AGE receptor (RAGE) induces the activation of the redox-sensitive, pro-inflammatory transcription factor, nuclear factor-kappa B (NF-ĸB). In this current study, we investigated the anti-oxidative effects of short-term kaempferol supplementation on the age-related formation of AGE and the binding activity of RAGE in aged rat kidney. We further investigated the suppressive action of kaempferol against AGE's ability to stimulate activation of pro-inflammatory NF-ĸB and its molecular mechanisms. For this study, we utilized young (6 months old), old (24 months old), and kaempferol-fed (2 and 4 mg/kg/day for 10 days) old rats. In addition, for the molecular work, the rat endothelial cell line, YPEN-1 was used. The results show that AGE and RAGE were increased during aging and that these increases were blunted by kaempferol. In addition, dietary kaempferol reduced age-related increases in NF-κB activity and NF-ĸB-dependant pro-inflammatory gene activity. The most significant new finding from this study is that kaempferol supplementation prevented age-related NF-κB activation by suppressing AGE-induced nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Taken together, our results demonstrated that dietary kaempferol exerts its anti-oxidative and anti-inflammatory actions by modulating the age-related NF-κB signaling cascade and its pro-inflammatory genes by suppressing AGE-induced NADPH oxidase activation. Based on these data, dietary kaempferol is proposed as a possible anti-AGE agent that may have the potential for use in anti-inflammation therapies. PMID:20431987

  7. Protective effects of methanolic extract of Adhatoda vasica Nees leaf in collagen-induced arthritis by modulation of synovial toll-like receptor-2 expression and release of pro-inflammatory mediators

    Directory of Open Access Journals (Sweden)

    Rana Adhikary

    2016-03-01

    Full Text Available RA associated with oxidative stress and chronic inflammation has been a major health problem among the population worldwide. In this study protective effect of methanolic extract of Adhatoda vasica leaf (AVE was evaluated on Collagen-induced arthritis in male Swiss albino mice. Post oral administration of AVE at 50, 100 and 200 mg/kg body weight doses decreased the arthritic index and footpad swelling. AVE administration diminished pro-inflammatory cytokines in serum and synovial tissues. Reduced chemokines and neutrophil infiltration in synovial tissues after AVE administration dictated its protective effect against RA. Decreased LPO content and SOD activity along with concomitant rise in GSH and CAT activities from liver, spleen and synovial tissues indicated regulation of oxidative stress by AVE. In addition decreased CRP in serum along with suppressed TLR-2 expression in CIA mice after AVE treatment was also observed. Protective effect of AVE in RA is further supported from histopathological studies which showed improvement during bone damage. In conclusion this study demonstrated A. vasica is capable of regulating oxidative stress during CIA and therefore down regulated local and systemic release of pro-inflammatory mediators, which might be linked to mechanism of decreasing synovial TLR-2 expression via downregulating release of its regular endogenous ligands like CRP.

  8. The rat closely mimics oxidative stress and inflammation in humans after exercise but not after exercise combined with vitamin C administration.

    Science.gov (United States)

    Veskoukis, Aristidis S; Goutianos, Georgios; Paschalis, Vassilis; Margaritelis, Nikos V; Tzioura, Aikaterini; Dipla, Konstantina; Zafeiridis, Andreas; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G

    2016-04-01

    The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.

  9. Effects of dry period length and dietary energy source on inflammatory biomarkers and oxidative stress in dairy cows

    NARCIS (Netherlands)

    Mayasari, N.; Chen, J.; Ferrari, A.; Bruckmaier, R.M.; Kemp, B.; Parmentier, H.K.; Knegsel, van A.T.M.; Trevisi, E.

    2017-01-01

    Negative energy balance in dairy cows in early lactation has been associated with increased inflammation and oxidative stress in these cows. The objective of this study was to evaluate the effects of dry period (DP) length and dietary energy source on inflammatory biomarkers and oxidative stress

  10. Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients.

    Science.gov (United States)

    El Haouari, Mohammed

    2017-10-05

    Enhanced platelet activation and thrombosis are linked to various cardiovascular diseases. Among other mechanisms, oxidative stress seems to play a pivotal role in platelet hyperactivity. Indeed, upon stimulation by physiological agonists, human platelets generate and release several types of reactive oxygen species (ROS) such as O2-, H2O2 or OH- , further amplifying the platelet activation response via various signalling pathways, including, formation of isoprostanes, Ca2+ mobilization and NO inactivation. Furthermore, excessive platelet ROS generation, incorporation of free radicals from environment and/or depletion of antioxidants induce pro-oxidant, pro-inflammatory and platelet hyperaggregability effects, leading to the incidence of cardiovascular events. Here, we review the current knowledge regarding the effect of oxidative stress on platelet signaling pathways and its implication in CVD such as type 2 diabetes mellitus. We also summarize the role of natural antioxidants included in vegetables, fruits and medicinal herbs in reducing platelet function via an oxidative stress-mediated mechanism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Diabetes alters activation and repression of pro- and anti- inflammatory signalling pathways in the vasculature

    Directory of Open Access Journals (Sweden)

    Elyse eDi Marco

    2013-06-01

    Full Text Available A central mechanism driving vascular disease in diabetes is immune cell-mediated inflammation. In diabetes, enhanced oxidation and glycation of macromolecules, such as lipoproteins, insults the endothelium and activates both innate and adaptive arms of the immune system by generating new antigens for presentation to adaptive immune cells. Chronic inflammation of the endothelium in diabetes leads to continuous infiltration and accumulation of leukocytes at sites of endothelial cell injury. We will describe the central role of the macrophage as a source of signalling molecules and damaging by-products which activate infiltrating lymphocytes in the tissue and contribute to the pro-oxidant and pro-inflammatory micro-environment. An important aspect to be considered is the diabetes- associated defects in the immune system, such as fewer or dysfunctional athero-protective leukocyte subsets in the diabetic lesion compared to non-diabetic lesions. This review will discuss the key pro-inflammatory signalling pathways responsible for leukocyte recruitment and activation in the injured vessel, with particular focus on pro- and anti-inflammatory pathways aberrantly activated or repressed in diabetes. We aim to describe the interaction between advanced glycation end products (AGEs and their principle receptor RAGE, Angiotensin II (Ang II and the Ang II type 1 receptor (AT1R, in addition to reactive oxygen species (ROS production by NADPH oxidase (Nox enzymes that are relevant to vascular and immune cell function in the context of diabetic vasculopathy. Furthermore, we will touch on recent advances in epigenetic medicine that have revealed high glucose-mediated changes in the transcription of genes with known pro-inflammatory downstream targets. Finally, novel anti-atherosclerosis strategies that target the vascular immune interface will be explored; such as vaccination against modified LDL and pharmacological inhibition of ROS producing enzymes.

  12. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Oxidative Stress Markers in Tuberculosis and HIV/TB Co-Infection.

    Science.gov (United States)

    Rajopadhye, Shreewardhan Haribhau; Mukherjee, Sandeepan R; Chowdhary, Abhay S; Dandekar, Sucheta P

    2017-08-01

    Dysfunction of redox homeostasis has been implicated in many pathological conditions. An imbalance of pro- and anti-oxidants have been observed in Tuberculosis (TB) and its co-morbidities especially HIV/AIDS. The pro inflammatory milieu in either condition aggravates the physiological balance of the redox mechanisms. The present study therefore focuses on assessing the redox status of patients suffering from TB and HIV-TB co-infection. To assess the oxidative stress markers in the HIV-TB and TB study cohort. The current prospective study was conducted in Haffkine Institute, Parel, Maharashtra, India, during January 2013 to December 2015. Blood samples from 50 patients each suffering from active TB and HIV-TB co-infection were collected from Seth G.S.Medical College and KEM Hospital Mumbai and Group of Tuberculosis Hospital, Sewree Mumbai. Samples were processed and the experiments were carried out at the Department of Biochemistry, Haffkine Institute. Samples from 50 healthy volunteers were used as controls. Serum was assessed for pro-oxidant markers such as Nitric Oxide (NO), Thiobarbituric Acid Reactive Species (TBARS), C-Reactive Protein (CRP), superoxide anion. Antioxidant markers such as catalase and Superoxide Dismutase (SOD) were assessed. Total serum protein, was also assessed. Among the pro-oxidants, serum NO levels were decreased in TB group while no change was seen in HIV-TB group. TBARS and CRP levels showed significant increase in both groups; superoxide anion increased significantly in HIV-TB group. Catalase levels showed decreased activities in TB group. SOD activity significantly increased in HIV-TB but not in TB group. The total serum proteins were significantly increased in HIV-TB and TB groups. The values of Control cohort were with the normal reference ranges. In the present study, we found the presence of oxidative stress to be profound in the TB and HIV-TB co-infection population.

  14. Oxidative stress in rats experimentally infected by Sporothrix schenckii.

    Science.gov (United States)

    Castro, Verônica S P; Da Silva, Aleksandro S; Thomé, Gustavo R; Wolkmer, Patrícia; Castro, Jorge L C; Costa, Márcio M; Graça, Dominguita L; Oliveira, Daniele C; Alves, Sydney H; Schetinger, Maria R C; Lopes, Sonia T A; Stefani, Lenita M; Azevedo, Maria I; Baldissera, Matheus D; Andrade, Cinthia M

    2017-06-01

    The aim of this study was to evaluate whether oxidative stress occurs in rats experimentally infected by Sporothrix schenckii, and its possible effect on disease pathogenesis. Thirty rats were divided into two groups: the group A (uninfected, n = 18) and the group B (infected by S. schenckii, n=21). Blood samples were collected on days 15, 30 and 40 post-infection (PI). At each sampling time, six rats of the group A, and seven of the group B were bled. TBARS (thiobarbituric acid reactive substances) levels in serum samples were measured to evaluate lipid peroxidation. In addition, catalase (CAT) and superoxide dismutase (SOD) activities, known as biomarkers of antioxidants levels, were verified in whole blood. Seric pro-inflammatory cytokine levels were measured (IFN-γ, TNF-α, and IL-6), which showed that these inflammatory mediators were at higher levels in the infected rats (P sporotrichosis showed significantly higher (p sporotrichosis is a likely mechanism for redox imbalance, and consequently cause the oxidative stress in experimentally infected rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions

    Directory of Open Access Journals (Sweden)

    Ningjian Liang

    2015-12-01

    Full Text Available Chlorogenic acids (CGAs are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1 the relative composition of different CGA isomers present in coffee beverages; (2 analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3 description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  16. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Harpa Karadottir

    2015-12-01

    Full Text Available Mechanical ventilation (MV of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37. Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.

  17. Correlation of EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Yan

    2017-08-01

    Full Text Available Objective: To study the correlation of erythropoietin (EPO resistance with oxidative stress response and inflammatory response in patients with maintenance hemodialysis. Methods: A total of 184 patients with end-stage renal disease who received maintenance hemodialysis in Shaanxi Provincial People’s Hospital between March 2015 and October 2016 were selected as dialysis group, 102 volunteers who received physical examination in Shaanxi Provincial People’s Hospital during the same period were selected as control group, the EPO resistance index was assessed, the median was calculated, and serum oxidative stress and inflammatory response indexes were detected. Results: Serum T-AOC, SOD and CAT levels in dialysis group were significantly lower than those in control group while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in control group; serum T-AOC, SOD and CAT levels in patients with high ERI were significantly lower than those in patients with low ERI while MDA, AOPP, IFN-γ, HMGB-1, ICAM-1, IL-4 and IL-10 levels were significantly higher than those in patients with low ERI. Conclusion: The degree of EPO resistance in patients with maintenance hemodialysis is closely related to the activation of oxidative stress response and inflammatory response.

  18. Green tea increases anti-inflammatory tristetraprolin and decreases pro-inflammatory tumor necrosis factor mRNA levels in rats

    Directory of Open Access Journals (Sweden)

    Roussel Anne M

    2007-01-01

    Full Text Available Abstract Background Tristetraprolin (TTP/ZFP36 family proteins have anti-inflammatory activity by binding to and destabilizing pro-inflammatory mRNAs such as Tnf mRNA, and represent a potential therapeutic target for inflammation-related diseases. Tea has anti-inflammatory properties but the molecular mechanisms have not been completely elucidated. We hypothesized that TTP and/or its homologues might contribute to the beneficial effects of tea as an anti-inflammatory product. Methods Quantitative real-time PCR was used to investigate the effects of green tea (0, 1, and 2 g solid extract/kg diet on the expression of Ttp family genes (Ttp/Tis11/Zfp36, Zfp36l1/Tis11b, Zfp36l2/Tis11d, Zfp36l3, pro-inflammatory genes (Tnf, Csf2/Gm-csf, Ptgs2/Cox2, and Elavl1/Hua/Hur and Vegf genes in liver and muscle of rats fed a high-fructose diet known to induce insulin resistance, oxidative stress, inflammation, and TNF-alpha levels. Results Ttp and Zfp36l1 mRNAs were the major forms in both liver and skeletal muscle. Ttp, Zfp36l1, and Zfp36l2 mRNA levels were more abundant in the liver than those in the muscle. Csf2/Gm-csf and Zfp36l3 mRNAs were undetectable in both tissues. Tea (1 g solid extract/kg diet increased Ttp mRNA levels by 50–140% but Tnf mRNA levels decreased by 30% in both tissues, and Ptgs2/Cox2 mRNA levels decreased by 40% in the muscle. Tea (2 g solid extract/kg diet increased Elavl1/Hua/Hur mRNA levels by 40% in the liver but did not affect any of the other mRNA levels in liver or muscle. Conclusion These results show that tea can modulate Ttp mRNA levels in animals and suggest that a post-transcriptional mechanism through TTP could partially account for tea's anti-inflammatory properties. The results also suggest that drinking adequate amounts of green tea may play a role in the prevention of inflammation-related diseases.

  19. ER stress proteins in autoimmune and inflammatory diseases

    Directory of Open Access Journals (Sweden)

    Daisuke eMorito

    2012-03-01

    Full Text Available Over the past two decades, heat shock proteins (HSPs have been implicated in inflammatory responses and autoimmunity. HSPs were originally believed to maintain protein quality control in the cytosol. However, they also exist extracellularly and appear to act as inflammatory factors. Recently, a growing body of evidence suggested that the other class of stress proteins such as, endoplasmic reticulum (ER stress proteins, which originally act as protein quality control factors in the secretory pathway and are induced by ER stress in inflammatory lesions, also participate in inflammation and autoimmunity. The immunoglobulin heavy-chain binding protein (Bip/glucose-regulated protein 78 (Grp78, homocysteine-induced ER protein (Herp, calnexin, calreticulin, glucose-regulated protein 94 (Grp94/gp96, oxygen-regulated protein 150 (ORP150 and heat shock protein 47 (Hsp47/Serpin H1, which are expressed not only in the ER but also occasionally at the cell surface play pathophysiological roles in autoimmune and inflammatory diseases as pro- or anti-inflammatory factors. Here we describe the accumulating evidence of the participation of ER stress proteins in autoimmunity and inflammation and discuss the critical differences between the two classes of stress proteins.

  20. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium.

    Science.gov (United States)

    Lee, Wonjong; Lee, Dong Gun

    2017-07-22

    Resveratrol is a flavonoid found in various plants including grapes, which has been reported to be active against various pathogenic bacteria. However, antibacterial effects and mechanisms via pro-oxidant property of resveratrol remain unknown and speculative. This research investigated antibacterial mechanism of resveratrol against a food-borne human pathogen Salmonella typhimurium, and confirmed the cell death associated oxidative damage. Resveratrol increased outer membrane permeability and membrane depolarization. It also was observed DNA injury responses such as DNA fragmentation, increasing DNA contents and cell division inhibition. Intracellular ROS accumulation, GSH depletion and significant increased malondialdehyde levels were confirmed, which indicated pro-oxidant activity of resveratrol and oxidative stress. Furthermore, the observed lethal damages were reduced by antioxidant N-acetylcysteine treatment supported the view that resveratrol-induced oxidative stress stimulated S. typhimurium cell death. In conclusion, this study expands understanding on role of pro-oxidant property and insight into previously unrecognized oxygen-dependent anti-Salmonella mechanism on resveratrol. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Controlled reperfusion decreased reperfusion induced oxidative stress and evoked inflammatory response in experimental aortic-clamping animal model.

    Science.gov (United States)

    Jancsó, G; Arató, E; Hardi, P; Nagy, T; Pintér, Ö; Fazekas, G; Gasz, B; Takacs, I; Menyhei, G; Kollar, L; Sínay, L

    2016-09-12

    Revascularization after long term aortic ischaemia in vascular surgery induces reperfusion injury accompanied with oxidative stress and inflammatory responses. The hypothesis of this study was that the aortic occlusion followed by controlled reperfusion (CR) can reduce the ischaemia-reperfusion injury, the systemic and local inflammatory response induced by oxidative stress.Animal model was used. animals underwent a 4-hour infrarenal aortic occlusion followed by continuous reperfusion. Treated group: animals were treated with CR: after a 4-hour infrarenal aortic occlusion we made CR for 30 minutes with the crystalloid reperfusion solution (blood: crystalloid solution ratio 1:1) on pressure 60 Hgmm. Blood samples were collected different times. The developing oxidative stress was detected by the plasma levels of malondialdehyde, reduced glutathion, thiol groups and superoxide dismutase. The inflammatory response was measured by phorbol myristate acetate-induced leukocyte reactive oxygen species production and detection of change in myeloperoxidase levels. The animals were anaesthetized one week after terminating ligation and biopsy was taken from quadriceps muscle and large parenchymal organs.CR significantly reduced the postischaemic oxydative stress and inflammatory responses in early reperfusion period. Pathophysiological results: The rate of affected muscle fibers by degeneration was significantly higher in the untreated animal group. The infiltration of leukocytes in muscle and parenchymal tissues was significantly lower in the treatedgroup.CR can improve outcome after acute lower-limb ischaemia. The results confirm that CR might be also a potential therapeutic approach in vascular surgery against reperfusion injury in acute limb ischaemia. Supported by OTKA K108596.

  2. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    International Nuclear Information System (INIS)

    Arab, Hany H.; El-Sawalhi, Maha M.

    2013-01-01

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE 2 and LTB 4 ) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of arthritic rats

  3. Carvedilol alleviates adjuvant-induced arthritis and subcutaneous air pouch edema: Modulation of oxidative stress and inflammatory mediators

    Energy Technology Data Exchange (ETDEWEB)

    Arab, Hany H., E-mail: hany_h_arab@yahoo.com [Biochemistry Division, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taif University, Taif (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo (Egypt); El-Sawalhi, Maha M. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo (Egypt)

    2013-04-15

    Rheumatoid arthritis (RA) is a systemic inflammatory disease with cardiovascular complications as the leading cause of morbidity. Carvedilol is an adrenergic antagonist which has been safely used in treatment of several cardiovascular disorders. Given that carvedilol has powerful antioxidant/anti-inflammatory properties, we aimed to investigate its protective potential against arthritis that may add further benefits for its clinical usefulness especially in RA patients with concomitant cardiovascular disorders. Two models were studied in the same rat; adjuvant arthritis and subcutaneous air pouch edema. Carvedilol (10 mg/kg/day p.o. for 21 days) effectively suppressed inflammation in both models with comparable efficacy to the standard anti-inflammatory diclofenac (5 mg/kg/day p.o.). Notably, carvedilol inhibited paw edema and abrogated the leukocyte invasion to air pouch exudates. The latter observation was confirmed by the histopathological assessment of the pouch lining that revealed mitigation of immuno-inflammatory cell influx. Carvedilol reduced/normalized oxidative stress markers (lipid peroxides, nitric oxide and protein thiols) and lowered the release of inflammatory cytokines (TNF-α and IL-6), and eicosanoids (PGE{sub 2} and LTB{sub 4}) in sera and exudates of arthritic rats. Interestingly, carvedilol, per se, didn't present any effect on assessed biochemical parameters in normal rats. Together, the current study highlights evidences for the promising anti-arthritic effects of carvedilol that could be mediated through attenuation of leukocyte migration, alleviation of oxidative stress and suppression of proinflammatory cytokines and eicosanoids. - Highlights: ► Carvedilol possesses promising anti-arthritic properties. ► It markedly suppressed inflammation in adjuvant arthritis and air pouch edema. ► It abrogated the leukocyte invasion to air pouch exudates and linings. ► It reduced/normalized oxidative stress markers in sera and exudates of

  4. Inflammatory cytokines protect retinal pigment epithelial cells from oxidative stress-induced death

    DEFF Research Database (Denmark)

    Juel, Helene B; Faber, Carsten; Svendsen, Signe Goul

    2013-01-01

    -mediated induction of the anti-oxidative stress response, upregulating protective anti-oxidant pathway(s). These findings suggest caution for the clinical use of anti-inflammatory agents in the management of immune-associated eye diseases such as age-related macular degeneration....... protected from cell death by the addition of PCM. This protection was conferred, at least in part, by IFNγ and TNFα. Cell death induced by H2O2 or NaIO3 was preceded by mitochondrial dysfunction and by p62 upregulation, both of which were attenuated by PCM and/or by IFNγ+TNFα. RPE cells co...

  5. Caffeic acid attenuates the inflammatory stress induced by glycated LDL in human endothelial cells by mechanisms involving inhibition of AGE-receptor, oxidative, and endoplasmic reticulum stress.

    Science.gov (United States)

    Toma, Laura; Sanda, Gabriela M; Niculescu, Loredan S; Deleanu, Mariana; Stancu, Camelia S; Sima, Anca V

    2017-09-10

    Type 2 diabetes mellitus is a worldwide epidemic and its atherosclerotic complications determine the high morbidity and mortality of diabetic patients. Caffeic acid (CAF), a phenolic acid present in normal diets, is known for its antioxidant properties. The aim of this study was to investigate CAF's anti-inflammatory properties and its mechanism of action, using cultured human endothelial cells (HEC) incubated with glycated low-density lipoproteins (gLDL). Levels of the receptor for advanced glycation end-products (RAGE), inflammatory stress markers (C reactive protein, CRP; vascular cell adhesion molecule-1, VCAM-1; monocyte chemoattractant protein-1, MCP-1), and oxidative stress and endoplasmic reticulum stress (ERS) markers were evaluated in gLDL-exposed HEC, in the presence/absence of CAF. RAGE silencing or blocking, specific inhibitors for oxidative stress (apocynin, N-acetyl-cysteine), and ERS (salubrinal) were used. The results showed that: (i) gLDL induced CRP synthesis and secretion through mechanisms involving NADPH oxidase-dependent oxidative stress and ERS in HEC; (ii) gLDL-RAGE interaction, oxidative stress, and ERS stimulated the secretion of VCAM-1 and MCP-1 in HEC; and (iii) CAF reduced the secretion of CRP, VCAM-1, and MCP-1 in gLDL-exposed HEC by inhibiting RAGE expression, oxidative stress, and ERS. In conclusion, CAF might be a promising alternative to ameliorate a wide spectrum of disorders due to its complex mechanisms of action resulting in anti-inflammatory and antioxidative properties. © 2017 BioFactors, 43(5):685-697, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  6. The importance of balanced pro-inflammatory and anti-inflammatory mechanisms in diffuse lung disease

    Directory of Open Access Journals (Sweden)

    Strieter Robert

    2002-01-01

    Full Text Available Abstract The lung responds to a variety of insults in a remarkably consistent fashion but with inconsistent outcomes that vary from complete resolution and return to normal to the destruction of normal architecture and progressive fibrosis. Increasing evidence indicates that diffuse lung disease results from an imbalance between the pro-inflammatory and anti-inflammatory mechanisms, with a persistent imbalance that favors pro-inflammatory mediators dictating the development of chronic diffuse lung disease. This review focuses on the mediators that influence this imbalance.

  7. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment

    Directory of Open Access Journals (Sweden)

    Javier Martinez-Useros

    2017-03-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal types of tumors, and its incidence is rising worldwide. Survival can be improved when tumors are detected at an early stage; however, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. Several risk factors are associated to this disease. Chronic pancreatitis, diabetes, and some infectious disease are the most relevant risk factors. Incidence of PDAC has increased in the last decades. It is hypothesized it could be due to other acquired risk habits, like smoking, high alcohol intake, and obesity. Indeed, adipose tissue is a dynamic endocrine organ that secretes different pro-inflammatory cytokines, enzymes, and other factors that activate oxidative stress. Reactive oxygen species caused by oxidative stress, damage DNA, proteins, and lipids, and produce several toxic and high mutagenic metabolites that could modify tumor behavior, turning it into a malignant phenotype. Anti-oxidant compounds, like vitamins, are considered protective factors against cancer. Here, we review the literature on oxidative stress, the molecular pathways that activate or counteract oxidative stress, and potential treatment strategies that target reactive oxygen species suitable for this kind of cancer.

  8. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases

    NARCIS (Netherlands)

    Tak, P. P.; Zvaifler, N. J.; Green, D. R.; Firestein, G. S.

    2000-01-01

    Oxidative stress at sites of chronic inflammation can cause permanent genetic changes. The development of mutations in the p53 tumor suppressor gene and other key regulatory genes could help convert inflammation into chronic disease in rheumatoid arthritis and other inflammatory disorders

  9. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    Science.gov (United States)

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  10. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Tseng

    Full Text Available Exposure to diesel exhaust particles (DEP is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.

  11. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death

    Directory of Open Access Journals (Sweden)

    Puja Khanna

    2015-06-01

    Full Text Available Nanoparticles are emerging as a useful tool for a wide variety of biomedical, consumer and instrumental applications that include drug delivery systems, biosensors and environmental sensors. In particular, nanoparticles have been shown to offer greater specificity with enhanced bioavailability and less detrimental side effects as compared to the existing conventional therapies in nanomedicine. Hence, bionanotechnology has been receiving immense attention in recent years. However, despite the extensive use of nanoparticles today, there is still a limited understanding of nanoparticle-mediated toxicity. Both in vivo and in vitro studies have shown that nanoparticles are closely associated with toxicity by increasing intracellular reactive oxygen species (ROS levels and/or the levels of pro-inflammatory mediators. The homeostatic redox state of the host becomes disrupted upon ROS induction by nanoparticles. Nanoparticles are also known to up-regulate the transcription of various pro-inflammatory genes, including tumor necrosis factor-α and IL (interleukins-1, IL-6 and IL-8, by activating nuclear factor-kappa B (NF-κB signaling. These sequential molecular and cellular events are known to cause oxidative stress, followed by severe cellular genotoxicity and then programmed cell death. However, the exact molecular mechanisms underlying nanotoxicity are not fully understood. This lack of knowledge is a significant impediment in the use of nanoparticles in vivo. In this review, we will provide an assessment of signaling pathways that are involved in the nanoparticle- induced oxidative stress and propose possible strategies to circumvent nanotoxicity.

  12. Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death.

    Science.gov (United States)

    Khanna, Puja; Ong, Cynthia; Bay, Boon Huat; Baeg, Gyeong Hun

    2015-06-30

    Nanoparticles are emerging as a useful tool for a wide variety of biomedical, consumer and instrumental applications that include drug delivery systems, biosensors and environmental sensors. In particular, nanoparticles have been shown to offer greater specificity with enhanced bioavailability and less detrimental side effects as compared to the existing conventional therapies in nanomedicine. Hence, bionanotechnology has been receiving immense attention in recent years. However, despite the extensive use of nanoparticles today, there is still a limited understanding of nanoparticle-mediated toxicity. Both in vivo and in vitro studies have shown that nanoparticles are closely associated with toxicity by increasing intracellular reactive oxygen species (ROS) levels and/or the levels of pro-inflammatory mediators. The homeostatic redox state of the host becomes disrupted upon ROS induction by nanoparticles. Nanoparticles are also known to up-regulate the transcription of various pro-inflammatory genes, including tumor necrosis factor-α and IL (interleukins)-1, IL-6 and IL-8, by activating nuclear factor-kappa B (NF-κB) signaling. These sequential molecular and cellular events are known to cause oxidative stress, followed by severe cellular genotoxicity and then programmed cell death. However, the exact molecular mechanisms underlying nanotoxicity are not fully understood. This lack of knowledge is a significant impediment in the use of nanoparticles in vivo . In this review, we will provide an assessment of signaling pathways that are involved in the nanoparticle- induced oxidative stress and propose possible strategies to circumvent nanotoxicity.

  13. Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation.

    Science.gov (United States)

    Radtke, Simone; Wüller, Stefan; Yang, Xiang-ping; Lippok, Barbara E; Mütze, Barbara; Mais, Christine; de Leur, Hildegard Schmitz-Van; Bode, Johannes G; Gaestel, Matthias; Heinrich, Peter C; Behrmann, Iris; Schaper, Fred; Hermanns, Heike M

    2010-03-15

    The inflammatory response involves a complex interplay of different cytokines which act in an auto- or paracrine manner to induce the so-called acute phase response. Cytokines are known to crosstalk on multiple levels, for instance by regulating the mRNA stability of targeted cytokines through activation of the p38-MAPK pathway. In our study we discovered a new mechanism that answers the long-standing question how pro-inflammatory cytokines and environmental stress restrict immediate signalling of interleukin (IL)-6-type cytokines. We show that p38, activated by IL-1beta, TNFalpha or environmental stress, impairs IL-6-induced JAK/STAT signalling through phosphorylation of the common cytokine receptor subunit gp130 and its subsequent internalisation and degradation. We identify MK2 as the kinase that phosphorylates serine 782 in the cytoplasmic part of gp130. Consequently, inhibition of p38 or MK2, deletion of MK2 or mutation of crucial amino acids within the MK2 target site or the di-leucine internalisation motif blocks receptor depletion and restores IL-6-dependent STAT activation as well as gene induction. Hence, a novel negative crosstalk mechanism for cytokine signalling is described, where cytokine receptor turnover is regulated in trans by pro-inflammatory cytokines and stress stimuli to coordinate the inflammatory response.

  14. Schistosome tegumental ecto-apyrase (SmATPDase1 degrades exogenous pro-inflammatory and pro-thrombotic nucleotides

    Directory of Open Access Journals (Sweden)

    Akram A. Da’dara

    2014-03-01

    Full Text Available Schistosomes are parasitic worms that can survive in the hostile environment of the human bloodstream where they appear refractory to both immune elimination and thrombus formation. We hypothesize that parasite migration in the bloodstream can stress the vascular endothelium causing this tissue to release chemicals alerting responsive host cells to the stress. Such chemicals are called damage associated molecular patterns (DAMPs and among the most potent is the proinflammatory mediator, adenosine triphosphate (ATP. Furthermore, the ATP derivative ADP is a pro-thrombotic molecule that acts as a strong activator of platelets. Schistosomes are reported to possess at their host interactive tegumental surface a series of enzymes that could, like their homologs in mammals, degrade extracellular ATP and ADP. These are alkaline phosphatase (SmAP, phosphodiesterase (SmNPP-5 and ATP diphosphohydrolase (SmATPDase1. In this work we employ RNAi to knock down expression of the genes encoding these enzymes in the intravascular life stages of the parasite. We then compare the abilities of these parasites to degrade exogenously added ATP and ADP. We find that only SmATPDase1-suppressed parasites are significantly impaired in their ability to degrade these nucleotides. Suppression of SmAP or SmNPP-5 does not appreciably affect the worms’ ability to catabolize ATP or ADP. These findings are confirmed by the functional characterization of the enzymatically active, full-length recombinant SmATPDase1 expressed in CHO-S cells. The enzyme is a true apyrase; SmATPDase1 degrades ATP and ADP in a cation dependent manner. Optimal activity is seen at alkaline pH. The Km of SmATPDase1 for ATP is 0.4 ± 0.02 mM and for ADP, 0.252 ± 0.02 mM. The results confirm the role of tegumental SmATPDase1 in the degradation of the exogenous pro-inflammatory and pro-thrombotic nucleotides ATP and ADP by live intravascular stages of the parasite. By degrading host inflammatory signals

  15. Retinol, β-carotene and oxidative stress in systemic inflammatory response syndrome

    Directory of Open Access Journals (Sweden)

    Carla Nogueira

    2015-04-01

    Full Text Available Objective: patients suffering systemic inflammatory response syndrome (SIRS constitute a group susceptible to elevated levels of oxidative stress. This study’s aim is to evaluate the state of oxidative stress and levels of serum retinol and β-carotene in these patients. Methods: forty-six patients were divided into 2 groups: those those without diet (G1; n=18 and those with enteral nutritional support (G2; n=28. Serum levels of retinol and total carotenoids were measured. C-reactive protein (CRP levels and Apache scores were also calculated. Oxidative stress was estimated by measuring thiobarbituric acid reactive substance (TBARS levels. Results: the patients’ median age was 66.9 (SD=19.3 years. Lower concentrations of retinol and carotenoids were found in 68.6 and 66.7% of G1, respectively. In G2, despite average vitamin A levels being 8078 + 4035, retinol and β-carotene were considered insufficient (31.2 and 33.4%, respectively. No difference was noted between the 2 groups, according to the variables studied, with the exception being PCR and β-carotene (p=0.002; p=0.01. Conclusion: the data presented in this study supports the need to establish/revise clinical practices in treating SIRS patients, in light of this micronutrient’s role in the immune system and antioxidant defense without it interfering with its toxicity.

  16. Rosiglitazone inhibits chlorpyrifos-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon; Jang, Sea Jeong [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2014-07-15

    Oxidative stress can lead to expression of inflammatory transcription factors, which are important regulatory elements in the induction of inflammatory responses. One of the transcription factors, nuclear transcription factor kappa-B (NF-κB) plays a significant role in the inflammation regulatory process. Inflammatory cell death has been implicated in neuronal cell death in some neurodegenerative disorders such as Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying apoptosis initiated by chlorpyrifos (CPF)-mediated oxidative stress. Based on the cytotoxic mechanism of CPF, we examined the neuroprotective effects of rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, against CPF-induced neuronal cell death. The treatment of SH-SY5Y cells with CPF induced oxidative stress. In addition, CPF activated the p38, JNK and ERK mitogen-activated protein kinases (MAPKs), and induced increases in the inflammatory genes such as COX-2 and TNF-α. CPF also induced nuclear translocation of NF-κB and inhibitors of NF-κB abolished the CPF-induced COX-2 expression. Pretreatment with RGZ significantly reduced ROS generation and enhanced HO-1 expression in CPF-exposed cells. RGZ blocked the activation of both p38 and JNK signaling, while ERK activation was strengthened. RGZ also attenuated CPF-induced cell death through the reduction of NF-κB-mediated proinflammatory factors. Results from this study suggest that RGZ may exert an anti-apoptotic effect against CPF-induced cytotoxicity by attenuation of oxidative stress as well as inhibition of the inflammatory cascade via inactivation of signaling by p38 and JNK, and NF-κB. - Highlights: • CPF induces apoptotic cell death in SH-SY5Y cells • ROS involved in CPF-mediated apoptotic cell death • Inflammation involved in CPF-mediated apoptotic cell death • Rosiglitazone modulates ROS and inflammatory response in CPF-treated cells.

  17. Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice

    Energy Technology Data Exchange (ETDEWEB)

    Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania; Cantatore, Santina [Department of Forensic Pathology, University of Foggia, Foggia (Italy); Cerretani, Daniela [Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena (Italy); Di Paolo, Marco [Department of Forensic Pathology, University of Pisa, Pisa (Italy); Fiaschi, Anna Ida [Pharmacology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena (Italy); Frati, Paola [Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, University of Rome Sapienza, Viale Regina Elena 336, 00161 Rome (Italy); Neri, Margherita [Department of Forensic Pathology, University of Foggia, Foggia (Italy); Pedretti, Monica [Department of Forensic Pathology, University of Pisa, Pisa (Italy); Fineschi, Vittorio, E-mail: vfinesc@tin.it [Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, University of Rome Sapienza, Viale Regina Elena 336, 00161 Rome (Italy)

    2014-10-01

    Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. - Highlights: • We analyze abuse of nandrolone decanoate in strength-trained male CD1 mice. • Nandrolone decanoate administration increases oxidative stress. • Increased cytokine expressions were observed. • Renal apoptosis was described. • Long-term administration of nandrolone promotes oxidative injury in mice kidney.

  18. Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice

    International Nuclear Information System (INIS)

    Riezzo, Irene; Turillazzi, Emanuela; Bello, Stefania; Cantatore, Santina; Cerretani, Daniela; Di Paolo, Marco; Fiaschi, Anna Ida; Frati, Paola; Neri, Margherita; Pedretti, Monica; Fineschi, Vittorio

    2014-01-01

    Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways. - Highlights: • We analyze abuse of nandrolone decanoate in strength-trained male CD1 mice. • Nandrolone decanoate administration increases oxidative stress. • Increased cytokine expressions were observed. • Renal apoptosis was described. • Long-term administration of nandrolone promotes oxidative injury in mice kidney

  19. Association of Inflammatory and Oxidative Stress Markers with Metabolic Syndrome in Asian Indians in India

    Directory of Open Access Journals (Sweden)

    Veena S. Rao

    2011-01-01

    Full Text Available Metabolic syndrome (MetS is a primary risk factor for cardiovascular disease and is associated with a proinflammatory state. Here, we assessed the contribution of inflammatory and oxidative stress markers towards prediction of MetS. A total of 2316 individuals were recruited in Phase I of the Indian Atherosclerosis Research Study (IARS. Modified ATPIII guidelines were used for classification of subjects with MetS. Among the inflammatory and oxidative stress markers studied, levels of hsCRP (P<.0001, Neopterin (P=.036, and oxLDL (P<.0001 were significantly higher among subjects with MetS. Among the markers we tested, oxLDL stood out as a robust predictor of MetS in the IARS population (OR 4.956 95% CI 2.504–9.810; P<.0001 followed by hsCRP (OR 1.324 95% CI 1.070–1.638; P=.010. In conclusion, oxLDL is a candidate predictor for MetS in the Asian Indian population.

  20. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications.

    Science.gov (United States)

    Domingueti, Caroline Pereira; Dusse, Luci Maria Sant'Ana; Carvalho, Maria das Graças; de Sousa, Lirlândia Pires; Gomes, Karina Braga; Fernandes, Ana Paula

    2016-01-01

    Vascular complications are the leading cause of morbidity and mortality among patients with type 1 and type 2 diabetes mellitus. These vascular abnormalities result of a chronic hyperglycemic state, which leads to an increase in oxidative stress and inflammatory responses. This review addresses the relationships among endothelial dysfunction, hypercoagulability and inflammation and their biomarkers in the development of vascular complications in type 1 and type 2 diabetes. Inflammation, endothelial dysfunction, and hypercoagulability are correlated to each other, playing an important role in the development of vascular complications in diabetic patients. Moreover, it has been observed that several endothelial, inflammatory and pro-coagulant biomarkers, such as VWF, IL-6, TNF-α, D-dimer and PAI-1, are increased in diabetic patients who have microvascular and macrovascular complications, including nephropathy or cardiovascular disease. It is promising the clinical and laboratory use of endothelial, inflammatory and pro-coagulant biomarkers for predicting the risk of cardiovascular and renal complications in diabetic patients and for monitoring these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Targeting the Redox Balance in Inflammatory Skin Conditions

    Directory of Open Access Journals (Sweden)

    Ditte M. S. Lundvig

    2013-04-01

    Full Text Available Reactive oxygen species (ROS can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has been linked to various inflammatory diseases. Inflammation is an essential response in the protection against injurious insults and thus important at the onset of wound healing. However, hampered resolution of inflammation can result in a chronic, exaggerated response with additional tissue damage. In the pathogenesis of several inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue damage is central. The prolonged release of excess ROS in the skin can aggravate inflammatory injury and promote chronic inflammation. The cellular redox balance is therefore tightly regulated by several (enzymatic antioxidants and pro-oxidants; however, in case of chronic inflammation, the antioxidant system may be depleted, and prolonged oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, restoring the redox balance forms an innovative therapeutic target in the development of new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of antioxidant-related therapies is still in its infancy.

  2. Association between Inflammatory Potential of Diet and Stress Levels in Adolescent Women in Iran.

    Science.gov (United States)

    Shivappa, Nitin; Hebert, James R; Rashidkhani, Bahram

    2017-02-01

    The relation between diet and stress has not been widely explored. In this study, we examined the association between the inflammatory potential of diet and levels of stress among adolescent girls in Iran. A total of 299 adolescent girls aged 15-18 years were recruited during 2014-2015. Stress was assessed using the Depression, Anxiety and Stress Scale (DASS)-21 scale. Data were analyzed as continuous DASS scores and as a dichotomous outcome with a cut-off value of 9. The dietary inflammatory index (DII) is a literature-derived population-based dietary. DII scores were index computed from dietary intake assessed using a validated food frequency questionnaire. Multivariable linear and logistic regressions were used to calculate beta estimates and odds ratios adjusting for potential confounding factors. In total, 84 girls (28% of the entire study sample) had at least a moderate level of stress symptoms (DASS > 9). Girls with the most pro-inflammatory diet (tertile 3) had higher DASS stress scores (β = 2.75; 95% CI = 1.05, 4.46) and were at 3.48 times (95% CI = 1.33, 9.09) risk of having at least moderate level of stress compared to girls with the most anti-inflammatory diets (tertile 1). These data suggest that Iranian adolescent girls with a pro-inflammatory diet, as shown by higher DII scores, had higher levels of stress and greater odds of having at least a moderate level of stress symptoms.

  3. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs.

    Science.gov (United States)

    Pan, Xiaoqi; Wu, Xu; Yan, Dandan; Peng, Cheng; Rao, Chaolong; Yan, Hong

    2018-05-15

    Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells. Copyright © 2018 Elsevier B

  4. Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: Role for local angiotensin II reduction.

    Directory of Open Access Journals (Sweden)

    Sebastião D Silva

    Full Text Available Exercise training reduces renin-angiotensin system (RAS activation, decreases plasma and tissue oxidative stress and inflammation in hypertension. However, the temporal nature of these phenomena in response to exercise is unknown. We sought to determine in spontaneously hypertensive rats (SHR and age-matched WKY controls the weekly effects of training on blood pressure (BP, plasma and left ventricle (LV Ang II and Ang-(1-7 content (HPLC, LV oxidative stress (DHE staining, gene and protein expression (qPCR and WB of pro-inflammatory cytokines, antioxidant enzymes and their consequence on hypertension-induced cardiac remodeling. SHR and WKY were submitted to aerobic training (T or maintained sedentary (S for 8 weeks; measurements were made at weeks 0, 1, 2, 4 and 8. Hypertension-induced cardiac hypertrophy was accompanied by acute plasma Ang II increase with amplified responses during the late phase of LV hypertrophy. Similar pattern was observed for oxidative stress markers, TNF alpha and interleukin-1β, associated with cardiomyocytes' diameter enlargement and collagen deposition. SHR-T exhibited prompt and marked decrease in LV Ang II content (T1 vs T4 in WKY-T, normalized oxidative stress (T2, augmented antioxidant defense (T4 and reduced both collagen deposition and inflammatory profile (T8, without changing cardiomyocytes' diameter and LV hypertrophy. These changes were accompanied by decreased plasma Ang II content (T2-T4 and reduced BP (T8. SHR-T and WKY-T showed parallel increases in LV and plasma Ang-(1-7 content. Our data indicate that early training-induced downregulation of LV ACE-AngII-AT1 receptor axis is a crucial mechanism to reduce oxidative/pro-inflammatory profile and improve antioxidant defense in SHR-T, showing in addition this effect precedes plasma RAS deactivation.

  5. Increased Peripheral Blood Pro-Inflammatory/Cytotoxic Lymphocytes in Children with Bronchiectasis.

    Directory of Open Access Journals (Sweden)

    G Hodge

    Full Text Available Bronchiectasis (BE in children is common in some communities including Indigenous children in Australia. Relatively little is known about the nature of systemic inflammation in these children, especially the contribution of specific pro-inflammatory and cytotoxic lymphocyte subsets: T-cells, natural killer (NK cells and NKT-like cells. We have shown that these cells produce increased cytotoxic (granzyme b and perforin and inflammatory (IFNγ and TNFα mediators in several adult chronic lung diseases and hypothesised that similar changes would be evident in children with BE.Intracellular cytotoxic mediators perforin and granzyme b and pro-inflammatory cytokines were measured in T cell subsets, NKT-like and NK cells from blood and bronchoalveolar samples from 12 children with BE and 10 aged-matched control children using flow cytometry.There was a significant increase in the percentage of CD8+ T cells and T and NKT-like subsets expressing perforin/granzyme and IFNγ and TNFα in blood in BE compared with controls. There was a further increase in the percentage of pro-inflammatory cytotoxic T cells in Indigenous compared with non-Indigenous children. There was no change in any of these mediators in BAL.Childhood bronchiectasis is associated with increased systemic pro-inflammatory/cytotoxic lymphocytes in the peripheral blood. Future studies need to examine the extent to which elevated levels of pro-inflammatory cytotoxic cells predict future co-morbidities.

  6. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections.

    Science.gov (United States)

    Singh, Rashmi; Khatri, Preeti; Srivastava, Nidhi; Jain, Shruti; Brahmachari, Vani; Mukhopadhyay, Asish; Mazumder, Shibnath

    2017-04-01

    The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC 50 ) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes. Fluoride affected DNA repair machinery by abrogating the expression of the DNA repair gene rad51 and growth arrest and DNA damage inducible beta a gene gadd45ba. The upregulated expression of casp3a coupled with altered Bcl-2 associated X protein/B-cell lymphoma 2 ratio (baxa/bcl2a) clearly suggested chronic fluoride exposure induced the apoptotic cascade in zebrafish. Fluoride-exposed zebrafish when challenged with non-lethal dose of fish pathogen A. hydrophila revealed gross histopathology in spleen, bacterial persistence and significant mortality. We report that fluoride interferes with system-level output of pro-inflammatory cytokines tumour necrosis factor-α, interleukin-1β and interferon-γ, as a consequence, bacteria replicate efficiently causing significant fish mortality. We conclude, chronic fluoride exposure impairs the redox balance, affects DNA repair machinery with pro-apoptotic implications and suppresses pro-inflammatory cytokines expression abrogating host immunity to bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidative stress, inflammation and endotoxic shock via NF-κB suppression.

    Science.gov (United States)

    Checker, Rahul; Patwardhan, Raghavendra S; Sharma, Deepak; Menon, Jisha; Thoh, Maikho; Sandur, Santosh K; Sainis, Krishna B; Poduval, T B

    2014-04-01

    Plumbagin has been reported to modulate cellular redox status and suppress NF-κB. In the present study, we investigated the effect of plumbagin on lipopolysaccharide (LPS)-induced endotoxic shock, oxidative stress and inflammatory parameters in vitro and in vivo. Plumbagin inhibited LPS-induced nitric oxide, TNF-α, IL-6 and prostaglandin-E2 production in a concentration-dependent manner in RAW 264.7 cells without inducing any cell death. Plumbagin modulated cellular redox status in RAW cells. Plumbagin treatment significantly reduced MAPkinase and NF-κB activation in macrophages. Plumbagin prevented mice from endotoxic shock-associated mortality and decreased serum levels of pro-inflammatory markers. Plumbagin administration ameliorated LPS-induced oxidative stress in peritoneal macrophages and splenocytes. Plumbagin also attenuated endotoxic shock-associated changes in liver and lung histopathology and decreased the activation of ERK and NF-κB in liver. These findings demonstrate the efficacy of plumbagin in preventing LPS-induced endotoxemia and also provide mechanistic insights into the anti-inflammatory effects of plumbagin.

  8. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Feng [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Liu, Yuan [Department of Ophthalmology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Wang, Xiujuan; Kong, Wei [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China); Zhao, Feng, E-mail: taixingzhaofeng163@163.com [Department of Intensive Care Unit, Taixing People" ' s Hospital, Taixing, Jiangsu Province, 225400 (China)

    2016-01-29

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  9. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    International Nuclear Information System (INIS)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan; Kong, Wei; Zhao, Feng

    2016-01-01

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine production was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.

  10. Effect of edaravone combined with nimodipine on oxidative stress, inflammatory factors in patients with craniocerebral injury

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Xie

    2016-11-01

    Full Text Available Objective: To observe the effect of edaravone combined with nimodipine on oxidative stress, inflammatory factors in patients with craniocerebral injury. Methods: A total of 126 patients with craniocerebral injury were randomly divided into the observation group (66 cases and the control group (60 cases. The control group was given nimodipine based on conventional therapy, and the observation was given edaravone based on the control group. For 14 days, the changes of oxidative stress indicators (SOD, MPO, MDA and inflammatory factors (CRP, TNF-α, IL-8 between the two groups were observed. Results: There was significantly difference in SOD, MPO, MDA in these two groups (Fgroup=5.483, 6.275, 6.561, P<0.05, they were all showed a rising then reducing trend over time (Ftime=13.062, 8.172, 7.842, P<0.05, the rising amplitude of SOD in observation group was less than the control group and MPO, MDA was more than the control group (Finteraction=5.305, 4.631, 5.327, P<0.05. There was significantly difference of TNF-α, CRP, IL-8 in these two groups (Fgroup=9.308, 10.375, 11.350, P<0.05, they were all showed a rising then reducing trend over time (Ftime=9.308, 10.375, 11.350, P<0.05, the rising amplitude in observation group was less than the control group (Finteraction =5.071, 4.736, 6.347, P<0.05. Conclusions: Edaravone combined with nimodipine can inhibits oxidative stress and inflammatory reaction significantly in craniocerebral injury, and better than nimodipine alone.

  11. Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response via the PI3K/AKT-Nrf2 pathway.

    Science.gov (United States)

    Gong, Gu; Yin, Liang; Yuan, Libang; Sui, Daming; Sun, Yangyang; Fu, Haiyu; Chen, Liang; Wang, Xiaowu

    2018-03-01

    High altitude cerebral edema (HACE) is a severe type of acute mountain sickness (AMS) that occurs in response to a high altitude hypobaric hypoxic (HH) environment. GM1 monosialoganglioside can alleviate brain injury under adverse conditions including amyloid-β-peptide, ischemia and trauma. However, its role in HACE-induced brain damage remains poorly elucidated. In this study, GM1 supplementation dose-dependently attenuated increase in rat brain water content (BWC) induced by hypobaric chamber (7600 m) exposurefor 24 h. Compared with the HH-treated group, rats injected with GM1 exhibited less brain vascular leakage, lower aquaporin-4 and higher occludin expression, but they also showed increase in Na+/K+-ATPase pump activities. Importantly, HH-incurred consciousness impairment and coordination loss also were ameliorated following GM1 administration. Furthermore, the increased oxidative stress and decrease in anti-oxidant stress system under the HH condition were also reversely abrogated by GM1 treatment via suppressing accumulation of ROS, MDA and elevating the levels of SOD and GSH. Simultaneously, GM1 administration also counteracted the enhanced inflammation in HH-exposed rats by muting pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 levels in serum and brain tissues. Subsequently, GM1 potentiated the activation of the PI3K/AKT-Nrf2 pathway. Cessation of this pathway by LY294002 reversed GM1-mediated inhibitory effects on oxidative stress and inflammation, and ultimately abrogated the protective role of GM1 in abating brain edema, cognitive and motor dysfunction. Overall, GM1 may afford a protective intervention in HACE by suppressing oxidative stress and inflammatory response via activating the PI3K/AKT-Nrf2 pathway, implying a promising agent for the treatment of HACE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Holi colours contain PM10 and can induce pro-inflammatory responses.

    Science.gov (United States)

    Bossmann, Katrin; Bach, Sabine; Höflich, Conny; Valtanen, Kerttu; Heinze, Rita; Neumann, Anett; Straff, Wolfgang; Süring, Katrin

    2016-01-01

    At Holi festivals, originally celebrated in India but more recently all over the world, people throw coloured powder (Holi powder, Holi colour, Gulal powder) at each other. Adverse health effects, i.e. skin and ocular irritations as well as respiratory problems may be the consequences. The aim of this study was to uncover some of the underlying mechanisms. We analysed four different Holi colours regarding particle size using an Electric field cell counting system. In addition, we incubated native human cells with different Holi colours and determined their potential to induce a pro-inflammatory response by quantifying the resulting cytokine production by means of ELISA (Enzyme Linked Immunosorbent Assay) and the resulting leukocyte oxidative burst by flow cytometric analysis. Moreover, we performed the XTT (2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and Propidium iodide cytotoxicity tests and we measured the endotoxin content of the Holi colour samples by means of the Limulus Amebocyte Lysate test (LAL test). We show here that all tested Holi colours consist to more than 40 % of particles with an aerodynamic diameter smaller than 10 μm, so called PM10 particles (PM, particulate matter). Two of the analysed Holi powders contained even more than 75 % of PM10 particles. Furthermore we demonstrate in cell culture experiments that Holi colours can induce the production of the pro-inflammatory cytokines TNF-α (Tumor necrosis factor-α), IL-6 (Interleukine-6) and IL-1β (Interleukine-1β). Three out of the four analysed colours induced a significantly higher cytokine response in human PBMCs (Peripheral Blood Mononuclear Cells) and whole blood than corn starch, which is often used as carrier substance for Holi colours. Moreover we show that corn starch and two Holi colours contain endotoxin and that certain Holi colours display concentration dependent cytotoxic effects in higher concentration. Furthermore we reveal that in principle Holi

  13. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    Directory of Open Access Journals (Sweden)

    Yoko Igarashi

    Full Text Available Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1 plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  14. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  15. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    International Nuclear Information System (INIS)

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-01-01

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics

  16. Contributions of early adversity to pro-inflammatory phenotype in infancy: the buffer provided by attachment security.

    Science.gov (United States)

    Measelle, Jeffrey R; Ablow, Jennifer C

    2018-02-01

    Adversity early in life is associated with systemic inflammation by adolescence and beyond. At present, few studies have investigated the associations between different forms of adversity and inflammation during infancy, making it difficult to specify the origins of disease vulnerability. This study examined the association between multiple forms of early adversity - socioeconomic status disadvantage, familial stress, maternal depression, and security of attachment - and individual differences in a composite measure of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and tumor necrosis factor-alpha) and the inflammatory protein C-reactive protein that were collected via saliva when (n = 49) children were 17 months old. In addition to gauging the direct effects of adversity, we also tested the hypothesis that infants' attachment relationship with their mother might buffer infants against the immunologic effects of early adversity. Results show that familial stress, maternal depression, and security of attachment were directly associated with infant salivary inflammation and that attachment status moderated the effect of maternal depression. The findings suggest that exposure to certain forms of adversity very early in life may engender a pro-inflammatory phenotype with possible life-long implications for health.

  17. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S., E-mail: rozekl@umich.edu

    2014-05-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity.

  18. Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress

    International Nuclear Information System (INIS)

    Colacino, Justin A.; Arthur, Anna E.; Ferguson, Kelly K.; Rozek, Laura S.

    2014-01-01

    Chronic cadmium exposure may cause disease through induction of systemic oxidative stress and inflammation. Factors that mitigate cadmium toxicity and could serve as interventions in exposed populations have not been well characterized. We used data from the 2003–2010 National Health and Nutrition Examination Survey to quantify diet's role in modifying associations between cadmium exposure and oxidative stress and inflammation. We created a composite antioxidant and anti-inflammatory diet score (ADS) by ranking participants by quintile of intake across a panel of 19 nutrients. We identified associations and effect modification between ADS, urinary cadmium, and markers of oxidative stress and inflammation by multiple linear regression. An interquartile range increase in urinary cadmium was associated with a 47.5%, 8.8%, and 3.7% increase in C-reactive protein (CRP), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP), respectively. An interquartile range increase in ADS was associated with an 7.4%, 3.3%, 5.2%, and 2.5% decrease in CRP, GGT, ALP, and total white blood cell count respectively, and a 3.0% increase in serum bilirubin. ADS significantly attenuated the association between cadmium exposure, CRP and ALP. Dietary interventions may provide a route to reduce the impact of cadmium toxicity on the population level. - Highlights: • Cadmium may cause chronic disease through oxidative stress or inflammation. • We developed a score to quantify dietary antioxidant and anti-inflammatory intake. • Cadmium was associated with markers of oxidative stress and inflammation. • Antioxidant and anti-inflammatory intake mitigated the effects of cadmium exposure. • Dietary interventions may be effective against chronic cadmium toxicity

  19. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia.

    Science.gov (United States)

    Mitra, Sumedha; Natarajan, Radhika; Ziedonis, Douglas; Fan, Xiaoduo

    2017-08-01

    Over 50 million people around the world suffer from schizophrenia, a severe mental illness characterized by misinterpretation of reality. Although the exact causes of schizophrenia are still unknown, studies have indicated that inflammation and oxidative stress may play an important role in the etiology of the disease. Pro-inflammatory cytokines are crucial for normal central nervous development and proper functioning of neural networks and neurotransmitters. Patients with schizophrenia tend to have abnormal immune activation resulting in elevated pro-inflammatory cytokine levels, ultimately leading to functional brain impairments. Patients with schizophrenia have also been found to suffer from oxidative stress, a result of an imbalance between the production of free radicals and the ability to detoxify their harmful effects. Furthermore, inflammation and oxidative stress are implicated to be related to the severity of psychotic symptoms. Several nutrients are known to have anti-inflammatory and antioxidant functions through various mechanisms in our body. The present review evaluates studies and literature that address the status and supplementation of omega-3 polyunsaturated fatty acids, vitamin D, B vitamins (B6, folate, B12), vitamin E, and carotenoids in different stages of schizophrenia. The possible anti-inflammatory and antioxidant mechanisms of action of each nutrient are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Clinical Perspective of Oxidative Stress in Sporadic ALS

    Science.gov (United States)

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  1. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Akkarach Bumrungpert

    2018-06-01

    Full Text Available Ferulic acid is the most abundant phenolic compound found in vegetables and cereal grains. In vitro and animal studies have shown ferulic acid has anti-hyperlipidemic, anti-oxidative, and anti-inflammatory effects. The objective of this study is to investigate the effects of ferulic acid supplementation on lipid profiles, oxidative stress, and inflammatory status in hyperlipidemia. The study design is a randomized, double-blind, placebo-controlled trial. Subjects with hyperlipidemia were randomly divided into two groups. The treatment group (n = 24 was given ferulic acid (1000 mg daily and the control group (n = 24 was provided with a placebo for six weeks. Lipid profiles, biomarkers of oxidative stress and inflammation were assessed before and after the intervention. Ferulic acid supplementation demonstrated a statistically significant decrease in total cholesterol (8.1%; p = 0.001, LDL-C (9.3%; p < 0.001, triglyceride (12.1%; p = 0.049, and increased HDL-C (4.3%; p = 0.045 compared with the placebo. Ferulic acid also significantly decreased the oxidative stress biomarker, MDA (24.5%; p < 0.001. Moreover, oxidized LDL-C was significantly decreased in the ferulic acid group (7.1%; p = 0.002 compared with the placebo group. In addition, ferulic acid supplementation demonstrated a statistically significant reduction in the inflammatory markers hs-CRP (32.66%; p < 0.001 and TNF-α (13.06%; p < 0.001. These data indicate ferulic acid supplementation can improve lipid profiles and oxidative stress, oxidized LDL-C, and inflammation in hyperlipidemic subjects. Therefore, ferulic acid has the potential to reduce cardiovascular disease risk factors.

  2. Screening of traditional Chinese medicines with therapeutic potential on chronic obstructive pulmonary disease through inhibiting oxidative stress and inflammatory response.

    Science.gov (United States)

    Zhou, Ming-Xing; Wei, Xuan; Li, Ai-Ling; Wang, Ai-Min; Lu, Ling-Zi; Yang, Yue; Ren, Dong-Mei; Wang, Xiao-Ning; Wen, Xue-Sen; Lou, Hong-Xiang; Shen, Tao

    2016-09-13

    Chronic obstructive pulmonary disease (COPD) is a major public health problem and gives arise to severe chronic morbidity and mortality in the world. Inflammatory response and oxidative stress play dominant roles in the pathological mechanism of COPD, and have been regarded to be two important targets for the COPD therapy. Traditional Chinese medicines (TCMs) possess satisfying curative effects on COPD under guidance of the TCM theory in China, and merit in-depth investigations as a resource of lead compounds. One hundred ninety-six of TCMs were collected, and extracted to establish a TCM extract library, and then further evaluated for their potency on inhibitions of oxidative stress and inflammatory response using NADP(H):quinone oxidoreductase (QR) assay and nitric oxide (NO) production assay, respectively. Our investigation observed that 38 of the tested TCM extracts induced QR activity in hepa 1c1c7 murine hepatoma cells, and 55 of them inhibited NO production in RAW 264.7 murine macrophages at the tested concentrations. Noteworthily, 20 of TCM extracts simultaneously inhibited oxidative stress and inflammatory responses. The observed bioactive TCMs, particularly these 20 TCMs with dual inhibitory effects, might be useful for the treatment of COPD. More importantly, the results of the present research afford us an opportunity to discover new lead molecules as COPD therapeutic agents from these active TCMs.

  3. Oxygen, nitric oxide and articular cartilage

    Directory of Open Access Journals (Sweden)

    B Fermor

    2007-04-01

    Full Text Available Molecular oxygen is required for the production of nitric oxide (NO, a pro-inflammatory mediator that is associated with osteoarthritis and rheumatoid arthritis. To date there has been little consideration of the role of oxygen tension in the regulation of nitric oxide production associated with arthritis. Oxygen tension may be particularly relevant to articular cartilage since it is avascular and therefore exists at a reduced oxygen tension. The superficial zone exists at approximately 6% O2, while the deep zone exists at less than 1% O2. Furthermore, oxygen tension can alter matrix synthesis, and the material properties of articular cartilage in vitro.The increase in nitric oxide associated with arthritis can be caused by pro-inflammatory cytokines and mechanical stress. Oxygen tension significantly alters endogenous NO production in articular cartilage, as well as the stimulation of NO in response to both mechanical loading and pro-inflammatory cytokines. Mechanical loading and pro-inflammatory cytokines also increase the production of prostaglandin E2 (PGE2. There is a complex interaction between NO and PGE2, and oxygen tension can alter this interaction. These findings suggest that the relatively low levels of oxygen within the joint may have significant influences on the metabolic activity, and inflammatory response of cartilage as compared to ambient levels. A better understanding of the role of oxygen in the production of inflammatory mediators in response to mechanical loading, or pro-inflammatory cytokines, may aid in the development of strategies for therapeutic intervention in arthritis.

  4. Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model.

    Science.gov (United States)

    Wilson, C Brad; McLaughlin, Leslie D; Nair, Anand; Ebenezer, Philip J; Dange, Rahul; Francis, Joseph

    2013-01-01

    This study sought to analyze specific pathophysiological mechanisms involved in the progression of post-traumatic stress disorder (PTSD) by utilizing an animal model. To examine PTSD pathophysiology, we measured damaging reactive oxygen species and inflammatory cytokines to determine if oxidative stress and inflammation in the brain, adrenal glands, and systemic circulation were upregulated in response to constant stress. Pre-clinical PTSD was induced in naïve, male Sprague-Dawley rats via a predator exposure/psychosocial stress regimen. PTSD group rats were secured in Plexiglas cylinders and placed in a cage with a cat for one hour on days 1 and 11 of a 31-day stress regimen. In addition, PTSD group rats were subjected to psychosocial stress whereby their cage cohort was changed daily. This model has been shown to cause heightened anxiety, exaggerated startle response, impaired cognition, and increased cardiovascular reactivity, all of which are common symptoms seen in humans with PTSD. At the conclusion of the predator exposure/psychosocial stress regimen, the rats were euthanized and their brains were dissected to remove the hippocampus, amygdala, and pre-frontal cortex (PFC), the three areas commonly associated with PTSD development. The adrenal glands and whole blood were also collected to assess systemic oxidative stress. Analysis of the whole blood, adrenal glands, and brain regions revealed oxidative stress increased during PTSD progression. In addition, examination of pro-inflammatory cytokine (PIC) mRNA and protein demonstrated neurological inflammatory molecules were significantly upregulated in the PTSD group vs. controls. These results indicate oxidative stress and inflammation in the brain, adrenal glands, and systemic circulation may play a critical role in the development and further exacerbation of PTSD. Thus, PTSD may not be solely a neurological pathology but may progress as a systemic condition involving multiple organ systems.

  5. Effect of PAS triple therapy on nerve injury, oxidative stress and inflammatory response in patients with cerebral infarction

    Directory of Open Access Journals (Sweden)

    Li-Jun Deng

    2017-10-01

    Full Text Available Objective: To study the effect of probucol + aspirin + atorvastatin (PAS triple therapy on nerve injury, oxidative stress and inflammatory response in patients with cerebral infarction. Methods: Patients with acute cerebral infarction who were treated in Affiliated Hospital of Jianghan University between February 2015 and January 2015 were selected and randomly divided into the PAS group who received probucol + aspirin + atorvastatin triple therapy and the control group who received aspirin + atorvastatin double therapy. The markers of nerve injury, oxidative stress and inflammatory response were determined before treatment and 15 d after treatment. Results: 15 d after treatment, peripheral blood Keap-1 expression and serum GPX1 contents of both groups of patients were significantly higher than those before treatment while peripheral blood Nrf-2 and ARE expression as well as serum S100B, NSE, sTRAIL, FKN, HMGB-1, sICAM-1, Chemerin and 8-iso-PGF2α contents were significantly lower than those before treatment, and peripheral blood Keap-1 expression and serum GPX1 content of PAS group were significantly higher than those of control group while peripheral blood Nrf-2 and ARE expression as well as serum S100B, NSE, sTRAIL, FKN, HMGB-1, sICAM-1, Chemerin and 8-iso-PGF2α contents were significantly lower than those of control group. Conclusion: PAS triple therapy can reduce the nerve injury as well as oxidative stress response and inflammatory response in patients with cerebral infarction.

  6. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  7. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    Science.gov (United States)

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  8. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  9. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  10. Hemostatic, inflammatory, and oxidative markers in pesticide user farmers.

    Science.gov (United States)

    Madani, Fatima Zohra; Hafida, Merzouk; Merzouk, Sid Ahmed; Loukidi, Bouchra; Taouli, Katia; Narce, Michel

    2016-01-01

    The aim of this work was to investigate inflammatory, oxidative, and thrombotic parameters as biomarkers in farmers exposed to pesticides. Fifty farmers using chemical pesticides and 60 unexposed control men participated in this study. The Mediterranean diet compliance, the duration of pesticide use, and personal protection for pesticides handling were recorded using self-administered questionnaires. Serum biochemical parameters, oxidant/antioxidant, inflammatory, and thrombosis markers were determined. Our findings showed oxidative stress reflected by an increase in malondialdehyde, carbonyl proteins and superoxide anion levels and a decrease in vitamins C and E, glutathione, catalase, and superoxide dismutase activities in farmers. Serum C-reactive protein, prothrombin, and fibrinogen levels were enhanced in these farmers. In conclusion, inflammation, oxidative stress, and metabolic perturbations reflected the possibility of the effects of pesticides to farmers.

  11. Montmorency Cherries Reduce the Oxidative Stress and Inflammatory Responses to Repeated Days High-Intensity Stochastic Cycling

    Directory of Open Access Journals (Sweden)

    Phillip G. Bell

    2014-02-01

    Full Text Available This investigation examined the impact of Montmorency tart cherry concentrate (MC on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16 were divided into equal groups and consumed 30 mL of MC or placebo (PLA, twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH, interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, interleukin-8 (IL-8, interleukin-1-beta (IL-1-β, high-sensitivity C-reactive protein (hsCRP and creatine kinase (CK were conducted. LOOH (p < 0.01, IL-6 (p < 0.05 and hsCRP (p < 0.05 responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario’s where back-to-back performances are required.

  12. Is Oxidative Stress Associated with Activation and Pathogenesis of Inflammatory Bowel Disease?

    Directory of Open Access Journals (Sweden)

    Yuksel Mahmut

    2017-08-01

    Full Text Available Background: We aimed to determine the levels of total antioxidant status (TAS, total oxidant status (TOS, oxidative stress index (OSI and paraoxonase1/arylesterase levels in inflammatory bowel disease (IBD, and the relation be - tween these molecules and the activity index of the disease. Methods: Eighty IBD patients (ulcerative colitis (UC/Crohn disease (CD 40/40 and 80 control group participants were included in the study. Oxidative stress parameters were measured using the colorimetric method. As disease activity indexes, the endoscopic activity index (EAI was used for UC and the CD activity index (CDAI was used for CD. Results: In IBD patients, mean TAS (1.3±0.2 vs 1.9±0.2, respectively; p<0.001 and arylesterase (963.9±232.2 vs 1252.9±275, respectively; p<0.001 levels were found to be lower and TOS level (5.6±1.6 vs 4.0±1.0, respectively; p<0.001 and OSI rate (4.5±1.6 vs 2.2±0.8, respectively; p<0.001 were found to be higher compared to the control group. A strong positive correlation was found between EAI and TOS levels (r=0.948, p<0.001 and OSI rate (r=0.894, p<0.001 for UC patients. A very strong positive correlation was found between EAI and TOS levels (r=0.964, p<0.001 and OSI rate (r=0.917, p<0.001 for CD patients. It was found in a stepwise regression model that C-reactive protein, OSI and arylesterase risk factors were predictors of IBD compared to the control group. Conclusion: Increased oxidative stress level in IBD patients and the detection of OSI rate as an independent predictor for disease activity indexes lead to the idea that oxidative stress might be related to the pathogenesis of IBD.

  13. GL-V9, a new synthetic flavonoid derivative, ameliorates DSS-induced colitis against oxidative stress by up-regulating Trx-1 expression via activation of AMPK/FOXO3a pathway.

    Science.gov (United States)

    Zhao, Yue; Sun, Yang; Ding, Youxiang; Wang, Xiaoping; Zhou, Yuxin; Li, Wenjun; Huang, Shaoliang; Li, Zhiyu; Kong, Lingyi; Guo, Qinglong; Lu, Na

    2015-09-22

    GL-V9, a new synthesized flavonoid derivative, has been reported to possess anti-cancer properties in our previous studies. Uncontrolled overproduction of reactive oxygen species (ROS) has been implicated in oxidative damage of inflammatory bowel disease (IBD). In this study, we aimed to investigate the protective effect of GL-V9 against dextran sulfate sodium (DSS)-induced colitis. GL-V9 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. GL-V9 also inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities. Moreover, GL-V9 inhibited ROS and malondialdehyde (MDA) generation, but enhanced superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity. GL-V9 reduced pro-inflammatory cytokines production in serum and colon as well. Mechanically, GL-V9 could increase Trx-1 via activation of AMPK/FOXO3a to suppress DSS-induced colonic oxidative stress. Furthermore, GL-V9 decreased pro-inflammatory cytokines and ROS production and increased the antioxidant defenses in the mouse macrophage cells RAW264.7 by promoting Trx-1 expression. In conclusion, our study demonstrated that GL-V9 attenuated DSS-induced colitis against oxidative stress by up-regulating Trx-1 via activation of AMPK/FOXO3a pathway, suggesting that GL-V9 might be a potential effective drug for colitis.

  14. Protective Effect of Argan and Olive Oils against LPS-Induced Oxidative Stress and Inflammation in Mice Livers

    Directory of Open Access Journals (Sweden)

    Soufiane El Kamouni

    2017-10-01

    Full Text Available Sepsis causes severe dysregulation of organ functions, via the development of oxidative stress and inflammation. These pathophysiological mechanisms are mimicked in mice injected with bacterial lipopolysaccharide (LPS. Here, protective properties of argan oil against LPS-induced oxidative stress and inflammation are explored in the murine model. Mice received standard chow, supplemented with argan oil (AO or olive oil (OO for 25 days, before septic shock was provoked with a single intraperitoneal injection of LPS, 16 hours prior to animal sacrifice. In addition to a rise in oxidative stress and inflammatory markers, injected LPS also caused hepatotoxicity, accompanied by hyperglycemia, hypercholesterolemia and hyperuremia. These LPS-associated toxic effects were blunted by AO pretreatment, as corroborated by normal plasma parameters and cell stress markers (glutathione: GSH and antioxidant enzymology (catalase, CAT; superoxide dismutase, SOD and glutathione peroxidase, GPx. Hematoxylin–eosin staining revealed that AO can protect against acute liver injury, maintaining a normal status, which is pointed out by absent or reduced LPS-induced hepatic damage markers (i.e., alanine aminotransferase (ALT and aspartate transaminase (AST. Our work also indicated that AO displayed anti-inflammatory activity, due to down-regulations of genes encoding pro-inflammatory cytokines Interleukin-6 (IL-6 and Tumor Necrosis Factor-α (TNF-α and in up-regulations of the expression of anti-inflammatory genes encoding Interleukin-4 (IL-4 and Interleukin-10 (IL-10. OO provided animals with similar, though less extensive, protective changes. Collectively our work adds compelling evidence to the protective mechanisms of AO against LPS-induced liver injury and hence therapeutic potentialities, in regard to the management of human sepsis. Activations of IL-4/Peroxisome Proliferator-Activated Receptors (IL-4/PPARs signaling and, under LPS, an anti-inflammatory IL-10/Liver

  15. Polyphenols of virgin coconut oil prevent pro-oxidant mediated cell death.

    Science.gov (United States)

    Illam, Soorya Parathodi; Narayanankutty, Arunaksharan; Raghavamenon, Achuthan C

    2017-07-01

    Virgin coconut oil (VCO), extracted from the fresh coconut kernel, is a food supplement enriched with medium chain saturated fatty acids and polyphenolic antioxidants. It is reported to have several health benefits including lipid lowering, antioxidant and anti-inflammatory activities. The pharmacological benefits of VCO have been attributed to its polyphenol content (VCOP), the mechanistic basis of which is less explored. Liquid chromatography/mass spectroscopy (LC/MS) analysis of VCOP documented the presence of gallic acid, ferulic acid (FA), quercetin, methyl catechin, dihydrokaempferol and myricetin glycoside. Pre-treatment of VCOP at different concentrations (25-100 μg/mL) significantly reduced the H 2 O 2 and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced cell death in HCT-15 cells. Giving further insight to its mechanistic basis, oxidative stress induced alterations in glutathione (GSH) levels and activities of GR (Glutathione-Reductase), GPx (Glutathione-Peroxidase), GST (Glutathione-S-Transferase) and catalase (CAT) were restored to near-normal by VCOP, concomitantly reducing lipid peroxidation. The efficacy of VCOP was similar to that of Trolox and FA added in culture. The study thus suggests that VCOP protects cells from pro-oxidant insults by modulating cellular antioxidant status.

  16. Iodinated contrast media alter immune responses in pro-inflammatory states.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Hypertonic saline causes a transient elevation of blood osmolality and has been shown to alter cellular inflammatory responses in pro-inflammatory states. Intravascular administration of iodine contrast media also causes a transient elevation of blood osmolarity.

  17. Chlamydia pneumoniae Infection in Atherosclerotic Lesion Development through Oxidative Stress: A Brief Overview

    Directory of Open Access Journals (Sweden)

    Rosa Sessa

    2013-07-01

    Full Text Available Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a leading cause of respiratory tract infections and, in the last two decades, has been widely associated with atherosclerosis by seroepidemiological studies, and direct detection of the microorganism within atheroma. C. pneumoniae is presumed to play a role in atherosclerosis for its ability to disseminate via peripheral blood mononuclear cells, to replicate and persist within vascular cells, and for its pro-inflammatory and angiogenic effects. Once inside the vascular tissue, C. pneumoniae infection has been shown to induce the production of reactive oxygen species in all the cells involved in atherosclerotic process such as macrophages, platelets, endothelial cells, and vascular smooth muscle cells, leading to oxidative stress. The aim of this review is to summarize the data linking C. pneumoniae-induced oxidative stress to atherosclerotic lesion development.

  18. Plumbagin, a vitamin K3 analogue ameliorate malaria pathogenesis by inhibiting oxidative stress and inflammation.

    Science.gov (United States)

    Gupta, Amit Chand; Mohanty, Shilpa; Saxena, Archana; Maurya, Anil Kumar; Bawankule, Dnyaneshwar U

    2018-03-22

    Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.

  19. Time-dependent effects of training on cardiovascular control in spontaneously hypertensive rats: role for brain oxidative stress and inflammation and baroreflex sensitivity.

    Directory of Open Access Journals (Sweden)

    Gustavo S Masson

    Full Text Available Baroreflex dysfunction, oxidative stress and inflammation, important hallmarks of hypertension, are attenuated by exercise training. In this study, we investigated the relationships and time-course changes of cardiovascular parameters, pro-inflammatory cytokines and pro-oxidant profiles within the hypothalamic paraventricular nucleus of the spontaneously hypertensive rats (SHR. Basal values and variability of arterial pressure and heart rate and baroreflex sensitivity were measured in trained (T, low-intensity treadmill training and sedentary (S SHR at weeks 0, 1, 2, 4 and 8. Paraventricular nucleus was used to determine reactive oxygen species (dihydroethidium oxidation products, HPLC, NADPH oxidase subunits and pro-inflammatory cytokines expression (Real time PCR, p38 MAPK and ERK1/2 expression (Western blotting, NF-κB content (electrophoretic mobility shift assay and cytokines immunofluorescence. SHR-S vs. WKY-S (Wistar Kyoto rats as time control showed increased mean arterial pressure (172±3 mmHg, pressure variability and heart rate (358±7 b/min, decreased baroreflex sensitivity and heart rate variability, increased p47phox and reactive oxygen species production, elevated NF-κB activity and increased TNF-α and IL-6 expression within the paraventricular nucleus of hypothalamus. Two weeks of training reversed all hypothalamic changes, reduced ERK1/2 phosphorylation and normalized baroreflex sensitivity (4.04±0.31 vs. 2.31±0.19 b/min/mmHg in SHR-S. These responses were followed by increased vagal component of heart rate variability (1.9-fold and resting bradycardia (-13% at the 4th week, and, by reduced vasomotor component of pressure variability (-28% and decreased mean arterial pressure (-7% only at the 8th week of training. Our findings indicate that independent of the high pressure levels in SHR, training promptly restores baroreflex function by disrupting the positive feedback between high oxidative stress and increased pro-inflammatory

  20. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    Science.gov (United States)

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  1. Block of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2014-04-01

    Full Text Available Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD. One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3, cytokines and nitric oxide (NO]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.

  2. Lower limb ischaemia and reperfusion injury in healthy volunteers measured by oxidative and inflammatory biomarkers

    DEFF Research Database (Denmark)

    Halladin, N. L.; Busch, Sarah Victoria Ekeløf; Alamili, M.

    2015-01-01

    OBJECTIVE: Ischaemia-reperfusion (IR) injury is partly caused by the release of reactive oxygen species and cytokines and may result in remote organ injury. Surgical patients are exposed to surgical stress and anaesthesia, both of which can influence the IR response. An IR model without these int......OBJECTIVE: Ischaemia-reperfusion (IR) injury is partly caused by the release of reactive oxygen species and cytokines and may result in remote organ injury. Surgical patients are exposed to surgical stress and anaesthesia, both of which can influence the IR response. An IR model without...... at any sampling time. CONCLUSION: Twenty minutes of lower limb ischaemia does not result in an ischaemia-reperfusion injury in healthy volunteers, measurable by oxidative and pro- and anti-inflammatory biomarkers in muscle biopsies and in the systemic circulation....

  3. Inhibition of Pro-inflammatory Mediators and Cytokines by Chlorella Vulgaris Extracts.

    Science.gov (United States)

    Sibi, G; Rabina, Santa

    2016-01-01

    The aim of this study was to determine the in vitro anti-inflammatory activities of solvent fractions from Chlorella vulgaris by inhibiting the production of pro-inflammatory mediators and cytokines. Methanolic extracts (80%) of C. vulgaris were prepared and partitioned with solvents of increasing polarity viz., n-hexane, chloroform, ethanol, and water. Various concentrations of the fractions were tested for cytotoxicity in RAW 264.7 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the concentrations inducing cell growth inhibition by about 50% (IC50) were chosen for further studies. Lipopolysaccharide (LPS) stimulated RAW 264.7 cells were treated with varying concentrations of C. vulgaris fractions and examined for its effects on nitric oxide (NO) production by Griess assay. The release of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) were quantified using enzyme-linked immunosorbent assay using Celecoxib and polymyxin B as positive controls. MTT assay revealed all the solvent fractions that inhibited cell growth in a dose-dependent manner. Of all the extracts, 80% methanolic extract exhibited the strongest anti-inflammatory activity by inhibiting NO production (P < 0.01), PGE2 (P < 0.05), TNF-α, and IL-6 (P < 0.001) release in LPS induced RAW 264.7 cells. Both hexane and chloroform fractions recorded a significant (P < 0.05) and dose-dependent inhibition of LPS induced inflammatory mediators and cytokines in vitro. The anti-inflammatory effect of ethanol and aqueous extracts was not significant in the study. The significant inhibition of inflammatory mediators and cytokines by fractions from C. vulgaris suggests that this microalga would be a potential source of developing anti-inflammatory agents and a good alternate for conventional steroidal and nonsteroidal anti-inflammatory drugs. C. vulgaris extracts have potential anti-inflammatory activitySolvent extraction using methanol

  4. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    Science.gov (United States)

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.

  5. IGF-1, oxidative stress, and atheroprotection

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  6. Antifibrotic Mechanism of Pinocembrin: Impact on Oxidative Stress, Inflammation and TGF-β /Smad Inhibition in Rats.

    Science.gov (United States)

    Said, Marwa M; Azab, Samar S; Saeed, Noha M; El-Demerdash, Ebtehal

    2018-03-01

    The present study aimed to elucidate the potential antifibrotic effects of pinocembrin (PIN), a flavanone found abundantly in honey and propolis, by studying its effect on different oxidative stress, inflammatory and fibrosis markers in an experimental model of CCl4-induced liver fibrosis. PIN (20 mg/kg) was given orally 3 times/week for 6 consecutive weeks alternating with CCl4 (0.5 mL/kg, 1:1 mixture with corn oil, i. p.) twice weekly. Different hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. PIN significantly restored liver transaminases and total cholesterol to normal levels. Also, PIN ameliorated oxidative stress injury evoked by CCl4 as evidenced by inhibition of reduced glutathione depletion and lipid peroxidation as well as elevation of antioxidant enzyme superoxide dismutase (SOD). Further, PIN upregulated the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective enzyme hemeoxygenase-1 (HO-1). Moreover, PIN alleviated pro-inflammatory cytokines such as TNF-α via inhibiting nuclear factor-κB (NF-κB) activation. As markers of fibrosis, collagen and α-SMA expression increased markedly in the CCl4 group and PIN prevented these alterations. In addition, PIN down-regulated TGFβ1 and p-Smad2/3, thereby inhibiting TGFβ1/Smad signaling pathway. These results suggest that PIN possess potent antifibrotic effects that can be explained on its antioxidant properties. It ameliorates oxidative stress and inflammation during induction of fibrogenesis via its ability to augment celular antioxidant defenses, activating Nrf2-mediated HO-1 expression and modulating NF-κB and TGF-β1/Smad signaling pathway.

  7. Redox Role of Lactobacillus casei Shirota Against the Cellular Damage Induced by 2,2′-Azobis (2-Amidinopropane Dihydrochloride-Induced Oxidative and Inflammatory Stress in Enterocytes-Like Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Alberto Finamore

    2018-05-01

    Full Text Available In western societies where most of the day is spent in the postprandial state, the existence of oxidative and inflammatory stress conditions makes postprandial stress an important factor involved in the development of cardiovascular risk factors. A large body of evidence have been accumulated on the anti-inflammatory effects of probiotics, but no information is available on the mechanisms through which intestinal microbiota modulates redox unbalance associated with inflammatory stress. Here, we aimed to investigate the ability of Lactobacillus casei Shirota (LS to induce an antioxidant response to counteract oxidative and inflammatory stress in an in vitro model of enterocytes. Our results show that pretreatment of enterocytes with LS prevents membrane barrier disruption and cellular reactive oxygen species (ROS accumulation inside the cells, modulates the expression of the gastro-intestinal glutathione peroxidase (GPX2 antioxidant enzyme, and reduces p65 phosphorylation, supporting the involvement of the Nfr2 and nuclear factor kappa B pathways in the activation of antioxidant cellular defenses by probiotics. These results suggest, for the first time, a redox mechanism by LS in protecting intestinal cells from AAPH-induced oxidative and inflammatory stress.

  8. Irradiation of existing atherosclerotic lesions increased inflammation by favoring pro-inflammatory macrophages

    International Nuclear Information System (INIS)

    Gabriels, Karen; Hoving, Saske; Gijbels, Marion J.; Pol, Jeffrey F.; Poele, Johannes A. te; Biessen, Erik A.; Daemen, Mat J.; Stewart, Fiona A.; Heeneman, Sylvia

    2014-01-01

    Background and purpose: Recent studies have shown an increased incidence of localized atherosclerosis and subsequent cardiovascular events in cancer patients treated with thoracic radiotherapy. We previously demonstrated that irradiation accelerated the development of atherosclerosis and predisposed to an inflammatory plaque phenotype in young hypercholesterolemic ApoE −/− mice. However, as older cancer patients already have early or advanced stages of atherosclerosis at the time of radiotherapy, we investigated the effects of irradiation on the progression of existing atherosclerotic lesions in vivo. Material and methods: ApoE −/− mice (28 weeks old) received local irradiation with 14 or 0 Gy (sham-treated) at the aortic arch and were examined after 4 and 12 weeks for atherosclerotic lesions, plaque size and phenotype. Moreover, we investigated the impact of irradiation on macrophage phenotype (pro- or anti-inflammatory) and function (efferocytotic capacity, i.e. clearance of apoptotic cells) in vitro. Results: Irradiation of existing lesions in the aortic arch resulted in smaller, macrophage-rich plaques with intraplaque hemorrhage and increased apoptosis. In keeping with the latter, in vitro studies revealed augmented polarization toward pro-inflammatory macrophages after irradiation and reduced efferocytosis by anti-inflammatory macrophages. In addition, considerably more lesions in irradiated mice were enriched in pro-inflammatory macrophages. Conclusions: Irradiation of existing atherosclerotic lesions led to smaller but more inflamed plaques, with increased numbers of apoptotic cells, most likely due to a shift toward pro-inflammatory macrophages in the plaque

  9. Diphenyl diselenide attenuates oxidative stress and inflammatory parameters in ulcerative colitis: A comparison with ebselen.

    Science.gov (United States)

    Petronilho, Fabricia; Michels, Monique; Danielski, Lucinéia G; Goldim, Mariana Pereira; Florentino, Drielly; Vieira, Andriele; Mendonça, Mariana G; Tournier, Moema; Piacentini, Bárbara; Giustina, Amanda Della; Leffa, Daniela D; Pereira, Gregório W; Pereira, Volnei D; Rocha, João Batista Teixeira Da

    2016-09-01

    The aim of this study was to evaluate the effects of diphenyl diselenide (PhSe)2 and ebselen (EB) in ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in rats. The effects of (PhSe)2 and EB in rats submitted to DSS-induced colitis were determined by measurement of oxidative stress parameters, inflammatory response and bowel histopathological alterations. Animals developed moderate to severe neutrophil infiltration in histopathology assay in DSS rats and (PhSe)2 improved this response. Moreover, the treatment with (PhSe)2 decreased the oxidative damage in lipids and proteins, as well as reversed the superoxide dismutase (SOD) and catalase (CAT) levels in rats treated with DSS. EB was able only to reverse damage in lipids and the low levels of SOD in this animal model. The organoselenium compounds tested demonstrated an anti-inflammatory and antioxidant activity reducing the colon damage, being (PhSe)2 more effective than EB. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Evaluation of cardiac risk by oxidative stress and inflammatory markers in diabetic patients

    International Nuclear Information System (INIS)

    Khan, D.A.; Qayyum, S.

    2010-01-01

    Objectives: To evaluate the diabetic patients for cardiac risk by measuring oxidative stress and inflammatory markers in relation with glycaemic control. Methodology: A total of 140 subjects were included in this case-control study, comprising of 70 diabetic patients with coronary heart disease (CHD) and an equal number, age and sex matched controls. The patients were non-alcoholic and had age >40 years, BMI < 30 kg/m/sup 2/ and glycated hemoglobin (HbA1c) 7-10%. Serum total cholesterol (TC) and gamma glutamyltransferase (GGT) were analyzed on selectra-E auto analyzer. Serum nitrate was measured at 540 nm on ELISA. HbA1c on was analyzed by using Human kit. Serum high sensitivity C-reactive protein (hS-CRP) was analyzed on immulite 1000. Results: Patients mean age was 51 (range 40-73) years. Diabetic patients had significantly elevated median of HbA1c (7.9 vs 4.9), hS CRP (6.0 vs 2.12), TC (5.95 vs 4.45), nitrate (19.20vs 10.70) and GGT (29.50 vs 22.50) as compared to controls (p< 0.001). HbA1c showed a positive correlation (p <0.001) with hS-CRP (r=0.49), TC (r=0.69), nitrate (r=0.41) and GGT (r=0.30). Conclusion: Oxidative stress and inflammatory markers should be used in addition to HbA1c for assessment of increased cardiac risk in un-controlled diabetic patients because of accelerated atherosclerosis due to free radical injury. (author)

  11. Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFβ signaling

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian [School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009 (China); Yin, Shasha; Yang, Jun; Zhang, Qin; Liu, Yangyang [Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093 (China); Huang, Fengjie, E-mail: hfj@cpu.edu.cn [School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009 (China); Cao, Wangsen, E-mail: wangsencao@nju.edu.cn [Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing 210093 (China)

    2016-08-01

    Renal fibrosis is the common feature of chronic kidney disease and mainly mediated by TGFβ-associated pro-fibrogenic signaling, which causes excessive extracellular matrix accumulation and successive loss of kidney functions. Sinomenine (SIN), an alkaloid derived from medicinal herb extensively used in treatment of rheumatoid arthritis and various inflammatory disorders, displays renal protective properties in experimental animals; however its pharmacological potency against renal fibrosis is not explored. In this study we report that SIN possesses strong anti-renal fibrosis functions in kidney cell and in mouse fibrotic kidney. SIN beneficially modulated the pro-fibrogenic protein expression in TGFβ-treated kidney cells and attenuated the renal fibrotic pathogenesis incurred by unilateral ureteral obstruction (UUO), which correlated with its activation of Nrf2 signaling - the key defender against oxidative stress with anti-fibrotic potentials. Further investigation on its regulation of Nrf2 downstream events revealed that SIN significantly balanced oxidative stress via improving the expression and activity of anti-oxidant and detoxifying enzymes, and interrupted the pro-fibrogenic signaling of TGFβ/Smad and Wnt/β-catenin. Even more impressively SIN achieved its anti-fibrotic activities in an Nrf2-dependent manner, suggesting that SIN regulation of Nrf2-associated anti-fibrotic activities constitutes a critical component of SIN's renoprotective functions. Collectively our studies have demonstrated a novel anti-fibrotic property of SIN and its upstream events and provided a molecular basis for SIN's potential applications in treatment of renal fibrosis-associated kidney disorders. - Highlights: • Sinomenine has strong potency of inhibiting renal fibrosis in UUO mouse kidney. • Sinomenine attenuates the expression of profibrogenic proteins. • Sinomenine balances renal fibrosis-associated oxidative stress. • Sinomenine mitigates profibrogenic

  12. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    International Nuclear Information System (INIS)

    Dutta, Anindita; Ray, Manas Ranjan; Banerjee, Anirban

    2012-01-01

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM 10 and PM 2.5 , respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM 10 and PM 2.5 levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on cardiovascular health was

  13. Disruption of erythrocyte antioxidant defense system, hematological parameters, induction of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide.

    Science.gov (United States)

    Ghorbel, Imen; Maktouf, Sameh; Kallel, Choumous; Ellouze Chaabouni, Semia; Boudawara, Tahia; Zeghal, Najiba

    2015-07-05

    The individual toxic effects of aluminium and acrylamide are well known but there are no data on their combined effects. The present study was undertaken to determine (i) hematological parameters during individual and combined chronic exposure to aluminium and acrylamide (ii) correlation of oxidative stress in erythrocytes with pro-inflammatory cytokines expression, DNA damage and histopathological changes in the liver. Rats were exposed to aluminium (50 mg/kg body weight) in drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination for 3 weeks. Exposure rats to AlCl3 or/and ACR provoked an increase in MDA, AOPP, H2O2 and a decrease in GSH and NPSH levels in erythrocytes. Activities of catalase, glutathione peroxidase and superoxide dismutase were decreased in all treated rats. Our results showed that all treatments induced an increase in WBC, erythrocyte osmotic fragility and a decrease in RBC, Hb and Ht. While MCV, MCH, MCHC remained unchanged. Hepatic pro-inflammatory cytokines expression including tumor necrosis factor-α, interleukin-6, interleukin-1β was increased suggesting leucocytes infiltration in the liver. A random DNA degradation was observed on agarose gel only in the liver of co-exposed rats to AlCl3 and ACR treatment. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in erythrocytes, pro-inflammatory cytokines and DNA damage in liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness

    Science.gov (United States)

    Shetty, Geetha A.; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K.

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity (Hmox1, Sepp1, and Srxn1), reactive oxygen species metabolism (Fmo2, Sod2, and Ucp2) and oxygen transport (Ift172 and Slc38a1). Furthermore, multiple genes relevant to mitochondrial respiration (Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10, and Ucp1) and neuroinflammation (Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac, and Prkaca) were up-regulated, alongside 73–88% reduction in the expression of anti-inflammatory genes IL4 and IL10, and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines and chemokines

  15. Chronic Oxidative Stress, Mitochondrial Dysfunction, Nrf2 Activation and Inflammation in the Hippocampus Accompany Heightened Systemic Inflammation and Oxidative Stress in an Animal Model of Gulf War Illness.

    Science.gov (United States)

    Shetty, Geetha A; Hattiangady, Bharathi; Upadhya, Dinesh; Bates, Adrian; Attaluri, Sahithi; Shuai, Bing; Kodali, Maheedhar; Shetty, Ashok K

    2017-01-01

    Memory and mood dysfunction are the key symptoms of Gulf war illness (GWI), a lingering multi-symptom ailment afflicting >200,000 veterans who served in the Persian Gulf War-1. Research probing the source of the disease has demonstrated that concomitant exposures to anti-nerve gas agent pyridostigmine bromide (PB), pesticides, and war-related stress are among the chief causes of GWI. Indeed, exposures to GWI-related chemicals (GWIR-Cs) and mild stress in animal models cause memory and mood impairments alongside reduced neurogenesis and chronic low-level inflammation in the hippocampus. In the current study, we examined whether exposure to GWIR-Cs and stress causes chronic changes in the expression of genes related to increased oxidative stress, mitochondrial dysfunction, and inflammation in the hippocampus. We also investigated whether GWI is linked with chronically increased activation of Nrf2 (a master regulator of antioxidant response) in the hippocampus, and inflammation and enhanced oxidative stress at the systemic level. Adult male rats were exposed daily to low-doses of PB and pesticides (DEET and permethrin), in combination with 5 min of restraint stress for 4 weeks. Analysis of the hippocampus performed 6 months after the exposure revealed increased expression of many genes related to oxidative stress response and/or antioxidant activity ( Hmox1, Sepp1 , and Srxn1 ), reactive oxygen species metabolism ( Fmo2, Sod2 , and Ucp2 ) and oxygen transport ( Ift172 and Slc38a1 ). Furthermore, multiple genes relevant to mitochondrial respiration ( Atp6a1, Cox6a1, Cox7a2L, Ndufs7, Ndufv1, Lhpp, Slc25a10 , and Ucp1 ) and neuroinflammation ( Nfkb1, Bcl6, Csf2, IL6, Mapk1, Mapk3, Ngf, N-pac , and Prkaca ) were up-regulated, alongside 73-88% reduction in the expression of anti-inflammatory genes IL4 and IL10 , and nuclear translocation and increased expression of Nrf2 protein. These hippocampal changes were associated with elevated levels of pro-inflammatory cytokines

  16. Tenocytes, pro-inflammatory cytokines and leukocytes: a relationship?

    OpenAIRE

    Al-Sadi, Onays; Schulze-Tanzil, Gundula; Kohl, Benjamin; Lohan, Anke; Lemke, Marion; Ertel, Wolfgang; John, Thilo

    2012-01-01

    Leukocyte derived pro-inflammatory mediators could be involved in tendon healing and scar formation. Hence, the effect of autologous leukocytes (PBMCs, peripheral blood mononuclear cells and neutrophils) on primary rabbit Achilles tenocytes gene expression was tested in insert assisted co-cultures.

  17. Effects of Arctium lappa L. (Burdock) root tea on inflammatory status and oxidative stress in patients with knee osteoarthritis.

    Science.gov (United States)

    Maghsoumi-Norouzabad, Leila; Alipoor, Beitollah; Abed, Reza; Eftekhar Sadat, Bina; Mesgari-Abbasi, Mehran; Asghari Jafarabadi, Mohammad

    2016-03-01

    This study was designed to examine the effect of Burdock root tea on inflammatory markers and oxidative stress indicators in patients with knee osteoarthritis (OA). Thirty-six patients (10 men and 26 women) aged 50-70 years old with knee osteoarthritis referred to the Physical Medicine and Rehabilitation Department of the Tabriz University of Medical Sciences Hospitals, were selected for the study and randomly divided into two groups. Anthropometric measurements, including height, weight and body mass index (BMI) were measured. For all individuals along the 42 days of study period, the same drug treatments, including two lots of 500 mg acetaminophen twice a day and one glucosamine 500 mg once a day,were considered. The intervention group received daily three cups of Burdock root tea (each cup containing 2 g/150 mL boiled water) half-hour after the meal. The control group received three cups containing 150 cc boiled water daily. We assessed inflammatory markers such as high sensitivity C-reactive protein (hs-CRP) and interleukin-6 (IL-6) and oxidative stress indicators such as total antioxidants capacity (TAC), glutathione peroxidase (GPX), superoxide dismutase (SOD) and thiobarbituric acid reactive substances before and after the intervention. The results showed that burdock root tea significantly decreased the levels of serum IL-6 (P = 0.002), hs-CRP (P = 0.003) and malondialdehyde (P Arctium lappa L. root tea improves inflammatory status and oxidative stress in patients with knee osteoarthritis. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  18. NADPH oxidase is not an essential mediator of oxidative stress or liver injury in murine MCD diet-induced steatohepatitis.

    Science.gov (United States)

    dela Peña, Aileen; Leclercq, Isabelle A; Williams, Jacqueline; Farrell, Geoffrey C

    2007-02-01

    Hepatic oxidative stress is a key feature of metabolic forms of steatohepatitis, but the sources of pro-oxidants are unclear. The NADPH oxidase complex is critical for ROS generation in inflammatory cells; loss of any one component (e.g., gp91phox) renders NADPH oxidase inactive. We tested whether activated inflammatory cells contribute to oxidant stress in steatohepatitis. gp91phox-/- and wildtype (wt) mice were fed a methionine and choline-deficient (MCD) diet. Serum ALT, hepatic triglycerides, histopathology, lipid peroxidation, activation of NF-kappaB, expression of NF-kappaB-regulated genes and macrophage chemokines were measured. After 10 days of MCD dietary feeding, gp91phox-/- and wt mice displayed equivalent hepatocellular injury. After 8 weeks, there were fewer activated macrophages in livers of gp91phox-/- mice than controls, despite similar mRNA levels for MCP and MIP chemokines, but fibrosis was similar. NF-kappaB activation and increased expression of ICAM-1, TNF-alpha and COX-2 mRNA were evident in both genotypes, but in gp91phox-/- mice, expression of these genes was confined to hepatocytes. A functional NADPH oxidase complex does not contribute importantly to oxidative stress in this model and therefore is not obligatory for induction or perpetuation of dietary steatohepatitis.

  19. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Patel-Vayas, Kinal; Shen, Jianliang [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  20. Induction of intestinal pro-inflammatory immune responses by lipoteichoic acid

    Directory of Open Access Journals (Sweden)

    Zadeh Mojgan

    2012-03-01

    Full Text Available Abstract Background The cellular and molecular mechanisms of inflammatory bowel disease are not fully understood; however, data indicate that uncontrolled chronic inflammation induced by bacterial gene products, including lipoteichoic acid (LTA, may trigger colonic inflammation resulting in disease pathogenesis. LTA is a constituent glycolipid of Gram-positive bacteria that shares many inflammatory properties with lipopolysaccharide and plays a critical role in the pathogenesis of severe inflammatory responses via Toll-like receptor 2. Accordingly, we elucidate the role of LTA in immune stimulation and induced colitis in vivo. Methods To better understand the molecular mechanisms utilized by the intestinal microbiota and their gene products to induce or subvert inflammation, specifically the effect(s of altered surface layer protein expression on the LTA-mediated pro-inflammatory response, the Lactobacillus acidophilus surface layer protein (Slp genes encoding SlpB and SlpX were deleted resulting in a SlpB- and SlpX- mutant that continued to express SlpA (assigned as NCK2031. Results Our data show profound activation of dendritic cells by NCK2031, wild-type L. acidophilus (NCK56, and purified Staphylococcus aureus-LTA. In contrary to the LTA-deficient strain NCK2025, the LTA-expressing strains NCK2031 and NCK56, as well as S. aureus-LTA, induce pro-inflammatory innate and T cell immune responses in vivo. Additionally, neither NCK2031 nor S. aureus-LTA supplemented in drinking water protected mice from DSS-colitis, but instead, induced significant intestinal inflammation resulting in severe colitis and tissue destruction. Conclusions These findings suggest that directed alteration of two of the L. acidophilus NCFM-Slps did not ameliorate LTA-induced pro-inflammatory signals and subsequent colitis.

  1. Pro- and Anti-Inflammatory Cytokines Release in Mice Injected with Crotalus durissus terrificus Venom

    Directory of Open Access Journals (Sweden)

    A. Hernández Cruz

    2008-01-01

    Full Text Available The effects of Crotalus durissus terrificus venom (Cdt were analyzed with respect to the susceptibility and the inflammatory mediators in an experimental model of severe envenomation. BALB/c female mice injected intraperitoneally presented sensibility to Cdt, with changes in specific signs, blood biochemical and inflammatory mediators. The venom induced reduction of glucose and urea levels and an increment of creatinine levels in serum from mice. Significant differences were observed in the time-course of mediator levels in sera from mice injected with Cdt. The maximum levels of IL-6, NO, IL-5, TNF, IL-4 and IL-10 were observed 15 min, 30 min, 1, 2 and 4 hours post-injection, respectively. No difference was observed for levels of IFN-γ. Taken together, these data indicate that the envenomation by Cdt is regulated both pro- and anti-inflammatory cytokine responses at time-dependent manner. In serum from mice injected with Cdt at the two first hours revealed of pro-inflammatory dominance. However, with an increment of time an increase of anti-inflammatory cytokines was observed and the balance toward to anti-inflammatory dominance. In conclusion, the observation that Cdt affects the production of pro- and anti-inflammatory cytokines provides further evidence for the role played by Cdt in modulating pro/anti-inflammatory cytokine balance.

  2. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-κB activation

    International Nuclear Information System (INIS)

    Roeder-Stolinski, Carmen; Fischaeder, Gundula; Oostingh, Gertie Janneke; Feltens, Ralph; Kohse, Franziska; Bergen, Martin von; Moerbt, Nora; Eder, Klaus; Duschl, Albert; Lehmann, Irina

    2008-01-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-κB) signalling pathway in human lung epithelial cells (A549). The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-κB activity. An inhibitor of NF-κB, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-κB signalling pathway by styrene is mediated via a redox-sensitive mechanism

  3. Mast cells and pro-inflammatory cytokines roles in assessment of grape seeds extract anti-inflammatory activity in rat model of carrageenan-induced paw edema

    Directory of Open Access Journals (Sweden)

    Amany Ahmed Mohamed Abd-Allah

    2018-01-01

    Full Text Available Objective(s: Reactive oxygen species (ROS-produced oxidative disorders were involved at the pathophysiology of many inflammatory processes via the generation of pro-inflammatory cytokines and antioxidant defense system suppression. Although herbal antioxidants as mono-therapy relief many inflammatory diseases including, autoimmunity rheumatoid arthritis, but as combination therapy with other proven anti-inflammatory drugs in order to decreasing their toxic impacts has not yet been studied clearly, especially against chemical substances that’s induced local inflammation with characteristic edema. Materials and Methods: Grape seeds extract (GSE at a concentration of 40 mg/kg B. wt alone or in combination with indomethacin (Indo. at a dose of 5 mg/Kg B. wt orally given for 10 days prior (gps VI, VII, VIII or as a single dose after edema induction (gps IX, X, XI in rat's left hind paw by sub-planter single injection of 0.1 carrageenan: saline solution (1% (gp. V to assess the prophylactic and therapeutic anti-inflammatory activities of both through  the estimation of selective inflammatory mediators and oxidative damage-related biomarkers as well as tissue mast cell scoring. Furthermore, both substances were given alone (gps II, III, IV for their  blood, liver and kidney safety evaluation comparing with negative control rats (gp. I which kept without medication. Results: A marked reduction on the inflammatory mediators, edema volume and oxidative byproducts in edema bearing rats' prophylactic and treated with grape seeds extract and indomethacin was observed. Indomethacin found to induce some toxicological impacts which minimized when administered together with GSE. Conclusion: GSE is a safe antioxidant agent with anti-inflammatory property.

  4. Cholinergic anti-inflammatory pathway inhibits neointimal hyperplasia by suppressing inflammation and oxidative stress

    Directory of Open Access Journals (Sweden)

    Dong-Jie Li

    2018-05-01

    Full Text Available Neointimal hyperplasia as a consequence of vascular injury is aggravated by inflammatory reaction and oxidative stress. The α7 nicotinic acetylcholine receptor (α7nAChR is a orchestrator of cholinergic anti-inflammatory pathway (CAP, which refers to a physiological neuro-immune mechanism that restricts inflammation. Here, we investigated the potential role of CAP in neointimal hyperplasia using α7nAChR knockout (KO mice. Male α7nAChR-KO mice and their wild-type control mice (WT were subjected to wire injury in left common carotid artery. At 4 weeks post injury, the injured aortae were isolated for examination. The neointimal hyperplasia after wire injury was significantly aggravated in α7nAChR-KO mice compared with WT mice. The α7nAChR-KO mice had increased collagen contents and vascular smooth muscle cells (VSMCs amount. Moreover, the inflammation was significantly enhanced in the neointima of α7nAChR-KO mice relative to WT mice, evidenced by the increased expression of tumor necrosis factor-α/interleukin-1β, and macrophage infiltration. Meanwhile, the chemokines chemokine (C-C motif ligand 2 and chemokine (CXC motif ligand 2 expression was also augmented in the neointima of α7nAChR-KO mice compared with WT mice. Additionally, the depletion of superoxide dismutase (SOD and reduced glutathione (GSH, and the upregulation of 3-nitrotyrosine, malondialdehyde and myeloperoxidase were more pronounced in neointima of α7nAChR-KO mice compared with WT mice. Accordingly, the protein expression of NADPH oxidase 1 (Nox1, Nox2 and Nox4, was also higher in neointima of α7nAChR-KO mice compared with WT mice. Finally, pharmacologically activation of CAP with a selective α7nAChR agonist PNU-282987, significantly reduced neointima formation, arterial inflammation and oxidative stress after vascular injury in C57BL/6 mice. In conclusion, our results demonstrate that α7nAChR-mediated CAP is a neuro-physiological mechanism that inhibits neointima

  5. Pro-inflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Zhang, Zhi-Hua; Felder, Robert B.

    2015-01-01

    Our previous work indicated that the subfornical organ (SFO) is an important brain sensor of blood-borne pro-inflammatory cytokines, mediating their central effects on autonomic and cardiovascular function. However, the mechanisms by which SFO mediates the central effects of circulating pro-inflammatory cytokines remain unclear. We hypothesized that pro-inflammatory cytokines act within the SFO to upregulate the expression of excitatory and inflammatory mediators that drive sympathetic nerve activity. In urethane-anesthetized Sprague-Dawley rats, direct microinjection of TNF-α (25 ng) or IL-1β (25 ng) into SFO increased mean blood pressure, heart rate and renal sympathetic nerve activity within 15–20 minutes, mimicking the response to systemically administered pro-inflammatory cytokines. Pretreatment of SFO with microinjections of the angiotensin II type 1 receptor (AT1R) blocker losartan (1 µg), angiotensin-converting enzyme (ACE) inhibitor captopril (1 µg) or cyclooxygenase (COX)-2 inhibitor NS-398 (2 µg) attenuated those responses. Four hours after the SFO microinjection of TNF-α (25 ng) or IL-1β (25 ng), mRNA for ACE, AT1R, TNF-α and the p55 TNF-α receptor TNFR1, IL-1β and the IL-1R receptor, and COX-2 had increased in SFO, and mRNA for ACE, AT1R and COX-2 had increased downstream in the hypothalamic paraventricular nucleus. Confocal immunofluorescent images revealed that immunoreactivity for TNFR1 and the IL-1 receptor accessory protein, a subunit of the IL-1 receptor, co-localized with ACE, AT1R-like, COX-2 and prostaglandin E2 EP3 receptor immunoreactivity in SFO neurons. These data suggest that pro-inflammatory cytokines act within the SFO to upregulate the expression of inflammatory and excitatory mediators that drive sympathetic excitation. PMID:25776070

  6. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  7. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    International Nuclear Information System (INIS)

    Kim, Jiyoung; Cha, Young-Nam; Surh, Young-Joon

    2010-01-01

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  8. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  9. SvO(2)-guided resuscitation for experimental septic shock: effects of fluid infusion and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress.

    Science.gov (United States)

    Rosário, André Loureiro; Park, Marcelo; Brunialti, Milena Karina; Mendes, Marialice; Rapozo, Marjorie; Fernandes, Denise; Salomão, Reinaldo; Laurindo, Francisco Rafael; Schettino, Guilherme Paula; Azevedo, Luciano Cesar P

    2011-12-01

    The pathogenetic mechanisms associated to the beneficial effects of mixed venous oxygen saturation (SvO(2))-guided resuscitation during sepsis are unclear. Our purpose was to evaluate the effects of an algorithm of SvO(2)-driven resuscitation including fluids, norepinephrine and dobutamine on hemodynamics, inflammatory response, and cardiovascular oxidative stress during a clinically resembling experimental model of septic shock. Eighteen anesthetized and catheterized pigs (35-45 kg) were submitted to peritonitis by fecal inoculation (0.75 g/kg). After hypotension, antibiotics were administered, and the animals were randomized to two groups: control (n = 9), with hemodynamic support aiming central venous pressure 8 to 12 mmHg, urinary output 0.5 mL/kg per hour, and mean arterial pressure greater than 65 mmHg; and SvO(2) (n = 9), with the goals above, plus SvO(2) greater than 65%. The interventions lasted 12 h, and lactated Ringer's and norepinephrine (both groups) and dobutamine (SvO(2) group) were administered. Inflammatory response was evaluated by plasma concentration of cytokines, neutrophil CD14 expression, oxidant generation, and apoptosis. Oxidative stress was evaluated by plasma and myocardial nitrate concentrations, myocardial and vascular NADP(H) oxidase activity, myocardial glutathione content, and nitrotyrosine expression. Mixed venous oxygen saturation-driven resuscitation was associated with improved systolic index, oxygen delivery, and diuresis. Sepsis induced in both groups a significant increase on IL-6 concentrations and plasma nitrate concentrations and a persistent decrease in neutrophil CD14 expression. Apoptosis rate and neutrophil oxidant generation were not different between groups. Treatment strategies did not significantly modify oxidative stress parameters. Thus, an approach aiming SvO(2) during sepsis improves hemodynamics, without any significant effect on inflammatory response and oxidative stress. The beneficial effects associated

  10. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  11. The Implications of Oxidative Stress and Antioxidant Therapies in Inflammatory Bowel Disease: Clinical Aspects and Animal Models

    Science.gov (United States)

    Balmus, Ioana Miruna; Ciobica, Alin; Trifan, Anca; Stanciu, Carol

    2016-01-01

    Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disorder characterized by alternating phases of clinical relapse and remission. The etiology of IBD remains largely unknown, although a combination of patient's immune response, genetics, microbiome, and environment plays an important role in disturbing intestinal homeostasis, leading to development and perpetuation of the inflammatory cascade in IBD. As chronic intestinal inflammation is associated with the formation of reactive oxygen and reactive nitrogen species (ROS and RNS), oxidative and nitrosative stress has been proposed as one of the major contributing factor in the IBD development. Substantial evidence suggests that IBD is associated with an imbalance between increased ROS and decreased antioxidant activity, which may explain, at least in part, many of the clinical pathophysiological features of both CD and UC patients. Hereby, we review the presently known oxidant and antioxidant mechanisms involved in IBD-specific events, the animal models used to determine these specific features, and also the antioxidant therapies proposed in IBD patients. PMID:26831601

  12. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    Science.gov (United States)

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. The Effects of Isoflavone Supplementation Plus Combined Exercise on Lipid Levels, and Inflammatory and Oxidative Stress Markers in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Jéssica S. Giolo

    2018-03-01

    Full Text Available This study tested the effect of isoflavone supplementation in addition to combined exercise training on plasma lipid levels, inflammatory markers and oxidative stress in postmenopausal women. Thirty-two healthy and non-obese postmenopausal women without hormone therapy were randomly assigned to exercise + placebo (PLA; n = 15 or exercise + isoflavone supplementation (ISO; n = 17 groups. They performed 30 sessions of combined exercises (aerobic plus resistance over ten weeks and consumed 100 mg of isoflavone supplementation or placebo. Blood samples were collected after an overnight fast to analyze the lipid profile, interleukin-6 (IL-6, interleukin-8 (IL-8, superoxide dismutase (SOD, total antioxidant capacity (FRAP, and thiobarbituric acid reactive substances (TBARS, before and after ten weeks of the intervention. There were no differences in the changes (pre vs. post between groups for any of the inflammatory markers, oxidative stress markers or lipid profile variables. However, interleukin-8 was different between pre- and post-tests (p < 0.001 in both groups (Δ = 7.61 and 5.61 pg/mL as were cholesterol levels (p < 0.05, with no interaction between groups. The combination of isoflavone supplementation and exercise training did not alter oxidative stress markers in postmenopausal women, but exercise training alone may increase IL-8 and decrease total cholesterol levels.

  14. Minocycline counter-regulates pro-inflammatory microglia responses in the retina and protects from degeneration.

    Science.gov (United States)

    Scholz, Rebecca; Sobotka, Markus; Caramoy, Albert; Stempfl, Thomas; Moehle, Christoph; Langmann, Thomas

    2015-11-17

    Microglia reactivity is a hallmark of retinal degenerations and overwhelming microglial responses contribute to photoreceptor death. Minocycline, a semi-synthetic tetracycline analog, has potent anti-inflammatory and neuroprotective effects. Here, we investigated how minocycline affects microglia in vitro and studied its immuno-modulatory properties in a mouse model of acute retinal degeneration using bright white light exposure. LPS-treated BV-2 microglia were stimulated with 50 μg/ml minocycline for 6 or 24 h, respectively. Pro-inflammatory gene transcription was determined by real-time RT-PCR and nitric oxide (NO) secretion was assessed using the Griess reagent. Caspase 3/7 levels were determined in 661W photoreceptors cultured with microglia-conditioned medium in the absence or presence of minocycline supplementation. BALB/cJ mice received daily intraperitoneal injections of 45 mg/kg minocycline, starting 1 day before exposure to 15.000 lux white light for 1 hour. The effect of minocycline treatment on microglial reactivity was analyzed by immunohistochemical stainings of retinal sections and flat-mounts, and messenger RNA (mRNA) expression of microglia markers was determined using real-time RT-PCR and RNA-sequencing. Optical coherence tomography (OCT) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) stainings were used to measure the extent of retinal degeneration and photoreceptor apoptosis. Stimulation of LPS-activated BV-2 microglia with minocycline significantly diminished the transcription of the pro-inflammatory markers CCL2, IL6, and inducible nitric oxide synthase (iNOS). Minocycline also reduced the production of NO and dampened microglial neurotoxicity on 661W photoreceptors. Furthermore, minocycline had direct protective effects on 661W photoreceptors by decreasing caspase 3/7 activity. In mice challenged with white light, injections of minocycline strongly decreased the number of amoeboid alerted microglia in the outer

  15. Oxidative and inflammatory signals in obesity-associated vascular abnormalities.

    Science.gov (United States)

    Reho, John J; Rahmouni, Kamal

    2017-07-15

    Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Effect of eicosapentaenoic and docosahexaenoic acid on resting and exercise-induced inflammatory and oxidative stress biomarkers: a randomized, placebo controlled, cross-over study

    Directory of Open Access Journals (Sweden)

    Galpin Andrew J

    2009-08-01

    Full Text Available Abstract Background The purpose of the present investigation was to determine the effects of EPA/DHA supplementation on resting and exercise-induced inflammation and oxidative stress in exercise-trained men. Fourteen men supplemented with 2224 mg EPA+2208 mg DHA and a placebo for 6 weeks in a random order, double blind cross-over design (with an 8 week washout prior to performing a 60 minute treadmill climb using a weighted pack. Blood was collected pre and post exercise and analyzed for a variety of oxidative stress and inflammatory biomarkers. Blood lactate, muscle soreness, and creatine kinase activity were also measured. Results Treatment with EPA/DHA resulted in a significant increase in blood levels of both EPA (18 ± 2 μmol·L-1 vs. 143 ± 23 μmol·L-1; p -1 vs. 157 ± 13 μmol·L-1; p 0.05. There was a mild increase in oxidative stress in response to exercise (XO and H2O2 (p Conclusion EPA/DHA supplementation increases blood levels of these fatty acids and results in decreased resting levels of inflammatory biomarkers in exercise-trained men, but does not appear necessary for exercise-induced attenuation in either inflammation or oxidative stress. This may be due to the finding that trained men exhibit a minimal increase in both inflammation and oxidative stress in response to moderate duration (60 minute aerobic exercise.

  17. The effect and influence of lumen holmium laser lithotripsy on serum oxidative stress proteins and inflammatory factors of ureteral calculi patients

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2016-09-01

    Full Text Available Objective: To investigate the effect and influence of lumen holmium laser lithotripsy on treating serum oxidative stress proteins and inflammatory factors of patients with ureteral calculi. Methods: A total of 120 cases of patients with ureteral calculi treated in our hospital from May 2010 to Nov 2014 were enrolled in this research for an analysis study. The effect and influence on serum oxidative stress proteins and inflammatory factors of lumen holmium laser lithotripsy on ureteral calculi patients were assayed. Then 120 cases of healthy subjects in our hospital at the same period were taken as control. Results: Among the 120 cases of ureteral calculi patients, 113 cases of patients showed successful operation, with a success rate of 94.2%. The average calculi-discharged time was (28.4 ± 11.2 d and the average operation time was (58.9 ± 10.7 min, while the postoperative hospital stay is (3.8 ± 1.2 d. The results also showed that the levels of NOX1. NOX3, NOX4 and NOX5, and levels of interleukin-2 (IL-2, IL-6, IL-10 and TNF-α of patients with ureteral calculi were significantly higher, compared with the control group, and these parameters were normalized greatly after operation with that the levels of them were significantly different from those before operation. Conclusion: Lumen holmium laser lithotripsy exerts a significant effect on ureteral calculi patients and the oxidative stress parameters and inflammatory factor were normalized greatly.

  18. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anindita, E-mail: anidu14@gmail.com [College of Environmental Sciences and Engineering, Peking University, Beijing (China); Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India); Ray, Manas Ranjan; Banerjee, Anirban [Department of Experimental Hematology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata-700 026 (India)

    2012-06-15

    The study was undertaken to investigate whether regular cooking with biomass aggravates systemic inflammation and oxidative stress that might result in increase in the risk of developing cardiovascular disease (CVD) in rural Indian women compared to cooking with a cleaner fuel like liquefied petroleum gas (LPG). A total of 635 women (median age 36 years) who cooked with biomass and 452 age-matched control women who cooked with LPG were enrolled. Serum interleukin-6 (IL-6), C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8) were measured by ELISA. Generation of reactive oxygen species (ROS) by leukocytes was measured by flow cytometry, and erythrocytic superoxide dismutase (SOD) was measured by spectrophotometry. Hypertension was diagnosed following the Seventh Report of the Joint Committee. Tachycardia was determined as pulse rate > 100 beats per minute. Particulate matter of diameter less than 10 and 2.5 μm (PM{sub 10} and PM{sub 2.5}, respectively) in cooking areas was measured using real-time aerosol monitor. Compared with control, biomass users had more particulate pollution in indoor air, their serum contained significantly elevated levels of IL-6, IL-8, TNF-α and CRP, and ROS generation was increased by 37% while SOD was depleted by 41.5%, greater prevalence of hypertension and tachycardia compared to their LPG-using neighbors. PM{sub 10} and PM{sub 2.5} levels were positively associated with markers of inflammation, oxidative stress and hypertension. Inflammatory markers correlated with raised blood pressure. Cooking with biomass exacerbates systemic inflammation, oxidative stress, hypertension and tachycardia in poor women cooking with biomass fuel and hence, predisposes them to increased risk of CVD development compared to the controls. Systemic inflammation and oxidative stress may be the mechanistic factors involved in the development of CVD. -- Highlights: ► Effect of chronic biomass smoke exposure on

  19. Different activities of Schinus areira L.: anti-inflammatory or pro-inflammatory effect.

    Science.gov (United States)

    Davicino, R; Mattar, A; Casali, Y; Anesini, C; Micalizzi, B

    2010-12-01

    The anti-inflammatory drugs possess many serious side effects at doses commonly prescribed. It is really important to discover novel regulators of inflammation from natural sources with minimal adverse effects. Schinus areira L. is a plant native from South America and is used in folk medicine as an anti-inflammatory herb. For this study, the activity of aqueous extracts on inflammation and the effect on superoxide anion production in mice macrophages were assayed. Aqueous extracts were prepared by soaking herbs in cold water (cold extract), boiling water (infusion), and simmering water (decoction). Cold extract possess an anti-inflammatory activity. Decoction and infusion showed pro-inflammatory activity. Cold extract increased the production of superoxide anion. It has been proposed to use diverse methods to obtain extracts of S. areira L. with different effects. Cold extract, decoction, and infusion could be utilized as extracts or as pharmacological preparations for topical application.

  20. Naja naja atra venom ameliorates pulmonary fibrosis by inhibiting inflammatory response and oxidative stress.

    Science.gov (United States)

    Cui, Kui; Kou, Jian-Qun; Gu, Jin-Hua; Han, Rong; Wang, Guanghui; Zhen, Xuechu; Qin, Zheng-Hong

    2014-12-02

    Naja naja atra venom (NNAV) displays diverse pharmacological actions including analgesia, anti-inflammation and immune regulation.In this study, we investigated the effects of NNAV on pulmonary fibrosis and its mechanisms of action. To determine if Naja naja atra venom (NNAV) can produce beneficial effects on pulmonary fibrosis, two marine models of pulmonary fibrosis were produced with bleomycin (BLM) and lipopolysaccharide (LPS). NNAV (30, 90, 270 μg/kg) was orally administered once a day started five days before BLM and LPS until to the end of experiment. The effects of NNAV treatment on pulmonary injury were evaluated with arterial blood gas analysis, hydroxyproline (HYP) content assessment and HE/Masson staining. The effects of NNAV treatment on inflammatory related cytokines, fibrosis related TGF-β/Smad signaling pathway and oxidative stress were examined. The results showed that NNAV improved the lung gas-exchange function and attenuated the fibrotic lesions in lung. NNAV decreased IL-1β and TNF-α levels in serum in both pulmonary fibrosis models. NNAV inhibited the activation of NF-κB in LPS-induced and TGF-β/Smad pathway in BLM-induced pulmonary fibrosis. Additionally, NNAV also increased the levels of SOD and GSH and reduced the levels of MDA in BLM-induced pulmonary fibrosis model. The present study indicates that NNAV attenuates LPS- and BLM-induced lung fibrosis. Its mechanisms of action are associated with inhibiting inflammatory response and oxidative stress. The study suggests that NNAV might be a potential therapeutic drug for treatment of pulmonary fibrosis.

  1. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  2. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio)

    International Nuclear Information System (INIS)

    Jia, Rui; Cao, Li-Ping; Du, Jin-Liang; Wang, Jia-Hao; Liu, Ying-Juan; Jeney, Galina; Xu, Pao; Yin, Guo-Jun

    2014-01-01

    Highlights: • We explored the underlying toxicology of CCl 4 at the cellular and molecular levels. • QRT-PCR detected the gene expression of NF-κB and inflammatory cytokines. • The apoptosis and necrosis occurred simultaneously in carp liver damage. • CCl 4 activated the TNF-α/NF-κB and TRL4/NF-κB signaling pathways. - Abstract: In the present study, the cellular and molecular mechanism of carbon tetrachloride (CCl 4 )-induced hepatotoxicity in fish was investigated by studying the effects of CCl 4 on the oxidative stress, inflammatory response and hepatocyte apoptosis. Common carp were given an intraperitoneal injection of 30% CCl 4 in arachis oil (0.5 ml/kg body weight). At 72 h post-injection, blood were collected to measure glutamate pyruvate transaminase (GPT), glutamate oxalate transaminase (GOT), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) and malondialdehyde (MDA), liver samples were taken to analyze toll-like receptor 4 (TLR4), cytochrome P450 2E1 (CYP2E1) and gene expressions of inflammatory cytokines and nuclear factor-κB (NF-κB/cREL). Cell viability and apoptosis were analyzed after treatment of the primary hepatocytes with CCl 4 at 8 mM. The results showed that CCl 4 significantly increased the levels of GPT, GOT, MDA, TLR4 and CYP2E1, reduced the levels of SOD, GPx, CAT, GSH and T-AOC, and up-regulated the gene expressions of NF-κB/cREL and inflammatory cytokines including tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), IL-1β, IL-6 and IL-12. In vitro, CCl 4 caused a dramatic loss in cell viability and induced hepatocyte apoptosis. Overall results suggest that oxidative stress lipid peroxidation, and TNF-α/NF-κB and TRL4/NF-κB signaling pathways play important roles in CCl 4 -induced hepatotoxicity in fish

  3. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio)

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Rui [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); Cao, Li-Ping; Du, Jin-Liang [Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); Wang, Jia-Hao; Liu, Ying-Juan [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Jeney, Galina [National Agricultural Research Center, Research Institute for Fisherie and, Aquaculture, Anna Light 8, Szarvas 5440 (Hungary); Xu, Pao, E-mail: xup@ffrc.cn [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); Yin, Guo-Jun, E-mail: yingj@ffrc.cn [Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081 (China); Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China); International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081 (China)

    2014-07-01

    Highlights: • We explored the underlying toxicology of CCl{sub 4} at the cellular and molecular levels. • QRT-PCR detected the gene expression of NF-κB and inflammatory cytokines. • The apoptosis and necrosis occurred simultaneously in carp liver damage. • CCl{sub 4} activated the TNF-α/NF-κB and TRL4/NF-κB signaling pathways. - Abstract: In the present study, the cellular and molecular mechanism of carbon tetrachloride (CCl{sub 4})-induced hepatotoxicity in fish was investigated by studying the effects of CCl{sub 4} on the oxidative stress, inflammatory response and hepatocyte apoptosis. Common carp were given an intraperitoneal injection of 30% CCl{sub 4} in arachis oil (0.5 ml/kg body weight). At 72 h post-injection, blood were collected to measure glutamate pyruvate transaminase (GPT), glutamate oxalate transaminase (GOT), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), total antioxidant capacity (T-AOC) and malondialdehyde (MDA), liver samples were taken to analyze toll-like receptor 4 (TLR4), cytochrome P450 2E1 (CYP2E1) and gene expressions of inflammatory cytokines and nuclear factor-κB (NF-κB/cREL). Cell viability and apoptosis were analyzed after treatment of the primary hepatocytes with CCl{sub 4} at 8 mM. The results showed that CCl{sub 4} significantly increased the levels of GPT, GOT, MDA, TLR4 and CYP2E1, reduced the levels of SOD, GPx, CAT, GSH and T-AOC, and up-regulated the gene expressions of NF-κB/cREL and inflammatory cytokines including tumor necrosis factor-α (TNF-α), inducible nitric oxide synthase (iNOS), IL-1β, IL-6 and IL-12. In vitro, CCl{sub 4} caused a dramatic loss in cell viability and induced hepatocyte apoptosis. Overall results suggest that oxidative stress lipid peroxidation, and TNF-α/NF-κB and TRL4/NF-κB signaling pathways play important roles in CCl{sub 4}-induced hepatotoxicity in fish.

  4. Effect of moxifloxacin on oxidative stress, paraoxonase-1 (PON1 ...

    African Journals Online (AJOL)

    oxidative stress in patients with multiple drug-resistant tuberculosis (MDR-TB). Methods: A total ofof ... seriously affects the quality of life and prognosis. [6]. ... balance between pro-oxidants and antioxidant ..... original work is properly credited.

  5. Fisetin and luteolin protect human retinal pigment epithelial cells from oxidative stress-induced cell death and regulate inflammation

    Science.gov (United States)

    Hytti, Maria; Piippo, Niina; Korhonen, Eveliina; Honkakoski, Paavo; Kaarniranta, Kai; Kauppinen, Anu

    2015-01-01

    Degeneration of retinal pigment epithelial (RPE) cells is a clinical hallmark of age-related macular degeneration (AMD), the leading cause of blindness among aged people in the Western world. Both inflammation and oxidative stress are known to play vital roles in the development of this disease. Here, we assess the ability of fisetin and luteolin, to protect ARPE-19 cells from oxidative stress-induced cell death and to decrease intracellular inflammation. We also compare the growth and reactivity of human ARPE-19 cells in serum-free and serum-containing conditions. The absence of serum in the culture medium did not prevent ARPE-19 cells from reaching full confluency but caused an increased sensitivity to oxidative stress-induced cell death. Both fisetin and luteolin protected ARPE-19 cells from oxidative stress-induced cell death. They also significantly decreased the release of pro-inflammatory cytokines into the culture medium. The decrease in inflammation was associated with reduced activation of MAPKs and CREB, but was not linked to NF- κB or SIRT1. The ability of fisetin and luteolin to protect and repair stressed RPE cells even after the oxidative insult make them attractive in the search for treatments for AMD. PMID:26619957

  6. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  7. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis.

    Science.gov (United States)

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Maity, Pallab; Adhikari, Susanta S; Bandyopadhyay, Uday

    2010-07-15

    Nonsteroidal anti-inflammatory drug (NSAID)-induced oxidative stress plays a critical role in gastric mucosal cell apoptosis and gastropathy. NSAIDs induce the generation of hydroxyl radical ((*)OH) through the release of free iron, which plays an important role in developing gastropathy. Thus, molecules having both iron-chelating and antiapoptotic properties will be beneficial in preventing NSAID-induced gastropathy. Gallic acid (GA), a polyphenolic natural product, has the capacity to chelate free iron. Here, we report that GA significantly prevents, as well as heals, NSAID-induced gastropathy. In vivo, GA blocks NSAID-mediated mitochondrial oxidative stress by preventing mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. In vitro, GA scavenges free radicals and blocks (*)OH-mediated oxidative damage. GA also attenuates gastric mucosal cell apoptosis in vivo as well as in vitro in cultured gastric mucosal cells as evident from the TUNEL assay. GA prevents NSAID-induced activation of caspase-9, a marker for the mitochondrial pathway of apoptosis, and restores NSAID-mediated collapse of the mitochondrial transmembrane potential and dehydrogenase activity. Thus, the inhibition of mitochondrial oxidative stress by GA is associated with the inhibition of NSAID-induced mitochondrial dysfunction and activation of apoptosis in gastric mucosal cells, which are responsible for gastric injury or gastropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  9. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    Directory of Open Access Journals (Sweden)

    Rosa M López-Pedrajas

    2015-07-01

    Full Text Available Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB, considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p. for 18 days. Reduced and oxidized forms of glutathione (GSH and GSSG, glutathione peroxidase (GPx activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68 and GFAP expression were determined.Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations.Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction.

  10. Erdosteine reduces the exercise-induced oxidative stress in patients with severe COPD: Results of a placebo-controlled trial.

    Science.gov (United States)

    Dal Negro, Roberto W; Visconti, Maria

    2016-12-01

    Erdosteine (ER), a multimechanism, mucoactive agent with anti-oxidant and anti-inflammatory properties, has been shown to improve lung function, decrease plasma reactive oxygen species (ROS), and 8-isoprostane levels in patients with chronic obstructive pulmonary disease (COPD). To assess vs. placebo the effect of ER on the exercise-induced oxidative stress by measuring and comparing the release of pro-inflammatory mediators in severe COPD patients. The double blind, placebo controlled study was carried out in 24 severe (GOLD Class III) COPD patients, aged >40 yr, randomized to receive either oral ER (600 mg/day, 8 males, mean age 70.5 yr) or placebo (9 males, mean age 70.8 yr) for 10 days. All patients performed a 6-min walking test (6MWT) before and after both treatments. Mean ROS plasma levels increased significantly, but equally, in each group following the baseline 6MWT (p = ns). At the end of both treatments, a significant difference in mean plasma ROS increase from baseline became clear between the ER (+14.6% ± 2.7) and the placebo group (+24.4% ± 3.8) after the second 6MWT (p release of inflammatory mediators due to the exercise-induced oxidative stress in severe COPD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Agmatine attenuates intestinal ischemia and reperfusion injury by reducing oxidative stress and inflammatory reaction in rats.

    Science.gov (United States)

    Turan, Inci; Ozacmak, Hale Sayan; Ozacmak, V Haktan; Barut, Figen; Araslı, Mehmet

    2017-11-15

    Oxidative stress and inflammatory response are major factors causing several tissue injuries in intestinal ischemia and reperfusion (I/R). Agmatine has been reported to attenuate I/R injury of various organs. The present study aims to analyze the possible protective effects of agmatine on intestinal I/R injury in rats. Four groups were designed: sham control, agmatine-treated control, I/R control, and agmatine-treated I/R groups. IR injury of small intestine was induced by the occlusion of the superior mesenteric artery for half an hour to be followed by a 3-hour-long reperfusion. Agmatine (10mg/kg) was administered intraperitoneally before reperfusion period. After 180min of reperfusion period, the contractile responses to both carbachol and potassium chloride (KCl) were subsequently examined in an isolated-organ bath. Malondialdehyde (MDA), reduced glutathione (GSH), and the activity of myeloperoxidase (MPO) were measured in intestinal tissue. Plasma cytokine levels were determined. The expression of the intestinal inducible nitric oxide synthase (iNOS) was also assessed by immunohistochemistry. The treatment with agmatine appeared to be significantly effective in reducing the MDA content and MPO activity besides restoring the content of GSH. The treatment also attenuated the histological injury. The increases in the I/R induced expressions of iNOS, IFN-γ, and IL-1α were brought back to the sham control levels by the treatment as well. Our findings indicate that the agmatine pretreatment may ameliorate reperfusion induced injury in small intestine mainly due to reducing inflammatory response and oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Food-derived bioactive peptides on inflammation and oxidative stress.

    Science.gov (United States)

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  13. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    International Nuclear Information System (INIS)

    Xian, Wenjing; Wu, Yan; Xiong, Wei; Li, Longyan; Li, Tong; Pan, Shangwen; Song, Limin; Hu, Lisha; Pei, Lei; Yao, Shanglong

    2016-01-01

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  14. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Wenjing [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wu, Yan [Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiong, Wei [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Longyan [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Li, Tong [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pan, Shangwen [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Song, Limin [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Hu, Lisha [Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Pei, Lei [Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yao, Shanglong, E-mail: ysltian@163.com [Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); and others

    2016-03-25

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.

  15. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Alfonso Díaz

    2016-01-01

    Full Text Available Energy drinks (EDs are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx and hippocampus (Hp of adult rats (90 days old. Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  16. Adherent Human Alveolar Macrophages Exhibit a Transient Pro-Inflammatory Profile That Confounds Responses to Innate Immune Stimulation

    Science.gov (United States)

    Tomlinson, Gillian S.; Booth, Helen; Petit, Sarah J.; Potton, Elspeth; Towers, Greg J.; Miller, Robert F.; Chain, Benjamin M.; Noursadeghi, Mahdad

    2012-01-01

    Alveolar macrophages (AM) are thought to have a key role in the immunopathogenesis of respiratory diseases. We sought to test the hypothesis that human AM exhibit an anti-inflammatory bias by making genome-wide comparisons with monocyte derived macrophages (MDM). Adherent AM obtained by bronchoalveolar lavage of patients under investigation for haemoptysis, but found to have no respiratory pathology, were compared to MDM from healthy volunteers by whole genome transcriptional profiling before and after innate immune stimulation. We found that freshly isolated AM exhibited a marked pro-inflammatory transcriptional signature. High levels of basal pro-inflammatory gene expression gave the impression of attenuated responses to lipopolysaccharide (LPS) and the RNA analogue, poly IC, but in rested cells pro-inflammatory gene expression declined and transcriptional responsiveness to these stimuli was restored. In comparison to MDM, both freshly isolated and rested AM showed upregulation of MHC class II molecules. In most experimental paradigms ex vivo adherent AM are used immediately after isolation. Therefore, the confounding effects of their pro-inflammatory profile at baseline need careful consideration. Moreover, despite the prevailing view that AM have an anti-inflammatory bias, our data clearly show that they can adopt a striking pro-inflammatory phenotype, and may have greater capacity for presentation of exogenous antigens than MDM. PMID:22768282

  17. Pro-inflammatory cytokines play a key role in the development of radiotherapy-induced gastrointestinal mucositis

    Directory of Open Access Journals (Sweden)

    Logan Richard M

    2010-03-01

    Full Text Available Abstract Background Mucositis is a toxic side effect of anti-cancer treatments and is a major focus in cancer research. Pro-inflammatory cytokines have previously been implicated in the pathophysiology of chemotherapy-induced gastrointestinal mucositis. However, whether they play a key role in the development of radiotherapy-induced gastrointestinal mucositis is still unknown. Therefore, the aim of the present study was to characterise the expression of pro-inflammatory cytokines in the gastrointestinal tract using a rat model of fractionated radiotherapy-induced toxicity. Methods Thirty six female Dark Agouti rats were randomly assigned into groups and received 2.5 Gys abdominal radiotherapy three times a week over six weeks. Real time PCR was conducted to determine the relative change in mRNA expression of pro-inflammatory cytokines IL-1β, IL-6 and TNF in the jejunum and colon. Protein expression of IL-1β, IL-6 and TNF in the intestinal epithelium was investigated using qualitative immunohistochemistry. Results Radiotherapy-induced sub-acute damage was associated with significantly upregulated IL-1β, IL-6 and TNF mRNA levels in the jejunum and colon. The majority of pro-inflammatory cytokine protein expression in the jejunum and colon exhibited minimal change following fractionated radiotherapy. Conclusions Pro-inflammatory cytokines play a key role in radiotherapy-induced gastrointestinal mucositis in the sub-acute onset setting.

  18. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    Science.gov (United States)

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jiyoung [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cha, Young-Nam [Inha University College of Medicine, Incheon 382-751 (Korea, Republic of); Surh, Young-Joon, E-mail: surh@plaza.snu.ac.kr [National Research Laboratory, College of Pharmacy, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2010-08-07

    Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor that plays a central role in cellular defense against oxidative and electrophilic insults by timely induction of antioxidative and phase-2 detoxifying enzymes and related stress-response proteins. The 5'-flanking regions of genes encoding these cytoprotective proteins contain a specific consensus sequence termed antioxidant response element (ARE) to which Nrf2 binds. Recent studies have demonstrated that Nrf2-ARE signaling is also involved in attenuating inflammation-associated pathogenesis, such as autoimmune diseases, rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis. Thus, disruption or loss of Nrf2 signaling causes enhanced susceptibility not only to oxidative and electrophilic stresses but also to inflammatory tissue injuries. During the early-phase of inflammation-mediated tissue damage, activation of Nrf2-ARE might inhibit the production or expression of pro-inflammatory mediators including cytokines, chemokines, cell adhesion molecules, matrix metalloproteinases, cyclooxygenase-2 and inducible nitric oxide synthase. It is likely that the cytoprotective function of genes targeted by Nrf2 may cooperatively regulate the innate immune response and also repress the induction of pro-inflammatory genes. This review highlights the protective role of Nrf2 in inflammation-mediated disorders with special focus on the inflammatory signaling modulated by this redox-regulated transcription factor.

  20. Effects of edaravone combined with hyperbaric oxygen on cerebral vascular dynamics, oxidative stress products and inflammatory factors in patients with acute cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Xia Li

    2017-10-01

    Full Text Available Objective: To investigate the effect of edaravone combined with hyperbaric oxygen therapy on cerebral vasculature, oxidative stress and inflammatory cytokines in patients with acute cerebral hemorrhage (ACH. Methods: A total of 96 patients with ACH were divided into control group (n=48 and observation group (n=48 according to the random number table. Both groups were treated routinely. On this basis, the control group was treated with edaravone injection, and the observation group was treated with edaravone injection combined with hyperbaric oxygen therapy. The change of cerebrovascular dynamics, oxidative stress products and inflammatory factors were examined in all subjects before and after treatment. Results: There were no significant differences in cerebrovascular function between the two groups before treatment. After treatment, the levels of Vmean and Qmean in both groups were significantly higher than those before treatment. The levels of Vmean and Qmean in the observation group were higher than those of the control group after treatment. There was no significant difference in serum oxidative stress between the two groups before treatment. After treatment, the levels of SOD in two groups were significantly higher than those before treatment. The level of SOD in the observation group was higher than that in the control group after treatment. After treatment, the levels of MDA in the two groups were significantly lower than that before treatment. The level of MDA in the observation group was lower than that of the control group after treatment. There were no significant differences in the level of serum inflammatory factors between the two groups before treatment. After treatment, the level of TNF-α and IL-1β in two groups were significantly lower than before treatment. The level of TNF-α and IL-1β in the observation group was lower than those of the control group after treatment. Conclusion: Edaravone combined with hyperbaric oxygen

  1. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  2. Effects of Clopidogrel Therapy on Oxidative Stress, Inflammation, Vascular Function and Progenitor Cells in Stable Coronary Artery Disease

    Science.gov (United States)

    Ramadan, Ronnie; Dhawan, Saurabh S.; Syed, Hamid; Pohlel, F. Khan; Binongo, Jose Nilo G.; Ghazzal, Ziyad B.; Quyyumi, Arshed A.

    2014-01-01

    Background Traditional cardiovascular risk factors lead to endothelial injury and activation of leucocytes and platelets that initiate and propagate atherosclerosis. We proposed that clopidogrel therapy in patients with stable CAD imparts a pleiotropic effect that extends beyond anti-platelet aggregation to other athero-protective processes. Methods Forty-one subjects were randomized in a double-blind, placebo-controlled crossover study to either clopidogrel 75 mg daily or placebo for 6-weeks, and then transitioned immediately to the other treatment for an additional 6 weeks. We assessed 1) endothelial function as flow-mediated dilation of the brachial artery, 2) arterial stiffness and central augmentation index using applanation tonometry, 3) vascular function as fingertip reactive hyperemia index, 4) inflammation by measuring plasma CD40 ligand and serum high-sensitivity c-reactive protein levels, 5) oxidative stress by measuring plasma aminothiols, and 6) circulating progenitor cells, at baseline and at the end of each 6-week treatment period. Results Clopidogrel therapy resulted in a significant reduction in soluble CD40 ligand (p=0.03), a pro-thrombotic and pro-inflammatory molecule derived mainly from activated platelets. However, clopidogrel therapy had no effect on endothelial function, arterial stiffness, inflammatory and oxidative stress markers, or progenitor cells. Conclusions Our findings suggest a solitary anti-platelet effect of clopidogrel therapy in patients with stable CAD, with no effect on other sub-clinical markers of cardiovascular disease risk. PMID:24336012

  3. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training.

    Science.gov (United States)

    Slattery, Katie; Bentley, David; Coutts, Aaron J

    2015-04-01

    During periods of intensified physical training, reactive oxygen species (ROS) release may exceed the protective capacity of the antioxidant system and lead to dysregulation within the inflammatory and neuroendocrinological systems. Consequently, the efficacy of exogenous antioxidant supplementation to maintain the oxidative balance in states of exercise stress has been widely investigated. The aim of this review was to (1) collate the findings of prior research on the effect of intensive physical training on oxidant-antioxidant balance; (2) summarise the influence of antioxidant supplementation on the reduction-oxidation signalling pathways involved in physiological adaptation; and (3) provide a synopsis on the interactions between the oxidative, inflammatory and neuroendocrinological response to exercise stimuli. Based on prior research, it is evident that ROS are an underlying aetiology in the adaptive process; however, the impact of antioxidant supplementation on physiological adaptation remains unclear. Equivocal results have been reported on the impact of antioxidant supplementation on exercise-induced gene expression. Further research is required to establish whether the interference of antioxidant supplementation consistently observed in animal-based and in vivo research extends to a practical sports setting. Moreover, the varied results reported within the literature may be due to the hormetic response of oxidative, inflammatory and neuroendocrinological systems to an exercise stimulus. The collective findings suggest that intensified physical training places substantial stress on the body, which can manifest as an adaptive or maladaptive physiological response. Additional research is required to determine the efficacy of antioxidant supplementation to minimise exercise-stress during intensive training and promote an adaptive state.

  4. Human Properdin Opsonizes Nanoparticles and Triggers a Potent Pro-inflammatory Response by Macrophages without Involving Complement Activation

    Science.gov (United States)

    Kouser, Lubna; Paudyal, Basudev; Kaur, Anuvinder; Stenbeck, Gudrun; Jones, Lucy A.; Abozaid, Suhair M.; Stover, Cordula M.; Flahaut, Emmanuel; Sim, Robert B.; Kishore, Uday

    2018-01-01

    Development of nanoparticles as tissue-specific drug delivery platforms can be considerably influenced by the complement system because of their inherent pro-inflammatory and tumorigenic consequences. The complement activation pathways, and its recognition subcomponents, can modulate clearance of the nanoparticles and subsequent inflammatory response and thus alter the intended translational applications. Here, we report, for the first time, that human properdin, an upregulator of the complement alternative pathway, can opsonize functionalized carbon nanotubes (CNTs) via its thrombospondin type I repeat (TSR) 4 and 5. Binding of properdin and TSR4+5 is likely to involve charge pattern/polarity recognition of the CNT surface since both carboxymethyl cellulose-coated carbon nanotubes (CMC-CNT) and oxidized (Ox-CNT) bound these proteins well. Properdin enhanced the uptake of CMC-CNTs by a macrophage cell line, THP-1, mounting a robust pro-inflammatory immune response, as revealed by qRT-PCR, multiplex cytokine array, and NF-κB nuclear translocation analyses. Properdin can be locally synthesized by immune cells in an inflammatory microenvironment, and thus, its interaction with nanoparticles is of considerable importance. In addition, recombinant TSR4+5 coated on the CMC-CNTs inhibited complement consumption by CMC-CNTs, suggesting that nanoparticle decoration with TSR4+5, can be potentially used as a complement inhibitor in a number of pathological contexts arising due to exaggerated complement activation. PMID:29483907

  5. Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, S. M. C.; Martin, D. S.; Smith, S. M.; Zwart, S. R.; Laurie, S. S; Ribeiro, L. C.; Stenger, M. B.

    2017-01-01

    Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.

  6. MSCs ameliorates DPN induced cellular pathology via [Ca2+ ]i homeostasis and scavenging the pro-inflammatory cytokines.

    Science.gov (United States)

    Chandramoorthy, Harish C; Bin-Jaliah, Ismaeel; Karari, Hussian; Rajagopalan, Prasanna; Ahmed Shariff, Mohammed Eajaz; Al-Hakami, Ahmed; Al-Humayad, Suliman M; Baptain, Fawzi A; Ahmed, Humeda Suekit; Yassin, Hanaa Z; Haidara, Mohamed A

    2018-02-01

    The MSCs of various origins are known to ameliorate or modulate cell survival strategies. We investigated, whether UCB MSCs could improve the survival of the human neuronal cells and/or fibroblast assaulted with DPN sera. The results showed, the co-culture of UCB MSCs with human neuronal cells and/or fibroblasts could effectively scavenge the pro-inflammatory cytokines TNF-α, IL-1β, IFN-ɤ and IL - 12 and control the pro-apoptotic expression of p53/Bax. Further co-culture of UCB MSCs have shown to induce anti-inflammatory cytokines like IL-4, IL-10 and TGF-β and anti-apoptotic Bclxl/Bcl2 expression in the DPN sera stressed cells. Amelioration of elevated [Ca 2+ ] i and cROS, the portent behind the NFκB/Caspase-3 mediated inflammation in DPN rescued the cells from apoptosis. The results of systemic administration of BM MSCs improved DPN pathology in rat as extrapolated from human cell model. The BM MSCs ameliorated prolonged distal motor latency (control: 0.70 ± 0.06, DPN: 1.29 ± 0.13 m/s DPN + BM MSCs: 0.89 ± 0.02 m/s, p glucose levels. Together, all these results showed that administration of BM or UCB MSCs improved the DPN via ameliorating pro-inflammatory cytokine signaling and [Ca 2+ ] i homeostasis. © 2017 Wiley Periodicals, Inc.

  7. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  8. Early life experience contributes to the developmental programming of depressive-like behaviour, neuroinflammation and oxidative stress.

    Science.gov (United States)

    Réus, Gislaine Z; Fernandes, Gabrielly C; de Moura, Airam B; Silva, Ritele H; Darabas, Ana Caroline; de Souza, Thays G; Abelaira, Helena M; Carneiro, Celso; Wendhausen, Diogo; Michels, Monique; Pescador, Bruna; Dal-Pizzol, Felipe; Macêdo, Danielle S; Quevedo, João

    2017-12-01

    This study used an animal model of depression induced by maternal care deprivation (MCD) to investigate whether depressive behaviour, neuroinflammation and oxidative stress were underlying factors in developmental programming after early life stress. At postnatal days (PND) 20, 30, 40, and 60, individual subsets of animals were evaluated in behavioural tests and then euthanized to assess cytokine levels and oxidative stress parameters in the prefrontal cortex (PFC), hippocampus and serum. The results showed that MCD did not induce behavioural changes at PND 30 and 40. However, at PND 20 and 60, the rats displayed a depressive-like behaviour in the forced swimming test, without changes in locomotor spontaneous activity. In the brain and serum, the levels of pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α)) were increased, and the anti-inflammatory cytokine (interleukin-10) level was reduced throughout developmental programming (PND 20, 30, 40 and 60). Protein carbonyl levels increased in the brain at PND 30, 40 and 60. Superoxide dismutase (SOD) activity was decreased during all developmental programming phases evaluated in the brain. Catalase (CAT) activity was decreased at PND 20, 40 and 60 in the brain. Our results revealed that "critical episodes" in early life stressful events are able to induce behavioural alterations that persist into adulthood and can stimulate inflammation and oxidative damage in both central and peripheral systems, which are required for distinct patterns of resilience against psychiatric disorders later in life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Itoi, Saori; Terao, Mika, E-mail: mterao@derma.med.osaka-u.ac.jp; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol

  10. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    International Nuclear Information System (INIS)

    Itoi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2013-01-01

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10 −13 M cortisol, whereas 1 × 10 −5 M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations

  11. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    International Nuclear Information System (INIS)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana; Klegeris, Andis; Little, Jonathan P.

    2014-01-01

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes

  12. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada); Klegeris, Andis [Department of Biology, University of British Columbia Okanagan, Kelowna, BC (Canada); Little, Jonathan P., E-mail: jonathan.little@ubc.ca [School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC (Canada)

    2014-03-28

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observed link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.

  13. Anti-Inflammatory and Antioxidative Stress Effects of Oryzanol in Glaucomatous Rabbits

    Directory of Open Access Journals (Sweden)

    Shital S. Panchal

    2017-01-01

    Full Text Available Purpose. γ-Oryzanol works by anti-inflammatory and radical scavenging activity as a neuroprotective, anticancer, antiulcer, and immunosuppressive agent. The present study was conducted to investigate effect of oryzanol in acute and chronic experimental glaucoma in rabbits. Methods. Effect of oryzanol was evaluated in 5% dextrose induced acute model of ocular hypertension in rabbit eye. Chronic model of glaucoma was induced with subconjunctival injection of 5% of 0.3 ml phenol. Treatment with oryzanol was given for next two weeks after induction of glaucoma. From anterior chamber of rabbit eye aqueous humor was collected to assess various oxidative stress parameters like malondialdehyde, superoxide dismutase, glutathione peroxidase, catalase, nitric oxide, and inflammatory parameters like TNF-α and IL-6. Structural damage in eye was examined by histopathological studies. Results. In acute model of ocular hypertension oryzanol did not alter raised intraocular pressure. In chronic model of glaucoma oryzanol exhibited significant reduction in oxidative stress followed by reduction in intraocular pressure. Oryzanol treatment reduced level of TNF-α and IL-6. Histopathological studies revealed decreased structural damage of trabecular meshwork, lamina cribrosa, and retina with oryzanol treatment. Conclusions. Oryzanol showed protective effect against glaucoma by its antioxidative stress and anti-inflammatory property. Treatment with oryzanol can reduce optic nerve damage.

  14. The effect of increasing body mass index on cardio-metabolic risk and biomarkers of oxidative stress and inflammation in nascent metabolic syndrome.

    Science.gov (United States)

    Pahwa, Roma; Adams-Huet, Beverley; Jialal, Ishwarlal

    2017-05-01

    The effect of BMI defined obesity on cardio-metabolic features and biomarkers of oxidative stress and inflammation in patients with nascent metabolic Syndrome (MetS) is poorly defined. Hence the aim of this study was to examine the effect of increasing obesity on the cardio metabolic risk profile, pro-oxidant state and pro-inflammatory features in nascent MetS patients without Diabetes or CVD. MetS was diagnosed by ATPIII criteria using waist circumference (WC) as the measure of adiposity. Patients (n=58) were stratified into overweight, obese and extreme obesity groups using BMI cut offs of 25-29.9, 30-39.9kg/m 2 and ≥40kg/m 2 and cardio-metabolic features, circulating and cellular biomarkers of oxidative stress and inflammation were determined and correlated with BMI. None of the main cardio-metabolic features including blood pressure, blood glucose, HDL-cholesterol, triglycerides, HOMA-IR, free fatty acids were increased with increasing BMI. Also none of the biomarkers of oxidative stress (ox-LDL, nitrotyrosine and monocyte superoxide anion release) were increased with increasing BMI. However, significant increase in hsCRP, the soluble TNFR1 and sTNFR2 and leptin, were observed with increasing adiposity. Other inflammatory bio-mediators (IL-1β, IL-6, IL-8, MCP-1, Toll-like receptors 2-4), endotoxin, LBP, sCD14 and HMGB1, adiponectin, and chemerin did not show significant increases with increasing BMI. Leptin, hsCRP, sTNFR1, and sTNFR2 correlated significantly with BMI. In conclusion, capturing the cardio-metabolic cluster of MetS that predisposed to both increased risk of diabetes and CVD, using waist circumference, as one of the 5 diagnostic criteria is sufficient and BMI does not appear to afford any major incremental benefit on the cardio-metabolic risk factors, increased oxidative stress and the majority of both cellular and circulating biomarkers of inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Stress, Nutrition, and Intestinal Immune Responses in Pigs — A Review

    Directory of Open Access Journals (Sweden)

    In Kyu Lee

    2016-08-01

    Full Text Available Modern livestock production became highly intensive and large scaled to increase production efficiency. This production environment could add stressors affecting the health and growth of animals. Major stressors can include environment (air quality and temperature, nutrition, and infection. These stressors can reduce growth performance and alter immune systems at systemic and local levels including the gastrointestinal tract. Heat stress increases the permeability, oxidative stress, and inflammatory responses in the gut. Nutritional stress from fasting, antinutritional compounds, and toxins induces the leakage and destruction of the tight junction proteins in the gut. Fasting is shown to suppress pro-inflammatory cytokines, whereas deoxynivalenol increases the recruitment of intestinal pro-inflammatory cytokines and the level of lymphocytes in the gut. Pathogenic and viral infections such as Enterotoxigenic E. coli (ETEC and porcine epidemic diarrhea virus can lead to loosening the intestinal epithelial barrier. On the other hand, supplementation of Lactobacillus or Saccharaomyces reduced infectious stress by ETEC. It was noted that major stressors altered the permeability of intestinal barriers and profiles of genes and proteins of pro-inflammatory cytokines and chemokines in mucosal system in pigs. However, it is not sufficient to fully explain the mechanism of the gut immune system in pigs under stress conditions. Correlation and interaction of gut and systemic immune system under major stressors should be better defined to overcome aforementioned obstacles.

  16. Detection and significance of serum inflammatory factors and oxidative stress indicators in diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Wei Gao; Jing Wang; Chao Zhang; Ping Qin

    2017-01-01

    Objective:To determine the serum inflammatory cytokines and oxidative stress parameters of diabetic retinopathy (DR) patients to explore their possible role in the DR.Methods: 116 cases of type 2 diabetic patients were selected from June 2015 to June 2016 in our hospital as research subjects, divided into diabetic Diabetes without retinopathy (NDR group,n = 63) and diabetic with retinopathy patients (DR group,n = 53). And 60 cases of healthy check-ups of the same period in our hospital medical center were selected as normal control group (NC). The VEGF, IL-6, TNF-α , MDA and SOD levels of three groups of patients were detected. Results:The IL-6 levels of NC group, NDR group and DR group were increased gradually, and the difference was statistically significant (P<0.05). The TNF-α levels of NC group, NDR group and DR group were increased gradually, and the difference was statistically significant (P<0.05). The VEGF levels of NC group, NDR group and DR group were increased gradually, and the difference was statistically significant (P<0.05). The malondialdehyde (MDA) levels of NC group, NDR group and DR group increased gradually, and the difference was statistically significant (P<0.05). The superoxide dismutase (SOD) levels of NC group, NDR group and DR group were decreased gradually, and the difference was statistically significant (P<0.05). Conclusions: DR patients express high levels of IL-6, TNF-α and VEGF, and there exists significant oxidative stress in DR, which shows that the inflammation occurrence and oxidative stress state play an important role in the development of DR.

  17. Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type

    DEFF Research Database (Denmark)

    van der Plas, Mariena J A; van Dissel, Jaap T; Nibbering, Peter H

    2009-01-01

    BACKGROUND: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. Earlier we reported maggot secretions to inhibit pro-inflammatory responses of human monocytes. The aim of this study was to investigate the effect of maggot secretions on the differentiation...... for 18 h. The expression of cell surface molecules and the levels of cytokines, chemokines and growth factors in supernatants were measured. Our results showed secretions to affect monocyte-macrophage differentiation leading to MØ-1 with a partial MØ-2-like morphology but lacking CD163, which...... is characteristic for MØ-2. In response to LPS or LTA, secretions-differentiated MØ-1 produced less pro-inflammatory cytokines (TNF-alpha, IL-12p40 and MIF) than control cells. Similar results were observed for MØ-2 when stimulated with low concentrations of LPS. Furthermore, secretions dose-dependently led to MØ-1...

  18. Oxidized low-density lipoproteins induced inflammatory process during atherogenesis with aging

    International Nuclear Information System (INIS)

    Larbi, Anis; Khalil, Abdelouahed; Douziech, Nadine; Guerard, Karl-Philippe; Fueloep, Tamas

    2005-01-01

    Atherosclerosis is a chronic disease developing through decades with two life-threatening complications: myocardial infarction and stroke. Oxidized low-density lipoproteins (oxLDL) produced by oxidative modifications of LDL in the subendothelial space have been demonstrated to be critically involved in atherogenesis through their intensive pro-inflammatory activity. Recently, it was shown that oxLDL have an apoptosis-inducing effect in T cells depending on time and degree of oxidation. The goal of the current study is to elucidate the molecular mechanisms underlying the apoptotic-inducing effects of oxLDL on T lymphocytes. T cells of young and elderly subjects were incubated for various periods of time with LDL oxidized to various degrees. The proliferation, the apoptosis, the MAPK ERK1/2 activation and the expression of the Bcl-2 protein family members were measured upon different LDL treatments. Thus, more the LDL are oxidized more they induce apoptosis and this effect is highly accentuated with aging. The oxLDL decrease the activation of the surviving molecule ERK1/2 and modulate the ratio of Bax/Bcl-2 towards a pro-apoptotic profile, which is also accentuated with aging. These results partly explain why atherosclerosis is increasing with aging concomitantly to its complications

  19. Tropical fruit camu-camu (Myrciaria dubia) has anti-oxidative and anti-inflammatory properties.

    Science.gov (United States)

    Inoue, Teruo; Komoda, Hiroshi; Uchida, Toshihiko; Node, Koichi

    2008-10-01

    Oxidative stress as well as inflammation plays a pivotal role in the pathogenesis of atherosclerosis. Although, various anti-oxidative dietary supplements have been evaluated for their ability to prevent atherosclerosis, no effective ones have been determined at present. "Camu-camu" (Myrciaria dubia) is an Amazonian fruit that offers high vitamin C content. However, its anti-oxidative property has not been evaluated in vivo in humans. To assess the anti-oxidative and anti-inflammatory properties of camu-camu in humans, 20 male smoking volunteers, considered to have an accelerated oxidative stress state, were recruited and randomly assigned to take daily 70 ml of 100% camu-camu juice, corresponding to 1050 mg of vitamin C (camu-camu group; n=10) or 1050 mg of vitamin C tablets (vitamin C group; n=10) for 7 days. After 7 days, oxidative stress markers such as the levels of urinary 8-hydroxy-deoxyguanosine (P<0.05) and total reactive oxygen species (P<0.01) and inflammatory markers such as serum levels of high sensitivity C reactive protein (P<0.05), interleukin (IL)-6 (P<0.05), and IL-8 (P<0.01) decreased significantly in the camu-camu group, while there was no change in the vitamin C group. Our results suggest that camu-camu juice may have powerful anti-oxidative and anti-inflammatory properties, compared to vitamin C tablets containing equivalent vitamin C content. These effects may be due to the existence of unknown anti-oxidant substances besides vitamin C or unknown substances modulating in vivo vitamin C kinetics in camu-camu.

  20. Lycium chinense leaves extract ameliorates diabetic nephropathy by suppressing hyperglycemia mediated renal oxidative stress and inflammation.

    Science.gov (United States)

    Olatunji, Opeyemi Joshua; Chen, Hongxia; Zhou, Yifeng

    2018-06-01

    Diabetic nephropathy is one of the most serious and most frequently encountered diabetic complication, accounting for the highest cause of end-stage renal disease. This present study was aimed at exploring the protective/attenuative effect of Lycium chinense leaf extract (MELC) on streptozotocin induced diabetic nephropathy in experimental Sprague Dawley rats. The oral administration of diabetic rats with MELC markedly ameliorated renal dysfunction as observed in the significant reduction in the serum levels of creatinine, blood urea nitrogen (BUN), albumin and TGF-β1 as compared to the untreated diabetic control rats. In addition, the elevated levels of renal oxidative stress markers and pro-inflammatory parameters (GSH, SOD, CAT, MDA, TNF-α, IL-6 and IL-1β) were significantly reduced in MELC treated diabetic rats. The results obtained in this study suggests that L. chinense leaf might have the potential as possible pharmacological agent against diabetic nephropathy by suppressing renal oxidative stress and inflammation. Copyright © 2018. Published by Elsevier Masson SAS.

  1. A Prospective Open-label Pilot Study of Fluvastatin on Pro-inflammatory and Pro-thrombotic Biomarkers in Antiphospholipid Antibody Positive Patients

    Science.gov (United States)

    Erkan, Doruk; Willis, Rohan; Murthy, Vijaya L.; Basra, Gurjot; Vega, JoAnn; Ruiz Limón, Patricia; Carrera, Ana Laura; Papalardo, Elizabeth; Martínez-Martínez, Laura Aline; González, Emilio B.; Pierangeli, Silvia S.

    2014-01-01

    Objective: To determine if pro-inflammatory and pro-thrombotic biomarkers are differentially upregulated in persistently antiphospholipid antibody (aPL)-positive patients, and to examine the effects of fluvastatin on these biomarkers. Methods: Four groups of patients (age 18-65) were recruited: a) Primary Antiphospholipid Syndrome (PAPS); b) Systemic Lupus Erythematosus (SLE) with APS (SLE/APS); c) Persistent aPL positivity without SLE or APS (Primary aPL); and d) Persistent aPL positivity with SLE but no APS (SLE/aPL). The frequency-matched control group, used for baseline data comparison, was identified from a databank of healthy persons. Patients received fluvastatin 40 mg daily for three months. At three months, patients stopped the study medication and they were followed for another three months. Blood samples for 12 pro-inflammatory and pro-thrombotic biomarkers were collected monthly for six months. Results: Based on the comparison of the baseline samples of 41 aPL-positive patients with 30 healthy controls, 9/12 (75%) biomarkers (interleukin [IL]-6, IL1β, vascular endothelial growth factor [VEGF], tumor necrosis factor [TNF]-□α, interferon [IFN]-α, inducible protein-10 [IP10], soluble CD40 ligand [sCD40L], soluble tissue factor [sTF], and intracellular cellular adhesion molecule [ICAM]-1) were significantly elevated. Twenty-four patients completed the study; fluvastatin significantly and reversibly reduced the levels of 6/12 (50%) biomarkers (IL1β, VEGF, TNFα, IP10, sCD40L, and sTF). Conclusion: Our prospective mechanistic study demonstrates that pro-inflammatory and pro-thrombotic biomarkers, which are differentially upregulated in persistently aPL-positive patients, can be reversibly reduced by fluvastatin. Thus, statin-induced modulation of the aPL effects on target cells can be a valuable future approach in the management of aPL-positive patients. PMID:23933625

  2. Seawater immersion aggravates burn-associated lung injury and inflammatory and oxidative-stress responses.

    Science.gov (United States)

    Ma, Jun; Wang, Ying; Wu, Qi; Chen, Xiaowei; Wang, Jiahan; Yang, Lei

    2017-08-01

    With the increasing frequency of marine development activities and local wars at sea, the incidence of scald burns in marine accidents or wars has been increasing yearly. Various studies have indicated that immersion in seawater has a systemic impact on some organs of animals or humans with burn. Thus, for burn/scald injuries after immersion in seawater, it is desirable to study the effects and mechanisms of action on important organs. In the present study, we aimed to investigate the effect of immersion in seawater on lung injury, inflammatory and oxidative-stress responses in scalded rats. The structural damage to lungs was detected by hematoxylin and eosin staining and the results showed that seawater immersion aggravated structural lung injury in scalded rats. The expression of HMGB1 in lung tissues was detected by immunohistochemical analysis and the results showed that seawater immersion increased HMGB1 expression in lung tissues of scalded rats. Apoptosis in lung tissues was detected by terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL) staining and the results showed that seawater immersion increased apoptosis rate in lung tissues of scalded rats. In addition, the expression levels of TNF-α, IL-6, IL-8, SOD, and MDA in serum were analyzed by enzyme-linked immunosorbent assays (ELISAs) and the results showed that seawater immersion induced secretion of proinflammatory factors (TNF-α, IL-6, and IL-8), increased MDA protein level, and suppressed SOD activity in the serum of scalded rats. Furthermore, measurement of plasma volume and pH showed that seawater immersion decreased plasma volume and pH value. Overall, the results indicated that all effects induced by immersion in seawater in scalded rats are more pronounced than those induced by freshwater. In conclusion, seawater immersion may aggravate lung injury and enhance inflammatory and oxidative-stress responses after burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights

  3. Investigations of oxidative stress effects and their mechanisms in rat brain after systemic administration of ceria engineered nanomaterials

    Science.gov (United States)

    Hardas, Sarita S.

    (hippocampus, cortex and cerebellum) were harvested from control and ceria treated rats after various exposure periods for oxidative stress assessment. The levels of oxidative stress markers viz. protein carbonyl (PC), 3-nitrotyrosine (3NT), and protein bound 4-hydroxy-2-trans-nonenal (HNE) were evaluated for each treatment in each control and treated rat organ. Further, the levels and activities of antioxidant proteins, such as catalase, glutathione peroxidase (GPx), glutathione reductase (GR), super oxide dismutase (SOD), were measured together with levels of heat shock proteins heme oxygenase -1 and 70 (HO-1 and Hsp-70). In addition, the levels of pro-inflammatory cytokines IL-1beta, TNF-alpha, pro-caspase-3, and autophagy marker LC-3A/B were measured by Western blot technique. In agreement with the literature-proposed model of oxidative stress hierarchy mechanism of ENM-toxicity, the statistical analysis of all the results revealed that the ceria ENM-induced oxidative stress mediated biological response strongly depends on the exposure period and to some extent on the size of ceria ENM. More specifically, a single intravenous injection of ceria ENM induced tier-1 (phase-II antioxidant) response after shorter exposure periods (1 h and 20 h) in rat brain. Upon failure of tier-1 response after longer exposure periods (1 d to 30 d), escalated oxidative stress consequently induced tier-2 and tier-3 oxidative stress responses. Based on our observations made at chronic exposure period (90 d) after the single i.v. injection of ceria ENM, we could extend the model of oxidative stress hierarchy mechanisms for ceria-ENM-induced toxicity. Considering the evaluation of all the oxidative stress indices measured in 3-brain regions, oxidative stress effects were more prominent in hippocampus and the least in cerebellum, but no specific pattern or any significant difference was deduced. Keyword: Ceria, cerium oxide, nanomaterial, nanoparticles, nanotoxicity, oxidative stress, phase

  4. Nanotoxicity: oxidative stress mediated toxicity of metal and metal oxide nanoparticles.

    Science.gov (United States)

    Sarkar, Abhijit; Ghosh, Manoranjan; Sil, Parames Chandra

    2014-01-01

    Metal and metal oxide nanoparticles are often used as industrial catalysts or to improve product's functional properties. Recent advanced nanotechnology have been expected to be used in various fields, ranging from sensors, environmental remediation to biomedicine, medical biology and imaging, etc. However, the growing use of nanoparticles has led to their release into environment and increased levels of these particles at nearby sites or the surroundings of their manufacturing factories become obvious. The toxicity of metal and metal oxide nanoparticles on humans, animals, and certainly to the environment has become a major concern to our community. However, controversies still remain with respect to the toxic effects and the mechanisms of these nanoparticles. The scientific community now feels that an understanding of the toxic effects is necessary to handle these nanoparticles and their use. A new discipline, named nanotoxicology, has therefore been developed that basically refers to the study of the interactions of nanoparticles with biological systems and also measures the toxicity level related to human health. Nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles resulting in increased pro-inflammatory reactions and oxidative stress via intracellular signaling pathways. In this review, we mainly focus on the routes of exposure of some metal and metal oxide nanoparticles and how these nanoparticles affect us or broadly the cells of our organs. We would also like to discuss the responsible mechanism(s) of the nanoparticle-induced reactive oxygen species mediated organ pathophysiology. A brief introduction of the characterization and application of these nanoparticles has also been included in the article.

  5. Bursopentin (BP5 protects dendritic cells from lipopolysaccharide-induced oxidative stress for immunosuppression.

    Directory of Open Access Journals (Sweden)

    Tao Qin

    Full Text Available Dendritic cells (DCs play a vital role in the regulation of immune-mediated inflammatory diseases. Thus, DCs have been regarded as a major target for the development of immunomodulators. However, oxidative stress could disturb inflammatory regulation in DCs. Here, we examined the effect of bursopentine (BP5, a novel pentapeptide isolated from chicken bursa of fabricius, on the protection of DCs against oxidative stress for immunosuppression. BP5 showed potent protective effects against the lipopolysaccharide (LPS-induced oxidative stress in DCs, including nitric oxide, reactive oxygen species and lipid peroxidation. Furthermore, BP5 elevated the level of cellular reductive status through increasing the reduced glutathione (GSH and the GSH/GSSG ratio. Concomitant with these, the activities of several antioxidative redox enzymes, including glutathione peroxidase (GPx, catalase (CAT and superoxide dismutase (SOD, were obviously enhanced. BP5 also suppressed submucosal DC maturation in the LPS-stimulated intestinal epithelial cells (ECs/DCs coculture system. Finally, we found that heme oxygenase 1 (HO-1 was remarkably upregulated by BP5 in the LPS-induced DCs, and played an important role in the suppression of oxidative stress and DC maturation. These results suggested that BP5 could protect the LPS-activated DCs against oxidative stress and have potential applications in DC-related inflammatory responses.

  6. Oxidative stress modulates the cytokine response of differentiated Th17 and Th1 cells.

    Science.gov (United States)

    Abimannan, Thiruvaimozhi; Peroumal, Doureradjou; Parida, Jyoti R; Barik, Prakash K; Padhan, Prasanta; Devadas, Satish

    2016-10-01

    Reactive oxygen species (ROS) signaling is critical in T helper (Th) cell differentiation; however its role in differentiated Th cell functions is unclear. In this study, we investigated the role of oxidative stress on the effector functions of in vitro differentiated mouse Th17 and Th1 cells or CD4 + T cells from patients with Rheumatoid Arthritis using pro-oxidants plumbagin (PB) and hydrogen peroxide. We found that in mouse Th cells, non-toxic concentration of pro-oxidants inhibited reactivation induced expression of IL-17A in Th17 and IFN-γ in Th1 cells by reducing the expression of their respective TFs, RORγt and T-bet. Interestingly, in both the subsets, PB increased the expression of IL-4 by enhancing reactivation induced ERK1/2 phosphorylation. We further investigated the cytokine modulatory effect of PB on CD4 + T cells isolated from PBMCs of patients with Rheumatoid Arthritis, a well-known Th17 and or Th1 mediated disease. In human CD4 + T cells from Rheumatoid Arthritis patients, PB reduced the frequencies of IL-17A + (Th17), IFN - γ + (Th1) and IL-17A + /IFN - γ + (Th17/1) cells and also inhibited the production of pro-inflammatory cytokines TNF-α and IL-6. N-Acetyl Cysteine (NAC) an antioxidant completely reversed PB mediated cytokine modulatory effects in both mouse and human cells indicating a direct role for ROS. Together our data suggest that oxidative microenvironment can alter cytokine response of terminally differentiated cells and thus altering intracellular ROS could be a potential way to target Th17 and Th1 cells in autoimmune disorders. Copyright © 2016. Published by Elsevier Inc.

  7. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Jaya Kumar

    2017-09-01

    Full Text Available Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid arthritis, chronic inflammation, and other degenerative diseases related to the nervous system. The free radicals have deleterious effect on various organs of the body. This is due to lipid peroxidation and irreversible protein modification that leads to cellular apoptosis or programmed cell death. During recent years, there is a rise in the oral diseases related to oxidative stress. Oxidative stress in oral disease is related to other systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric, and liver diseases. In the present review, we discuss the various pathways that mediate oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways and JNK/mitogen-activated protein (MAP kinase pathway. We also discuss the role of inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative stress. Knowledge of different pathways, role of inflammatory markers, and importance of low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive C-reactive proteins may be helpful in understanding the pathogenesis and plan better treatment for oral diseases which involve oxidative stress.

  8. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype.

    Directory of Open Access Journals (Sweden)

    Victoria Florea

    Full Text Available The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4 were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.

  9. Toll-Like Receptor 2 mediates in vivo pro- and anti-inflammatory effects of Mycobacterium tuberculosis and modulates autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Alessia ePiermattei

    2016-05-01

    Full Text Available Mycobacteria display pro- and anti-inflammatory effects in human and experimental pathology. We show here that both effects are mediated by Toll like receptor 2 (Tlr2, by exploiting a previously characterized Tlr2 variant (Met82Ile. Tlr2 82ile promoted self-specific pro-inflammatory polarization as well as expansion of ag-specific FoxP3+ Tregs, while Tlr2 82met impairs the expansion of Tregs and reduces the production of IFN-γ and IL-17 pro-inflammatory cytokines. Preferential dimerization with Tlr1 or Tlr6 could not explain these differences. In silico, we showed that Tlr2 variant Met82Ile modified the binding pocket for peptidoglycans and participate directly to a putative binding pocket for sugars and Cadherins. The distinct pro- and anti-inflammatory actions impacted on severity, extent of remission and distribution of the lesions within the Central Nervous System of Experimental Autoimmune Encephalomyelitis. Thus, Tlr2 has a janus function in vivo as mediator of the role of bacterial products in balancing pro- and anti-inflammatory immune responses.

  10. Hypoxia, Oxidative Stress and Fat

    Directory of Open Access Journals (Sweden)

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  11. Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state?

    Science.gov (United States)

    Peña-Oyarzun, Daniel; Bravo-Sagua, Roberto; Diaz-Vega, Alexis; Aleman, Larissa; Chiong, Mario; Garcia, Lorena; Bambs, Claudia; Troncoso, Rodrigo; Cifuentes, Mariana; Morselli, Eugenia; Ferreccio, Catterina; Quest, Andrew F G; Criollo, Alfredo; Lavandero, Sergio

    2018-05-30

    Non-communicable diseases (NCDs), also known as chronic diseases, are long-lasting conditions that affect millions of people around the world. Different factors contribute to their genesis and progression; however they share common features, which are critical for the development of novel therapeutic strategies. A persistently altered inflammatory response is typically observed in many NCDs together with redox imbalance. Additionally, dysregulated proteostasis, mainly derived as a consequence of compromised autophagy, is a common feature of several chronic diseases. In this review, we discuss the crosstalk among inflammation, autophagy and oxidative stress, and how they participate in the progression of chronic diseases such as cancer, cardiovascular diseases, obesity and type II diabetes mellitus. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Involvement of Pro-Inflammatory Macrophages in Liver Pathology of Pirital Virus-Infected Syrian Hamsters

    Directory of Open Access Journals (Sweden)

    Corey L. Campbell

    2018-05-01

    Full Text Available New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus (PIRV, a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni, causes a disease in Syrian golden hamsters (Mesocricetus auratus (biosafety level-3, BSL-3 that has many pathologic similarities to the South American hemorrhagic fevers (BSL-4 and, thus, is considered among the best small-animal models for human arenavirus disease. Here, we extend in greater detail previously described clinical and pathological findings in Syrian hamsters and provide evidence for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal target organ of the disease, and signs of Kupffer cell involvement were identified in mortally infected hamster histopathology data. Differential expression analysis of liver mRNA revealed signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway and other host response pathways, including 17 key transcripts that were also reported in two non-human primate (NHP arenavirus liver-infection models, representing both Old and New World mammarenavirus infections. Although antigen presentation may differ among rodent and NHP species, key hemostatic and innate immune-response components showed expression parallels. Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute PIRV infection.

  13. Sulforaphane Inhibits Lipopolysaccharide-Induced Inflammation, Cytotoxicity, Oxidative Stress, and miR-155 Expression and Switches to Mox Phenotype through Activating Extracellular Signal-Regulated Kinase 1/2-Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element Pathway in Murine Microglial Cells.

    Science.gov (United States)

    Eren, Erden; Tufekci, Kemal Ugur; Isci, Kamer Burak; Tastan, Bora; Genc, Kursad; Genc, Sermin

    2018-01-01

    Sulforaphane (SFN) is a natural product with cytoprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the mechanisms of its effects on lipopolysaccharide (LPS)-induced cell death, inflammation, oxidative stress, and polarization in murine microglia. We found that SFN protects N9 microglial cells upon LPS-induced cell death and suppresses LPS-induced levels of secreted pro-inflammatory cytokines, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6. SFN is also a potent inducer of redox sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), which is responsible for the transcription of antioxidant, cytoprotective, and anti-inflammatory genes. SFN induced translocation of Nrf2 to the nucleus via extracellular signal-regulated kinase 1/2 (ERK1/2) pathway activation. siRNA-mediated knockdown study showed that the effects of SFN on LPS-induced reactive oxygen species, reactive nitrogen species, and pro-inflammatory cytokine production and cell death are partly Nrf2 dependent. Mox phenotype is a novel microglial phenotype that has roles in oxidative stress responses. Our results suggested that SFN induced the Mox phenotype in murine microglia through Nrf2 pathway. SFN also alleviated LPS-induced expression of inflammatory microRNA, miR-155. Finally, SFN inhibits microglia-mediated neurotoxicity as demonstrated by conditioned medium and co-culture experiments. In conclusion, SFN exerts protective effects on microglia and modulates the microglial activation state.

  14. Ebselen by modulating oxidative stress improves hypoxia-induced macroglial Müller cell and vascular injury in the retina.

    Science.gov (United States)

    Tan, Sih Min; Deliyanti, Devy; Figgett, William A; Talia, Dean M; de Haan, Judy B; Wilkinson-Berka, Jennifer L

    2015-07-01

    Oxidative stress is an important contributor to glial and vascular cell damage in ischemic retinopathies. We hypothesized that ebselen via its ability to reduce reactive oxygen species (ROS) and augment nuclear factor-like 2 (Nrf2) anti-oxidants would attenuate hypoxia-induced damage to macroglial Müller cells and also lessen retinal vasculopathy. Primary cultures of rat Müller cells were exposed to normoxia (21% O2), hypoxia (0.5% O2) and ebselen (2.5 μM) for up to 72 h. Oxygen-induced retinopathy (OIR) was induced in C57BL/6J mice while control mice were housed in room air. Mice received vehicle (saline, 5% dimethyl sulfoxide) or ebselen (10 mg/kg) each day between postnatal days 6-18. In cultured Müller cells, flow cytometry for dihydroethidium revealed that ebselen reduced the hypoxia-induced increase in ROS levels, whilst increasing the expression of Nrf2-regulated anti-oxidant genes, heme oxygenase 1, glutathione peroxidase-1, NAD(P)H dehydrogenase quinone oxidoreductase 1 and glutamate-cysteine ligase. Moreover, in Müller cells, ebselen reduced the hypoxia-induced increase in protein levels of pro-angiogenic and pro-inflammatory factors including vascular endothelial growth factor, interleukin-6, monocyte chemoattractant-protein 1 and intercellular adhesion molecule-1, and the mRNA levels of glial fibrillary acidic protein (GFAP), a marker of Müller cell injury. Ebselen improved OIR by attenuating capillary vaso-obliteration and neovascularization and a concomitant reduction in Müller cell gliosis and GFAP. We conclude that ebselen protects against hypoxia-induced injury of retinal Müller cells and the microvasculature, which is linked to its ability to reduce oxidative stress, vascular damaging factors and inflammation. Agents such as ebselen may be potential treatments for retinopathies that feature oxidative stress-mediated damage to glia and the microvasculature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Caspase-8 regulates the expression of pro- and anti-inflammatory cytokines in human bone marrow-derived mesenchymal stromal cells.

    Science.gov (United States)

    Moen, Siv H; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J; Sponaas, Anne-Marit; Standal, Therese

    2016-09-01

    Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll-like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase-8 is involved in activation of NF-kB downstream of TLRs in immune cells. Here we investigated the role of caspase-8 in regulating TLR-induced cytokine production from human bone marrow-derived mesenchymal stromal cells (hBMSCs). Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase-8 were silenced using siRNA. Caspase-8 was also inhibited using a caspase-8 inhibitor, z-IEDT. We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro-inflammatory cytokines in a TLR-dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti-inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase-8 was involved in the induction of IL- IL-1β, IL-6, CXCL10, and in the inhibition of HGF and TGFβ. Caspase-8 appears to modulate hBMSCs into gaining a pro-inflammatory phenotype. Therefore, inhibiting caspase-8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders.

  16. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic prote...

  17. Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats.

    Science.gov (United States)

    Cho, H J; Sajja, V S S S; Vandevord, P J; Lee, Y W

    2013-12-03

    Molecular and cellular mechanisms of brain injury after exposure to blast overpressure (BOP) are not clearly known. The present study hypothesizes that pro-oxidative and pro-inflammatory pathways in the brain may be responsible for neuronal loss and behavioral deficits following BOP exposure. Male Sprague-Dawley rats were anesthetized and exposed to calibrated BOP of 129.23±3.01kPa while controls received only anesthesia. In situ dihydroethidium fluorescence staining revealed that BOP significantly increased the production of reactive oxygen species in the brain. In addition, real-time reverse transcriptase-polymerase chain reaction, immunofluorescence staining and enzyme-linked immunosorbent assay demonstrated a significant up-regulation of mRNA and protein expressions of pro-inflammatory mediators, such as interferon-γ and monocyte chemoattractant protein-1, in brains collected from BOP-exposed animals compared with the controls. Furthermore, immunoreactivity of neuronal nuclei in brains indicated that fewer neurons were present following BOP exposure. Moreover, novel object recognition paradigm showed a significant impairment in the short-term memory at 2weeks following BOP exposure. These results suggest that pro-oxidative and pro-inflammatory environments in the brain could play a potential role in BOP-induced neuronal loss and behavioral deficits. It may provide a foundation for defining a molecular and cellular basis of the pathophysiology of blast-induced neurotrauma (BINT). It will also contribute to the development of new therapeutic approaches selectively targeting these pathways, which have great potential in the diagnosis and therapy of BINT. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Effect of Artocarpus communis Extract on UVB Irradiation-Induced Oxidative Stress and Inflammation in Hairless Mice

    Directory of Open Access Journals (Sweden)

    Feng-Lin Yen

    2013-02-01

    Full Text Available Administration of antioxidants and anti-inflammatory agents is an effective strategy for preventing ultraviolet (UV irradiation-induced skin damage. Artocarpus communis possesses several pharmacological activities, such as antioxidant, anticancer and anti-inflammation. However, the photoprotective activity of methanol extract of A. communis heartwood (ACM in ultraviolet irradiation-induced skin damage has not yet been investigated. The present study was performed using ultraviolet absorption, histopathological observation, antioxidant and anti-inflammation assays to elucidate the mechanism of the photoprotective activity of ACM. Our results indicated that ACM displayed a UVA and UVB absorption effect and then effectively decreased scaly skin, epidermis thickness and sunburn cells during ultraviolet irradiation in hairless mice. ACM not only decreased ultraviolet irradiation-mediated oxidative stress, including lowering the overproduction of reactive oxygen species and lipid peroxidation (p < 0.05, but also reduced the levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α and interleukin 1β. Additionally, ACM can decrease the synthesis of cytosolic phospholipase A2, cyclooxygenase, inducible nitric oxide synthase and vascular cell adhesion molecular-1 via inhibiting TNF-α-independent pathways (p < 0.05 in UVB-mediated inflammation and formation of sunburn cells. Consequently, we concluded that ACM extract has a photoprotective effect against UVB-induced oxidative stress and inflammation due to its sunscreen property, and its topical formulations may be developed as therapeutic and/or cosmetic products in further studies.

  19. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    Science.gov (United States)

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI.

  20. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration.

    Science.gov (United States)

    Singh, Sandeep; Singh, Abhishek Kumar; Garg, Geetika; Rizvi, Syed Ibrahim

    2018-01-15

    In the present study, attempts have been made to evaluate the potential role of fisetin, a caloric restriction mimetic (CRM), for neuroprotection in D-galactose (D-gal) induced accelerated and natural aging models of rat. Fisetin was supplemented (15mg/kg b.w., orally) to young, D-gal induced aged (D-gal 500mg/kg b.w subcutaneously) and naturally aged rats for 6weeks. Standard protocols were employed to measure pro-oxidants, antioxidants and mitochondrial membrane potential in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuronal, aging as well as inflammatory marker genes. We have also evaluated apoptotic cell death and synaptosomal membrane-bound ion transporter activities in brain tissues. Our data demonstrated that fisetin significantly decreased the level of pro-oxidants and increased the level of antioxidants. Furthermore, fisetin also ameliorated mitochondrial membrane depolarization, apoptotic cell death and impairments in the activities of synaptosomal membrane-bound ion transporters in aging rat brain. RT-PCR data revealed that fisetin up-regulated the expression of autophagy genes (Atg-3 and Beclin-1), sirtuin-1 and neuronal markers (NSE and Ngb), and down-regulated the expression of inflammatory (IL-1β and TNF-α) and Sirt-2 genes respectively in aging brain. The present study suggests that fisetin supplementation may provide neuroprotection against aging-induced oxidative stress, apoptotic cell death, neuro-inflammation, and neurodegeneration in rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Integrated analysis of COX-2 and iNOS derived inflammatory mediators in LPS-stimulated RAW macrophages pre-exposed to Echium plantagineum L. bee pollen extract.

    Directory of Open Access Journals (Sweden)

    Eduarda Moita

    Full Text Available Oxidative stress and inflammation play important roles in disease development. This study intended to evaluate the anti-inflammatory and antioxidant potential of Echium plantagineum L. bee pollen to support its claimed health beneficial effects. The hydromethanol extract efficiently scavenged nitric oxide ((•NO although against superoxide (O2(•- it behaved as antioxidant at lower concentrations and as pro-oxidant at higher concentrations. The anti-inflammatory potential was evaluated in LPS-stimulated macrophages. The levels of (•NO and L-citrulline decreased for all extract concentrations tested, while the levels of prostaglandins, their metabolites and isoprostanes, evaluated by UPLC-MS, decreased with low extract concentrations. So, E. plantagineum bee pollen extract can exert anti-inflammatory activity by reducing (•NO and prostaglandins. The extract is able to scavenge the reactive species (•NO and O2(•- and reduce markers of oxidative stress in cells at low concentrations.

  2. Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity.

    Science.gov (United States)

    Woodside, John D S; Gutowski, Mariusz; Fall, Lewis; James, Philip E; McEneny, Jane; Young, Ian S; Ogoh, Shigehiko; Bailey, Damian M

    2014-12-01

    Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (V̇O2 max ). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine V̇O2 max in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at V̇O2 max to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower V̇O2 max (P exercise-induced increase in oxidative-nitrosative-inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower V̇O2 max in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  3. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  4. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis

    NARCIS (Netherlands)

    Boots, Agnes W.; Drent, Marjolein; de Boer, Vincent C. J.; Bast, Aalt; Haenen, Guido R. M. M.

    2011-01-01

    Oxidative stress and low antioxidant levels are implicated in the aetiology of sarcoidosis, an inflammatory disease. Quercetin is a potent dietary antioxidant that also displays anti-inflammatory activities. Consequently, the aim is to examine the effect of quercetin supplementation on markers of

  5. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  6. Red wine intake but not other alcoholic beverages increases total antioxidant capacity and improves pro-inflammatory profile after an oral fat diet in healthy volunteers.

    Science.gov (United States)

    Torres, A; Cachofeiro, V; Millán, J; Lahera, V; Nieto, M L; Martín, R; Bello, E; Alvarez-Sala, L A

    2015-12-01

    Different alcoholic beverages exert different effects on inflammation and oxidative stress but these results are controversial and scanty in some aspects. We analyze the effect of different alcoholic beverages after a fat-enriched diet on lipid profile, inflammatory factors and oxidative stress in healthy people in a controlled environment. We have performed a cross-over design in five different weeks. Sixteen healthy volunteers have received the same oral fat-enriched diet (1486kcal/m(2)) and a daily total amount of 16g/m(2) of alcohol, of different beverages (red wine, vodka, brandy or rum) and equivalent caloric intakes as sugar with water in the control group. We have measured the levels of serum lipids, high sensitivity C-reactive protein (hsCRP), tumor necrosis factor α (TNFα), interleukin 6 (IL-6), soluble phospholipase A2 (sPLA2), lipid peroxidation (LPO) and total antioxidant capacity (TAC). Red wine intake was associated with decreased of mean concentrations of hsCRP, TNFα and IL-6 induced by fat-enriched diet (p<0.05); nevertheless, sPLA2 concentrations were not significantly modified. After a fat-enriched diet added with red wine, TAC increased as compared to the same diet supplemented with rum, brandy, vodka or the control (water with sugar) (p<0.05). Moderate red wine intake, but not other alcoholic beverages, decreased pro-inflammatory factors and increased total antioxidant capacity despite a fat-enriched diet intake in healthy young volunteers. Copyright © 2015 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  7. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism

    Science.gov (United States)

    Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E.; Napolitano, Alessandra; Payne, Gregory F.

    2015-01-01

    Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin’s pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin’s redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666

  8. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.

    Science.gov (United States)

    Zhenyukh, Olha; Civantos, Esther; Ruiz-Ortega, Marta; Sánchez, Maria Soledad; Vázquez, Clotilde; Peiró, Concepción; Egido, Jesús; Mas, Sebastián

    2017-03-01

    Leucine, isoleucine and valine are essential aminoacids termed branched-chain amino acids (BCAA) due to its aliphatic side-chain. In several pathological and physiological conditions increased BCAA plasma concentrations have been described. Elevated BCAA levels predict insulin resistance development. Moreover, BCAA levels higher than 2mmol/L are neurotoxic by inducing microglial activation in maple syrup urine disease. However, there are no studies about the direct effects of BCAA in circulating cells. We have explored whether BCAA could promote oxidative stress and pro-inflammatory status in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. In cultured PBMCs, 10mmol/L BCAA increased the production of reactive oxygen species (ROS) via both NADPH oxidase and the mitochondria, and activated Akt-mTOR signalling. By using several inhibitors and activators of these molecular pathways we have described that mTOR activation by BCAA is linked to ROS production and mitochondrial dysfunction. BCAA stimulated the activation of the redox-sensitive transcription factor NF-κB, which resulted in the release of pro-inflammatory molecules, such as interleukin-6, tumor necrosis factor-α, intracellular adhesion molecule-1 or CD40L, and the migration of PBMCs. In conclusion, elevated BCAA blood levels can promote the activation of circulating PBMCs, by a mechanism that involving ROS production and NF-κB pathway activation. These data suggest that high concentrations of BCAA could exert deleterious effects on circulating blood cells and therefore contribute to the pro-inflammatory and oxidative status observed in several pathophysiological conditions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash

    Energy Technology Data Exchange (ETDEWEB)

    Marchini, T.; Magnani, N.D. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Paz, M.L. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Vanasco, V. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Tasat, D. [CESyMA, Facultad de Ciencia Tecnología, Universidad Nacional de General San Martín, Martín de Irigoyen 3100, 1650 San Martín, Buenos Aires (Argentina); González Maglio, D.H. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); and others

    2014-01-15

    It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-α and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN

  10. Controlled Inhibition of the Mesenchymal Stromal Cell Pro-inflammatory Secretome via Microparticle Engineering

    Directory of Open Access Journals (Sweden)

    Sudhir H. Ranganath

    2016-06-01

    Full Text Available Mesenchymal stromal cells (MSCs are promising therapeutic candidates given their potent immunomodulatory and anti-inflammatory secretome. However, controlling the MSC secretome post-transplantation is considered a major challenge that hinders their clinical efficacy. To address this, we used a microparticle-based engineering approach to non-genetically modulate pro-inflammatory pathways in human MSCs (hMSCs under simulated inflammatory conditions. Here we show that microparticles loaded with TPCA-1, a small-molecule NF-κB inhibitor, when delivered to hMSCs can attenuate secretion of pro-inflammatory factors for at least 6 days in vitro. Conditioned medium (CM derived from TPCA-1-loaded hMSCs also showed reduced ability to attract human monocytes and prevented differentiation of human cardiac fibroblasts to myofibroblasts, compared with CM from untreated or TPCA-1-preconditioned hMSCs. Thus, we provide a broadly applicable bioengineering solution to facilitate intracellular sustained release of agents that modulate signaling. We propose that this approach could be harnessed to improve control over MSC secretome post-transplantation, especially to prevent adverse remodeling post-myocardial infarction.

  11. Polyethylene glycol-functionalized poly (Lactic Acid-co-Glycolic Acid and graphene oxide nanoparticles induce pro-inflammatory and apoptotic responses in Candida albicans-infected vaginal epithelial cells.

    Directory of Open Access Journals (Sweden)

    R Doug Wagner

    Full Text Available Mucous-penetrating nanoparticles consisting of poly lactic acid-co-glycolic acid (PLGA-polyethylene glycol (PEG could improve targeting of microbicidal drugs for sexually transmitted diseases by intravaginal inoculation. Nanoparticles can induce inflammatory responses, which may exacerbate the inflammation that occurs in the vaginal tracts of women with yeast infections. This study evaluated the effects of these drug-delivery nanoparticles on VK2(E6/E7 vaginal epithelial cell proinflammatory responses to Candida albicans yeast infections. Vaginal epithelial cell monolayers were infected with C. albicans and exposed to 100 μg/ml 49.5 nm PLGA-PEG nanospheres or 20 μg/ml 1.1 x 500 nm PEG-functionalized graphene oxide (GO-PEG sheets. The cells were assessed for changes in mRNA and protein expression of inflammation-related genes by RT-qPCR and physiological markers of cell stress using high content analysis and flow cytometry. C. albicans exposure suppressed apoptotic gene expression, but induced oxidative stress in the cells. The nanomaterials induced cytotoxicity and programmed cell death responses alone and with C. albicans. PLGA-PEG nanoparticles induced mRNA expression of apoptosis-related genes and induced poly (ADP-ribose polymerase (PARP cleavage, increased BAX/BCL2 ratios, and chromatin condensation indicative of apoptosis. They also induced autophagy, endoplasmic reticulum stress, and DNA damage. They caused the cells to excrete inflammatory recruitment molecules chemokine (C-X-C motif ligand 1 (CXCL1, interleukin-1α (IL1A, interleukin-1β (IL1B, calprotectin (S100A8, and tumor necrosis factor α (TNF. GO-PEG nanoparticles induced expression of necrosis-related genes and cytotoxicity. They reduced autophagy and endoplasmic reticulum stress, and apoptotic gene expression responses. The results show that stealth nanoparticle drug-delivery vehicles may cause intracellular damage to vaginal epithelial cells by several mechanisms and that

  12. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    International Nuclear Information System (INIS)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C.; Koenig, J.; Liu Li; Schuck, A.; Willich, N.

    2004-01-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-)α, interleukin-(IL)-1α and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-α, IL-1α and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-α and at 6 h p.i. for IL-1α and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-α, IL-1α and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute pneumonitis. (orig.)

  13. Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung

    Energy Technology Data Exchange (ETDEWEB)

    Ruebe, C.E.; Wilfert, F.; Palm, J.; Burdak-Rothkamm, S.; Ruebe, C. [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Koenig, J. [Inst. of Medical Biometrics, Epidemiology and Medical Informatics, Saarland Univ., Homburg/Saar (Germany); Liu Li [Dept. of Radiotherapy - Radiooncology, Saarland Univ., Homburg/Saar (Germany); Cancer Center, Union Hospital Tongji Medical Coll., Huazhong Univ. of Science and Technology, Wuhan (China); Schuck, A.; Willich, N. [Dept. of Radiotherapy - Radiooncology, Univ. of Muenster (Germany)

    2004-07-01

    Background and purpose: the precise pathophysiological mechanisms of radiation-induced lung injury are poorly understood, but have been shown to correlate with dysregulation of different cytokines. The purpose of this study was to evaluate the time course of the pro-inflammatory cytokines tumor necrosis factor-(TNF-){alpha}, interleukin-(IL)-1{alpha} and IL-6 after whole-lung irradiation. Material and methods: the thoraces of C57BL/6J mice were irradiated with 12 Gy. Treated and control mice were sacrificed at 0.5, 1, 3, 6, 12, 24, 48, 72 h, 1, 2, 4, 8, 16, and 24 weeks post irradiation (p.i.). Real-time multiplex RT-PCR (reverse transcriptase polmyerase chain reaction) was established to evaluate the expression of TNF-{alpha}, IL-1{alpha} and IL-6 in the lung tissue of the mice. For histological analysis, lung tissue sections were stained by hematoxylin and eosin. Results: multiplex RT-PCR analysis revealed a biphasic expression of these pro-inflammatory cytokines in the lung tissue after irradiation. After an initial increase at 1 h p.i. for TNF-{alpha} and at 6 h p.i. for IL-1{alpha} and IL-6, the mRNA expression of these pro-inflammatory cytokines returned to basal levels (48 h, 72 h, 1 week, 2 weeks p.i.). During the pneumonic phase, TNF-{alpha}, IL-1{alpha} and IL-6 were significantly elevated and revealed their maximum at 8 weeks p.i. Histopathologic evaluation of the lung sections obtained within 4 weeks p.i. revealed only minor lung damage in 5-30% of the lung tissue. By contrast, at 8, 16, and 24 weeks p.i., 70-90% of the lung tissue revealed histopathologically detectable organizing alveolitis. Conclusion: irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. The initial transitory cytokine response occurred within the first hours after lung irradiation with no detectable histopathologic alterations. The second, more persistent cytokine elevation coincided with the onset of histologically discernible organizing acute

  14. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis.

    Science.gov (United States)

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-09-01

    Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. [Oxidative stress and antioxitant therapy of chronic periodontitis].

    Science.gov (United States)

    Shen, Y X; Guo, S J; Wu, Y F

    2016-07-01

    Chronic periodontitis is a progressive, infectious inflammation disease, caused by the dysbiosis of oral resident flora, leading to the destruction of periodontium. The onset of pathogenic microorganisms is the etiological factor of periodontitis, while the immuno-inflammatory response affects the progression of the disease. Under chronic periodontitis, oxidative stress occurs when excessive reactive oxygen species are produced and exceed the compensative capacity of the organism. Oxidative stress leads to the destruction of periodontium, in a direct way(damaging the biomolecule) or an indirect way(enhancing the produce of inflammatory cytokine and destructive enzymes). Therefore, as the antagonist of the reactive oxygen species, antioxidants may be helpful to treat the chronic periodontitis. This paper reviewed relevant literatures about the destructive role of excessive reactive oxygen species and protective role of antioxidants in chronic periodontitis.

  16. Suppression of pro-inflammatory and pro-survival biomarkers in oral cancer patients consuming a black raspberry phytochemical-rich troche

    Science.gov (United States)

    Knobloch, Thomas J.; Uhrig, Lana K.; Pearl, Dennis K.; Casto, Bruce C.; Warner, Blake M.; Clinton, Steven K.; Sardo-Molmenti, Christine L.; Ferguson, Jeanette M.; Daly, Brett T.; Riedl, Kenneth; Schwartz, Steven J.; Vodovotz, Yael; Buchta, Anthony J.; Schuller, David E.; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M.

    2016-01-01

    Black raspberries (BRBs) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce pro-inflammatory and anti-apoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCCs) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and non-involved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of pro-survival genes (AURKA, BIRC5, EGFR) and pro-inflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated Grade 3–4 toxicities or adverse events and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark anti-apoptotic and pro-inflammatory molecular biomarkers were over-expressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. Since these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. PMID:26701664

  17. Oxidative Stress and Endometriosis: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Gennaro Scutiero

    2017-01-01

    Full Text Available Endometriosis is one of the most common gynaecologic diseases in women of reproductive age. It is characterized by the presence of endometrial tissue outside the uterine cavity. The women affected suffer from pelvic pain and infertility. The complex etiology is still unclear and it is based on three main theories: retrograde menstruation, coelomic metaplasia, and induction theory. Genetics and epigenetics also play a role in the development of endometriosis. Recent studies have put the attention on the role of oxidative stress, defined as an imbalance between reactive oxygen species (ROS and antioxidants, which may be implicated in the pathophysiology of endometriosis causing a general inflammatory response in the peritoneal cavity. Reactive oxygen species are intermediaries produced by normal oxygen metabolism and are inflammatory mediators known to modulate cell proliferation and to have deleterious effects. A systematic review was performed in order to clarify the different roles of oxidative stress and its role in the development of endometriosis. Several issues have been investigated: iron metabolism, oxidative stress markers (in the serum, peritoneal fluid, follicular fluid, peritoneal environment, ovarian cortex, and eutopic and ectopic endometrial tissue, genes involved in oxidative stress, endometriosis-associated infertility, and cancer development.

  18. Defining the Relationship Between Biomarkers of Oxidation and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    Science.gov (United States)

    Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.

  19. The Effects of Diabetes Induction on the Rat Heart: Differences in Oxidative Stress, Inflammatory Cells, and Fibrosis between Subendocardial and Interstitial Myocardial Areas

    Directory of Open Access Journals (Sweden)

    Maria C. Guido

    2017-01-01

    Full Text Available Diabetic cardiomyopathy (DCM is characterized by cardiac remodeling and impaired diastolic function that may lead to heart failure. The aim of this study was to evaluate oxidative stress, inflammatory cells, and fibrosis in both subendocardial (SEN and interstitial (INT areas of the myocardium. Male Wistar rats were allocated to 2 groups of 9 animals, a control (CT group and streptozotocin-induced diabetes (DM. After 8 weeks, echocardiography morphometry, protein expression, and confocal microscopy in SEN and INT areas of the left ventricle (LV were performed. The echocardiographic analysis showed that diabetes induction leads to cardiac dilation, hypertrophy, and LV diastolic dysfunction. As compared to CT, the induction of diabetes increased inflammatory cells and fibrosis in both SEN and INT areas of DM myocardium and increased ROS generation only in SEN. Comparing the SEN and INT areas in the DM group, inflammatory cells and fibrosis in SEN were greater than in INT. In conclusion, diabetic myocardium SEN area, wherein oxidative stress was more pronounced, is more susceptible to cardiac dysfunction than INT area. This finding can be important for the understanding of the heart remodeling process occurring in DCM and perhaps to engender targeted therapies to attenuate or revert DCM-related diastolic dysfunction.

  20. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    Science.gov (United States)

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    Science.gov (United States)

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders. Copyright © 2016. Published by Elsevier Ltd.

  2. Periodontitis and type 2 diabetes: is oxidative stress the mechanistic link?

    LENUS (Irish Health Repository)

    Allen, E M

    2009-05-01

    Periodontitis is a common, chronic inflammatory disease initiated by bacteria which has an increased prevalence and severity in patients with type 2 diabetes. Recent studies indicate that the co-morbid presence of periodontitis can, in turn, adversely affect diabetic status and the treatment of periodontitis can lead to improved metabolic control in diabetes patients. Current evidence points to a bidirectional interrelationship between diabetes and inflammatory periodontitis. The importance of oxidative stress-inflammatory pathways in the pathogenesis of type 2 diabetes and periodontitis has recently received attention. Given the bidirectional relationship between these two conditions, this review discusses the potential synergistic interactions along the oxidative stress-inflammation axis common to both type 2 diabetes and periodontitis, and the implications of this relationship for diabetic patients.

  3. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Directory of Open Access Journals (Sweden)

    Alfredo Conti

    2010-04-01

    Full Text Available Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  4. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Alfredo, E-mail: alfredo.conti@unime.it; Gulì, Carlo; La Torre, Domenico; Tomasello, Chiara; Angileri, Filippo F.; Aguennouz, M’Hammed [Department of Neuroscience and Department of Oncology, University of Messina, Policlinico Universitario, Via Consolare Valeria 1, 98125, Messina (Italy)

    2010-04-26

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  5. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    International Nuclear Information System (INIS)

    Conti, Alfredo; Gulì, Carlo; La Torre, Domenico; Tomasello, Chiara; Angileri, Filippo F.; Aguennouz, M’Hammed

    2010-01-01

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment

  6. ProBDNF Signaling Regulates Depression-Like Behaviors in Rodents under Chronic Stress.

    Science.gov (United States)

    Bai, Yin-Yin; Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Kang, Zhi-Long; Zhou, Li; Liu, Dennis; Zeng, Yue-Qing; Wang, Ting-Hua; Tian, Chang-Fu; Liao, Hong; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-11-01

    Chronic exposure to stressful environment is a key risk factor contributing to the development of depression. However, the mechanisms involved in this process are still unclear. Brain-derived neurotropic factor (BDNF) has long been investigated for its positive role in regulation of mood, although the role of its precursor, proBDNF, in regulation of mood is not known. In this study, using an unpredictable chronic mild stress (UCMS) paradigm we found that the protein levels of proBDNF were increased in the neocortex and hippocampus of stressed mice and this UCMS-induced upregulation of proBDNF was abolished by chronic administration of fluoxetine. We then established a rat model of UCMS and found that the expression of proBDNF/p75 NTR /sortilin was upregulated, whereas the expression of mature BDNF and TrkB was downregulated in both neocortex and hippocampus of chronically stressed rats. Finally, we found that the injection of anti-proBDNF antibody via intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) approaches into the UCMS rats significantly reversed the stress-induced depression-like behavior and restored the exploratory activity and spine growth. Although intramuscular injection of AAV-proBDNF did not exacerbate the UCMS-elicited rat mood-related behavioral or pathological abnormalities, i.c.v. injection of AAV-proBDNF increased the depression-like behavior in naive rats. Our findings suggest that proBDNF plays a role in the development of chronic stress-induced mood disturbances in rodents. Central (i.c.v.) or peripheral (i.p.) inhibition of proBDNF by injecting specific anti-proBDNF antibodies may provide a novel therapeutic approach for the treatment of stress-related mood disorders.

  7. Fumaric acid esters can block pro-inflammatory actions of human CRP and ameliorate metabolic disturbances in transgenic spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Jan Šilhavý

    Full Text Available Inflammation and oxidative stress have been implicated in the pathogenesis of metabolic disturbances. Esters of fumaric acid, mainly dimethyl fumarate, exhibit immunomodulatory, anti-inflammatory, and anti-oxidative effects. In the current study, we tested the hypothesis that fumaric acid ester (FAE treatment of an animal model of inflammation and metabolic syndrome, the spontaneously hypertensive rat transgenically expressing human C-reactive protein (SHR-CRP, will ameliorate inflammation, oxidative stress, and metabolic disturbances. We studied the effects of FAE treatment by administering Fumaderm, 10 mg/kg body weight for 4 weeks, to male SHR-CRP. Untreated male SHR-CRP rats were used as controls. All rats were fed a high sucrose diet. Compared to untreated controls, rats treated with FAE showed significantly lower levels of endogenous CRP but not transgenic human CRP, and amelioration of inflammation (reduced levels of serum IL6 and TNFα and oxidative stress (reduced levels of lipoperoxidation products in liver, heart, kidney, and plasma. FAE treatment was also associated with lower visceral fat weight and less ectopic fat accumulation in liver and muscle, greater levels of lipolysis, and greater incorporation of glucose into adipose tissue lipids. Analysis of gene expression profiles in the liver with Affymetrix arrays revealed that FAE treatment was associated with differential expression of genes in pathways that involve the regulation of inflammation and oxidative stress. These findings suggest potentially important anti-inflammatory, anti-oxidative, and metabolic effects of FAE in a model of inflammation and metabolic disturbances induced by human CRP.

  8. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    International Nuclear Information System (INIS)

    Kocbach, Anette; Herseth, Jan Inge; Lag, Marit; Refsnes, Magne; Schwarze, Per E.

    2008-01-01

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 μg/cm 2 of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-α, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-α, IL-1). The cytotoxicity was low after exposure to particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-α and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent

  9. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    Science.gov (United States)

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Science.gov (United States)

    Sartori, Michelle; Conti, Filipe F.; Dias, Danielle da Silva; dos Santos, Fernando; Machi, Jacqueline F.; Palomino, Zaira; Casarini, Dulce E.; Rodrigues, Bruno; De Angelis, Kátia; Irigoyen, Maria-Claudia

    2017-01-01

    Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals. PMID:28878683

  11. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Michelle Sartori

    2017-08-01

    Full Text Available Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice.Methods: Metabolic parameters, cardiac function, arterial pressure (AP, autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group and ob/ob mice (OB group.Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress.Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.

  12. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities

    Directory of Open Access Journals (Sweden)

    Puiyan Lam

    2016-03-01

    Full Text Available The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases.

  13. Pro-inflammatory capacity of classically activated monocytes relates positively to muscle mass and strength.

    Science.gov (United States)

    Beenakker, Karel G M; Westendorp, Rudi G J; de Craen, Anton J M; Slagboom, Pieternella E; van Heemst, Diana; Maier, Andrea B

    2013-08-01

    In mice, monocytes that exhibit a pro-inflammatory profile enter muscle tissue after muscle injury and are crucial for clearance of necrotic tissue and stimulation of muscle progenitor cell proliferation and differentiation. The aim of this study was to test if pro-inflammatory capacity of classically activated (M1) monocytes relates to muscle mass and strength in humans. This study included 191 male and 195 female subjects (mean age 64.2 years (SD 6.4) and 61.9 ± 6.4, respectively) of the Leiden Longevity Study. Pro-inflammatory capacity of M1 monocytes was assessed by ex vivo stimulation of whole blood with Toll-like receptor (TLR) 4 agonist lipopolysaccharide (LPS) and TLR-2/1 agonist tripalmitoyl-S-glycerylcysteine (Pam₃Cys-SK₄), both M1 phenotype activators. Cytokines that stimulate M1 monocyte response (IFN-γ and GM-CSF) as well as cytokines that are secreted by M1 monocytes (IL-6, TNF-α, IL-12, and IL-1β) were measured. Analyses were adjusted for age, height, and body fat mass. Upon stimulation with LPS, the cytokine production capacity of INF-γ, GM-CSF, and TNF-α was significantly positively associated with lean body mass, appendicular lean mass and handgrip strength in men, but not in women. Upon stimulation with Pam₃Cys-SK₄, IL-6; TNF-α; and Il-1β were significantly positively associated with lean body mass and appendicular lean in women, but not in men. Taken together, this study shows that higher pro-inflammatory capacity of M1 monocytes upon stimulation is associated with muscle characteristics and sex dependent. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  14. Evaluation of pollution in Camichin estuary (Mexico): pro-oxidant and antioxidant response in oyster (Crassostrea corteziensis).

    Science.gov (United States)

    Girón-Pérez, M I; Romero-Bañuelos, C A; Toledo-Ibarra, G A; Rojas-García, A E; Medina-Diaz, I M; Robledo-Marenco, M L; Vega-López, A

    2013-08-01

    The physiological system of molluscs, particularly pro-oxidant and antioxidant mechanisms, could be altered by pollutants and induce disturbance on health status and productive parameters of aquatic organisms, such as oyster. Therefore, the aim of this study was to evaluate the chemical contamination in water (total metals and polycyclic aromatic hydrocarbons) and oxidative stress parameters in oysters (Crassostrea corteziensis) in Camichin estuary, located in Mexican Tropical Pacific. The results obtained showed the presence of arsenic, lead and zinc, as well as naphthalene, pyrene and benzo[a]pyrene in concentrations relatively higher than criteria established by local and international guidelines. Regarding the biomarkers of oxidative stress response (H2O2 and O2 concentration, catalase activity, lipid peroxidation, and hydroperoxide concentration), differences between oyster from estuary and control group were significant. These results indicate that these pollutants could be related with oxidative stress detected in oyster. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  16. Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model

    Science.gov (United States)

    Tomašek, Ines; Horwell, Claire J.; Damby, David; Barošová, Hana; Geers, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Clift, Martin J. D.

    2016-01-01

    BackgroundThere are justifiable health concerns regarding the potential adverse effects associated with human exposure to volcanic ash (VA) particles, especially when considering communities living in urban areas already exposed to heightened air pollution. The aim of this study was, therefore, to gain an imperative, first understanding of the biological impacts of respirable VA when exposed concomitantly with diesel particles.MethodsA sophisticated in vitro 3D triple cell co-culture model of the human alveolar epithelial tissue barrier was exposed to either a single or repeated dose of dry respirable VA (deposited dose of 0.26 ± 0.09 or 0.89 ± 0.29 μg/cm2, respectively) from Soufrière Hills volcano, Montserrat for a period of 24 h at the air-liquid interface (ALI). Subsequently, co-cultures were exposed to co-exposures of single or repeated VA and diesel exhaust particles (DEP; NIST SRM 2975; 0.02 mg/mL), a model urban pollutant, at the pseudo-ALI. The biological impact of each individual particle type was also analysed under these precise scenarios. The cytotoxic (LDH release), oxidative stress (depletion of intracellular GSH) and (pro-)inflammatory (TNF-α, IL-8 and IL-1β) responses were assessed after the particulate exposures. The impact of VA exposure upon cell morphology, as well as its interaction with the multicellular model, was visualised via confocal laser scanning microscopy (LSM) and scanning electron microscopy (SEM), respectively.ResultsThe combination of respirable VA and DEP, in all scenarios, incited an heightened release of TNF-α and IL-8 as well as significant increases in IL-1β, when applied at sub-lethal doses to the co-culture compared to VA exposure alone. Notably, the augmented (pro-)inflammatory responses observed were not mediated by oxidative stress. LSM supported the quantitative assessment of cytotoxicity, with no changes in cell morphology within the barrier model evident. A direct interaction of the VA with all

  17. Oxidative stress parameters in localized scleroderma patients.

    Science.gov (United States)

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  18. Integrated Inflammatory Stress (ITIS) Model

    DEFF Research Database (Denmark)

    Bangsgaard, Elisabeth O.; Hjorth, Poul G.; Olufsen, Mette S.

    2017-01-01

    maintains a long-term level of the stress hormone cortisol which is also anti-inflammatory. A new integrated model of the interaction between these two subsystems of the inflammatory system is proposed and coined the integrated inflammatory stress (ITIS) model. The coupling mechanisms describing....... A constant activation results in elevated levels of the variables in the model while a prolonged change of the oscillations in ACTH and cortisol concentrations is the most pronounced result of different LPS doses predicted by the model....

  19. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation.

    Science.gov (United States)

    Mahmoud, Ayman M

    2014-09-01

    The most important reason for the non-approval and withdrawal of drugs by the Food and Drug Administration is hepatotoxicity. Therefore, this study was undertaken to evaluate the protective effects of hesperidin against cyclophosphamide (CYP)-induced hepatotoxicity in Wistar rats. The rats received a single intraperitoneal dose of CYP of 200 mg/kg body mass, followed by treatment with hesperidin, orally, at doses of 25 and 50 mg/kg for 11 consecutive days. CYP induced hepatic damage, as evidenced by the significantly elevated levels of serum pro-inflammatory cytokines, serum transaminases, liver lipid peroxidation, and nitric oxide. As a consequence, there was reduced glutathione content, and the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were markedly reduced. In addition, CYP administration induced a considerable downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and upregulation of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) mRNA expression. Hesperidin, in a dose-dependent manner, rejuvenated the altered markers to an almost normal state. In conclusion, hesperidin showed a potent protective effect against CYP-induced oxidative stress and inflammation leading to hepatotoxicity. The study suggests that hesperidin exerts its protective effect against CYP-induced hepatotoxicity through upregulation of hepatic PPARγ expression and abrogation of inflammation and oxidative stress.

  20. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia.

    Science.gov (United States)

    Mishra, Pooja-Shree; Vijayalakshmi, K; Nalini, A; Sathyaprabha, T N; Kramer, B W; Alladi, Phalguni Anand; Raju, T R

    2017-12-16

    Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory

  1. Oxidative Stress and Programmed Cell Death in Yeast

    International Nuclear Information System (INIS)

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.

  2. Macrophage elastase (MMP-12: a pro-inflammatory mediator?

    Directory of Open Access Journals (Sweden)

    Soazig Nénan

    2005-03-01

    Full Text Available As many metalloproteinases (MMPs, macrophage elastase (MMP-12 is able to degrade extracellular matrix components such as elastin and is involved in tissue remodeling processes. Studies using animal models of acute and chronic pulmonary inflammatory diseases, such as pulmonary fibrosis and chronic obstrutive pulmonary disease (COPD, have given evidences that MMP-12 is an important mediator of the pathogenesis of these diseases. However, as very few data regarding the direct involvement of MMP-12 in inflammatory process in the airways were available, we have instilled a recombinant form of human MMP-12 (rhMMP-12 in mouse airways. Hence, we have demonstrated that this instillation induced a severe inflammatory cell recruitment characterized by an early accumulation of neutrophils correlated with an increase in proinflammatory cytokines and in gelatinases and then by a relatively stable recruitment of macrophages in the lungs over a period of ten days. Another recent study suggests that resident alveolar macrophages and recruited neutrophils are not involved in the delayed macrophage recruitment. However, epithelial cells could be one of the main targets of rhMMP-12 in our model. We have also reported that a corticoid, dexamethasone, phosphodiesterase 4 inhibitor, rolipram and a non-selective MMP inhibitor, marimastat could reverse some of these inflammatory events. These data indicate that our rhMMP-12 model could mimic some of the inflammatory features observed in COPD patients and could be used for the pharmacological evaluation of new anti-inflammatory treatment. In this review, data demonstrating the involvement of MMP-12 in the pathogenesis of pulmonary fibrosis and COPD as well as our data showing a pro-inflammatory role for MMP-12 in mouse airways will be summarized.

  3. The role of saliva in the process of oxidative stress – review of literature

    Directory of Open Access Journals (Sweden)

    Anna Krysińska

    2016-12-01

    Full Text Available Background: Saliva constitutes a first line of defence against free radical-mediated oxidative stress, since the process of mastication and digestion promotes lipid peroxidation. During gingival inflammation, gingival crevicular fluid flow increases the change of saliva composition with products from the inflammatory response, modulating oxidative damages in the oral cavity. Authors review the current literature concerning the reactive oxygen species, oxidants, pro-oxidants and antioxidants in saliva, and methods for assessing the antioxidant capacity of saliva. Comparison of salivary antioxidant status in male and female subjects reveales a significant gender-related difference in saliva composition. The current data demonstrate a significant enhancement of the salivary antioxidant system in juvenile idiopathic arthritis patients. Also patients with chronic renal failure, diabetes and on hemodialysis show increase oxidative stress burden in both serum and saliva. The finding of reduced oral peroxidase levels in smoking subjects may represent a contributory mechanism for initiation and progression of cigarette smoke-related oral diseases such as oral cancer. The results of recent studies indicate that the total antioxidant capacity of saliva decreased in children with HIV infection. Conclusion: Whole saliva may contain simply measured indicators of oxidative processes. This may provide a tool for the development and monitoring of new treatment strategies. A non-invasive determination of the salivary concentrations of antioxidants such as superoxide dismutase (SOD and uric acid (UR allows the evaluation of the defensive capacity of the oral mucosa. Still, there is a need for standardization of methods for saliva sampling and testing protocol.

  4. Riboflavin Reduces Pro-Inflammatory Activation of Adipocyte-Macrophage Co-culture. Potential Application of Vitamin B2 Enrichment for Attenuation of Insulin Resistance and Metabolic Syndrome Development.

    Science.gov (United States)

    Mazur-Bialy, Agnieszka Irena; Pocheć, Ewa

    2016-12-15

    Due to the progressive increase in the incidence of obese and overweight individuals, cardiometabolic syndrome has become a worldwide pandemic in recent years. Given the immunomodulatory properties of riboflavin, the current study was performed to investigate the potency of riboflavin in reducing obesity-related inflammation, which is the main cause of insulin resistance, diabetes mellitus 2 or arteriosclerosis. We determined whether pretreatment with a low dose of riboflavin (10.4-1000 nM) affected the pro-inflammatory activity of adipocyte-macrophage co-culture (3T3 L1-RAW 264.7) following lipopolysaccharide stimulation (LPS; 100 ng/mL) which mimics obesity-related inflammation. The apoptosis of adipocytes and macrophages as well as tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), interleukin 1beta (IL-1β), monocyte chemotactic protein 1 (MCP-1), high-mobility group box 1 (HMGB1), transforming growth factor-beta 1 (TGFβ), interleukin 10 (IL-10), inducible nitric oxide synthase (iNOS), nitric oxide (NO), matrix metalloproteinase 9 (MMP-9), tissue inhibitor of metalloproteinases-1 (TIMP-1) expression and release, macrophage migration and adipokines (adiponectin and leptin) were determined. Our results indicated an efficient reduction in pro-inflammatory factors (TNFα, IL-6, MCP-1, HMGB1) upon culture with riboflavin supplementation (500-1000 nM), accompanied by elevation in anti-inflammatory adiponectin and IL-10. Moreover, macrophage migration was reduced by the attenuation of chemotactic MCP-1 release and degradation of the extracellular matrix by MMP-9. In conclusion, riboflavin effectively inhibits the pro-inflammatory activity of adipocyte and macrophage co-cultures, and therefore we can assume that its supplementation may reduce the likelihood of conditions associated with the mild inflammation linked to obesity.

  5. Riboflavin Reduces Pro-Inflammatory Activation of Adipocyte-Macrophage Co-culture. Potential Application of Vitamin B2 Enrichment for Attenuation of Insulin Resistance and Metabolic Syndrome Development

    Directory of Open Access Journals (Sweden)

    Agnieszka Irena Mazur-Bialy

    2016-12-01

    Full Text Available Due to the progressive increase in the incidence of obese and overweight individuals, cardiometabolic syndrome has become a worldwide pandemic in recent years. Given the immunomodulatory properties of riboflavin, the current study was performed to investigate the potency of riboflavin in reducing obesity-related inflammation, which is the main cause of insulin resistance, diabetes mellitus 2 or arteriosclerosis. We determined whether pretreatment with a low dose of riboflavin (10.4–1000 nM affected the pro-inflammatory activity of adipocyte-macrophage co-culture (3T3 L1-RAW 264.7 following lipopolysaccharide stimulation (LPS; 100 ng/mL which mimics obesity-related inflammation. The apoptosis of adipocytes and macrophages as well as tumor necrosis factor-alpha (TNF-α, interleukin 6 (IL-6, interleukin 1beta (IL-1β, monocyte chemotactic protein 1 (MCP-1, high-mobility group box 1 (HMGB1, transforming growth factor–beta 1 (TGFβ, interleukin 10 (IL-10, inducible nitric oxide synthase (iNOS, nitric oxide (NO, matrix metalloproteinase 9 (MMP-9, tissue inhibitor of metalloproteinases-1 (TIMP-1 expression and release, macrophage migration and adipokines (adiponectin and leptin were determined. Our results indicated an efficient reduction in pro-inflammatory factors (TNFα, IL-6, MCP-1, HMGB1 upon culture with riboflavin supplementation (500–1000 nM, accompanied by elevation in anti-inflammatory adiponectin and IL-10. Moreover, macrophage migration was reduced by the attenuation of chemotactic MCP-1 release and degradation of the extracellular matrix by MMP-9. In conclusion, riboflavin effectively inhibits the pro-inflammatory activity of adipocyte and macrophage co-cultures, and therefore we can assume that its supplementation may reduce the likelihood of conditions associated with the mild inflammation linked to obesity.

  6. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  7. Haptoglobin is required to prevent oxidative stress and muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Enrico Bertaggia

    Full Text Available BACKGROUND: Oxidative stress (OS plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS: We used Hp knockout mice (Hp-/- to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD, OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS: Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.

  8. Etyopathogenesis and Oxidative Stress Relationship in Mild Severe Alopecia Areata

    OpenAIRE

    Fadime Kilinç; Ayse Akbas; Ahu Yorulmaz; Sertaç Sener; Salim Neselioglu; Özcan Erel; Ahmet Metin

    2017-01-01

    Objective:Alopecia areata (AA) is a recurrent, autoimmune, inflammatory disease characterized by loss of scarless hair. The etiopathogenesis is not exactly known, however genetic, emotional, environmental factors and autoimmunity are accused. The aim of the study is to investigate the role of oxidative stress in the etiopathogenesis of AA. Methods:Thirty seven AA patients and thirty five healthy volunteers as control group were included in the study. Oxidative stress index (OSI) was calcu...

  9. Leptin Induces Oxidative Stress Through Activation of NADPH Oxidase in Renal Tubular Cells: Antioxidant Effect of L-Carnitine.

    Science.gov (United States)

    Blanca, Antonio J; Ruiz-Armenta, María V; Zambrano, Sonia; Salsoso, Rocío; Miguel-Carrasco, José L; Fortuño, Ana; Revilla, Elisa; Mate, Alfonso; Vázquez, Carmen M

    2016-10-01

    Leptin is a protein involved in the regulation of food intake and in the immune and inflammatory responses, among other functions. Evidences demonstrate that obesity is directly associated with high levels of leptin, suggesting that leptin may directly link obesity with the elevated cardiovascular and renal risk associated with increased body weight. Adverse effects of leptin include oxidative stress mediated by activation of NADPH oxidase. The aim of this study was to evaluate the effect of L-carnitine (LC) in rat renal epithelial cells (NRK-52E) exposed to leptin in order to generate a state of oxidative stress characteristic of obesity. Leptin increased superoxide anion (O2 (•) -) generation from NADPH oxidase (via PI3 K/Akt pathway), NOX2 expression and nitrotyrosine levels. On the other hand, NOX4 expression and hydrogen peroxide (H2 O2 ) levels diminished after leptin treatment. Furthermore, the expression of antioxidant enzymes, catalase, and superoxide dismutase, was altered by leptin, and an increase in the mRNA expression of pro-inflammatory factors was also found in leptin-treated cells. LC restored all changes induced by leptin to those levels found in untreated cells. In conclusion, stimulation of NRK-52E cells with leptin induced a state of oxidative stress and inflammation that could be reversed by preincubation with LC. Interestingly, LC induced an upregulation of NOX4 and restored the release of its product, hydrogen peroxide, which suggests a protective role of NOX4 against leptin-induced renal damage. J. Cell. Biochem. 117: 2281-2288, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Oxidative stress pattern in hepatitis C patients co-infected with ...

    African Journals Online (AJOL)

    Oxidative stress pattern in hepatitis C patients co-infected with schistosomiasis. ... Supporting the view that oxidative damage plays a role in chronic HCV infection, also TNF-α establishes a positive auto regulatory loop that can amplify the inflammatory response and lead to chronic inflammation. More evidence indicates that ...

  11. Protective Effect against Oxidative Stress in Medicinal Plant Extracts

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Lee, Eun Ju; Shin, Dong O; Hong, Sung Eun; Kim, Jin Kyu

    2000-01-01

    Protective effect of medicinal plant extracts against oxidative stress were screened in this study. Methanol extracts from 48 medicinal plants, which were reported to have antioxidative or anti-inflammatory effect were prepared and screened for their protective activity against chemically-induced and radiation-induced oxidative stress by using MTT assay. Thirty three samples showed protective activity against chemically-induced oxidative stress in various extent. Among those samples, extract of Glycyrrhiza uralensis revealed the strongest activity (25.9% at 100 μg/ml) with relatively lower cytotoxicity. Seven other samples showed higher than 20% protection at 100 μg/ml. These samples were tested for protection activity against radiation-induced oxidative stress. Methanol extract of Alpina officinarum showed the highest activity (17.8% at 20 μg/ml). Five fractions were prepared from the each 10 methanol extracts which showed high protective activity against oxidative stress. Among those fraction samples butanol fractions of Areca catechu var. dulcissima and Spirodela polyrrhiza showed the highest protective activities (78.8% and 77.2%, respectively, at 20 μg/ml)

  12. Gene array analysis of PD-1H overexpressing monocytes reveals a pro-inflammatory profile

    Directory of Open Access Journals (Sweden)

    Preeti Bharaj

    2018-02-01

    Full Text Available We have previously reported that overexpression of Programmed Death -1 Homolog (PD-1H in human monocytes leads to activation and spontaneous secretion of multiple pro inflammatory cytokines. Here we evaluate changes in monocytes gene expression after enforced PD-1H expression by gene array. The results show that there are significant alterations in 51 potential candidate genes that relate to immune response, cell adhesion and metabolism. Genes corresponding to pro-inflammatory cytokines showed the highest upregulation, 7, 3.2, 3.0, 5.8, 4.4 and 3.1 fold upregulation of TNF-α, IL-1 β, IFN-α, γ, λ and IL-27 relative to vector control. The data are in agreement with cytometric bead array analysis showing induction of proinflammatory cytokines, IL-6, IL-1β and TNF-α by PD-1H. Other genes related to inflammation, include transglutaminase 2 (TG2, NF-κB (p65 and p50 and toll like receptors (TLR 3 and 4 were upregulated 5, 4.5 and 2.5 fold, respectively. Gene set enrichment analysis (GSEA also revealed that signaling pathways related to inflammatory response, such as NFκB, AT1R, PYK2, MAPK, RELA, TNFR1, MTOR and proteasomal degradation, were significantly upregulated in response to PD-1H overexpression. We validated the results utilizing a standard inflammatory sepsis model in humanized BLT mice, finding that PD-1H expression was highly correlated with proinflammatory cytokine production. We therefore conclude that PD-1H functions to enhance monocyte activation and the induction of a pro-inflammatory gene expression profile.

  13. Impact of weight loss on oxidative stress and inflammatory cytokines ...

    African Journals Online (AJOL)

    diet regimen, where as the control group received medical treatment only for 12 weeks. Results: The mean values of ... Keywords: Type 2 diabetes, weight reduction, oxidative stress, cytokines, obesity. ..... muscle in severely obese subjects.

  14. Leukocyte Inclusion within a Platelet Rich Plasma-Derived Fibrin Scaffold Stimulates a More Pro-Inflammatory Environment and Alters Fibrin Properties

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mar; Troya, María; Padilla, Sabino; Orive, Gorka

    2015-01-01

    One of the main differences among platelet-rich plasma (PRP) products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF) and leukocyte-platelet rich plasma (L-PRP) scaffolds was determined by enzyme-linked immunosorbent assay (ELISA) and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions. PMID:25823008

  15. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties.

    Directory of Open Access Journals (Sweden)

    Eduardo Anitua

    Full Text Available One of the main differences among platelet-rich plasma (PRP products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF and leukocyte-platelet rich plasma (L-PRP scaffolds was determined by enzyme-linked immunosorbent assay (ELISA and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions.

  16. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  17. Effects of probiotics on biomarkers of oxidative stress and inflammatory factors in petrochemical workers: A randomized, double-blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Ali Akbar Mohammadi

    2015-01-01

    Full Text Available Background: The aim of the current study was to determine effects of probiotic yoghurt and multispecies probiotic capsule supplementation on biomarkers of oxidative stress and inflammatory factors in petrochemical workers. Methods: This randomized, double-blind, placebo-controlled trial was done among petrochemical workers. Subjects were randomly divided into three groups to receive 100 g/day probiotic yogurt (n = 12 or one probiotic capsule daily (n = 13 or 100 g/day conventional yogurt (n = 10 for 6 weeks. The probiotic yoghurt was containing two strains of Lactobacillus acidophilus and Bifidobacterium lactis with a total of min 1 Χ 10 7 CFU. Multispecies probiotic capsule contains seven probiotic bacteria spices Actobacillus casei 3 Χ 10 3 , L. acidophilus 3 Χ 10 7 , Lactobacillus rhamnosus 7 Χ 10 9 , Lactobacillus bulgaricus 5 Χ 10 8 , Bifidobacterium breve 2 Χ 10 10 , Bifidobacterium longum 1 Χ 10 9 and Streptococcus thermophilus 3 Χ 10 8 CFU/g. Fasting blood samples were obtained at the beginning and end of the trial to quantify biomarkers of oxidative stress and inflammatory factors. Results: Although a significant within-group decrease in plasma protein carbonyl levels was seen in the probiotic capsule group (326.0 ± 308.9 vs. 251.0 ± 176.3 ng/mL, P = 0.02, the changes were similar among the three groups. In addition, significant within-group decreases in plasma iso prostaglandin were observed in the probiotic supplements group (111.9 ± 85.4 vs. 88.0 ± 71.0 pg/mL, P = 0.003 and in the probiotic yogurt group (116.3 ± 93.0 vs. 92.0 ± 66.0 pg/mL, P = 0.02, nevertheless there were no significant change among the three groups. Conclusions: Taken together, consumption of probiotic yogurt or multispecies probiotic capsule had beneficial effects on biomarkers of oxidative stress in petrochemical workers.

  18. Oxidative stress may cause metastatic disease in patients with colorectal cancer

    DEFF Research Database (Denmark)

    Søndergaard, Edith Smed; Gögenur, Ismail

    2014-01-01

    Despite surgical treatment of stage II colorectal cancer many patients will experience relapse. Inflammatory and immunologic reactions created due to the surgical stress response result in the production of reactive oxygen species. Oxidative stress in turn, may result in the stimulation of cancer...

  19. Investigation of cytokines, oxidative stress, metabolic, and inflammatory biomarkers after orange juice consumption by normal and overweight subjects

    Directory of Open Access Journals (Sweden)

    Grace K. Z. S. Dourado

    2015-10-01

    Full Text Available Background: Abdominal adiposity has been linked to metabolic abnormalities, including dyslipidemia, oxidative stress, and low-grade inflammation. Objective: To test the hypothesis that consumption of 100% orange juice (OJ would improve metabolic, oxidative, and inflammatory biomarkers and cytokine levels in normal and overweight subjects with increased waist circumference. Design: Subjects were divided into two groups in accordance with their body mass index: normal and overweight. Both groups of individuals consumed 750 mL of OJ daily for 8 weeks. Body composition (weight, height, percentage of fat mass, and waist circumference; metabolic biomarkers (total cholesterol, low-density lipoprotein-cholesterol [LDL-C], high-density lipoprotein-cholesterol [HDL-C], triglycerides, glucose, insulin, HOMA-IR, and glycated hemoglobin; oxidative biomarkers (malondialdehyde and DPPH•; inflammatory biomarkers (high-sensitivity C-reactive protein [hsCRP]; cytokines (IL-4, IL-10, IL-12, TNF-α, and IFN-γ; and diet were evaluated before and after consumption of OJ for 8 weeks. Results: The major findings of this study were: 1 no alteration in body composition in either group; 2 improvement of the lipid profile, evidenced by a reduction in total cholesterol and LDL-C; 3 a potential stimulation of the immune response due to increase in IL-12; 4 anti-inflammatory effect as a result of a marked reduction in hsCRP; and 5 antioxidant action by the enhancement of total antioxidant capacity and the reduction of lipid peroxidation, in both normal and overweight subjects. Conclusions: OJ consumption has a positive effect on important biomarkers of health status in normal and overweight subjects, thereby supporting evidence that OJ acts as functional food and could be consumed as part of a healthy diet to prevent metabolic and chronic diseases.

  20. Menopause as risk factor for oxidative stress.

    Science.gov (United States)

    Sánchez-Rodríguez, Martha A; Zacarías-Flores, Mariano; Arronte-Rosales, Alicia; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2012-03-01

    The aim of this study was to determine the influence of menopause (hypoestrogenism) as a risk factor for oxidative stress. We carried out a cross-sectional study with 187 perimenopausal women from Mexico City, including 94 premenopausal (mean ± SD age, 44.9 ± 4.0 y; estrogen, 95.8 ± 65.7 pg/mL; follicle-stimulating hormone, 13.6 ± 16.9 mIU/mL) and 93 postmenopausal (mean ± SD age, 52.5 ± 3.3 y; estrogen, 12.8 ± 6.8 pg/mL; follicle-stimulating hormone, 51.4 ± 26.9 mIU/mL) women. We measured lipoperoxides using a thiobarbituric acid-reacting substance assay, erythrocyte superoxide dismutase and glutathione peroxidase activities, and the total antioxidant status with the Randox kit. An alternative cutoff value for lipoperoxide level of 0.320 μmol/L or higher was defined on the basis of the 90th percentile of young healthy participants. All women answered the Menopause Rating Scale, the Athens Insomnia Scale, and a structured questionnaire about pro-oxidant factors, that is, smoking, consumption of caffeinated and alcoholic beverages, and physical activity. Finally, we measured weight and height and calculated body mass index. The lipoperoxide levels were significantly higher in the postmenopausal group than in the premenopausal group (0.357 ± 0.05 vs 0.331 ± 0.05 μmol/L, P = 0.001). Using logistic regression to control pro-oxidant variables, we found that menopause was the main risk factor for oxidative stress (odds ratio, 2.62; 95% CI, 1.35-5.11; P menopause rating score, insomnia score, and lipoperoxides, and this relationship was most evident in the postmenopausal group (menopause scale, r = 0.327 [P = 0.001]; insomnia scale, r = 0.209 [P < 0.05]). Our findings suggest that the depletion of estrogen in postmenopause could cause oxidative stress in addition to the known symptoms.

  1. Quantification of particle-induced inflammatory stress response: a novel approach for toxicity testing of earth materials

    Directory of Open Access Journals (Sweden)

    Harrington Andrea D

    2012-04-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are vital regulators of many cellular functions in the body. The intracellular ROS concentration is highly regulated by a balance between pro-oxidants and anti-oxidants. A chronic excess of pro-oxidants leads to elevated ROS concentrations and inflammation, possibly initiating or enhancing disease onset. Mineral-induced generation of ROS, the role of minerals in upregulating cellular ROS, and their role in the development of several occupational diseases are now widely recognized. However, there is no standard protocol to determine changes in ROS production in cells after exposure to mineral dust or earth materials in general. In this study, a new method for determining the degree of cellular toxicity (i.e., cytotoxicity of particles is described that will help bridge the gap in knowledge. Results By measuring the production of ROS and the viability of cells, an inflammatory stress response (ISR indicator is defined. This approach normalizes the ROS upregulation with respect to the number of viable cells at the time of measurement. We conducted experiments on a series of minerals and soils that represent materials that are inert (i.e., glass beads, anatase, and a soil with low trace element content, moderately reactive (i.e., soil with high trace element content, and highly reactive (i.e., pyrite. Inert materials generated the lowest ISR, averaging 350% compared to the control. Acid washed pyrite produced the highest ISR (1,100 fold higher than the control. The measurements conducted as a function of time showed a complex response. Most materials showed an increase in ISR with particle loading. Conclusions The amount of cellularly generated ROS and cell viability combined provide a better understanding of particle-induced oxidative stress. The results indicate that some earth materials may solicit an initial burst of ROS, followed by a second phase in which cell viability decreases and ROS

  2. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    Science.gov (United States)

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  3. Positive effect of combined exercise training in a model of metabolic syndrome and menopause: autonomic, inflammatory, and oxidative stress evaluations.

    Science.gov (United States)

    Conti, Filipe Fernandes; Brito, Janaina de Oliveira; Bernardes, Nathalia; Dias, Danielle da Silva; Malfitano, Christiane; Morris, Mariana; Llesuy, Susana Francisca; Irigoyen, Maria-Cláudia; De Angelis, Kátia

    2015-12-15

    It is now well established that after menopause cardiometabolic disorders become more common. Recently, resistance exercise has been recommended as a complement to aerobic (combined training, CT) for the treatment of cardiometabolic diseases. The aim of this study was to evaluate the effects of CT in hypertensive ovariectomized rats undergoing fructose overload in blood pressure variability (BPV), inflammation, and oxidative stress parameters. Female rats were divided into the following groups (n = 8/group): sedentary normotensive Wistar rats (C), and sedentary (FHO) or trained (FHOT) ovariectomized spontaneously hypertensive rats undergoing and fructose overload. CT was performed on a treadmill and ladder adapted to rats in alternate days (8 wk; 40-60% maximal capacity). Arterial pressure (AP) was directly measured. Oxidative stress and inflammation were measured on cardiac and renal tissues. The association of risk factors (hypertension + ovariectomy + fructose) promoted increase in insulin resistance, mean AP (FHO: 174 ± 4 vs. C: 108 ± 1 mmHg), heart rate (FHO: 403 ± 12 vs. C: 352 ± 11 beats/min), BPV, cardiac inflammation (tumor necrosis factor-α-FHO: 65.8 ± 9.9 vs. C: 23.3 ± 4.3 pg/mg protein), and oxidative stress cardiac and renal tissues. However, CT was able to reduce mean AP (FHOT: 158 ± 4 mmHg), heart rate (FHOT: 303 ± 5 beats/min), insulin resistance, and sympathetic modulation. Moreover, the trained rats presented increased nitric oxide bioavailability, reduced tumor necrosis factor-α (FHOT: 33.1 ± 4.9 pg/mg protein), increased IL-10 in cardiac tissue and reduced lipoperoxidation, and increased antioxidant defenses in cardiac and renal tissues. In conclusion, the association of risk factors promoted an additional impairment in metabolic, cardiovascular, autonomic, inflammatory, and oxidative stress parameters and combined exercise training was able to attenuate these dysfunctions. Copyright © 2015 the American Physiological Society.

  4. The SaeR/S gene regulatory system induces a pro-inflammatory cytokine response during Staphylococcus aureus infection.

    Directory of Open Access Journals (Sweden)

    Robert L Watkins

    Full Text Available Community-associated methicillin-resistant Staphylococcus aureus accounts for a large portion of the increased staphylococcal disease incidence and can cause illness ranging from mild skin infections to rapidly fatal sepsis syndromes. Currently, we have limited understanding of S. aureus-derived mechanisms contributing to bacterial pathogenesis and host inflammation during staphylococcal disease. Herein, we characterize an influential role for the saeR/S two-component gene regulatory system in mediating cytokine induction using mouse models of S. aureus pathogenesis. Invasive S. aureus infection induced the production of localized and systemic pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α, interferon gamma (IFN-γ, interleukin (IL-6 and IL-2. In contrast, mice infected with an isogenic saeR/S deletion mutant demonstrated significantly reduced pro-inflammatory cytokine levels. Additionally, secreted factors influenced by saeR/S elicited pro-inflammatory cytokines in human blood ex vivo. Our study further demonstrated robust saeR/S-mediated IFN-γ production during both invasive and subcutaneous skin infections. Results also indicated a critical role for saeR/S in promoting bacterial survival and enhancing host mortality during S. aureus peritonitis. Taken together, this study provides insight into specific mechanisms used by S. aureus during staphylococcal disease and characterizes a relationship between a bacterial global regulator of virulence and the production of pro-inflammatory mediators.

  5. The role of pro-inflammatory and anti-inflammatory adipokines on exercise-induced bronchospasm in obese adolescents undergoing treatment.

    Science.gov (United States)

    da Silva, Patrícia Leão; de Mello, Marco Túlio; Cheik, Nadia Carla; Sanches, Priscila Lima; Piano, Aline; Corgosinho, Flávia Campos; Campos, Raquel Munhoz da Silveira; Carnier, June; Inoue, Daniela; do Nascimento, Claudia Mo; Oyama, Lila M; Tock, Lian; Tufik, Sérgio; Dâmaso, Ana R

    2012-04-01

    Recent studies have demonstrated a greater prevalence in exercise-induced bronchospasm (EIB) in obese adolescents. However, the role of pro-/anti-inflammatory adipokines and the repercussions of obesity treatment on EIB need to be explored further. Therefore, the objective of this study was to evaluate the role of pro-/anti-inflammatory adipokines on EIB in obese adolescents evaluated after long-term interdisciplinary therapy. Thirty-five post-pubertal obese adolescents, including 20 non-EIB (body mass index [BMI] 36 ± 5 kg/m(2)) and 15 EIB (BMI 36 ± 5 kg/m(2)), were enrolled in this study. Body composition was measured by plethysmography, using the BOD POD body composition system, and visceral fat was analyzed by ultrasound. Serum levels of adiponectin and leptin were analyzed. EIB and lung function were evaluated according to the American Thoracic Society criteria. Patients were recruited to a 1-year interdisciplinary intervention of weight loss, consisting of medical, nutritional, exercise, and psychological components. Anthropometrics and lung function variables improved significantly after the therapy in both groups. Furthermore we observed a reduction in EIB occurrence in obese adolescents after treatment. There was an increase in adiponectin levels and a reduction in leptin levels after the therapy. In addition, a low FEV(1) value was a risk factor associated with EIB occurrence at baseline, and was correlated after treatment with changes in anthropometric and maximal O(2) consumption values as well as the adipokines profile. In the present study it was demonstrated that 1 year of interdisciplinary therapy decreased EIB frequency in obese adolescents, paralleled by an increase in lung function and improvement in pro-/anti-inflammatory adipokines.

  6. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Ahad, Amjid [Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Ganai, Ajaz Ahmad [Department of Biotechnology, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Mujeeb, Mohd [Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Siddiqui, Waseem Ahmad, E-mail: was.sid121@gmail.com [Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India)

    2014-08-15

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.

  7. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    International Nuclear Information System (INIS)

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2014-01-01

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway

  8. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  9. Resuscitative therapy with erythropoietin reduces oxidative stress and inflammatory responses of vital organs in a rat severe fixed-volume hemorrhagic shock model.

    Science.gov (United States)

    Ranjbaran, Mina; Kadkhodaee, Mehri; Seifi, Behjat; Mirzaei, Reza; Ahghari, Parisa

    2018-01-01

    Hemorrhagic shock (HS) still has a high mortality rate and none of the known resuscitative regimens completely reverse its adverse outcomes. This study investigated the effects of different models of resuscitative therapy on the healing of organ damage in a HS model. Male Wistar rats were randomized into six groups: Sham, without HS induction; HS, without resuscitation; HS+Blood, resuscitation with the shed blood; HS+Blood+NS, resuscitation with blood and normal saline; HS+Blood+RL, resuscitation with blood and Ringer's lactate; EPO, erythropoietin was added to the blood and RL. Blood and urine samples were obtained 3 h after resuscitation. Kidney, liver and brain tissue samples were harvested for multiple organ failure evaluation. Survival rate was the highest in the Sham, EPO and HS+Blood+RL groups compared to others. Plasma creatinine concentration, ALT, AST, urinary NAG activity and renal NGAL mRNA expression significantly increased in the HS+Blood+RL group compared to the Sham group. There was a significant increase in tissue oxidative stress markers and pro-inflammatory cytokines in HS+Blood+RL group compared to the Sham rats. EPO had more protective effects on multiple organ failure compared to the HS+Blood+RL group. EPO, as a resuscitative treatment, attenuated HS-induced organ damage. It seems that it has a potential to be attractive for clinical trials.

  10. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Shu-Ju Chen

    Full Text Available Metabolic syndrome (MS represents a cluster of physiological and anthropometric abnormalities. The purpose of this study was to investigate the relationships between the levels of inflammation, adiponectin, and oxidative stress in subjects with MS. The inclusion criteria for MS, according to the Taiwan Bureau of Health Promotion, Department of Health, were applied to the case group (n = 72. The control group (n = 105 comprised healthy individuals with normal blood biochemical values. The levels of inflammatory markers [high sensitivity C-reactive protein (hs-CRP and interleukin-6 (IL-6, adiponectin, an oxidative stress marker (malondialdehyde, and antioxidant enzymes activities [catalase (CAT, superoxide dismutase (SOD, and glutathione peroxidase (GPx] were measured. Subjects with MS had significantly higher concentrations of inflammatory markers and lower adiponectin level, and lower antioxidant enzymes activities than the control subjects. The levels of inflammatory markers and adiponectin were significantly correlated with the components of MS. The level of hs-CRP was significantly correlated with the oxidative stress marker. The IL-6 level was significantly correlated with the SOD and GPx activities, and the adiponectin level was significantly correlated with the GPx activity. A higher level of hs-CRP (≥1.00 mg/L, or IL-6 (≥1.50 pg/mL or a lower level of adiponectin (<7.90 µg/mL were associated with a significantly greater risk of MS. In conclusion, subjects suffering from MS may have a higher inflammation status and a higher level of oxidative stress. A higher inflammation status was significantly correlated with decreases in the levels of antioxidant enzymes and adiponectin and an increase in the risk of MS.

  11. Melatonin Treatment Reduces Oxidative Damage and Normalizes Plasma Pro-Inflammatory Cytokines in Patients Suffering from Charcot-Marie-Tooth Neuropathy: A Pilot Study in Three Children.

    Science.gov (United States)

    Chahbouni, Mariam; López, María Del Señor; Molina-Carballo, Antonio; de Haro, Tomás; Muñoz-Hoyos, Antonio; Fernández-Ortiz, Marisol; Guerra-Librero, Ana; Acuña-Castroviejo, Darío

    2017-10-14

    Charcot-Marie-Tooth neuropathy (CMT) is a motor and sensory neuropathy comprising a heterogeneous group of inherited diseases. The CMT1A phenotype is predominant in the 70% of CMT patients, with nerve conduction velocity reduction and hypertrophic demyelination. These patients have elevated oxidative stress and chronic inflammation. Currently, there is no effective cure for CMT; herein, we investigated whether melatonin treatment may reduce the inflammatory and oxidative damage in CMT1A patients. Three patients, aged 8-10 years, were treated with melatonin (60 mg at 21:00 h plus 10 mg at 09:00 h), and plasma levels of lipid peroxidation (LPO), nitrites (NOx), IL-1β, IL-2, IL-6, TNF-α, INF-γ, oxidized to reduced glutathione (GSSG/GSH) ratio, and the activities of superoxide dismutase (SOD), glutathione-S transferase (GST), glutathione peroxidase (GPx), and reductase (GRd), were determined in erythrocytes at 3 and 6 months of treatment. Healthy age- and sex-matched subjects were used as controls. The results showed increased activities of SOD, GST, GPx, and GRd in CMT1A patients, which were reduced at 3 and 6 months of treatment. The GSSG/GSH ratio significantly increased in the patients, returning to control values after melatonin treatment. The inflammatory process was confirmed by the elevation of all proinflammatory cytokines measured, which were also normalized by melatonin. LPO and NOx, which also were elevated in the patients, were normalized by melatonin. The results document beneficial effects of the use of melatonin in CMT1A patients to reduce the hyperoxidative and inflammatory condition, which may correlate with a reduction of the degenerative process.

  12. Storage-induced increase in biomarkers of oxidative stress and inflammation in red blood cell components

    DEFF Research Database (Denmark)

    Kücükakin, Bülent; Kocak, Volkan; Lykkesfeldt, Jens

    2011-01-01

    of buffy-coat reduced red cells in SAG-M additive solution, by assessing biomarkers of oxidative and inflammatory stress during a storage period of 35 days. Study design and methods. Ten units of RBCs were stored for 35 days. Samples were collected from the units at storage days 1, 3, 7, 14, 21, 28 and 35......, respectively. The samples were analysed for various biomarkers expressing the oxidative stress and inflammation, including malondialdehyde (MDA), α-tocopherol (AT), dehydroascorbic acid (DHA), ascorbate (ASC), YKL-40 and interleukin-6 (IL-6). Results. The levels ofMDA, ASC, DHA, IL-6 and YKL-40 changed...... significantly during the storage period (p oxidative and inflammatory stress during a storage period...

  13. Protective effects of ethanol extract from Portulaca oleracea L on dextran sulphate sodium-induced mice ulcerative colitis involving anti-inflammatory and antioxidant

    Science.gov (United States)

    Yang, Xiaohang; Yan, Yongmei; Li, Jiankang; Tang, Zhishu; Sun, Jing; Zhang, Huan; Hao, Siyang; Wen, Aidong; Liu, Li

    2016-01-01

    Portulaca oleracea L., (POL) is one of commonly used medicine-food herbs and has a cosmopolitan distribution in many countries. Many studies showed that POL exhibited a wide range of pharmacological effects such as anti-inflammatory and liver complaints. In the clinical studies, POL was usually used for the treatment of UC disease and the clinical efficacy was well, but the mechanism and scientific intension was still unknown. In the present study, we studied the protective effects of the ethanol extract from POL on dextran sulphate sodium-induced UC in C57BL/6 mice model through oxidative stress and inflammatory pathway. The results demonstrated that the ethanol extract from POL could exhibit the effective protection for the DSS induced UC by increasing the colon length, decreasing body weight loss and the disease activity index score, inhibiting oxidative stress response through the MDA, NO, SOD activities, reducing the mRNA expressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and the protein expressions of TNF-α and NF-kB p65. These results may prove that POL could be considered as a useful and effective botanical compound from the edible plant to be used in UC through the oxidative stress and inflammatory activities. PMID:27347321

  14. Associations between Vitamin B-12 Status and Oxidative Stress and Inflammation in Diabetic Vegetarians and Omnivores.

    Science.gov (United States)

    Lee, Yau-Jiunn; Wang, Ming-Yang; Lin, Mon-Chiou; Lin, Ping-Ting

    2016-02-26

    Diabetes is considered an oxidative stress and a chronic inflammatory disease. The purpose of this study was to investigate the correlations between vitamin B-12 status and oxidative stress and inflammation in diabetic vegetarians and omnivores. We enrolled 154 patients with type 2 diabetes (54 vegetarians and 100 omnivores). Levels of fasting glucose, glycohemoglobin (HbA1c), lipid profiles, oxidative stress, antioxidant enzymes activity, and inflammatory makers were measured. Diabetic vegetarians with higher levels of vitamin B-12 (>250 pmol/L) had significantly lower levels of fasting glucose, HbA1c and higher antioxidant enzyme activity (catalase) than those with lower levels of vitamin B-12 (≤ 250 pmol/L). A significant association was found between vitamin B-12 status and fasting glucose (r = -0.17, p = 0.03), HbA1c (r = -0.33, p = 0.02), oxidative stress (oxidized low density lipoprotein-cholesterol, r = -0.19, p = 0.03), and antioxidant enzyme activity (catalase, r = 0.28, p = 0.01) in the diabetic vegetarians; vitamin B-12 status was significantly correlated with inflammatory markers (interleukin-6, r = -0.33, p vegetarian diet.

  15. Ultraviolet Radiation and the Slug Transcription Factor Induce Pro inflammatory and Immunomodulatory Mediator Expression in Melanocytes

    International Nuclear Information System (INIS)

    Shirley, S. H.; Kusewitt, D. F.; Grimm, E. A.

    2012-01-01

    Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR) component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete pro inflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce pro inflammatory mediators and that Slug is important in this process. Micro array studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of pro inflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  16. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  17. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  18. Selective targeting of pro-inflammatory Th1 cells by microRNA-148a-specific antagomirs in vivo.

    Science.gov (United States)

    Maschmeyer, Patrick; Petkau, Georg; Siracusa, Francesco; Zimmermann, Jakob; Zügel, Franziska; Kühl, Anja Andrea; Lehmann, Katrin; Schimmelpfennig, Sarah; Weber, Melanie; Haftmann, Claudia; Riedel, René; Bardua, Markus; Heinz, Gitta Anne; Tran, Cam Loan; Hoyer, Bimba Franziska; Hiepe, Falk; Herzog, Sebastian; Wittmann, Jürgen; Rajewsky, Nikolaus; Melchers, Fritz Georg; Chang, Hyun-Dong; Radbruch, Andreas; Mashreghi, Mir-Farzin

    2018-05-01

    In T lymphocytes, expression of miR-148a is induced by T-bet and Twist1, and is specific for pro-inflammatory Th1 cells. In these cells, miR-148a inhibits the expression of the pro-apoptotic protein Bim and promotes their survival. Here we use sequence-specific cholesterol-modified oligonucleotides against miR-148a (antagomir-148a) for the selective elimination of pro-inflammatory Th1 cells in vivo. In the murine model of transfer colitis, antagomir-148a treatment reduced the number of pro-inflammatory Th1 cells in the colon of colitic mice by 50% and inhibited miR-148a expression by 71% in the remaining Th1 cells. Expression of Bim protein in colonic Th1 cells was increased. Antagomir-148a-mediated reduction of Th1 cells resulted in a significant amelioration of colitis. The effect of antagomir-148a was selective for chronic inflammation. Antigen-specific memory Th cells that were generated by an acute immune reaction to nitrophenylacetyl-coupled chicken gamma globulin (NP-CGG) were not affected by treatment with antagomir-148a, both during the effector and the memory phase. In addition, antibody titers to NP-CGG were not altered. Thus, antagomir-148a might qualify as an effective drug to selectively deplete pro-inflammatory Th1 cells of chronic inflammation without affecting the protective immunological memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation

    Science.gov (United States)

    Glaser, Kirsten; Silwedel, Christine; Fehrholz, Markus; Waaga-Gasser, Ana M.; Henrich, Birgit; Claus, Heike; Speer, Christian P.

    2017-01-01

    Background: Ureaplasma species have been associated with chorioamnionitis and preterm birth and have been implicated in the pathogenesis of neonatal short and long-term morbidity. However, being mostly commensal bacteria, controversy remains on the pro-inflammatory capacity of Ureaplasma. Discussions are ongoing on the incidence and impact of prenatal, perinatal, and postnatal infection. The present study addressed the impact of Ureaplasma isolates on monocyte-driven inflammation. Methods: Cord blood monocytes of term neonates and adult monocytes, either native or LPS-primed, were cultured with Ureaplasma urealyticum (U. urealyticum) serovar 8 (Uu8) and Ureaplasma parvum serovar 3 (Up3). Using qRT-PCR, cytokine flow cytometry, and multi-analyte immunoassay, we assessed mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-12p40, IL-10, and IL-1 receptor antagonist (IL-1ra) as well as Toll-like receptor (TLR) 2 and TLR4. Results: Uu8 and Up3 induced mRNA expression and protein release of TNF-α, IL-1β and IL-8 in term neonatal and adult monocytes (p Ureaplasma-stimulated cells paralleled those results. Ureaplasma-induced cytokine levels did not significantly differ from LPS-mediated levels except for lower intracellular IL-1β in adult monocytes (Uu8: p ureaplasmas did not induce IL-12p40 response and promoted lower amounts of anti-inflammatory IL-10 and IL-1ra than LPS, provoking a cytokine imbalance more in favor of pro-inflammation (IL-1β/IL-10, IL-8/IL-10 and IL-8/IL-1ra: p Ureaplasma isolates in human monocytes. Stimulating pro-inflammatory cytokine responses while hardly inducing immunomodulatory and anti-inflammatory cytokines, ureaplasmas might push monocyte immune responses toward pro-inflammation. Inhibition of LPS-induced cytokines in adult monocytes in contrast to sustained inflammation in term neonatal monocytes indicates a differential modulation of host immune responses to a second stimulus. Modification of

  20. Oxidative stress and antioxidant defenses in pregnant women.

    Science.gov (United States)

    Leal, Claudio A M; Schetinger, Maria R C; Leal, Daniela B R; Morsch, Vera M; da Silva, Aleksandro Schafer; Rezer, João F P; de Bairros, André Valle; Jaques, Jeandre Augusto Dos Santos

    2011-01-01

    Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women. Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy. The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P0.05) in protein carbonylation. This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.

  1. Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis.

    Science.gov (United States)

    Turk, Romana; Piras, Cristian; Kovačić, Mislav; Samardžija, Marko; Ahmed, Hany; De Canio, Michele; Urbani, Andrea; Meštrić, Zlata Flegar; Soggiu, Alessio; Bonizzi, Luigi; Roncada, Paola

    2012-07-19

    Cow serum proteome was evaluated by three different complementary approaches in the control group, subclinical and clinical mastitis in order to possibly find differential protein expression useful for a better understanding of the pathophysiology of mastitis as well as for an early diagnosis of the disease. The systemic inflammatory and oxidative stress response in cows with subclinical and clinical mastitis were observed. The collected evidence shows a differential protein expression of serpin A3-1, vitronectin-like protein and complement factor H in subclinical mastitis in comparison with the control. It was also found a differential protein expression of inter-alpha-trypsin inhibitor heavy chain H4, serpin A3-1, C4b-binding protein alpha chain, haptoglobin and apolipoprotein A-I in clinical mastitis compared to the control. Among the inflammatory proteins up-regulated in clinical mastitis, vitronectin is over-expressed in both subclinical and clinical mastitis indicating a strong bacterial infection. This suggests vitronectin as an important mediator in the pathogenesis of the onset of mastitis as well as a valuable marker for diagnosis of the subclinical form of the disease. Obtained data could be useful for the detection of mastitis during the subclinical phase and for a better comprehension of the pathophysiological mechanisms involved in the onset of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  3. Activation of AMPK in human fetal membranes alleviates infection-induced expression of pro-inflammatory and pro-labour mediators.

    Science.gov (United States)

    Lim, R; Barker, G; Lappas, M

    2015-04-01

    In non-gestational tissues, the activation of adenosine monophosphate (AMP)-activated kinase (AMPK) is associated with potent anti-inflammatory actions. Infection and/or inflammation, by stimulating pro-inflammatory cytokines and matrix metalloproteinase (MMP)-9, play a central role in the rupture of fetal membranes. However, no studies have examined the role of AMPK in human labour. Fetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and after preterm pre-labour rupture of membranes (PPROM). AMPK activity was assessed by Western blotting of phosphorylated AMPK expression. To determine the effect of AMPK activators on pro-inflammatory cytokines, fetal membranes were pre-treated with AMPK activators then stimulated with bacterial products LPS and flagellin or viral dsDNA analogue poly(I:C). Primary amnion cells were used to determine the effect of AMPK activators on IL-1β-stimulated MMP-9 expression. AMPK activity was decreased with term labour. There was no effect of preterm labour. AMPK activity was also decreased in preterm fetal membranes, in the absence of labour, with PROM compared to intact membranes. AMPK activators AICAR, phenformin and A769662 significantly decreased IL-6 and IL-8 stimulated by LPS, flagellin and poly(I:C). Primary amnion cells treated with AMPK activators significantly decreased IL-1β-induced MMP-9 expression. The decrease in AMPK activity in fetal membranes after spontaneous term labour and PPROM indicates an anti-inflammatory role for AMPK in human labour and delivery. The use of AMPK activators as possible therapeutics for threatened preterm labour would be an exciting future avenue of research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Accelerated Aging during Chronic Oxidative Stress: A Role for PARP-1

    Directory of Open Access Journals (Sweden)

    Daniëlle M. P. H. J. Boesten

    2013-01-01

    Full Text Available Oxidative stress plays a major role in the pathophysiology of chronic inflammatory disease and it has also been linked to accelerated telomere shortening. Telomeres are specialized structures at the ends of linear chromosomes that protect these ends from degradation and fusion. Telomeres shorten with each cell division eventually leading to cellular senescence. Research has shown that poly(ADP-ribose polymerase-1 (PARP-1 and subtelomeric methylation play a role in telomere stability. We hypothesized that PARP-1 plays a role in accelerated aging in chronic inflammatory diseases due to its role as coactivator of NF-κb and AP-1. Therefore we evaluated the effect of chronic PARP-1 inhibition (by fisetin and minocycline in human fibroblasts (HF cultured under normal conditions and under conditions of chronic oxidative stress, induced by tert-butyl hydroperoxide (t-BHP. Results showed that PARP-1 inhibition under normal culturing conditions accelerated the rate of telomere shortening. However, under conditions of chronic oxidative stress, PARP-1 inhibition did not show accelerated telomere shortening. We also observed a strong correlation between telomere length and subtelomeric methylation status of HF cells. We conclude that chronic PARP-1 inhibition appears to be beneficial in conditions of chronic oxidative stress but may be detrimental under relatively normal conditions.

  5. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Feltens, Ralph; Moegel, Iljana; Roeder-Stolinski, Carmen; Simon, Jan-Christoph; Herberth, Gunda; Lehmann, Irina

    2010-01-01

    Chlorobenzene is a volatile organic compound (VOC) that is widely used as a solvent, degreasing agent and chemical intermediate in many industrial settings. Occupational studies have shown that acute and chronic exposure to chlorobenzene can cause irritation of the mucosa of the upper respiratory tract and eyes. Using in vitro assays, we have shown in a previous study that human bronchial epithelial cells release inflammatory mediators such as the cytokine monocyte chemoattractant protein-1 (MCP-1) in response to chlorobenzene. This response is mediated through the NF-κB signaling pathway. Here, we investigated the effects of monochlorobenzene on human lung cells, with emphasis on potential alterations of the redox equilibrium to clarify whether the chlorobenzene-induced inflammatory response in lung epithelial cells is caused via an oxidative stress-dependent mechanism. We found that expression of cellular markers for oxidative stress, such as heme oxygenase 1 (HO-1), glutathione S-transferase π1 (GSTP1), superoxide dismutase 1 (SOD1), prostaglandin-endoperoxide synthase 2 (PTGS2) and dual specificity phosphatase 1 (DUSP1), were elevated in the presence of monochlorobenzene. Likewise, intracellular reactive oxygen species (ROS) were increased in response to exposure. However, in the presence of the antioxidants N-(2-mercaptopropionyl)-glycine (MPG) or bucillamine, chlorobenzene-induced upregulation of marker proteins and release of the inflammatory mediator MCP-1 are suppressed. These results complement our previous findings and point to an oxidative stress-mediated inflammatory response following chlorobenzene exposure.

  6. Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans

    Directory of Open Access Journals (Sweden)

    Fischer Alexandra

    2012-10-01

    Full Text Available Abstract Background Coenzyme Q10 is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days. Findings Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif ligand 2 gene (CXCL2 more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD without changing the methylation pattern of the respective gene. Conclusion In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329.

  7. A Novel Tetrasubstituted Imidazole as a Prototype for the Development of Anti-inflammatory Drugs.

    Science.gov (United States)

    Nascimento, Marcus Vinicius P S; Munhoz, Antonio C M; Theindl, Lais C; Mohr, Eduarda Talita B; Saleh, Najla; Parisotto, Eduardo B; Rossa, Thaís A; Zamoner, Ariane; Creczynski-Pasa, Tania B; Filippin-Monteiro, Fabíola B; Sá, Marcus M; Dalmarco, Eduardo Monguilhott

    2018-04-14

    Although inflammation is a biological phenomenon that exists to protect the host against infections and/or related problems, its unceasing activation results in the aggravation of several medical conditions. Imidazoles, whether natural or synthetic, are molecules related to a broad spectrum of biological effects, including anti-inflammatory properties. In this study, we screened eight novel small molecules of the imidazole class synthesized by our research group for their in vitro anti-inflammatory activity. The effect of the selected molecules was confirmed in an in vivo inflammatory model. We also analyzed whether the effects were caused by inhibition of nuclear factor kappa B (NF-κB) transcription factor transmigration. Of the eight imidazoles tested, methyl 1-allyl-2-(4-fluorophenyl)-5-phenyl-1H-imidazole-4-acetate (8) inhibited nitric oxide metabolites and pro-inflammatory cytokine (TNF-α, IL-6, and IL-1β) secretion in J774 macrophages stimulated with LPS. It also attenuated leukocyte migration and exudate formation in the pleural cavity of mice challenged with carrageenan. Furthermore, imidazole 8 reverted the oxidative stress pattern triggered by carrageenan in the pleural cavity by diminishing myeloperoxidase, superoxide dismutase, catalase, and glutathione S-transferase activities and reducing the production of nitric oxide metabolites and thiobarbituric acid-reactive substances. Finally, these effects can be attributed, at least in part, to the ability of this compound to prevent NF-κB transmigration. In this context, our results demonstrate that imidazole 8 has promising potential as a prototype for the development of a new anti-inflammatory drug to treat inflammatory conditions in which NF-κB and oxidative stress play a prominent role. Graphical Abstract ᅟ.

  8. Cognitive-behavioral therapy for sleep disturbance decreases inflammatory cytokines and oxidative stress in hemodialysis patients.

    Science.gov (United States)

    Chen, Hung-Yuan; Cheng, I-Chih; Pan, Yi-Ju; Chiu, Yen-Ling; Hsu, Shih-Ping; Pai, Mei-Fen; Yang, Ju-Yeh; Peng, Yu-Sen; Tsai, Tun-Jun; Wu, Kwan-Dun

    2011-08-01

    Sleep disturbance is common in dialysis patients and is associated with the development of enhanced inflammatory responses. Cognitive-behavioral therapy is effective for sleep disturbance and reduces inflammation experienced by peritoneal dialysis patients; however, this has not been studied in hemodialysis patients. To determine whether alleviation of sleep disturbance in hemodialysis patients also leads to less inflammation, we conducted a randomized controlled interventional study of 72 sleep-disturbed hemodialysis patients. Within this patient cohort, 37 received tri-weekly cognitive-behavioral therapy lasting 6 weeks and the remaining 35, who received sleep hygiene education, served as controls. The adjusted post-trial primary outcome scores of the Pittsburgh Sleep Quality Index, the Fatigue Severity Scale, the Beck Depression Inventory, and the Beck Anxiety Inventory were all significantly improved from baseline by therapy compared with the control group. The post-trial secondary outcomes of high-sensitive C-reactive protein, IL-18, and oxidized low-density lipoprotein levels significantly declined with cognitive-behavioral therapy in comparison with the control group. Thus, our results suggest that cognitive-behavioral therapy is effective for correcting disorganized sleep patterns, and for reducing inflammation and oxidative stress in hemodialysis patients.

  9. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Directory of Open Access Journals (Sweden)

    Yixin He

    Full Text Available Multiple sclerosis (MS is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI, a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  10. Astragaloside IV attenuates experimental autoimmune encephalomyelitis of mice by counteracting oxidative stress at multiple levels.

    Science.gov (United States)

    He, Yixin; Du, Min; Gao, Yan; Liu, Hongshuai; Wang, Hongwei; Wu, Xiaojun; Wang, Zhengtao

    2013-01-01

    Multiple sclerosis (MS) is a chronic autoimmune neuroinflammatory disease found mostly in young adults in the western world. Oxidative stress induced neuronal apoptosis plays an important role in the pathogenesis of MS. In current study, astragaloside IV (ASI), a natural saponin molecule isolated from Astragalus membranceus, given at 20 mg/kg daily attenuated the severity of experimental autoimmune encephalomyelitis (EAE) in mice significantly. Further studies disclosed that ASI treatment inhibited the increase of ROS and pro-inflammatory cytokine levels, down-regulation of SOD and GSH-Px activities, and elevation of iNOS, p53 and phosphorylated tau in central nervous system (CNS) as well as the leakage of BBB of EAE mice. Meanwhile, the decreased ratio of Bcl-2/Bax was reversed by ASI. Moreover, ASI regulated T-cell differentiation and infiltration into CNS. In neuroblast SH-SY5Y cells, ASI dose-dependently reduced cellular ROS level and phosphorylation of tau in response to hydrogen peroxide challenge by modulation of Bcl-2/Bax ratio. ASI also inhibited activation of microglia both in vivo and in vitro. iNOS up-regulation induced by IFNγ stimulation was abolished by ASI dose-dependently in BV-2 cells. In summary, ASI prevented the severity of EAE progression possibly by counterbalancing oxidative stress and its effects via reduction of cellular ROS level, enhancement of antioxidant defense system, increase of anti-apoptotic and anti-inflammatory pathways, as well as modulation of T-cell differentiation and infiltration into CNS. The study suggested ASI may be effective for clinical therapy/prevention of MS.

  11. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I.

    Science.gov (United States)

    Rodrigues, Marília Danyelle Nunes; Seminotti, Bianca; Zanatta, Ângela; de Mello Gonçalves, Aline; Bellaver, Bruna; Amaral, Alexandre Umpierrez; Quincozes-Santos, André; Goodman, Stephen Irwin; Woontner, Michael; Souza, Diogo Onofre; Wajner, Moacir

    2017-08-01

    Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type (Gcdh +/+ ) and glutaryl-CoA dehydrogenase knockout (Gcdh -/- ) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of Gcdh +/+ and Gcdh -/- mice unstimulated and stimulated by menadione. We also measured the pro-inflammatory response (TNFα levels, IL1-β and NF-ƙB) in unstimulated astrocytes obtained from these mice. Gcdh -/- mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with Gcdh +/+ astrocytes. A higher inflammatory response (TNFα, IL1-β and NF-ƙB) was also observed in Gcdh -/- mice astrocytes. These data indicate a higher susceptibility of Gcdh -/- cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.

  12. Inflammatory and Oxidative Responses in Pregnancies With Obesity and Periodontal Disease.

    Science.gov (United States)

    Zambon, Marta; Mandò, Chiara; Lissoni, Alessandra; Anelli, Gaia Maria; Novielli, Chiara; Cardellicchio, Manuela; Leone, Roberto; Monari, Marta Noemi; Massari, Maddalena; Cetin, Irene; Abati, Silvio

    2018-01-01

    Maternal obesity is related to immunologic and inflammatory systemic modifications that may worsen the pregnancy inflammatory status. Hormonal changes during pregnancy can adversely affect oral biofilms and oral health initiating or worsening periodontal diseases, with enhanced local and systemic oxidative stress and inflammation. The aim of this study was to examine the relationship between local salivary and systemic parameters of oxidative stress and inflammation in relation to obesity and periodontal diseases. Sixty-two women with singleton pregnancies were enrolled. Twenty-seven women were normal weight (NW; 18.5periodontal status was evaluated, saliva (s) was collected to assess total antioxidant capacity (s-TAC) and C-reactive protein (s-CRP) levels, and venous plasma (p) was used to measure CRP levels (p-CRP). Maternal, fetal, and placental data were registered at delivery. Levels of s-TAC, s-CRP, and p-CRP were significantly higher in obese, particularly in the presence of GDM, compared to NW and related to each other ( P = .000; r > 0.59), to maternal BMI ( P = .000; r > 0.52), and fasting glycemia ( P 0.47). Periodontal disease was more frequent in obese groups (80%) versus NW (52%; P = .04), particularly when GDM was diagnosed ( P = .009). A significant interaction effect between maternal BMI and oral condition was found for s-TAC levels. Obese with periodontitis showed significant increase in local and systemic parameters versus NW. Obesity and periodontal disease could synergistically amplify the inflammatory and oxidative status, resulting in increased local and systemic biomarkers particularly when GDM is diagnosed.

  13. Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Fu-Chao Liu

    2015-01-01

    Full Text Available Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed.

  14. [The role of stress-induced chronic subclinical inflammation in the pathogenesis of the chronic pelvic pain syndrome IIIB in men].

    Science.gov (United States)

    Shormanov, I S; Mozhaev, I I; Sokolova, Kh A; Solovev, A S

    2017-12-01

    This literature review of recent clinical and experimental studies describes the role of oxidative stress in the multifactorial and interdisciplinary pathogenesis of non-inflammatory chronic pelvic pain syndrome IIIB (CPPS-IIIB) in men. The authors outline general biological nature of oxidative stress and its mechanisms. More detailed information is presented on cytokine-mediated chronic subclinical inflammation, one of the key mechanisms of oxidative stress, which is currently being actively studied. It is shown that the imbalance between pro- and anti-inflammatory cytokines observed in patients with CPPS-IIIB can explain some features of the clinical course (in particular, the characteristics of the pain syndrome) and the progression of this disease. In this regard, cytokine profiling of prostatic secretion can provide valuable diagnostic, prognostic and monitoring information in the management of this category of patients. Recently published evidence has demonstrated the essential role of the cytokine-mediated chronic inflammatory response as a mechanism of oxidative stress in the pathogenesis of CPPS-IIIB. Further studies in this area are warranted and in the long term may become a basis for the development of new effective pathogenetic pharmacotherapy of CPPS-IIIB.

  15. Effects of dietary resveratrol supplementation on hepatic and serum pro-/anti-inflammatory activity in juvenile GIFT tilapia, Oreochromis niloticus.

    Science.gov (United States)

    Zheng, Yao; Zhao, Zhixiang; Wu, Wei; Song, Chao; Meng, Shunlong; Fan, Limin; Bing, Xuwen; Chen, Jiazhang

    2017-08-01

    Dietary resveratrol (RES) supplementation may have some pharmacological effects including anti-inflammation. Previous studies have shown that Kupffer cell activation and apoptosis induction increases the transcription of pro- and anti-inflammatory cytokines. The main purpose of this study was to investigate the pro- and anti-inflammatory activities of 0.1 or 0.3 g/kg RES as a dietary supplement in juvenile freshwater tilapia (Oreochromis niloticus). The results showed that hepatic and serum immunoglobulin M (IgM) significantly decreased and increased while anti- and pro-inflammatory cytokines significantly increased and decreased, respectively, in the RES-treated groups. The expression of serum and hepatic IgM and anti-inflammatory cytokines [interleukin (IL)-10] and its inverse inhibitor interferon (IFN)-γ significantly increased while pro-inflammatory cytokine transcription significantly decreased. Hematoxylin-eosin staining and scanning electron microscopy revealed intestinal deformation, irregular goblet cells, and apoptotic cells in the 0.3 g/kg RES groups. RES (0.3 g/kg) also induced necrosis, apoptosis, reduction in Kupffer cell number, compressed sinusoids, and deformation of epidermal cells in the liver of the treated groups. In conclusion, the results of the present study show that high doses of RES were absorbed in the gut and then damaged the liver and intestinal tissue. Copyright © 2017. Published by Elsevier Ltd.

  16. Fatigue in Patients with Multiple Sclerosis: Is It Related to Pro- and Anti-Inflammatory Cytokines?

    Directory of Open Access Journals (Sweden)

    Arjan Malekzadeh

    2015-01-01

    Full Text Available Objective. To investigate the pathophysiological role of pro- and anti-inflammatory cytokines in primary multiple sclerosis-related fatigue. Methods. Fatigued and non-fatigued patients with multiple sclerosis (MS were recruited and their cytokine profiles compared. Patients with secondary fatigue were excluded. Fatigue was assessed with the self-reported Checklist Individual Strength (CIS20r, subscale fatigue. A CIS20r fatigue cut-off score of 35 was applied to differentiate between non-fatigued (CIS20r fatigue ≤34 and fatigued (CIS20r fatigue ≥35 patients with MS. Blood was collected to determine the serum concentrations of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-12p70, IL-17, TNFα, and IFN-γ and anti-inflammatory cytokines (IL-4, IL-5, IL-10, and IL-13. We controlled for the confounding effect of age, gender, duration of MS, disease severity, type of MS, and use of immunomodulatory drugs. Results. Similar cytokine levels were observed between MS patients with (n=21 and without fatigue (n=14. Adjusted multiple regression analyses showed a single significant positive relationship, that of IL-6 with CIS20r fatigue score. The explained variance of the IL-6 model was 21.1%, once adjusted for the confounding effect of age. Conclusion. The pro-inflammatory cytokine interleukin-6 (IL-6 may play a role in the pathophysiology of primary fatigue in patients with MS. Trial Registrations. ISRCTN69520623, ISRCTN58583714, and ISRCTN82353628.

  17. Antimicrobial aspects of inflammatory resolution in the mucosa: A role for pro-resolving mediators1

    Science.gov (United States)

    Campbell, Eric L.; Serhan, Charles N.; Colgan, Sean P.

    2011-01-01

    Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial antigens, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier, in recent years numerous findings implicate an active role of the epithelium with pro-resolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and pro-resolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosalhomeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to pro-resolving lipid mediators. PMID:21934099

  18. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    Science.gov (United States)

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-03

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Host transcription factors in the immediate pro-inflammatory response to the parasitic mite Psoroptes ovis.

    Directory of Open Access Journals (Sweden)

    Stewart T G Burgess

    Full Text Available BACKGROUND: Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. RESULTS: Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. CONCLUSIONS: Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen.

  20. Protective properties of artichoke (Cynara scolymus) against oxidative stress induced in cultured endothelial cells and monocytes.

    Science.gov (United States)

    Zapolska-Downar, Danuta; Zapolski-Downar, Andrzej; Naruszewicz, Marek; Siennicka, Aldona; Krasnodebska, Barbara; Kołdziej, Blanka

    2002-11-01

    It is currently believed that oxidative stress and inflammation play a significant role in atherogenesis. Artichoke extract exhibits hypolipemic properties and contains numerous active substances with antioxidant properties in vitro. We have studied the influence of aqueous and ethanolic extracts from artichoke on intracellular oxidative stress stimulated by inflammatory mediators (TNFalpha and LPS) and ox-LDL in endothelial cells and monocytes. Oxidative stress which reflects the intracellular production of reactive oxygen species (ROS) was followed by measuring the oxidation of 2', 7'-dichlorofluorescin (DCFH) to 2', 7'-dichlorofluorescein (DCF). Agueous and ethanolic extracts from artichoke were found to inhibit basal and stimulated ROS production in endothelial cells and monocytes in dose dependent manner. In endothelial cells, the ethanolic extract (50 microg/ml) reduced ox-LDL-induced intracellular ROS production by 60% (partichoke extracts have marked protective properties against oxidative stress induced by inflammatory mediators and ox-LDL in cultured endothelial cells and monocytes.

  1. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  2. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2018-02-01

    Full Text Available Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp, and Stearoyl-Coenzyme A desaturase 1 (Scd1 were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1 relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage

  3. Pronounced inflammatory response to endotoxaemia during nighttime

    DEFF Research Database (Denmark)

    Alamili, Mahdi; Bendtzen, Klaus; Lykkesfeldt, Jens

    2014-01-01

    endotoxaemia model. DESIGN AND METHODS: A cross-over study, where 12 healthy young men received E. coli endotoxin (lipopolysaccharide, LPS) 0.3 ng/kg at 12 noon and, on another day, at 12 midnight. Blood samples were analysed for pro- and anti-inflammatory cytokines: tumour-necrosis factor (TNF)-alpha, soluble...... TNF receptors (sTNF-R)-1 and -2, interleukin (IL)-1beta, IL-1 receptor antagonist (IL-1Ra), IL-6, and IL-10 as well as YKL-40 and the oxidative stress markers malondialdehyde (MDA), ascorbic acid (AA) and dehydroascorbic acid (DHA) before and at 2, 4, 6 and 8 hours after LPS administration. RESULTS...

  4. Pro-inflammatory cytokines derived from West Nile virus (WNV-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death

    Directory of Open Access Journals (Sweden)

    Nerurkar Vivek R

    2010-10-01

    Full Text Available Abstract Background WNV-associated encephalitis (WNVE is characterized by increased production of pro-inflammatory mediators, glial cells activation and eventual loss of neurons. WNV infection of neurons is rapidly progressive and destructive whereas infection of non-neuronal brain cells is limited. However, the role of neurons and pathological consequences of pro-inflammatory cytokines released as a result of WNV infection is unclear. Therefore, the objective of this study was to examine the role of key cytokines secreted by WNV-infected neurons in mediating neuroinflammatory markers and neuronal death. Methods A transformed human neuroblastoma cell line, SK-N-SH, was infected with WNV at multiplicity of infection (MOI-1 and -5, and WNV replication kinetics and expression profile of key pro-inflammatory cytokines were analyzed by plaque assay, qRT-PCR, and ELISA. Cell death was measured in SK-N-SH cell line in the presence and absence of neutralizing antibodies against key pro-inflammatory cytokines using cell viability assay, TUNEL and flow cytometry. Further, naïve primary astrocytes were treated with UV-inactivated supernatant from mock- and WNV-infected SK-N-SH cell line and the activation of astrocytes was measured using flow cytometry and ELISA. Results WNV-infected SK-N-SH cells induced the expression of IL-1β, -6, -8, and TNF-α in a dose- and time-dependent manner, which coincided with increase in virus-induced cell death. Treatment of cells with anti-IL-1β or -TNF-α resulted in significant reduction of the neurotoxic effects of WNV. Furthermore treatment of naïve astrocytes with UV-inactivated supernatant from WNV-infected SK-N-SH cell line increased expression of glial fibrillary acidic protein and key inflammatory cytokines. Conclusion Our results for the first time suggest that neurons are one of the potential sources of pro-inflammatory cytokines in WNV-infected brain and these neuron-derived cytokines contribute to WNV

  5. Anti-inflammatory and anti-oxidant properties of Curcuma longa (turmeric) versus Zingiber officinale (ginger) rhizomes in rat adjuvant-induced arthritis.

    Science.gov (United States)

    Ramadan, Gamal; Al-Kahtani, Mohammed Ali; El-Sayed, Wael Mohamed

    2011-08-01

    Turmeric (rich in curcuminoids) and ginger (rich in gingerols and shogaols) rhizomes have been widely used as dietary spices and to treat different diseases in Ayurveda/Chinese medicine since antiquity. Here, we compared the anti-inflammatory/anti-oxidant activity of these two plants in rat adjuvant-induced arthritis (AIA). Both plants (at dose 200 mg/kg body weight) significantly suppressed (but with different degrees) the incidence and severity of arthritis by increasing/decreasing the production of anti-inflammatory/pro-inflammatory cytokines, respectively, and activating the anti-oxidant defence system. The anti-arthritic activity of turmeric exceeded that of ginger and indomethacin (a non-steroidal anti-inflammatory drug), especially when the treatment started from the day of arthritis induction. The percentage of disease recovery was 4.6-8.3% and 10.2% more in turmeric compared with ginger and indomethacin (P turmeric over ginger and indomethacin, which may have beneficial effects against rheumatoid arthritis onset/progression as shown in AIA rat model.

  6. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria.

    Science.gov (United States)

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia; Santucci, Annalisa

    2013-09-01

    Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis.

  7. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    Science.gov (United States)

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent

  8. Inflammasomes: sensors of metabolic stresses for vascular inflammation

    OpenAIRE

    Yin, Ying; Pastrana, Jahaira Lopez; Li, Xinyuan; Huang, Xiao; Mallilankaraman, karthik; Choi, Eric T.; Madesh, Muniswamy; Wang, Hong; Yang, Xiao-Feng

    2013-01-01

    Metabolic syndrome is a major health issue in the western world. An elevated pro-inflammatory state is often found in patients with metabolic diseases such as type 2 diabetes and obesity. Atherosclerosis is one such clinical manifestation of pro-inflammatory state associated with the vasculature. The exact mechanism by which metabolic stress induces this pro-inflammatory status and promotes atherogenesis remained elusive until the discovery of the inflammasome protein complex. This complex is...

  9. Preconditioning of adipose tissue-derived mesenchymal stem cells with deferoxamine increases the production of pro-angiogenic, neuroprotective and anti-inflammatory factors: Potential application in the treatment of diabetic neuropathy.

    Science.gov (United States)

    Oses, Carolina; Olivares, Belén; Ezquer, Marcelo; Acosta, Cristian; Bosch, Paul; Donoso, Macarena; Léniz, Patricio; Ezquer, Fernando

    2017-01-01

    Diabetic neuropathy (DN) is one of the most frequent and troublesome complications of diabetes mellitus. Evidence from diabetic animal models and diabetic patients suggests that reduced availability of neuroprotective and pro-angiogenic factors in the nerves in combination with a chronic pro-inflammatory microenvironment and high level of oxidative stress, contribute to the pathogenesis of DN. Mesenchymal stem cells (MSCs) are of great interest as therapeutic agents for regenerative purposes, since they can secrete a broad range of cytoprotective and anti-inflammatory factors. Therefore, the use of the MSC secretome may represent a promising approach for DN treatment. Recent data indicate that the paracrine potential of MSCs could be boosted by preconditioning these cells with an environmental or pharmacological stimulus, enhancing their therapeutic efficacy. In the present study, we observed that the preconditioning of human adipose tissue-derived MSCs (AD-MSCs) with 150μM or 400μM of the iron chelator deferoxamine (DFX) for 48 hours, increased the abundance of the hypoxia inducible factor 1 alpha (HIF-1α) in a concentration dependent manner, without affecting MSC morphology and survival. Activation of HIF-1α led to the up-regulation of the mRNA levels of pro-angiogenic factors like vascular endothelial growth factor alpha and angiopoietin 1. Furthermore this preconditioning increased the expression of potent neuroprotective factors, including nerve growth factor, glial cell-derived neurotrophic factor and neurotrophin-3, and cytokines with anti-inflammatory activity like IL4 and IL5. Additionally, we observed that these molecules, which could also be used as therapeutics, were also increased in the secretome of MSCs preconditioned with DFX compared to the secretome obtained from non-preconditioned cells. Moreover, DFX preconditioning significantly increased the total antioxidant capacity of the MSC secretome and they showed neuroprotective effects when

  10. Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release

    Directory of Open Access Journals (Sweden)

    Claudia Weber

    2015-01-01

    Insulin solutions displayed cytotoxic and pro-inflammatory potential caused by phenol or m-cresol. We speculate that during insulin pump therapy phenol and m-cresol might induce cell death and inflammatory reactions at the infusion site in vivo. Inflammation is perpetuated by release of MCP-1 by activated monocytic cells leading to enhanced recruitment of inflammatory cells. To minimize acute skin complications caused by phenol/m-cresol accumulation, a frequent change of infusion sets and rotation of the infusion site is recommended.

  11. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage.

    Science.gov (United States)

    Zhang, Yan; Igwe, Orisa J

    2018-01-01

    Disturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation. In the present study, we used murine macrophage RAW-Blue cells, which are chromosomally integrated with secreted embryonic alkaline phosphatase (SEAP) inducible by NF-κB. We confirmed the expression of TLR4 mRNA and protein in RAW-Blue cells by RT-PCR and Western blot, respectively. We showed that oxidants increased intracellular reactive oxygen species production and lipid peroxidation, which resulted in decreased intracellular total antioxidant capacity. Consistent with the actions of TLR4-specific agonist LPS-EK, exogenous oxidants increased transcriptional activity of NF-κB p65 with subsequent release of NF-κB reporter gene SEAP. These effects were blocked by pretreatment with TLR4 neutralizing pAb and TLR4 signaling inhibitor CLI-095. In addition, oxidants decreased the expression of IκBα with enhanced phosphorylation at the Tyr42 residue. Finally, oxidants and LPS-EK increased TNFα production, but did not affect IL-10 production, which may cause imbalance between pro- and anti-inflammatory processes, which CLI-095 inhibited. For biological relevance, we confirmed that oxidants increased release of TNFα and IL-6 in primary macrophages derived from TLR4-WT and TLR4-KO mice. Our results support the involvement of TLR4 mediated oxidant-induced inflammatory phenotype through NF-κB activation in macrophages. Thus exogenous oxidants may play a role in activating inflammatory phenotypes that propagate and maintain chronic disease states. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Oral exposure to dibutyl phthalate exacerbates chronic lymphocytic thyroiditis through oxidative stress in female Wistar rats.

    Science.gov (United States)

    Wu, Yang; Li, Jinquan; Yan, Biao; Zhu, Yuqing; Liu, Xudong; Chen, Mingqing; Li, Dai; Lee, Ching-Chang; Yang, Xu; Ma, Ping

    2017-11-13

    Chronic lymphocytic thyroiditis (CLT) is a common autoimmune disorder. The possible pathogenic role and mechanism of dibutyl phthalate (DBP) in CLT is still controversial. Experiments were conducted after 35-days of oral exposure to the three concentrations of DBP or saline, and three immunizations with thyroglobulin (TG). Healthy female Wistar rats were randomly divided into ten exposure groups (n = 8 each): (A) saline control, (B) 0.5 mg/kg/d DBP, (C) 5 mg/kg/d DBP, (D) 50 mg/kg/d DBP, (E) TG-immunized group, (F) TG- combined with 0.5 mg/kg/d DBP, (G) TG- combined with 5 mg/kg/d DBP, (H) TG- combined with 50 mg/kg/d DBP, (I) TG- combined with 50 mg/kg/d DBP plus 100 mg/kg/d vitamin C; (J) 100 mg/kg/d vitamin C. We showed that oral exposure DBP can aggravate CLT in rats. This deterioration was concomitant with increased thyroid auto antibodies, Th1/Th2 imbalance and Th17 immune response, activated pro-inflammatory and apoptosis pathways, and increased thyroid dysfunction in rats. Our results also suggested that DBP could promote oxidative damage. The study also found that vitamin C reduced the levels of oxidative stress and alleviated CLT. In short, the study showed that DBP exacerbated CLT through oxidative stress.

  13. Spironolactone treatment attenuates vascular dysfunction in type 2 diabetic mice by decreasing oxidative stress and restoring NO/GC signaling

    Directory of Open Access Journals (Sweden)

    Marcondes Alves Barbosa Da Silva

    2015-10-01

    Full Text Available Type 2 diabetes (DM2 increases the risk of cardiovascular disease. Aldosterone, which has pro-oxidative and pro-inflammatory effects in the cardiovascular system, is positively regulated in DM2. We assessed whether blockade of mineralocorticoid receptors (MR with spironolactone decreases ROS-associated vascular dysfunction and improves vascular NO signaling in diabetes. Leptin receptor knockout [LepRdb/LepRdb (db/db] mice, a model of DM2, and their counterpart controls [LepRdb/LepR+, (db/+ mice] received spironolactone (50 mg/kg body weight/day or vehicle (ethanol 1% via oral per gavage for 6 weeks. Spironolactone treatment abolished the endothelial dysfunction and increased endothelial nitric oxide synthase (eNOS phosphorylation (Ser1177, determined by acetylcholine-induced relaxation and Western Blot analysis, respectively. MR antagonist therapy also abrogated augmented ROS-generation in aorta from diabetic mice, determined by lucigenin luminescence assay. Spironolactone treatment increased superoxide dismutase-1 (SOD1 and catalase expression, improved sodium nitroprusside (SNP and BAY 41-2272-induced relaxation, as well as increased soluble guanylyl cyclase (sGC subunit β protein expression in arteries from db/db mice. Our results demonstrate that spironolactone decreases diabetes-associated vascular oxidative stress and prevents vascular dysfunction through processes involving increased expression of antioxidant enzymes and sGC. These findings further elucidate redox-sensitive mechanisms whereby spironolactone protects against vascular injury in diabetes.

  14. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro

    International Nuclear Information System (INIS)

    McNeilly, Jane D.; Heal, Mathew R.; Beverland, Iain J.; Howe, Alan; Gibson, Mark D.; Hibbs, Leon R.; MacNee, William; Donaldson, Ken

    2004-01-01

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched welding fumes. Here, we studied the molecular toxicology of three different metal-rich welding fumes: NIMROD 182, NIMROD c276, and COBSTEL 6. Fume toxicity in vitro was determined by exposing human type II alveolar epithelial cell line (A549) to whole welding fume, a soluble extract of fume or the 'washed' particulate. All whole fumes were significantly toxic to A549 cells at doses >63 μg ml -1 (TD 50; 42, 25, and 12 μg ml -1 , respectively). NIMROD c276 and COBSTEL 6 fumes increased levels of IL-8 mRNA and protein at 6 h and protein at 24 h, as did the soluble fraction alone, whereas metal chelation of the soluble fraction using chelex beads attenuated the effect. The soluble fraction of all three fumes caused a rapid depletion in intracellular glutathione following 2-h exposure with a rebound increase by 24 h. In addition, both nickel based fumes, NIMROD 182 and NIMROD c276, induced significant reactive oxygen species (ROS) production in A549 cells after 2 h as determined by DCFH fluorescence. ICP analysis confirmed that transition metal concentrations were similar in the whole and soluble fractions of each fume (dominated by Cr), but significantly less in both the washed particles and chelated fractions. These results support the hypothesis that the enhanced pro-inflammatory responses of welding fume particulates are mediated by soluble transition metal components via an oxidative stress mechanism

  15. Pro- and anti-inflammatory cytokines in healthy volunteers fed various doses of fish oil for 1 year.

    NARCIS (Netherlands)

    Blok, W.K.L.; Deslypere, J.P.; Demacker, P.N.M.; Ven-Jongekrijg, van der J.; Hectors, M.P.C.; Meer, van der J.W.M.; Katan, M.B.

    1997-01-01

    Dietary supplementation with n-3 fatty acids from fish oil alleviates inflammation in various chronic inflammatory disease states. Reductions in the production of pro-inflammatory cytokines interleukin 1 (IL-1), tumour necrosis factor alpha (TNF-), and interleukin 6 (IL-6) have been seen in humans

  16. Thiamine deficiency activates hypoxia inducible factor-1α to facilitate pro-apoptotic responses in mouse primary astrocytes.

    Directory of Open Access Journals (Sweden)

    Kristy Zera

    Full Text Available Thiamine is an essential enzyme cofactor required for proper metabolic function and maintenance of metabolism and energy production in the brain. In developed countries, thiamine deficiency (TD is most often manifested following chronic alcohol consumption leading to impaired mitochondrial function, oxidative stress, inflammation and excitotoxicity. These biochemical lesions result in apoptotic cell death in both neurons and astrocytes. Comparable histological injuries in patients with hypoxia/ischemia and TD have been described in the thalamus and mammillary bodies, suggesting a congruency between the cellular responses to these stresses. Consistent with hypoxia/ischemia, TD stabilizes and activates Hypoxia Inducible Factor-1α (HIF-1α under physiological oxygen levels. However, the role of TD-induced HIF-1α in neurological injury is currently unknown. Using Western blot analysis and RT-PCR, we have demonstrated that TD induces HIF-1α expression and activity in primary mouse astrocytes. We observed a time-dependent increase in mRNA and protein expression of the pro-apoptotic and pro-inflammatory HIF-1α target genes MCP1, BNIP3, Nix and Noxa during TD. We also observed apoptotic cell death in TD as demonstrated by PI/Annexin V staining, TUNEL assay, and Cell Death ELISA. Pharmacological inhibition of HIF-1α activity using YC1 and thiamine repletion both reduced expression of pro-apoptotic HIF-1α target genes and apoptotic cell death in TD. These results demonstrate that induction of HIF-1α mediated transcriptional up-regulation of pro-apoptotic/inflammatory signaling contributes to astrocyte cell death during thiamine deficiency.

  17. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Directory of Open Access Journals (Sweden)

    Tongfang Tang

    Full Text Available BACKGROUND: Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD through alternation of liver innate immune response. AIMS: The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. METHODS: Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. RESULTS: High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4 expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. CONCLUSION: High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  18. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death.

    Science.gov (United States)

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD.

  19. Effects of different products of peach (Prunus persica L. Batsch) from a variety developed in southern Brazil on oxidative stress and inflammatory parameters in vitro and ex vivo

    Science.gov (United States)

    Gasparotto, Juciano; Somensi, Nauana; Bortolin, Rafael Calixto; Moresco, Karla Suzana; Girardi, Carolina Saibro; Klafke, Karina; Rabelo, Thallita Kelly; Morrone, Maurilio Da Silva; Vizzotto, Márcia; Raseira, Maria do Carmo Bassols; Moreira, José Claudio Fonseca; Gelain, Daniel Pens

    2014-01-01

    Antioxidant, anti-glycation and anti-inflammatory activities of fresh and conserved peach fruits (Prunus persica L. Batsch) were compared. Fresh peach pulps, peels, preserve peach pulps and the preserve syrup were prepared at equal concentrations. Rat liver, kidney and brain cortex tissue slices were pre-incubated with peach samples, subjected to oxidative stress with FeSO4 and hydrogen peroxide. Fresh peach pulps and peel conferred higher protection against cytotoxicity and oxidative stress than preserve peach pulps in most tissues. Release of tumor necrosis factor-α and interleukin-1β was also significantly decreased by Fresh peach pulps and peel, followed by preserve peach pulps. Total phenolic determination and HPLC analysis of carotenoids showed that the content of secondary metabolites in Fresh peach pulps and peel is significantly higher than in preserve peach pulps, while the syrup had only small or trace amounts of these compounds. Fresh peach pulps and Peel demonstrated high antioxidant and anti-inflammatory effects preventing against induced damage. PMID:25320458

  20. Effect of Flavonoids on Oxidative Stress and Inflammation in Adults at Risk of Cardiovascular Disease: A Systematic Review

    OpenAIRE

    Jenni Suen; Jolene Thomas; Amelia Kranz; Simon Vun; Michelle Miller

    2016-01-01

    Oxidative stress (OS) and inflammatory processes initiate the first stage of cardiovascular disease (CVD). Flavonoid consumption has been related to significantly improved flow-mediated dilation and blood pressure. Antioxidant and anti-inflammatory mechanisms are thought to be involved. The effect of flavonoids on markers of oxidative stress and inflammation, in at risk individuals is yet to be reviewed. Systematic literature searches were conducted in MEDLINE, Cochrane Library, CINAHL and SC...

  1. Oxidative stress triggered by naturally occurring flavone apigenin results in senescence and chemotherapeutic effect in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kacoli Banerjee

    2015-08-01

    Full Text Available Recent studies involving phytochemical polyphenolic compounds have suggested flavones often exert pro-oxidative effect in vitro against wide array of cancer cell lines. The aim of this study was to evaluate the in-vitro pro-oxidative activity of apigenin, a plant based flavone against colorectal cancer cell lines and investigate cumulative effect on long term exposure. In the present study, treatment of colorectal cell lines HT-29 and HCT-15 with apigenin resulted in anti-proliferative and apoptotic effects characterized by biochemical and morphological changes, including loss of mitochondrial membrane potential which aided in reversing the impaired apoptotic machinery leading to negative implications in cancer pathogenesis. Apigenin induces rapid free radical species production and the level of oxidative damage was assessed by qualitative and quantitative estimation of biochemical markers of oxidative stress. Increased level of mitochondrial superoxide suggested dose dependent mitochondrial oxidative damage which was generated by disruption in anti-apoptotic and pro-apoptotic protein balance. Continuous and persistent oxidative stress induced by apigenin at growth suppressive doses over extended treatment time period was observed to induce senescence which is a natural cellular mechanism to attenuate tumor formation. Senescence phenotype inducted by apigenin was attributed to changes in key molecules involved in p16-Rb and p53 independent p21 signaling pathways. Phosphorylation of retinoblastoma was inhibited and significant up-regulation of p21 led to simultaneous suppression of cyclins D1 and E which indicated the onset of senescence. Pro-oxidative stress induced premature senescence mediated by apigenin makes this treatment regimen a potential chemopreventive strategy and an in vitro model for aging research.

  2. Pro-oxidant effects in the brain of rats concurrently exposed to uranium and stress

    International Nuclear Information System (INIS)

    Linares, Victoria; Sanchez, Domenec J.; Belles, Montserrat; Albina, Luisa; Gomez, Mercedes; Domingo, Jose L.

    2007-01-01

    Metal toxicity may be associated with increased rates of reactive oxygen species (ROS) generation within the central nervous system (CNS). Although the kidney is the main target organ for uranium (U) toxicity, this metal can also accumulate in brain. In this study, we investigated the modifications on endogenous antioxidant capacity and oxidative damage in several areas of the brain of U-exposed rats. Eight groups of adult male rats received uranyl acetate dihydrate (UAD) in the drinking water at 0, 10, 20, and 40 mg/kg/day for 3 months. Animals in four groups were concurrently subjected to restraint stress during 2 h/day throughout the study. At the end of the experimental period, cortex, hippocampus and cerebellum were removed and processed to examine the following stress markers: reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS), as well as U concentrations. The results show that U significantly accumulated in hippocampus, cerebellum and cortex after 3 months of exposure. Moreover, UAD exposure promoted oxidative stress in these cerebral tissues. In cortex and cerebellum, TBARS levels were positively correlated with the U content, while in cerebellum GSSG and GSH levels were positively and negatively correlated, respectively, with U concentrations. In hippocampus, CAT and SOD activities were positively correlated with U concentration. The present results suggest that chronic oral exposure to UAD can cause progressive perturbations on physiological brain levels of oxidative stress markers. Although at the current UAD doses restraint scarcely showed additional adverse effects, its potential influence should not be underrated

  3. Nootkatone confers hepatoprotective and anti-fibrotic actions in a murine model of liver fibrosis by suppressing oxidative stress, inflammation, and apoptosis.

    Science.gov (United States)

    Kurdi, Amani; Hassan, Kamal; Venkataraman, Balaji; Rajesh, Mohanraj

    2018-02-01

    In this study, the hepatoprotective and anti-fibrotic actions of nootkatone (NTK) were investigated using carbon tetrachloride (CCl 4 )-induced liver fibrosis in mice. CCl 4 administration elevated serum aspartate and alanine transaminases levels, respectively. In addition, CCl 4 produced hepatic oxidative and nitrative stress, characterized by diminished hemeoxygenase-1 expression, antioxidant defenses, and accumulation of 4-hydroxynonenal and 3-nitrotyrosine. Furthermore, CCl 4 administration evoked profound expression of pro-inflammatory cytokine expressions such as tumor necrosis factor-α, monocyte chemoattractant protein-1, and interleukin-1β in hepatic tissues, which corroborated with nuclear factor κB activation. Additionally, CCl 4 -treated animals exhibited higher apoptosis, characterized by increased caspase 3 activity, DNA fragmentation, and poly (ADP-ribose) polymerase activation. Moreover, histological and biochemical investigations revealed marked fibrosis in the livers of CCl 4 -administered animals. However, NTK treatment mitigated CCl 4 -induced phenotypic changes. In conclusion, our findings suggest that NTK exerts hepatoprotective and anti-fibrotic actions by suppressing oxidative stress, inflammation, and apoptosis. © 2017 Wiley Periodicals, Inc.

  4. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization

    NARCIS (Netherlands)

    Simons, Peter J.; van den Pangaart, Petra S.; Aerts, Johannes M. F. G.; Boon, Louis

    2007-01-01

    Adiponectin and, especially, its oligomeric complex composition have been suggested to be critical in determining insulin sensitivity. Pro-inflammatory cytokines play an important role in the development of insulin resistance in obesity and associated diseases. Therefore, we investigated the effect

  5. Inflammation and oxidative stress markers in diabetes and hypertension

    Directory of Open Access Journals (Sweden)

    Pouvreau C

    2018-02-01

    Full Text Available Chloé Pouvreau,1 Antoine Dayre,1 Eugene G Butkowski,2 Beverlie de Jong,2 Herbert F Jelinek2,3 1Faculty of Sciences, University of Poitiers, Poitiers, France; 2School of Community Health, Charles Sturt University, Albury, NSW, Australia; 3Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia Background: Inflammation and oxidative stress are important factors associated with chronic disease such as essential hypertension (HTN and type 2 diabetes mellitus (T2DM. However, the association of inflammation and oxidative stress in HTN with T2DM as a comorbidity is inconclusive due to the multifactorial nature of these cardiometabolic diseases. Methodology: The influence of pathophysiological factors include genetics, age of patient, and disease progression change throughout the lifespan and require further investigation. The study population included 256 participants attending a rural health screening program who were tested for markers of inflammation, oxidative stress, and coagulation/fibrinolysis. Demographic and clinical variables included, age, gender, systolic and diastolic blood pressures, blood glucose, hemoglobin A1c, estimated glomerular filtration rate, and cholesterol profile. Data were tested for normality, and nonparametric statistics were applied to analyze the sample with significance set at p<0.05. Results: Of the inflammatory markers, interleukin-1β (IL-1β and IL-10 were significantly different between the control and hypertensive group (p<0.03 and between the HTN+T2DM compared to the HTN group (p<0.05. Significant results for oxidative stress were observed for urinary 8-iso-PGF2α and insulin-like growth factor 1 (IGF-1 between the control and the HTN+T2DM group (p<0.01. Glutathione (GSH was also significant between the HTN and HTN+T2DM group (p<0.05. Investigation of the progression of HTN also found significant changes in the inflammatory markers IGF-1, monocyte chemoattractant protein 1 (MCP-1, and

  6. Excessive Pro-Inflammatory Serum Cytokine Concentrations in Virulent Canine Babesiosis

    DEFF Research Database (Denmark)

    Goddard, Amelia; Leisewitz, Andrew L; Kjelgaard-Hansen, Mads

    2016-01-01

    compared between the different groups using the Mann-Whitney U test. IL-10 and MCP-1 concentrations were significantly elevated for the Babesia-infected dogs compared to the healthy controls. In contrast, the IL-8 concentration was significantly decreased in the Babesia-infected dogs compared......Babesia rossi infection causes a severe inflammatory response in the dog, which is the result of the balance between pro- and anti-inflammatory cytokine secretion. The aim of this study was to determine whether changes in cytokine concentrations were present in dogs with babesiosis and whether...... it was associated with disease outcome. Ninety-seven dogs naturally infected with B. rossi were studied and fifteen healthy dogs were included as controls. Diagnosis of babesiosis was confirmed by polymerase chain reaction and reverse line blot. Blood samples were collected from the jugular vein at admission, prior...

  7. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  8. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  9. Resveratrol Prevents Cardiovascular Complications in the SHR/STZ Rat by Reductions in Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Rebecca K. Vella

    2015-01-01

    Full Text Available The cardioprotective effects of resveratrol are well established in animal models of metabolic disease but are yet to be investigated in a combined model of hypertension and diabetes. This study investigated the ability of resveratrol’s antioxidant and anti-inflammatory effects to prevent cardiovascular complications in the spontaneously hypertensive streptozotocin-induced diabetic rat. Diabetes was induced in eight-week-old male spontaneously hypertensive rats via a single intravenous injection of streptozotocin. Following this, resveratrol was administered orally for an eight-week period until the animals were sixteen weeks of age. Upon completion of the treatment regime assessments of oxidative stress, lipid peroxidation, inflammation, and cardiovascular function were made. Resveratrol administration to hypertensive-diabetic animals did not impact upon blood glucose or haemodynamics but significantly reduced oxidative stress, lipid peroxidation, and inflammatory cytokines. Reductions in systemic levels of oxidative stress and inflammation conferred improvements in vascular reactivity and left ventricular pump function and electrophysiology. This study demonstrates that resveratrol administration to hypertensive diabetic animals can elicit cardioprotective properties via antioxidant and anti-inflammatory effects. The observed preservation of cardiovascular function was independent of changes in blood glucose concentration and haemodynamics, suggesting that oxidative stress and inflammation are key components within the pathological cascade associated with hypertension and diabetes.

  10. Quality of life among post-menopausal women due to oxidative stress boosted by dysthymia and anxiety.

    Science.gov (United States)

    Sánchez-Rodríguez, Martha A; Castrejón-Delgado, Lizett; Zacarías-Flores, Mariano; Arronte-Rosales, Alicia; Mendoza-Núñez, Víctor Manuel

    2017-01-03

    Menopause is the onset of aging in women. During this process, some women experience physical changes that may impact upon their psychological and social status, also affecting their quality of life. Furthermore, several psychological changes following menopause have been shown to act as pro-oxidant, but the association between the psychological status that modify the quality of life and oxidative stress in postmenopausal women is still unclear. The aim of this study was to determinate the relationship between oxidative stress with psychological disturbances, low self-esteem, depressive mood and anxiety, and quality of life in the postmenopausal women. We carried out a cross-sectional study with101 premenopausal and 101 postmenopausal women from Mexico City. As markers of oxidative stress we measured plasma lipoperoxide levels, erythrocyte superoxide dismutase and glutathione peroxidase activities, and total antioxidant status. We calculate a stress score as global oxidative stress status, with cut-off values for each parameter; this score range from 0 to 6, representing the severity of markers modifications. All the women were rated using the Coopersmith Self-Esteem Inventory, the Zung Self-Rating Anxiety and the Zung Self-Rating Depression Scales, and the WHO Quality of Life-brief. The postmenopausal women with low quality of life in the WHO Quality of Life-brief and their subscales had higher stress score compared with premenopausal women with high quality of life (p Life-brief scores (r = -0.266, p Life-brief, after adjusted for pro-oxidant factors. Zung Self-Rating Anxiety and Zung Self-Rating Depression Scales scores also contribute to increase lipoperoxides levels, but not significant. Our findings suggest that oxidative stress is increased in postmenopausal women with psychological disturbances and low quality of life.

  11. Tumour-Derived Interleukin-1 Beta Induces Pro-inflammatory Response in Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Alajez, Nehad M; Al-toub, Mashael; Almusa, Abdulaziz

    ’ secreted factors as represented by a panel of human cancer cell lines (breast (MCF7 and MDA-MB-231); prostate (PC-3); lung (NCI-H522); colon (HT-29) and head & neck (FaDu)) on the biological characteristics of MSCs. Background Over the past several years, significant amount of research has emerged......, the goal of this study was to assess the cellular and molecular changes in MSCs in response to secreted factors present in conditioned media (CM) from a panel of human tumor cell lines covering a spectrum of human cancers (Breast, Prostate, Lung, colon, and head and neck). Research Morphological changes...... with bipolar processes. In association with phenotypic changes, genome-wide gene expression and bioinformatics analysis revealed an enhanced pro-inflammatory response of those MSCs. Pharmacological inhibitions of FAK and MAPKK severely impaired the pro-inflammatory response of MSCs to tumor CM (~80-99%, and 55...

  12. Poststroke Neuropsychiatric Symptoms: Relationships with IL-17 and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    W. Swardfager

    2014-01-01

    Full Text Available Stroke variably activates interleukin- (IL- 17 expression, reduces regulatory T cells, and induces oxidative stress, which may support neurodegeneration. Ischemic stroke patients were screened for depressive symptoms (Center for Epidemiological Studies Depression (CES-D and cognitive status (Mini Mental State Examination. Proinflammatory cytokines (IL-17, IL-23, and interferon- [IFN-] γ, anti-inflammatory cytokine IL-10, and lipid hydroperoxide (LPH, a measure of oxidative stress, were assayed from fasting serum. Of 47 subjects (age 71.8 ± 14.4 years, 36% female, 19 had depressive symptoms (CES-D ≥ 16, which was associated with poorer cognitive status (F1,46=8.44, P=0.006. IL-17 concentrations did not differ between subjects with and without depressive symptoms (F1,46=8.44, P=0.572; however, IL-17 was associated with poorer cognitive status in subjects with depressive symptoms (F1,46=9.29, P=0.004. In those subjects with depressive symptoms, IL-17 was associated with higher LPH (ρ=0.518, P=0.023 and lower IL-10 (ρ=-0.484, P=0.036, but not in those without. In conclusion, poststroke depressive symptoms may be associated with cognitive vulnerability to IL-17 related pathways, involving an imbalance between proinflammatory and anti-inflammatory activity and increased oxidative stress.

  13. Protection against inflammatory β-cell damage by lysine deacetylase inhibition and microRNA expression?

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv; Pallesen, Emil Marek Heymans; Novotny, Guy Wayne

    Background and aims: Pro-inflammatory cytokines contribute to pancreatic β-cell apoptosis in type 1 and 2 diabetes mellitus. The detrimental effects resulting from cytokine-induced signaling in the β cell can be reduced by inhibition of class I classical lysine deacetylases (KDACi), especially HDAC...... of oxidative stress proteins responsible for β-cell death. The aim of the study is to identify novel and specific therapeutic targets for β-cell protection by mapping the miR profile of β cells rescued from inflammatory assault by inhibition of lysine deacetylation, thereby identifying miR that repress....... The perspective of this study is to develop novel anti-diabetic drugs targeting HDAC1 and/or associated miR....

  14. Aluminium, carbonyls and cytokines in human nipple aspirate fluids: Possible relationship between inflammation, oxidative stress and breast cancer microenvironment.

    Science.gov (United States)

    Mannello, F; Ligi, D; Canale, M

    2013-11-01

    The human breast is likely exposed to Al (aluminium) from many sources including diet and personal care products. Underarm applications of aluminium salt-based antiperspirant provide a possible long-term source of exposure, especially after underarm applications to shaved and abraded skin. Al research in breast fluids likely reflects the intraductal microenvironment. We found increased levels of aluminium in noninvasively collected nipple aspirate fluids (NAF) from 19 breast cancer patients compared with 16 healthy control subjects (268 vs 131 μg/l, respectively; p Aluminium content and carbonyl levels showed a significant positive linear correlation (r(2) 0.6628, p aluminium salts) we also found a significantly increased levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-12 p70, and TNF-α) and chemoattractant CC and CXC chemokines (IL-8, MIP-1α and MCP-1). In 12 invasive cancer NAF samples we found a significant positive linear correlation among aluminium, carbonyls and pro-inflammatory IL-6 cytokine (Y = 64.79x-39.63, r(2) 0.8192, p aluminium ions in oxidative and inflammatory status perturbations of breast cancer microenvironment, suggesting aluminium accumulation in breast microenvironment as a possible risk factor for oxidative/inflammatory phenotype of breast cells. © 2013.

  15. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway

    International Nuclear Information System (INIS)

    Silswal, Nirupama; Singh, Anil K.; Aruna, Battu; Mukhopadhyay, Sangita; Ghosh, Sudip; Ehtesham, Nasreen Z.

    2005-01-01

    Resistin, a recently discovered 92 amino acid protein involved in the development of insulin resistance, has been associated with obesity and type 2 diabetes. The elevated serum resistin in human diabetes is often associated with a pro-inflammatory milieu. However, the role of resistin in the development of inflammation is not well understood. Addition of recombinant human resistin protein (hResistin) to macrophages (both murine and human) resulted in enhanced secretion of pro-inflammatory cytokines, TNF-α and IL-12, similar to that obtained using 5 μg/ml lipopolysaccharide. Both oligomeric and dimeric forms of hResistin were able to activate these cytokines suggesting that the inflammatory action of resistin is independent of its conformation. Heat denatured hResistin abrogated cytokine induction while treatment of recombinant resistin with polymyxin B agarose beads had no effect thereby ruling out the role of endotoxin in the recombinant hResistin mediated cytokine induction. The pro-inflammatory nature of hResistin was further evident from the ability of this protein to induce the nuclear translocation of NF-κB transcription factor as seen from electrophoretic mobility shift assays. Induction of TNF-α in U937 cells by hResistin was markedly reduced in the presence of either dominant negative IκBα plasmid or PDTC, a pharmacological inhibitor of NF-κB. A protein involved in conferring insulin resistance is also a pro-inflammatory molecule that has important implications

  16. Targeting Oxidative Stress, Cytokines and Serotonin Interactions Via Indoleamine 2, 3 Dioxygenase by Coenzyme Q10: Role in Suppressing Depressive Like Behavior in Rats.

    Science.gov (United States)

    Abuelezz, Sally A; Hendawy, Nevien; Magdy, Yosra

    2017-06-01

    Depression is a major health problem in which oxidative stress and inflammation are inextricably connected in its pathophysiology. Coenzyme Q10 (CoQ10) is an important anti-oxidant compound with anti-inflammatory and neuro-protective properties. This study was designed to investigate the hypothesis that CoQ10 by its anti-oxidant and anti-inflammatory potentials can alleviate depressive- like behavior by restoring the balance of the tryptophan catabolites kynurenine/serotonin toward the serotonin pathway by down-regulation of hippocampal indoleamine 2,3-dioxygenase 1 (IDO-1). Depressive-like behavior was induced by chronic unpredictable mild stress (CUMS) protocol including food or water deprivation, cage tilting, reversed light cycle etc. Male Wistar rats were randomly divided into five groups; Control, CUMS, CUMS and CoQ10 (50,100 and 200 mg/kg/day i.p. respectively) groups. CoQ10 effects on different behavioral and biochemical tests were analyzed. CoQ10 showed significant antidepressant efficacy, as evidenced by significantly decreased stress induced changes to forced swimming challenge and open field test, as well as attenuating raised corticosterone level and adrenal glands weight. The anti-oxidant effect of CoQ10 was exhibited by its ability to significantly reduce hippocampal elevated malondialdehyde and 4-hydroxynonenal levels and elevate the reduced glutathione and catalase levels. CoQ10 significantly reduced different pro-inflammatory cytokines levels including interleukin (IL)-1β, IL-2, IL-6 and tumor necrosis factor-α. It suppressed hippocampal IDO-1 and subsequent production of kynurenine and enhanced the hippocampal contents of tryptophan and serotonin. Immunohistochemical analysis revealed that CoQ10 was able to attenuate the elevated microglial CD68 and elevate the astrocyte glial fibrillary acidic protein compared to CUMS group. CoQ10 exhibited antidepressant-like effects on rats exposed to CUMS. This could be attributed to its ability to reduce

  17. Vasomotor Regulation of Coronary Microcirculation by Oxidative Stress: Role of Arginase

    Directory of Open Access Journals (Sweden)

    Lih eKuo

    2013-08-01

    Full Text Available Overproduction of reactive oxygen species, i.e., oxidative stress, is associated with the activation of redox signaling pathways linking to inflammatory insults and cardiovascular diseases by impairing endothelial function and consequently blood flow dysregulation due to microvascular dysfunction. This review focuses on the regulation of vasomotor function in the coronary microcirculation by endothelial nitric oxide (NO during oxidative stress and inflammation related to the activation of L-arginine consuming enzyme arginase. Superoxide produced in the vascular wall compromises vasomotor function by not only scavenging endothelium-derived NO but also inhibiting prostacyclin synthesis due to formation of peroxynitrite. The upregulation of arginase contributes to the deficiency of endothelial NO and microvascular dysfunction in various vascular diseases by initiating or following oxidative stress and inflammation. Hydrogen peroxide, a diffusible and stable oxidizing agent, exerts vasodilator function and plays important roles in the physiological regulation of coronary blood flow. In occlusive coronary ischemia, the release of hydrogen peroxide from the microvasculature helps to restore vasomotor function of coronary collateral microvessels with exercise training. However, excessive production and prolonged exposure of microvessels to hydrogen peroxide impairs NO-mediated endothelial function by reducing L-arginine availability through hydroxyl radical-dependent upregulation of arginase. The redox signaling can be a double-edged sword in the microcirculation, which helps tissue survival in one way by improving vasomotor regulation and elicits oxidative stress and tissue injury in the other way by causing vascular dysfunction. The impact of vascular arginase on the development of vasomotor dysfunction associated with angiotensin II receptor activation, hypertension, ischemia-reperfusion, hypercholesterolemia and inflammatory insults is discussed.

  18. Stressed lungs: unveiling the role of circulating stress ...

    Science.gov (United States)

    Ozone, a major component of smog generated through the interaction of light and anthropogenic emissions, induces adverse pulmonary, cardiovascular, and systemic health effects upon inhalation. It is generally accepted that ozone-induced lung injury is mediated by its interaction with lung lining components causing local oxidative changes, which then leads to cell damage and recruitment of inflammatory cells. It is postulated that the spillover of reactive intermediates and pro-inflammatory molecules from lung to systemic circulation mediates extra-pulmonary effects. However, recent work from our laboratory supports an alternative hypothesis that circulating stress hormones, such as epinephrine and corticosterone/cortisol, are involved in mediating ozone pulmonary effects. We have shown in rats and humans that ozone increases the levels of circulating stress hormones through activation of the hypothalamus- pituitary-adrenal (HPA) axis before any measurable effects are observed in the lung. The surgical removal of adrenals diminishes circulating stress hormones and at the same time, the pulmonary effects of ozone suggesting a significant contribution of these hormones in ozone-induced lung injury and inflammation. While ozone effects in the lung have been extensively studied, the contribution of central nervous system -mediated hormonal stress response has not been examined. In order to understand the signaling pathways that might be involved in ozone-induced lun

  19. PEGylated bilirubin nanoparticle as an anti-oxidative and anti-inflammatory demulcent in pancreatic islet xenotransplantation.

    Science.gov (United States)

    Kim, Min Jun; Lee, Yonghyun; Jon, Sangyong; Lee, Dong Yun

    2017-07-01

    Transplanted islets suffer hypoxic stress, which leads to nonspecific inflammation. This is the major cause of islet graft failure during the early stage of intrahepatic islet transplantation. Although bilirubin has shown potent anti-oxidative and anti-inflammatory functions, its clinical applications have been limited due to its insolubility and short half-life. To overcome this problem, novel amphiphilic bilirubin nanoparticles are designed. Hydrophilic poly(ethylene glycol) (PEG) is conjugated to the hydrophobic bilirubin molecule. Then, the PEG-bilirubin conjugates form nanoparticles via self-assembly, i.e., so-called to BRNPs. BRNPs can protect islet cells not only from chemically induced oxidative stress by scavenging reactive oxygen species molecules, but also from activated macrophages by suppressing cytokine release. Importantly, in vivo experiments demonstrate that BRNP treatment can dramatically and significantly prolong islet graft survival compared to bilirubin treatment. In addition, immunohistochemical analysis shows BRNPs have potent anti-oxidative and anti-inflammatory capabilities. Collectively, novel BRNPs can be a new potent remedy for successful islet transplantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The bronchiolar epithelium as a prominent source of pro-inflammatory cytokines after lung irradiation

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Uthe, Daniela; Wilfert, Falk; Ludwig, Daniela; Yang Kunyu; Koenig, Jochem; Palm, Jan; Schuck, Andreas; Willich, Normann; Remberger, Klaus; Ruebe, Christian

    2005-01-01

    Purpose: To study in detail the temporal and spatial release of the pro-inflammatory cytokines tumor necrosis factor α, interleukin (IL)-1α, and IL-6 in the lung tissue of C57BL/6 mice after thoracic irradiation with 12 Gy. Methods and Materials: C57BL/6J mice were exposed to either sham irradiation or a single fraction of 12 Gy delivered to the thorax. Treated and sham-irradiated control mice were killed at 0.5 h, 1 h, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h, 1 week, 2 weeks, 4 weeks, 8 weeks, 16 weeks, and 24 weeks post-irradiation (p.i.). Real-time multiplex reverse transcriptase polymerase chain reaction was established to evaluate the relative messenger RNA (mRNA) expression of TNF-α, IL-1α, and IL-6 in the lung tissue of the mice (compared with nonirradiated lung tissue). Immunohistochemical detection methods (alkaline phosphatase anti-alkaline phosphatase, avidin-biotin-complex [ABC]) and automated image analysis were used to quantify the protein expression of TNF-α, IL-1α, and IL-6 in the lung tissue (percentage of the positively stained area). Results: Radiation-induced release of the pro-inflammatory cytokines TNF-α, IL-1α, and IL-6 in the lung tissue was detectable within the first hours after thoracic irradiation. We observed statistically significant up-regulations for TNF-α at 1 h p.i. on mRNA (4.99 ± 1.60) and at 6 h p.i. on protein level (7.23% ± 1.67%), for IL-1α at 6 h p.i. on mRNA (11.03 ± 0.77) and at 12 h p.i. on protein level (27.58% ± 11.06%), for IL-6 at 6 h p.i. on mRNA (6.0 ± 3.76) and at 12 h p.i. on protein level (7.12% ± 1.93%). With immunohistochemistry, we could clearly demonstrate that the bronchiolar epithelium is the most prominent source of these inflammatory cytokines in the first hours after lung irradiation. During the stage of acute pneumonitis, the bronchiolar epithelium, as well as inflammatory cells in the lung interstitium, produced high amounts of TNF-α (with the maximal value at 4 weeks p.i.: 9.47% ± 1

  1. Suppression of pro-inflammatory T-cell responses by human mesothelial cells.

    Science.gov (United States)

    Lin, Chan-Yu; Kift-Morgan, Ann; Moser, Bernhard; Topley, Nicholas; Eberl, Matthias

    2013-07-01

    Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.

  2. Oxidative stress and inflammation in liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Natalia Olaya

    2007-02-01

    Full Text Available

    Inflammation is a common response in the human liver. It is involved in chronic hepatitis, cirrhosis, steatosis, ischemiareperfusion damage, hepatocarcinomas and in the development of metastasis. Reactive oxygen species (ROS production is part of the inflammatory processes. It is implicated in many physiological and pathological situations and can induce mutations in key cancer genes. Normally, this process is prevented by DNA repair enzymatic systems that maintain sequence fidelity during DNA replication. However, overproduction of free radicals in chronic inflammatory diseases is thought to saturate the ability of the cell to repair DNA damage prior to replications. Inflammation-induced genetic damage is not unique to the liver, and it might contribute to the development of mutations in several organs. An example is the chronic inflammatory response in ulcerative colitis that ultimately could lead to neoplasia.

    There is compelling evidence to suggest that most known environmental risk factors for HCC development lead to generation of reactive oxygen species (ROS. Indeed, hepatitis C virus (HCV, alcohol and hepatitis B virus (HBV have all been associated with oxidative stress. Direct production of oxidative stress by HCV core protein has been shown. A link between oxidative stress and liver pathogenesis is also supported by the successful use of antioxidant therapy to treat liver injury caused by chronic HCV infection, although it is not currently used for effective therapy. Ethanol metabolism via the alcohol dehydrogenase pathway and microsomal ethanol oxidizing system contribute substantially to the production of acetaldehyde and generation of ROS. HBx via its association with mitochondria has been shown to induce oxidative stress which in turn leads to activation of a

  3. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Anamika Basu

    Full Text Available Prostate cancer (PCa mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3, whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa.

  4. Oxidative stress and inflammation in renal patients and healthy subjects.

    Directory of Open Access Journals (Sweden)

    Diana M Lee

    Full Text Available The first goal of this study was to measure the oxidative stress (OS and relate it to lipoprotein variables in 35 renal patients before dialysis (CKD, 37 on hemodialysis (HD and 63 healthy subjects. The method for OS was based on the ratio of cholesteryl esters (CE containing C18/C16 fatty acids (R2 measured by gas chromatography (GC which is a simple, direct, rapid and reliable procedure. The second goal was to investigate and identify a triacylglycerol peak on GC, referred to as TG48 (48 represents the sum of the three fatty acids carbon chain lengths which was markedly increased in renal patients compared to healthy controls. We measured TG48 in patients and controls. Mass spectrometry (MS and MS twice in tandem were used to analyze the fatty acid composition of TG48. MS showed that TG48 was abundant in saturated fatty acids (SFAs that were known for their pro-inflammatory property. TG48 was significantly and inversely correlated with OS. Renal patients were characterized by higher OS and inflammation than healthy subjects. Inflammation correlated strongly with TG, VLDL-cholesterol, apolipoprotein (apo C-III and apoC-III bound to apoB-containing lipoproteins, but not with either total cholesterol or LDL-cholesterol.In conclusion, we have discovered a new inflammatory factor, TG48. It is characterized with TG rich in saturated fatty acids. Renal patients have increased TG48 than healthy controls.

  5. Potential behavioral and pro-oxidant effects of Petiveria alliacea L. extract in adult rats.

    Science.gov (United States)

    de Andrade, Thaís Montenegro; de Melo, Ademar Soares; Dias, Rui Guilherme Cardoso; Varela, Everton Luís Pompeu; de Oliveira, Fábio Rodrigues; Vieira, José Luís Fernandes; de Andrade, Marcieni Ataíde; Baetas, Ana Cristina; Monteiro, Marta Chagas; Maia, Cristiane do Socorro Ferraz

    2012-09-28

    Petiveria alliacea (Phytolaccaceae) is a perennial shrub indigenous to the Amazon Rainforest and tropical areas of Central and South America, the Caribbean, and sub-Saharan Africa. In folk medicine, Petiveria alliacea has a broad range of therapeutic properties; however, it is also associated with toxic effects. The present study evaluated the putative effects of Petiveria alliacea on the central nervous system, including locomotor activity, anxiety, depression-like behavior, and memory, and oxidative stress. Two-month-old male and female Wistar rats (n=7-10 rats/group) were administered with 900 mg/kg of hydroalcoholic extracts of Petiveria alliacea L. The behavioral assays included open-field, forced swimming, and elevated T-maze tests. The oxidative stress levels were measured in rat blood samples after behavioral assays and methemoglobin levels were measured in vitro. Consistent with previous reports, Petiveria alliacea increased locomotor activity. It also exerted previously unreported anxiolytic and antidepressant effects in behavioral tests. In the oxidative stress assays, the Petiveria alliacea extract decreased Trolox equivalent antioxidant capacity levels and increased methemoglobin levels, which was related to the toxic effects. The Petiveria alliacea extract exerted motor stimulatory and anxiolytic effects in the OF test, antidepressant effects in the FS test, and elicited memory improvement in ETM. Furthermore, the Petiveria alliacea extract also exerted pro-oxidant effects in vitro and in vivo, inhibiting the antioxidant status and increasing MetHb levels in human plasma, respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  7. New Pathogenic Concepts and Therapeutic Approaches to Oxidative Stress in Chronic Kidney Disease

    DEFF Research Database (Denmark)

    Pedraza-Chaverri, José; Sánchez-Lozada, Laura G; Osorio-Alonso, Horacio

    2016-01-01

    In chronic kidney disease inflammatory processes and stimulation of immune cells result in overproduction of free radicals. In combination with a reduced antioxidant capacity this causes oxidative stress. This review focuses on current pathogenic concepts of oxidative stress for the decline...... and pharmacologic therapies for hyperuricemia are discussed. Finally, we review some new therapy options in diabetic nephropathy including antidiabetic agents (noninsulin dependent), plant antioxidants, and food components as alternative antioxidant therapies....

  8. Oleuropein attenuates cognitive dysfunction and oxidative stress induced by some anesthetic drugs in the hippocampal area of rats.

    Science.gov (United States)

    Alirezaei, Masoud; Rezaei, Maryam; Hajighahramani, Shahin; Sookhtehzari, Ali; Kiani, Katayoun

    2017-01-01

    The present study was designed to evaluate the antioxidant effects of oleuropein against oxidative stress in the hippocampal area of rats. We used seven experimental groups as follows: Control, Propofol, Propofol-Ketamine (Pro.-Ket.), Xylazine-Ketamine (Xyl.-Ket.), and three oleuropein-pretreated groups (Ole.-Pro., Ole.-Pro.-Ket. and Ole.-Xyl.-Ket.). The oleuropein-pretreated groups received oleuropein (15 mg/kg body weight as orally) for 10 consecutive days. Propofol 100 mg/kg, xylazine 3 mg/kg, and ketamine 75 mg/kg once as ip was used on the 11th day of treatment. Spatial memory impairment and antioxidant status of hippocampus were measured via Morris water maze, lipid peroxidation marker, and antioxidant enzyme activities. Spatial memory impairment and lipid peroxidation significantly increased in Xyl.-Ket.-treated rats in comparison to the control, propofol, Ole.-Pro. and Ole.-Pro.-Ket. groups. Oleuropein pretreatment significantly reversed spatial memory impairment and lipid peroxidation in the Ole.-Xyl.-Ket. group as compared to the Xyl.-Ket.-treated rats. There was no significant difference between the control and the propofol group in lipid peroxidation and spatial memory status. Superoxide dismutase and catalase activities both significantly decreased in Xyl.-Ket.-treated rats when compared to the control, propofol, Ole.-Pro., Ole.-Pro.-Ket., and Ole.-Xyl.-Ket. groups. In contrast, glutathione peroxidase activity in Xyl.-Ket.-treated rats significantly increased as compared to the control, propofol, Pro.-Ket., Ole.-Pro., and Ole.-Pro.-Ket. groups. We concluded that xylazine in combination with ketamine is an oxidative anesthetic drug and oleuropein pretreatment attenuates cognitive dysfunction and oxidative stress induced by anesthesia in the hippocampal area of rats. We also confirmed the antioxidant properties of propofol as a promising antioxidant anesthetic agent.

  9. No effect of melatonin on oxidative stress after laparoscopic cholecystectomy

    DEFF Research Database (Denmark)

    Kücükakin, B.; Klein, M.; Lykkesfeldt, Jens

    2010-01-01

    melatonin and 21 patients received placebo during surgery. No significant differences were observed between the groups in the oxidative stress variables MDA, TAA, AA and DHA or in the inflammatory variable CRP (repeated-measures ANOVA, P > 0.05 for all variables). Conclusions Administration of 10 mg...

  10. Histone deacetylase 2 is decreased in peripheral blood pro-inflammatory CD8+ T and NKT-like lymphocytes following lung transplant.

    Science.gov (United States)

    Hodge, Greg; Hodge, Sandra; Holmes-Liew, Chien-Li; Reynolds, Paul N; Holmes, Mark

    2017-02-01

    Immunosuppression therapy following lung transplantation fails to prevent chronic rejection in many patients, which is associated with lack of suppression of cytotoxic mediators and pro-inflammatory cytokines in peripheral blood T and natural killer T (NKT)-like cells. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) upregulate/downregulate pro-inflammatory gene expression, respectively; however, differences in the activity of these enzymes following lung transplant are unknown. We hypothesized decreased HDAC2 expression and increased HAT expression in pro-inflammatory lymphocytes following lung transplant. Blood was collected from 18 stable lung transplant patients and 10 healthy age-matched controls. Intracellular pro-inflammatory cytokines and HAT/HDAC2 expression were determined in lymphocyte subsets following culture using flow cytometry. A loss of HDAC2 in cluster of differentiation (CD) 8+ T and NKT-like cells in transplant patients compared with controls was noted (CD8+ T: 28 ± 10 (45 ± 10), CD8+NKT-like: 30 ± 13 (54 ± 16) (mean ± SD transplant) (control)). Loss of HDAC2 was associated with an increased percentage of CD8+ T and NKT-like cells expressing perforin, granzyme b, interferon gamma (IFN-γ) and TNF-α (no change in HAT expression in any lymphocyte subset). There was a negative correlation between loss of HDAC2 expression by CD8+ T cells with cumulative dose of prednisolone and time post-transplant. Treatment with 10 mg/L theophylline + 1 µmol/L prednisolone or 2.5 ng/mL cyclosporine A synergistically upregulated HDAC2 and inhibited IFN-γ and TNF-α production by CD8+ T and NKT-like lymphocytes. HDAC2 is decreased in CD8+ T and NKT-like pro-inflammatory lymphocytes following lung transplant. Treatment options that increase HDAC2 may improve graft survival. © 2016 Asian Pacific Society of Respirology.

  11. Pro-inflammatory stimulation of meniscus cells increases production of matrix metalloproteinases and additional catabolic factors involved in osteoarthritis pathogenesis

    Science.gov (United States)

    Stone, Austin V.; Loeser, Richard F.; Vanderman, Kadie S.; Long, David L.; Clark, Stephanie C.; Ferguson, Cristin M.

    2014-01-01

    Objective Meniscus injury increases the risk of osteoarthritis; however, the biologic mechanism remains unknown. We hypothesized that pro-inflammatory stimulation of meniscus would increase production of matrix-degrading enzymes, cytokines and chemokines which cause joint tissue destruction and could contribute to osteoarthritis development. Design Meniscus and cartilage tissue from healthy tissue donors and total knee arthroplasties was cultured. Primary cell cultures were stimulated with pro-inflammatory factors [IL-1β, IL-6, or fibronectin fragments (FnF)] and cellular responses were analyzed by real-time PCR, protein arrays and immunoblots. To determine if NF-κB was required for MMP production, meniscus cultures were treated with inflammatory factors with and without the NF-κB inhibitor, hypoestoxide. Results Normal and osteoarthritic meniscus cells increased their MMP secretion in response to stimulation, but specific patterns emerged that were unique to each stimulus with the greatest number of MMPs expressed in response to FnF. Meniscus collagen and connective tissue growth factor gene expression was reduced. Expression of cytokines (IL-1α, IL-1β, IL-6), chemokines (IL-8, CXCL1, CXCL2, CSF1) and components of the NF-κB and tumor necrosis factor (TNF) family were significantly increased. Cytokine and chemokine protein production was also increased by stimulation. When primary cell cultures were treated with hypoestoxide in conjunction with pro-inflammatory stimulation, p65 activation was reduced as were MMP-1 and MMP-3 production. Conclusions Pro-inflammatory stimulation of meniscus cells increased matrix metalloproteinase production and catabolic gene expression. The meniscus could have an active biologic role in osteoarthritis development following joint injury through increased production of cytokines, chemokines, and matrix-degrading enzymes. PMID:24315792

  12. Association of Oxidative Stress and Obesity with Insulin Resistance in Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Das, P; Biswas, S; Mukherjee, S; Bandyopadhyay, S K

    2016-01-01

    Oxidative stress occurs due to delicate imbalance between pro-oxidant and anti oxidant forces in our system. It has been found to be associated with many morbidities but its association with obesity and insulin resistance is still controversial. Here in our study we examined 167 patients of recent onset type 2 diabetes mellitus and 60 age sex matched non-diabetic control. Body Mass Index (BMI), abdominal circumference, fasting blood glucose, serum insulin and plasma Malondealdehyde (MDA, marker for oxidative stress) were measured in them. On the basis of BMI, subjects were divided into obese (BMI≥25) and non obese (BMIobese and non-obese sub groups. Insulin resistance score showed positive correlation with BMI, abdominal circumference, and plasma MDA, strength of association being highest with abdominal circumference. Plasma MDA was found to have positive correlation with physical parameters. Study concludes that, obesity mainly central type may predispose to insulin resistance and oxidative stress may be a crucial factor in its pathogenesis. Thus, oxidative stress may be the connecting link between obesity and type 2 diabetes mellitus, two on going global epidemics.

  13. Human Langerhans Cells with Pro-inflammatory Features Relocate within Psoriasis Lesions

    Science.gov (United States)

    Eidsmo, Liv; Martini, Elisa

    2018-01-01

    Psoriasis is a common skin disease that presents with well-demarcated patches of inflammation. Recurrent disease in fixed areas of the skin indicates a localized disease memory that is preserved in resolved lesions. In line with such concept, the involvement of tissue-resident immune cells in psoriasis pathology is increasingly appreciated. Langerhans cells (LCs) are perfectly placed to steer resident T cells and local tissue responses in psoriasis. Here, we present an overview of the current knowledge of LCs in human psoriasis, including findings that highlight pro-inflammatory features of LCs in psoriasis lesions. We also review the literature on conflicting data regarding LC localization and functionality in psoriasis. Our review highlights that further studies are needed to elucidate the molecular mechanisms that drive LCs functionality in inflammatory diseases. PMID:29520279

  14. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    Science.gov (United States)

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  15. The effects of Bifidobacteria on the lipid profile and oxidative stress biomarkers of male rats fed thermally oxidized soybean oil.

    Science.gov (United States)

    Awney, Hala A

    2011-08-01

    Over the years, there has been concern about the changes taking place in heated oils and the effects on individuals consuming them. The present study investigated the effects of a diet containing thermally oxidized soybean oil (TO) or TO supplemented with probiotic Bifidobacteria (TO+Pro) on the serum lipid profile and oxidative stress biomarkers of male rats. The data showed several indicators of oil deterioration after thermal processing, including high levels of % free fatty acid (FFA; 15-fold), acid value (AV; 14-fold), peroxide value (8-fold), p-anisidine value (AnV; 39-fold), total oxidation value (TOTOX; 19-fold), thiobarbituric acid-reactive substances (TBARS) value (8.5-fold), and trans-FA (TFA) isomers (2.5-fold) compared to the control. The rats that were fed a diet containing TO showed a significant (p blood serum samples. High levels of TBARS, superoxide dismutase (SOD), and glutathione reductase (GR) activities were also detected in the livers, kidneys, testes, and brains of rats. Interestingly, a diet containing TO+Pro restored all biological parameters to their control values. The present data suggested that Bifidobacteria may ameliorate the serum lipid profile and oxidative stress biomarkers that are generated in animals that are fed a TO diet.

  16. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Mariela Rivera

    Full Text Available Curcumin, an extract from the turmeric rhizome (Curcuma longa, is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12 and Poly (ADP-ribose polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses.

  17. Targeting multiple pro-apoptotic signaling pathways with curcumin in prostate cancer cells

    Science.gov (United States)

    Rivera, Mariela; Ramos, Yanilda; Rodríguez-Valentín, Madeline; López-Acevedo, Sheila; Cubano, Luis A.; Zou, Jin; Zhang, Qiang; Wang, Guangdi

    2017-01-01

    Curcumin, an extract from the turmeric rhizome (Curcuma longa), is known to exhibit anti-inflammatory, antioxidant, chemopreventive and antitumoral activities against aggressive and recurrent cancers. Accumulative data indicate that curcumin may induce cancer cell death. However, the detailed mechanism underlying its pro-apoptotic and anti-cancer effects remains to be elucidated. In the present study, we examined the signaling pathways triggered by curcumin, specifically, the exact molecular mechanisms of curcumin-induced apoptosis in highly metastatic human prostate cancer cells. The effect of curcumin was evaluated using for the first time in prostate cancer, a gel-free shotgun quantitative proteomic analysis coupled with Tandem Mass Tag isobaric labeling-based-signaling networks. Results were confirmed at the gene expression level by qRT-PCR and at the protein expression level by western blot and flow cytometry. Our findings revealed that curcumin induced an Endoplasmic Reticulum stress-mediated apoptosis in PC3. The mechanisms by which curcumin promoted cell death in these cells were associated with cell cycle arrest, increased reactive oxygen species, autophagy and the Unfolded Protein Response. Furthermore, the upregulation of ER stress was measured using key indicators of ER stress: Glucose-Regulated Protein 78, Inositol-Requiring Enzyme 1 alpha, Protein Disulfide isomerase and Calreticulin. Chronic ER stress induction was concomitant with the upregulation of pro-apoptotic markers (caspases 3,9,12) and Poly (ADP-ribose) polymerase. The downregulated proteins include anti-apoptotic and anti-tumor markers, supporting their curcumin-induced pro-apoptotic role in prostate cancer cells. Taken together, these data suggest that curcumin may serve as a promising anticancer agent by inducing a chronic ER stress mediated cell death and activation of cell cycle arrest, UPR, autophagy and oxidative stress responses. PMID:28628644

  18. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  19. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Liu, Shuai; Lv, Jiaju; Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying; Wang, Xing Li; Tang, Dongqi; Cui, Taixing

    2012-01-01

    Highlights: ► Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. ► Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. ► CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-κB) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-κB activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-κB activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNFα)-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-κB transcriptional activity in RASMCs; however, did not affect the TNFα-induced NF-κB activity. Intriguingly, the TNFα-induced IκB phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of IκBα and IκBβ proteins, it did not alter the kinetics of TNFα-induced IκB protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-κB activity and TNFα-induced IκB kinase activation without affecting TNFα-induced NF-κB activity in VSMCs. In addition, knocking down of Cyld suppressed TNFα-induced activation of mitogen activated protein kinases (MAPKs) including extracellular signal-activated kinases (ERK), c-Jun N-terminal kinase (JNK), and p38 in RASMCs. TNFα-induced RASMC migration and monocyte adhesion to

  20. Oxidative Stress and the Homeodynamics of Iron Metabolism

    Science.gov (United States)

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  1. N-3 PUFAs protect against aortic inflammation and oxidative stress in angiotensin II-infused apolipoprotein E-/- mice.

    Directory of Open Access Journals (Sweden)

    Kathryn M Wales

    Full Text Available Abdominal aortic aneurysm is associated with infiltration of inflammatory cells into the aortic wall. The inflammatory response is also evident in animal models, such as apolipoprotein E-deficient (ApoE-/- mice that have been infused with angiotensin II, prior to development of aortic aneurysm. Since omega-3 polyunsaturated fatty acids (n-3 PUFAs and their metabolites have anti-inflammatory and pro-resolving activity, we hypothesised that dietary supplementation with n-3 PUFAs would protect against inflammatory processes in this mouse model. Twenty C57 and 20 ApoE-/- 3-4 week old male mice were supplemented with a low (0.14%, n = 10/group or high (0.70%, n = 10/group n-3 PUFA diet for 8 weeks before 2-day infusion with 0.9% saline or angiotensin II (1000 ng/kg/min. Four ApoE-/- mice on the low n-3 PUFA diet and none of the ApoE-/- mice on the high n-3 PUFA diet showed morphological evidence of abdominal aortic dissection. The plasma concentration of the n-3 PUFA metabolite, resolvin D1 was higher in angiotensin II-infused ApoE-/- mice fed the high, compared to the low n-3 PUFA diet. The number of neutrophils and macrophages infiltrating the abdominal aorta was elevated in ApoE-/- mice on the low n-3 PUFA diet, and this was significantly attenuated in mice that were fed the high n-3 PUFA diet. Most neutrophils and macrophages were associated with dissected aortas. Immunoreactivity of the catalytic subunit of nicotinamide-adenine dinucleotide phosphate (NADPH oxidase, Nox2, and superoxide were elevated in ApoE-/- mice that were fed the low n-3 PUFA diet, and this was also significantly attenuated in mice that were fed the high n-3 PUFA diet. Together, the findings indicate that supplementation of ApoE-/- mice with a diet high in n-3 PUFA content protected the mice against pro-inflammatory and oxidative stress responses following short-term infusion with angiotensin II.

  2. Anti-oxidant, anti-inflammatory and immunomodulating properties of an enzymatic protein hydrolysate from yellow field pea seeds.

    Science.gov (United States)

    Ndiaye, Fatou; Vuong, Tri; Duarte, Jairo; Aluko, Rotimi E; Matar, Chantal

    2012-02-01

    Enzymatic protein hydrolysates of yellow pea seed have been shown to possess high anti-oxidant and anti-bacterial activities. The aim of this work was to confirm the anti-oxidant, anti-inflammatory and immunomodulating activities of an enzymatic protein hydrolysate of yellow field pea seeds. The anti-oxidant and anti-inflammatory properties of peptides from yellow field pea proteins (Pisum sativum L.) were investigated in LPS/IFN-γ-activated RAW 264.7 NO⁻ macrophages. The immunomodulating potential of pea protein hydrolysate (PPH) was then studied in a murine model. Pea protein hydrolysate, after a 12 h pre-treatment, showed significant inhibition of NO production by activated macrophages up to 20%. Moreover, PPH significantly inhibited their secretion of pro-inflammatory cytokines, TNF-α- and IL-6, up to 35 and 80%, respectively. Oral administration of PPH in mice enhanced the phagocytic activity of their peritoneal macrophages and stimulated the gut mucosa immune response. The number of IgA+ cells was elevated in the small intestine lamina propria, accompanied by an increase in the number of IL-4+, IL-10+ and IFN-γ+ cells. This was correlated to up-regulation of IL-6 secretion by small intestine epithelial cells (IEC), probably responsible for B-cell terminal differentiation to IgA-secreting cells. Moreover, PPH might have increased IL-6 production in IECs via the stimulation of toll-like receptors (TLRs) family, especially TLR2 and TLR4 since either anti-TLR2 or anti-TLR4 was able to completely abolish PPH-induced IL-6 secretion. Enzymatic protein degradation confers anti-oxidant, anti-inflammatory and immunomodulating potentials to pea proteins, and the resulted peptides could be used as an alternative therapy for the prevention of inflammatory-related diseases.

  3. Functional analysis of Pro-inflammatory properties within the cerebrospinal fluid after subarachnoid hemorrhage in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Schneider Ulf C

    2012-02-01

    Full Text Available Abstract Background To functionally characterize pro-inflammatory and vasoconstrictive properties of cerebrospinal fluid after aneurysmal subarachnoid hemorrhage (SAH in vivo and in vitro. Methods The cerebrospinal fluid (CSF of 10 patients suffering from SAH was applied to the transparent skinfold chamber model in male NMRI mice which allows for in vivo analysis of the microcirculatory response to a superfusat. Microvascular diameter changes were quantified and the numbers of rolling and sticking leukocytes were documented using intravital multifluorescence imaging techniques. Furthermore, the pro-inflammatory properties of CSF were assessed in vitro using a monocyte transendothelial migration assay. Results CSF superfusion started to induce significant vasoconstriction on days 4 and 6 after SAH. In parallel, CSF superfusion induced a microvascular leukocyte recruitment, with a significant number of leukocytes rolling (day 6 and sticking (days 2-4 to the endothelium. CSF of patients presenting with cerebral edema induced breakdown of blood vessel integrity in our assay as evidenced by fluorescent marker extravasation. In accordance with leukocyte activation in vivo, significantly higher in vitro monocyte migration rates were found after SAH. Conclusion We functionally characterized inflammatory and vasoactive properties of patients' CSF after SAH in vivo and in vitro. This pro-inflammatory milieu in the subarachnoid space might play a pivotal role in the pathophysiology of early and delayed brain injury as well as vasospasm development following SAH.

  4. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer’s Disease Patients. Relevant Role of Neutrophils in Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Carmen Vida

    2018-01-01

    glutathione (GSSG/GSH ratio, and GSSG and malondialdehyde contents], and (2 the higher release of basal pro-inflammatory cytokines (IL-6 and TNF-α found in AD patients. Because the immune system parameters studied are markers of health and rate of aging, our results supported an accelerated immunosenescence in AD patients. We suggest the assessment of oxidative stress and function parameters in peripheral blood cells as well as in isolated neutrophils and mononuclear cells, respectively, as possible markers of AD progression.

  5. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    Science.gov (United States)

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.

  6. The Anti-Inflammatory Effects of Blueberries in an Animal Model of Post-Traumatic Stress Disorder (PTSD).

    Science.gov (United States)

    Ebenezer, Philip J; Wilson, C Brad; Wilson, Leslie D; Nair, Anand R; J, Francis

    2016-01-01

    Post-traumatic stress disorder (PTSD) is a trauma and stressor-related disorder that results in a prolonged stress response. It is associated with increased oxidative stress and inflammation in the prefrontal cortex (PFC) and hippocampus (HC). The only approved therapy for PTSD is selective serotonin re-uptake inhibitors (SSRIs), but their efficacy is marginal. Recently, we demonstrated that over-production of norepinephrine (NE) as the possible reason for the lack of efficacy of SSRIs. Hence, there is a need for novel therapeutic approaches for the treatment of PTSD. In this study, we investigated the anti-inflammatory role of blueberries in modulating inflammatory markers and neurotransmitter levels in PTSD. Rats were fed either a blueberry enriched (2%) or a control diet. Rats were exposed to cats for one hour on days 1 and 11 of a 31-day schedule to simulate traumatic conditions. The rats were also subjected to psychosocial stress via daily cage cohort changes. At the end of the study, the rats were euthanized and the PFC and HC were isolated. Monoamines were measured by high-performance liquid chromatography. Reactive oxygen species (ROS), gene and protein expression levels of inflammatory cytokines were also measured. In our PTSD model, NE levels were increased and 5-HT levels were decreased when compared to control. In contrast, a blueberry enriched diet increased 5-HT without affecting NE levels. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also studied and they confirmed our findings. The enhanced levels free radicals, gene and protein expression of inflammatory cytokines seen in the PTSD group were normalized with a blueberry enriched diet. Decreased anxiety in this group was shown by improved performance on the elevated plus-maze. These findings indicate blueberries can attenuate oxidative stress and inflammation and restore neurotransmitter imbalances in a rat model of PTSD.

  7. The Anti-Inflammatory Effects of Blueberries in an Animal Model of Post-Traumatic Stress Disorder (PTSD.

    Directory of Open Access Journals (Sweden)

    Philip J Ebenezer

    Full Text Available Post-traumatic stress disorder (PTSD is a trauma and stressor-related disorder that results in a prolonged stress response. It is associated with increased oxidative stress and inflammation in the prefrontal cortex (PFC and hippocampus (HC. The only approved therapy for PTSD is selective serotonin re-uptake inhibitors (SSRIs, but their efficacy is marginal. Recently, we demonstrated that over-production of norepinephrine (NE as the possible reason for the lack of efficacy of SSRIs. Hence, there is a need for novel therapeutic approaches for the treatment of PTSD. In this study, we investigated the anti-inflammatory role of blueberries in modulating inflammatory markers and neurotransmitter levels in PTSD. Rats were fed either a blueberry enriched (2% or a control diet. Rats were exposed to cats for one hour on days 1 and 11 of a 31-day schedule to simulate traumatic conditions. The rats were also subjected to psychosocial stress via daily cage cohort changes. At the end of the study, the rats were euthanized and the PFC and HC were isolated. Monoamines were measured by high-performance liquid chromatography. Reactive oxygen species (ROS, gene and protein expression levels of inflammatory cytokines were also measured. In our PTSD model, NE levels were increased and 5-HT levels were decreased when compared to control. In contrast, a blueberry enriched diet increased 5-HT without affecting NE levels. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also studied and they confirmed our findings. The enhanced levels free radicals, gene and protein expression of inflammatory cytokines seen in the PTSD group were normalized with a blueberry enriched diet. Decreased anxiety in this group was shown by improved performance on the elevated plus-maze. These findings indicate blueberries can attenuate oxidative stress and inflammation and restore neurotransmitter imbalances in a rat model of PTSD.

  8. Associations of oxidative stress status parameters with traditional cardiovascular disease risk factors in patients with schizophrenia.

    Science.gov (United States)

    Vidović, Bojana; Stefanović, Aleksandra; Milovanović, Srđan; Ðorđević, Brižita; Kotur-Stevuljević, Jelena; Ivanišević, Jasmina; Miljković, Milica; Spasić, Slavica

    2014-04-01

    The purpose of this study was to assess oxidative stress status parameters and their possible associations with traditional cardiovascular risk factors in patients with schizophrenia, as well as their potential for patient-control discrimination. Fasting glucose, lipid profile and oxidative stress status parameters were assessed in 30 schizophrenic patients with atypical antipsychotic therapy and 60 control subjects. Malondialdehyde (MDA), pro-oxidant/antioxidant balance (PAB) and total anti-oxidant status (TAS) were significantly higher whereas total sulfhydryl (SH) groups were significantly lower in schizophrenic patients vs. control group. Higher serum PAB values showed an independent association with schizophrenia. The addition of PAB to conventional risk factors improved discrimination between healthy control subjects and patients. Increased oxidative stress and changed lipid profile parameters are associated in schizophrenic patients and may indicate risk for atherosclerosis. The serum PAB level may reflect the levels of oxidative stress in schizophrenia and improve discrimination of patients from controls.

  9. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation.

    Science.gov (United States)

    Oboh, Ganiyu; Olasehinde, Tosin A; Ademosun, Ayokunle O

    2014-01-01

    This study sought to investigate the effects of essential oil from lemon (Citrus limoni) peels on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. The essential oil was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography. Antioxidant properties of the oil and inhibition of pro-oxidant-induced lipid peroxidation in rats brain homogenate were also assessed. The essential oil inhibited AChE and BChE activities in a concentration-dependent manner. GC analysis revealed the presence of sabinene, limonene, α-pinene, β-pinene, neral, geranial, 1,8-cineole, linalool, borneol, α-terpineol, terpinen-4-ol, linalyl acetate and β-caryophyllene. Furthermore, the essential oil exhibited antioxidant activities as typified by ferric reducing property, Fe(2+)-chelation and radicals [DPPH, ABTS, OH, NO] scavenging abilities. The inhibition of AChE and BChE activities, inhibition of pro-oxidant induced lipid peroxidation and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress-induced neurodegeneration.

  10. HP1330 Contributes to Streptococcus suis Virulence by Inducing Toll-Like Receptor 2- and ERK1/2-Dependent Pro-inflammatory Responses and Influencing In Vivo S. suis Loads

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2017-07-01

    Full Text Available Streptococcus suis 2 (SS2 has evolved into a highly invasive pathogen responsible for two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS in China. Excessive inflammation stimulated by SS2 is considered a hallmark of STSLS, even it also plays important roles in other clinical symptoms of SS2-related disease, including meningitis, septicemia, and sudden death. However, the mechanism of SS2-caused excessive inflammation remains poorly understood. Here, a novel pro-inflammatory protein was identified (HP1330, which could induce robust expression of pro-inflammatory cytokines (TNF-α, MCP-1, and IL-1β in RAW264.7 macrophages. To evaluate the role of HP1330 in SS2 virulence, an hp1330-deletion mutant (Δhp1330 was constructed. In vitro, hp1330 disruption led to a decreased pro-inflammatory ability of SS2 in RAW 264.7 macrophages. In vivo, Δhp1330 showed reduced lethality, pro-inflammatory activity, and bacterial loads in mice. To further elucidate the mechanism of HP1330-induced pro-inflammatory cytokine production, antibody blocking and gene-deletion experiments with macrophages were performed. The results revealed that the pro-inflammatory activity of HP1330 depended on the recognition of toll-like receptor 2 (TLR2. Furthermore, a specific inhibitor of the extracellular signal-regulated kinase 1/2 (ERK1/2 pathways could significantly decrease HP1330-induced pro-inflammatory cytokine production, and western blot analysis showed that HP1330 could induce activation of the ERK1/2 pathway. Taken together, our findings demonstrate that HP1330 contributes to SS2 virulence by inducing TLR2- and ERK1/2-dependent pro-inflammatory cytokine production and influencing in vivo bacterial loads, implying that HP1330 may be associated with STSLS caused by SS2.

  11. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  12. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    Science.gov (United States)

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (pUreaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  13. Antithrombotic Protective Effects of Arg-Pro-Gly-Pro Peptide during Emotional Stress Provoked by Forced Swimming Test in Rats.

    Science.gov (United States)

    Grigor'eva, M E; Lyapina, L A

    2017-01-01

    Blood coagulation was enhanced and all factors (total, enzyme, and non-enzyme) of the fibrinolytic system were suppressed in rats in 60 min after forced swimming test. Argininecontaining tetrapeptide glyproline Arg-Pro-Gly-Pro administered prior to this test activated fibrinolysis and prevented hypercoagulation. Administration of this peptide in 5 min after swimming test also enhanced anticoagulant, fibrinolytic, and antithrombotic activity of the blood. Therefore, glyproline Arg-Pro-Gly-Pro exerted both preventive and curative effects on the hemostasis system and prevented enhancement of blood coagulation provoked by emotional stress modeled by forced swimming test.

  14. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    Science.gov (United States)

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Association between markers of systemic inflammation, oxidative stress, lipid profiles, and insulin resistance in pregnant women

    Directory of Open Access Journals (Sweden)

    Zatollah Asemi

    2013-05-01

    Full Text Available BACKGROUND: Increased levels of pro-inflammatory factors, markers of oxidative stress and lipid profiles are known to be associated with several complications. The aim of this study was to determine the association of markers of systemic inflammation, oxidative stress and lipid profiles with insulin resistance in pregnant women in Kashan, Iran. METHODS: In a cross-sectional study, serum high sensitivity C-reactive protein (hs-CRP, tumor necrosis factor-alpha (TNF-α, fasting plasma glucose (FPG, serum insulin, 8-oxo-7, 8-dihydroguanine (8-oxo-G, total cholesterol, triglyceride, HDL-cholesterol, and plasma total antioxidant capacity (TAC were measured among 89 primigravida singleton pregnant women aged 18-30 years at 24-28 weeks of gestation. Pearson’s correlation and multiple linear regressions were used to assess their relationships with homeostatic model assessment of insulin resistance (HOMA-IR. RESULTS: We found that among biochemical indicators of pregnant women, serum hs-CRP and total cholesterol levels were positively correlated with HOMA-IR (β = 0.05, P = 0.006 for hs-CRP and β = 0.006, P = 0.006 for total cholesterol. These associations remained significant even after mutual effect of other biochemical indicators were controlled (β = 0.04, P = 0.01 for hs-CRP and β = 0.007, P = 0.02 for total cholesterol. Further adjustment for body mass index made the association of hs-CRP and HOMA-IR disappeared; however, the relationship for total cholesterol remained statistically significant. CONCLUSION: Our findings showed that serum total cholesterol is independently correlated with HOMA-IR score. Further studies are needed to confirm our findings. Keywords: Inflammation, Oxidative Stress, Insulin Resistance, Pregnancy

  16. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Science.gov (United States)

    Tóthová, L'ubomíra; Celec, Peter

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status. PMID:29311982

  17. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    Directory of Open Access Journals (Sweden)

    L'ubomíra Tóthová

    2017-12-01

    Full Text Available Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status.

  18. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    Science.gov (United States)

    Karimian, Parastoo; Kavoosi, Gholamreza; Amirghofran, Zahra

    2014-01-01

    Objective To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-α mRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 µg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-α mRNA expression in the cells at concentrations of 50 µg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions. PMID:25182441

  19. Inhibition of Pro-inflammatory and Anti-apoptotic Biomarkers during Experimental Oral Cancer Chemoprevention by Dietary Black Raspberries

    Directory of Open Access Journals (Sweden)

    Steve Oghumu

    2017-10-01

    Full Text Available Oral cancer continues to be a significant public health problem worldwide. Recently conducted clinical trials demonstrate the ability of black raspberries (BRBs to modulate biomarkers of molecular efficacy that supports a chemopreventive strategy against oral cancer. However, it is essential that a preclinical animal model of black raspberry (BRB chemoprevention which recapitulates human oral carcinogenesis be developed, so that we can validate biomarkers and evaluate potential mechanisms of action. We therefore established the ability of BRBs to inhibit oral lesion formation in a carcinogen-induced rat oral cancer model and examined potential mechanisms. F344 rats were administered 4-nitroquinoline 1-oxide (4NQO (20 µg/ml in drinking water for 14 weeks followed by regular drinking water for 6 weeks. At week 14, rats were fed a diet containing either 5 or 10% BRB, or 0.4% ellagic acid (EA, a BRB phytochemical. Dietary administration of 5 and 10% BRB reduced oral lesion incidence and multiplicity by 39.3 and 28.6%, respectively. Histopathological analyses demonstrate the ability of BRBs and, to a lesser extent EA, to inhibit the progression of oral cancer. Oral lesion inhibition by BRBs was associated with a reduction in the mRNA expression of pro-inflammatory biomarkers Cxcl1, Mif, and Nfe2l2 as well as the anti-apoptotic and cell cycle associated markers Birc5, Aurka, Ccna1, and Ccna2. Cellular proliferation (Ki-67 staining in tongue lesions was inhibited by BRBs and EA. Our study demonstrates that, in the rat 4NQO oral cancer model, dietary administration of BRBs inhibits oral carcinogenesis via inhibition of pro-inflammatory and anti-apoptotic pathways.

  20. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    Science.gov (United States)

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  1. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Wan-Kyu Ko

    Full Text Available The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA in lipopolysaccharide (LPS-stimulated RAW 264.7 macrophages.We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO. Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR and enzyme-linked immunosorbent assay (ELISA. The phosphorylations of extracellular signal-regulated kinase (ERK, c-Jun N-terminal kinase (JNK, and p38 in mitogen-activated protein kinase (MAPK signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα signaling pathways were evaluated by western blot assays.UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α, interleukin 1-α (IL-1α, interleukin 1-β (IL-1β, and interleukin 6 (IL-6 in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10 in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA.UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug.

  2. Effects of WR1065 on 6-hydroxydopamine-induced motor imbalance: Possible involvement of oxidative stress and inflammatory cytokines.

    Science.gov (United States)

    Kheradmand, Afshin; Nayebi, Alireza M; Jorjani, Masoumeh; Khalifeh, Solmaz; Haddadi, Rasool

    2016-08-03

    Over production of reactive oxygen species (ROS) is postulated to be the main contributor in degeneration of nigrostriatal dopaminergic neurons. In this study we investigated the effects of WR1065, a free radical scavenger, on motor imbalance, oxidative stress parameters and inflammatory cytokines in CSF and brain of hemi-parkinsonian rats. Lesion of dopaminergic neurons was done by unilateral infusion of 6-hydroxydopamine into the central region of the substentia nigra pars compacta (SNc) to induce hemi-parkinsonism and motor imbalance in rats. WR1065 (20, 40 and 80μg/2μl/rat) was administered three days before 6-OHDA administration. After three weeks behavioral study was performed and then brain and CSF samples were collected to assess tumor necrosis factor (TNFα), interlukin (IL-1β), reduced glutathione (GSH), and malondialdehyde (MDA). WR1065 pre-treatment in rats before receiving 6-OHDA, improved significantly motor impairment and caused reduction of MDA and inflammatory cytokines TNFα and IL-1β levels, while GSH level significantly increased when compared with lesioned rats. Our study indicated that WR1065 could improve 6-OHDA-induced motor imbalance. Furthermore, it decreased lipid peroxidation and inflammatory cytokines and restored the level of GSH up to normal range. We suggest that WR1065 can be proposed as a potential neuroprotective agent in motor impairments of PD. However to prove this hypothesis more clinical trial studies should be done. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Cardiotoxicity induced by dietary oxidized sunflower oil in rats: pro- and antioxidant effects of α-tocopherol.

    Science.gov (United States)

    Rouaki, Fayrouz; Mazari, Azzedine; Kanane, Amel; Errahmani, Mohamed Brahim; Ammouche, Ali

    2013-01-01

    This study highlighted the pro-oxidative functions of α-tocopherol (αT) on the heart antioxidant system and tissue histopathology of oxidized sunflower oil (OSO)-exposed rats.Four groups of male Wistar rats were fed with different diets: 1) control diet containing FSO (fresh sunflower oil); 2) diet containing 5 % OSO; 3) diet containing 5 % OSO, supplemented with 600 mg αT kg-1; and 4) diet containing 5 % OSO, supplemented with 1200 mg αT kg-1. The hearts were then isolated, and the antioxidant enzymatic activities were assessed. Body weight and catalase (CAT), glutathione peroxidase (GPx) activities significantly decreased in groups fed with OSO, while the lipid peroxidation (LPO) level significantly increased. Administration of OSO with αT (600 mg · kg-1) returned the body weight values and LPO levels to similar values as the control group. The CAT and GPx activities increased but remained significantly lower compared to the control group. In the OSO group with αT (1200 mg · kg-1), the CAT and GPx activities also decreased, while LPO significantly increased. Heart tissue sections obtained from the groups revealed the presence of large areas of necrosis. This study suggested that OSO induced oxidative stress and that administration of a moderate dose of αT restored the antioxidant balance, but that high levels of αT supplementation result in a pro-oxidant effect.

  4. Extra virgin olive oil polyphenolic extracts downregulate inflammatory responses in LPS-activated murine peritoneal macrophages suppressing NFκB and MAPK signalling pathways.

    Science.gov (United States)

    Cárdeno, A; Sánchez-Hidalgo, M; Aparicio-Soto, M; Sánchez-Fidalgo, S; Alarcón-de-la-Lastra, C

    2014-06-01

    Extra virgin olive oil (EVOO) is obtained from the fruit of the olive tree Olea europaea L. Phenolic compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties. However, the activity of the total phenolic fraction extracted from EVOO and the action mechanisms involved are not well defined. The present study was designed to evaluate the potential anti-inflammatory mechanisms of the polyphenolic extract (PE) from EVOO on LPS-stimulated peritoneal murine macrophages. Nitric oxide (NO) production was analyzed by the Griess method and intracellular reactive oxygen species (ROS) by fluorescence analysis. Moreover, changes in the protein expression of the pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1), as well as the role of nuclear transcription factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signalling pathways, were analyzed by Western blot. PE from EVOO reduced LPS-induced oxidative stress and inflammatory responses through decreasing NO and ROS generation. In addition, PE induced a significant down-regulation of iNOS, COX-2 and mPGES-1 protein expressions, reduced MAPK phosphorylation and prevented the nuclear NFκB translocation. This study establishes that PE from EVOO possesses anti-inflammatory activities on LPS-stimulated murine macrophages.

  5. Xanthine Oxidase Inhibitor, Allopurinol, Prevented Oxidative Stress, Fibrosis, and Myocardial Damage in Isoproterenol Induced Aged Rats.

    Science.gov (United States)

    Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Alam, Md Ashraful

    2015-01-01

    We evaluated the preventive effect of allopurinol on isoproterenol (ISO) induced myocardial infarction in aged rats. Twelve- to fourteen-month-old male Long Evans rats were divided into three groups: control, ISO, and ISO + allopurinol. At the end of the study, all rats were sacrificed for blood and organ sample collection to evaluate biochemical parameters and oxidative stress markers analyses. Histopathological examinations were also conducted to assess inflammatory cell infiltration and fibrosis in heart and kidneys. Our investigation revealed that the levels of oxidative stress markers were significantly increased while the level of cellular antioxidants, catalase activity, and glutathione concentration in ISO induced rats decreased. Treatment with allopurinol to ISO induced rats prevented the elevated activities of AST, ALT, and ALP enzymes, and the levels of lipid peroxidation products and increased reduced glutathione concentration. ISO induced rats also showed massive inflammatory cells infiltration and fibrosis in heart and kidneys. Furthermore, allopurinol treatment prevented the inflammatory cells infiltration and fibrosis in ISO induced rats. In conclusion, the results of our study suggest that allopurinol treatment is capable of protecting heart of ISO induced myocardial infarction in rats probably by preventing oxidative stress, inflammation, and fibrosis.

  6. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties

  7. TNF-α-induced up-regulation of pro-inflammatory cytokines is reduced by phosphatidylcholine in intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Griffiths Gareth

    2009-07-01

    Full Text Available Abstract Background Phosphatidylcholine (PC is a major lipid of the gastrointestinal mucus layer. We recently showed that mucus from patients suffering from ulcerative colitis has low levels of PC. Clinical studies reveal that the therapeutic addition of PC to the colonic mucus using slow release preparations is beneficial. The positive role of PC in this disease is still unclear; however, we have recently shown that PC has an intrinsic anti-inflammatory property. It could be demonstrated that the exogenous application of PC inhibits membrane-dependent actin assembly and TNF-α-induced nuclear NF-κB activation. We investigate here in more detail the hypothesis that the exogenous application of PC has anti-inflammatory properties. Methods PC species with different fatty acid side chains were applied to differentiated and non-differentiated Caco-2 cells treated with TNF-α to induce a pro-inflammatory response. We analysed TNF-α-induced NF-κB-activation via the transient expression of a NF-κB-luciferase reporter system. Pro-inflammatory gene transcription was detected with the help of a quantitative real time (RT-PCR analysis. We assessed the binding of TNF-α to its receptor by FACS and analysed lipid rafts by isolating detergent resistant membranes (DRMs. Results The exogenous addition of all PC species tested significantly inhibited TNF-α-induced pro-inflammatory signalling. The expression levels of IL-8, ICAM-1, IP-10, MCP-1, TNF-α and MMP-1 were significantly reduced after PC pre-treatment for at least two hours. The effect was comparable to the inhibition of NF-kB by the NF-kB inhibitor SN 50 and was not due to a reduced binding of TNF-α to its receptor or a decreased surface expression of TNF-α receptors. PC was also effective when applied to the apical side of polarised Caco-2 cultures if cells were stimulated from the basolateral side. PC treatment changed the compartmentation of the TNF-α-receptors 1 and 2 to DRMs. Conclusion PC

  8. Impact physiologique et pathologique du stress oxydant chez le cheval

    OpenAIRE

    De Moffarts, Brieuc; Kirschvink, Nathalie; Pincemail, Joël; Lekeux, Pierre

    2005-01-01

    Oxidative stress has become of increasing interest in research and in equine and human medicine. If the pro-oxidant burden overwhelms the endogenous antioxidant defence of the organism, the arising imbalance between pro- and antioxidants is defined as oxidative stress. Different pathways might increase the generation of reactive oxygen species ( ROS) and results in oxidative stress. In physiological conditions, like during moderated exercise, the balance between ROS production and antioxidant...

  9. Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells

    NARCIS (Netherlands)

    Yang, X.; Walboomers, X.F.; Bian, Z.; Jansen, J.A.; Fan, M.

    2011-01-01

    The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library

  10. Histamine mediates the pro-inflammatory effect of latex of Calotropis procera in rats

    Directory of Open Access Journals (Sweden)

    Yatin M. Shivkar

    2003-01-01

    Full Text Available Introduction: Calotropis procera is known to produce contact dermatitis and the latex of this plant produces intense inflammation when injected locally. However, the precise mode of its pro-inflammatory effect is not known. In present study we have pharmacologically characterized the inflammation induced by latex of C. procera in a rat paw edema model and determined the role of histamine in latex-induced inflammation.

  11. Changes of serum inflammatory factors, adipokines and oxidative stress in patients with diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Nurong Guri Maimaiti

    2017-08-01

    Full Text Available Objective: To investigate the changes of serum inflammatory factors, adipokines and oxidative stress in patients with diabetic retinopathy. Methods: A total of 130 patients with type 2 diabetes mellitus admitted in our hospital from January 2015 to June 2016 were selected and divided into 41 cases with diabetic retinopathy (NDR, 44 cases with nonproliferative retinopathy (NPDR and 45 cases with proliferative retinopathy group (PDR, another 40 healthy volunteers in our hospital were selected as control group (NC, and the serum levels of IL-6, TNF-α, hs-CRP, leptin, adiponectin, MDA and SOD were detected. Results: There were significant differences in the levels of IL-6, TNF-α and hs-CRP in groups, PDR group was the highest, which were respectively (18.19 ± 3.84 pg/mL, (197.48 ± 13.78 ng/L and (8.13 ± 0.74 mg/L, significantly higher than that of NC group, NDR group and NPDR group, NPDR group followed, respectively (14.07 ± 3.62 pg/mL, (115.29 ± 20.08 ng/L and (5.62 ± 0.83 mg/L, which were significantly higher than that of NC and NDR groups. NDR group were (12.67 ± 3.93 pg/mL, (89.49 ± 10.49 ng/L and (3.91 ± 0.49 mg/L respectively, significantly higher than the NC group, the difference was statistically significant. There were significant differences among groups of leptin and adiponectin, the leptin level in PDR group was the highest, (23.19 ± 6.48 μg/mL, which was significantly higher than NC group, NDR group and NPDR group, adiponectin was the lowest (3.70 ± 1.02 g/mL, lower than that in NC group, NDR group and NPDR group, the levels of leptin in NPDR group were higher than NC group and NDR group while adiponectin were lower than the two groups. Leptin levels in NDR group were significantly higher than those in NC group while adiponectin were lower than those in NC group, the differences were statistically significant. The levels of MDA and SOD in each group were significantly different. MDA in PDR group was the highest, (17.77

  12. Changes of serum inflammatory factors, adipokines and oxidative stress in patients with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Nurong Guri Maimaiti; Akomatine Tuhuti

    2017-01-01

    Objective: To investigate the changes of serum inflammatory factors, adipokines and oxidative stress in patients with diabetic retinopathy. Methods: A total of 130 patients with type 2 diabetes mellitus admitted in our hospital from January 2015 to June 2016 were selected and divided into 41 cases with diabetic retinopathy (NDR), 44 cases with nonproliferative retinopathy (NPDR) and 45 cases with proliferative retinopathy group (PDR), another 40 healthy volunteers in our hospital were selected as control group (NC), and the serum levels of IL-6, TNF-α, hs-CRP, leptin, adiponectin, MDA and SOD were detected. Results: There were significant differences in the levels of IL-6, TNF-α and hs-CRP in groups, PDR group was the highest, which were respectively (18.19 ± 3.84) pg/mL, (197.48 ± 13.78) ng/L and (8.13 ± 0.74) mg/L, significantly higher than that of NC group, NDR group and NPDR group, NPDR group followed, respectively (14.07 ± 3.62) pg/mL, (115.29 ± 20.08) ng/L and (5.62 ± 0.83) mg/L, which were significantly higher than that of NC and NDR groups. NDR group were (12.67 ± 3.93) pg/mL, (89.49 ± 10.49) ng/L and (3.91 ± 0.49) mg/L respectively, significantly higher than the NC group, the difference was statistically significant. There were significant differences among groups of leptin and adiponectin, the leptin level in PDR group was the highest, (23.19 ± 6.48) μg/mL, which was significantly higher than NC group, NDR group and NPDR group, adiponectin was the lowest (3.70 ± 1.02) g/mL, lower than that in NC group, NDR group and NPDR group, the levels of leptin in NPDR group were higher than NC group and NDR group while adiponectin were lower than the two groups. Leptin levels in NDR group were significantly higher than those in NC group while adiponectin were lower than those in NC group, the differences were statistically significant. The levels of MDA and SOD in each group were significantly different. MDA in PDR group was the highest, (17.77 ± 4

  13. The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

    Directory of Open Access Journals (Sweden)

    Markus Heine

    2014-09-01

    Full Text Available Semiconductor quantum dots (QD and superparamagnetic iron oxide nanocrystals (SPIO have exceptional physical properties that are well suited for biomedical applications in vitro and in vivo. For future applications, the direct injection of nanocrystals for imaging and therapy represents an important entry route into the human body. Therefore, it is crucial to investigate biological responses of the body to nanocrystals to avoid harmful side effects. In recent years, we established a system to embed nanocrystals with a hydrophobic oleic acid shell either by lipid micelles or by the amphiphilic polymer poly(maleic anhydride-alt-1-octadecene (PMAOD. The goal of the current study is to investigate the uptake processes as well as pro-inflammatory responses in the liver after the injection of these encapsulated nanocrystals. By immunofluorescence and electron microscopy studies using wild type mice, we show that 30 min after injection polymer-coated nanocrystals are primarily taken up by liver sinusoidal endothelial cells. In contrast, by using wild type, Ldlr-/- as well as Apoe-/- mice we show that nanocrystals embedded within lipid micelles are internalized by Kupffer cells and, in a process that is dependent on the LDL receptor and apolipoprotein E, by hepatocytes. Gene expression analysis of pro-inflammatory markers such as tumor necrosis factor alpha (TNFα or chemokine (C-X-C motif ligand 10 (Cxcl10 indicated that 48 h after injection internalized nanocrystals did not provoke pro-inflammatory pathways. In conclusion, internalized nanocrystals at least in mouse liver cells, namely endothelial cells, Kupffer cells and hepatocytes are at least not acutely associated with potential adverse side effects, underlining their potential for biomedical applications.

  14. Oxidative stress in relation to surgery: is there a role for the antioxidant melatonin?

    DEFF Research Database (Denmark)

    Kücükakin, Bülent; Gögenur, Ismail; Reiter, Russel J

    2009-01-01

    During and after surgical procedures, there is a well defined physiological stress response that involves activation of inflammatory, endocrine, metabolic, and immunological mediators. Oxidative stress, which is defined to be a situation where the production of reactive oxygen/nitrogen species...... exceeds the mechanisms required to detoxify them, is believed to be an integrated part of the surgical stress response. Oxidative stress per se may be associated with complications such as myocardial injury, sepsis, pulmonary edema, kidney and liver failure, and increased mortality. Melatonin is a potent...... antioxidant and in many studies melatonin has been shown to be more effective than some "classical" antioxidants (e.g., vitamins E and C) in protecting against oxidative/nitrosative stress. There are numerous experimental studies in which the antioxidant properties of melatonin have been proven...

  15. Total body fat, pro-inflammatory cytokines and insulin resistance in Indian subjects

    Energy Technology Data Exchange (ETDEWEB)

    Yajnik, C S [Diabetes Unit, KEM Hospital Research Centre, Pune (India); Yudkin, J S [Whittington Hospital, University College of London, London (United Kingdom); Shetty, P S [London School of Hygiene and Tropical Medicine, London (United Kingdom); Kurpad, A [St. John' s Medical College, Bangalore (India)

    1999-07-01

    There is a growing epidemic of insulin resistance syndrome (IRS) in Indians. We postulate that increased susceptibility of the urban Indians to insulin resistance is a result of a tendency to increased fat deposition from the time of intrauterine life (thrifty phenotype), exaggerated in the urban environment by a positive energy balance. The pro-inflammatory cytokines secreted by the inflammatory cells as well by the adipose tissue could aggravate insulin resistance and endothelial damage and therefore, increase the susceptibility to type 2 diabetes and coronary heart disease (CHD) independent of the previously proposed glucose fatty acid cycle mechanism. In a preliminary study, we propose to make detailed measurements of the proposed mechanisms in a selected population from 3 geographical locations in and near the city of Pune, India and also validate simple 'epidemiologic' measurements of body composition with 'reference' measurements. One hundred men (30 to 50y) each from the three geographical locations (rural, urban slum-dwellers and urban middle class in Pune) will be studied for: (i) Body composition: Anthropometric and bioimpedance measurement of total body fat (to be calibrated against deuterated water in 30 subjects from each location), and muscle mass by anthropometry and urinary creatinine excretion; (ii) Body fat distribution by subscapular- triceps ratio, waist-hip ratio; (iii) Metabolic: Glucose tolerance and insulin resistance variables (insulin, lipids, NEFA) and leptin; (iv) Endothelial markers: e-Selectin and von Willebrand Factor (vWF); (v) Inflammatory markers and pro-inflammatory cytokines: C-reactive protein (CRP), Interleukin-6 (IL-6) and tumour necrosis factor (TNF- {alpha}); (vi) Energy Balance: Assessment of nutritional intake (calories, carbohydrates, proteins and fats, n3 and n6 fatty acids) and physical activity by a questionnaire. Insulin resistance variables, endothelial markers, cytokines and obesity parameters will be compared in

  16. Total body fat, pro-inflammatory cytokines and insulin resistance in Indian subjects

    International Nuclear Information System (INIS)

    Yajnik, C.S.; Yudkin, J.S.; Shetty, P.S.; Kurpad, A.

    1999-01-01

    There is a growing epidemic of insulin resistance syndrome (IRS) in Indians. We postulate that increased susceptibility of the urban Indians to insulin resistance is a result of a tendency to increased fat deposition from the time of intrauterine life (thrifty phenotype), exaggerated in the urban environment by a positive energy balance. The pro-inflammatory cytokines secreted by the inflammatory cells as well by the adipose tissue could aggravate insulin resistance and endothelial damage and therefore, increase the susceptibility to type 2 diabetes and coronary heart disease (CHD) independent of the previously proposed glucose fatty acid cycle mechanism. In a preliminary study, we propose to make detailed measurements of the proposed mechanisms in a selected population from 3 geographical locations in and near the city of Pune, India and also validate simple 'epidemiologic' measurements of body composition with 'reference' measurements. One hundred men (30 to 50y) each from the three geographical locations (rural, urban slum-dwellers and urban middle class in Pune) will be studied for: (i) Body composition: Anthropometric and bioimpedance measurement of total body fat (to be calibrated against deuterated water in 30 subjects from each location), and muscle mass by anthropometry and urinary creatinine excretion; (ii) Body fat distribution by subscapular- triceps ratio, waist-hip ratio; (iii) Metabolic: Glucose tolerance and insulin resistance variables (insulin, lipids, NEFA) and leptin; (iv) Endothelial markers: e-Selectin and von Willebrand Factor (vWF); (v) Inflammatory markers and pro-inflammatory cytokines: C-reactive protein (CRP), Interleukin-6 (IL-6) and tumour necrosis factor (TNF- α); (vi) Energy Balance: Assessment of nutritional intake (calories, carbohydrates, proteins and fats, n3 and n6 fatty acids) and physical activity by a questionnaire. Insulin resistance variables, endothelial markers, cytokines and obesity parameters will be compared in the 3

  17. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response.

    Directory of Open Access Journals (Sweden)

    Elio A Cino

    Full Text Available Intrinsically disordered proteins (IDPs are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2, with a common binding partner, Kelch-like ECH-associated protein 1(Keap1, are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5-1.0 microsecond atomistic molecular dynamics (MD simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response.

  18. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  19. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.

    Science.gov (United States)

    Jin, Yiping; Arita, Makoto; Zhang, Qiang; Saban, Daniel R; Chauhan, Sunil K; Chiang, Nan; Serhan, Charles N; Dana, Reza

    2009-10-01

    Resolvins and lipoxins are lipid mediators generated from essential polyunsaturated fatty acids that are the first dual anti-inflammatory and pro-resolving signals identified in the resolution phase of inflammation. Here the authors investigated the potential of aspirin-triggered lipoxin (LX) A4 analog (ATLa), resolving (Rv) D1, and RvE1, in regulating angiogenesis in a murine model. ATLa and RvE1 receptor expression was tested in different corneal cell populations by RT-PCR. Corneal neovascularization (CNV) was induced by suture or micropellet (IL-1 beta, VEGF-A) placement. Mice were then treated with ATLa, RvD1, RvE1, or vehicle, subconjunctivally at 48-hour intervals. Infiltration of neutrophils and macrophages was quantified after immunofluorescence staining. The mRNA expression levels of inflammatory cytokines, VEGFs, and VEGFRs were analyzed by real-time PCR. CNV was evaluated intravitally and morphometrically. The receptors for LXA4, ALX/Fpr-rs-2 and for RvE1, ChemR23 were each expressed by epithelium, stromal keratocytes, and infiltrated CD11b(+) cells in corneas. Compared to the vehicle-treated eye, ATLa-, RvD1-, and RvE1-treated eyes had reduced numbers of infiltrating neutrophils and macrophages and reduced mRNA expression levels of TNF-alpha, IL-1 alpha, IL-1 beta, VEGF-A, VEGF-C, and VEGFR2. Animals treated with these mediators had significantly suppressed suture-induced or IL-1 beta-induced hemangiogenesis (HA) but not lymphangiogenesis. Interestingly, only the application of ATLa significantly suppressed VEGF-A-induced HA. ATLa, RvE1, and RvD1 all reduce inflammatory corneal HA by early regulation of resolution mechanisms in innate immune responses. In addition, ATLa directly inhibits VEGF-A-mediated angiogenesis and is the most potent inhibitor of NV among this new genus of dual anti-inflammatory and pro-resolving lipid mediators.

  20. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuai [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Lv, Jiaju [Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021 (China); Han, Liping; Ichikawa, Tomonaga; Wang, Wenjuan; Li, Siying [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@pathology.ufl.edu [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responses in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated protein

  1. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang, E-mail: songyangwenrong@hotmail.com

    2014-10-15

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably.

  2. Tetrachloro-p-benzoquinone induces hepatic oxidative damage and inflammatory response, but not apoptosis in mouse: The prevention of curcumin

    International Nuclear Information System (INIS)

    Xu, Demei; Hu, Lihua; Su, Chuanyang; Xia, Xiaomin; Zhang, Pu; Fu, Juanli; Wang, Wenchao; Xu, Duo; Du, Hong; Hu, Qiuling; Song, Erqun; Song, Yang

    2014-01-01

    This study investigated the protective effects of curcumin on tetrachloro-p-benzoquinone (TCBQ)-induced hepatotoxicity in mice. TCBQ-treatment causes significant liver injury (the elevation of serum AST and ALT activities, histopathological changes in liver section including centrilobular necrosis and inflammatory cells), oxidative stress (the elevation of TBAR level and the inhibition of SOD and catalase activities) and inflammation (up-regulation of iNOS, COX-2, IL-1β, IL-6, TNF-α and NF-κB). However, these changes were alleviated upon pretreatment with curcumin. Interestingly, TCBQ has no effect on caspase family genes or B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X (Bax) protein expressions, which implied that TCBQ-induced hepatotoxicity is independent of apoptosis. Moreover, curcumin was shown to induce phase II detoxifying/antioxidant enzymes HO-1 and NQO1 through the activation of nuclear factor erythroid-derived 2-like 2 (Nrf2). In summary, the protective mechanisms of curcumin against TCBQ-induced hepatoxicity may be related to the attenuation of oxidative stress, along with the inhibition of inflammatory response via the activation of Nrf2 signaling. - Highlights: • TCBQ-intoxication significantly increased AST and ALT activities. • TCBQ-intoxication induced oxidative stress in mice liver. • TCBQ-intoxication induced inflammatory response in mice liver. • TCBQ-intoxication induced hepatotoxicity is independent of apoptosis. • Curcumin relieved TCBQ-induced liver damage remarkably

  3. Curcuma longa polyphenols improve insulin-mediated lipid accumulation and attenuate proinflammatory response of 3T3-L1 adipose cells during oxidative stress through regulation of key adipokines and antioxidant enzymes.

    Science.gov (United States)

    Septembre-Malaterre, Axelle; Le Sage, Fanny; Hatia, Sarah; Catan, Aurélie; Janci, Laurent; Gonthier, Marie-Paule

    2016-07-08

    Plant polyphenols may exert beneficial action against obesity-related oxidative stress and inflammation which promote insulin resistance. This study evaluated the effect of polyphenols extracted from French Curcuma longa on 3T3-L1 adipose cells exposed to H2 O2 -mediated oxidative stress. We found that Curcuma longa extract exhibited high amounts of curcuminoids identified as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, which exerted free radical-scavenging activities. Curcuma longa polyphenols improved insulin-mediated lipid accumulation and upregulated peroxisome proliferator-activated receptor-gamma gene expression and adiponectin secretion which decreased in H2 O2 -treated cells. Curcuminoids attenuated H2 O2 -enhanced production of pro-inflammatory molecules such as interleukin-6, tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and nuclear factor κappa B. Moreover, they reduced intracellular levels of reactive oxygen species elevated by H2 O2 and modulated the expression of genes encoding superoxide dismutase and catalase antioxidant enzymes. Collectively, these findings highlight that Curcuma longa polyphenols protect adipose cells against oxidative stress and may improve obesity-related metabolic disorders. © 2016 BioFactors, 42(4):418-430, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  4. Oxidative stress in the pathophysiology of metabolic syndrome: which mechanisms are involved?

    Directory of Open Access Journals (Sweden)

    Thalia M. T. Avelar

    2015-08-01

    Full Text Available ABSTRACTMetabolic syndrome (MS is a combination of cardiometabolic risk factors, including obesity, hyperglycemia, hypertriglyceridemia, dyslipidemia and hypertension. Several studies report that oxidative condition caused by overproduction of reactive oxygen species (ROS plays an important role in the development of MS. Our body has natural antioxidant system to reduce oxidative stress, which consists of numerous endogenous and exogenous components and antioxidants enzymes that are able to inactivate ROS. The main antioxidant defense enzymes that contribute to reduce oxidative stress are superoxide dismutase (SOD, catalase (CAT and gluthatione peroxidase (GPx. The high-density lipoprotein cholesterol (HDL-c is also associated with oxidative stress because it presents antioxidant and anti-inflammatory properties. HDL-c antioxidant activity may be attributed at least in part, to serum paraoxonase 1 (PON1 activity. Furthermore, derivatives of reactive oxygen metabolites (d-ROMs also stand out as acting in cardiovascular disease and diabetes, by the imbalance in ROS production, and close relationship with inflammation. Recent reports have indicated the gamma-glutamyl transferase (GGT as a promising biomarker for diagnosis of MS, because it is related to oxidative stress, since it plays an important role in the metabolism of extracellular glutathione. Based on this, several studies have searched for better markers for oxidative stress involved in development of MS.

  5. Increased plasma peroxides as a marker of oxidative stress in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

    OpenAIRE

    Maes, Michael; Kubera, Marta; Uytterhoeven, Marc; Vrydags, Nicolas; Bosmans, Eugene

    2011-01-01

    Summary Background There is evidence that myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by activation of immune, inflammatory, oxidative and nitrosative stress (IO&NS) pathways. The present study was carried out in order to examine whether ME/CFS is accompanied by increased levels of plasma peroxides and serum oxidized LDL (oxLDL) antibodies, two biomarkers of oxidative stress. Material/Methods Blood was collected from 56 patients with ME/CFS and 37 normal volun...

  6. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  7. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Osiris Marroquin Belaunzaran

    Full Text Available HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA. HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272 and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders.The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry.HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM. HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules.HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.

  8. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    Science.gov (United States)

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  9. The Nutraceutic Silybin Counteracts Excess Lipid Accumulation and Ongoing Oxidative Stress in an In Vitro Model of Non-Alcoholic Fatty Liver Disease Progression

    Directory of Open Access Journals (Sweden)

    Giulia Vecchione

    2017-09-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a major cause of liver-related morbidity and mortality. Oxidative stress and release of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα, are major consequences of hepatic lipid overload, which can contribute to progression of NAFLD to non-alcoholic steatohepatitis (NASH. Also, mitochondria are involved in the NAFLD pathogenesis for their role in hepatic lipid metabolism. Definitive treatments for NAFLD/NASH are lacking so far. Silybin, the extract of the milk thistle seeds, has previously shown beneficial effects in NAFLD. Sequential exposure of hepatocytes to high concentrations of fatty acids (FAs and TNFα resulted in fat overload and oxidative stress, which mimic in vitro the progression of NAFLD from simple steatosis (SS to steatohepatitis (SH. The exposure to 50 µM silybin for 24 h reduced fat accumulation in the model of NAFLD progression. The in vitro progression of NAFLD from SS to SH resulted in reduced hepatocyte viability, increased apoptosis and oxidative stress, reduction in lipid droplet size, and up-regulation of IκB kinase β-interacting protein and adipose triglyceride lipase expressions. The direct action of silybin on SS or SH cells and the underlying mechanisms were assessed. Beneficial action of silybin was sustained by changes in expression/activity of peroxisome proliferator-activated receptors and enzymes for FA oxidation. Moreover, silybin counteracted the FA-induced mitochondrial damage by acting on complementary pathways: (i increased the mitochondrial size and improved the mitochondrial cristae organization; (ii stimulated mitochondrial FA oxidation; (iii reduced basal and maximal respiration and ATP production in SH cells; (iv stimulated ATP production in SS cells; and (v rescued the FA-induced apoptotic signals and oxidative stress in SH cells. We provide new insights about the direct protective effects of the nutraceutic silybin on hepatocytes

  10. Effect of Trimetazidine Dihydrochloride Tablets adjuvant therapy on inflammatory reaction, oxidative stress, vascular endothelial function and myocardial function in patients with coronary heart disease complicated with heart failure

    Directory of Open Access Journals (Sweden)

    Cai-Wen Wei

    2017-11-01

    Full Text Available Objective: To investigate the effects of Trimetazidine Dihydrochloride Tablets on inflammatory reaction, oxidative stress, vascular endothelial function and myocardial function in patients with coronary heart disease complicated with heart failure. Methods: A total of 98 patients with coronary heart disease and heart failure who met the criteria of the study were selected as the subjects, based on the random data table they were divided into the control group (n=49 and observation group (n=49, the patients in the control group were treated with Metoprolol Tartrate Sustained-release Tablets treatment, and the patients in the observation group were treated with Metoprolol Tartrate Sustained-release Tablets combined with Trimetazidine Dihydrochloride Tablets, the levels of inflammatory reaction, oxidative stress, vascular endothelial function and myocardial function indexes were compared between the two groups before and after treatment. Results: The difference of the CRP, TNF-α, MDA, SOD, NO, ET-1, LVEF, LVEDD and LVESD levels in the two groups before treatment were not statistically significant; Compared with the levels of the two groups before treatment, the two groups of CRP, TNF-α, MDA, ET-1, LVEDD and LVESD levels after treatment were significantly decreased, and the level of the observation group after treatment was significantly lower than those levels in the control group, the difference was statistically significant; The levels of SOD, NO and LVEF of the two groups after treatment were significantly higher than those in the same group before treatment, and the observation group levels [(88.09±7.51 U/ ml, (72.58±14.64 mol/L, (48.34±5.09% ] were significantly higher than the control group [(79.44±7.27 U/ml, (61.89±11.06 mol/L, (44.19±4.58%], the difference was statistically significant. Conclusion: Trimetazidine Dihydrochloride Tablets in the treatment of coronary heart disease with heart failure can effectively inhibit the release

  11. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1.

    Science.gov (United States)

    Moges, Ruth; De Lamache, Dimitri Desmonts; Sajedy, Saman; Renaux, Bernard S; Hollenberg, Morley D; Muench, Gregory; Abbott, Elizabeth M; Buret, Andre G

    2018-01-01

    Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096-9.6 µM) were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A 4 (LXA 4 ) and Resolvin D1 (RvD 1 ) while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB 4 ) in Ca 2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C-X-C motif) ligand 8 (CXCL-8, also known as Interleukin-8) and interleukin-1 alpha (IL-1α) protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects in porcine

  12. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

    Directory of Open Access Journals (Sweden)

    Ruth Moges

    2018-04-01

    Full Text Available Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096–9.6 µM were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A4 (LXA4 and Resolvin D1 (RvD1 while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB4 in Ca2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C–X–C motif ligand 8 (CXCL-8, also known as Interleukin-8 and interleukin-1 alpha (IL-1α protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects

  13. Development of post-pericardiotomy syndrome is preceded by an increase in pro-inflammatory and a decrease in anti-inflammatory serological markers

    Directory of Open Access Journals (Sweden)

    Snefjellå Nora

    2012-07-01

    Full Text Available Abstract The post-pericardiotomy syndrome (PPS is a common complication after cardiac surgery, occuring in 10-40% of patients. PPS may prolong hospitalization, and even serious complications like tamponade and constrictive pericarditis may occur. Early diagnosis and treatment may reduce morbidity. In 50 patients transferred to our hospital after cardiac surgery we found an increase in pro-inflammatory and a decrease in anti-inflammatory cytokines at admission in the patients later developing PPS compared to the patients who did not develop PPS. If confirmed in larger studies, these findings may prove useful in early identification of and targeted treatment in patients developing PPS.

  14. Bioactive dietary peptides and amino acids in inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Hua; Hu, Chien-An A; Kovacs-Nolan, Jennifer; Mine, Yoshinori

    2015-10-01

    Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.

  15. Effect of PCI on inflammatory factors, cTnI, MMP-9 and NT-pro BNP in patients with unstable angina pectoris

    Directory of Open Access Journals (Sweden)

    Ke-Tong Liu

    2016-05-01

    Full Text Available Objective: To investigate the effect of PCI on inflammatory factors, cTnI, MMP-9and NTpro BNP in patients with unstable angina pectoris. Methods: A total of 80 unstable angina pectoris patients were divided into observation group (40 cases and control group (40 cases. The observation group was given the therapy of PCI, and the control group was given coronary angiography. To observe the of inflammatory factors, cTnI, MMP-9 and NT-pro BNP were tested and compared before and after operation. Results: At 24 h after operation, CRP and IL-18 levels were increased significantly after treatment inoperation groups, there was no difference on inflammatory factors in control group, and had significant difference on inflammatory factors in two groups; At 24 h after operation, cTnI, MMP-9 and NT-pro BNP levels were increased significantly after treatment inoperation groups, there was no difference on inflammatory factors in control group, and had significant difference on inflammatory factors in two groups. Conclusion: PCI therapy can induce inflammation and myocardial injury in patients with unstable angina pectoris.

  16. The naked mole-rat response to oxidative stress: just deal with it.

    Science.gov (United States)

    Lewis, Kaitlyn N; Andziak, Blazej; Yang, Ting; Buffenstein, Rochelle

    2013-10-20

    The oxidative stress theory of aging has been the most widely accepted theory of aging providing insights into why we age and die for over 50 years, despite mounting evidence from a multitude of species indicating that there is no direct relationship between reactive oxygen species (ROS) and longevity. Here we explore how different species, including the longest lived rodent, the naked mole-rat, have defied the most predominant aging theory. In the case of extremely long-lived naked mole-rat, levels of ROS production are found to be similar to mice, antioxidant defenses unexceptional, and even under constitutive conditions, naked mole-rats combine a pro-oxidant intracellular milieu with high, steady state levels of oxidative damage. Clearly, naked mole-rats can tolerate this level of oxidative stress and must have mechanisms in place to prevent its translation into potentially lethal diseases. In addition to the naked mole-rat, other species from across the phylogenetic spectrum and even certain mouse strains do not support this theory. Moreover, overexpressing or knocking down antioxidant levels alters levels of oxidative damage and even cancer incidence, but does not modulate lifespan. Perhaps, it is not oxidative stress that modulates healthspan and longevity, but other cytoprotective mechanisms that allow animals to deal with high levels of oxidative damage and stress, and nevertheless live long, relatively healthy lifespans. Studying these mechanisms in uniquely long-lived species, like the naked mole-rat, may help us tease out the key contributors to aging and longevity.

  17. [Effects of chronic intermittent hypoxia on oxidative stress and inflammatory response and the interventional roles of adiponectin].

    Science.gov (United States)

    Pan, Guoyu; Su, Mei; Ding, Wenxiao; Ding, Ning; Huang, Hanpeng; Zhang, Xilong

    2015-04-28

    To explore the effects of chronic intermittent hypoxia (CIH) on oxidative stress and inflammatory response and the interventional roles of adiponectin (Ad). A total of 45 male Wistar rats were randomly divided into three groups of control group, CIH and CIH+Ad (n = 15 each). The control group breathed room air while the CIH and CIH+Ad groups received CIH 8 h/d for 5 successive weeks. The CIH+Ad group Ad had an injection of 10 µg once a week through tail vein. At the end of experiment (Day 35), comparison was performed among three groups about Ad, tumor necrosis factor α (TNF-α), C-reactive protein (CRP) and interleukin (IL) 6 from serum as well as malondialdehyde, superoxide dismutase (SOD), myeloperoxidase (MPO), reactive oxygen spieces (ROS) and nuclear factor (NF) κB from genioglossus. Serum Ad level in CIH group was lower than those in control and CIH+Ad groups ((4 208 ± 2 239) vs (7 051 ± 2 432) and (6 405 ± 2 384) ng/ml, all P statistic difference between control and CIH+Ad groups. Both serum levels of TNF-α and CRP were higher in CIH group than those in control and CIH+Ad groups ((70.87 ± 35.16) vs (26.54 ± 20.32) and (29.50 ± 22.54) pg/ml, as well as (31.84 ± 11.48) vs (22.68 ± 9.63), (25.32 ± 8.34) mg/L, all P statistical difference with CIH+Ad group (1.04 ± 0.27). CIH may induce oxidative stress and inflammation possibly through NF κB pathway while a supplement of Ad attenuates the above CIH-induced responses.

  18. Antioxidant, pro-oxidant and cytotoxic properties of parsley.

    Science.gov (United States)

    Dorman, H J Damien; Lantto, Tiina A; Raasmaja, Atso; Hiltunen, Raimo

    2011-06-01

    Parsley (Petroselinum crispum) leaves were macerated with a mixture of methanol: water: acetic acid to produce a crude extract which was then defatted with (40°-60°) petrol. Antioxidant activity of the extract was evaluated using a battery of in vitro assays, viz., iron(iii) reduction, iron(ii) chelation and free radical scavenging assays. Evaluation of the pro-oxidant activity of the extract was based upon its effects upon DNA fragmentation and protein carbonylation. Cytotoxicity and apoptotic effects of the extract were determined in non-cancerous CV1-P fibroblast and cancerous A375 melanoma cells using MTT and LDH tests and caspase 3-like activity assay. The highest concentration, 2.0 mg ml(-1), decreased the viability of both cell lines, however, the cancerous melanoma cells were slightly susceptible to the effects. The observed cytotoxicity was not due to the caspase 3 activity. In conclusion, the toxicity might be explained by the pro-oxidative activity of components within the extract against proteins and/or DNA but it is not related to caspase 3-dependent apoptosis within cells.

  19. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    Science.gov (United States)

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with

  20. The dual role of poly(ADP-ribose) polymerase-1 in modulating parthanatos and autophagy under oxidative stress in rat cochlear marginal cells of the stria vascularis.

    Science.gov (United States)

    Jiang, Hong-Yan; Yang, Yang; Zhang, Yuan-Yuan; Xie, Zhen; Zhao, Xue-Yan; Sun, Yu; Kong, Wei-Jia

    2018-04-01

    Oxidative stress is reported to regulate several apoptotic and necrotic cell death pathways in auditory tissues. Poly(ADP-ribose) polymerase-1 (PARP-1) can be activated under oxidative stress, which is the hallmark of parthanatos. Autophagy, which serves either a pro-survival or pro-death function, can also be stimulated by oxidative stress, but the role of autophagy and its relationship with parthanatos underlying this activation in the inner ear remains unknown. In this study, we established an oxidative stress model in vitro by glucose oxidase/glucose (GO/G), which could continuously generate low concentrations of H 2 O 2 to mimic continuous exposure to H 2 O 2 in physiological conditions, for investigation of oxidative stress-induced cell death mechanisms and the regulatory role of PARP-1 in this process. We observed that GO/G induced stria marginal cells (MCs) death via upregulation of PARP-1 expression, accumulation of polyADP-ribose (PAR) polymers, decline of mitochondrial membrane potential (MMP) and nuclear translocation of apoptosis-inducing factor (AIF), which all are biochemical features of parthanatos. PARP-1 knockdown rescued GO/G-induced MCs death, as well as abrogated downstream molecular events of PARP-1 activation. In addition, we demonstrated that GO/G stimulated autophagy and PARP-1 knockdown suppressed GO/G-induced autophagy in MCs. Interestingly, autophagy suppression by 3-Methyladenine (3-MA) accelerated GO/G-induced parthanatos, indicating a pro-survival function of autophagy in GO/G-induced MCs death. Taken together, these data suggested that PARP-1 played dual roles by modulating parthanatos and autophagy in oxidative stress-induced MCs death, which may be considered as a promising therapeutic target for ameliorating oxidative stress-related hearing disorders. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Implications of red Panax ginseng in oxidative stress associated chronic diseases

    Directory of Open Access Journals (Sweden)

    Yoon-Mi Lee

    2017-04-01

    Full Text Available The steaming process of Panax ginseng has been reported to increase its major known bioactive components, ginsenosides, and, therefore, its biological properties as compared to regular Panax ginseng. Biological functions of red Panax ginseng attenuating pro-oxidant environments associated with chronic diseases are of particular interest, since oxidative stress can be a key contributor to the pathogenesis of chronic diseases. Additionally, proper utilization of various biomarkers for evaluating antioxidant activities in natural products, such as ginseng, can also be important to providing validity to their activities. Thus, studies on the effects of red ginseng against various diseases as determined in cell lines, animal models, and humans were reviewed, along with applied biomarkers for verifying such effects. Limitations and future considerations of studying red ginseng were been discussed. Although further clinical studies are warranted, red ginseng appears to be beneficial for attenuating disease-associated symptoms via its antioxidant activities, as well as for preventing oxidative stress-associated chronic diseases.

  2. Magnetic Resonance Imaging Identifies Differential Response to Pro-Oxidant Chemotherapy in a Xenograft Model

    Directory of Open Access Journals (Sweden)

    Terry H. Landowski

    2016-06-01

    Full Text Available Induction of oxidative stress is a key component of cancer therapy. Pro-oxidant drugs have been demonstrated to enhance the efficacy of radiotherapy and chemotherapy. An emerging concept is that therapeutic outcomes are dictated by the differential redox buffering reserve in subpopulations of malignant cells, indicating the need for noninvasive biomarkers of tumor redox that can be used for dose identification and response assessment in a longitudinal setting. Magnetic resonance imaging (MRI enhanced with the thiol-binding contrast agent Gd-LC6-SH, and hemodynamic response imaging (HRI in combination with hypercapnia and hyperoxia were investigated as biomarkers of the pharmacodynamics of the small molecule pro-oxidant imexon (IMX. Human multiple myeloma cell lines 8226/S and an IMX-resistant variant, 8226/IM10, were established as contralateral tumors in SCID mice. T1slope, an MRI measure of the washout rate of Gd-LC6-SH, was significantly lower post-IMX therapy in 8226/S tumors compared with vehicle controls, indicating treatment-related oxidization of the tumor microenvironment, which was confirmed by analysis of tumor tissue for thiols. T1slope and ex vivo assays for thiols both indicated a more reduced microenvironment in 8226/IM10 tumors following IMX therapy. HRI with hypercapnia challenge revealed IMX inhibition of vascular dilation in 8226/S tumors but not 8226/IM10 tumors, consistent with decreased immunohistochemical staining for smooth muscle actin in treated 8226/S tumors. MRI enhanced with Gd-LC6-SH, and HRI coupled with a hypercapnic challenge provide noninvasive biomarkers of tumor response to the redox modulator imexon.

  3. The Toxicological Mechanisms of Environmental Soot (Black Carbon and Carbon Black: Focus on Oxidative Stress and Inflammatory Pathways

    Directory of Open Access Journals (Sweden)

    Rituraj Niranjan

    2017-06-01

    Full Text Available The environmental soot and carbon blacks (CBs cause many diseases in humans, but their underlying mechanisms of toxicity are still poorly understood. Both are formed after the incomplete combustion of hydrocarbons but differ in their constituents and percent carbon contents. For the first time, “Sir Percival Pott” described soot as a carcinogen, which was subsequently confirmed by many others. The existing data suggest three main types of diseases due to soot and CB exposures: cancer, respiratory diseases, and cardiovascular dysfunctions. Experimental models revealed the involvement of oxidative stress, DNA methylation, formation of DNA adducts, and Aryl hydrocarbon receptor activation as the key mechanisms of soot- and CB-induced cancers. Metals including Si, Fe, Mn, Ti, and Co in soot also contribute in the reactive oxygen species (ROS-mediated DNA damage. Mechanistically, ROS-induced DNA damage is further enhanced by eosinophils and neutrophils via halide (Cl− and Br− dependent DNA adducts formation. The activation of pulmonary dendritic cells, T helper type 2 cells, and mast cells is crucial mediators in the pathology of soot- or CB-induced respiratory disease. Polyunsaturated fatty acids (PUFAs were also found to modulate T cells functions in respiratory diseases. Particularly, telomerase reverse transcriptase was found to play the critical role in soot- and CB-induced cardiovascular dysfunctions. In this review, we propose integrated mechanisms of soot- and CB-induced toxicity emphasizing the role of inflammatory mediators and oxidative stress. We also suggest use of antioxidants and PUFAs as protective strategies against soot- and CB-induced disorders.

  4. Marine Carotenoids against Oxidative Stress: Effects on Human Health

    Directory of Open Access Journals (Sweden)

    Maria Alessandra Gammone

    2015-09-01

    Full Text Available Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  5. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    Science.gov (United States)

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  6. Analgesic activity of piracetam: effect on cytokine production and oxidative stress.

    Science.gov (United States)

    Navarro, Suelen A; Serafim, Karla G G; Mizokami, Sandra S; Hohmann, Miriam S N; Casagrande, Rubia; Verri, Waldiceu A

    2013-04-01

    Piracetam is a prototype of nootropic drugs used to improve cognitive impairment. However, recent studies suggest that piracetam can have analgesic and anti-inflammatory effects. Inflammatory pain is the result of a process that depends on neutrophil migration, cytokines and prostanoids release and oxidative stress. We analyze whether piracetam has anti-nociceptive effects and its mechanisms. Per oral pretreatment with piracetam reduced in a dose-dependent manner the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, formalin and complete Freund's adjuvant. Piracetam also diminished carrageenin-induced mechanical and thermal hyperalgesia, myeloperoxidase activity, and TNF-α-induced mechanical hyperalgesia. Piracetam presented analgesic effects as post-treatment and local paw treatment. The analgesic mechanisms of piracetam were related to inhibition of carrageenin- and TNF-α-induced production of IL-1β as well as prevention of carrageenin-induced decrease of reduced glutathione, ferric reducing ability and free radical scavenging ability in the paw. These results demonstrate that piracetam presents analgesic activity upon a variety of inflammatory stimuli by a mechanism dependent on inhibition of cytokine production and oxidative stress. Considering its safety and clinical use for cognitive function, it is possible that piracetam represents a novel perspective of analgesic. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Differential Effects of Acute (Extenuating and Chronic (Training Exercise on Inflammation and Oxidative Stress Status in an Animal Model of Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Edite Teixeira de Lemos

    2011-01-01

    Full Text Available This study compares the effects of a single bout of exercise (acute extenuating with those promoted by an exercise training program (chronic, focusing on low-grade chronic inflammation profile and on oxidative stress status, using the obese ZDF rats as a model of type 2 diabetes mellitus (T2DM. Animals were sacrificed after 12 weeks of a swimming training program and after a single bout of acute extenuating exercise. Glycaemic, insulinemic, and lipidic profile (triglycerides, total-cholesterol were evaluated, as well as inflammatory (serum CRPhs, TNF-α, adiponectin and oxidative (lipidic peroxidation and uric acid status. When compared to obese diabetic sedentary rats, the animals submitted to acute exercise presented significantly lower values of glycaemia and insulinaemia, with inflammatory profile and oxidative stress significantly aggravated. The trained animals showed amelioration of glycaemic and lipidic dysmetabolism, accompanied by remarkable reduction of inflammatory and oxidative markers. In conclusion, the results presented herein suggessted that exercise pathogenesis-oriented interventions should not exacerbate underlying inflammatory stress associated with T2DM.

  8. Pro-/anti-inflammatory cytokine gene polymorphisms and chronic kidney disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Okada Rieko

    2012-01-01

    Full Text Available Abstract Background The aim of this study was to explore the associations between common potential functional promoter polymorphisms in pro-/anti-inflammatory cytokine genes and kidney function/chronic kidney disease (CKD prevalence in a large Japanese population. Methods A total of 3,323 subjects aged 35-69 were genotyped for all 10 single nucleotide polymorphisms (SNPs in the promoter regions of candidate genes with minor allele frequencies of > 0.100 in Japanese populations. The estimated glomerular filtration rate (eGFR and CKD prevalence (eGFR 2 of the subjects were compared among the genotypes. Results A higher eGFR and lower prevalence of CKD were observed for the homozygous variants of IL4 -33CC (high IL-4 [anti-inflammatory cytokine]-producing genotype and IL6 -572GG (low IL-6 [pro-inflammatory cytokine]-producing genotype. Subjects with IL4 CC + IL6 GG showed the highest mean eGFR (79.1 ml/min/1.73 m2 and lowest CKD prevalence (0.0%, while subjects carrying IL4 TT + IL6 CC showed the lowest mean eGFR (73.4 ml/min/1.73 m2 and highest CKD prevalence (17.9%. Conclusions The functional promoter polymorphisms IL4 T-33C (rs2070874 and IL6 C-572G (rs1800796, which are the only SNPs that affect the IL-4 and IL-6 levels in Japanese subjects, were associated with kidney function and CKD prevalence in a large Japanese population.

  9. Postprandial oxidative stress is increased after a phytonutrient-poor food but not after a kilojoule-matched phytonutrient-rich food.

    Science.gov (United States)

    Khor, Amanda; Grant, Ross; Tung, Chin; Guest, Jade; Pope, Belinda; Morris, Margaret; Bilgin, Ayse

    2014-05-01

    Research indicates that energy-dense foods increase inflammation and oxidative activity, thereby contributing to the development of vascular disease. However, it is not clear whether the high kilojoule load alone, irrespective of the nutritional content of the ingested food, produces the postprandial oxidative and inflammatory activity. This study investigated the hypothesis that ingestion of a high-fat, high-sugar, phytonutrient-reduced food (ice cream) would increase oxidative and inflammatory activity greater than a kilojoule-equivalent meal of a phytonutrient-rich whole food (avocado). The individual contributions of the fat/protein and sugar components of the ice cream meal to postprandial inflammation and oxidative stress were also quantified. Using a randomized, crossover design, 11 healthy participants ingested 4 test meals: ice cream, avocado, the fat/protein component in ice cream, and the sugar equivalent component in ice cream. Plasma glucose, cholesterol, triglycerides, and inflammatory and oxidative stress markers were measured at baseline and 1, 2, and 4 hours (t1, t2, t4) after ingestion. Lipid peroxidation was increased at 2 hours after eating fat/protein (t0-t2, P stress markers. These data indicate that the ingestion of a phytonutrient-poor food and its individual fat/protein or sugar components increase plasma oxidative activity. This is not observed after ingestion of a kilojoule-equivalent phytonutrient-rich food. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Curcuma longa extract reduces inflammatory and oxidative stress biomarkers in osteoarthritis of knee: a four-month, double-blind, randomized, placebo-controlled trial.

    Science.gov (United States)

    Srivastava, Shobhit; Saksena, Anil K; Khattri, Sanjay; Kumar, Santosh; Dagur, Raghubendra Singh

    2016-12-01

    Curcuma longa L. (CL), an Indian herb, has been used to treat many disorders because of its wide spectrum of pharmacological activities. It has been shown to exhibit anti-oxidant and anti-inflammatory properties, and is being used as herbal remedy since ancient times. Osteoarthritis of knee (KOA) is a chronic painful disorder in which prolong use of non-steroidal anti-inflammatory drugs (NSAIDs) or steroids may result into many serious side effects; hence, there is a need to develop herbal drugs, having good analgesia without side effects. Therefore, we planned to evaluate the efficacy of CL in KOA. The study was designed as a randomized, double-blind, placebo-controlled trial in patients of KOA. After obtaining ethical clearance and written informed consent, a total of 160 patients of KOA were randomly enrolled into two groups to receive either CL extract or placebo along with the standard drug regimen. The patients were assessed on day 0, day 60, and day 120. On the days of their visit, the clinical prognosis was assessed by visual analog scale (VAS) and Western Ontario and McMaster Universities (WOMAC) Osteoarthritis index. On these days, the radiographs were also taken for Kellgren and Lawrence grading and blood samples were collected for assessing the changes in levels of IL-1β and biomarkers of oxidative stress, such as reactive oxygen species and malondialdehyde (MDA). Over all significant improvement was observed in the patients of CL extract group as compared to placebo group. Clinically, the VAS and WOMAC scores became better, and simultaneously, the levels of biomarkers, viz., IL-1β, ROS, and MDA, were also significantly (p < 0.05) improved. It may be concluded that on chronic administration, CL suppresses inflammation and brings clinical improvement in patients of KOA, which may be observed by decreased level of IL-1β and VAS/WOMAC scores, respectively. At the same time, CL decreases the oxidative stress also.

  11. Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease.

    Science.gov (United States)

    Aliev, G; Priyadarshini, M; Reddy, V P; Grieg, N H; Kaminsky, Y; Cacabelos, R; Ashraf, G Md; Jabir, N R; Kamal, M A; Nikolenko, V N; Zamyatnin, A A; Benberin, V V; Bachurin, S O

    2014-01-01

    Mitochondrial dysfunction plausibly underlies the aging-associated brain degeneration. Mitochondria play a pivotal role in cellular bioenergetics and cell-survival. Oxidative stress consequent to chronic hypoperfusion induces mitochondrial damage, which is implicated as the primary cause of cerebrovascular accidents (CVA) mediated Alzheimer's disease (AD). The mitochondrial function deteriorates with aging, and the mitochondrial damage correlates with increased intracellular production of oxidants and pro-oxidants. The prolonged oxidative stress and the resultant hypoperfusion in the brain tissues stimulate the expression of nitric oxide synthase (NOS) enzymes, which further drives the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS collectively contributes to the dysfunction of the blood-brain barrier (BBB) and damage to the brain parenchymal cells. Delineating the molecular mechanisms of these processes may provide clues for the novel therapeutic targets for CVA and AD patients.

  12. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells

    Directory of Open Access Journals (Sweden)

    BA Walter

    2016-07-01

    Full Text Available The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4 ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.

  13. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics

    Directory of Open Access Journals (Sweden)

    P. Hemachandra Reddy

    2011-02-01

    Full Text Available Asthma is a complex, inflammatory disorder characterized by airflow obstruction of variable degrees, bronchial hyper-responsiveness, and airway inflammation. Asthma is caused by environmental factors and a combination of genetic and environmental stimuli. Genetic studies have revealed that multiple loci are involved in the etiology of asthma. Recent cellular, molecular, and animal-model studies have revealed several cellular events that are involved in the progression of asthma, including: increased Th2 cytokines leading to the recruitment of inflammatory cells to the airway, and an increase in the production of reactive oxygen species and mitochondrial dysfunction in the activated inflammatory cells, leading to tissue injury in the bronchial epithelium. Further, aging and animal model studies have revealed that mitochondrial dysfunction and oxidative stress are involved and play a large role in asthma. Recent studies using experimental allergic asthmatic mouse models and peripheral cells and tissues from asthmatic humans have revealed antioxidants as promising treatments for people with asthma. This article summarizes the latest research findings on the involvement of inflammatory changes, and mitochondrial dysfunction/oxidative stress in the development and progression of asthma. This article also addresses the relationship between aging and age-related immunity in triggering asthma, the antioxidant therapeutic strategies in treating people with asthma.

  14. Modulation of Cartilage Degradation Biomarkers Reflect the Activation and Inhibition of Pro-Inflammatory Cytokine Signaling in an Ex Vivo Model of Bovine Cartilage

    DEFF Research Database (Denmark)

    Kjelgaard-Petersen, Cecilie Freja; Sharma, Neha; Kayed, Ashref

    2017-01-01

    -inflammatory treatments for inflammatory arthritis. The aim of this study was to investigate the effect of small molecule inhibitors targeting 4 main pro-inflammatory signaling pathways (p38, Syk, IκBα, and STAT) on Oncostatin M (OSM) and Tumor Necrosis Factor α (TNFα) stimulated cartilage....

  15. Thioredoxin ameliorates cutaneous inflammation by regulating the epithelial production and release of pro-Inflammatory cytokines

    Directory of Open Access Journals (Sweden)

    Hai eTian

    2013-09-01

    Full Text Available Human thioredoxin-1 (TRX is a 12-kDa protein with redox-active dithiol in the active site -Cys-Gly-Pro-Cys-. It has been demonstrated that systemic administration and transgenic overexpression of TRX ameliorate inflammation in various animal models, but its anti-inflammatory mechanism is not well characterized. We investigated the anti-inflammatory effects of topically applied recombinant human TRX (rhTRX in a murine irritant contact dermatitis (ICD induced by croton oil. Topically applied rhTRX was distributed only in the skin tissues under both non-inflammatory and inflammatory conditions, and significantly suppressed the inflammatory response by inhibiting the production of cytokines and chemokines, such as TNF-α, Il-1β, IL-6, CXCL-1, and MCP-1. In an in vitro study, rhTRX also significantly inhibited the formation of cytokines and chemokines produced by keratinocytes after exposure to croton oil and phorbol 12-myristate 13-acetate. These results indicate that TRX prevents skin inflammation via the inhibition of local formation of inflammatory cytokines and chemokines. As a promising new approach, local application of TRX may be useful for the treatment of various skin and mucosal inflammatory disorders.

  16. TBHQ Alleviated Endoplasmic Reticulum Stress-Apoptosis and Oxidative Stress by PERK-Nrf2 Crosstalk in Methamphetamine-Induced Chronic Pulmonary Toxicity

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2017-01-01

    Full Text Available Methamphetamine (MA leads to cardiac and pulmonary toxicity expressed as increases in inflammatory responses and oxidative stress. However, some interactions may exist between oxidative stress and endoplasmic reticulum stress (ERS. The current study is designed to investigate if both oxidative stress and ERS are involved in MA-induced chronic pulmonary toxicity and if antioxidant tertiary butylhydroquinone (TBHQ alleviated ERS-apoptosis and oxidative stress by PERK-Nrf2 crosstalk. In this study, the rats were randomly divided into control group, MA-treated group (MA, and MA plus TBHQ-treated group (MA + TBHQ. Chronic exposure to MA resulted in slower growth of weight and pulmonary toxicity of the rats by increasing the pulmonary arterial pressure, promoting the hypertrophy of right ventricle and the remodeling of pulmonary arteries. MA inhibited the Nrf2-mediated antioxidative stress by downregulation of Nrf2, GCS, and HO-1 and upregulation of SOD2. MA increased GRP78 to induce ERS. Overexpression and phosphorylation of PERK rapidly phosphorylated eIF2α, increased ATF4, CHOP, bax, caspase 3, and caspase 12, and decreased bcl-2. These changes can be reversed by antioxidant TBHQ through upregulating expression of Nrf2. The above results indicated that TBHQ can alleviate MA-induced oxidative stress which can accelerate ERS to initiate PERK-dependent apoptosis and that PERK/Nrf2 is likely to be the key crosstalk between oxidative stress and ERS in MA-induced chronic pulmonary toxicity.

  17. Coenzyme Q10 and pro-inflammatory markers in children with Down syndrome: clinical and biochemical aspects.

    Science.gov (United States)

    Zaki, Moushira E; El-Bassyouni, Hala T; Tosson, Angie M S; Youness, Eman; Hussein, Jihan

    Evidence of oxidative stress was reported in individuals with Down syndrome. There is a growing interest in the contribution of the immune system in Down syndrome. The aim of this study is to evaluate the coenzyme Q10 and selected pro-inflammatory markers such as interleukin 6 and tumor necrosis factor α in children with Down syndrome. Eighty-six children (5-8 years of age) were enrolled in this case-control study from two public institutions. At the time of sampling, the patients and controls suffered from no acute or chronic illnesses and received no therapies or supplements. The levels of interleukin 6, tumor necrosis factor α, coenzyme Q10, fasting blood glucose, and intelligence quotient were measured. Forty-three young Down syndrome children and forty-three controls were included over a period of eight months (January-August 2014). Compared with the control group, the Down syndrome patients showed significant increase in interleukin 6 and tumor necrosis factor α (p=0.002), while coenzyme Q10 was significantly decreased (p=0.002). Also, body mass index and fasting blood glucose were significantly increased in patients. There was a significantly positive correlation between coenzyme Q10 and intelligence quotient levels, as well as between interleukin 6 and tumor necrosis factor α. Interleukin 6 and tumor necrosis factor α levels in young children with Down syndrome may be used as biomarkers reflecting the neurodegenerative process in them. Coenzyme Q10 might have a role as a good supplement in young children with Down syndrome to ameliorate the neurological symptoms. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  18. Coenzyme Q10 and pro-inflammatory markers in children with Down syndrome: clinical and biochemical aspects

    Directory of Open Access Journals (Sweden)

    Moushira E. Zaki

    Full Text Available Abstract: Objective: Evidence of oxidative stress was reported in individuals with Down syndrome. There is a growing interest in the contribution of the immune system in Down syndrome. The aim of this study is to evaluate the coenzyme Q10 and selected pro-inflammatory markers such as interleukin 6 and tumor necrosis factor α in children with Down syndrome. Methods: Eighty-six children (5-8 years of age were enrolled in this case-control study from two public institutions. At the time of sampling, the patients and controls suffered from no acute or chronic illnesses and received no therapies or supplements. The levels of interleukin 6, tumor necrosis factor α, coenzyme Q10, fasting blood glucose, and intelligence quotient were measured. Results: Forty-three young Down syndrome children and forty-three controls were included over a period of eight months (January-August 2014. Compared with the control group, the Down syndrome patients showed significant increase in interleukin 6 and tumor necrosis factor α (p = 0.002, while coenzyme Q10 was significantly decreased (p = 0.002. Also, body mass index and fasting blood glucose were significantly increased in patients. There was a significantly positive correlation between coenzyme Q10 and intelligence quotient levels, as well as between interleukin 6 and tumor necrosis factor α. Conclusion: Interleukin 6 and tumor necrosis factor α levels in young children with Down syndrome may be used as biomarkers reflecting the neurodegenerative process in them. Coenzyme Q10 might have a role as a good supplement in young children with Down syndrome to ameliorate the neurological symptoms.

  19. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

    Science.gov (United States)

    Pietrowski, Eweline; Bender, Bianca; Huppert, Jula; White, Robin; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2011-01-01

    T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2'7'-dichlorodihydrofluorescein (H(2)DCF) in primary murine VSMC. IL-17A induced an increase in H(2)DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting Nox2. The p38-MAPK inhibitors SB203580 and SB202190 dose-dependently reduced the IL-17A induced ROS production. The IL-17A induced release of the pro-inflammatory cytokines IL-6, G-CSF, GM-CSF and MCP-1 from VSMC, as detected by the Luminex technology, was completely abolished by NAD(P)H-oxidase inhibition. Taken together, our data indicate that IL-17A causes the NAD(P)H-oxidase dependent generation of ROS leading to a pro-inflammatory activation of VSMC. Copyright © 2010 S. Karger AG, Basel.

  20. Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain

    International Nuclear Information System (INIS)

    Meena, Ramovatar; Kumar, Sumit; Paulraj, R.

    2015-01-01

    The ever increasing applications of engineered nanoparticles in 21st century cause serious concern about its potential health risks on living being. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines. In order to study the mechanism underlying the effects of nano-TiO 2 (TiO 2 nanoparticles) on the brain, wistar rats were administrated intravenously with various doses of nano-TiO 2 (21 nm) through the caudal vein, once a week for 4 weeks and different parameters such as bioaccumulation of nano-TiO 2 , oxidative stress-mediated response, level of inflammatory markers such as NF-κB (p65), HSP 60, p38, nitric oxide, IFN-γ and TNF-α, and level of neurochemicals in brain as well as DNA damage and expression of apoptosis markers (p53, Bax, Bcl-2, and cyto c) were evaluated. Results show that the concentration of nano-TiO 2 in the brain increased with increasing the doses of nano-TiO 2 . Oxidative stress and injury of the brain occurred as nano-TiO 2 appeared to trigger a cascade of reactions such as inflammation, lipid peroxidation, decreases the activities of antioxidative enzymes and melatonin level, the reduction of glutamic acid, downregulated levels of acetylcholinesterase activities, and the increase in caspase-3 activity (a biomarker of apoptosis), DNA fragmentation, and apoptosis. It may be concluded that nano-TiO 2 induces oxidative stress that leads to activation of inflammatory cytokines and an alteration in the level of neurotransmitters resulted in the induction of mitochondrial-mediated apoptosis

  1. Alteration in cellular viability, pro-inflammatory cytokines and nitric oxide production in nephrotoxicity generation by Amphotericin B: involvement of PKA pathway signaling.

    Science.gov (United States)

    França, F D; Ferreira, A F; Lara, R C; Rossoni, J V; Costa, D C; Moraes, K C M; Tagliati, C A; Chaves, M M

    2014-12-01

    Amphotericin B is one of the most effective antifungal agents; however, its use is often limited owing to adverse effects, especially nephrotoxicity. The purpose of this study was to evaluate the effect of inhibiting the PKA signaling pathway in nephrotoxicity using Amphotericin B from the assessment of cell viability, pro-inflammatory cytokines and nitric oxide (NO) production in LLC-PK1 and MDCK cell lines. Amphotericin B proved to be cytotoxic for both cell lines, as assessed by the mitochondrial enzyme activity (MTT) assay; caused DNA fragmentation, determined by flow cytometry using the propidium iodide (PI) dye; and activated the PKA pathway (western blot assay). In MDCK cells, the inhibition of the PKA signaling pathway (using the H89 inhibitor) caused a significant reduction in DNA fragmentation. In both cells lines the production of interleukin-6 (IL)-6 proved to be a dependent PKA pathway, whereas tumor necrosis factor-alpha (TNF-α) was not influenced by the inhibition of the PKA pathway. The NO production was increased when cells were pre-incubated with H89 followed by Amphotericin B, and this production produced a dependent PKA pathway in LLC-PK1 and MDCK cells lines. Therefore, considering the present study's results as a whole, it can be concluded that the inhibition of the PKA signaling pathway can aid in reducing the degree of nephrotoxicity caused by Amphotericin B. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Hematological, oxidative stress, and immune status profiling in elite combat sport athletes.

    Science.gov (United States)

    Dopsaj, Violeta; Martinovic, Jelena; Dopsaj, Milivoj; Kasum, Goran; Kotur-Stevuljevic, Jelena; Koropanovski, Nenad

    2013-12-01

    The aim of this study was to profile hematological, oxidative stress, and immunological parameters in male athletes who practiced combat sports and to determine whether the type of combat sport influenced the measured parameters. Eighteen karate professionals, 15 wrestlers, and 14 kickboxers participated in the study. Hematological, iron-related, oxidative stress, and immunological parameters were measured at the beginning of a precompetitive period. The general linear model showed significant differences between the karate professionals, wrestlers, and kickboxers with respect to their hematological and iron status parameters (Wilks' Lambda = 0.270, F = 2.186, p stress status (Wilks' Lambda = 0.529, F = 1.940, p < 0.05). The immature reticulocyte fraction was significantly higher in wrestlers (0.30 ± 0.03) compared with kickboxers (0.24 ± 0.04; p < 0.05) and karate professionals (0.26 ± 0.04; p < 0.05). Low hemoglobin density was significantly lower in wrestlers and kickboxers (p < 0.05) compared with karate professionals (karate: 3.51 ± 1.19, wrestlers: 1.95 ± 1.10, and kickboxers: 1.77 ± 0.76). Significant differences were observed between the karate professionals and wrestlers with respect to their pro-oxidant-antioxidant balance (437 ± 103 vs. 323 ± 148, p < 0.05) and superoxide-dismutase activity (SOD) (73 ± 37 vs. 103 ± 30, p < 0.05). All the measured parameters (with the exception of SOD activity) fell within their physiological ranges, indicating that the study participants represented a young and healthy male population. Hematological parameters differed between kickboxers and karate professionals. The low pro-oxidant-antioxidant balance and high SOD activity in wrestlers could be associated with the long-term impact of wrestling as a type of strenuous exercise.

  3. Extraction of Spear Grass (Imperata Cylindrica As Pro-Oxidant In Polymer Blends

    Directory of Open Access Journals (Sweden)

    Nuradibah M.A.

    2018-01-01

    Full Text Available Packaging material such as plastic bags is one of the main factors that contribute to the environmental pollution due to slow degradation. The usage of metal oxide as pro-oxidant has been proven to accelerate the degradation of these materials, but the excessive usage of this pro-oxidant will be harmful to the human body. Therefore, in this research, spear grass is investigated to be used as natural based pro-oxidant that can increase the degradation rate of the polymers. In terms of that, spear grass is extracted by using pressurized hot water extraction (PHWE to obtain the metal element such as zinc (Zn and ferum (Fe. PHWE is using water as a solvent which is highly favourable due to non-toxicity and non-flammable characteristics that make it easy to handle. Box-Behnken design is used to optimize the temperature, extraction time, and sample-to-solvent ratio to get the maximum amount of Zn and Fe concentration from the extracted spear grass. As a conclusion, the leaf of spear grass contributed the highest amount of Zn and Fe concentration. The highest amount of Zn and Fe concentration is achieved at 150 °C, 20 minutes, and 3 g of sample to 45 ml of water.

  4. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  5. Neuroendocrine modulation of the inflammatory response in common carp: adrenaline regulates leukocyte profile and activity

    NARCIS (Netherlands)

    Kepka, M.; Verburg-van Kemenade, B.M.L.; Chadzinska, M.K.

    2013-01-01

    Inflammatory responses have to be carefully controlled, as high concentrations and/or prolonged action of inflammation-related molecules (e.g. reactive oxygen species, nitric oxide and pro-inflammatory cytokines) can be detrimental to host tissue and organs. One of the potential regulators of the

  6. Dexmedetomidine (DEX) protects against hepatic ischemia/reperfusion (I/R) injury by suppressing inflammation and oxidative stress in NLRC5 deficient mice.

    Science.gov (United States)

    Chen, Zong; Ding, Tao; Ma, Chuan-Gen

    2017-11-18

    Hepatic ischemia/reperfusion (I/R) injury could arise as a complication of liver surgery and transplantation. No specific therapeutic strategies are available to attenuate I/R injury. NOD-, LRR-and CARD-containing 5 (NLRC5), a member of the NOD-like protein family, has been suggested to negatively regulate nuclear factor kappa B (NF-κB) through interacting with IKKα and blocking their phosphorylation. Dexmedetomidine (DEX) has been shown to attenuate liver injury. In the current study, we investigated the pre-treatment of DEX on hepatic I/R injury in wild type (WT) and NLRC5 knockout (NLRC5 -/- ) mice. Our results indicated that NLRC5 -/- showed significantly stronger histologic damage, inflammatory response, oxidative stress and apoptosis after I/R compared to the WT group of mice, indicating the protective role of NLRC5 against liver I/R injury. Importantly, I/R-induced increase of NLRC5 was reduced by DEX pre-treatment. After hepatic I/R injury, WT and NLRC5 -/- mice pre-treated with DEX exhibited attenuated histological disruption, and reduced pro-inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and inducible nitric oxide synthase (iNOS), which was associated with the inactivated NF-κB pathway. Moreover, suppression of oxidative stress and apoptosis was observed in DEX-treated mice with I/R injury, probably through enhancing nuclear factor erythroid 2-related factor 2 (Nrf2), reducing mitogen-activated protein kinases (MAPKs) and Caspase-3/poly (ADP-ribose) polymerase (PARP) pathways. In vitro, the results were further confirmed in WT and NLRC5 -/- hepatocytes pre-treated with or without DEX. Together, the findings illustrated that lack of NLRC5 resulted in severer liver I/R injury, which could be alleviated by DEX pre-treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of mild-to-moderate smoking on viral load, cytokines, oxidative stress, and cytochrome P450 enzymes in HIV-infected individuals.

    Directory of Open Access Journals (Sweden)

    Anusha Ande

    Full Text Available Mild-to-moderate tobacco smoking is highly prevalent in HIV-infected individuals, and is known to exacerbate HIV pathogenesis. The objective of this study was to determine the specific effects of mild-to-moderate smoking on viral load, cytokine production, and oxidative stress and cytochrome P450 (CYP pathways in HIV-infected individuals who have not yet received antiretroviral therapy (ART. Thirty-two human subjects were recruited and assigned to four different cohorts as follows: a HIV negative non-smokers, b HIV positive non-smokers, c HIV negative mild-to-moderate smokers, and d HIV positive mild-to-moderate smokers. Patients were recruited in Cameroon, Africa using strict selection criteria to exclude patients not yet eligible for ART and not receiving conventional or traditional medications. Those with active tuberculosis, hepatitis B or with a history of substance abuse were also excluded. Our results showed an increase in the viral load in the plasma of HIV positive patients who were mild-to-moderate smokers compared to individuals who did not smoke. Furthermore, although we did not observe significant changes in the levels of most pro-inflammatory cytokines, the cytokine IL-8 and MCP-1 showed a significant decrease in the plasma of HIV-infected patients and smokers compared with HIV negative non-smokers. Importantly, HIV-infected individuals and smokers showed a significant increase in oxidative stress compared with HIV negative non-smoker subjects in both plasma and monocytes. To examine the possible pathways involved in increased oxidative stress and viral load, we determined the mRNA levels of several antioxidant and cytochrome P450 enzymes in monocytes. The results showed that the levels of most antioxidants are unaltered, suggesting their inability to counter oxidative stress. While CYP2A6 was induced in smokers, CYP3A4 was induced in HIV and HIV positive smokers compared with HIV negative non-smokers. Overall, the findings suggest

  8. Etyopathogenesis and Oxidative Stress Relationship in Mild Severe Alopecia Areata

    Directory of Open Access Journals (Sweden)

    Fadime Kilinç

    2017-09-01

    Full Text Available Objective:Alopecia areata (AA is a recurrent, autoimmune, inflammatory disease characterized by loss of scarless hair. The etiopathogenesis is not exactly known, however genetic, emotional, environmental factors and autoimmunity are accused. The aim of the study is to investigate the role of oxidative stress in the etiopathogenesis of AA. Methods:Thirty seven AA patients and thirty five healthy volunteers as control group were included in the study. Oxidative stress index (OSI was calculated by measuring total antioxidant capacity (TAC and total oxidant capacity (TOC in patient and control group serum samples. Results:The TAC values of the patient group were found to be higher than the control group (p=0.036. A nonsignificant difference was found between the two groups statistically bordered by TOC (p=0.058. There was no significant difference between the two groups in terms of OSI (p=0.270.

  9. RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia.

    Science.gov (United States)

    Shen, Chao; Ma, Yingjuan; Zeng, Ziling; Yin, Qingqing; Hong, Yan; Hou, Xunyao; Liu, Xueping

    2017-10-01

    Advanced glycation end products (AGEs) enhance microglial activation and intensify the inflammatory response and oxidative stress in the brain. This process may occur due to direct cytotoxicity or interacting with AGEs receptors (RAGE), which are expressed on the surface of microglia. FPS-ZM1 is a high-affinity but nontoxic RAGE-specific inhibitor that has been recently shown to attenuate the Aβ-induced inflammatory response by blocking the ligation of Aβ to RAGE. In this study, we further investigated the effect of FPS-ZM1 on the AGEs/RAGE interaction and downstream elevation of neuroinflammation and oxidative stress in primary microglia cells. The results suggested that FPS-ZM1 significantly suppressed AGEs-induced RAGE overexpression, RAGE-dependent microglial activation, nuclear translocation of nuclear factor kappaB p65 (NF-κB p65), and the expression of downstream inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) and inducible nitric oxide synthase (iNOS)/nitric oxide (NO). Furthermore, FPS-ZM1 attenuated AGEs-stimulated NADPH oxidase (NOX) activation and reactive oxygen species (ROS) expression. Finally, FPS-ZM1 elevated the levels of transcription factors nuclear-factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1), as well as decreased antioxidant capacity and increased production of oxidative species. Our results suggest that FPS-ZM1 may be neuroprotective through attenuating microglial activation, oxidative stress and inflammation by blocking RAGE.

  10. Oxidative Stress in Fish induced by Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Anton Kováčik

    2017-05-01

    Full Text Available Environmental pollutants represent a risk factor for human and animals in all areas of occurrence. Environmental pollution caused by anthropogenic activities is a major problem in many countries. Numbers of studies deals with cumulation of xenobiotics in tissues but not all respond to the real impact on living organisms. Freshwater fishes are exposed to several anthropogenic contaminants. The most commonly studied are three metals: mercury (Hg, lead (Pb, cadmium (Cd. These contaminants could have several impacts to oxidative stress. In the normal healthy cell, ROS and pro-oxidant products are detoxified by antioxidant defences. Redox-active or Redox-inactive metals may cause an increase in production of reactive oxygen species (ROS. Mercury has a high affinity for thiol groups, and can non-specifically affect several enzymes, e. g. GSH (glutathione, which can induce GSH depletion and oxidative stress in tissue, also can induce lipid peroxidation, and mitochondrial dysfunction. The toxicity of Cd to aquatic species depends on speciation, with the free ion, Cd2+ concentration being proportional to bioavailability. Cadmium toxicity worsened of Ca, Na, and Mg ions homeostasis. Lead can be toxic to nervous and skeletal systems; at cellular level can cause apoptosis, also can affect mitochondria, neurotransmitters, and can substitute for Ca.

  11. Are PTH levels related to oxidative stress and inflammation in chronic kidney disease patients on hemodialysis?

    Directory of Open Access Journals (Sweden)

    Marcel Jaqueto

    Full Text Available Abstract Introduction: Patients at end stage renal disease have higher levels of inflammation and oxidative stress than the general population. Many factors contribute to these issues, and the parathyroid hormone (PTH is also implicated. Objective: The study was conducted in order to assess the relationship between PTH levels and inflammation and oxidative stress in hemodialysis patients. Methods: Cross-sectional study with patients of two hemodialysis facilities in Londrina, Brazil. Patients with other conditions known to generate oxidative stress and inflammation were excluded. Blood levels of PTH and biochemical parameters of inflammation (interleukins 1 and 6, tumor necrosis factor-alpha and oxidative stress (total plasma antioxidant capacity, malonic dialdehyde, lipid hydroperoxidation, advanced oxidation protein products, quantification of nitric oxide metabolites, and 8-isoprostane were measured before a dialysis session. Then, we made correlation analyses between PTH levels - either as the continuous variable or categorized into tertiles-, and inflammatory and oxidative stress biomarkers. Results: PTH did not show any correlation with the tested inflammation and oxidative stress parameters, nor as continuous variable neither as categorical variable. Conclusion: In this descriptive study, the results suggest that the inflammation and oxidative stress of hemodialysis patients probably arise from mechanisms other than secondary hyperparathyroidism.

  12. Oxidative Stress and Periodontal Disease in Obesity.

    Science.gov (United States)

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  13. Bee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-κB and AP-1 Signaling Pathways.

    Science.gov (United States)

    Kim, Woon-Hae; An, Hyun-Jin; Kim, Jung-Yeon; Gwon, Mi-Gyeong; Gu, Hyemin; Park, Jae-Bok; Sung, Woo Jung; Kwon, Yong-Chul; Park, Kyung-Duck; Han, Sang Mi; Park, Kwan-Kyu

    2016-11-10

    Periodontitis is a chronic inflammatory disease that leads to destruction of tooth supporting tissues. Porphyromonas gingivalis ( P. gingivalis ), especially its lipopolysaccharides (LPS), is one of major pathogens that cause periodontitis. Bee venom (BV) has been widely used as a traditional medicine for various diseases. Previous studies have demonstrated the anti-inflammatory, anti-bacterial effects of BV. However, a direct role and cellular mechanism of BV on periodontitis-like human keratinocytes have not been explored. Therefore, we investigated the anti-inflammatory mechanism of BV against P. gingivalis LPS (PgLPS)-induced HaCaT human keratinocyte cell line. The anti-inflammatory effect of BV was demonstrated by various molecular biological methods. The results showed that PgLPS increased the expression of Toll-like receptor (TLR)-4 and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, and interferon (IFN)-γ. In addition, PgLPS induced activation of the signaling pathways of inflammatory cytokines-related transcription factors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). BV effectively inhibited those pro-inflammatory cytokines through suppression of NF-κB and AP-1 signaling pathways. These results suggest that administration of BV attenuates PgLPS-induced inflammatory responses. Furthermore, BV may be a useful treatment to anti-inflammatory therapy for periodontitis.

  14. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response

    Science.gov (United States)

    Sorescu, George P.; Sykes, Michelle; Weiss, Daiana; Platt, Manu O.; Saha, Aniket; Hwang, Jinah; Boyd, Nolan; Boo, Yong C.; Vega, J. David; Taylor, W. Robert; hide

    2003-01-01

    Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas.

  15. Toxicological Impact of Air Pollution Particulate Matter PM 2.5 Collected under Urban Industrial or Rural Influence Occurrence of Oxidative Stress and Inflammatory Reaction in BEAS 2B Human Bronchial Epithelial Cells Corrected Version

    International Nuclear Information System (INIS)

    Dergham, M.; Billet, S; Verdin, A.; Courcot, D.; Cazier, F.; Pirouz, Sh.; Garcon, G.

    2011-01-01

    Exposure to air pollution Particulate Matter (PM) is one of the risk factors involved in the high incidence of respiratory and cardio-vascular diseases. In this work, to integrate inter-seasonal and inter-site variations, fine particle (PM2.5) samples have been collected in spring-summer 2008) and autumn 2008-winter 2009, in Dunkerque (France) under urban or industrial influence, and in Rubrouck (France), under rural influence. Attention was paid to characterize their physico-chemical characteristics, and to determine their ability to induce oxidative stress and inflammatory response in a human bronchial epithelial cell model (BEAS-2B cell line). Physico-chemical characterization of the six PM samples showed their heterogeneities and complexities depending upon their respective natural and/or anthropogenic emission sources. Lung cytotoxicity of these air pollution PM2.5 samples, as shown in BEAS-2B cells, might rely on the induction of oxidative stress conditions and particularly on the excessive inflammatory response. (author)

  16. Evaluating the Oxidative Stress in Inflammation: Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Aroha Sánchez

    2015-07-01

    Full Text Available Oxygen is used by eukaryotic cells for metabolic transformations and energy production in mitochondria. Under physiological conditions, there is a constant endogenous production of intermediates of reactive oxygen (ROI and nitrogen species (RNI that interact as signaling molecules in physiological mechanisms. When these species are not eliminated by antioxidants or are produced in excess, oxidative stress arises. Oxidative stress can damage proteins, lipids, DNA, and organelles. It is a process directly linked to inflammation; in fact, inflammatory cells secrete a large number of cytokines and chemokines responsible for the production of ROI and RNI in phagocytic and nonphagocytic cells through the activation of protein kinases signaling. Currently, there is a wide variety of diseases capable of producing inflammatory manifestations. While, in the short term, most of these diseases are not fatal they have a major impact on life quality. Since there is a direct relationship between chronic inflammation and many emerging disorders like cancer, oral diseases, kidney diseases, fibromyalgia, gastrointestinal chronic diseases or rheumatics diseases, the aim of this review is to describe the use and role of melatonin, a hormone secreted by the pineal gland, that works directly and indirectly as a free radical scavenger, like a potent antioxidant.

  17. Viral induced oxidative and inflammatory response in Alzheimer's disease pathogenesis with identification of potential drug candidates: A systematic review using systems biology approach.

    Science.gov (United States)

    Talwar, Puneet; Gupta, Renu; Kushwaha, Suman; Agarwal, Rachna; Saso, Luciano; Kukreti, Shrikant; Kukreti, Ritushree

    2018-04-19

    Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug-Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein-Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells.

    Directory of Open Access Journals (Sweden)

    Arwa S Kathiria

    Full Text Available Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα, both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB, which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells.We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A(1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine.TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability.Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells

  19. Identification of a novel pro-inflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis

    Science.gov (United States)

    LAGGNER, Ute; DI MEGLIO, Paola; PERERA, Gayathri K.; HUNDHAUSEN, Christian; LACY, Katie E.; ALI, Niwa; SMITH, Catherine H.; HAYDAY, Adrian C.; NICKOLOFF, Brian J.; NESTLE, Frank O.

    2011-01-01

    γδ T cells mediate rapid tissue responses in murine skin and participate in cutaneous immune regulation including protection against cancer. The role of human γδ cells in cutaneous homeostasis and pathology is poorly characterized. In this study we show in vivo evidence that human blood contains a distinct subset of pro-inflammatory cutaneous lymphocyte antigen (CLA) and C-C chemokine receptor (CCR) 6 positive Vγ9Vδ2 T cells, which is rapidly recruited into perturbed human skin. Vγ9Vδ2 T cells produced an array of pro-inflammatory mediators including IL-17A and activated keratinocytes in a TNF-α and IFN-γ dependent manner. Examination of the common inflammatory skin disease psoriasis revealed a striking reduction of circulating Vγ9Vδ2 T cells in psoriasis patients compared to healthy controls and atopic dermatitis patients. Decreased numbers of circulating Vγ9Vδ2 T cells normalized after successful treatment with psoriasis-targeted therapy. Together with the increased presence of Vγ9Vδ2 T cells in psoriatic skin, this data indicates redistribution of Vγ9Vδ2 T cells from the blood to the skin compartment in psoriasis. In summary, we report a novel human pro-inflammatory γδ T cell involved in skin immune surveillance with immediate response characteristics and with potential clinical relevance in inflammatory skin disease. PMID:21813772

  20. Variable transcription of pro- and anti-inflammatory cytokines in phocine lymphocytes following canine distemper virus infection.

    Science.gov (United States)

    Seibel, H; Siebert, U; Rosenberger, T; Baumgärtner, W

    2014-10-15

    Canine distemper virus (CDV) is a highly contagious viral pathogen. Domesticated dogs are the main reservoir of CDV. Although phocine distemper virus was responsible for the recent epidemics in seals in the North and Baltic Seas, most devastating epidemics in seals were also caused by CDV. To further study the pathogenesis of CDV infection in seals, it was the aim of the present study to investigate the mechanisms of CDV induced immunosuppression in seals by analyzing the gene transcription of different pro- and anti-inflammatory cytokines in Concanavalin A (Con A) stimulated and non-stimulated phocine lymphocytes in vitro following infection with the CDV Onderstepoort (CDV-OND) strain. Phocine lymphocytes were isolated via density gradient centrifugation. The addition of 1 μg/ml Con A and virus was either performed simultaneously or lymphocytes were stimulated for 48 h with Con A prior to virus infection. Gene transcription of interleukin (IL)-6, IL-12 and tumor necrosis factor alpha (TNFα) as pro-inflammatory cytokines and IL-4, IL-10 and transforming growth factor beta (TGFβ) as anti-inflammatory cytokines were determined by using RT-qPCR. CDV-OND infection caused an initial increase of pro-inflammatory phocine cytokines mRNA 24h after infection, followed by a decrease in gene transcription after 48 h. A strong increase in the transcription of IL-4 and TGFβ was detected after 48 h when virus and mitogen were added simultaneously. An increased IL-10 production occurred only when stimulation and infection were performed simultaneously. Furthermore, an inhibition of IL-12 on IL-4 was noticed in phocine lymphocytes which were stimulated for 48 h prior to infection. In summary, the duration of the stimulation or the lymphocytes seem to have an important influence on the cytokine transcription and indicates that the outcome of CDV infection is dependent on various factors that might sensitize lymphocytes or make them more susceptible or reactive to CDV infection