WorldWideScience

Sample records for oxidative stress differences

  1. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Osredkar Joško

    2012-05-01

    Full Text Available The human organism is exposed to the influence of various forms of stress, either physical, psychological or chemical, which all have in common that they may adversely affect our body. A certain amount of stress is always present and somehow directs, promotes or inhibits the functioning of the human body. Unfortunately, we are now too many and too often exposed to excessive stress, which certainly has adverse consequences. This is especially true for a particular type of stress, called oxidative stress. All aerobic organisms are exposed to this type of stress because they produce energy by using oxygen. For this type of stress you could say that it is rather imperceptibly involved in our lives, as it becomes apparent only at the outbreak of certain diseases. Today we are well aware of the adverse impact of radicals, whose surplus is the main cause of oxidative stress. However, the key problem remains the detection of oxidative stress, which would allow us to undertake timely action and prevent outbreak of many diseases of our time. There are many factors that promote oxidative stress, among them are certainly a fast lifestyle and environmental pollution. The increase in oxidative stress can also trigger intense physical activity that is directly associated with an increased oxygen consumption and the resulting formation of free radicals. Considering generally positive attitude to physical activity, this fact may seem at first glance contradictory, but the finding has been confimed by several studies in active athletes. Training of a top athlete daily demands great physical effort, which is also reflected in the oxidative state of the organism. However, it should be noted that the top athletes in comparison with normal individuals have a different defense system, which can counteract the negative effects of oxidative stress. Quite the opposite is true for irregular or excessive physical activity to which the body is not adapted.

  2. A Different Approach to Assess Oxidative Stress in Dengue Hemorrhagic Fever Patients Through The Calculation of Oxidative Stress Index

    Directory of Open Access Journals (Sweden)

    Edi Hartoyo

    2017-09-01

    Full Text Available The objectives of this study were to determine the involvement of Oxidative Stress (OS in the pathogenesis of dengue hemorrhagic fever (DHF through the analysis of oxidative stress Index (OSI. The levels of malondialdehyde (MDA, superoxide dismutase (SOD and catalase (CAT activity, and OSI were measured in 61 child dengue patients and (aged 6 months–18 years with three different stages of DHF, i.e stage I, II, and III. The results show that the levels of MDA, SOD and CAT activity, and OSI significantly different between the group. The all parameters that investigated in this present study seems higher MDA level and OSI in the higher grade of DHF, except for SOD and CAT activity. From this result, it can be concluded that oxidative stress pathways might be involved in the pathomechanism of DHF and OSI might be used as a biomarker for OS and the severity in DHF patients.

  3. Oxidative stress status in elite athletes engaged in different sport disciplines

    OpenAIRE

    Hadžović - Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-01-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with...

  4. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pongrac, I. M.; Pavičić, I.; Milić, M.; Brkić Ahmed, L.; Babič, Michal; Horák, Daniel; Vinković Vrček, I.; Gajović, S.

    2016-01-01

    Roč. 11, 26 April (2016), s. 1701-1715 ISSN 1176-9114 R&D Projects: GA ČR(CZ) GC16-01128J EU Projects: European Commission(XE) 316120 - GLOWBRAIN Institutional support: RVO:61389013 Keywords : superparamagnetic iron oxide nanoparticles * biocompatibility * oxidative stress Subject RIV: CD - Macromolecular Chemistry

  5. Oxidative stress status in elite athletes engaged in different sport disciplines.

    Science.gov (United States)

    Hadžović-Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-05-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players): 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP) and malondialdehyde (MDA), as markers of oxidative stress and the total antioxidative capacity (ImAnOX) using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively). Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L), wrestlers (342.5 ± 36.2 μmol/L) and basketball players (347.95 ± 31.3 μmol/L). Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL) compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003). In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball) have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  6. Oxidative stress status in elite athletes engaged in different sport disciplines

    Directory of Open Access Journals (Sweden)

    Almira Hadžović - Džuvo

    2014-05-01

    Full Text Available Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players: 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP and malondialdehyde (MDA, as markers of oxidative stress and the total antioxidative capacity (ImAnOX using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively. Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L, wrestlers (342.5 ± 36.2 μmol/L and basketball players (347.95 ± 31.3 μmol/L. Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003. In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  7. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  8. Oxidative stress parameters as markers of the different trimesters in ...

    African Journals Online (AJOL)

    Pregnancy has been associated with changes in physiologic and metabolic functions accompanied by a high metabolic demand and elevated requirements for tissue oxygen with eventual increase in oxidative pressure on the antioxidant defence system of the body. Thus, it was based on this premise that some markers of ...

  9. Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema.

    Science.gov (United States)

    Lanzetti, Manuella; da Costa, Cristiane Aguiar; Nesi, Renata Tiscoski; Barroso, Marina Valente; Martins, Vanessa; Victoni, Tatiana; Lagente, Vincent; Pires, Karla Maria Pereira; e Silva, Patrícia Machado Rodrigues; Resende, Angela Castro; Porto, Luis Cristóvão; Benjamim, Cláudia Farias; Valença, Samuel Santos

    2012-12-01

    Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Pongrac IM

    2016-04-01

    Full Text Available Igor M Pongrac,1 Ivan Pavičić,2 Mirta Milić,2 Lada Brkič Ahmed,1 Michal Babič,3 Daniel Horák,3 Ivana Vinković Vrček,2 Srećko Gajović1 1School of Medicine, Croatian Institute for Brain Research, University of Zagreb, 2Institute for Medical Research and Occupational Health, Zagreb, Croatia; 3Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic Abstract: Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with D-mannose, or coated with poly-L-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions

  11. Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster.

    Science.gov (United States)

    Niveditha, S; Deepashree, S; Ramesh, S R; Shivanandappa, T

    2017-10-01

    Gender differences in lifespan and aging are known across species. Sex differences in longevity within a species can be useful to understand sex-specific aging. Drosophila melanogaster is a good model to study the problem of sex differences in longevity since females are longer lived than males. There is evidence that stress resistance influences longevity. The objective of this study was to investigate if there is a relationship between sex differences in longevity and oxidative stress resistance in D. melanogaster. We observed a progressive age-dependent decrease in the activity of SOD and catalase, major antioxidant enzymes involved in defense mechanisms against oxidative stress in parallel to the increased ROS levels over time. Longer-lived females showed lower ROS levels and higher antioxidant enzymes than males as a function of age. Using ethanol as a stressor, we have shown differential susceptibility of the sexes to ethanol wherein females exhibited higher resistance to ethanol-induced mortality and locomotor behavior compared to males. Our results show strong correlation between sex differences in oxidative stress resistance, antioxidant defenses and longevity. The study suggests that higher antioxidant defenses in females may confer resistance to oxidative stress, which could be a factor that influences sex-specific aging in D. melanogaster.

  12. Oxidative stress and hemoglobin-cholesterol adduct in renal patients with different LDL phenotypes.

    Science.gov (United States)

    Miljkovic, Milica; Kotur-Stevuljevic, Jelena; Stefanovic, Aleksandra; Zeljkovic, Aleksandra; Vekic, Jelena; Gojkovic, Tamara; Bogavac-Stanojevic, Natasa; Nikolic, Milan; Simic-Ogrizovic, Sanja; Spasojevic-Kalimanovska, Vesna; Jelic-Ivanovic, Zorana

    2016-10-01

    Unfavorable lipid profile is a major risk factor for cardiovascular disease in renal pathology. In this study, we compared chronic renal patients and healthy controls with different LDL phenotypes (A or B) in respect of various biochemical parameters related to cardiovascular disease. Oxidative stress and anti-oxidative defense parameters [thiobarbituric acid-reacting substances (TBARS), total oxidative status (TOS), total anti-oxidative status (TAS), total protein sulfhydryl (-SH) groups], as well as red blood cell cholesterol distribution were assessed in 40 renal patients and 40 control subjects by standardized assays. LDL particle diameters were determined by polyacrylamide gradient gel electrophoresis. LDL particles are subdivided according to their size into large LDL A phenotype (diameter >25.5 nm) and small LDL B phenotype (diameter ≤25.5 nm). Renal patients with LDL A phenotype had increased oxidative stress (TOS: p LDL phenotype. A notable decrease in hemoglobin-cholesterol adduct was detected in patients with LDL A phenotype (p LDL B phenotype (p LDL B phenotype was characterized with increased TBARS (p LDL A phenotype in control group. Increased oxidative stress, decreased anti-oxidative defense followed with unfavorable changes in hemoglobin-cholesterol binding capacity, could have important influence on cardiovascular disease risk in renal patients regardless of LDL phenotype.

  13. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    Science.gov (United States)

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  14. Toxicity and oxidative stress of canine mesenchymal stromal cells from adipose tissue in different culture passages

    Directory of Open Access Journals (Sweden)

    Arícia Gomes Sprada

    2015-12-01

    Full Text Available Abstract: Stem cells in regenerative therapy have received attention from researchers in recent decades. The culture of these cells allows studies about their behavior and metabolism. Thus, cell culture is the basis for cell therapy and tissue engineering researches. A major concern regarding the use of cultivated stem cell in human or veterinary clinical routine is the risk of carcinogenesis. Cellular activities require a balanced redox state. However, when there is an imbalance in this state, oxidative stress occurs. Oxidative stress contributes to cytotoxicity, which may result in cell death or genomic alterations, favoring the development of cancer cells. The aim of this study was to determine whether there are differences in the behavior of cultured mesenchymal stem cells from canine adipose tissue according to its site of collection (omentum and subcutaneous evaluating the rate of proliferation, viability, level of oxidative stress and cytotoxicity over six passages. For this experiment, two samples of adipose tissue from subcutaneous and omentum where taken from a female dog corpse, 13 years old, Pitbull. The results showed greater levels of oxidative stress in the first and last passages of both groups, favoring cytotoxicity and cell death.

  15. Uranium and cadmium provoke different oxidative stress responses in Lemna minor L.

    Science.gov (United States)

    Horemans, N; Van Hees, M; Van Hoeck, A; Saenen, E; De Meutter, T; Nauts, R; Blust, R; Vandenhove, H

    2015-01-01

    Common duckweed (Lemna minor L.) is ideally suited to test the impact of metals on freshwater vascular plants. Literature on cadmium (Cd) and uranium (U) oxidative responses in L. minor are sparse or, for U, non-existent. It was hypothesised that both metals impose concentration-dependent oxidative stress and growth retardation on L. minor. Using a standardised 7-day growth inhibition test, the adverse impact of these metals on L. minor growth was confirmed, with EC50 values for Cd and U of 24.1 ± 2.8 and 29.5 ± 1.9 μm, respectively, and EC10 values of 1.5 ± 0.2 and 6.5 ± 0.9 μm, respectively. The metal-induced oxidative stress response was compared through assessing the activity of different antioxidative enzymes [catalase, glutathione reductase, superoxide dismutase (SOD), ascorbate peroxidase (APOD), guaiacol peroxidase (GPOD) and syringaldizyne peroxidase (SPOD)]. Significant changes in almost all antioxidative enzymes indicated their importance in counteracting the U- and Cd-imposed oxidative burden. However, some striking differences were also observed. For activity of APODs and SODs, a biphasic but opposite response at low Cd compared to U concentrations was found. In addition, Cd (0.5-20 μm) strongly enhanced plant GPOD activity, whereas U inhibited it. Finally, in contrast to Cd, U up to 10 μm increased the level of chlorophyll a and b and carotenoids. In conclusion, although U and Cd induce similar growth arrest in L. minor, the U-induced oxidative stress responses, studied here for the first time, differ greatly from those of Cd. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Comparison of Oxidative Stresses Mediated by Different Crystalline Forms and Surface Modification of Titanium Dioxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Karim Samy El-Said

    2015-01-01

    Full Text Available Titanium dioxide nanoparticles (TiO2 NPs are manufactured worldwide for use in a wide range of applications. There are two common crystalline forms of TiO2 anatase and rutile with different physical and chemical characteristics. We previously demonstrated that an increased DNA damage response is mediated by anatase crystalline form compared to rutile. In the present study, we conjugated TiO2 NPs with polyethylene glycol (PEG in order to reduce the genotoxicity and we evaluated some oxidative stress parameters to obtain information on the cellular mechanisms of DNA damage that operate in response to TiO2 NPs different crystalline forms exposure in hepatocarcinoma cell lines (HepG2. Our results indicated a significant increase in oxidative stress mediated by the anatase form of TiO2 NPs compared to rutile form. On the other hand, PEG modified TiO2 NPs showed a significant decrease in oxidative stress as compared to TiO2 NPs. These data suggested that the genotoxic potential of TiO2 NPs varies with crystalline form and surface modification.

  17. Specific oxidative stress parameters differently correlate with nailfold capillaroscopy changes and organ involvement in systemic sclerosis.

    Science.gov (United States)

    Riccieri, Valeria; Spadaro, Antonio; Fuksa, Leos; Firuzi, Omidreza; Saso, Luciano; Valesini, Guido

    2008-02-01

    Oxidative stress is suggested to be involved in the pathogenesis of systemic sclerosis (SSc). The aim of the present study was to clarify such a hypothesis by determination of four different plasmatic parameters of oxidative stress, and to define its role in the microvascular damage, assessed by nailfold capillaroscopy (NC). Plasma samples of 18 patients with SSc were analyzed. The biomarkers measured were: total antioxidant capacity, hydroperoxides (ROOHs), and sulfhydryl (SH) and carbonyl (CO) groups. Each patient had a detailed clinical assessment and underwent an NC. The results showed significantly increased ROOHs in SSc patients compared to control group (5.02 +/- 0.24 vs 3.28 +/- 0.19 micromol/l; p capillaroscopy semiquantitative rating scale score (p < 0.05) and with the rating system for avascular areas (p < 0.03). The levels of CO groups inversely correlated with modified Rodnan's skin score (p < 0.039) and were lower in patients with pulmonary fibrosis (p < 0.045), while the levels of SH groups were lower in those presenting gastrointestinal involvement (p < 0.029). The obtained data indicate augmented free radical-mediated injury in SSc and also show correlations among oxidative abnormalities, some clinical findings, and signs of a more severe microvascular involvement. These results give more evidence to the connection between oxidative impairment and SSc.

  18. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  19. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    Science.gov (United States)

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  20. Fatty acid oxidation changes and the correlation with oxidative stress in different preeclampsia-like mouse models.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ding

    Full Text Available BACKGROUND: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD expression is decreased in placenta of some cases of preeclampsia (PE which may result in free fatty acid (FFA increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. METHODS: PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA or lipopolysaccharide (LPS and the antiphospholipid syndrome (APS mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups. The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre and mid-pregnancy (Mid subgroups by injection time. RESULTS: All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05. LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05 but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. CONCLUSIONS: Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway.

  1. Oxidative stress mediates the pathogenic effect of different Alzheimer's disease risk factors

    Directory of Open Access Journals (Sweden)

    Michela Guglielmotto

    2010-02-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disorder affecting the elderly population. Mechanistically, the major cause of the disease bases on the altered processing of the amyloid-β (Aβ precursor protein (APP, resulting in the accumulation and aggregation of neurotoxic forms of Aβ. Aβ derives from the sequential proteolytic cleavage of the β- and γ-secretases on APP. The causes of Aβ accumulation in the common sporadic form of Alzheimer’s disease are not completely known, but they are likely to include oxidative stress (OS. OS and Aβ are linked to each other since Aβ aggregation induces OS in vivo and in vitro, and oxidant agents increase the production of Aβ. Moreover, OS produces several effects that may contribute to synaptic function and cell death in AD. We and others have shown that the expression and activity of β-secretase (named BACE1; β-site APP cleaving enzyme is increased by oxidant agents and by lipid peroxidation product 4-hydroxynonenal and that there is a significant correlation between BACE1 activity and oxidative markers in sporadic AD. OS results from several cellular insults such as aging, hyperglycaemia, hypoxic insults that are all well known risk factors for AD development. Thus, our data strengthen the hypothesis that OS is a basic common pathway of Aβ accumulation, common to different AD risk factors.

  2. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  3. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  4. Association between Oxidative Stress and Outcome in Different Subtypes of Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Nai-Wen Tsai

    2014-01-01

    Full Text Available Objectives. This study investigated serum thiobarbituric acid-reactive substances (TBARS and free thiol levels in different subtypes of acute ischemic stroke (AIS and evaluated their association with clinical outcomes. Methods. This prospective study evaluated 100 AIS patients, including 75 with small-vessel and 25 with large-vessel diseases. Serum oxidative stress (TBARS and antioxidant (thiol were determined within 48 hours and days 7 and 30 after stroke. For comparison, 80 age- and sex-matched participants were evaluated as controls. Results. Serum TBARS was significantly higher and free thiol was lower in stroke patients than in the controls on days 1 and 7 after AIS. The level of free thiol was significantly lower in the large-vessel disease than in the small-vessel disease on day 7 after stroke. Using the stepwise logistic regression model for potential variables, only stroke subtype, NIHSS score, and serum TBARS level were independently associated with three-month outcome. Higher TBARS and lower thiol levels in the acute phase of stroke were associated with poor outcome. Conclusions. Patients with large-vessel disease have higher oxidative stress but lower antioxidant defense compared to those with small-vessel disease after AIS. Serum TBARS level at the acute phase of stroke is a potential predictor for three-month outcome.

  5. Oxidative stress responses of submerged macrophyte Vallisneria asiatica to different concentrations of cyanobacteria

    Science.gov (United States)

    Kang, Caixia; Kuba, Takahiro; Hao, Aimin; Iseri, Yasushi; Li, Chunjie; Zhang, Zhenjia

    2015-03-01

    In a 10-day aquarium experiment, this investigation examines macrophyte restoration in eutrophic Lake Taihu, the physiological effects of different plant biomass levels and of increasing natural cyanobacterial concentrations on a submerged macrophyte, Vallisneria asiatica. Cyanobacterial stress suppressed the superoxide dismutase (SOD) activity of the plant's leaves and induced the catalase (CAT) and peroxidase (POD) activities of its roots. The soluble protein content in V. asiatica decreased with an increase in natural cyanobacterial concentrations, whereas the malonaldehyde (MDA) increased significantly at chlorophyll a (Chl a) concentrations of 222 and 262 μg/L in water. V. asiatica adapted to the stress caused by cyanobacterial concentrations by adjusting its antioxidant defense system to remove the excessive reactive oxygen species when the algal Chl a concentration was >109 μg/L. Additionally, high biomass of V. asiatica (2 222 g FW/m2) can inhibit the reproduction of cyanobacteria more significantly than low biomass (1 111 g FW/m2). High biomass of V. asiatica increased the oxidative stress in an individual plant when the initial Chl a concentration in the water reached 222 and 262 μg/L, as expressed by the increased MDA in leaves, compared with low biomass of V. asiatica. This provides a basis for controlling cyanobacterial concentrations and V. asiatica biomass for the recovery of V. asiatica in eutrophic Lake Taihu.

  6. Postprandial oxidative stress in response to dextrose and lipid meals of differing size.

    Science.gov (United States)

    Bloomer, Richard J; Kabir, Mohammad M; Marshall, Kate E; Canale, Robert E; Farney, Tyler M

    2010-07-27

    We have recently noted that ingestion of dietary lipid (in the form of heavy whipping cream) leads to greater oxidative stress than dietary carbohydrate (in the form of dextrose), when consumed in isocaloric amounts. In the present investigation we attempted to replicate our work and also to determine the oxidative stress response to dextrose and lipid meals of two different kilocalorie (kcal) amounts. Nine young (22 +/- 2 years), healthy men consumed in a random order, cross-over design one of four meals/drinks: dextrose at 75 g (300 kcals), dextrose at 150 g (600 kcals), lipid at 33 g (300 kcals), lipid at 66 g (600 kcals). Blood samples were collected Pre meal, and at 30 min, 60 min, 120 min, and 180 min post meal. Samples were assayed for glucose, triglycerides (TAG), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Area under the curve (AUC) was calculated for each variable, and a 4 x 5 ANOVA was utilized to further analyze data. A meal x time effect (p = 0.0002) and a time effect was noted for glucose (p Pre, 1 hr, 2 hr, and 3 hr). The dextrose meals primarily contributed to this time effect. No other effects were noted for glucose (p > 0.05). A meal effect was noted for TAG (p = 0.01; 66 g lipid meal > 75 g and 150 g dextrose meals). No other effects were noted for TAG (p > 0.05). An AUC effect was noted for MDA (p = 0.04; 66 g lipid meal > 75 g and 150 g dextrose meals). A meal x time effect (p = 0.02) and a meal effect was noted for MDA (p = 0.004; 66 g lipid meal > 75 g and 150 g dextrose meals). No time effect was noted for MDA (p = 0.72). An AUC effect was noted for H2O2 (p = 0.0001; 66 g lipid meal > 33 g lipid meal and 75 g and 150 g dextrose meals). A meal x time effect (p = 0.0002), a meal effect (p 33 g lipid meal and 75 g and 150 g dextrose meals), and a time effect was noted for H2O2 (p Pre, 30 min, and 1 hr; 3 hr > Pre). The time effect for H2O2 was primarily influenced by the 66 g lipid meal. These data indicate that 1) minimal oxidative

  7. Postprandial oxidative stress in response to dextrose and lipid meals of differing size

    Directory of Open Access Journals (Sweden)

    Canale Robert E

    2010-07-01

    Full Text Available Abstract We have recently noted that ingestion of dietary lipid (in the form of heavy whipping cream leads to greater oxidative stress than dietary carbohydrate (in the form of dextrose, when consumed in isocaloric amounts. Objective In the present investigation we attempted to replicate our work and also to determine the oxidative stress response to dextrose and lipid meals of two different kilocalorie (kcal amounts. Design Nine young (22 ± 2 years, healthy men consumed in a random order, cross-over design one of four meals/drinks: dextrose at 75 g (300 kcals, dextrose at 150 g (600 kcals, lipid at 33 g (300 kcals, lipid at 66 g (600 kcals. Blood samples were collected Pre meal, and at 30 min, 60 min, 120 min, and 180 min post meal. Samples were assayed for glucose, triglycerides (TAG, malondialdehyde (MDA, and hydrogen peroxide (H2O2. Area under the curve (AUC was calculated for each variable, and a 4 × 5 ANOVA was utilized to further analyze data. Results A meal × time effect (p = 0.0002 and a time effect was noted for glucose (p Pre, 1 hr, 2 hr, and 3 hr. The dextrose meals primarily contributed to this time effect. No other effects were noted for glucose (p > 0.05. A meal effect was noted for TAG (p = 0.01; 66 g lipid meal > 75 g and 150 g dextrose meals. No other effects were noted for TAG (p > 0.05. An AUC effect was noted for MDA (p = 0.04; 66 g lipid meal > 75 g and 150 g dextrose meals. A meal × time effect (p = 0.02 and a meal effect was noted for MDA (p = 0.004; 66 g lipid meal > 75 g and 150 g dextrose meals. No time effect was noted for MDA (p = 0.72. An AUC effect was noted for H2O2 (p = 0.0001; 66 g lipid meal > 33 g lipid meal and 75 g and 150 g dextrose meals. A meal × time effect (p = 0.0002, a meal effect (p 33 g lipid meal and 75 g and 150 g dextrose meals, and a time effect was noted for H2O2 (p Pre, 30 min, and 1 hr; 3 hr > Pre. The time effect for H2O2 was primarily influenced by the 66 g lipid meal. Conclusions

  8. Oxidative Stress in BPH.

    Science.gov (United States)

    Savas, M; Verit, A; Ciftci, H; Yeni, E; Aktan, E; Topal, U; Erel, O

    2009-01-01

    In the present study, we investigated the relationship between potency of oxidative stress and BPH and this may assist to contribute to the realistic explanation of the ethiopathogenesis of BPH. Seventy four newly diagnosed men with BPH (mean age: 54+/-11.2), who had not undergone any previous treatment for BPH, and 62 healthy volunteers (mean age: 55+/-14) were enrolled in the present study. To determine the antioxidative status of plasma, total antioxidant capacity (TAC) was calculated, and to determine the oxidative status of plasma (TOS) total peroxide levels were measured. The ratio of TAC to total peroxide was accepted as an indicator of oxidative stress (OSI). Data are presented as mean SD +/- unless specified. Student t-test and correlation analyses were used to evaluate the statistical significance differences in the median values recorded for all parameters between BPH and control group. Plasma TAC TOS were found in patients and controls (1.70 +/- 0.32, 1.68 +/- 0.19 micromol Trolox Equiv./L), (12.48 +/- 1.98, 12.40 +/- 1.14 micromol / L) respectively. OSI was calculated as 7.57 +/- 1.91, 7.48 +/- 1.33, respectively. Plasma TAC, TOS and OSI levels were not found to be significantly difference between patients and control subjects (p>0.05, p>0.05, p>0.05). The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis.

  9. Differences in oxidative stress between young Canada geese and mallards exposed to lead-contaminated sediment

    Science.gov (United States)

    Mateo, R.; Hoffman, D.J.

    2001-01-01

    Lead (Pb) exposure causes an increase in tissue lipid peroxides and variation in glutathione (GSH) concentration, which can be related to peroxidative damage of cell membranes in Pb poisoned animals. Species and individual variation in sensitivity to Pb poisoning among animals may be due to differential resistance to oxidative stress. We compared the effects of oxidative stress caused by Pb exposure (1.7, 414 and 828 ig/g of diet) for the first six weeks in growing young of two species of waterfowl, Canada geese (Branta canadensis) and mallards (Anas platyrhynchos), with the first species being possibly more sensitive to Pb poisoning based on previous field and laboratory observations. Blood and liver Pb concentrations increased more in mallards than in geese; this may be explained on the basis of body weight, being 3.2 times higher in geese, and hepatic metabolism where GSH-S-transferase activity is 2.9 fold higher in geese and presumably has a role in the binding of Pb to GSH and subsequent biliary excretion. In contrast, mallards showed higher hepatic levels of GSH and activities of GSH peroxidase (GPX) and GSH reductase (GR). Although both species showed an increase in hepatic GSH concentration with Pb exposure, the increase of lipid peroxidation with Pb exposure was more significant in geese. Within treatment groups, hepatic GSH concentrations were inversely related to liver Pb concentration in both species, which may correspond to the role of GSH in Pb excretion. Hepatic GSH was also inversely related to hepatic lipid peroxidation, but only in mallards and in agreement with the differences observed in GPX and GR activities. The lower resistance to lipid peroxidation of Canada geese may explain why birds of this species found dead in the field by Pb shot ingestion often have a lower number of shot in the gizzard and lower liver Pb concentrations than mallards.

  10. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    Directory of Open Access Journals (Sweden)

    Ohayon-Courtès Céline

    2011-03-01

    Full Text Available Abstract Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial and HK-2 (epithelial proximal cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential.

  11. Critical Difference and Biological Variation in Biomarkers of Oxidative Stress and Nutritional Status in Athletes.

    Directory of Open Access Journals (Sweden)

    Nathan A Lewis

    Full Text Available The longitudinal monitoring of oxidative stress (OS in athletes may enable the identification of fatigued states and underperformance. The application of OS biomarker monitoring programs in sport are hindered by reliability and repeatability of in-the-field testing tools, the turnaround of results, and the understanding of biological variation (BV. Knowledge of BV and critical difference values (CDV may assist with data interpretation in the individual athlete.We aimed firstly to assess the repeatability of the clinical point of care redox test, Free Oxygen Radical Test (FORT and the Free Oxygen Radical Defence (FORD in trained participants and elite athletes and secondly to calculate the analytical, BV, CDV and index of individuality (II for FORT, FORD, red blood cell glutathione, lutein, α and γ-tocopherol. Part 1: Fifteen elite athletes were sampled in duplicate for calculation of the repeatability of the FORT and FORD tests. Part 2: Twelve well-trained athletes had venous samples drawn every 2 hours from 0800 to 1800 for calculation of BV, CDV, II for FORT, FORD, RBC GSH, lutein, α-tocopherol and γ-tocopherol.Repeatability of the FORT and FORD assay was 3.9% and 3.7% respectively. Biomarker CDV ranged from 12.8% to 37%, with a circadian effect for FORT, α-tocopherol and γ-tocopherol (p<0.01, with all biomarker indices of individuality < 0.8 arbitrary units.We report that the use of the novel redox test in athletes is practical, and the generation of BV and CDV for biomarkers of OS enhances the interpretation of physiologically meaningful changes in individuals above the use of clinical reference ranges alone.

  12. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  13. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  14. Markers of Oxidative Stress in Human Milk do not Differ by Maternal BMI But are Related to Infant Growth Trajectories.

    Science.gov (United States)

    Young, Bridget E; Patinkin, Zachary W; Pyle, Laura; de la Houssaye, Becky; Davidson, Barbara S; Geraghty, Sheela; Morrow, Ardythe L; Krebs, Nancy

    2017-06-01

    Objective Obesity in adults is associated with inflammation and oxidative stress. Whether or not this phenotype is reflected in human milk (HM) composition, or may impact infant growth remains unknown. We investigated whether HM from overweight/obese (OW/Ob) mothers exhibited higher concentrations of inflammatory cytokines and markers of oxidative stress. We also correlated these bioactive components with infant growth patterns. Methods This was an observational cohort of 56 breastfeeding mothers and their infants [33 normal weight (NW) and 23 OW/Ob]. Infants were followed until 6 months of age and HM collected at 2-weeks and 4-months. Results Markers of oxidative stress, 8-hydroxy-deoxyguanosine (8OHdG) and 4-hydroxynonenol (HNE), decreased in HM over time (p < 0.001) and did not differ between NW and OW/Ob women. Concentrations of inflammatory cytokines, IL-6, IL-8, and TNF-α, were all inter-correlated (p < 0.001) but did not differ between NW and OW/Ob women. HM fat, protein, lactose, and total calories did not differ between NW and OW/Ob women. Infant growth patterns did not differ by group. In a model of infant weight-for-length-Z score trajectory, there was a significant interaction between both lactose and 8OHdG with maternal group: HM lactose and 8OHdG concentrations were both positively associated with increases in WLZ trajectory only among infants breastfed by OW/Ob mothers. Conclusions for Practice HM composition was relatively stable between NW and OW/Ob women. In exclusively breastfed infants, HM concentrations of lactose and 8OHdG, a marker of oxidative stress, may contribute to regulation of infant weight gain, especially among infants of OW/Ob women.

  15. Two Lactococcus lactis thioredoxin paralogues play different roles in responses to arsenate and oxidative stress

    DEFF Research Database (Denmark)

    Efler, Petr; Kilstrup, Mogens; Johnsen, Stig

    2015-01-01

    Thioredoxin (Trx) maintains intracellular thiol groups in a reduced state and is involved in a wide range of cellular processes, including ribonucleotide reduction, sulphur assimilation, oxidative stress responses and arsenate detoxification. The industrially important lactic acid bacterium...... Lactococcus lactis contains two Trxs. TrxA is similar to the well-characterized Trx homologue from Escherichia coli and contains the common WCGPC active site motif, while TrxD is atypical and contains an aspartate residue in the active site (WCGDC). To elucidate the physiological roles of the two Trx...... to the wild-type. The lack of TrxA also appears to impair methionine sulphoxide reduction. Both ΔtrxA and ΔtrxD strains displayed growth inhibition after treatment with sodium arsenate and tellurite as compared with the wild-type, suggesting partially overlapping functions of TrxA and TrxD. Overall...

  16. Effect of oxidative stress on racial differences in vascular function at rest and during hand grip exercise.

    Science.gov (United States)

    Kappus, Rebecca M; Bunsawat, Kanokwan; Brown, Michael D; Phillips, Shane A; Haus, Jacob M; Baynard, Tracy; Fernhall, Bo

    2017-10-01

    African-Americans have a higher prevalence of hypertension compared with whites, possibly due to elevated oxidative stress and subsequent vascular dysfunction. It is unclear the contribution of aging on oxidative stress and vascular function in a racially diverse cohort. Ninety-three young and older African-American and white participants received antioxidant (AOX) or placebo supplementation in a double-blind, randomized, cross-over design. Measures of endothelial function (reactive hyperemia, flow-mediated dilation), exercise blood flow, and biomarkers of oxidative stress and AOX activity were measured following supplementation. In young adults, there were racial differences in resistance vessel response to reactive hyperemia and no effects of race on macrovascular function following AOX supplementation. Following AOX supplementation, older white adults improved while African-Americans reduced resistance vessel function responses to reactive hyperemia, whereas macrovascular function improved in both races, with a greater increase in African-Americans. There were racial differences in blood flow normalized to lean mass during handgrip exercise at 20% maximal voluntary contraction in the young group and AOX supplementation led to increased forearm vascular conductance in older whites with a decrease in older African-Americans. There was a supplement effect in superoxide dismutase activity in younger adults only. The results of the current study show that there are differential effects of AOX supplementation on macrovascular and resistance vessel function, and this is impacted by both age and race.

  17. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress

    DEFF Research Database (Denmark)

    Akbari, M; Otterlei, M; Pena Diaz, Javier

    2007-01-01

    , indicating regulatory effects of oxidative stress on mitochondrial BER. To examine the overall organization of uracil-BER in nuclei and mitochondria, we constructed cell lines expressing EYFP (enhanced yellow fluorescent protein) fused to UNG1 or UNG2. These were used to investigate the possible presence...... BER processes are differently organized. Furthermore, the upregulation of mRNA for mitochondrial UNG1 after oxidative stress indicates that it may have an important role in repair of oxidized pyrimidines....

  18. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India); Kalita, Jayantee, E-mail: jayanteek@yahoo.com [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India); Bora, Himangsu K. [National Laboratory Animal Centre, CSIR-Central Drug Research Institute, Lucknow (India); Misra, Usha K. [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India)

    2016-02-15

    Copper (Cu) at a higher level becomes toxic and it can catalyze the formation of highly reactive hydroxyl radical. We report the vulnerability of liver, kidney and brain to different dose of copper sulfate (CuSO{sub 4}) induced oxidative stress at different time duration. Fifty-four male Wistar rats (weight range = 205 ± 10 g) were equally divided into three groups. CuSO{sub 4} was administered orally to the experimental groups (Group-II and III) up to 90 days in a dose of 100 and 200 mg/Kg body weight per day. Saline water was given to the control group (Group-I). At the end of 30, 60 and 90 days of administration, neurobehavioral studies were done and six rats from each group were sacrificed. Their liver, kidney and brain tissues were subjected for Cu, glutathione (GSH), malondialdehyde (MDA) and total antioxidant capacity (TAC) assay. Blood urea nitrogen (BUN), serum creatinine, bilirubin and transaminases were measured. GSH, TAC and MDA levels were correlated with the markers of respective organ dysfunction. Administration of CuSO{sub 4} resulted in increased free Cu and MDA level, and decrease GSH and TAC levels in group-II and III compared with group-I. In experimental groups, the reduction in TAC and GSH levels was maximum in liver tissue followed by brain and kidney; whereas increase in MDA level was highest in liver followed by brain and kidney at 30, 60 and 90 days. TAC and GSH levels in the liver inversely correlated with serum transaminases and bilirubin, and tissue free Cu, and positively correlated with MDA levels. Free Cu level in kidney tissue and BUN inversely correlated with TAC and GSH, and positively with MDA level. Grip-strength, rotarod and Y-maze findings were inversely correlated with brain free Cu and MDA levels and positively with GSH and TAC levels. The oxidative stress was highest in liver followed by brain and kidney after oral CuSO{sub 4} exposure in a rat model. These levels correlated with the respective organ dysfunction and tissue

  19. Comparative analyses reveal different consequences of two oxidative stress inducers, gamma irradiation and potassium tellurite, in the extremophile Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Narasimha, Anaganti; Basu, Bhakti; Apte, Shree Kumar

    2014-01-01

    Proteomic and mass spectrometric analyses revealed differential responses of D. radiodurans to two oxidative stressors. While both elicited oxidative stress alleviation response, major divergence was observed at the level of DNA repair, metabolic pathways and protein homeostasis. Response to gamma irradiation was focused on DNA repair and ROS scavenging but supported metabolism as well as protein homeostasis. Tellurite, induced oxidative stress alleviation but decreased reducing affected and adversely affected metabolism and protein homeostasis

  20. Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish

    International Nuclear Information System (INIS)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Li, Wei-Ye

    2016-01-01

    Highlights: • Zn and Cd induced some differences in oxidative damage in the liver of zebrafish. • Zn and Cd enhanced expression of Cu/Zn-SOD and CAT through Nrf2 pathway. • Zn and Cd did not affected protein levels of CAT. • Cd inhibited biological activities of Cu/Zn-SOD and CAT proteins. • Zn stimulated activity and protein levels of Cu/Zn-SOD. - Abstract: Based on the same toxic level of 0.6% LC_5_0 for 96-h and the severe situation of water pollution, we compared effects of chronic Zn (180 μg L"−"1) and Cd exposures (30 μg L"−"1) on growth, survival, histology, ultrastructure, and oxidative stress in the liver of zebrafish for 5 weeks. Growth performance and survival rate remained relatively constant under Zn stress, but was reduced under Cd exposure. Cd exposure also induced severe pyknotic nuclei, evident ultrastructure damage, and considerable lipid inclusions in the hepatocytes. However, these phenomena were not pronounced under Zn exposure. The negative effects caused by Cd may be explained by an increase in hepatic oxidative damage, as reflected by the enhanced levels of lipid peroxidation (LPO) and protein carbonylation (PC). The reduced activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and catalase (CAT) may result in the enhanced hepatic oxidative damage, though the mRNA and protein levels of both genes increased and remained unchanged respectively. On the contrary, Zn up-regulated the levels of mRNA, protein and activity of Cu/Zn-SOD, which may contribute to the decreased LPO levels. Nonetheless, the sharply up-regulated mRNA levels of CAT did not induce an increase in the protein and activity levels of CAT under Zn stress. Furthermore, transcription factor NF-E2-related factor 2 (Nrf2) expression parelleled with its target genes, suggesting that Nrf2 is required for the protracted induction of antioxidant genes. In conclusion, our data demonstrated that essential and non-essential metals induced some differences in oxidative damage

  1. Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com [National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022 (China); Yuan, Shuang-Shuang; Wu, Chang-Wen [National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022 (China); Li, Wei-Ye [Zhoushan fisheries research institute, Zhoushan 316022 (China)

    2016-08-15

    Highlights: • Zn and Cd induced some differences in oxidative damage in the liver of zebrafish. • Zn and Cd enhanced expression of Cu/Zn-SOD and CAT through Nrf2 pathway. • Zn and Cd did not affected protein levels of CAT. • Cd inhibited biological activities of Cu/Zn-SOD and CAT proteins. • Zn stimulated activity and protein levels of Cu/Zn-SOD. - Abstract: Based on the same toxic level of 0.6% LC{sub 50} for 96-h and the severe situation of water pollution, we compared effects of chronic Zn (180 μg L{sup −1}) and Cd exposures (30 μg L{sup −1}) on growth, survival, histology, ultrastructure, and oxidative stress in the liver of zebrafish for 5 weeks. Growth performance and survival rate remained relatively constant under Zn stress, but was reduced under Cd exposure. Cd exposure also induced severe pyknotic nuclei, evident ultrastructure damage, and considerable lipid inclusions in the hepatocytes. However, these phenomena were not pronounced under Zn exposure. The negative effects caused by Cd may be explained by an increase in hepatic oxidative damage, as reflected by the enhanced levels of lipid peroxidation (LPO) and protein carbonylation (PC). The reduced activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and catalase (CAT) may result in the enhanced hepatic oxidative damage, though the mRNA and protein levels of both genes increased and remained unchanged respectively. On the contrary, Zn up-regulated the levels of mRNA, protein and activity of Cu/Zn-SOD, which may contribute to the decreased LPO levels. Nonetheless, the sharply up-regulated mRNA levels of CAT did not induce an increase in the protein and activity levels of CAT under Zn stress. Furthermore, transcription factor NF-E2-related factor 2 (Nrf2) expression parelleled with its target genes, suggesting that Nrf2 is required for the protracted induction of antioxidant genes. In conclusion, our data demonstrated that essential and non-essential metals induced some differences in

  2. Oxidative Stress in Myopia

    Directory of Open Access Journals (Sweden)

    Bosch-Morell Francisco

    2015-01-01

    Full Text Available Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  3. Comparative transcriptome analysis of Aspergillus flavus isolates under different oxidative stresses and culture media

    Science.gov (United States)

    Aspergillus flavus and aflatoxin contamination in the field are known to be influenced by numerous stress factors, particularly drought and heat stress. However, the purpose of aflatoxin production is unknown. Here, we report transcriptome analyses comprised of 282.6 Gb of sequencing data describing...

  4. Oxidative stress in primary glomerular diseases

    DEFF Research Database (Denmark)

    Markan, Suchita; Kohli, Harbir Singh; Sud, Kamal

    2008-01-01

    To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure.......To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure....

  5. Evaluation of different vitamin E recommendations and bioactivity of α-tocopherol isomers in broiler nutrition by measuring oxidative stress in vivo and the oxidative stability of meat.

    Science.gov (United States)

    Voljc, M; Frankic, T; Levart, A; Nemec, M; Salobir, J

    2011-07-01

    The aim of this study was to compare recommendations for vitamin E supplementation regarding high polyunsaturated fatty acid intake and to compare the bioactivity of RRR- and all-rac-α-tocopherol with respect to oxidative stress in vivo and the oxidative stability of broiler meat. Fifty male broilers were divided into 5 groups. All groups received diets with a high inclusion of fat (7.5%), one with palm fat and the others with linseed oil, which were either unsupplemented or supplemented with vitamin E to contain in total 85 or 200 IU of vitamin E as all-rac-α-tocopherol and 85 IU as RRR-α-tocopherol. Oxidative stress in vivo was studied by measuring the DNA damage; measuring malondialdehyde (MDA) in plasma, liver, and breast muscle; and analyzing the antioxidant capacity of the lipid-soluble compounds, total antioxidant status of plasma, and antioxidant enzyme assays. The tocopherols in plasma, liver, and breast muscle were also analyzed. In vitro oxidative stability was studied by measuring MDA in fresh, stored, and heat-treated breast meat. Linseed oil, as opposed to palm fat, induced DNA fragmentation and MDA formation. Both forms and concentrations of vitamin E reduced DNA damage and breast muscle MDA. The groups receiving 200 IU of all-rac-α-tocopherol and 85 IU of RRR-α-tocopherol had much higher values for antioxidant capacity of lipid-soluble compounds than did the controls. No differences were observed in the values of antioxidant enzymes. The α-tocopherol levels in tissues and plasma were significantly influenced by the level of α-tocopherol supplementation. Malondialdehyde formation in meat from the vitamin E-supplemented groups was decreased in comparison with that from the control linseed oil group. We conclude that both vitamin E concentrations were insufficient to prevent all harmful effects of lipid oxidation in vivo and that both were equally effective. On the contrary, to ensure good stability of meat lipids, higher vitamin E

  6. Gene expression profiles of Aspergillus flavus isolates responding to oxidative stress in different culture media

    Science.gov (United States)

    Aflatoxin contamination of peanut by Aspergillus flavus is exacerbated by drought stress. Drought also stimulates the production of reactive oxygen species (ROS) in plant tissues implying a correlation between ROS and aflatoxin production. Here, we performed gene expression analysis by RNAseq of tox...

  7. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    Science.gov (United States)

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. © 2013.

  8. The Effects Of Two Fitness Programs With Different Metabolic Demands On Oxidative Stress In The Blood Of Young Females

    Directory of Open Access Journals (Sweden)

    Djordjevic Dusica

    2015-06-01

    Full Text Available The aim of the present study was to assess the effects of two metabolically different exercise programs on the redox state of women who were physically inactive before the beginning of the study. For this purpose, participants (women 25±5 years old chose one of two popular fitness programs, Pilates or Tae Bo, and attended it 3 times a week for 12 weeks. At the beginning and end of the study, body composition analysis and venous blood sampling were performed. The levels of superoxide anion radical, hydrogen peroxide, nitric oxide and lipid peroxidation were measured in plasma, and the levels of reduced glutathione and the activity of superoxide dismutase and catalase were measured in erythrocytes. Only the Tae Bo program induced changes (positive in body composition, whereas both exercise programs induced slight oxidative stress in exercisers. In the Tae Bo group, the levels of hydrogen peroxide were significantly increased, whereas the levels of reduced glutathione were decreased after three months of training. In the Pilates group, hydrogen peroxide and catalase activity were increased, and nitrites decreased. However, at the end of the study, those two groups had no significantly different values for any pro/antioxidant compared with the subjects who served as controls. This finding suggests that moderate physical activity, such as recreational fitness programs, may induce the increased production of reactive oxygen species but do not lead to a serious disturbance of the redox homeostasis of exercisers.

  9. Effects of acute ingestion of different fats on oxidative stress and inflammation in overweight and obese adults

    Directory of Open Access Journals (Sweden)

    Peairs Abigail D

    2011-11-01

    Full Text Available Abstract Background Studies show that obese individuals have prolonged elevations in postprandial lipemia and an exacerbated inflammatory response to high fat meals, which can increase risk for cardiovascular diseases. As epidemiological studies indicate an association between type of fat and circulating inflammatory markers, the purpose of this study was to investigate the acute effect of different fat sources on inflammation and oxidative stress in overweight and obese individuals. Methods Eleven overweight and obese subjects consumed three high fat milkshakes rich in monounsaturated fat (MFA, saturated fat (SFA, or long-chain omega 3 polyunsaturated fat (O3FA in random order. Blood samples collected at baseline, 1, 2, 4, and 6 hours postprandial were analyzed for markers of inflammation (soluble intercellular adhesion molecule-1 (ICAM-1, vascular cell adhesion molecule-1 (VCAM-1, tumor necrosis factor- α (TNF-α, and C-reactive protein (CRP, oxidative stress (8-epi-prostaglandin-F2α (8-epi and nuclear factor-κB (NF-κB, and metabolic factors (glucose, insulin, non-esterified free fatty acids, and triglycerides (TG. Results O3FA enhanced NF-kB activation compared to SFA, but did not increase any inflammatory factors measured. Conversely, SFA led to higher ICAM-1 levels than MFA (p = 0.051, while MFA increased TG more than SFA (p Conclusions While most of the inflammatory factors measured had modest or no change following the meal, ICAM-1 and NF-κB responded differently by meal type. These results are provocative and suggest that type of fat in meals may differentially influence postprandial inflammation and endothelial activation.

  10. Residual stress determination in oxide layers at different length scales combining Raman spectroscopy and X-ray diffraction: Application to chromia-forming metallic alloys

    Science.gov (United States)

    Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe

    2017-11-01

    In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.

  11. Oxidative stress and the evolution of sex differences in life span and ageing in the decorated cricket, Gryllodes sigillatus.

    Science.gov (United States)

    Archer, Catharine R; Sakaluk, Scott K; Selman, Colin; Royle, Nick J; Hunt, John

    2013-03-01

    The Free Radical Theory of Ageing (FRTA) predicts that oxidative stress, induced when levels of reactive oxygen species exceed the capacity of antioxidant defenses, causes ageing. Recently, it has also been argued that oxidative damage may mediate important life-history trade-offs. Here, we use inbred lines of the decorated cricket, Gryllodes sigillatus, to estimate the genetic (co)variance between age-dependent reproductive effort, life span, ageing, oxidative damage, and total antioxidant capacity within and between the sexes. The FRTA predicts that oxidative damage should accumulate with age and negatively correlate with life span. We find that protein oxidation is greater in the shorter lived sex (females) and negatively genetically correlated with life span in both sexes. However, oxidative damage did not accumulate with age in either sex. Previously we have shown antagonistic pleiotropy between the genes for early-life reproductive effort and ageing rate in both sexes, although this was stronger in females. In females, we find that elevated fecundity early in life is associated with greater protein oxidation later in life, which is in turn positively correlated with the rate of ageing. Our results provide mixed support for the FRTA but suggest that oxidative stress may mediate sex-specific life-history strategies in G. sigillatus. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  12. Circulating and PBMC Lp-PLA2 associate differently with oxidative stress and subclinical inflammation in nonobese women (menopausal status.

    Directory of Open Access Journals (Sweden)

    Jean Kyung Paik

    with high ox-LDL. We also demonstrated that circulating Lp-PLA(2 and PBMC secreted Lp-PLA(2 associate differently with markers of oxidative stress and sub clinical inflammation in nonobese women, particularly according to the menopausal states.

  13. Oxidative stress and antioxidative mechanisms in tomato (solanum lycopersicum l.) plants sprayed with different pesticides

    International Nuclear Information System (INIS)

    Yildiztekin, M.; Kaya, C.

    2015-01-01

    A glasshouse experiment was conducted to appraise the influence of exogenously applied pesticides such as abamectin, thiamethoxam, pyriproxyfen and acetamiprid on oxidative defence system and some key physiological attributes in tomato (Solanum lycopersicum L.). Each of these pesticides was applied in three doses (recommended dose, twice and three times higher than the recommended dose). Higher doses of pesticides sprayed to the plants resulted in marked increase in leaf free proline content and electrolyte leakage, but in a decrease in shoot dry matter, chl a, chl b and chl a+b in tomato plants as compared to those plants not sprayed with pesticides. These reductions were greater in tomato plants sprayed with highest doses of thiamethoxam (144 mg L-1), whereas the reverse was true for proline content and electrolyte leakage. The foliar application of pesticides at the highest levels caused enhanced accumulation of malondialdehyde (MDA) in most cases, and these being greater in treatment of foliar application of thiamethoxam at the highest level. The highest doses of pesticides promoted the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) in most cases. The results clearly indicate that application of pesticides at higher doses than recommended doses provoked both oxidative and antioxidative systems in tomato plants. (author)

  14. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review.

    Science.gov (United States)

    Junaid, Muhammad; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Pei, De-Sheng

    2016-10-01

    The present review focused on the levels and toxicological status of heavy metals especially chromium (Cr) in the exposed workers from different occupational settings around the globe and in Pakistan. It was found that exposed workers from leather tanning and metal plating units showed elevated levels of Cr than the workers from other occupational settings. Cr and other heavy metals level in biological matrices of the exposed workers in different occupational settings revealed that developing countries are severely contaminated. Occupational settings from the Sialkot district, Pakistan exhibited elevated level of Cr in biological entities of the exposed workers. Review suggested that higher level of Cr exposure to the workers enhance the oxidative stress (reactive oxygen species (ROS) and hydroxyl (OH) radical generation) which may cause; cellular and molecular damage such as genotoxicity and chromosomal aberration formations, and carcinogenic effects. This review will help to understand the Cr contamination mechanisms and associated health implications in different occupational settings around the globe in general and particularly to Pakistan. This study will also assist occupational health and safety management authorities to devise or change the Cr recommended exposure limits (REL) for different occupational settings.

  15. Comparison of different test methods to assess thermal stresses of metal oxide surge arresters under pollution conditions

    International Nuclear Information System (INIS)

    Bargigia, A.; de Nigris, M.; Pigini, A.; Sironi, A.

    1992-01-01

    The report deals with the research conducted by ENEL, the Italian Electricity Board, to assess the performance of zinc oxide surge arresters under pollution condition, with special reference to the consequent thermal stress on internal active parts which can affect the energy handling capabality of the arrester and may lead, in particular conditions, even to thermal runaway

  16. Nutrients and Oxidative Stress: Friend or Foe?

    Science.gov (United States)

    Tan, Bee Ling; Norhaizan, Mohd Esa; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF- κ B-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  17. Nutrients and Oxidative Stress: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Bee Ling Tan

    2018-01-01

    Full Text Available There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB- mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD, and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs. Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  18. BRCA1 and Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Yong Weon; Kang, Hyo Jin [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Bae, Insoo, E-mail: ib42@georgetown.edu [Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States); Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057 (United States)

    2014-04-03

    The breast cancer susceptibility gene 1 (BRCA1) has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS) is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  19. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects after prolonged culture in a low non-stimulating glucose concentration.

    Science.gov (United States)

    Roma, L P; Pascal, S M; Duprez, J; Jonas, J-C

    2012-08-01

    Pancreatic beta cells chronically exposed to low glucose concentrations show signs of oxidative stress, loss of glucose-stimulated insulin secretion (GSIS) and increased apoptosis. Our aim was to confirm the role of mitochondrial oxidative stress in rat islet cell apoptosis under these culture conditions and to evaluate whether its reduction similarly improves survival and GSIS. Apoptosis, oxidative stress-response gene mRNA expression and glucose-induced stimulation of mitochondrial metabolism, intracellular Ca(2+) concentration and insulin secretion were measured in male Wistar rat islets cultured for 1 week in RPMI medium containing 5-10 mmol/l glucose with or without manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) or N-acetyl-L-: cysteine (NAC). Oxidative stress was measured in islet cell clusters cultured under similar conditions using cytosolic and mitochondrial redox-sensitive green fluorescent protein (roGFP1/mt-roGFP1). Prolonged culture in 5 vs 10 mmol/l glucose increased mt-roGFP1 (but not roGFP1) oxidation followed by beta cell apoptosis and loss of GSIS resulting from reduced insulin content, mitochondrial metabolism, Ca(2+) influx and Ca(2+)-induced secretion. Tolbutamide-induced, but not high K(+)-induced, Ca(2+) influx was also suppressed. Under these conditions, MnTBAP, but not NAC, triggered parallel ~50-70% reductions in mt-roGFP1 oxidation and beta cell apoptosis, but failed to protect against the loss of GSIS despite significant improvement in glucose-induced and tolbutamide-induced Ca(2+) influx. Mitochondrial oxidative stress contributes differently to rat pancreatic islet cell apoptosis and insulin secretory defects during culture in a low glucose concentration. Thus, targeting beta cell survival may not be sufficient to restore insulin secretion when beta cells suffer from prolonged mitochondrial oxidative stress, e.g. in the context of reduced glucose metabolism.

  20. Oxidative stress responses in gills of tilapia (Oreochromis niloticus) at different salinities

    Science.gov (United States)

    Handayani, Kiki Syaputri; Novianty, Zahra; Saputri, Miftahul Rohmah; Irawan, Bambang; Soegianto, Agoes

    2017-08-01

    The objective of present study is to evaluate the impact of different salinities on the levels of CAT, GSH and MDA of the gills of Nile tilapia (Oreochromis niloticus). Nile tilapia was treated by exposure to salinities concentration 0 ‰, 5 ‰ and 10 ‰. Research models were weakened and sacrificed, then took the left and right sides of the gills. The result of gills homogenity was centrifuged for supernatan, then supernatan was proceed with testing levels of CAT, GSH and MDA by ELISA assay methods. The levels of CAT in gills were significantly higher at 10 ‰ than at 5 ‰ and 0 ‰. The levels of GSH in gills were significantly higher at 0 ‰ than 5 ‰. The levels of GSH in gills at 5 ‰ and 10 ‰ salinities were not significantly different. The levels of MDA in gills at salinity 10 ‰ and 5 ‰ were higher than in control gills at 0 ‰ salinities. This occurs because the salinity of 10 ‰ salinity was optimal for live of fish tilapia. In conclusion, salinity impact the increasing of CAT, GSH, and MDA levels in gills of Nile tilapia.

  1. Oxidative stress, aging, and diseases

    Directory of Open Access Journals (Sweden)

    Liguori I

    2018-04-01

    Full Text Available Ilaria Liguori,1 Gennaro Russo,1 Francesco Curcio,1 Giulia Bulli,1 Luisa Aran,1 David Della-Morte,2,3 Gaetano Gargiulo,4 Gianluca Testa,1,5 Francesco Cacciatore,1,6 Domenico Bonaduce,1 Pasquale Abete1 1Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy; 2Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; 3San Raffaele Roma Open University, Rome, Italy; 4Division of Internal Medicine, AOU San Giovanni di Dio e Ruggi di Aragona, Salerno, Italy; 5Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy; 6Azienda Ospedaliera dei Colli, Monaldi Hospital, Heart Transplantation Unit, Naples, Italy Abstract: Reactive oxygen and nitrogen species (RONS are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxidative stress occurs from the imbalance between RONS production and these antioxidant defenses. Aging is a process characterized by the progressive loss of tissue and organ function. The oxidative stress theory of aging is based on the hypothesis that age-associated functional losses are due to the accumulation of RONS-induced damages. At the same time, oxidative stress is involved in several age-related conditions (ie, cardiovascular diseases [CVDs], chronic obstructive pulmonary disease, chronic kidney disease, neurodegenerative diseases, and cancer, including sarcopenia and frailty. Different types of oxidative stress biomarkers have been identified and may provide important information about the efficacy of the treatment, guiding the selection of the most effective drugs/dose regimens for patients and, if particularly relevant from a pathophysiological point of view, acting on a specific therapeutic target. Given the important role of oxidative stress in the pathogenesis of many clinical conditions and aging, antioxidant therapy could positively affect the natural history of

  2. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  3. Sex-related differences in photoinhibition, photo-oxidative stress and photoprotection in stinging nettle (Urtica dioica L.) exposed to drought and nutrient deficiency.

    Science.gov (United States)

    Simancas, Bárbara; Juvany, Marta; Cotado, Alba; Munné-Bosch, Sergi

    2016-03-01

    Dimorphic plant species can show distinct nutrient needs due to sex-related differences in nutrient allocation to reproductive structures, which can potentially affect their sensitivity to photoinhibition and photo-oxidative stress. Here, we investigated sex-related differences in the extent of photo-oxidative stress in male and female individuals of U. dioica exposed to a combination of severe drought and nutrient starvation. Male and female individuals of U. dioica subject to severe drought stress were exposed to various levels of nutrient availability. First, a set of plants grown under field conditions and exposed to summer drought was used to test the effects of nutrient supply (given as NPK fertilizer). Secondly, the effects of various phosphate concentrations in the nutrient solution were tested in drought-stressed potted plants. The Fv/Fm ratio (maximum efficiency of PSII photochemistry), photoprotection capacity (levels of carotenoids, including the xanthophyll cycle, and vitamins C and E), and the extent of lipid peroxidation (hydroperoxide levels) were measured. Results showed that an application of the NPK fertilizer to the soil had a positive effect on drought-stressed plants, reducing the extent of lipid peroxidation in both males and females. P deficiency led to residual photoinhibition, as indicated by significant reductions in the Fv/Fm ratio, and enhanced lipid peroxidation in females, but not in males. We conclude that (i) increased nutrient availability in the soil can alleviate photo-oxidative stress in drought-stressed U. dioica plants, and (ii) U. dioica plants show sexual secondary dimorphism in terms of photoinhibition and photo-oxidative stress, but this is only apparent when stress infringed on plants is very severe. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-01-01

    Full Text Available We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF in clinical practice in China, on a rat heart failure (HF model. 3 groups were divided: HF model group (LAD ligation, QSYQ group (LAD ligation and treated with QSYQ, and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2, deregulated ejection fraction (EF value, increased formation of oxidative stress (Malondialdehyde, MDA, and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4 and NADPH oxidase 2 (NOX2 pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect.

  5. The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production.

    Science.gov (United States)

    Krause, Mauricio; Rodrigues-Krause, Josianne; O'Hagan, Ciara; Medlow, Paul; Davison, Gareth; Susta, Davide; Boreham, Colin; Newsholme, Philip; O'Donnell, Mark; Murphy, Colin; De Vito, Giuseppe

    2014-02-01

    To investigate the effect of 16 weeks of aerobic training performed at two different intensities on nitric oxide (tNOx) availability and iNOS/nNOS expression, oxidative stress (OS) and inflammation in obese humans with or without type 2 diabetes mellitus (T2DM). Twenty-five sedentary, obese (BMI > 30 kg/m2) males (52.8 ± 7.2 years); 12 controls versus 13 T2DM were randomly allocated to four groups that exercised for 30 min, three times per week either at low (Fat-Max; 30-40% VO(2max)) or moderate (T(vent); 55-65 % VO(2max)) intensity. Before and after training, blood and muscle samples (v. lateralis) were collected. Baseline erythrocyte glutathione was lower (21.8 ± 2.8 vs. 32.7 ± 4.4 nmol/ml) and plasma protein oxidative damage and IL-6 were higher in T2DM (141.7 ± 52.1 vs. 75.5 ± 41.6 nmol/ml). Plasma catalase increased in T2DM after T(vent) training (from 0.98 ± 0.22 to 1.96 ± 0.3 nmol/min/ml). T2DM groups demonstrated evidence of oxidative damage in response to training (elevated protein carbonyls). Baseline serum tNOx were higher in controls than T2DM (18.68 ± 2.78 vs. 12.34 ± 3.56 μmol/l). Training at T(vent) increased muscle nNOS and tNOx in the control group only. Pre-training muscle nNOS was higher in controls than in T2DMs, while the opposite was found for iNOS. No differences were found after training for plasma inflammatory markers. Exercise training did not change body composition or aerobic fitness, but improved OS markers, especially when performed at T(vent). Non-diabetics responded to T(vent) training by increasing muscle nNOS expression and tNOx levels in skeletal muscle while these parameters did not change in T2DM, perhaps due to higher insulin resistance (unchanged after intervention).

  6. Subchronic toxicity of Nile tilapia with different exposure routes to Microcystis aeruginosa: Histopathology, liver functions, and oxidative stress biomarkers

    Directory of Open Access Journals (Sweden)

    H. M. R. Abdel-Latif

    2017-08-01

    Full Text Available Background: Toxic cyanobacterial blooms (Microcystis aeruginosa contains microcystins [MCs] have been reported to induce clinicopathological alterations as well as different oxidative stress in aquatic biota. Aim: Three-week subchronic exposure experiment was carried out on Nile tilapia, to determine their effects on fish behavior, tissues, liver functions, antioxidant enzymes, and lipid peroxidation. Materials and Methods: Fish were exposed to four main treatments; orally fed diet plus toxic cells of M. aeruginosa (containing 3500 μg/g MC-LR, immersion in 500 μg MC-LR/L, intraperitoneal injection of M. aeruginosa MC-LR with a dose of 0.1 ml of extracted toxin at a dose of 200 μg/kg bwt, and the fourth one served as a control group, then the fish were sacrificed at the end of 3rd week of exposure. Results: The results revealed no recorded mortality with obvious behavioral changes and an enlarged liver with the congested gall bladder. Histopathology demonstrated fragmentation, hyalinization, and necrosis of the subcutaneous musculature marked fatty degeneration, and vacuolation of hepatopancreatic cells with adhesion of the secondary gill lamellae associated with severe leukocytic infiltration. Furthermore, liver functions enzymes (aspartate aminotransferase and alanine aminotransferase, and the activities of glutathione peroxidase, glutathione reductase, lipid peroxidase, and catalase enzymes were significantly increased in all treatments starting from the 2nd week as compared to the control levels. Conclusion: In this context, the study addresses the possible toxicological impacts of toxic M. aeruginosa contain MC-LR to Nile tilapia, and the results investigated that MC-LR is toxic to Nile tilapia in different routes of exposure as well as different doses.

  7. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  8. ROLE OF TAURINE ON THE LEVEL OF SOME ESSENTIAL ELEMENTS AND OXIDATIVE STRESS IN DIFFERENT TISSUES OF RATS EXPOSED TO GAMMA RADIATION

    International Nuclear Information System (INIS)

    ANIS, L.M.

    2008-01-01

    Whole body exposure to ionizing radiation induces the formation of reactive oxygen species (ROS) in the different tissues provoking oxidative damage and organ dysfunction. The present study was designed to determine the possible protective effect of taurine against gamma radiation-induced disorders in iron (Fe), copper (Cu), zinc (Zn) and magnesium (Mg) in parallel to radiation-induced oxidative stress in liver, spleen and heart tissues. Irradiated rats were whole body exposed to 6.5 Gy gamma radiations. Taurine treated irradiated rats received 250 mg taurine/kg body weight/day for 10 successive days before irradiation. Animals were sacrificed on 1 st , 7 th and 14 th days after irradiation. The results obtained demonstrated significant increases in Fe, Cu, Zn and Mg levels in the liver. Significant increases of Fe and Cu and significant decrease of Zn and non-significant changes in Mg were observed in the spleen. Heart tissues showed significant decrease in the level of iron and non-significant changes in the levels of Cu, Zn and Mg. Alterations in the levels of essential elements were associated with oxidative stress. Significant decreases of SOD and CAT activities along with significant increase of TBARS levels were recorded in the different tissues after irradiation. Taurine administration pre-irradiation has significantly attenuated the radiation-induced oxidative stress and alteration in the levels of essential elements. It could be concluded that taurine might protect from oxidative damage induced by gamma irradiation

  9. Obesity, reproduction and oxidative stress

    Directory of Open Access Journals (Sweden)

    Tamara V. Zhuk

    2017-12-01

    Full Text Available The prevalence of obesity and overweight is one of the most pressing problems nowadays. Obesity as a comorbid condition affects all body systems. Obesity has been reported to be a risk factor not only for cardiovascular diseases and oncopathology, but also for fertility problems, many obstetric and perinatal complications worsening the maternal and infant health. The balance between the oxidative and antioxidant system is one of the indicators of the state of human homeostasis. Today it is proved that obesity is associated with an increase in oxidative stress and a decrease in antioxidant protection. This review reveals a close relationship between obesity, oxidative stress and reproductive problems.

  10. Supplementation with different teas from Camellia sinensis prevents memory deficits and hippocampus oxidative stress in ischemia-reperfusion.

    Science.gov (United States)

    Martins, Alexandre; Schimidt, Helen L; Garcia, Alexandre; Colletta Altermann, Caroline Dalla; Santos, Francielli W; Carpes, Felipe P; da Silva, Weber Cláudio; Mello-Carpes, Pâmela B

    2017-09-01

    Memory and cognition impairments resultant of ischemic stroke could be minimized or avoided by antioxidant supplementation. In this regard, the neuroprotective potential of Green tea from Camellia sinensis has been investigated. However, there is a lack of information regarding the neuroprotective potential of others teas processed from the Camellia sinensis. Here we investigate the neuroprotective role of green, red, white and black tea on memory deficits and brain oxidative stress in a model of ischemic stroke in rats. Our findings show that green and red teas prevent deficits in object and social recognition memories, but only green tea protects against deficits in spatial memory and avoids hippocampal oxidative status and intense necrosis and others alterations in the brain tissue. In summary, green tea shows better neuroprotection in ischemic stroke than the others teas from Camellia sinensis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pressure overload-induced mild cardiac hypertrophy reduces leftventricular transmural differences in mitochondrial respiratory chainactivity and increases oxidative stress

    Directory of Open Access Journals (Sweden)

    Michel eKINDO

    2012-08-01

    Full Text Available Objective: Increased mechanical stress and contractility characterizes normal left ventricular subendocardium (Endo but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi and whether pressure overload-induced left ventricular hypertrophy (LVH might modulate transmural gradients through increased reactive oxygen species (ROS production is unknown. Methods: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n=10 for each group. Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilised fibres, Amplex Red fluorescence and citrate synthase activity.Results: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P<0.01 and complex IV activity (-57.4%, P<0.05. Mitochondrial hydrogen peroxide (H2O2 production was similar in both LV layers.Aortic banding induced mild LVH (+31.7% LV mass, associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%, increased mitochondrial H2O2 production (+86.9 and +73.1%, free radical leak (+27.2% and +36.3% and citrate synthase activity (+27.2% and +36.3% in Endo and Epi, respectively.Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs –12.2%; P=0.02. Conclusions: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH.

  12. Oxidative Stress in Cystinosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Helena Vaisbich

    2011-09-01

    Full Text Available Background/Aims: Nephropathic cystinosis (NC is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods: The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results: We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p Conclusion: An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients.

  13. Effect of different frequencies weekly training on parameters of oxidative stress. DOI: 10.5007/1980-0037.2012v14n1p52

    Directory of Open Access Journals (Sweden)

    Camila Baumer Tromm

    2011-12-01

    Full Text Available During the muscle contraction induced by exercises there is an increase in the reactive oxygen species production, causing oxidative stress in several organs, including liver and heart. The exercise may can increases antioxidant defenses and decrease oxidative stress in these organs. However, the number of the sessions a week necessary to improve the parameters of oxidative stress is not to well defined. The aim of the study was to investigate the frequency effects of exercise performed two and three times a week on changes in biomarkers of oxidative stress in the liver and heart. Were used 18 male mice (CF1, young (30 to 35g and divided into groups (n=6/group: not trained (NT trained twice a week (T2 and trained three times a week (T3. The animals were subjected to training for eight weeks. Forty-eight hours after the last session, the animals were killed. The liver and heart were removed and stored in - 70°C. Were analyzed the thiobarbituric acid reactive substances, protein carbonyls, content of total thiols, superoxide dismutase, catalase and glutathione peroxidase. Our findings showed that the group T3 reduced oxidative damage. There was increase in content of total thiols, superoxide dismutase and catalase in the T3 group when compared to NT. The glutathione peroxidase activity showed no significant difference between groups. This study demonstrated that only the frequency of training performed three times a week was able to reduces oxidative damage and increases the efficiency of antioxidant system of mice.

  14. Simvastatin and oxidative stress in humans

    DEFF Research Database (Denmark)

    Rasmussen, Sanne Tofte; Andersen, Jon Thor Trærup; Nielsen, Torben Kjær

    2016-01-01

    in mitochondrial respiratory complexes I and II and might thereby reduce the formation of reactive oxygen species, which have been implicated in the pathogenesis of arteriosclerosis. Therefore, we hypothesized that simvastatin may reduce oxidative stress in humans in vivo. We conducted a randomized, double......-blinded, placebo-controlled study in which subjects were treated with either 40 mg of simvastatin or placebo for 14 days. The endpoints were six biomarkers for oxidative stress, which represent intracellular oxidative stress to nucleic acids, lipid peroxidation and plasma antioxidants, that were measured in urine.......1% in the placebo group for DNA oxidation and 7.3% in the simvastatin group compared to 3.4% in the placebo group. The differences in biomarkers related to plasma were not statistically significant between the treatments groups, with the exception of total vitamin E levels, which, as expected, were reduced...

  15. [Vitamins and oxidative stress].

    Science.gov (United States)

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  16. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    of these proteins by MALDI tandem mass spectrometry (MALDI MS/MS). As a result we obtained 24 different proteins which can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  17. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows

    Science.gov (United States)

    Derno, Michael; Otten, Winfried; Mielenz, Manfred; Nürnberg, Gerd

    2015-01-01

    High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows. PMID:25938406

  18. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows.

    Science.gov (United States)

    Lamp, Ole; Derno, Michael; Otten, Winfried; Mielenz, Manfred; Nürnberg, Gerd; Kuhla, Björn

    2015-01-01

    High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS) and one pair-fed (PF) at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1), cows were challenged for 6 days (P2) by heat stress (temperature humidity index (THI) = 76) or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.

  19. Metabolic Heat Stress Adaption in Transition Cows: Differences in Macronutrient Oxidation between Late-Gestating and Early-Lactating German Holstein Dairy Cows.

    Directory of Open Access Journals (Sweden)

    Ole Lamp

    Full Text Available High ambient temperatures have severe adverse effects on biological functions of high-yielding dairy cows. The metabolic adaption to heat stress was examined in 14 German Holsteins transition cows assigned to two groups, one heat-stressed (HS and one pair-fed (PF at the level of HS. After 6 days of thermoneutrality and ad libitum feeding (P1, cows were challenged for 6 days (P2 by heat stress (temperature humidity index (THI = 76 or thermoneutral pair-feeding in climatic chambers 3 weeks ante partum and again 3 weeks post-partum. On the sixth day of each period P1 or P2, oxidative metabolism was analyzed for 24 hours in open circuit respiration chambers. Water and feed intake, vital parameters and milk yield were recorded. Daily blood samples were analyzed for glucose, β-hydroxybutyric acid, non-esterified fatty acids, urea, creatinine, methyl histidine, adrenaline and noradrenaline. In general, heat stress caused marked effects on water homeorhesis with impairments of renal function and a strong adrenergic response accompanied with a prevalence of carbohydrate oxidation over fat catabolism. Heat-stressed cows extensively degraded tissue protein as reflected by the increase of plasma urea, creatinine and methyl histidine concentrations. However, the acute metabolic heat stress response in dry cows differed from early-lactating cows as the prepartal adipose tissue was not refractory to lipolytic, adrenergic stimuli, and the rate of amino acid oxidation was lower than in the postpartal stage. Together with the lower endogenous metabolic heat load, metabolic adaption in dry cows is indicative for a higher heat tolerance and the prioritization of the nutritional requirements of the fast-growing near-term fetus. These findings indicate that the development of future nutritional strategies for attenuating impairments of health and performance due to ambient heat requires the consideration of the physiological stage of dairy cows.

  20. Hypoxia, Oxidative Stress and Fat

    Directory of Open Access Journals (Sweden)

    Nikolaus Netzer

    2015-06-01

    Full Text Available Metabolic disturbances in white adipose tissue in obese individuals contribute to the pathogenesis of insulin resistance and the development of type 2 diabetes mellitus. Impaired insulin action in adipocytes is associated with elevated lipolysis and increased free fatty acids leading to ectopic fat deposition in liver and skeletal muscle. Chronic adipose tissue hypoxia has been suggested to be part of pathomechanisms causing dysfunction of adipocytes. Hypoxia can provoke oxidative stress in human and animal adipocytes and reduce the production of beneficial adipokines, such as adiponectin. However, time-dose responses to hypoxia relativize the effects of hypoxic stress. Long-term exposure of fat cells to hypoxia can lead to the production of beneficial substances such as leptin. Knowledge of time-dose responses of hypoxia on white adipose tissue and the time course of generation of oxidative stress in adipocytes is still scarce. This paper reviews the potential links between adipose tissue hypoxia, oxidative stress, mitochondrial dysfunction, and low-grade inflammation caused by adipocyte hypertrophy, macrophage infiltration and production of inflammatory mediators.

  1. Oxidative Stress in Cataractogenesis

    Directory of Open Access Journals (Sweden)

    Sonja Cekić

    2010-08-01

    Full Text Available The aim of our study was to compeer levels of antioxidative agent -total SH groups and the finale product of lipid peroxidationmalondialdehyde (MDA in serum, and glutathione (GSH and MDA in nucleocortical parts of lens after extracapsular extraction of cataract. Patient were (38 with cataract and 38 controls matched by sex and years of life. Diagnosis of cataract was established by complete ocular examination. All results are expressed as mean ± S.D. A Student’s t-test was used to estimate differences between the groups. The level of significance was p<0,05. Total sulfhydryl groups were determined in serum by the method of Ellman as well as GSH content in nucleocortical parts of lenses using the method of Sedlak and Lindsay. Lipid peroxidation, evidenced by formation of thiobarbituric acid reactive substances (TBARS, was determined in nucleocortical parts of the lens and in serum. Our results show a statistical significance in concentration of total SH groups (225,37±82,19μmol/L, controls 311,03±60,37μm0l/L p<0,05 and MDA (20,24±8,12, and controls 8,73±2,53μmol/L, p<0,001 in serum among patients with age related cataract and controls. There was no statistical significance in concentration of total SH groups and MDA in serum among patients with different type of age related cataract and in nucleocortical parts of lens. The present study concludes that there is a statistical significance in concentration of total SH groups and MDA in serum among patients with age related cataract and controls, but there were no statistical significance in concentration of GSH and MDA in serum and nucleocortical parts of lens in patient with different type of cataract.

  2. Oxidative stress biomarkers in different tissues of rainbow trout (Oncorhynchus mykiss exposed to Disinfectant-CIP formulated with peracetic acid and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Tkachenko Halyna

    2014-09-01

    Full Text Available The aim of study was to determine the effects of exposure to the product DEZYNFEKTANT-CIP (Eng. - Disinfectant-CIP, which is formulated with peracetic acid and hydrogen peroxide, on oxidative stress biomarkers (lipid peroxidation (LPO levels and the carbonyl content of oxidatively modified proteins and antioxidant defenses (superoxide dismutase (SOD, catalase (CAT, glutathione reductase (GR, glutathione peroxidase (GPx, total antioxidant capacity in muscle, gill, hepatic, and cardiac tissues of rainbow trout, Oncorhynchus mykiss (Walbaum. LPO and carbonyl contents changed with tissue type. Exposure to Disinfectant-CIP led to a significant decrease in LPO in muscle tissues and carbonyl content in muscle and gill tissues. The inhibition of SOD and CAT activity in muscle, hepatic, and cardiac tissues was observed probably because of increased oxidative stress during disinfection; however, hepatic and cardiac GPx activity increased in an attempt to counteract oxidative stress. We suggest that oxidative stress during the oxidation of peracetic acid and hydrogen peroxide could be counteracted by the antioxidant system in trout tissues. Correlative analysis between oxidative stress biomarkers and antioxidant defense confirms the pivotal role of SOD and CAT against CIP-induced oxidative stress

  3. The Effects of Drought Stress on Yield, Yield Components and Anti-oxidant of Two Garlic (Allium sativum L. Ecotypes with Different Planting Densities

    Directory of Open Access Journals (Sweden)

    shiva akbari

    2016-07-01

    Full Text Available Introduction Drought stress reduces plant growth by affecting various physiological and biochemical processes, such as photosynthesis, respiration, translocation, ion uptake, carbohydrates, nutrient metabolism and growth promoters. Garlic (Allium sativum L. is an annual bulb crop that has been cultivated since ancient times and was used as a spice and condiment for many centuries. Garlic is an important plant because of its pharmaceutical properties. The optimum yield of this bulb crop depends on well-managed irrigation, fertilization and cultivation practices. In the final and middle stages of growth, garlic is sensitive to water stress and low irrigation is unsuitable in these stages. This experiment was established to study the influence of drought stress and planting density on yield and its components and the non-enzymatic anti-oxidant content of two different garlic ecotypes. Materials and methods This study was conducted in 2011-2012 in a farmland at the south east of Semnan city. The experimental layout was a split-plot factorial with a randomized complete block design with three replications. The treatments were comprised of three factors: irrigation rates (60%, 80% and 100% of estimated crop evapotranspiration (ETC as the main plot and the factorial combination of three levels of planting density (30, 40 and 50 plants.m-2 and two ecotypes (Tabas and Toroud as the sub-plots. To estimate the crop water requirement, different meteorological parameters were collected from Semnan weather station and were used based on FAO-56 water irrigation calculation instructions. After harvesting, ten garlic plants were sampled randomly in each plot and bulb yield components were measured. To calculate the leaves anti-oxidant content, DPPH method was used. The statistical significances of mean values were assessed by analysis of variance and LSD tests at p≤0.05. All calculations were performed using SAS and Mstat-C softwares. Results and discussion

  4. Antioxidative Defense Responses to lead-induced Oxidative Stress in Glycine max L. CV. Merrill grown in Different pH Gradient

    Directory of Open Access Journals (Sweden)

    Mishra, Pankaj Kishor

    2013-04-01

    Full Text Available Physiological and biochemical changes as well as the activities of anti-oxidative enzymes under lead (Pb2+ phytotoxicity were investigated in 20 days old soybean (Glycine max L. seedlings grown hydroponically in the laboratory under different pH conditions. The rapid uptake of Pb 2+ was observed immediately after the start of treatment. The quantity of accumulation of Pb2+ was much higher in roots than in shoots, its level rising with increasing pH from 3.0 to 8.0 . Not only that, an oxidative stress conditions were observed due to increased level of superoxide anion radical and hydrogen peroxide in shoots and root cells of 20 days old seedlings when treated with Pb(NO32 at a concentration of 0, 500, 1000 and 2000 μM. Spectrometric assays of seedlings showed increased level of activities of antioxidant enzymes like catalase, peroxidase and glutathione reductase. The presence of thiobarbituric acid reacting substances (TBARS indicates the enhanced lipid peroxidation compared to controls. The alteration in the activities of the antioxidant enzymes and the induction of lipid peroxidation reflects the presence of Pb2+, which may cause oxidative stress.

  5. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino ac....... The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.......SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous...

  6. Measurement of exercise-induced oxidative stress in lymphocytes.

    Science.gov (United States)

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  7. Association of Oxidative Stress with Psychiatric Disorders.

    Science.gov (United States)

    Hassan, Waseem; Noreen, Hamsa; Castro-Gomes, Vitor; Mohammadzai, Imdadullah; da Rocha, Joao Batista Teixeira; Landeira-Fernandez, J

    2016-01-01

    When concentrations of both reactive oxygen species and reactive nitrogen species exceed the antioxidative capability of an organism, the cells undergo oxidative impairment. Impairments in membrane integrity and lipid and protein oxidation, protein mutilation, DNA damage, and neuronal dysfunction are some of the fundamental consequences of oxidative stress. The purpose of this work was to review the associations between oxidative stress and psychological disorders. The search terms were the following: "oxidative stress and affective disorders," "free radicals and neurodegenerative disorders," "oxidative stress and psychological disorders," "oxidative stress, free radicals, and psychiatric disorders," and "association of oxidative stress." These search terms were used in conjunction with each of the diagnostic categories of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders and World Health Organization's International Statistical Classification of Diseases and Related Health Problems. Genetic, pharmacological, biochemical, and preclinical therapeutic studies, case reports, and clinical trials were selected to explore the molecular aspects of psychological disorders that are associated with oxidative stress. We identified a broad spectrum of 83 degenerative syndromes and psychiatric disorders that were associated with oxidative stress. The multi-dimensional information identified herein supports the role of oxidative stress in various psychiatric disorders. We discuss the results from the perspective of developing novel therapeutic interventions.

  8. Blood thiamine, zinc, selenium, lead and oxidative stress in a population of male and female alcoholics: clinical evidence and gender differences

    Directory of Open Access Journals (Sweden)

    Rosanna Mancinelli

    2013-03-01

    Full Text Available INTRODUCTION. Long term alcohol abuse is associated with deficiencies in essential nutrients and minerals that can cause a variety of medical consequences including accumulation of toxic metals. Aim. The aim of this research is to get evidence-based data to evaluate alcohol damage and to optimize treatment. Thiamine and thiamine diphosphate (T/TDP, zinc (Zn, selenium (Se, lead (Pb and oxidative stress in terms of reactive oxygen metabolites (ROMs were examined in blood samples from 58 alcohol dependent patients (17 females and 41 males. RESULTS. T/TDP concentration in alcoholics resulted significantly lower than controls (p < 0.005 for both sexes. Serum Zn and Se did not significantly differ from reference values. Levels of blood Pb in alcoholics resulted significantly higher (p < 0.0001 than Italian reference values and were higher in females than in males. ROMs concentration was significantly higher than healthy population only in female abusers (p = 0.005. CONCLUSION. Alcoholics show a significant increase in blood oxidative stress and Pb and decrease in thiamine. Impairment occurs mainly in female abusers confirming a gender specific vulnerability.

  9. Oxidative stress in cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shyamal K Goswami

    2015-01-01

    Full Text Available Oxidative stress caused by various oxygen containing free radicals and reactive species (collectively called "Reactive Oxygen Species" or ROS has long been attributed to cardiovascular diseases. In human body, major oxidizing species are super oxide, hydrogen peroxide, hydroxyl radical, peroxy nitrite etc. ROS are produced from distinct cellular sources, enzymatic and non-enzymatic; have specific physicochemical properties and often have specific cellular targets. Although early studies in nineteen sixties and seventies highlighted the deleterious effects of these species, later it was established that they also act as physiological modulators of cellular functions and diseases occur only when ROS production is deregulated. One of the major sources of cellular ROS is Nicotinamide adenine dinucleotide phosphate oxidases (Noxes that are expressed in almost all cell types. Superoxide and hydrogen peroxide generated from them under various conditions act as signal transducers. Due to their immense importance in cellular physiology, various Nox inhibitors are now being developed as therapeutics. Another free radical of importance in cardiovascular system is nitric oxide (a reactive nitrogen species generated from nitric oxide synthase(s. It plays a critical role in cardiac function and its dysregulated generation along with superoxide leads to the formation of peroxynitrite a highly deleterious agent. Despite overwhelming evidences of association between increased level of ROS and cardiovascular diseases, antioxidant therapies using vitamins and omega 3 fatty acids have largely been unsuccessful till date. Also, there are major discrepancies between studies with laboratory animals and human trials. It thus appears that the biology of ROS is far complex than anticipated before. A comprehensive understanding of the redox biology of diseases is thus needed for developing targeted therapeutics.

  10. Oxidative Stress, Cytotoxicity and Genotoxicity in Earthworm Eisenia fetida at Different Di-n-Butyl Phthalate Exposure Levels.

    Directory of Open Access Journals (Sweden)

    Tingting Ma

    Full Text Available Recognized as ubiquitous contaminants in soil, the environmental risk of phthalic acid esters (PAEs is of great concern recently. Effects of di-n-butyl phthalate (DnBP, an extensively used PAE compound to Eisenia fetida have been investigated in spiked natural brown yellow soil (Alfisol for soil contact test. The toxicity of DnBP to E. fetida on the activity of superoxide dismutase (SOD activity, peroxidase (POD, reactive oxygen species (ROS content, and the apoptosis of coelomocytes and DNA damage at the 7th, 14th, 21st and 28th day of the incubation have been paid close attention to. In general, SOD activity and ROS content were significantly induced, opposite to total protein content and POD activity, during the toxicity test of 28 days especially under concentrations higher than 2.5 mg kg-1. The reduction in neutral red retention (NRR time along with the increase of dead coelomocytes as the increasing of DnBP concentrations, indicating severe damage to cell viability under varying pollutant stress during cultivation, which could also be proved by comet assay results for exerting evident DNA damage in coelomocytes. DnBP in spiked natural soil could indeed cause damage to tissues, coelomocytes and the nucleus of E. fetida. The key point of the apparent change in different indices presented around 2.5 mg DnBP kg-1 soil, which could be recommended as the threshold of DnBP soil contamination, so that further investigation on threshold values to other soil animals or microorganisms could be discussed.

  11. Etiologies of sperm oxidative stress

    Directory of Open Access Journals (Sweden)

    Parvin Sabeti

    2016-04-01

    Full Text Available Sperm is particularly susceptible to reactive oxygen species (ROS during critical phases of spermiogenesis. However, the level of seminal ROS is restricted by seminal antioxidants which have beneficial effects on sperm parameters and developmental potentials. Mitochondria and sperm plasma membrane are two major sites of ROS generation in sperm cells. Besides, leukocytes including polymer phonuclear (PMN leukocytes and macrophages produce broad category of molecules including oxygen free radicals, non-radical species and reactive nitrogen species. Physiological role of ROS increase the intracellular cAMP which then activate protein kinase in male reproductive system. This indicates that spermatozoa need small amounts of ROS to acquire the ability of nuclear maturation regulation and condensation to fertilize the oocyte. There is a long list of intrinsic and extrinsic factors which can induce oxidative stress to interact with lipids, proteins and DNA molecules. As a result, we have lipid peroxidation, DNA fragmentation, axonemal damage, denaturation of the enzymes, over generation of superoxide in the mitochondria, lower antioxidant activity and finally abnormal spermatogenesis. If oxidative stress is considered as one of the main cause of DNA damage in the germ cells, then there should be good reason for antioxidant therapy in these conditions

  12. Impact of Oxidative Stress in Fetal Programming

    OpenAIRE

    Thompson, Loren P.; Al-Hasan, Yazan

    2012-01-01

    Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that pr...

  13. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson

    2012-01-01

    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  14. Two-hit model of schizophrenia induced by neonatal immune activation and peripubertal stress in rats: Study of sex differences and brain oxidative alterations.

    Science.gov (United States)

    Monte, Aline Santos; Mello, Bruna Stefânia Ferreira; Borella, Vládia Célia Moreira; da Silva Araujo, Tatiane; da Silva, Francisco Eliclécio Rodrigues; Sousa, Francisca Cléa F de; de Oliveira, Antônio Carlos Pinheiro; Gama, Clarissa Severino; Seeman, Mary V; Vasconcelos, Silvânia Maria Mendes; Lucena, David Freitas De; Macêdo, Danielle

    2017-07-28

    Schizophrenia is considered to be a developmental disorder with distinctive sex differences. Aiming to simulate the vulnerability of the third trimester of human pregnancy to the developmental course of schizophrenia, an animal model was developed, using neonatal poly(I:C) as a first-hit, and peripubertal stress as a second-hit, i.e. a two-hit model. Since, to date, there have been no references to sex differences in the two-hit model, our study sought to determine sex influences on the development of behavior and brain oxidative change in adult rats submitted to neonatal exposure to poly(I:C) on postnatal days 5-7 as well as peripubertal unpredictable stress (PUS). Our results showed that adult two-hit rats present sex-specific behavioral alterations, with females showing more pronounced deficits in prepulse inhibition of the startle reflex and hyperlocomotion, while males showing more deficits in social interaction. Male and female animals exhibited similar working memory deficits. The levels of the endogenous antioxidant, reduced glutathione, were decreased in the prefrontal cortex (PFC) of both male and female animals exposed to both poly(I:C) and poly(I:C)+PUS. Only females presented decrements in GSH levels in the striatum. Nitrite levels were increased in the PFC of male and in the striatum of female poly(I:C)+PUS rats. Increased lipid peroxidation was observed in the PFC of females and in the striatum of males and females exposed to poly(I:C) and poly(I:C)+PUS. Thus, the present study presents evidence for sex differences in behavior and oxidative brain change induced by a two-hit model of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  16. [Oxidative stress in station service workers].

    Science.gov (United States)

    Basso, A; Elia, G; Petrozzi, M T; Zefferino, R

    2004-01-01

    The aim of this study is to identify an oxidative stress in service station workers. Previous studies verified an increased incidence of leukemia and myeloma, however other authors haven't verified it. There are reports of nasal, pharyngeal, laryngeal, and lung cancer in service station workers. Our study wants to evaluate the oxidative balance in the fuel workers. We studied 44 subjects with gasoline exposure and 29 control subjects. We determined the blood concentrations of Glutathione reduced and oxidized, Protein sulfhydrylic (PSH) Vitamine E, Vitamine C, Malondialdehyde, Protein oxidized (OX-PROT) and beta carotene. The t test was performed to analyze the differences between the means, the Chi square was used to evaluate the statistical significance of associations between variable categorical (redox index). The Anova test excluded the confusing effect of age, smoke and alcohol habit. The mean age of the workers was 36.6 years, instead the control group was 38. In the workers Glutathione reduced, Vit. E and Beta carotene were lower than in the control subjects, this difference was statistically significant (p < 0.01). The Malondialdehyde concentration was higher in the workers higher than in the control group, but this difference wasn't statistically significant. Our data demonstrated Glutathione, Vit. E, and Beta carotene are useful to verify a reduction of the antioxidant activity. The only marker of the presence of oxidative injury that correlated to work exposure was the malondialdehyde. The redox index was surest marker. The limit of our study is the number of control group, it was little and lower than workers. Conclusively we believe it's useful to continue our studies and, if our results are going to be confirmed, we retain that stress oxidative determination would be verified in occupational medicine using these markers, especially to study exposure of the fuel workers who were investigated less and, in our opinion, would receive more attention.

  17. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Science.gov (United States)

    Duan, Xiaochun; Wen, Zunjia; Shen, Haitao; Shen, Meifen

    2016-01-01

    Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches. PMID:27190572

  18. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Xiaochun Duan

    2016-01-01

    Full Text Available Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH. Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.

  19. Oxidative Stress and Periodontal Disease in Obesity.

    Science.gov (United States)

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  20. Symbiosis-induced adaptation to oxidative stress.

    Science.gov (United States)

    Richier, Sophie; Furla, Paola; Plantivaux, Amandine; Merle, Pierre-Laurent; Allemand, Denis

    2005-01-01

    Cnidarians in symbiosis with photosynthetic protists must withstand daily hyperoxic/anoxic transitions within their host cells. Comparative studies between symbiotic (Anemonia viridis) and non-symbiotic (Actinia schmidti) sea anemones show striking differences in their response to oxidative stress. First, the basal expression of SOD is very different. Symbiotic animal cells have a higher isoform diversity (number and classes) and a higher activity than the non-symbiotic cells. Second, the symbiotic animal cells of A. viridis also maintain unaltered basal values for cellular damage when exposed to experimental hyperoxia (100% O(2)) or to experimental thermal stress (elevated temperature +7 degrees C above ambient). Under such conditions, A. schmidti modifies its SOD activity significantly. Electrophoretic patterns diversify, global activities diminish and cell damage biomarkers increase. These data suggest symbiotic cells adapt to stress while non-symbiotic cells remain acutely sensitive. In addition to being toxic, high O(2) partial pressure (P(O(2))) may also constitute a preconditioning step for symbiotic animal cells, leading to an adaptation to the hyperoxic condition and, thus, to oxidative stress. Furthermore, in aposymbiotic animal cells of A. viridis, repression of some animal SOD isoforms is observed. Meanwhile, in cultured symbionts, new activity bands are induced, suggesting that the host might protect its zooxanthellae in hospite. Similar results have been observed in other symbiotic organisms, such as the sea anemone Aiptasia pulchella and the scleractinian coral Stylophora pistillata. Molecular or physical interactions between the two symbiotic partners may explain such variations in SOD activity and might confer oxidative stress tolerance to the animal host.

  1. Less Stress : Oxidative stress and glutathione kinetics in preterm infants

    NARCIS (Netherlands)

    D. Rook (Denise)

    2013-01-01

    textabstractDue to immature antioxidant defenses, preterm infants are at susceptible to oxidative stress, which is associated with bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia. The general aim of this thesis was to study oxidative stress in preterm infants

  2. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress

    Czech Academy of Sciences Publication Activity Database

    Maya-Mendoza, A.; Ostrakova, J.; Košař, Martin; Hall, A.; Duskova, P.; Mistrik, M.; Merchut-Maya, J.M.; Hodný, Zdeněk; Bartkova, J.; Christensen, C.; Bartek, Jiří

    2015-01-01

    Roč. 9, č. 3 (2015), s. 601-616 ISSN 1574-7891 R&D Projects: GA ČR GA13-17555S; GA MŠk(CZ) LO1304 Grant - others:Danish Council for Independent Research(DK) DFF- 1331-00262; Lundbeck Foundation(DK) R93-A8990 Institutional support: RVO:68378050 Keywords : Myc * Ras * Replication stress * DNA fork progression * Energy metabolism * DNA damage response Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.367, year: 2015

  3. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  4. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, Maarten; Abee, Tjakko

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  5. Primary and secondary oxidative stress in Bacillus

    NARCIS (Netherlands)

    Mols, J.M.; Abee, T.

    2011-01-01

    Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This

  6. Male-specific differences in proliferation, neurogenesis, and sensitivity to oxidative stress in neural progenitor cells derived from a rat model of ALS.

    Directory of Open Access Journals (Sweden)

    Ruojia Li

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disease characterized by progressive motor dysfunction and the loss of large motor neurons in the spinal cord and brain stem. A clear genetic link to point mutations in the superoxide dismutase 1 (SOD1 gene has been shown in a small group of familial ALS patients. The exact etiology of ALS is still uncertain, but males have consistently been shown to be at a higher risk for the disease than females. Here we present male-specific effects of the mutant SOD1 transgene on proliferation, neurogenesis, and sensitivity to oxidative stress in rat neural progenitor cells (rNPCs. E14 pups were bred using SOD1(G93A transgenic male rats and wild-type female rats. The spinal cord and cortex tissues were collected, genotyped by PCR using primers for the SOD1(G93A transgene or the male-specific Sry gene, and cultured as neurospheres. The number of dividing cells was higher in male rNPCs compared to female rNPCs. However, SOD1(G93A over-expression significantly reduced cell proliferation in male cells but not female cells. Similarly, male rNPCs produced more neurons compared to female rNPCs, but SOD1(G93A over-expression significantly reduced the number of neurons produced in male cells. Finally we asked whether sex and SOD1(G93A transgenes affected sensitivity to oxidative stress. There was no sex-based difference in cell viability after treatment with hydrogen peroxide or 3-morpholinosydnonimine, a free radical-generating agent. However, increased cytotoxicity by SOD1(G93A over-expression occurred, especially in male rNPCs. These results provide essential information on how the mutant SOD1 gene and sexual dimorphism are involved in ALS disease progression.

  7. Oxidative stress adaptation with acute, chronic, and repeated stress.

    Science.gov (United States)

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Toxicity and oxidative stress of different forms of organic selenium (Se) and dietary protein in mallard (Anas platyrhynchos) ducklings

    Science.gov (United States)

    Hoffman, D.; Heinz, G.; Eisemann, J.; Pendleton, G.

    1994-01-01

    High concentrations of Se have been found in aquatic food chains associated with irrigation drainwater and toxicity to fish and wildlife. Earlier studies have compared toxicities of Se as selenite and as seleno-DL-methionine (DL) in mallards. This study compares DL, seleno-L-methionine (L), selenized yeast (Y) and selenized wheat (W). Day-old mallard ducklings received an untreated diet (controls) containing 75% wheat (22% protein) or the same diet containing 15 or 30 ppm Se in the above forms. After 2 weeks blood and liver samples were collected for biochemical assays and Se analysis. All forms of selenium caused significant increases in plasma and hepatic glutathione peroxidase activities. Se as L was the most toxic, resulting in high mortality (64%) and impaired growth (>50%) and the greatest increase in ratio of oxidized to reduced glutathione with 30 ppm in the diet. Se as Y accumulated the least in liver. In a subsequent experiment with 30% dietary protein Se as L was less toxic.

  9. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  10. Increased oxidative stress in patients with familial Mediterranean ...

    African Journals Online (AJOL)

    0.05) comparing to HC group. However, there were no statistically significant differences between the groups in terms of antioxidant vitamin levels. Conclusions: Our study demonstrated increased oxidative stress in patients with FMF during AP.

  11. Endothelial cell oxidative stress and signal transduction

    Directory of Open Access Journals (Sweden)

    ROCIO FONCEA

    2000-01-01

    Full Text Available Endothelial dysfunction (ED is an early event in atherosclerotic disease, preceding clinical manifestations and complications. Increased reactive oxygen species (ROS have been implicated as important mechanisms that contribute to ED, and ROS’s may function as intracellular messengers that modulate signaling pathways. Several intracellular signal events stimulated by ROS have been defined, including the identification of two members of the mitogen activated protein kinase family (ERK1/2 and big MAP kinase, BMK1, tyrosine kinases (Src and Syk and different isoenzymes of PKC as redox-sensitive kinases. ROS regulation of signal transduction components include the modification in the activity of transcriptional factors such as NFkB and others that result in changes in gene expression and modifications in cellular responses. In order to understand the intracellular mechanisms induced by ROS in endothelial cells (EC, we are studying the response of human umbilical cord vein endothelial cells to increased ROS generation by different pro-atherogenic stimuli. Our results show that Homocysteine (Hcy and oxidized LDL (oxLDL enhance the activity and expression of oxidative stress markers, such as NFkB and heme oxygenase 1. These results suggest that these pro-atherogenic stimuli increase oxidative stress in EC, and thus explain the loss of endothelial function associated with the atherogenic process

  12. Periodontitis and increase in circulating oxidative stress

    OpenAIRE

    Takaaki Tomofuji; Koichiro Irie; Toshihiro Sanbe; Tetsuji Azuma; Daisuke Ekuni; Naofumi Tamaki; Tatsuo Yamamoto; Manabu Morita

    2009-01-01

    Reactive oxygen species (ROS) are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress). Such oxidation may be detrimental to systemic health. Fo...

  13. Nutrigenetics and modulation of oxidative stress.

    Science.gov (United States)

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  14. Evaluation of oxidative stress in hunting dogs during exercise.

    Science.gov (United States)

    Pasquini, A; Luchetti, E; Cardini, G

    2010-08-01

    Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Oxidative stress in ischemia and reperfusion

    DEFF Research Database (Denmark)

    Sinning, Christoph; Westermann, Dirk; Clemmensen, Peter

    2017-01-01

    Oxidative stress remains a major contributor to myocardial injury after ischemia followed by reperfusion (I/R) as the reperfusion of the myocardial infarction (MI) area inevitably leads to a cascade of I/R injury. This review focused on concepts of the antioxidative defense system and elucidates......, the different mechanisms through which myocardial protection can be addressed, like ischemic postconditioning in myocardial infarction or adjunctive measures like targeted temperature management as well as new theories, including the role of iron in I/R injury, will be discussed....

  16. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  17. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  18. Oxidative Stress and Antioxidant System in Periodontitis

    Science.gov (United States)

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  19. Oxidative stress and histopathological changes induced by ...

    African Journals Online (AJOL)

    These authors contributed equally to this work. Abstract: ... Oxidative stress has been proposed as a pos- sible mechanism involved .... to the Natural Health Institute of Health Guidelines for. Animal Care and ..... Journal of American College of.

  20. Ketamine Exhibits Different Neuroanatomical Profile After Mammalian Target of Rapamycin Inhibition in the Prefrontal Cortex: the Role of Inflammation and Oxidative Stress.

    Science.gov (United States)

    Abelaira, Helena M; Réus, Gislaine Z; Ignácio, Zuleide M; Dos Santos, Maria Augusta B; de Moura, Airam B; Matos, Danyela; Demo, Júlia P; da Silva, Júlia B I; Danielski, Lucineia G; Petronilho, Fabricia; Carvalho, André F; Quevedo, João

    2017-09-01

    Studies indicated that mammalian target of rapamycin (mTOR), oxidative stress, and inflammation are involved in the pathophysiology of major depressive disorder (MDD). Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has been identified as a novel MDD therapy; however, the antidepressant mechanism is not fully understood. In addition, the effects of ketamine after mTOR inhibition have not been fully investigated. In the present study, we examined the behavioral and biochemical effects of ketamine in the prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens after inhibition of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol) or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). Immobility was assessed in forced swimming tests, and then oxidative stress parameters and inflammatory markers were evaluated in the brain and periphery. mTOR activation in the PFC was essential to ketamine's antidepressant-like effects. Ketamine increased lipid damage in the PFC, hippocampus, and amygdala. Protein carbonyl was elevated in the PFC, amygdala, and NAc after ketamine administration. Ketamine also increased nitrite/nitrate in the PFC, hippocampus, amygdala, and NAc. Myeloperoxidase activity increased in the hippocampus and NAc after ketamine administration. The activities of superoxide dismutase and catalase were reduced after ketamine administration in all brain areas studied. Inhibition of mTOR signaling pathways by rapamycin in the PFC was required to protect against oxidative stress by reducing damage and increasing antioxidant enzymes. Finally, the TNF-α level was increased in serum by ketamine; however, the rapamycin plus treatment group was not able to block this increase. Activation of mTOR in the PFC is involved in the antidepressant-like effects of ketamine; however, the inhibition of this pathway was able to protect certain brain areas against

  1. [Effect of oxidative stress-associated damage to the lung tissue caused by different body mass index in the rat models].

    Science.gov (United States)

    Li, X Y; Zhang, X J; Zhao, J H; Xu, J Y

    2016-12-12

    Objective: To investigate the influence of different diets on serum protein expression levels of 4-hydroxynonenal (4-HNE), thioredoxin (Trx), thioredoxin reductase (TrxR) and the activities of Trx and TrxR, and to explore the effect of damage to the lung tissue and the underlying mechanisms of different body mass index caused by different diets in the rat models . Method: Healthy clean male SD rats were randomly divided into normal group, emaciation group and fat group, which were raised by different diets for 6 months.Then the rats were sacrificed and the serum and lung tissue were prepared. The levels of 4-HNE, Trx and TrxR in peripheral blood were quantitatively analyzed by enzyme-linked immunosorbent assay(ELISA), and the activities of Trx and TrxR were measured by chemical methods. Results: Compared with the normal group, the lung tissue had more apparent emphysema in the emaciation and the fat groups under light microscope, and more inflammatory cell infiltration in alveolar septum was observed in the fat group.The levels of 4-HNE in the fat group[(24.7±8.7)mg/L]was significantly higher than that in the normal group[(15.4±4.7)mg/L, P 0.05)in the levels of 4-HNE between the emaciation and the normal groups. The levels of TrxR in the emaciation group[(7.7±1.4)μg/ml]was significantly higher than that in the normal and the fat groups[(6.2±1.1), (4.9±1.4)μg/ml, all P 0.05). The activity of Trx in the emaciation group[(32.4±8.5)×10 -3 A ·min -1 ·mg -1 ]was significantly higher than that in the normal group[(19.6±3.3)×10 -3 A ·min -1 ·mg -1 ]and the fat group[(11.3±7.5)×10 -3 A ·min -1 ·mg -1 , all P 0.05). Conclusion: Both high BMI and low BMI can affect the oxidative stress of the body, resulting in increased oxidants and decreased antioxidants, and can cause damage to the lung tissue in the rat models.

  2. Mini-review: Biofilm responses to oxidative stress.

    Science.gov (United States)

    Gambino, Michela; Cappitelli, Francesca

    2016-01-01

    Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.

  3. Oxidative Stress and Anesthesia in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Peivandi Yazdi A

    2014-04-01

    Full Text Available Free radical and peroxide production lead to intracellular damage. On the other hand, free radicals are used by the human immune system to defend against pathogens. The aging process could be limited by oxidative stress in the short term. Chronic diseases like diabetes mellitus (DM are full-stress conditions in which remarkable metabolic functional destructions might happen. There is strong evidence regarding antioxidant impairment in diabetes. Performing a particular method for anesthesia in diabetic patients might prevent or modify excessive free radical formation and oxidative stress. It seems that prescribing antioxidant drugs could promote wound healing in diabetics.  

  4. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

    Directory of Open Access Journals (Sweden)

    Anu Rahal

    2014-01-01

    Full Text Available Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.

  5. Mitochondrial oxidative stress and cardiac ageing.

    Science.gov (United States)

    Martín-Fernández, Beatriz; Gredilla, Ricardo

    According with different international organizations, cardiovascular diseases are becoming the first cause of death in western countries. Although exposure to different risk factors, particularly those related to lifestyle, contribute to the etiopathogenesis of cardiac disorders, the increase in average lifespan and aging are considered major determinants of cardiac diseases events. Mitochondria and oxidative stress have been pointed out as relevant factors both in heart aging and in the development of cardiac diseases such as heart failure, cardiac hypertrophy and diabetic cardiomyopathy. During aging, cellular processes related with mitochondrial function, such as bioenergetics, apoptosis and inflammation are altered leading to cardiac dysfunction. Increasing our knowledge about the mitochondrial mechanisms related with the aging process, will provide new strategies in order to improve this process, particularly the cardiovascular ones. Copyright © 2017 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Laboratory assessment of oxidative stress in semen

    Directory of Open Access Journals (Sweden)

    Ashok Agarwal

    2018-03-01

    Full Text Available Objectives: To evaluate different laboratory assessments of oxidative stress (OS in semen and identify a cost-efficient and highly sensitive instrument capable of providing a comprehensive measure of OS in a clinical setting, as early intervention and an accurate diagnostic test are important because they help maintain a balance of free radicals and antioxidants; otherwise, excessive OS could lead to sperm damage and result in male infertility. Materials and methods: A systematic literature search was performed through a MedLine database search using the keywords ‘semen’ AND ‘oxygen reduction potential’. We also reviewed the references of retrieved articles to search for other potentially relevant research articles and additional book chapters discussing laboratory assessments for OS, ranging from 1994 to 2017. A total of 29 articles and book chapters involving OS-related laboratory assays were included. We excluded animal studies and articles written in languages other than English. Results: Direct laboratory techniques include: chemiluminescence, nitro blue tetrazolium, cytochrome C reduction test, fluorescein probe, electron spin resonance and oxidation–reduction potential (ORP. Indirect laboratory techniques include: measurement of Endtz test, lipid peroxidation, chemokines, antioxidants/micronutrients/vitamins, ascorbate, total antioxidant capacity, or DNA damage. Each of these laboratory techniques has its advantages and disadvantages. Conclusion: Traditional OS laboratory assessments have their limitations. Amongst the prevalent laboratory techniques, ORP is novel and better option as it can be easily used in a clinical setting to provide a comprehensive review of OS. However, more studies are needed to evaluate its reproducibility across various laboratory centres. Keywords: Semen, male infertility, Oxidative stress, Chemiluminescence, Total antioxidant capacity, Oxidation-reduction potential

  7. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  8. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  9. Oxidative Stress in Patients With Nongenital Warts

    Directory of Open Access Journals (Sweden)

    Sezai Sasmaz

    2005-01-01

    Full Text Available Comparison of oxidative stress status between subjects with or without warts is absent in the literature. In this study, we evaluated 31 consecutive patients with warts (15 female, 16 male and 36 control cases with no evidence of disease to determine the effects of oxidative stress in patients with warts. The patients were classified according to the wart type, duration, number, and location of lesions. We measured the indicators of oxidative stress such as catalase (CAT, glucose-6-phosphate dehydrogenase (G6PD, superoxide dismutase (SOD, and malondialdehyde (MDA in the venous blood by spectrophotometry. There was a statistically significant increase in levels of CAT, G6PD, SOD activities and MDA in the patients with warts compared to the control group (P<.05. However, we could not define a statistically significant correlation between these increased enzyme activities and MDA levels and the type, the duration, the number, and the location of lesions. We determined possible suppression of T cells during oxidative stress that might have a negative effect on the prognosis of the disease. Therefore, we propose an argument for the appropriateness to give priority to immunomodulatory treatment alternatives instead of destructive methods in patients with demonstrated oxidative stress.

  10. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  11. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  12. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Science.gov (United States)

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  13. Association between prenatal psychological stress and oxidative stress during pregnancy.

    Science.gov (United States)

    Eick, Stephanie M; Barrett, Emily S; van 't Erve, Thomas J; Nguyen, Ruby H N; Bush, Nicole R; Milne, Ginger; Swan, Shanna H; Ferguson, Kelly K

    2018-03-30

    Prenatal psychological stress during pregnancy has been associated with adverse reproductive outcomes. A growing animal literature supports an association between psychological stress and oxidative stress. We assessed this relationship in pregnant women, hypothesising that psychological stress is associated with higher concentrations of oxidative stress biomarkers during pregnancy. Psychosocial status and stressful life events (SLE) were self-reported. 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) was measured as a biomarker of oxidative stress in urine samples at median 32 weeks' gestation. We examined SLEs individually (ever vs never) and in summary (any vs none) and psychosocial status as measured by individual subscales and in summary (poor vs good). Linear models estimated associations between these parameters and urinary 8-iso-PGF 2α concentrations after adjusting for covariates. The geometric mean of 8-iso-PGF 2α was significantly higher among pregnant women who were non-White, smokers, had less than a college education, higher pre-pregnancy BMI and were unmarried. Having ever had a death in the family (n = 39) during pregnancy was associated with a 22.9% increase in 8-iso-PGF 2α in unadjusted models (95% confidence interval [CI] 1.50, 48.8). Poor psychosocial status was associated with a 13.1% (95% CI 2.43, 25.0) greater mean 8-iso-PGF 2α in unadjusted analyses. Associations were attenuated, but remained suggestive, after covariate adjustment. These data suggest that 8-iso-PGF 2α is elevated in pregnant women with who are at a sociodemographic disadvantage and who have higher psychological stress in pregnancy. Previous studies have observed that 8-iso-PGF 2α levels are associated with adverse birth outcomes, oxidative stress could be a mediator in these relationships. © 2018 John Wiley & Sons Ltd.

  14. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Xie Y

    2016-07-01

    Full Text Available Yuexia Xie,1,2,* Dejun Liu,3,* Chenlei Cai,1,* Xiaojing Chen,1 Yan Zhou,1 Liangliang Wu,1 Yongwei Sun,3 Huili Dai,1,2 Xianming Kong,1,2 Peifeng Liu1,2 1Central Laboratory, 2State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, 3Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: The application of Fe3O4 nanoparticles (NPs has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mecha­nisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm. Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application. Keywords: hepatoma cells, nanoparticles, cytotoxicity, mechanism, oxidative stress

  15. Oxidative stress resistance in Porphyromonas gingivalis

    Science.gov (United States)

    Henry, Leroy G; McKenzie, Rachelle ME; Robles, Antonette; Fletcher, Hansel M

    2012-01-01

    Porphyromonas gingivalis, a black-pigmented, Gram-negative anaerobe, is an important etiologic agent of periodontal disease. The harsh inflammatory condition of the periodontal pocket implies that this organism has properties that will facilitate its ability to respond and adapt to oxidative stress. Because the stress response in the pathogen is a major determinant of its virulence, a comprehensive understanding of its oxidative stress resistance strategy is vital. We discuss multiple mechanisms and systems that clearly work in synergy to defend and protect P. gingivalis against oxidative damage caused by reactive oxygen species. The involvement of multiple hypothetical proteins and/or proteins of unknown function in this process may imply other unique mechanisms and potential therapeutic targets. PMID:22439726

  16. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    Science.gov (United States)

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  17. Effects of different products of peach (Prunus persica L. Batsch) from a variety developed in southern Brazil on oxidative stress and inflammatory parameters in vitro and ex vivo

    Science.gov (United States)

    Gasparotto, Juciano; Somensi, Nauana; Bortolin, Rafael Calixto; Moresco, Karla Suzana; Girardi, Carolina Saibro; Klafke, Karina; Rabelo, Thallita Kelly; Morrone, Maurilio Da Silva; Vizzotto, Márcia; Raseira, Maria do Carmo Bassols; Moreira, José Claudio Fonseca; Gelain, Daniel Pens

    2014-01-01

    Antioxidant, anti-glycation and anti-inflammatory activities of fresh and conserved peach fruits (Prunus persica L. Batsch) were compared. Fresh peach pulps, peels, preserve peach pulps and the preserve syrup were prepared at equal concentrations. Rat liver, kidney and brain cortex tissue slices were pre-incubated with peach samples, subjected to oxidative stress with FeSO4 and hydrogen peroxide. Fresh peach pulps and peel conferred higher protection against cytotoxicity and oxidative stress than preserve peach pulps in most tissues. Release of tumor necrosis factor-α and interleukin-1β was also significantly decreased by Fresh peach pulps and peel, followed by preserve peach pulps. Total phenolic determination and HPLC analysis of carotenoids showed that the content of secondary metabolites in Fresh peach pulps and peel is significantly higher than in preserve peach pulps, while the syrup had only small or trace amounts of these compounds. Fresh peach pulps and Peel demonstrated high antioxidant and anti-inflammatory effects preventing against induced damage. PMID:25320458

  18. The Effects of Diabetes Induction on the Rat Heart: Differences in Oxidative Stress, Inflammatory Cells, and Fibrosis between Subendocardial and Interstitial Myocardial Areas

    Directory of Open Access Journals (Sweden)

    Maria C. Guido

    2017-01-01

    Full Text Available Diabetic cardiomyopathy (DCM is characterized by cardiac remodeling and impaired diastolic function that may lead to heart failure. The aim of this study was to evaluate oxidative stress, inflammatory cells, and fibrosis in both subendocardial (SEN and interstitial (INT areas of the myocardium. Male Wistar rats were allocated to 2 groups of 9 animals, a control (CT group and streptozotocin-induced diabetes (DM. After 8 weeks, echocardiography morphometry, protein expression, and confocal microscopy in SEN and INT areas of the left ventricle (LV were performed. The echocardiographic analysis showed that diabetes induction leads to cardiac dilation, hypertrophy, and LV diastolic dysfunction. As compared to CT, the induction of diabetes increased inflammatory cells and fibrosis in both SEN and INT areas of DM myocardium and increased ROS generation only in SEN. Comparing the SEN and INT areas in the DM group, inflammatory cells and fibrosis in SEN were greater than in INT. In conclusion, diabetic myocardium SEN area, wherein oxidative stress was more pronounced, is more susceptible to cardiac dysfunction than INT area. This finding can be important for the understanding of the heart remodeling process occurring in DCM and perhaps to engender targeted therapies to attenuate or revert DCM-related diastolic dysfunction.

  19. Oxidative stress in patients with endodontic pathologies

    Directory of Open Access Journals (Sweden)

    Vengerfeldt V

    2017-08-01

    Full Text Available Veiko Vengerfeldt,1 Reet Mändar,2,3 Mare Saag,1 Anneli Piir,2 Tiiu Kullisaar2 1Institute of Dental Sciences, Faculty of Medicine, University of Tartu, 2Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, 3Competence Centre on Health Technologies, Tartu, Estonia Background: Apical periodontitis (AP is an inflammatory disease affecting periradicular tissues. It is a widespread condition but its etiopathogenetic mechanisms have not been completely elucidated and the current treatment options are not always successful.Purpose: To compare oxidative stress (OxS levels in the saliva and the endodontium (root canal [RC] contents in patients with different endodontic pathologies and in endodontically healthy subjects.Patients and methods: The study group of this comparison study included 22 subjects with primary chronic apical periodontitis (pCAP, 26 with posttreatment or secondary chronic apical periodontitis (sCAP, eight with acute periapical abscess, 13 with irreversible pulpitis, and 17 healthy controls. Resting saliva samples were collected before clinical treatment. Pulp samples (remnants of the pulp, tooth tissue, and/or previous root filling material were collected under strict aseptic conditions using the Hedström file. The samples were frozen to −80°C until analysis. OxS markers (myeloperoxidase [MPO], oxidative stress index [OSI], 8-isoprostanes [8-EPI] were detected in the saliva and the endodontium. Results: The highest MPO and 8-EPI levels were seen in pCAP and pulpitis, while the highest levels of OSI were seen in pCAP and abscess patients, as well as the saliva of sCAP patients. Controls showed the lowest OxS levels in both RC contents and saliva. Significant positive correlations between OxS markers, periapical index, and pain were revealed. Patients with pain had significantly higher OxS levels in both the endodontium (MPO median 27.9 vs 72.6 ng/mg protein, p=0.004; OSI 6.0 vs 10.4, p<0

  20. Oxidative stress parameters in localized scleroderma patients.

    Science.gov (United States)

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  1. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    OpenAIRE

    H Çakır-Atabek; F Özdemir; R Çolak

    2015-01-01

    The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume) has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE) on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative str...

  2. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  3. Gender differences in biochemical markers and oxidative stress of rats after 28 days oral exposure to a mixture used for weight loss containing p-synephrine, ephedrine, salicin, and caffeine

    Directory of Open Access Journals (Sweden)

    Gabriela Cristina Schmitt

    Full Text Available ABSTRACT The association of p-synephrine, ephedrine, salicin, and caffeine in dietary supplements and weight loss products is very common worldwide, even though ephedrine has been prohibited in many countries. The aim of this study was to evaluate a 28-day oral exposure toxicity profile of p-synephrine, ephedrine, salicin, and caffeine mixture (10:4:6:80 w/w respectively in male and female Wistar rats. Body weight and signs of toxicity, morbidity, and mortality were observed daily. After 28 days, animals were euthanized and blood collected for hematological, biochemical, and oxidative stress evaluation. No clinical signs of toxicity, significant weight loss or deaths occurred, nor were there any significant alterations in hematological parameters. Biochemical and oxidative stress biomarkers showed lipid peroxidation, and hepatic and renal damage (p < 0.05; ANOVA/Bonferroni in male rats (100 and 150 mg/kg and a reduction (p < 0.05; ANOVA/Bonferroni in glutathione (GSH levels in all male groups. Female groups displayed no indications of oxidative stress or biochemical alterations. The different toxicity profile displayed by male and female rats suggests a hormonal influence on mixture effects. Results demonstrated that the tested mixture can alter oxidative status and promote renal and hepatic damages.

  4. Genetics of Oxidative Stress in Obesity

    Directory of Open Access Journals (Sweden)

    Azahara I. Rupérez

    2014-02-01

    Full Text Available Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  5. Neuro-oxidative-nitrosative stress in sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-01-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding...

  6. Oxidative Stress Control by Apicomplexan Parasites

    Directory of Open Access Journals (Sweden)

    Soraya S. Bosch

    2015-01-01

    Full Text Available Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis.

  7. Oxidative stress and histopathological changes induced by ...

    African Journals Online (AJOL)

    Background: Methyl-thiophanate (MT), a fungicide largely used in agriculture throughout the world including Tunisia, protects many vegetables, fruits and field crops against a wide spectrum of fungal diseases. Oxidative stress has been proposed as a possible mechanism involved in MT toxicity on non-target organism.

  8. Tobacco smoking and oxidative stress to DNA

    DEFF Research Database (Denmark)

    Ellegaard, Pernille Kempel; Poulsen, Henrik Enghusen

    2016-01-01

    Oxidative stress to DNA from smoking was investigated in one randomized smoking cessation study and in 36 cohort studies from excretion of urinary 8-oxo-7-hydrodeoxyguanosine (8-oxodG). Meta-analysis of the 36 cohort studies showed smoking associated with a 15.7% (95% CL 11.0:20.3, p < 0.0001) in...

  9. Genetics of oxidative stress in obesity.

    Science.gov (United States)

    Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M

    2014-02-20

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  10. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    2007-06-01

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  11. Hepatic Antioxidant, Oxidative Stress And Histopathological ...

    African Journals Online (AJOL)

    Hepatic Antioxidant, Oxidative Stress And Histopathological Changes Induced By Nicotine In A Gender Based Study In Adult Rats. ... Antioxidant status was assessed in liver by measuring the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and ...

  12. IGF-1, oxidative stress, and atheroprotection

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  13. Piracetam improves mitochondrial dysfunction following oxidative stress

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  14. Oxidative stress and life histories: unresolved issues and current needs.

    Science.gov (United States)

    Speakman, John R; Blount, Jonathan D; Bronikowski, Anne M; Buffenstein, Rochelle; Isaksson, Caroline; Kirkwood, Tom B L; Monaghan, Pat; Ozanne, Susan E; Beaulieu, Michaël; Briga, Michael; Carr, Sarah K; Christensen, Louise L; Cochemé, Helena M; Cram, Dominic L; Dantzer, Ben; Harper, Jim M; Jurk, Diana; King, Annette; Noguera, Jose C; Salin, Karine; Sild, Elin; Simons, Mirre J P; Smith, Shona; Stier, Antoine; Tobler, Michael; Vitikainen, Emma; Peaker, Malcolm; Selman, Colin

    2015-12-01

    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting

  15. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah; Fischle, Wolfgang

    2016-01-01

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences

  16. Study on the serum oxidative stress status in silicosis patients

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... oxidative stress parameters were investigated in silicosis patients and controls group. 128 silicosis ... to help clinicians to further delineate the role of oxidative- stress .... in age, working duration smoking, total cholesterol, ALT,.

  17. Protective effects of flavonoids from corn silk on oxidative stress ...

    African Journals Online (AJOL)

    Protective effects of flavonoids from corn silk on oxidative stress induced by ... The present study aims at exploring the effects of flavonoids from corn silk (FCS) on oxidative stress induced by exhaustive exercise in mice. ... from 32 Countries:.

  18. Biochemical basis of the high resistance to oxidative stress in ...

    Indian Academy of Sciences (India)

    Unknown

    581. Keywords. Apoptosis; D. discoideum; oxidative stress; antioxidant enzymes; lipid peroxidation ..... multiple toxic effects of oxidative stress that is related to several pathological conditions ... culture. This work was supported by a grant to RB.

  19. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (pstress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed participants (p≤.01) Intriguingly, among those with low chronic stress

  20. Oxidative Metabolism Genes Are Not Responsive to Oxidative Stress in Rodent Beta Cell Lines

    Directory of Open Access Journals (Sweden)

    Faer Morrison

    2012-01-01

    Full Text Available Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes. Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study, we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L, ambient (11 mmol/L, and high (28 mmol/L glucose conditions for 48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS production was evident in INS-1 cells after 48 hours (P<0.05. TLDA analysis revealed a significant (P<0.05 upregulation of 16 of the 90 genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

  1. Plant Polyphenol Antioxidants and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    INES URQUIAGA

    2000-01-01

    Full Text Available In recent years there has been a remarkable increment in scientific articles dealing with oxidative stress. Several reasons justify this trend: knowledge about reactive oxygen and nitrogen species metabolism; definition of markers for oxidative damage; evidence linking chronic diseases and oxidative stress; identification of flavonoids and other dietary polyphenol antioxidants present in plant foods as bioactive molecules; and data supporting the idea that health benefits associated with fruits, vegetables and red wine in the diet are probably linked to the polyphenol antioxidants they contain.In this review we examine some of the evidence linking chronic diseases and oxidative stress, the distribution and basic structure of plant polyphenol antioxidants, some biological effects of polyphenols, and data related to their bioavailability and the metabolic changes they undergo in the intestinal lumen and after absorption into the organism.Finally, we consider some of the challenges that research in this area currently faces, with particular emphasis on the contributions made at the International Symposium "Biology and Pathology of Free Radicals: Plant and Wine Polyphenol Antioxidants" held July 29-30, 1999, at the Catholic University, Santiago, Chile and collected in this special issue of Biological Research

  2. The relationship between oxidative stress and exercise.

    Science.gov (United States)

    Finkler, Maya; Lichtenberg, Dov; Pinchuk, Ilya

    2014-02-01

    Physical exercise has many benefits, but it might also have a negative impact on the body, depending on the training level, length of workout, gender, age and fitness. The negative effects of physical exercise are commonly attributed to an imbalance between the levels of antioxidants (both low molecular weight antioxidants and antioxidant enzymes) and reactive oxygen and nitrogen species due to excessive production of free radicals during physical exercise. In this critical review, we look for answers for three specific questions regarding the interrelationship between physical exercise and oxidative stress (OS), namely, (i) the dependence of the steady-state level of OS on fitness, (ii) the effect of intensive exercise on the OS and (iii) the dependence of the effect of the intense exercise on the individual fitness. All these questions have been raised, investigated and answered, but the answers given on the basis of different studies are different. In the present review, we try to explain the reason(s) for the inconsistencies between the conclusions of different investigations, commonly based on the concentrations of specific biomarkers in body fluids. We think that most of the inconsistencies can be attributed to the difference between the criteria of the ill-defined term denoted OS, the methods used to test them and in some cases, between the qualities of the applied assays. On the basis of our interpretation of the differences between different criteria of OS, we consider possible answers to three well-defined questions. Possible partial answers are given, all of which lend strong support to the conclusion that the network responsible for homeostasis of the redox status is very effective. However, much more data are required to address the association between exercise and OS and its dependence on various relevant factors.

  3. Oxidative stress in malaria and artemisinin combination therapy

    DEFF Research Database (Denmark)

    Kavishe, Reginald A.; Koenderink, Jan B.; Alifrangis, Michael

    2017-01-01

    in their mechanisms of action. This review gives a brief account of the oxidative stress and redox systems in malaria and discusses the context of antimalarial effectiveness of different ACTs compared with monotherapies of the partner drugs. A final account on the Pros and Cons of ACT as a strategy is discussed....

  4. Screening of drought oxidative stress tolerance in Serbian ...

    African Journals Online (AJOL)

    This study was designed to examine and compare antioxidant and free-radical scavenging activities of leaves of six different melliferous plant species (Populus alba, Robinia pseudoacacia, Sophora japonica, Euodia hupehensis, Tilia sp., Fraxinus sp.) from Serbia in order to evaluate their drought oxidative stress tolerance.

  5. No effect of melatonin on oxidative stress after laparoscopic cholecystectomy

    DEFF Research Database (Denmark)

    Kücükakin, B.; Klein, M.; Lykkesfeldt, Jens

    2010-01-01

    melatonin and 21 patients received placebo during surgery. No significant differences were observed between the groups in the oxidative stress variables MDA, TAA, AA and DHA or in the inflammatory variable CRP (repeated-measures ANOVA, P > 0.05 for all variables). Conclusions Administration of 10 mg...

  6. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  7. Nitric oxide in the stress axis.

    Science.gov (United States)

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  8. Biochemical basis of the high resistance to oxidative stress

    Indian Academy of Sciences (India)

    Aerobic organisms experience oxidative stress due to generation of reactive oxygen species during normal aerobic metabolism. In addition, several chemicals also generate reactive oxygen species which induce oxidative stress. Thus oxidative stress constitutes a major threat to organisms living in aerobic environments.

  9. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Oxidative stress in patients with endodontic pathologies.

    Science.gov (United States)

    Vengerfeldt, Veiko; Mändar, Reet; Saag, Mare; Piir, Anneli; Kullisaar, Tiiu

    2017-01-01

    Apical periodontitis (AP) is an inflammatory disease affecting periradicular tissues. It is a widespread condition but its etiopathogenetic mechanisms have not been completely elucidated and the current treatment options are not always successful. To compare oxidative stress (OxS) levels in the saliva and the endodontium (root canal [RC] contents) in patients with different endodontic pathologies and in endodontically healthy subjects. The study group of this comparison study included 22 subjects with primary chronic apical periodontitis (pCAP), 26 with posttreatment or secondary chronic apical periodontitis (sCAP), eight with acute periapical abscess, 13 with irreversible pulpitis, and 17 healthy controls. Resting saliva samples were collected before clinical treatment. Pulp samples (remnants of the pulp, tooth tissue, and/or previous root filling material) were collected under strict aseptic conditions using the Hedström file. The samples were frozen to -80°C until analysis. OxS markers (myeloperoxidase [MPO], oxidative stress index [OSI], 8-isoprostanes [8-EPI]) were detected in the saliva and the endodontium. The highest MPO and 8-EPI levels were seen in pCAP and pulpitis, while the highest levels of OSI were seen in pCAP and abscess patients, as well as the saliva of sCAP patients. Controls showed the lowest OxS levels in both RC contents and saliva. Significant positive correlations between OxS markers, periapical index, and pain were revealed. Patients with pain had significantly higher OxS levels in both the endodontium (MPO median 27.9 vs 72.6 ng/mg protein, p =0.004; OSI 6.0 vs 10.4, p <0.001; 8-EPI 50.0 vs 75.0 pg/mL, p <0.001) and saliva (MPO 34.2 vs 117.5 ng/mg protein, p <0.001; 8-EPI 50.0 vs 112.8 pg/mL, p <0.001) compared to pain-free subjects. OxS is an important pathomechanism in endodontic pathologies that is evident at both the local (RC contents) and systemic (saliva) level. OxS is significantly associated with dental pain and bone

  12. Haptoglobin is required to prevent oxidative stress and muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Enrico Bertaggia

    Full Text Available BACKGROUND: Oxidative stress (OS plays a major role on tissue function. Several catabolic or stress conditions exacerbate OS, inducing organ deterioration. Haptoglobin (Hp is a circulating acute phase protein, produced by liver and adipose tissue, and has an important anti-oxidant function. Hp is induced in pro-oxidative conditions such as systemic inflammation or obesity. The role of systemic factors that modulate oxidative stress inside muscle cells is still poorly investigated. RESULTS: We used Hp knockout mice (Hp-/- to determine the role of this protein and therefore, of systemic OS in maintenance of muscle mass and function. Absence of Hp caused muscle atrophy and weakness due to activation of an atrophy program. When animals were stressed by acute exercise or by high fat diet (HFD, OS, muscle atrophy and force drop were exacerbated in Hp-/-. Depending from the stress condition, autophagy-lysosome and ubiquitin-proteasome systems were differently induced. CONCLUSIONS: Hp is required to prevent OS and the activation of pathways leading to muscle atrophy and weakness in normal condition and upon metabolic challenges.

  13. Oxidative stress and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Javier eBlesa

    2015-07-01

    Full Text Available Parkinson disease is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in Parkinson’s Disease. Environmental factors, such as neurotoxins, insecticides like rotenone, pesticides like Paraquat, dopamine itself and genetic mutations in Parkinson’s Disease related proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process.

  14. Etyopathogenesis and Oxidative Stress Relationship in Mild Severe Alopecia Areata

    Directory of Open Access Journals (Sweden)

    Fadime Kilinç

    2017-09-01

    Full Text Available Objective:Alopecia areata (AA is a recurrent, autoimmune, inflammatory disease characterized by loss of scarless hair. The etiopathogenesis is not exactly known, however genetic, emotional, environmental factors and autoimmunity are accused. The aim of the study is to investigate the role of oxidative stress in the etiopathogenesis of AA. Methods:Thirty seven AA patients and thirty five healthy volunteers as control group were included in the study. Oxidative stress index (OSI was calculated by measuring total antioxidant capacity (TAC and total oxidant capacity (TOC in patient and control group serum samples. Results:The TAC values of the patient group were found to be higher than the control group (p=0.036. A nonsignificant difference was found between the two groups statistically bordered by TOC (p=0.058. There was no significant difference between the two groups in terms of OSI (p=0.270.

  15. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  16. Influence of Oxidative Stress on Stored Platelets

    OpenAIRE

    K. Manasa; R. Vani

    2016-01-01

    Platelet storage and its availability for transfusion are limited to 5-6 days. Oxidative stress (OS) is one of the causes for reduced efficacy and shelf-life of platelets. The studies on platelet storage have focused on improving the storage conditions by altering platelet storage solutions, temperature, and materials. Nevertheless, the role of OS on platelet survival during storage is still unclear. Hence, this study was conducted to investigate the influence of storage on platelets. Platele...

  17. Oxidative stress and Parkinson’s Disease

    OpenAIRE

    Javier eBlesa; Javier eBlesa; Javier eBlesa; Ines eTrigo-Damas; Ines eTrigo-Damas; Anna eQuiroga-Varela; Vernice Ruffin Jackson-Lewis

    2015-01-01

    Parkinson disease is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in Parkinson’s Disease. Environmental factors, such as neuro...

  18. Piracetam improves mitochondrial dysfunction following oxidative stress

    OpenAIRE

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging.Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction fol...

  19. Oxidative stress and male reproductive health

    Directory of Open Access Journals (Sweden)

    Robert J Aitken

    2014-02-01

    Full Text Available One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER pathway, 8-oxoguanine glycosylase 1 (OGG1. The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1 needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceivedin vitro and serves as a driver for current research into the origins of free radical generation in the germ line.

  20. Chrononutrition against Oxidative Stress in Aging

    Directory of Open Access Journals (Sweden)

    M. Garrido

    2013-01-01

    Full Text Available Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.

  1. Oxidative stress in ageing of hair.

    Science.gov (United States)

    Trüeb, Ralph M

    2009-01-01

    Experimental evidence supports the hypothesis that oxidative stress plays a major role in the ageing process. Reactive oxygen species are generated by a multitude of endogenous and environmental challenges. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage cellular structural membranes, lipids, proteins, and DNA. The body possesses endogenous defence mechanisms, such as antioxidative enzymes and non-enzymatic antioxidative molecules, protecting it from free radicals by reducing and neutralizing them. With age, the production of free radicals increases, while the endogenous defence mechanisms decrease. This imbalance leads to the progressive damage of cellular structures, presumably resulting in the ageing phenotype. Ageing of hair manifests as decrease of melanocyte function or graying, and decrease in hair production or alopecia. There is circumstantial evidence that oxidative stress may be a pivotal mechanism contributing to hair graying and hair loss. New insights into the role and prevention of oxidative stress could open new strategies for intervention and reversal of the hair graying process and age-dependent alopecia.

  2. Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study).

    Science.gov (United States)

    Maćczak, Aneta; Cyrkler, Monika; Bukowska, Bożena; Michałowicz, Jaromir

    2017-06-01

    Bisphenol A (BPA) and its analogs are widely used in the production of various everyday use products, which leads to a common exposure of humans to these substances. The effect of bisphenols on oxidative stress parameters has not been described in detail in non-nucleated cells, therefore, we have decided to evaluate the impact of BPA and its analogs, i.e. bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) on reactive oxygen species (ROS) formation, lipid peroxidation, glutathione (GSH) level and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in human erythrocytes. The erythrocytes were incubated with the compounds studied in the concentrations ranging from 0.1 to 500μg/ml for 1, 4 or 24h. It has been found that bisphenols enhanced ROS (including • OH) formation, depleted GSH level, increased lipid peroxidation and changed the activities of SOD, CAT and GSH-Px. It has been noted that the strongest alterations in ROS formation, lipid peroxidation and the activity of antioxidant enzymes were induced by BPAF, which changed CAT and SOD activity even at 0.5μg/ml. It has also been shown that BPA caused the strongest changes in GSH level, while BPS, which is the main BPA substituent in the manufacture did not alter most parameters studied. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  4. Role of oxidative stress in female reproduction

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh K

    2005-07-01

    Full Text Available Abstract In a healthy body, ROS (reactive oxygen species and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause. OS results from an imbalance between prooxidants (free radical species and the body's scavenging ability (antioxidants. ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal

  5. Supplementation of herbal plants differently modulated metabolic profile, insulin sensitivity, and oxidative stress in transition dairy cows fed various extruded oil seeds.

    Science.gov (United States)

    Hashemzadeh-Cigari, F; Ghorbani, G R; Khorvash, M; Riasi, A; Taghizadeh, A; Zebeli, Q

    2015-01-01

    The study investigated the effects of a mixture of herbal plants (HM) and two sources of unsaturated fatty acids (FA), extruded linseed (LS) and soybean (SB), on metabolic profile, insulin sensitivity, and oxidative status of transition dairy cows. Thirty-two prepartum Holstein cows, blocked by parity and calving day, were randomly assigned to 1 of 4 treatments, in a 2×2 factorial design, starting from 25 days before the expected calving date to 26 days postpartum. The supplementation rates of HM were 150 and 170 g/animal/day at pre- and postpartum, respectively. Blood samples were analyzed for metabolites on day 7.15±1.70 prepartum and on days 1 and 21 postpartum. An intravenous glucose tolerance test (IV-GTT) was conducted on day 25 postpartum. Data showed that cows supplemented with HM had lower serum concentration of NEFA (0.395 vs. 0.602±0.044 mmol/L; Pinsulin ratio (Pcows fed the LS-based diet had greater serum glucose concentration during prepartum (80.7 vs. 71.3±3.32 mg/dL; P=0.06) and postpartum period (86.3 vs. 73.5±3.35 mg/dL; P=0.01), as well as lower NEFA (0.425 vs. 0.572±0.044 mmol/L; P=0.03) and insulin to glucose ratio (Pinsulin-sensitivity check index revealed that supplementing HM in LS-based diet improved insulin sensitivity (0.45 vs. 0.41±0.013; P=0.03) prepartum, whereas after parturition, the HM addition was effective for both oil seeds (0.40 vs. 0.37±0.008; P=0.06) in enhancing insulin sensitivity. Result of IV-GTT indicated that cows fed LS-based diets had higher basal glucose concentration (63.7 vs. 55.7±2.37; mg/dL; P=0.02) and lower glucose area under the curve (995.8 vs. 1529.5±100.7; mg/dL×45 min; Pinsulin resistance, this feeding strategy lowered total antioxidant capacity prepartum (0. 48 vs. 0.55±0.017 nmol/L; Pinsulin response following glucose infusion, although feeding of LS-based diets induced an increased oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Oxidative Stress and Endometriosis: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Gennaro Scutiero

    2017-01-01

    Full Text Available Endometriosis is one of the most common gynaecologic diseases in women of reproductive age. It is characterized by the presence of endometrial tissue outside the uterine cavity. The women affected suffer from pelvic pain and infertility. The complex etiology is still unclear and it is based on three main theories: retrograde menstruation, coelomic metaplasia, and induction theory. Genetics and epigenetics also play a role in the development of endometriosis. Recent studies have put the attention on the role of oxidative stress, defined as an imbalance between reactive oxygen species (ROS and antioxidants, which may be implicated in the pathophysiology of endometriosis causing a general inflammatory response in the peritoneal cavity. Reactive oxygen species are intermediaries produced by normal oxygen metabolism and are inflammatory mediators known to modulate cell proliferation and to have deleterious effects. A systematic review was performed in order to clarify the different roles of oxidative stress and its role in the development of endometriosis. Several issues have been investigated: iron metabolism, oxidative stress markers (in the serum, peritoneal fluid, follicular fluid, peritoneal environment, ovarian cortex, and eutopic and ectopic endometrial tissue, genes involved in oxidative stress, endometriosis-associated infertility, and cancer development.

  7. Oxidative stress status in congenital hypogonadism: an appraisal.

    Science.gov (United States)

    Haymana, C; Aydoğdu, A; Soykut, B; Erdem, O; Ibrahimov, T; Dinc, M; Meric, C; Basaran, Y; Sonmez, A; Azal, O

    2017-07-01

    Patients with hypogonadism are at increased risk of cardiac and metabolic diseases. However, the pathogenesis of increased cardiometabolic risk in patients with hypogonadism is not clear. Oxidative stress plays an important role in the pathogenesis of cardiometabolic diseases. This study aimed to investigate possible differences in oxidative stress conditions between patients with hypogonadism and healthy controls. In this study, 38 male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age: 21.7 ± 1.6 years) and 44 healthy male controls (mean age: 22.3 ± 1.4 years) with almost equal body mass index were enrolled. The demographic parameters, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters, such as superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA), were compared between both groups. Compared to the healthy controls, triglycerides (p = .02), insulin levels, HOMA-IR values, CAT activities and MDA levels (p treatment-naïve patients with congenital hypogonadism had an increased status of oxidative stress.

  8. Smog induces oxidative stress and microbiota disruption.

    Science.gov (United States)

    Wong, Tit-Yee

    2017-04-01

    Smog is created through the interactions between pollutants in the air, fog, and sunlight. Air pollutants, such as carbon monoxide, heavy metals, nitrogen oxides, ozone, sulfur dioxide, volatile organic vapors, and particulate matters, can induce oxidative stress in human directly or indirectly through the formation of reactive oxygen species. The outermost boundary of human skin and mucous layers are covered by a complex network of human-associated microbes. The relation between these microbial communities and their human host are mostly mutualistic. These microbes not only provide nutrients, vitamins, and protection against other pathogens, they also influence human's physical, immunological, nutritional, and mental developments. Elements in smog can induce oxidative stress to these microbes, leading to community collapse. Disruption of these mutualistic microbiota may introduce unexpected health risks, especially among the newborns and young children. Besides reducing the burning of fossil fuels as the ultimate solution of smog formation, advanced methods by using various physical, chemical, and biological means to reduce sulfur and nitrogen contains in fossil fuels could lower smog formation. Additionally, information on microbiota disruption, based on functional genomics, culturomics, and general ecological principles, should be included in the risk assessment of prolonged smog exposure to the health of human populations. Copyright © 2017. Published by Elsevier B.V.

  9. Oxidative stress, thyroid dysfunction & Down syndrome

    Directory of Open Access Journals (Sweden)

    Carlos Campos

    2015-01-01

    Full Text Available Down syndrome (DS is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1 is coded on chromosome 21 and it is overexpressed (~50% resulting in an increase of reactive oxygen species (ROS due to overproduction of hydrogen peroxide (H 2 O 2 . ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS.

  10. Oxidative stress associated with exercise, psychological stress and life-style factors

    DEFF Research Database (Denmark)

    Møller, P; Wallin, H; Knudsen, Lisbeth E.

    1996-01-01

    generation. Here, we review the effect of alcohol, air pollution, cigarette smoke, diet, exercise, non-ionizing radiation (UV and microwaves) and psychological stress on the development of oxidative stress. Regular exercise and carbohydrate-rich diets seem to increase the resistance against oxidative stress....... Air pollution, alcohol, cigarette smoke, non-ionizing radiation and psychological stress seem to increase oxidative stress. Alcohol in lower doses may act as an antioxidant on low density lipoproteins and thereby have an anti-atherosclerotic property....

  11. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  12. Oxidative stress tolerance of early stage diabetic endothelial progenitor cell

    Directory of Open Access Journals (Sweden)

    Dewi Sukmawati

    2015-06-01

    Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing the expression of anti-oxidative enzymes.

  13. Free radicals, reactive oxygen species, oxidative stress and its classification.

    Science.gov (United States)

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Oxidative stress in normal and diabetic rats.

    Science.gov (United States)

    Torres, M D; Canal, J R; Pérez, C

    1999-01-01

    Parameters related to oxidative stress were studied in a group of 10 Wistar diabetic rats and 10 control rats. The levels of total erythrocyte catalase activity in the diabetic animals were significantly (pC18:2) ratios. Greater vitaminE/triglyceride (TG) ratio, however, appeared in the control group. The corresponding vitamin A ratios (vitaminA/TG, vitaminA/PUFA, vitaminA/C 18:2) were higher in the control group. Our work corroborates the findings that fatty acid metabolism presents alterations in the diabetes syndrome and that the antioxidant status is affected.

  16. Menopause as risk factor for oxidative stress.

    Science.gov (United States)

    Sánchez-Rodríguez, Martha A; Zacarías-Flores, Mariano; Arronte-Rosales, Alicia; Correa-Muñoz, Elsa; Mendoza-Núñez, Víctor Manuel

    2012-03-01

    The aim of this study was to determine the influence of menopause (hypoestrogenism) as a risk factor for oxidative stress. We carried out a cross-sectional study with 187 perimenopausal women from Mexico City, including 94 premenopausal (mean ± SD age, 44.9 ± 4.0 y; estrogen, 95.8 ± 65.7 pg/mL; follicle-stimulating hormone, 13.6 ± 16.9 mIU/mL) and 93 postmenopausal (mean ± SD age, 52.5 ± 3.3 y; estrogen, 12.8 ± 6.8 pg/mL; follicle-stimulating hormone, 51.4 ± 26.9 mIU/mL) women. We measured lipoperoxides using a thiobarbituric acid-reacting substance assay, erythrocyte superoxide dismutase and glutathione peroxidase activities, and the total antioxidant status with the Randox kit. An alternative cutoff value for lipoperoxide level of 0.320 μmol/L or higher was defined on the basis of the 90th percentile of young healthy participants. All women answered the Menopause Rating Scale, the Athens Insomnia Scale, and a structured questionnaire about pro-oxidant factors, that is, smoking, consumption of caffeinated and alcoholic beverages, and physical activity. Finally, we measured weight and height and calculated body mass index. The lipoperoxide levels were significantly higher in the postmenopausal group than in the premenopausal group (0.357 ± 0.05 vs 0.331 ± 0.05 μmol/L, P = 0.001). Using logistic regression to control pro-oxidant variables, we found that menopause was the main risk factor for oxidative stress (odds ratio, 2.62; 95% CI, 1.35-5.11; P menopause rating score, insomnia score, and lipoperoxides, and this relationship was most evident in the postmenopausal group (menopause scale, r = 0.327 [P = 0.001]; insomnia scale, r = 0.209 [P < 0.05]). Our findings suggest that the depletion of estrogen in postmenopause could cause oxidative stress in addition to the known symptoms.

  17. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    Directory of Open Access Journals (Sweden)

    Vemanna S Ramu

    Full Text Available In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.

  18. Cadmium induced oxidative stress in Dunaliella salina | Moradshahi ...

    African Journals Online (AJOL)

    The unicellular green algae Dunaliella salina contains various antioxidants which protect the cell from oxidative damage due to environmental stresses such as heavy metal stress. In the present study, the response of D. salina at the stationary growth phase to oxidative stress generated by cadmium chloride was ...

  19. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells

    International Nuclear Information System (INIS)

    Park, Eun-Jung; Choi, Jinhee; Park, Young-Kwon; Park, Kwangsik

    2008-01-01

    Cerium oxide nanoparticles of different sizes (15, 25, 30, 45 nm) were prepared by the supercritical synthesis method, and cytotoxicity was evaluated using cultured human lung epithelial cells (BEAS-2B). Exposure of the cultured cells to nanoparticles (5, 10, 20, 40 μg/ml) led to cell death, ROS increase, GSH decrease, and the inductions of oxidative stress-related genes such as heme oxygenase-1, catalase, glutathione S-transferase, and thioredoxin reductase. The increased ROS by cerium oxide nanoparticles triggered the activation of cytosolic caspase-3 and chromatin condensation, which means that cerium oxide nanoparticles exert cytotoxicity by an apoptotic process. Uptake of the nanoparticles to the cultured cells was also tested. It was observed that cerium oxide nanoparticles penetrated into the cytoplasm and located in the peri-region of the nucleus as aggregated particles, which may induce the direct interaction between nanoparticles and cellular molecules to cause adverse cellular responses

  20. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  1. [Some peculiarities in the manifestation of oxidative stress and current status of antioxidant system in adolescents of different age groups with obesity, complicated by insulin resistance and without it].

    Science.gov (United States)

    Kuleshova, D K; Davydov, V V

    2014-01-01

    The study has shown that neuroendocrine obesity in adolescents is associated with the formation of oxidative stress which is more pronounced in early than in late puberty. Obesity with concomitant insulin resistance increases manifestations of oxidative stress accompanied by a compensatory increase in the activity of catabolic enzymes and reduced capacity of the defense antioxidant system in late puberty. These alterations may be caused by age-related changes in hormonal secretion under conditions of insulin resistance in late puberty.

  2. Nutritionally Mediated Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz

    2013-01-01

    Full Text Available There are many sources of nutritionally mediated oxidative stress that trigger inflammatory cascades along short and long time frames. These events are primarily mediated via NFκB. On the short-term scale postprandial inflammation is characterized by an increase in circulating levels of IL-6 and TNF-α and is mirrored on the long-term by proinflammatory gene expression changes in the adipocytes and peripheral blood mononuclear cells (PBMCs of obese individuals. Specifically the upregulation of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL2/MIP-2α, and CXCL3/MIP-2β is noted because these changes have been observed in both adipocytes and PBMC of obese humans. In comparing numerous human intervention studies it is clear that pro-inflammatory and anti-inflammatory consumption choices mediate gene expression in humans adipocytes and peripheral blood mononuclear cells. Arachidonic acid and saturated fatty acids (SFAs both demonstrate an ability to increase pro-inflammatory IL-8 along with numerous other inflammatory factors including IL-6, TNFα, IL-1β, and CXCL1 for arachidonic acid and IGB2 and CTSS for SFA. Antioxidant rich foods including olive oil, fruits, and vegetables all demonstrate an ability to lower levels of IL-6 in PBMCs. Thus, dietary choices play a complex role in the mediation of unavoidable oxidative stress and can serve to exacerbate or dampen the level of inflammation.

  3. Melamine Induces Oxidative Stress in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Dai

    Full Text Available Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPX were analyzed, and the concentration of malondialdehyde (MDA were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  4. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  5. In vitro potential cytogenetic and oxidative stress effects of roxithromycin.

    Science.gov (United States)

    Arslan, Mehmet; Timocin, Taygun; Ila, Hasan B

    2017-10-01

    Macrolide antibiotic roxithromycin was evaluated in terms of its genotoxic, cytotoxic and oxidative stress effects. For this purpose; 25, 50, 100 and 200 μg/mL concentrations of roxithromycin were dissolved in dimethyl sulfoxide and treated to human peripheral blood lymphocytes for two different treatment periods (24 and 48 h). In chromosome aberration (CA) and micronucleus (MN) tests, roxithromycin did not show genotoxic effect. But it induced sister chromatid exchange (SCE) at the highest concentration (200 μg/mL) for the 24-h treatment period and at all concentrations (except 25 μg/mL) for the 48-h treatment period. Looking at cytotoxic effect of roxithromycin, statistically insignificant decreases on mitotic index and proliferation index were observed. Roxithromycin decreased nuclear division index (NDI) at highest two concentrations (100 and 200 μg/mL) for the 24-h treatment period and at all concentrations (expect 25 μg/mL) for the 48-h treatment period. Total oxidant values, total antioxidant values and oxidative stress index did not change with roxithromycin treatment. Eventually, roxithromycin did not have genotoxic and oxidative stress effects in human-cultured lymphocytes.

  6. Hydroxytyrosol prevents reduction in liver activity of Δ-5 and Δ-6 desaturases, oxidative stress, and depletion in long chain polyunsaturated fatty acid content in different tissues of high-fat diet fed mice.

    Science.gov (United States)

    Valenzuela, Rodrigo; Echeverria, Francisca; Ortiz, Macarena; Rincón-Cervera, Miguel Ángel; Espinosa, Alejandra; Hernandez-Rodas, María Catalina; Illesca, Paola; Valenzuela, Alfonso; Videla, Luis A

    2017-04-11

    Eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, C20:4n-6) are long-chain polyunsaturated fatty acids (LCPUFAs) with relevant roles in the organism. EPA and DHA are synthesized from the precursor alpha-linolenic acid (ALA, C18:3n-3), whereas AA is produced from linoleic acid (LA, C18:2n-6) through the action of Δ5 and Δ6-desaturases. High-fat diet (HFD) decreases the activity of both desaturases and LCPUFA accretion in liver and other tissues. Hydroxytyrosol (HT), a natural antioxidant, has an important cytoprotective effects in different cells and tissues. Male mice C57BL/6 J were fed a control diet (CD) (10% fat, 20% protein, 70% carbohydrates) or a HFD (60% fat, 20% protein, 20% carbohydrates) for 12 weeks. Animals were daily supplemented with saline (CD) or 5 mg HT (HFD), and blood and the studied tissues were analyzed after the HT intervention. Parameters studied included liver histology (optical microscopy), activity of hepatic desaturases 5 and 6 (gas-liquid chromatography of methyl esters derivatives) and antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase by spectrophotometry), oxidative stress indicators (glutathione, thiobarbituric acid reactants, and the antioxidant capacity of plasma), gene expression assays for sterol regulatory element-binding protein 1c (SREBP-1c) (qPCR and ELISA), and LCPUFA profiles in liver, erythrocyte, brain, heart, and testicle (gas-liquid chromatography). HFD led to insulin resistance and liver steatosis associated with SREBP-1c upregulation, with enhancement in plasma and liver oxidative stress status and diminution in the synthesis and storage of n-6 and n-3 LCPUFAs in the studied tissues, compared to animals given control diet. HT supplementation significantly reduced fat accumulation in liver and plasma as well as tissue metabolic alterations induced by HFD. Furthermore, a normalization of desaturase activities

  7. Effects of l-carnitine on oxidative stress parameters in ...

    African Journals Online (AJOL)

    Emel Peri Canbolat

    2016-08-10

    Aug 10, 2016 ... Nitric oxide (NO), malondialdehyde (MDA), total antioxidant status (TAS), total oxidative stress .... Erel's method was used for measuring TOS.19 TOS was ..... antioxidant capacity using a new generation, more stable ABTS.

  8. Effect of moxifloxacin on oxidative stress, paraoxonase-1 (PON1 ...

    African Journals Online (AJOL)

    oxidative stress in patients with multiple drug-resistant tuberculosis (MDR-TB). Methods: A total ofof ... seriously affects the quality of life and prognosis. [6]. ... balance between pro-oxidants and antioxidant ..... original work is properly credited.

  9. Fatty acids and oxidative stress in psychiatric disorders

    OpenAIRE

    Tonello Lucio; Cocchi Massimo; Tsaluchidu Sofia; Puri Basant K

    2008-01-01

    Abstract Background The aim of this study was to determine whether there is published evidence for increased oxidative stress in neuropsychiatric disorders. Methods A PubMed search was carried out using the MeSH search term 'oxidative stress' in conjunction with each of the DSM-IV-TR diagnostic categories of the American Psychiatric Association in order to identify potential studies. Results There was published evidence of increased oxidative stress in the following DSM-IV-TR diagnostic categ...

  10. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  11. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    International Nuclear Information System (INIS)

    Wan Rong; Mo Yiqun; Zhang Xing; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2008-01-01

    after exposure to Nano-Co, but not to Nano-TiO 2 . However, neither Nano-Co nor Nano-TiO 2 exposure led to any transcriptional change of TIMP-1. The decrease of TIMP-2 after exposure to Nano-Co was also inhibited by pre-treatment with ROS scavengers or inhibitors. Our results also showed that pre-treatment of U937 cells with AP-1 inhibitor, curcumin, or the PTK specific inhibitor, herbimycin A or genistein, prior to exposure to Nano-Co, significantly abolished Nano-Co-induced pro-MMP-2 and-9 activity. Our results suggest that Nano-Co causes an imbalance between the expression and activity of MMPs and their inhibitors which is mediated by the AP-1 and tyrosine kinase pathways due to oxidative stress

  12. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    Science.gov (United States)

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  13. Oxidative stress participates in age-related changes in rat lumbar intervertebral discs.

    Science.gov (United States)

    Hou, Gang; Lu, Huading; Chen, Mingjuan; Yao, Hui; Zhao, Huiqing

    2014-01-01

    Aging is a major factor associated with lumber intervertebral disc degeneration, and oxidative stress is known to play an essential role in the pathogenesis of many age-related diseases. In this study, we investigated oxidative stress in intervertebral discs of Wistar rats in three different age groups: youth, adult, and geriatric. Age-related intervertebral disc changes were examined by histological analysis. In addition, oxidative stress was evaluated by assessing nitric oxide (NO), superoxide dismutase (SOD), malondialdehyde (MDA), and advanced oxidation protein products (AOPPs). Intervertebral disc, but not serum, NO concentrations significantly differed between the three groups. Serum and intervertebral disc SOD activity gradually decreased with age. Furthermore, both serum and intervertebral disc MDA and AOPP levels gradually increased with age. Our studies suggest that oxidative stress is associated with age-related intervertebral disc changes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Oxidative stress and antioxidants in athletes undertaking regular exercise training.

    Science.gov (United States)

    Watson, Trent A; MacDonald-Wicks, Lesley K; Garg, Manohar L

    2005-04-01

    Exercise has been shown to increase the production of reactive oxygen species to a point that can exceed antioxidant defenses to cause oxidative stress. Dietary intake of antioxidants, physical activity levels, various antioxidants and oxidative stress markers were examined in 20 exercise-trained "athletes" and 20 age- and sex-matched sedentary "controls." Plasma F2-isoprostanes, antioxidant enzyme activities, and uric acid levels were similar in athletes and sedentary controls. Plasma alpha-tocopherol and beta-carotene were higher in athletes compared with sedentary controls. Total antioxidant capacity tended to be lower in athletes, with a significant difference between male athletes and male controls. Dietary intakes of antioxidants were also similar between groups and well above recommended dietary intakes for Australians. These findings suggest that athletes who consume a diet rich in antioxidants have elevated plasma alpha-tocopherol and beta-carotene that were likely to be brought about by adaptive processes resulting from regular exercise.

  15. Oxidative Stress after Surgery on the Immature Heart

    Directory of Open Access Journals (Sweden)

    Daniel Fudulu

    2016-01-01

    Full Text Available Paediatric heart surgery is associated with increased inflammation and the production of reactive oxygen species. Use of the extracorporeal cardiopulmonary bypass during correction of congenital heart defects generates reactive oxygen species by various mechanisms: haemolysis, neutrophil activation, ischaemia reperfusion injury, reoxygenation injury, or depletion of the endogenous antioxidants. The immature myocardium is more vulnerable to reactive oxygen species because of developmental differences compared to the adult heart but also because of associated congenital heart diseases that can deplete its antioxidant reserve. Oxidative stress can be manipulated by various interventions: exogenous antioxidants, use of steroids, cardioplegia, blood prime strategies, or miniaturisation of the cardiopulmonary bypass circuit. However, it is unclear if modulation of the redox pathways can alter clinical outcomes. Further studies powered to look at clinical outcomes are needed to define the role of oxidative stress in paediatric patients.

  16. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    Science.gov (United States)

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. cis-Bifenthrin enantioselectively induces hepatic oxidative stress in mice.

    Science.gov (United States)

    Jin, Yuanxiang; Wang, Jiangcong; Pan, Xiuhong; Wang, Linggang; Fu, Zhengwei

    2013-09-01

    Bifenthrin (BF), as a chiral synthetic pyrethroid, is widely used to control field and household pests. In China, the commercial cis-BF contained two enantiomers including 1R-cis-BF and 1S-cis-BF. However, the difference in oxidative stress induced by the two enantiomers in mice still remains unclear. In the present study, 4 week-old adolescent male ICR mice were orally administered cis-BF, 1R-cis-BF or 1S-cis-BF daily for 2, 4 and 6 weeks at doses of 5 mg/kg/day, respectively. We found that the hepatic reactive oxygen species (ROS) levels, as well as the malondialdehyde (MDA) and glutathione (GSH) content both in the serum and liver increased significantly in the 4 or 6 weeks 1S-cis-BF treated groups. The activities of superoxide dismutase (SOD) and catalase (CAT) also changed significantly in the serum and liver of 1S-cis-BF treated mice. More importantly, the significant differences in MDA content and CAT activity both in the serum and liver, and the activities of total antioxidant capacity (T-AOC) and SOD in serum were also observed between the 1S-cis-BF and 1R-cis-BF treated groups. Moreover, the transcription of oxidative stress response related genes including Sod1, Cat and heme oxygenase-1(Ho-1) in the liver of 1S-cis-BF treated groups were also significant higher than those in 1R-cis-BF treated group. Thus, it was concluded that cis-BF induced hepatic oxidative stress in an enantiomer specific manner in mice when exposed during the puberty, and that 1S-cis-BF showed much more toxic in hepatic oxidative stress than 1R-cis-BF. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Effects of pH on uranium uptake and oxidative stress responses induced in Arabidopsis thaliana

    OpenAIRE

    Saenen, Eline; Horemans, Nele; Vanhoudt, Nathalie; Vandenhove, Hildegarde; Biermans, Geert; Van Hees, May; Wannijn, Jean; Vangronsveld, Jaco; Cuypers, Ann

    2013-01-01

    Uranium (U) causes oxidative stress in Arabidopsis thaliana plants grown at pH 5.5. However, U speciation and its toxicity strongly depend on environmental parameters, for example pH. It is unknown how different U species determine U uptake and translocation within plants and how they might affect the oxidative defense mechanisms of these plants. The present study analyzed U uptake and oxidative stress-related responses in A. thaliana (Columbia ecotype) under contrasted U chemical speciation ...

  19. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  20. Oxidative stress and inflammation in liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Natalia Olaya

    2007-02-01

    Full Text Available

    Inflammation is a common response in the human liver. It is involved in chronic hepatitis, cirrhosis, steatosis, ischemiareperfusion damage, hepatocarcinomas and in the development of metastasis. Reactive oxygen species (ROS production is part of the inflammatory processes. It is implicated in many physiological and pathological situations and can induce mutations in key cancer genes. Normally, this process is prevented by DNA repair enzymatic systems that maintain sequence fidelity during DNA replication. However, overproduction of free radicals in chronic inflammatory diseases is thought to saturate the ability of the cell to repair DNA damage prior to replications. Inflammation-induced genetic damage is not unique to the liver, and it might contribute to the development of mutations in several organs. An example is the chronic inflammatory response in ulcerative colitis that ultimately could lead to neoplasia.

    There is compelling evidence to suggest that most known environmental risk factors for HCC development lead to generation of reactive oxygen species (ROS. Indeed, hepatitis C virus (HCV, alcohol and hepatitis B virus (HBV have all been associated with oxidative stress. Direct production of oxidative stress by HCV core protein has been shown. A link between oxidative stress and liver pathogenesis is also supported by the successful use of antioxidant therapy to treat liver injury caused by chronic HCV infection, although it is not currently used for effective therapy. Ethanol metabolism via the alcohol dehydrogenase pathway and microsomal ethanol oxidizing system contribute substantially to the production of acetaldehyde and generation of ROS. HBx via its association with mitochondria has been shown to induce oxidative stress which in turn leads to activation of a

  1. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  2. Sport and oxidative stress in oncological patients.

    Science.gov (United States)

    Knop, K; Schwan, R; Bongartz, M; Bloch, W; Brixius, K; Baumann, F

    2011-12-01

    Oxidative stress is thought to be an important factor in the onset, progression and recurrence of cancer. In order to investigate how it is influenced by physical activity, we measured oxidative stress and antioxidative capacity (aoC) in 12 women with breast cancer and 6 men with prostate cancer, before and after long hiking trips. Before the hike, the men had a ROS-concentration of 1.8±0.6 mM H2O2 and an aoC of 0.7±0.6 mM Trolox-equivalent (Tro), while the women had a ROS-concentration of 3.1±0.7 mM H2O2 and an aoC of 1.2±0.2 mM Tro. After the hike, women showed no significant change in ROS and a significant increase in aoC (1.3±0.2 mM Tro), while the ROS concentration in men increased significantly (2.1±0.3 mM H2O2) and their aoC decreased (0.25±0.1 mM Tro). After a regenerative phase, the ROS concentration of the men decreased to 1.7±0.4 mM H2O2 and their aoC recovered significantly (1.2±0.4 mM Tro), while the women presented no significant change in the concentration of H2O2 but showed an ulterior increase in antioxidant capacity (2.05±0.43 mM Tro). From this data we conclude that physical training programs as for example long distance hiking trips can improve the aoC in the blood of oncological patients. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Influence of oxidative stress on disease development

    Directory of Open Access Journals (Sweden)

    Božić Tatjana

    2013-01-01

    Full Text Available There is ever increasing data indicating the vmast contribution of oxidative stress to the pathogenesis of numerous diseases (atherosclerosis, hypertension, heart failure, diabetes mellitus, stroke, rheumatoid arthritis, and others. Thus, in the pathogenesis of atherosclerosis the primary role is held by reactive oxygen species that are synthetized by endothelial cells of arterial blood vessels, leukocytes and macrophages. Furthermore, native particles of lipoproteins of small density become atherogenic through oxidation caused by reactive oxygen species. The oxidation of small-density lipoproteins stimulates the inflammatory process, and it in turn steps up adhesion and the inflow of monocytes and affects the synthesis and release of numerous proinflammatory cytokines involved in the further course of the process. One of the reasons for the development of arterial hypertension is the simultaneous activation of NAD(PH oxidase and 12/15-lipoxygenase, since it results in the stepped up production of reactive oxygen species. These stimulate the production of matrix metalloproteinase 2, which lead to vascular remodelling and to increased apoptosis of heart muscle cells. Stepped up apoptosis is linked with myocardial infarction, cardiomyopathies and the development of heart failure. The sensitivity of β-cells of the endocrine part of the pancreas to reactive oxygen species favor the naturally low concentrations of the collectors of free radicals in them, as well as an increase in the concentration of proinflammatory cytokines, glucosis and lipids that induce a reduction in the mass and function of β-cells. Hyperglycemia in diabetes mellitus causes tissue damage through non-enzyme glycosylation of intracellular and extracellular proteins, which results in: reduced enzyme activity, damaged nucleic acid, disrupted natural decomposition of proteins, and activation of cytotoxic pathways. These processes are the basis of the pathogenesis of numerous

  4. Association of oxidative stress with the pathophysiology of depresion and bipolar disorder

    Directory of Open Access Journals (Sweden)

    Lačković Maja

    2013-01-01

    Full Text Available The production of free radicals in an organism is under the control of various antioxidant mechanisms. If their production overcomes the capacity of antioxidant protection, oxidative stress occurs which is capable of damaging different cellular structures and biomolecules, leading to various diseases. The importance of oxidative stress was proven in many psychiatric diseases among which are depression and bipolar disorder. Different studies show the significant improvement of clinical presentation when antioxidant substances are administered, suggesting that redox imbalance can influence their symptoms appearance and severity. In addition, oxidative stress is intercrossed with the different comorbidities that appear among depressive and bipolar patients. Beside the clinical presentation, oxidative stress influences the chronicity of depression, which was demonstrated in patients with recurrent depressive disorder. Better understanding of oxidant/antioxidant imbalance and its role in the pathophysiology of depression and bipolar disorder could be useful for the development of a novel therapeutic approach to the management of these diseases.

  5. Influence of Oxidative Stress on Stored Platelets

    Directory of Open Access Journals (Sweden)

    K. Manasa

    2016-01-01

    Full Text Available Platelet storage and its availability for transfusion are limited to 5-6 days. Oxidative stress (OS is one of the causes for reduced efficacy and shelf-life of platelets. The studies on platelet storage have focused on improving the storage conditions by altering platelet storage solutions, temperature, and materials. Nevertheless, the role of OS on platelet survival during storage is still unclear. Hence, this study was conducted to investigate the influence of storage on platelets. Platelets were stored for 12 days at 22°C. OS markers such as aggregation, superoxides, reactive oxygen species, glucose, pH, lipid peroxidation, protein oxidation, and antioxidant enzymes were assessed. OS increased during storage as indicated by increments in aggregation, superoxides, pH, conjugate dienes, and superoxide dismutase and decrements in glucose and catalase. Thus, platelets could endure OS till 6 days during storage, due to the antioxidant defense system. An evident increase in OS was observed from day 8 of storage, which can diminish the platelet efficacy. The present study provides an insight into the gradual changes occurring during platelet storage. This lays the foundation towards new possibilities of employing various antioxidants as additives in storage solutions.

  6. Oxidative Stress Induces Senescence in Cultured RPE Cells.

    Science.gov (United States)

    Aryan, Nona; Betts-Obregon, Brandi S; Perry, George; Tsin, Andrew T

    2016-01-01

    The aim of this research is to determine whether oxidative stress induces cellular senescence in human retinal pigment epithelial cells. Cultured ARPE19 cells were subjected to different concentrations of hydrogen peroxide to induce oxidative stress. Cells were seeded into 24-well plates with hydrogen peroxide added to cell medium and incubated at 37°C + 5% CO2 for a 90-minute period [at 0, 300, 400 and 800 micromolar (MCM) hydrogen peroxide]. The number of viable ARPE19 cells were recorded using the Trypan Blue Dye Exclusion Method and cell senescence was measured by positive staining for senescence-associated beta-galactosidase (SA-beta-Gal) protein. Without hydrogen peroxide treatment, the number of viable ARPE19 cells increased significantly from 50,000 cells/well to 197,000 within 72 hours. Treatment with hydrogen peroxide reduced this level of cell proliferation significantly (to 52,167 cells at 400 MCM; to 49,263 cells at 800 MCM). Meanwhile, cells with a high level of positive senescence-indicator SA-Beta-Gal-positive staining was induced by hydrogen peroxide treatment (from a baseline level of 12% to 80% at 400 MCM and at 800 MCM). Our data suggests that oxidative stress from hydrogen peroxide treatment inhibited ARPE19 cell proliferation and induced cellular senescence.

  7. Poststroke Neuropsychiatric Symptoms: Relationships with IL-17 and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    W. Swardfager

    2014-01-01

    Full Text Available Stroke variably activates interleukin- (IL- 17 expression, reduces regulatory T cells, and induces oxidative stress, which may support neurodegeneration. Ischemic stroke patients were screened for depressive symptoms (Center for Epidemiological Studies Depression (CES-D and cognitive status (Mini Mental State Examination. Proinflammatory cytokines (IL-17, IL-23, and interferon- [IFN-] γ, anti-inflammatory cytokine IL-10, and lipid hydroperoxide (LPH, a measure of oxidative stress, were assayed from fasting serum. Of 47 subjects (age 71.8 ± 14.4 years, 36% female, 19 had depressive symptoms (CES-D ≥ 16, which was associated with poorer cognitive status (F1,46=8.44, P=0.006. IL-17 concentrations did not differ between subjects with and without depressive symptoms (F1,46=8.44, P=0.572; however, IL-17 was associated with poorer cognitive status in subjects with depressive symptoms (F1,46=9.29, P=0.004. In those subjects with depressive symptoms, IL-17 was associated with higher LPH (ρ=0.518, P=0.023 and lower IL-10 (ρ=-0.484, P=0.036, but not in those without. In conclusion, poststroke depressive symptoms may be associated with cognitive vulnerability to IL-17 related pathways, involving an imbalance between proinflammatory and anti-inflammatory activity and increased oxidative stress.

  8. Influence of Acute Coffee Consumption on Postprandial Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Richard J. Bloomer

    2013-01-01

    Full Text Available Background Coffee has been reported to be rich in antioxidants, with both acute and chronic consumption leading to enhanced blood antioxidant capacity. High-fat feeding is known to result in excess production of reactive oxygen and nitrogen species, promoting a condition of postprandial oxidative stress. Methods We tested the hypothesis that coffee intake following a high-fat meal would attenuate the typical increase in blood oxidative stress during the acute postprandial period. On 3 different occasions, 16 men and women consumed a high-fat milk shake followed by either 16 ounces of caffeinated or decaffeinated coffee or bottled water. Blood samples were collected before and at 2 and 4 hours following intake of the milk shake and analyzed for triglycerides (TAG, malondialdehyde (MDA, hydrogen peroxide (H 2 O 2 , and Trolox equivalent antioxidant capacity (TEAC. Results Values for TAG and MDA ( P 0.05. Conclusions Acute coffee consumption following a high-fat milk shake has no impact on postprandial oxidative stress.

  9. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Cooke, Matthew B; Nix, Carrie M; Greenwood, Lori D; Greenwood, Mike C

    2018-03-01

    Cooke, MB, Nix, C, Greenwood, L, and Greenwood, M. No Differences Between Alter G-Trainer and Active and Passive Recovery Strategies on Isokinetic Strength, Systemic Oxidative Stress and Perceived Muscle Soreness After Exercise-Induced Muscle Damage. J Strength Cond Res 32(3): 736-747, 2018-The incidence of muscle injuries is prevalent in elite sport athletes and weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between 3 recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness, and psychological mood states. Twenty-five recreationally active men (22.15 ± 3.53 years, 75.75 ± 11.91 kg, 180.52 ± 7.3 cm) were randomly matched by V[Combining Dot Above]O2 peak (53.86 ± 6.65 ml·kg·min) and assigned to one of 3 recovery methods: anti-gravity treadmill (G-Trainer) (N = 8), conventional treadmill (N = 8) or static stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48, and 72 hours after a 45-minute downhill run. Following eccentrically biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours postexercise when compared to the conventional treadmill recovery group (p = 0.035). The improved mood state after the use of the anti-gravity treadmill may provide clinical relevance to other populations.

  10. Oxidative stress and plasma lipoproteins in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias [Universidade Estadual do Ceará, Fortaleza, CE (Brazil)

    2014-07-01

    To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress.

  11. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Evon S. Ereifej

    2018-02-01

    Full Text Available Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp, and Stearoyl-Coenzyme A desaturase 1 (Scd1 were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1 relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage

  12. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    Science.gov (United States)

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  13. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    The present study was envisaged to investigate the possible role of oxidative stress in permethrin neurotoxicity and to evaluate the protective effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as thiobarbituric acid reacting substances (TBARS) was found to ...

  14. Oxidative stress in diabetic patients with retinopathy | Kundu ...

    African Journals Online (AJOL)

    Background: Diabetes mellitus (DM) is known to induce oxidative stress along with deranging various metabolisms; one of the late complications of diabetes mellitus is diabetic retinopathy, which is a leading cause of acquired blindness. Poor glycemic control and oxidative stress have been attributed to the development of ...

  15. Adiponectin, leptin and oxidative stress in preeclampsia in Egyptian ...

    African Journals Online (AJOL)

    Adiponectin and Leptin are closely related adipokines that are associated with the oxidative stresses and endothelial dysfunction and proposed to participate in preeclampsia (PE) pathogenesis. This study is to determine changes in serum levels of adiponectin, leptin and oxidative stress in PE women in order to speculate a ...

  16. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    Background: Chronic hyperglycaemia in diabetes mellitus leads to increased lipid peroxidation in the body, followed by the development of chronic complications due to oxidative stress. Objective: The aim of this study was to compare total antioxidant (TAO) levels and oxidative stress in type 2 diabetes mellitus (T2DM) ...

  17. Sex differences and stress across the lifespan

    Science.gov (United States)

    Bale, Tracy L; Epperson, C Neill

    2015-01-01

    Sex differences in stress responses can be found at all stages of life and are related to both the organizational and activational effects of gonadal hormones and to genes on the sex chromosomes. As stress dysregulation is the most common feature across neuropsychiatric diseases, sex differences in how these pathways develop and mature may predict sex-specific periods of vulnerability to disruption and increased disease risk or resilience across the lifespan. The aging brain is also at risk to the effects of stress, where the rapid decline of gonadal hormones in women combined with cellular aging processes promote sex biases in stress dysregulation. In this Review, we discuss potential underlying mechanisms driving sex differences in stress responses and their relevance to disease. Although stress is involved in a much broader range of diseases than neuropsychiatric ones, we highlight here this area and its examples across the lifespan. PMID:26404716

  18. Sex differences and stress across the lifespan.

    Science.gov (United States)

    Bale, Tracy L; Epperson, C Neill

    2015-10-01

    Sex differences in stress responses can be found at all stages of life and are related to both the organizational and activational effects of gonadal hormones and to genes on the sex chromosomes. As stress dysregulation is the most common feature across neuropsychiatric diseases, sex differences in how these pathways develop and mature may predict sex-specific periods of vulnerability to disruption and increased disease risk or resilience across the lifespan. The aging brain is also at risk to the effects of stress, where the rapid decline of gonadal hormones in women combined with cellular aging processes promote sex biases in stress dysregulation. In this Review, we discuss potential underlying mechanisms driving sex differences in stress responses and their relevance to disease. Although stress is involved in a much broader range of diseases than neuropsychiatric ones, we highlight here this area and its examples across the lifespan.

  19. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    Science.gov (United States)

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  20. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  1. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    International Nuclear Information System (INIS)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic

  2. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  3. Clinical Perspective of Oxidative Stress in Sporadic ALS

    Science.gov (United States)

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  4. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    Science.gov (United States)

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  5. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress.

    Science.gov (United States)

    Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood

    2018-01-15

    Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.

  6. Oxidative status and lipid profile in metabolic syndrome: gender differences.

    Science.gov (United States)

    Kaya, Aysem; Uzunhasan, Isil; Baskurt, Murat; Ozkan, Alev; Ataoglu, Esra; Okcun, Baris; Yigit, Zerrin

    2010-02-01

    Metabolic syndrome is associated with cardiovascular disease and oxidative stress. The aim of this study was to investigate the differences of novel oxidative stress parameters and lipid profiles in men and women with metabolic syndrome. The study population included 88 patients with metabolic syndrome, consisting of 48 postmenauposal women (group I) and 40 men (group II). Premenauposal women were excluded. Plasma levels of total antioxidant status (TAS) and total oxidative status (TOS) were determined by using the Erel automated measurement method, and oxidative stress index (OSI) was calculated. To perform the calculation, the resulting unit of TAS, mmol Trolox equivalent/L, was converted to micromol equivalent/L and the OSI value was calculated as: OSI = [(TOS, micromol/L)/(TAS, mmol Trolox equivalent/L) x 100]. The Student t-test, Mann-Whitney-U test, and chi-squared test were used for statistical analysis; the Pearson correlation coefficient and Spearman rank test were used for correlation analysis. P women and men had similar properties regarding demographic characteristics and biochemical work up. Group II had significantly lower levels of antioxidant levels of TAS and lower levels of TOS and OSI compared with group I (P = 0.0001, P = 0.0035, and P = 0,0001). Apolipoprotein A (ApoA) levels were significantly higher in group I compared with group II. Our findings indicate that women with metabolic syndrome have a better antioxidant status and higher ApoA levels compared with men. Our findings suggest the existence of a higher oxidative stress index in men with metabolic syndrome. Considering the higher risk of atherosclerosis associated with men, these novel oxidative stress parameters may be valuable in the evaluation of patients with metabolic sydrome.

  7. Hypertension and physical exercise: The role of oxidative stress.

    Science.gov (United States)

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Oxidative stress pattern in hepatitis C patients co-infected with ...

    African Journals Online (AJOL)

    cwe

    2012-10-30

    Oct 30, 2012 ... cytokine that can produce oxidative stress by simulating ... release. Finally, correlation of the measured parameters with the different clinic pathological .... measures were compared by Kruskal-Wallis one way analysis of.

  9. Statins Decrease Oxidative Stress and ICD Therapies

    Directory of Open Access Journals (Sweden)

    Heather L. Bloom

    2010-01-01

    Full Text Available Recent studies demonstrate that statins decrease ventricular arrhythmias in internal cardioverter defibrillator (ICD patients. The mechanism is unknown, but evidence links increased inflammatory and oxidative states with increased arrhythmias. We hypothesized that statin use decreases oxidation. Methods. 304 subjects with ICDs were surveyed for ventricular arrhythmia. Blood was analyzed for derivatives of reactive oxygen species (DROMs and interleukin-6 (IL-6. Results. Subjects included 252 (83% men, 58% on statins, 20% had ventricular arrhythmias. Average age was 63 years and ejection fraction (EF 20%. ICD implant duration was 29 ± 27 months. Use of statins correlated with lower ICD events (r=0.12, P=.02. Subjects on statins had lower hsCRP (5.2 versus 6.3; P=.05 and DROM levels (373 versus 397; P=.03. Other factors, including IL-6 and EF did not differ between statin and nonstatin use, nor did beta-blocker or antiarrhythmic use. Multivariate cross-correlation analysis demonstrated that DROMs, statins, IL-6 and EF were strongly associated with ICD events. Multivariate regression shows DROMs to be the dominant predictor. Conclusion. ICD event rate correlates with DROMs, a measure of lipid peroxides. Use of statins is associated with reduced DROMs and fewer ICD events, suggesting that statins exert their effect through reducing oxidation.

  10. Inflammation and oxidative stress markers in diabetes and hypertension

    Directory of Open Access Journals (Sweden)

    Pouvreau C

    2018-02-01

    Full Text Available Chloé Pouvreau,1 Antoine Dayre,1 Eugene G Butkowski,2 Beverlie de Jong,2 Herbert F Jelinek2,3 1Faculty of Sciences, University of Poitiers, Poitiers, France; 2School of Community Health, Charles Sturt University, Albury, NSW, Australia; 3Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia Background: Inflammation and oxidative stress are important factors associated with chronic disease such as essential hypertension (HTN and type 2 diabetes mellitus (T2DM. However, the association of inflammation and oxidative stress in HTN with T2DM as a comorbidity is inconclusive due to the multifactorial nature of these cardiometabolic diseases. Methodology: The influence of pathophysiological factors include genetics, age of patient, and disease progression change throughout the lifespan and require further investigation. The study population included 256 participants attending a rural health screening program who were tested for markers of inflammation, oxidative stress, and coagulation/fibrinolysis. Demographic and clinical variables included, age, gender, systolic and diastolic blood pressures, blood glucose, hemoglobin A1c, estimated glomerular filtration rate, and cholesterol profile. Data were tested for normality, and nonparametric statistics were applied to analyze the sample with significance set at p<0.05. Results: Of the inflammatory markers, interleukin-1β (IL-1β and IL-10 were significantly different between the control and hypertensive group (p<0.03 and between the HTN+T2DM compared to the HTN group (p<0.05. Significant results for oxidative stress were observed for urinary 8-iso-PGF2α and insulin-like growth factor 1 (IGF-1 between the control and the HTN+T2DM group (p<0.01. Glutathione (GSH was also significant between the HTN and HTN+T2DM group (p<0.05. Investigation of the progression of HTN also found significant changes in the inflammatory markers IGF-1, monocyte chemoattractant protein 1 (MCP-1, and

  11. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

    Science.gov (United States)

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.

  12. Aldose reductase, oxidative stress and diabetic mellitus

    Directory of Open Access Journals (Sweden)

    Waiho eTang

    2012-05-01

    Full Text Available Diabetes mellitus (DM is a complex metabolic disorder arising from lack of insulin production or insulin resistance 1. DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR [ALR2; EC 1.1.1.21], a key enzyme in the polyol pathway, catalyzes NADPH-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS in various tissues of DM including the heart, vasculature, neurons, eyes and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis and myocardium (heart failure leading to severe morbidity and mortality (reviewed in 2. In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.

  13. Relationship between hyposalivation and oxidative stress in aging mice.

    Science.gov (United States)

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  14. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Benoist d’Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P stress increased in glaucoma, both in serum and aqueous humor. Malonyldialdehyde seemed the best biomarkers of oxidative stress in serum. The increase of some

  15. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Mazière, Cécile, E-mail: maziere.cecile@chu-amiens.fr [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France); Salle, Valéry [Internal Medicine, North Hospital University, Place Victor Pauchet, Amiens 80000 (France); INSERM U1088 (EA 4292), SFR CAP-Santé (FED 4231), University of Picardie – Jules Verne (France); Gomila, Cathy; Mazière, Jean-Claude [Biochemistry Laboratory, South Hospital University, René Laennec Avenue, Amiens 80000 (France)

    2013-10-18

    Highlights: •Oxidized LDL enhances RANKL level in human smooth muscle cells. •The effect of OxLDL is mediated by the transcription factor NFAT. •UVA, H{sub 2}O{sub 2} and buthionine sulfoximine also increase RANKL level. •All these effects are observed in human fibroblasts and endothelial cells. -- Abstract: Receptor Activator of NFκB Ligand (RANKL) and its decoy receptor osteoprotegerin (OPG) have been shown to play a role not only in bone remodeling but also in inflammation, arterial calcification and atherosclerotic plaque rupture. In human smooth muscle cells, Cu{sup 2+}-oxidized LDL (CuLDL) 10–50 μg/ml increased reactive oxygen species (ROS) and RANKL level in a dose-dependent manner, whereas OPG level was not affected. The lipid extract of CuLDL reproduced the effects of the whole particle. Vivit, an inhibitor of the transcription factor NFAT, reduced the CuLDL-induced increase in RANKL, whereas PKA and NFκB inhibitors were ineffective. LDL oxidized by myeloperoxidase (MPO-LDL), or other pro-oxidant conditions such as ultraviolet A (UVA) irradiation, incubation with H{sub 2}O{sub 2} or with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis{sub ,} also induced an oxidative stress and enhanced RANKL level. The increase in RANKL in pro-oxidant conditions was also observed in fibroblasts and endothelial cells. Since RANKL is involved in myocardial inflammation, vascular calcification and plaque rupture, this study highlights a new mechanism whereby OxLDL might, by generation of an oxidative stress, exert a deleterious effect on different cell types of the arterial wall.

  16. 13 reasons why the brain is susceptible to oxidative stress

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2018-05-01

    Full Text Available The human brain consumes 20% of the total basal oxygen (O2 budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity through redox signalling (i.e. positive functionality. Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality. To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease.

  17. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2010-01-01

    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  18. Oxidative stress of crystalline lens in rat menopausal model.

    Science.gov (United States)

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    To evaluate lenticular oxidative stress in rat menopausal models. Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3), and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4). Total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) measurements of the crystalline lenses were analyzed. The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05). The mean TOS values were similar between the groups (p >0.05), whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001). Our results indicate that menopause may not promote cataract formation.

  19. Oxidative stress of crystalline lens in rat menopausal model

    Directory of Open Access Journals (Sweden)

    Semra Acer

    Full Text Available ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1. From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2, 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3, and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4. Total oxidant status (TOS, total antioxidant capacity (TAC, and oxidative stress index (OSI measurements of the crystalline lenses were analyzed. Results: The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05. The mean TOS values were similar between the groups (p >0.05, whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001. Conclusions: Our results indicate that menopause may not promote cataract formation.

  20. Effect of hydrogen on stresses in anodic oxide film on titanium

    International Nuclear Information System (INIS)

    Kim, Joong-Do; Pyun, Su-Il; Seo, Masahiro

    2003-01-01

    Stresses in anodic oxide film on titanium thin film/glass electrode in pH 8.4 borate solution were investigated by a bending beam method. The increases in compressive stress observed with cathodic potential sweeps after formation of anodic oxide film were attributed to the volume expansion due to the compositional change of anodic oxide film from TiO 2 to TiO 2-x (OH) x . The instantaneous responses of changes in stress, Δσ, in the anodic oxide film to potential steps demonstrated the reversible characteristic of the TiO 2-x (OH) x formation reaction. In contrast, the transient feature of Δσ for the titanium without anodic oxide film represented the irreversible formation of TiH x at the metal/oxide interphase. The large difference in stress between with and without the oxide film, has suggested that most of stresses generated during the hydrogen absorption/desorption reside in the anodic oxide film. A linear relationship between changes in stress, Δ(Δσ) des , and electric charge, ΔQ des , during hydrogen desorption was found from the current and stress transients, manifesting that the stress changes were crucially determined by the amount of hydrogen desorbed from the oxide film. The increasing tendency of -Δ(Δσ) des with increasing number of potential steps and film formation potential were discussed in connection with the increase in desorption amount of hydrogen in the oxide film with increasing absorption/desorption cycles and oxide film thickness

  1. It has been suggested that oxidative stress, especially oxidative ...

    African Journals Online (AJOL)

    nabipour

    2012-02-14

    Feb 14, 2012 ... 1Department of Clinical Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran. 2Department of Cardiology ... oxidative modification of low-density lipoproteins (LDL), may play a causative role in ... the oxidation of lipids in the cell membrane especially the oxidation of LDL.

  2. Oxidative stress and psychological functioning among medical students

    Directory of Open Access Journals (Sweden)

    Rani Srivastava

    2014-01-01

    Full Text Available Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA levels and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression among medical/paramedical students of 1 st and 3 rd year. Materials and Methods: A total of 150 students; 75 from 1 st year (2010-2011 and75 from 3 rd year (2009-2010; of medical and paramedical background were assessed on level of MDA (oxidative stress and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3 rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given.

  3. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  4. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    Science.gov (United States)

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  5. Diethyl Phthalate Causes Oxidative Stress: An in Vitro Study

    Directory of Open Access Journals (Sweden)

    Heena Prajapati

    2014-03-01

    Full Text Available Background: Phthalates are a group of multifunctional chemicals. Diethyl phthalate (DEP is one of the most frequently used phthalates in solvents and fixatives for numerous industrial products. Method: The present experiment was designed to assess oxidative stress, if any, caused by diethyl phthalate. For this the homogenates of liver and kidney were treated with different concentrations ( 10-40 µg/mL of DEP. 10% liver and kidney homogenates were prepared in phosphate buffered saline and used for estimation of lipid peroxidation.In final step lipid peroxidation and total protein content were analyzed. Results: The result revealed significant and dose - dependent increase in lipid peroxidation, whereas protein content reduced significantly. Maximum increase in LPO and decrease in protein content was observed at 40 µg/mL of DEP concentration. Conclusion: From this study, it can be concluded that different concentrations of DEP leads to dose- dependent significant increase in lipid peroxidation and decrease protein content.So at the different concentration of DEP cause oxidative stress.

  6. Evaluation of oxidative stress in mice subjected to aerobic exercise.

    Science.gov (United States)

    Lima, Mônica Cruvinel de; Marks, Guido; Silva, Iandara Schettert; Silva, Baldomero Antonio Kato da; Cônsolo, Lourdes Zélia Zanoni; Nogueira, Gabriel Bogalho

    2012-08-01

    To evaluate the influence of aerobic exercise on oxidative stress in mice. The study included twenty female mice Mus musculus-Swiss divided into two groups: sedentary control (GA) and exercise (GB), each containing ten animals. All animals underwent an adaptation period of seven days isolated in individual boxes. After this period, the animals in the exercise group (GB) were trained in angled running wheel with circumference of 25 cm assembled on an articulated axle during five minutes for three consecutive days. On the fourth day, they underwent an exercise program of one session lasting 45 minutes. The evaluation of oxidative stress was performed by determining the levels of malondialhyde derived of lipid peroxidation by the TBA method. The samples were read in a spectrophotometer at 535 nm. No significant difference was observed in the intergroup comparison of MDA levels in the tissues evaluated. A significant difference was observed in the intragroup comparison of MDA levels in the control group (p = 0.0201).The Tukeys' post hoc test indicated significantly lower values of MDA in the smooth muscle in relation to plasma. In the analysis of variance in the exercise group, a significant difference between tissues (p = 0.0009), with significantly lower values in the smooth muscle in relation to plasma (pstress in mice which were undergone a single session of aerobic exercise.

  7. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  8. Limitations in Using Chemical Oxidative Potential to Understand Oxidative Stress from Particulate Matter

    Science.gov (United States)

    Chan, A. W. H.; Wang, S.; Wang, X.; Kohl, L.; Chow, C. W.

    2017-12-01

    Particulate matter (PM) in the atmosphere is known to cause adverse cardiorespiratory health effects. It has been suggested that the ability of PM to generate oxidative stress leads to a proinflammatory response. In this work, we study the biological relevance of using a chemical oxidative potential (OP) assay to evaluate proinflammatory response in airway epithelial cells. Here we study the OPs of laboratory secondary organic aerosol (SOA) and metal mixtures, ambient PM from India, ash from the 2016 Alberta wildfires, and diesel exhaust particles. We use SOA derived from naphthalene and from monoterpenes as model systems for SOA. We measure OP using the dithiothreitol (DTT) assay, and cytosolic reactive oxygen species (ROS) production in BEAS-2B cell culture was measured using CellROX assay. We found that both SOA and copper show high OPs individually, but the OP of the combined SOA/copper mixture, which is more atmospherically relevant, was lower than either of the individual OPs. The reduced activity is attributed to chelation between metals and organic compounds using proton nuclear magnetic resonance. There is reasonable association between DTT activity and cellular ROS production within each particle type, but weak association across different particle types, suggesting that particle composition plays an important role in distinguishing between antioxidant consumption and ROS production. Our results highlight that while oxidative potential is a useful metric of PM's ability to generate oxidative stress, the chemical composition and cellular environment should be considered in understanding health impacts of PM.

  9. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria

    OpenAIRE

    Almerich-Silla, Jose Manuel; Montiel-Company, Jose María; Pastor, Sara; Serrano, Felipe; Puig-Silla, Miriam; Dasí, Francisco

    2015-01-01

    Objective. To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. Methods. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC)...

  10. RESEARCH REGARDING THE DYNAMICS OF SOME BIOCHEMICAL MARKERS OF OXIDATIVE STRESS AT MONILINIA LAXA (ADRH. & RUHL. HONEY CULTIVATED ON DIFFERENT AMINO ACIDS ENRICHED MEDIA

    Directory of Open Access Journals (Sweden)

    Elena Ciornea

    2010-09-01

    Full Text Available Antioxidants that make up the defense for Ascomycetes still arouses a major interest because of their hypothetical role as virulence and aggression factors and also as the enzymes that play a key role in cellular defense against ROS produced during microbial metabolic activity. A study of catalase and peroxidase activity dynamics of the species Monilinia laxa (Aderh & Ruhl. Honey cultivated in vitro on medium supplemented with different amino acids was conducted in order to know the biology of the fungi responsible for the appearance of brown rot at various species of stone fruits. We used for this purpose the Leonian medium (in the formula changed by Bonnar, in each variant being added 0, 125 mg of the following amino acids: alanine, glutamic acid, asparagine, aspartic acid, cystine, cysteine, phenylalanine, histidine, valine, lysine, serine, methionine and leucine. We also used a control variant, without amino acids, in final resulting 14 working versions. To determine the catalase activity Sinha method was used, to monitor the peroxidase activity we used Möller method and the experimental measurements carried out at two intervals, were made both of fungus mycelium and culture fluid. We found notable differences in the activity of two enzymes, microbial culture induced both by the age of the culture medium and the type of amino acid introduced in it.

  11. ( Artemisia absinthium ) Extract On Oxidative Stress In Ameliorating ...

    African Journals Online (AJOL)

    exposure related disease. The aim of the study was to investigate the effect of aqueous extract of wormwood (Artemisia absinthium) on oxidative stress in rats protractedly exposed to lead. Aqueous extract of wormwood plant was administered ...

  12. Oxidative stress and the effect of riboflavin supplementation in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-06

    Mar 6, 2009 ... erythrocytes. The results show that there is oxidative stress in malaria infection and that chloroquine ... virulent causing malaria to be life threatening (Kirk, 2001;. Mahajan et al. ..... lifecycle (Muller et al., 2004). However, the ...

  13. Role of sulfiredoxin in systemic diseases influenced by oxidative stress

    Directory of Open Access Journals (Sweden)

    Asha Ramesh

    2014-01-01

    Full Text Available Sulfiredoxin is a recently discovered member of the oxidoreductases family which plays a crucial role in thiol homoeostasis when under oxidative stress. A myriad of systemic disorders have oxidative stress and reactive oxygen species as the key components in their etiopathogenesis. Recent studies have evaluated the role of this enzyme in oxidative stress mediated diseases such as atherosclerosis, chronic obstructive pulmonary disease and a wide array of carcinomas. Its action is responsible for the normal functioning of cells under oxidative stress and the promotion of cell survival in cancerous cells. This review will highlight the cumulative effects of sulfiredoxin in various systemic disorders with a strong emphasis on its target activity and the factors influencing its expression in such conditions.

  14. Impact of weight loss on oxidative stress and inflammatory cytokines ...

    African Journals Online (AJOL)

    diet regimen, where as the control group received medical treatment only for 12 weeks. Results: The mean values of ... Keywords: Type 2 diabetes, weight reduction, oxidative stress, cytokines, obesity. ..... muscle in severely obese subjects.

  15. extract attenuates MPTP-induced oxidative stress and behavioral

    African Journals Online (AJOL)

    on oxidative stress levels were assessed by estimating enzyme status, including superoxide dismutase. (SOD), catalase ... in both non-human primates and mice models. [12,13]. ..... Polyphenol composition and antioxidant activity of cumin.

  16. Oxidative stress and superoxide dismutase activity in brain of rats ...

    African Journals Online (AJOL)

    JTEkanem

    effect of superoxide dismutase (SOD) activity in brain homogenates of Wistar rats. Oxidative stress measured as ..... on the brain and nervous system of humans as handlers and ... environment may be at higher health risk in that their internal ...

  17. Alzheimer's disease: Cerebrovascular dysfunction, oxidative stress, and advanced clinical therapies

    NARCIS (Netherlands)

    Marlatt, M.W.; Lucassen, P.J.; Perry, G.; Smith, M.A.; Zhu, X.

    2008-01-01

    Many lines of independent research have provided convergent evidence regarding oxidative stress, cerebrovascular disease, dementia, and Alzheimer's disease (AD). Clinical studies spurred by these findings engage basic and clinical communities with tangible results regarding molecular targets and

  18. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Directory of Open Access Journals (Sweden)

    Khadija Rebbani

    2016-01-01

    Full Text Available About 150 million people worldwide are chronically infected with hepatitis C virus (HCV. The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24 is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis.

  19. Bone turnover and oxidative stress markers in estrogen- deficient ...

    African Journals Online (AJOL)

    Bone turnover and oxidative stress markers in estrogen- ... reproduction in any medium, provided the original work is properly credited. ..... Institute for Laboratory Animal Research: Guide for the ... American Veterinary Medical Association.

  20. Protection of swimming-induced oxidative stress in some vital ...

    African Journals Online (AJOL)

    Protection of swimming-induced oxidative stress in some vital organs by the treatment of composite extract of Withania somnifera, Ocimum sanctum and Zingiber officinalis in male rat. D Misra, B Maiti, D Ghosh ...

  1. Decreased total antioxidant levels and increased oxidative stress in ...

    African Journals Online (AJOL)

    21–25 ... Decreased total antioxidant levels and increased oxidative stress in South ... antioxidant-rich diet and lifestyle changes in T2DM patients would help to avert the .... glycation of proteins and the formation of advanced glycosylation.

  2. Salvianolic acid B Relieves Oxidative Stress in Glucose Absorption ...

    African Journals Online (AJOL)

    Absorption and Utilization of Mice Fed High-Sugar Diet ... Salvianolic acid B, Blood glucose, Reactive oxygen species, Oxidative stress, Sugar diet. ... protein expression in human aortic smooth ... induced by glucose uptake and metabolism [8].

  3. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. [Serum markers of oxidative stress in infertile women with endometriosis].

    Science.gov (United States)

    Andrade, Aline Zyman de; Rodrigues, Jhenifer Kliemchen; Dib, Luciana Azôr; Romão, Gustavo Salata; Ferriani, Rui Alberto; Jordão Junior, Alceu Afonso; Navarro, Paula Andrea de Albuquerque Salles

    2010-06-01

    to compare serum markers of oxidative stress between infertile patients with and without endometriosis and to assess the association of these markers with disease staging. this was a prospective study conducted on 112 consecutive infertile, non-obese patients younger than 39 years, divided into two groups: Endometriosis (n=48, 26 with minimal and mild endometriosis - Stage I/II, and 22 with moderate and severe endometriosis - Stage III/IV) and Control (n=64, with tubal and/or male factor infertility). Blood samples were collected during the early follicular phase of the menstrual cycle for the analysis of serum malondialdehyde, glutathione and total hydroxyperoxide levels by spectrophotometry and of vitamin E by high performance liquid chromatography. The results were compared between the endometriosis and control groups, stage I/II endometriosis and control, stage III/IV endometriosis and control, and between the two endometriosis subgroups. The level of significance was set at 5% (p Control Group (8.0 ± 2 µMol/g protein) and among patients with stage III/IV disease (9.7 ± 2.3 µMol/g protein) compared to patients with stage I/II disease (8.2 ± 1.0 µMol/g protein). No significant differences in serum malondialdehyde levels were observed between groups. we demonstrated a positive association between infertility related to endometriosis, advanced disease stage and increased serum hydroxyperoxide levels, suggesting an increased production of reactive species in women with endometriosis. These data, taken together with the reduction of serum vitamin E and glutathione levels, suggest the occurrence of systemic oxidative stress in women with infertility associated with endometriosis. The reproductive and metabolic implications of oxidative stress should be assessed in future studies.

  5. Oxidative stress and food supplementation with antioxidants in therapy dogs.

    Science.gov (United States)

    Sechi, Sara; Fiore, Filippo; Chiavolelli, Francesca; Dimauro, Corrado; Nudda, Anna; Cocco, Raffaella

    2017-07-01

    The objective of this study was to evaluate the ability of a long-term antioxidant-supplemented diet to regulate the oxidative stress and general health status of dogs involved in animal-assisted intervention (AAI) programs. Oxidative stress is a consequence of the accumulation of reactive oxygen species (ROS). Exercise-induced oxidative stress can increase muscle fatigue and fiber damage and eventually leads to impairment of the immune system. A randomized, placebo-controlled, crossover clinical evaluation was conducted with 11 healthy therapy dogs: 6 females and 5 males of different breeds and with a mean age of 2.7 ± 0.8 y (mean ± SEM). The dogs were divided into 2 groups, 1 fed a high quality commercial diet without antioxidants (CD) and the other a high quality commercial diet supplemented with antioxidants (SD) for 18 wk. After the first 18 wk, metabolic parameters, reactive oxygen metabolite-derivatives (d-ROMs), and biological antioxidant potential (BAP) levels were monitored and showed a significant reduction of d-ROMs, triglycerides, and creatinine values in the SD group ( P < 0.05) and a significant increase in amylase values in the CD group ( P < 0.01). At the end of this period, groups were crossed over and fed for another 18 wk. A significant decrease in amylase and glutamate pyruvate transaminase (GPT) values was observed in the CD and SD group, respectively ( P < 0.05). In conclusion, a controlled, balanced antioxidant diet may be a valid approach to restoring good cell metabolism and neutralizing excess free radicals in therapy dogs.

  6. Etyopathogenesis and Oxidative Stress Relationship in Mild Severe Alopecia Areata

    OpenAIRE

    Fadime Kilinç; Ayse Akbas; Ahu Yorulmaz; Sertaç Sener; Salim Neselioglu; Özcan Erel; Ahmet Metin

    2017-01-01

    Objective:Alopecia areata (AA) is a recurrent, autoimmune, inflammatory disease characterized by loss of scarless hair. The etiopathogenesis is not exactly known, however genetic, emotional, environmental factors and autoimmunity are accused. The aim of the study is to investigate the role of oxidative stress in the etiopathogenesis of AA. Methods:Thirty seven AA patients and thirty five healthy volunteers as control group were included in the study. Oxidative stress index (OSI) was calcu...

  7. Effects of Uric Acid on Exercise-induced Oxidative Stress

    OpenAIRE

    平井, 富弘

    2001-01-01

    We studied effects of uric acid on exercise― induced oxidative stress in humans based on a hypothesis that uric acid acts as an antioxidant to prevent from exercise―induced oxidative stress. Relation between uric acid level in plasma and increase of thiobarbituric acid reactive substance (TBARS)after the cycle ergometer exercise was examined. Thiobarbituricacid reactive substance in plasma increased after the ergometer exercise. High uric acid in plasma did not result in low increase of TBARS...

  8. 13 reasons why the brain is susceptible to oxidative stress

    OpenAIRE

    James Nathan Cobley; Maria Luisa Fiorello; Damian Miles Bailey

    2018-01-01

    The human brain consumes 20% of the total basal oxygen (O2) budget to support ATP intensive neuronal activity. Without sufficient O2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood...

  9. Oxidative stress, activity behaviour and body mass in captive parrots

    OpenAIRE

    Larcombe, S. D.; Tregaskes, C. A.; Coffey, J.; Stevenson, A. E.; Alexander, L. G.; Arnold, K. E.

    2015-01-01

    Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melo...

  10. Sex differences associated with intermittent swim stress.

    Science.gov (United States)

    Warner, Timothy A; Libman, Matthew K; Wooten, Katherine L; Drugan, Robert C

    2013-11-01

    Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for novel research in this area, as many individuals suffering from depression are resistant to current treatment methods. Women have a higher rate of depression, highlighting the need to investigate mechanisms of sex differences. Therefore, we employed a new animal model to assess symptoms of depression, known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already been shown to cause signs of behavioral depression in males, but has yet to be assessed in females. Following ISS exposure, we looked at sex differences in the Morris water maze and forced swim test. The results indicated a spatial learning effect only in the hidden platform task between male and female controls, and stressed and control males. A consistent spatial memory effect was only seen for males exposed to ISS. In the forced swim test, both sexes exposed to ISS exhibited greater immobility, and the same males and females also showed attenuated climbing and swimming, respectively. The sex differences could be due to different neural substrates for males and females. The goal of this study was to provide the first behavioral examination of sex differences following ISS exposure, so the stage of estrous cycle was not assessed for the females. This is a necessary future direction for subsequent experiments. The current article highlights the importance of sex differences in response to stress.

  11. Variability of salivary markers of oxidative stress and antioxidant status in young healthy individuals

    Czech Academy of Sciences Publication Activity Database

    Lettrichová, I.; Tóthová, L.; Hodosy, J.; Behuliak, Michal; Celec, P.

    2016-01-01

    Roč. 21, č. 1 (2016), s. 24-30 ISSN 1351-0002 Institutional support: RVO:67985823 Keywords : biomarkers of oxidative stress * carbonyl stress * sex difference Subject RIV: FP - Other Medical Disciplines Impact factor: 2.070, year: 2016

  12. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  13. Effects of creatine supplementation on oxidative stress profile of athletes

    Science.gov (United States)

    2012-01-01

    Background Creatine (Cr) supplementation has been widely used among athletes and physically active individuals. Secondary to its performance-enhancing ability, an increase in oxidative stress may occur, thus prompting concern about its use. The purpose of this study is to investigate the effects of Cr monohydrate supplementation and resistance training on muscle strength and oxidative stress profile in healthy athletes. Methods A randomized, double-blind, placebo-controlled method was used to assess twenty-six male elite Brazilian handball players divided into 3 groups: Cr monohydrate supplemented group (GC, N = 9), placebo group (GP, N = 9), no treatment group (COT, N = 8) for 32 days. All subjects underwent a resistance training program. Blood samples were drawn on 0 and 32 days post Cr supplementation to analyze the oxidative stress markers, thiobarbituric acid reactive species (TBARS), total antioxidant status (TAS), and uric acid. Creatine phosphokinase, urea, and creatinine were also analyzed, as well. Fitness tests (1 repetition maximum - 1RM and muscle endurance) were performed on the bench press. Body weight and height, body fat percentage (by measuring skin folds) and upper muscular area were also evaluated. Statistical analysis was performed using ANOVA. Results Only GC group showed increase in 1RM (54 ± 9 vs. 63 ± 10 kg; p = 0.0356) and uric acid (4.6 ± 1.0 vs. 7.4 ± 1.6 mg/dl; p = 0.025), with a decrease in TAS (1.11 ± 0.34 vs. 0.60 ± 0.19 mmol/l; p = 0.001). No differences (pre- vs. post-training) in TBARS, creatine phosphokinase, urea, creatinine, body weight and height, body fat percentage, or upper muscular area were observed in any group. When compared to COT, GC group showed greater decrease in TAS (−0.51 ± 0.36 vs. -0.02 ± 0.50 mmol/l; p = 0.0268), higher increase in 1RM (8.30 ± 2.26 vs. 5.29 ± 2.36 kg; p = 0.0209) and uric acid (2.77 ± 1.70 vs. 1.00 ± 1.03 mg/dl; p = 0.0276). Conclusion We conclude that Cr monohydrate

  14. Effects of creatine supplementation on oxidative stress profile of athletes

    Directory of Open Access Journals (Sweden)

    Percário Sandro

    2012-12-01

    Full Text Available Abstract Background Creatine (Cr supplementation has been widely used among athletes and physically active individuals. Secondary to its performance-enhancing ability, an increase in oxidative stress may occur, thus prompting concern about its use. The purpose of this study is to investigate the effects of Cr monohydrate supplementation and resistance training on muscle strength and oxidative stress profile in healthy athletes. Methods A randomized, double-blind, placebo-controlled method was used to assess twenty-six male elite Brazilian handball players divided into 3 groups: Cr monohydrate supplemented group (GC, N = 9, placebo group (GP, N = 9, no treatment group (COT, N = 8 for 32 days. All subjects underwent a resistance training program. Blood samples were drawn on 0 and 32 days post Cr supplementation to analyze the oxidative stress markers, thiobarbituric acid reactive species (TBARS, total antioxidant status (TAS, and uric acid. Creatine phosphokinase, urea, and creatinine were also analyzed, as well. Fitness tests (1 repetition maximum - 1RM and muscle endurance were performed on the bench press. Body weight and height, body fat percentage (by measuring skin folds and upper muscular area were also evaluated. Statistical analysis was performed using ANOVA. Results Only GC group showed increase in 1RM (54 ± 9 vs. 63 ± 10 kg; p = 0.0356 and uric acid (4.6 ± 1.0 vs. 7.4 ± 1.6 mg/dl; p = 0.025, with a decrease in TAS (1.11 ± 0.34 vs. 0.60 ± 0.19 mmol/l; p = 0.001. No differences (pre- vs. post-training in TBARS, creatine phosphokinase, urea, creatinine, body weight and height, body fat percentage, or upper muscular area were observed in any group. When compared to COT, GC group showed greater decrease in TAS (−0.51 ± 0.36 vs. -0.02 ± 0.50 mmol/l; p = 0.0268, higher increase in 1RM (8.30 ± 2.26 vs. 5.29 ± 2.36 kg; p = 0.0209 and uric acid (2.77 ± 1.70 vs. 1.00 ± 1.03 mg/dl; p = 0.0276. Conclusion We conclude that Cr

  15. Role of selenium toxicity and oxidative stress in aquatic birds

    Science.gov (United States)

    Hoffman, D.J.

    2002-01-01

    Adverse effects of selenium (Se) in wild aquatic birds have been documented as a consequence of pollution of the aquatic environment by subsurface agricultural drainwater and other sources. These effects include mortality, impaired reproduction with teratogenesis, reduced growth, histopathological lesions and alterations in hepatic glutathione metabolism. A review is provided, relating adverse biological effects of Se in aquatic birds to altered glutathione metabolism and oxidative stress. Laboratory studies, mainly with an organic form of Se, selenomethionine, have revealed oxidative stress in different stages of the mallard (Anas platyrhynchos) life cycle. As dietary and tissue concentrations of Se increase, increases in plasma and hepatic GSH peroxidase activities occur, followed by dose-dependent increases in the ratio of hepatic oxidized to reduced glutathione (GSSG:GSH) and ultimately hepatic lipid peroxidation measured as an increase in thiobarbituric acid reactive substances (TBARS). One or more of these oxidative effects were associated with teratogenesis (4.6 ppm wet weight Se in eggs), reduced growth in ducklings (15 ppm Se in liver), diminished immune function (5 ppm Se in liver) and histopathological lesions (29 ppm Se in liver) in adults. Manifestations of Serelated effects on glutathione metabolism were also apparent in field studies in seven species of aquatic birds. Reduced growth and possibly immune function but increased liver:body weight and hepatic GSSG:GSH ratios were apparent in American avocet (Recurvirostra americana) hatchlings from eggs containing 9 ppm Se. In blacknecked stilts (Himantopus mexicanus), which contained somewhat lower Se concentrations, a decrease in hepatic GSH was apparent with few other effects. In adult American coots (Fulica americana), signs of Se toxicosis included emaciation, abnormal feather loss and histopathological lesions. Mean liver concentrations of 28 ppm Se (ww) in the coots were associated with elevated

  16. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    Science.gov (United States)

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  17. Sodium nitroprusside (SNP) alleviates the oxidative stress induced ...

    African Journals Online (AJOL)

    Oxidative damage is often induced by abiotic stress, nitric oxide (NO) is considered as a functional molecule in modulating antioxidant metabolism of plants. In the present study, effects of sodium nitroprusside (SNP), a NO donor, on the phenotype, antioxidant capacity and chloroplast ultrastructure of cucumber leaves were ...

  18. Evaluation of oxidative stress using exhaled breath 8-isoprostane ...

    African Journals Online (AJOL)

    Background: There have been limited numbers of studies on patients with chronic kidney disease (CKD) to determine oxidative stress in exhaled breath condensate (EBC). Those two studies have been carried out on hemodialysis patients, and hydrogen peroxide and nitric oxide have been studied in order to show ...

  19. Evaluation Of Oxidative Stress And Apoptosis In Breast Cancer ...

    African Journals Online (AJOL)

    were positively correlated with positive progesterone receptor. In Conclusion; oxidative stress, NO and apoptosis are highly detected in breast cancer tissues especially with advanced grade and stage. Key words: Breast cancer, Reactive Oxygen Species (ROS), malondialdehyde (MDA), Nitric Oxide (NO), Total Antioxidants

  20. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic prote...

  1. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases

    Directory of Open Access Journals (Sweden)

    Jaya Kumar

    2017-09-01

    Full Text Available Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid arthritis, chronic inflammation, and other degenerative diseases related to the nervous system. The free radicals have deleterious effect on various organs of the body. This is due to lipid peroxidation and irreversible protein modification that leads to cellular apoptosis or programmed cell death. During recent years, there is a rise in the oral diseases related to oxidative stress. Oxidative stress in oral disease is related to other systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric, and liver diseases. In the present review, we discuss the various pathways that mediate oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways and JNK/mitogen-activated protein (MAP kinase pathway. We also discuss the role of inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative stress. Knowledge of different pathways, role of inflammatory markers, and importance of low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive C-reactive proteins may be helpful in understanding the pathogenesis and plan better treatment for oral diseases which involve oxidative stress.

  2. Compensatory responses induced by oxidative stress in Alzheimer disease

    Directory of Open Access Journals (Sweden)

    PAULA I MOREIRA

    2006-01-01

    Full Text Available Oxidative stress occurs early in the progression of Alzheimer disease, significantly before the development of the pathologic hallmarks, neurofibrillary tangles and senile plaques. In the first stage of development of the disease, amyloid-β deposition and hyperphosphorylated tau function as compensatory responses and downstream adaptations to ensure that neuronal cells do not succumb to oxidative damage. These findings suggest that Alzheimer disease is associated with a novel balance in oxidant homeostasis.

  3. The role of stress in self-ordered porous anodic oxide formation and corrosion of aluminum

    Science.gov (United States)

    Capraz, Omer Ozgur

    The phenomenon of plastic flow induced by electrochemical reactions near room temperature is significant in porous anodic oxide (PAO) films, charging of lithium batteries and stress-corrosion cracking (SCC). As this phenomenon is poorly understood, fundamental insight into flow from our work may provide useful information for these problems. In-situ monitoring of the stress state allows direct correlation between stress and the current or potential, thus providing fundamental insight into technologically important deformation and failure mechanisms induced by electrochemical reactions. A phase-shifting curvature interferometry was designed to investigate the stress generation mechanisms on different systems. Resolution of our curvature interferometry was found to be ten times more powerful than that obtained by state-of-art multiple deflectometry technique and the curvature interferometry helps to resolve the conflicting reports in the literature. During this work, formation of surface patterns during both aqueous corrosion of aluminum and formation of PAO films were investigated. Interestingly, for both cases, stress induced plastic flow controls the formation of surface patterns. Pore formation mechanisms during anodizing of the porous aluminum oxide films was investigated . PAO films are formed by the electrochemical oxidation of metals such as aluminum and titanium in a solution where oxide is moderately soluble. They have been used extensively to design numerous devices for optical, catalytic, and biological and energy related applications, due to their vertically aligned-geometry, high-specific surface area and tunable geometry by adjusting process variables. These structures have developed empirically, in the absence of understanding the process mechanism. Previous experimental studies of anodizing-induced stress have extensively focused on the measurement of average stress, however the measurement of stress evolution during anodizing does not provide

  4. A review: oxidative stress in fish induced by pesticides.

    Science.gov (United States)

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  5. Serum markers of inflammation and oxidative stress in sarcopenia.

    Science.gov (United States)

    Can, Busra; Kara, Ozgur; Kizilarslanoglu, Muhammet Cemal; Arik, Gunes; Aycicek, Gozde Sengul; Sumer, Fatih; Civelek, Ramazan; Demirtas, Canan; Ulger, Zekeriya

    2017-08-01

    Sarcopenia is a geriatric syndrome characterized by the presence of low muscle mass and function. Possible mechanisms underlying sarcopenia include oxidative stress and elevation of inflammatory cytokines. The aim of the study was to evaluate the relationship between sarcopenia and biomarkers that may be involved in its pathogenesis and hence early detection. A total of 72 patients (36 sarcopenic and 36 non-sarcopenic) were included in the study. An experienced geriatric team applied comprehensive geriatric assessment to all patients. Anthropometric measures, gait speed and handgrip strength were recorded. Bioelectrical impedance analysis was used to assess skeletal muscle mass. In addition to routine clinical laboratory tests, serum adiponectin, thioredoxin-1 and pentraxin-3 levels were measured. Sarcopenia was defined according to the European Working Group on Sarcopenia in older Adults as the presence of low muscle mass and low muscle function or muscle performance. Sarcopenic patients were more likely to be functionally dependent and had lower scores on comprehensive geriatric assessment tools. Erythrocyte sedimentation rate (ESR) and C-reactive protein levels were significantly higher in the sarcopenic group. There was no significant difference in serum levels of thioredoxin-1 and pentraxin-3. Sarcopenic patients had lower levels of hemoglobin, albumin, total protein, calcium, triglycerides, uric acid and adiponectin (p sarcopenia whereas ESR was positively correlated. The present study demonstrated an association of sarcopenia with inflammatory markers CRP, ESR and adiponectin. Long-term prospective studies are warranted to confirm the relationship between markers oxidative stress and age related muscle decline.

  6. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Directory of Open Access Journals (Sweden)

    Alfredo Conti

    2010-04-01

    Full Text Available Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  7. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Alfredo, E-mail: alfredo.conti@unime.it; Gulì, Carlo; La Torre, Domenico; Tomasello, Chiara; Angileri, Filippo F.; Aguennouz, M’Hammed [Department of Neuroscience and Department of Oncology, University of Messina, Policlinico Universitario, Via Consolare Valeria 1, 98125, Messina (Italy)

    2010-04-26

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment.

  8. Role of Inflammation and Oxidative Stress Mediators in Gliomas

    International Nuclear Information System (INIS)

    Conti, Alfredo; Gulì, Carlo; La Torre, Domenico; Tomasello, Chiara; Angileri, Filippo F.; Aguennouz, M’Hammed

    2010-01-01

    Gliomas are the most common primary brain tumors of the central nervous system. Despite relevant progress in conventional treatments, the prognosis of such tumors remains almost invariably dismal. The genesis of gliomas is a complex, multistep process that includes cellular neoplastic transformation, resistance to apoptosis, loss of control of the cell cycle, angiogenesis, and the acquisition of invasive properties. Among a number of different biomolecular events, the existence of molecular connections between inflammation and oxidative stress pathways and the development of this cancer has been demonstrated. In particular, the tumor microenvironment, which is largely orchestrated by inflammatory molecules, is an indispensable participant in the neoplastic process, promoting proliferation, survival and migration of such tumors. Proinflammatory cytokines, such as tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma, as well as chemokines and prostaglandins, are synthesized by resident brain cells and lymphocytes invading the affected brain tissue. Key mediators of cancer progression include nuclear factor-kappaB, reactive oxygen and nitrogen species, and specific microRNAs. The collective activity of these mediators is largely responsible for a pro-tumorigenic response through changes in cell proliferation, cell death, cellular senescence, DNA mutation rates, DNA methylation and angiogenesis. We provide a general overview of the connection between specific inflammation and oxidative stress pathway molecules and gliomas. The elucidation of specific effects and interactions of these factors may provide the opportunity for the identification of new target molecules leading to improved diagnosis and treatment

  9. Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Ayşin Akıncı

    2017-02-01

    Full Text Available Background: Oxidative stress has been shown to play a principal role in the pathogenesis of stress-induced gastric injury. Parsley (Petroselinum crispum contains many antioxidants such as flavanoids, carotenoids and ascorbic acid. Aims: In this study, the histopathological and biochemical results of nutrition with a parsley-rich diet in terms of eliminating stress-induced oxidative gastric injury were evaluated. Study Design: Animal experimentation. Methods: Forty male Wistar albino rats were divided into five groups: control, stress, stress + standard diet, stress + parsley-added diet and stress + lansoprazole (LPZ groups. Subjects were exposed to 72 hours of fasting and later immobilized and exposed to the cold at +4 degrees for 8 hours to create a severe stress condition. Samples from the animals’ stomachs were arranged for microscopic and biochemical examinations. Results: Gastric mucosal injury was obvious in rats exposed to stress. The histopathologic damage score of the stress group (7.00±0.57 was higher than that of the control group (1.50±0.22 (p<0.05. Significant differences in histopathologic damage score were found between the stress and stress + parsley-added diet groups (p<0.05, the stress and stress + standard diet groups (p<0.05, and the stress and stress + LPZ groups (p<0.05. The mean tissue malondialdehyde levels of the stress + parsley-added group and the stress + LPZ group were lower than that of the stress group (p<0.05. Parsley supported the cellular antioxidant system by increasing the mean tissue glutathione level (53.31±9.50 and superoxide dismutase (15.18±1.05 and catalase (16.68±2.29 activities. Conclusion: Oral administration of parsley is effective in reducing stress-induced gastric injury by supporting the cellular antioxidant defence system

  10. Depression and oxidative stress: results from a meta-analysis of observational studies.

    Science.gov (United States)

    Palta, Priya; Samuel, Laura J; Miller, Edgar R; Szanton, Sarah L

    2014-01-01

    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen's d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen's d effect size of 0.55 (95% confidence interval = 0.47-0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I(2) = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen's d = -0.24, 95% confidence interval = -0.33 to -0.15). This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress.

  11. Oxidative stress and partial migration in brown trout (Salmo trutta)

    DEFF Research Database (Denmark)

    Birnie-Gauvin, Kim; Peiman, K. S.; Larsen, Martin Hage

    2017-01-01

    of oxidative status in migration biology, particularly in fish. Semi-anadromous brown trout (Salmo trutta, Linnaeus 1758) exhibit partial migration, where some individuals smoltify and migrate to sea, and others become stream residents, providing us with an excellent model to investigate the link between...... oxidative stress and migration. Using the brown trout, we obtained blood samples from juveniles from a coastal stream in Denmark in the fall prior to peak seaward migration which occurs in the spring, and assayed for antioxidant capacity (oxygen radical absorbance capacity) and oxidative stress levels...

  12. Oxidative stress in Alzheimer disease: a possibility for prevention.

    Science.gov (United States)

    Bonda, David J; Wang, Xinglong; Perry, George; Nunomura, Akihiko; Tabaton, Massimo; Zhu, Xiongwei; Smith, Mark A

    2010-01-01

    Oxidative stress is at the forefront of Alzheimer disease (AD) research. While its implications in the characteristic neurodegeneration of AD are vast, the most important aspect is that it seems increasingly apparent that oxidative stress is in fact a primary progenitor of the disease, and not merely an epiphenomenon. Moreover, evidence indicates that a long "dormant period" of gradual oxidative damage accumulation precedes and actually leads to the seemingly sudden appearance of clinical and pathological AD symptoms, including amyloid-beta deposition, neurofibrillary tangle formation, metabolic dysfunction, and cognitive decline. These findings provide important insights into the development of potential treatment regimens and even allude to the possibility of a preventative cure. In this review, we elaborate on the dynamic role of oxidative stress in AD and present corresponding treatment strategies that are currently under investigation. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Jose Luis Martin-Ventura

    2017-11-01

    Full Text Available Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH oxidase is one of the main sources of reactive oxygen species (ROS in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.

  14. Differential trafficking of oxidized LDL and oxidized LDL immune complexes in macrophages: impact on oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohammed M Al Gadban

    2010-09-01

    Full Text Available Oxidized low-density lipoproteins (oxLDL and oxLDL-containing immune complexes (oxLDL-IC contribute to formation of lipid-laden macrophages (foam cells. It has been shown that oxLDL-IC are considerably more efficient than oxLDL in induction of foam cell formation, inflammatory cytokines secretion, and cell survival promotion. Whereas oxLDL is taken up by several scavenger receptors, oxLDL-IC are predominantly internalized through the FCgamma receptor I (FCgamma RI. This study examined differences in intracellular trafficking of lipid and apolipoprotein moieties of oxLDL and oxLDL-IC and the impact on oxidative stress.Fluorescently labeled lipid and protein moieties of oxLDL co-localized within endosomal and lysosomal compartments in U937 human monocytic cells. In contrast, the lipid moiety of oxLDL-IC was detected in the endosomal compartment, whereas its apolipoprotein moiety advanced to the lysosomal compartment. Cells treated with oxLDL-IC prior to oxLDL demonstrated co-localization of internalized lipid moieties from both oxLDL and oxLDL-IC in the endosomal compartment. This sequential treatment likely inhibited oxLDL lipid moieties from trafficking to the lysosomal compartment. In RAW 264.7 macrophages, oxLDL-IC but not oxLDL induced GFP-tagged heat shock protein 70 (HSP70 and HSP70B', which co-localized with the lipid moiety of oxLDL-IC in the endosomal compartment. This suggests that HSP70 family members might prevent the degradation of the internalized lipid moiety of oxLDL-IC by delaying its advancement to the lysosome. The data also showed that mitochondrial membrane potential was decreased and generation of reactive oxygen and nitrogen species was increased in U937 cell treated with oxLDL compared to oxLDL-IC.Findings suggest that lipid and apolipoprotein moieties of oxLDL-IC traffic to separate cellular compartments, and that HSP70/70B' might sequester the lipid moiety of oxLDL-IC in the endosomal compartment. This mechanism could

  15. Phenolic compounds of Triplaris gardneriana can protect cells against oxidative stress and restore oxidative balance.

    Science.gov (United States)

    de Almeida, Thiago Silva; Neto, José Joaquim Lopes; de Sousa, Nathanna Mateus; Pessoa, Igor Parra; Vieira, Leonardo Rogério; de Medeiros, Jackeline Lima; Boligon, Aline Augusti; Hamers, Astrid R M; Farias, Davi Felipe; Peijnenburg, Ad; Carvalho, Ana Fontenele Urano

    2017-09-01

    This work aimed to add value to an underexploited plant species from Brazil, Triplaris gardneriana. To that, the phenolic compounds profile of its seed ethanolic extract and fractions was examined by HPLC and the antioxidant capacity assessed using chemical assays as well as in vitro cell imaging. Twelve compounds were quantified and classified as either phenolic acids or flavonoids. The fractionation process did not generate fractions with different compositions except for chloroformic fraction, which showed only 6 out of 12 standard compounds used. DPPH assay revealed samples with a concentration-dependent radical scavenging activity, being methanolic fraction the one with the largest activity (SC 50 11.45±0.02μg/mL). Lipid peroxidation assessment, in the presence and absence of stress inducer, showed that particularly the ethanol extract (IC 50 26.75±0.08μg/mL) and the ethyl acetate fraction (IC 50 6.14±0.03μg/mL) could inhibit lipid peroxidation. The ethyl acetate fraction performed best in chelating iron (48% complexation at 1000μg/mL). Cell imaging experiments showed that the ethanolic extract could protect cells against oxidative stress as well as restore the oxidative balance upon stress induction. In conclusion, T. gardneriana seeds showed a promising phenolic compounds profile and antioxidant activity that may be further exploited. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Sonia Sifuentes-Franco

    2018-01-01

    Full Text Available Diabetic nephropathy (DN is the second most frequent and prevalent complication of diabetes mellitus (DM. The increase in the production of oxidative stress (OS is induced by the persistent hyperglycemic state capable of producing oxidative damage to the macromolecules (lipids, carbohydrates, proteins, and nucleic acids. OS favors the production of oxidative damage to the histones of the double-chain DNA and affects expression of the DNA repairer enzyme which leads to cell death from apoptosis. The chronic hyperglycemic state unchains an increase in advanced glycation end-products (AGE that interact through the cellular receptors to favor activation of the transcription factor NF-κB and the protein kinase C (PKC system, leading to the appearance of inflammation, growth, and augmentation of synthesis of the extracellular matrix (ECM in DN. The reactive oxygen species (ROS play an important role in the pathogenesis of diabetic complications because the production of ROS increases during the persistent hyperglycemia. The primary source of the excessive production of ROS is the mitochondria with the capacity to exceed production of endogenous antioxidants. Due to the fact that the mechanisms involved in the development of DN have not been fully clarified, there are different approaches to specific therapeutic targets or adjuvant management alternatives in the control of glycemia in DN.

  17. Oxygen and oxidative stress in the perinatal period

    Directory of Open Access Journals (Sweden)

    Isabel Torres-Cuevas

    2017-08-01

    Full Text Available Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes.In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality.Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100% has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30–60%. A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties

  18. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  19. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  20. Nitric oxide in the stress axis

    OpenAIRE

    Lopez-Figueroa, M.O.; Day, H.E.W.; Akil, H.; Watson, S.J.

    1998-01-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbichypothalamic- ...

  1. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Science.gov (United States)

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  2. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    Directory of Open Access Journals (Sweden)

    C A Downs

    Full Text Available Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex, usually by expulsion or xenophagy (symbiophagy of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2 s(-1 PAR at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  3. Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate.

    Science.gov (United States)

    Heinicke, Ilmar; Boehler, Annette; Rechsteiner, Thomas; Bogdanova, Anna; Jelkmann, Wolfgang; Hofer, Markus; Rawlings, Pablo; Araneda, Oscar F; Behn, Claus; Gassmann, Max; Heinicke, Katja

    2009-07-01

    Oxidative stress occurs at altitude, and physical exertion might enhance this stress. In the present study, we investigated the combined effects of exercise and moderate altitude on redox balance in ten endurance exercising biathletes, and five sedentary volunteers during a 6-week-stay at 2,800 m. As a marker for oxidative stress, hydrogen peroxide (H(2)O(2)) was analyzed by the biosensor measuring system Ecocheck, and 8-iso prostaglandin F2alpha (8-iso PGF2alpha) was determined by enzyme immunoassay in exhaled breath condensate (EBC). To determine the whole blood antioxidative capacity, we measured reduced glutathione (GSH) enzymatically using Ellman's reagent. Exercising athletes and sedentary volunteers showed increased levels of oxidative markers at moderate altitude, contrary to our expectations; there was no difference between both groups. Therefore, all subjects' data were pooled to examine the oxidative stress response exclusively due to altitude exposure. H(2)O(2) levels increased at altitude and remained elevated for 3 days after returning to sea level (p altitude, but declined immediately after returning to sea level (p altitude resulted in elevated GSH levels (p altitude (p altitude for up to 6 weeks increases markers of oxidative stress in EBC independent of additional endurance training. Notably, this oxidative stress is still detectable 3 days upon return to sea level.

  4. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    Science.gov (United States)

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures.

  5. Oxidative stress biomarkers in amniotic fluid of pregnant women with hypothyroidism.

    Science.gov (United States)

    Novakovic, Tanja R; Dolicanin, Zana C; Djordjevic, Natasa Z

    2017-11-15

    Hypothyroidism in pregnancy is the serious state that may lead to fetal morbidity and mortality. Oxidative stress biomarkers in the amniotic fluid can provide important information on the health, development and maturation of the fetus during pregnancy. In this study, we examined whether maternal hypothyroidism contributes to increased oxidative stress biomarkers in the amniotic fluid during the first trimester of pregnancy. The study was conducted on healthy pregnant women and pregnant women with hypothyroidism (gestational age: 16-18 weeks). Oxidative stress biomarkers, such as superoxide anion (O 2 •- ), hydrogen peroxide (H 2 O 2 ), nitric oxide (NO), peroxynitrite (ONOO - ), lipid peroxide (LPO), reduced glutathione (GSH) and oxidized glutathione (GSSG) were assayed in the amniotic fluid. The results of this study indicated that concentrations of O 2 •- and NO are significantly higher, while the concentration of H 2 O 2 is significantly lower in the amniotic fluid of pregnant women with hypothyroidism in comparison to healthy pregnant women. There were no differences in concentrations of LPO, GSH and GSSG among tested groups. Also, we found that amniotic fluid concentration of O 2 •- is negatively correlated with the body weight and Apgar score values of the newborns. These results suggest that pregnancy hypothyroidism is characterized by the amniotic fluid oxidative stress. Incorporation of the oxidative stress biomarkers measurement in the amniotic fluid may be of clinical importance in the management of pregnancy hypothyroidism.

  6. Spalling stress in oxidized thermal barrier coatings evaluated by X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K. [Faculty of Education and Human Sciences, Niigata Univ., Niigata (Japan); Tanaka, K. [Dept. of Mechanical Engineering, Nagoya Univ., Furoh-cho, Chikusa-ku, Nagoya (Japan)

    2005-07-01

    The spallation of thermal barrier coatings (TBCs) is promoted by thermally grown oxide (TGO). To improve TBCs, it is very important to understand the influence of TGO on the spalling stress. In this study 'the TBCs were oxidized at 1373 K for four different periods: 0, 500,1000 and 2000 h. The distribution of the in-plane stress in oxidized TBCs, {sigma}{sub 1}, was obtained by repeating the X-ray stress measurement with low energy X-rays after successive removal of the surface layer. The distribution of the out-of-plane stress, {sigma}{sub 1} - {sigma}{sub 3}, was measured with hard synchrotron X-rays, because high energy X-rays have a large penetration depth. From the results by the low and high energy X-rays, the spalling stress in the oxidized TBCs, {sigma}{sub 3}, was evaluated. The evaluated value of the spalling stress for the oxidized TBC was a small tension beneath the surface, but steeply increased near the interface between the top and bond coating. This large tensile stress near the interface is responsible for the spalling of the top coating. (orig.)

  7. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  8. Protective Effect against Oxidative Stress in Medicinal Plant Extracts

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Lee, Eun Ju; Shin, Dong O; Hong, Sung Eun; Kim, Jin Kyu

    2000-01-01

    Protective effect of medicinal plant extracts against oxidative stress were screened in this study. Methanol extracts from 48 medicinal plants, which were reported to have antioxidative or anti-inflammatory effect were prepared and screened for their protective activity against chemically-induced and radiation-induced oxidative stress by using MTT assay. Thirty three samples showed protective activity against chemically-induced oxidative stress in various extent. Among those samples, extract of Glycyrrhiza uralensis revealed the strongest activity (25.9% at 100 μg/ml) with relatively lower cytotoxicity. Seven other samples showed higher than 20% protection at 100 μg/ml. These samples were tested for protection activity against radiation-induced oxidative stress. Methanol extract of Alpina officinarum showed the highest activity (17.8% at 20 μg/ml). Five fractions were prepared from the each 10 methanol extracts which showed high protective activity against oxidative stress. Among those fraction samples butanol fractions of Areca catechu var. dulcissima and Spirodela polyrrhiza showed the highest protective activities (78.8% and 77.2%, respectively, at 20 μg/ml)

  9. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  10. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  11. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    Science.gov (United States)

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  12. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    Science.gov (United States)

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  13. A study of oxidative stress in paucibacillary and multibacillary leprosy

    Directory of Open Access Journals (Sweden)

    Jyothi P

    2008-01-01

    Full Text Available Background: The study and assessment of oxidative stress plays a significant role in the arena of leprosy treatment. Once the presence of oxidative stress is proved, antioxidant supplements can be provided to reduce tissue injury and deformity. Aim: To study oxidative stress in paucibacillary (PB and multibacillary (MB leprosy and to compare it with that in a control group. Methods: Fifty-eight untreated leprosy patients (23 PB and 35 MB cases were studied and compared with 58 healthy controls. Superoxide dismutase (SOD level as a measure of antioxidant status; malondialdehyde (MDA level, an indicator of lipid peroxidation; and MDA/SOD ratio, an index of oxidative stress were estimated in the serum. Results: The SOD level was decreased in leprosy patients, especially in MB leprosy. The MDA level was increased in PB and MB leprosy. The MDA/SOD ratio was significantly elevated in MB patients. There was a steady increase in this ratio along the spectrum from tuberculoid to lepromatous leprosy (LL. Conclusion: There is increased oxidative stress in MB leprosy, especially in LL. This warrants antioxidant supplements to prevent tissue injury.

  14. Oxidative stress markers imbalance in late-life depression.

    Science.gov (United States)

    Diniz, Breno S; Mendes-Silva, Ana Paula; Silva, Lucelia Barroso; Bertola, Laiss; Vieira, Monica Costa; Ferreira, Jessica Diniz; Nicolau, Mariana; Bristot, Giovana; da Rosa, Eduarda Dias; Teixeira, Antonio L; Kapczinski, Flavio

    2018-03-20

    Oxidative stress has been implicated in the pathophysiology of mood disorders in young adults. However, there is few data to support its role in the elderly. The primary aim of this study was to evaluate whether subjects with late-life depression (LLD) presented with changes in oxidative stress response in comparison with the non-depressed control group. We then explored how oxidative stress markers associated with specific features of LLD, in particular cognitive performance and age of onset of major depressive disorder in these individuals. We included a convenience sample of 124 individuals, 77 with LLD and 47 non-depressed subjects (Controls). We measure the plasma levels of 6 oxidative stress markers: thiobarbituric acid reactive substances (TBARS), protein carbonil content (PCC), free 8-isoprostane, glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, and glutathione S-transferase (GST) activity. We found that participants with LLD had significantly higher free 8-isoprostane levels (p = 0.003) and lower glutathione peroxidase activity (p = 0.006) compared to controls. Free 8-isoprostane levels were also significantly correlated with worse scores in the initiation/perseverance (r = -0.24, p = 0.01), conceptualization (r = -0.22, p = 0.02) sub-scores, and the total scores (r = -0.21, p = 0.04) on the DRS. Our study provides robust evidence of the imbalance between oxidative stress damage, in particular lipid peroxidation, and anti-oxidative defenses as a mechanism related to LLD, and cognitive impairment in this population. Interventions aiming to reduce oxidative stress damage can have a potential neuroprotective effect for LLD subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Oxidative stress and maternal obesity: feto-placental unit interaction.

    Science.gov (United States)

    Malti, N; Merzouk, H; Merzouk, S A; Loukidi, B; Karaouzene, N; Malti, A; Narce, M

    2014-06-01

    To determine oxidative stress markers in maternal obesity during pregnancy and to evaluate feto-placental unit interaction, especially predictors of fetal metabolic alterations. 40 obese pregnant women (prepregnancy BMI > 30 kg/m²) were compared to 50 control pregnant women. Maternal, cord blood and placenta samples were collected at delivery. Biochemical parameters (total cholesterol and triglycerides) and oxidative stress markers (malondialdehyde, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium, nitric oxide expressed as nitrite, reduced glutathione, catalase, superoxide dismutase) were assayed by biochemical methods. Maternal, fetal and placental triglyceride levels were increased in obese group compared to control. Maternal malondialdehyde, carbonyl proteins, nitric oxide and superoxide anion levels were high while reduced glutathione concentrations and superoxide dismutase activity were low in obesity. In the placenta and in newborns of these obese mothers, variations of redox balance were also observed indicating high oxidative stress. Maternal and placental interaction constituted a strong predictor of fetal redox variations in obese pregnancies. Maternal obesity compromised placental metabolism and antioxidant status which strongly impacted fetal redox balance. Oxidative stress may be one of the key downstream mediators that initiate programming of the offspring. Maternal obesity is associated with metabolic alterations and dysregulation of redox balance in the mother-placenta - fetus unit. These perturbations could lead to maternal and fetal complications and should be carefully considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Markers of oxidative stress in exhaled breath of workers exposed to iron oxide nanoparticles are elevated

    Czech Academy of Sciences Publication Activity Database

    Pelclová, D.; Fenclová, Z.; Navrátil, Tomáš; Vlčková, Š.; Syslová, K.; Kuzma, Marek; Ždímal, Vladimír; Schwarz, Jaroslav; Pušman, Jan; Zíková, Naděžda; Zakharov, S.; Machajová, M.; Kačer, P.

    2014-01-01

    Roč. 7, Suppl. 1 (2014), s. 69-70 ISSN 1337-6853 Institutional support: RVO:61388971 ; RVO:61388955 ; RVO:67985858 Keywords : oxidative stress * exhaled breath * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry

  17. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    Science.gov (United States)

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  18. Peripheral markers of oxidative stress in chronic mercuric chloride intoxication

    Directory of Open Access Journals (Sweden)

    Gutierrez L.L.P.

    2006-01-01

    Full Text Available The present study was designed to evaluate the time course changes in peripheral markers of oxidative stress in a chronic HgCl2 intoxication model. Twenty male adult Wistar rats were treated subcutaneously daily for 30 days and divided into two groups of 10 animals each: Hg, which received HgCl2 (0.16 mg kg-1 day-1, and control, receiving the same volume of saline solution. Blood was collected at the first, second and fourth weeks of Hg administration to evaluate lipid peroxidation (LPO, total radical trapping antioxidant potential (TRAP, and superoxide dismutase (Cu,Zn-SOD, glutathione peroxidase (GPx, glutathione-S-transferase (GST, and catalase (CAT. HgCl2 administration induced a rise (by 26% in LPO compared to control (143 ± 10 cps/mg hemoglobin in the second week and no difference was found at the end of the treatment. At that time, GST and GPx were higher (14 and 24%, respectively in the Hg group, and Cu,Zn-SOD was lower (54% compared to control. At the end of the treatment, Cu,Zn-SOD and CAT were higher (43 and 10%, respectively in the Hg group compared to control (4.6 ± 0.3 U/mg protein; 37 ± 0.9 pmol/mg protein, respectively. TRAP was lower (69% in the first week compared to control (43.8 ± 1.9 mM Trolox. These data provide evidence that HgCl2 administration is accompanied by systemic oxidative damage in the initial phase of the process, which leads to adaptive changes in the antioxidant reserve, thus decreasing the oxidative injury at the end of 30 days of HgCl2 administration. These results suggest that a preventive treatment with antioxidants would help to avoid oxidative damage in subjects with chronic intoxication.

  19. Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria.

    Science.gov (United States)

    Almerich-Silla, Jose Manuel; Montiel-Company, Jose María; Pastor, Sara; Serrano, Felipe; Puig-Silla, Miriam; Dasí, Francisco

    2015-01-01

    To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC), and the activity of two antioxidant enzymes (GPx and SOD) were determined in saliva. Subgingival plaque samples were obtained from the deepest periodontal pocket and PCR was used to determine the presence of the 6 fimA genotypes of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Treponema denticola. Periodontal disease was found to be associated with increased oxidative stress parameter levels. These levels rose according to the number and type of different periodontal bacteria found in the periodontal pockets. The presence of different types of periodontal bacteria is predictive independent variables in linear regresion models of oxidative stress parameters as dependent variable, above all 8-OHdG. Oxidative stress parameter levels are correlated with the presence of different types of bacteria. Determination of these levels and periodontal bacteria could be a potent tool for controlling periodontal disease development.

  20. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  1. Neuroprotection against oxidative stress by serum from heat acclimated rats.

    Science.gov (United States)

    Beit-Yannai, E; Trembovler, V; Horowitz, M; Lazarovici, P; Kohen, R; Shohami, E

    1998-09-25

    Exposure of PC12 cells, to 1% serum derived from normothermic (CON) rats resulted in 79% cell death. Sister cultures treated with 1% serum derived from heat acclimated (ACC) rats, were neuroprotected and expressed a significant reduction in cell death. In PC12 cells exposed to a free radical generator causing an oxidative stress, 90% cell death was measured in CON serum treated cultures, while ACC serum treated cultures were neuroprotected. Xanthine oxidase activity and uric acid (UA) levels were lower in ACC serum compared to CON. Addition of UA to both sera abolished the difference in cell viability, and toxicity of ACC serum reached that of CON. These findings suggest a causal relationship between the lower levels of UA in ACC and the neuroprotective effect observed. The present study proposes heat acclimation as an experimental and/or clinical tool for the achievement of neuroprotection.

  2. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    Science.gov (United States)

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  3. Effects of Varenicline on Cardiovascular Parameters and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Nurhan Sarıoğlu

    2017-04-01

    Full Text Available Objective: Pharmacotheraphy is recommended for smoking cessation in clinical practice. However, the cardiovascular safety of smoking cessation drugs has been questioned. Our goal is to evaluate the effects of the smoking cessation drug varenicline on some cardiovascular parameters and oxidative stress in subjects. Methods: Twenty-six smokers without cardiovascular diseases and 25 healthy subjects were enrolled in the study. Total oxidant status (TOS, total antioxidant status (TAS, and urotensin II levels were determined in blood samples. Echocardiography was performed in all individuals. Smokers were assessed with the measurements mentioned above at the beginning of the treatment (V0 group and at the end (third month, V3 group. The same measurements were performed once in the control group (C. Results: Aortic strain and distensibility measurements in the V0 group were found to be significantly lower than those in the C group. No significant changes were observed after varenicline treatment. TOS values in the V0 group were found to be higher than those in the V3 and C groups, but these differences were not statistically significant. However, TAS values of the V3 group were found to be significantly lower than those of the V0 group. There were no differences between the groups in terms of diastolic dysfunction and urotensin II levels. Conclusion: Our study revealed that varenicline may decrease TAS in smokers thanks to smoking cessation. Varenicline does not seem to have negative effects on aortic stiffness. Further studies are needed to confirm these results.

  4. Starved Escherichia coli preserve reducing power under nitric oxide stress

    Energy Technology Data Exchange (ETDEWEB)

    Gowers, Glen-Oliver F. [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Robinson, Jonathan L. [Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States); Brynildsen, Mark P., E-mail: mbrynild@princeton.edu [Department of Molecular Biology, Princeton University, Princeton, NJ (United States); Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ (United States)

    2016-07-15

    Nitric oxide (NO) detoxification enzymes, such as NO dioxygenase (NOD) and NO reductase (NOR), are important to the virulence of numerous bacteria. Pathogens use these defense systems to ward off immune-generated NO, and they do so in environments that contain additional stressors, such as reactive oxygen species, nutrient deprivation, and acid stress. NOD and NOR both use reducing equivalents to metabolically deactivate NO, which suggests that nutrient deprivation could negatively impact their functionality. To explore the relationship between NO detoxification and nutrient deprivation, we examined the ability of Escherichia coli to detoxify NO under different levels of carbon source availability in aerobic cultures. We observed failure of NO detoxification under both carbon source limitation and starvation, and those failures could have arisen from inabilities to synthesize Hmp (NOD of E. coli) and/or supply it with sufficient NADH (preferred electron donor). We found that when limited quantities of carbon source were provided, NO detoxification failed due to insufficient NADH, whereas starvation prevented Hmp synthesis, which enabled cells to maintain their NADH levels. This maintenance of NADH levels under starvation was confirmed to be dependent on the absence of Hmp. Intriguingly, these data show that under NO stress, carbon-starved E. coli are better positioned with regard to reducing power to cope with other stresses than cells that had consumed an exhaustible amount of carbon. -- Highlights: •Carbon source availability is critical to aerobic E. coli NO detoxification. •Carbon source starvation, under NO stress, preserves intracellular NADH levels. •Preservation of NADH depends on starvation-dependent inhibition of Hmp induction.

  5. Increased salivary oxidative stress parameters in patients with type 2 diabetes: Relation with periodontal disease.

    Science.gov (United States)

    Arana, Carlos; Moreno-Fernández, Ana María; Gómez-Moreno, Gerardo; Morales-Portillo, Cristóbal; Serrano-Olmedo, Isabel; de la Cuesta Mayor, M Carmen; Martín Hernández, Tomás

    2017-05-01

    The aim of this study was to determine whether there are differences in salivary oxidative stress between patients with diabetes mellitus type 2 (DM2) and healthy non-diabetic patients, and whether this oxidative stress is associated with the presence of periodontal disease in diabetic patients. This observational study included 70 patients divided into three groups according to metabolic control levels: 19 non-diabetic patients (control group); 24 patients with good metabolic control (HbA1c7%). The following oxidative stress parameters were measured in all subjects: glutathione peroxidase (GPx), glutathione reductase (GRd), reduced glutathione (GSH) and oxidized glutathione (GSSG). Periodontal health was determined by means of the community periodontal index (CPI) recommended by the WHO. The diabetic group with good metabolic control showed a significant increase in GPx and GRd activity in comparison with the control group (Pperiodontal health. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Global transcriptome profile of Cryptococcus neoformans during exposure to hydrogen peroxide induced oxidative stress.

    Directory of Open Access Journals (Sweden)

    Rajendra Upadhya

    Full Text Available The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress, to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis of cells treated with hydrogen peroxide (H(2O(2 at multiple time points in a nutrient defined medium to identify a transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H(2O(2. We determined the kinetics of H(2O(2 breakdown by growing yeast cells under different conditions and accordingly selected an appropriate media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust transient transcriptional response and the intensity of the global response was consistent with the kinetics of H(2O(2 breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction, metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H(2O(2 treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the induction of an antifungal drug resistance response upon the treatment of C. neoformans with H(2O(2. These results highlight the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of mechanisms of oxidative stress resistance in C. neoformans.

  7. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    Science.gov (United States)

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    Science.gov (United States)

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  9. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  10. Oxygen and oxidative stress in the perinatal period.

    Science.gov (United States)

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  11. Effect of oxidative stress on homer scaffolding proteins.

    Directory of Open Access Journals (Sweden)

    Igor Nepliouev

    Full Text Available Homer proteins are a family of multifaceted scaffolding proteins that participate in the organization of signaling complexes at the post-synaptic density and in a variety of tissues including striated muscle. Homer isoforms form multimers via their C-terminal coiled coil domains, which allows for the formation of a polymeric network in combination with other scaffolding proteins. We hypothesized that the ability of Homer isoforms to serve as scaffolds would be influenced by oxidative stress. We have found by standard SDS-PAGE of lysates from adult mouse skeletal muscle exposed to air oxidation that Homer migrates as both a dimer and monomer in the absence of reducing agents and solely as a monomer in the presence of a reducing agent, suggesting that Homer dimers exposed to oxidation could be modified by the presence of an inter-molecular disulfide bond. Analysis of the peptide sequence of Homer 1b revealed the presence of only two cysteine residues located adjacent to the C-terminal coiled-coil domain. HEK 293 cells were transfected with wild-type and cysteine mutant forms of Homer 1b and exposed to oxidative stress by addition of menadione, which resulted in the formation of disulfide bonds except in the double mutant (C246G, C365G. Exposure of myofibers from adult mice to oxidative stress resulted in decreased solubility of endogenous Homer isoforms. This change in solubility was dependent on disulfide bond formation. In vitro binding assays revealed that cross-linking of Homer dimers enhanced the ability of Homer 1b to bind Drebrin, a known interacting partner. Our results show that oxidative stress results in disulfide cross-linking of Homer isoforms and loss of solubility of Homer scaffolds. This suggests that disulfide cross-linking of a Homer polymeric network may contribute to the pathophysiology seen in neurodegenerative diseases and myopathies characterized by oxidative stress.

  12. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    Science.gov (United States)

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  13. [Role of green tea in oxidative stress prevention].

    Science.gov (United States)

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  14. Muscle Aging and Oxidative Stress in Wild-Caught Shrews

    Science.gov (United States)

    Hindle, Allyson G.; Lawler, John M.; Campbell, Kevin L.; Horning, Markus

    2010-01-01

    Red-toothed shrews (Soricidae, subfamily Soricinae) are an intriguing model system to examine the free radical theory of aging in wild mammals, given their short (<18 month) lifespan and high mass-specific metabolic rates. As muscle performance underlies both foraging ability and predator avoidance, any age-related decline should be detrimental to fitness and survival. Muscle samples of water shrews (Sorex palustris) and sympatrically distributed short-tailed shrews (Blarina brevicauda) were therefore assessed for oxidative stress markers, protective antioxidant enzymes and apoptosis. Activity levels of catalase and glutathione peroxidase increased with age in both species. Similarly, Cu,Zn-superoxide dismutase isoform content was elevated significantly in older animals of both species (increases of 60% in the water shrew, 25% in the short-tailed shrew). Only one oxidative stress marker (lipid peroxidation) was age-elevated; the others were stable or declined (4-hydroxynonenal adducts and dihydroethidium oxidation). Glutathione peroxidase activity was significantly higher in the short-tailed shrew, while catalase activity was 2× higher in water shrews. Oxidative stress indicators were on average higher in short-tailed shrews. Apoptosis occurred in <1% of myocytes examined, and did not increase with age. Within the constraints of the sample size we found evidence of protection against elevated oxidative stress in wild-caught shrews. PMID:20109576

  15. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  16. Food-derived bioactive peptides on inflammation and oxidative stress.

    Science.gov (United States)

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  17. Oxidative stress and antioxidant responses to progressive resistance exercise intensity in trained and untrained males

    Directory of Open Access Journals (Sweden)

    H Çakır-Atabek

    2015-11-01

    Full Text Available The relationship between oxidative stress and some exercise components of resistance exercise (e.g. intensity, exercise volume has not been clearly defined. Additionally, the oxidative stress markers may respond differently in various conditions. This study aims to determine the effects of progressive intensity of resistance exercise (RE on oxidative stress and antioxidants in trained and untrained men, and also to investigate the possible threshold intensity required to evoke oxidative stress. RE trained (N=8 and untrained (N=8 men performed the leg extension RE at progressive intensities standardized for total volume: 1x17 reps at 50% of one-repetition maximum (1RM; 1x14 reps at 60% of 1RM; 1x12 reps at 70% of 1RM; 2x5 reps at 80% of 1RM; and 3x3 reps at 90% of 1RM. Blood samples were drawn before (PRE and immediately after each intensity, and after 30 minutes, 60 minutes and 24 hours following the RE. Lipid-hydroperoxide (LHP significantly increased during the test and then decreased during the recovery in both groups (p0.05. Standardized volume of RE increased oxidative stress responses. Our study suggests that lower intensity (50% is enough to increase LHP, whereas higher intensity (more than 80% is required to evoke protein oxidation.

  18. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury.

    Science.gov (United States)

    Meng, Fan Xing; Hou, Jing Ming; Sun, Tian Sheng

    2017-02-08

    Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.

  19. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring.

    Science.gov (United States)

    Marin, Douglas Popp; Bolin, Anaysa Paola; Campoio, Thais Regina; Guerra, Beatriz Alves; Otton, Rosemari

    2013-10-01

    The chronic exposure to regular exercise training seems to improve antioxidant defense systems. However, the intense physical training imposed on elite athletes may lead to overtraining associated with oxidative stress. The purpose of the present study was to investigate the effect of different training loads and competition on oxidative stress, biochemical parameters and antioxidant enzymatic defense in handball athletes during 6-months of monitoring. Ten male elite handball athletes were recruited to the study. Blood samples were collected four times every six weeks throughout the season. During most intense periods of training and competitions there were significant changes in plasma indices of oxidative stress (increased TBARS and decreased thiols). Conversely, chronic adaptations to exercise training demonstrated a significant protective effect against oxidative stress in erythrocyte (decrease in TBARs and carbonyl group levels). Erythrocyte antioxidant enzyme activities were significantly increased, suggesting a training-induced antioxidant adaptation. Biomarkers of skeletal muscle damage were significantly increased during high-intensity training period (creatine kinase, lactate dehydrogenase and aspartate aminotransferase). No significant changes were observed in plasma IL-6, TNF-α and uric acid, whereas a significant reduction was found in the IL-1β concentration and gamma-glutamyl transferase activity. Oxidative stress and antioxidant biomarkers can change throughout the season in competitive athletes, reflecting the physical stress and muscle damage that occurs as the result of competitive handball training. In addition, these biochemical measurements can be applied in the physiological follow-up of athletes. © 2013.

  20. The sex differences in nature of vascular endothelial stress: nitrergic mechanisms

    Science.gov (United States)

    Sindeev, Sergey; Gekaluyk, Artem; Ulanova, Maria; Agranovich, Ilana; Sharref, Ali Esmat; Semyachkina-Glushkovskaya, Oxana

    2016-04-01

    Here we studied the role of nitric oxide in cardiovascular regulation in male and female hypertensive rats under normal and stress conditions. We found that the severity of hypertension in females was lower than in males. Hypertensive females demonstrated more favorable pattern of cardiovascular responses to stress. Nitric oxide blockade by NG-nitro-L-arginine methyl ester (L-NAME) increased the mean arterial pressure and decreased the heart rate more effectively in females than in males. During stress, L-NAME modified the stress-induced cardiovascular responses more significantly in female compared with male groups. Our data show that hypertensive females demonstrated the more effective nitric oxide control of cardiovascular activity under normal and especially stress conditions than male groups. This sex differences may be important mechanism underlying greater in females vs. males stress-resistance of cardiovascular system and hypertension formation.

  1. [Biological consequences of oxidative stress induced by pesticides].

    Science.gov (United States)

    Grosicka-Maciąg, Emilia

    2011-06-17

    Pesticides are used to protect plants and numerous plant products. They are also utilized in several industrial branches. These compounds are highly toxic to living organisms. In spite of close supervision in the use of pesticides there is a serious risk that these agents are able to spread into the environment and contaminate water, soil, food, and feedstuffs. Recently, more and more studies have been focused on understanding the toxic mechanisms of pesticide actions. The data indicate that the toxic action of pesticides may include the induction of oxidative stress and accumulation of free radicals in the cell. Long-lasting or acute oxidative stress disturbs cell metabolism and is able to produce permanent changes in the structure of proteins, lipids, and DNA. The proteins that are oxidized may lose or enhance their activity. Moreover, the proteins oxidized are able to form aggregates that inhibit the systems responsible for protein degradation and lead to alterations of proteins in the cell. Once oxidized, lipids have the capacity to damage and depolarize cytoplasmic membranes. Free oxygen radicals are harmful to DNA including damage to single nitric bases, DNA strand breaks and adduct production. Many studies indicate that oxidative stress may accelerate development of numerous diseases including cancer and neurodegenerative ones such as Alzheimer’s and Parkinson’s disease and may also be responsible for infertility.

  2. Oxidative Stress as an Important Factor in the Pathophysiology of alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Tanise Gemelli,

    2013-06-01

    Full Text Available Oxidative stress has been associated to play a crucial role in the pathogenesis of many diseases, including neurodegenerative diseases. Alzheimer's disease is an age-related neurodegenerative disorder, which is recognized as the most common form of dementia. In this article, the aim was to review the involvement of oxidative stress on Alzheimer's disease. Alzheimer's disease is histopathologically characterized by the presence of extracellular amyloid plaques, intracellular neurofibrillary tangles, the presence of oligomers of amyloid-? peptide and loss of synapses. Moreover, the brain and the nervous system are more prone to oxidative stress and oxidative damage influences the neurodegenerative diseases. However, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in proteins constitute complex intertwined pathologies that lead to neuronal cell death. Mitochondrial mutations on deoxyribonucleic acid and oxidative stress contribute to aging, affecting different cell signaling systems, as well as the connectivity and neuronal cell death may lead to the largest risk factor for neurodegenerative diseases such as Alzheimer's Disease.

  3. The naked mole-rat response to oxidative stress: just deal with it.

    Science.gov (United States)

    Lewis, Kaitlyn N; Andziak, Blazej; Yang, Ting; Buffenstein, Rochelle

    2013-10-20

    The oxidative stress theory of aging has been the most widely accepted theory of aging providing insights into why we age and die for over 50 years, despite mounting evidence from a multitude of species indicating that there is no direct relationship between reactive oxygen species (ROS) and longevity. Here we explore how different species, including the longest lived rodent, the naked mole-rat, have defied the most predominant aging theory. In the case of extremely long-lived naked mole-rat, levels of ROS production are found to be similar to mice, antioxidant defenses unexceptional, and even under constitutive conditions, naked mole-rats combine a pro-oxidant intracellular milieu with high, steady state levels of oxidative damage. Clearly, naked mole-rats can tolerate this level of oxidative stress and must have mechanisms in place to prevent its translation into potentially lethal diseases. In addition to the naked mole-rat, other species from across the phylogenetic spectrum and even certain mouse strains do not support this theory. Moreover, overexpressing or knocking down antioxidant levels alters levels of oxidative damage and even cancer incidence, but does not modulate lifespan. Perhaps, it is not oxidative stress that modulates healthspan and longevity, but other cytoprotective mechanisms that allow animals to deal with high levels of oxidative damage and stress, and nevertheless live long, relatively healthy lifespans. Studying these mechanisms in uniquely long-lived species, like the naked mole-rat, may help us tease out the key contributors to aging and longevity.

  4. Intrinsic stress of bismuth oxide thin films: effect of vapour chopping and air ageing

    International Nuclear Information System (INIS)

    Patil, R B; Puri, R K; Puri, V

    2008-01-01

    Bismuth oxide thin films of thickness 1000 A 0 have been prepared by thermal oxidation (in air) of vacuum evaporated bismuth thin films (on glass substrate) at different oxidation temperatures and duration. Both the vapour chopped and nonchopped bismuth oxide thin films showed polycrystalline and polymorphic structure. The monoclinic bismuth oxide was found to be predominant in both the cases. The effect of vapour chopping and air exposure for 40 days on the intrinsic stress of bismuth oxide thin films has been studied. The vapour chopped films showed low (3.92 - 4.80 x 10 9 N/m 2 ) intrinsic stress than those of nonchopped bismuth oxide thin films (5.77 - 6.74 x 10 9 N/m 2 ). Intrinsic stress was found to increase due to air ageing. The effect of air ageing on the vapour chopped films was found low. The vapour chopped films showed higher packing density. Higher the packing density, lower the film will age. The process of chopping vapour flow creates films with less inhomogenety i.e. a low concentration of flaws and non-planar defects which results in lower intrinsic stress

  5. Nitric oxide signalling and neuronal nitric oxide synthase in the heart under stress.

    Science.gov (United States)

    Zhang, Yin Hua

    2017-01-01

    Nitric oxide (NO) is an imperative regulator of the cardiovascular system and is a critical mechanism in preventing the pathogenesis and progression of the diseased heart. The scenario of bioavailable NO in the myocardium is complex: 1) NO is derived from both endogenous NO synthases (endothelial, neuronal, and/or inducible NOSs [eNOS, nNOS, and/or iNOS]) and exogenous sources (entero-salivary NO pathway) and the amount of NO from exogenous sources varies significantly; 2) NOSs are located at discrete compartments of cardiac myocytes and are regulated by distinctive mechanisms under stress; 3) NO regulates diverse target proteins through different modes of post-transcriptional modification (soluble guanylate cyclase [sGC]/cyclic guanosine monophosphate [cGMP]/protein kinase G [PKG]-dependent phosphorylation, S -nitrosylation, and transnitrosylation); 4) the downstream effectors of NO are multidimensional and vary from ion channels in the plasma membrane to signalling proteins and enzymes in the mitochondria, cytosol, nucleus, and myofilament; 5) NOS produces several radicals in addition to NO (e.g. superoxide, hydrogen peroxide, peroxynitrite, and different NO-related derivatives) and triggers redox-dependent responses. However, nNOS inhibits cardiac oxidases to reduce the sources of oxidative stress in diseased hearts. Recent consensus indicates the importance of nNOS protein in cardiac protection under pathological stress. In addition, a dietary regime with high nitrate intake from fruit and vegetables together with unsaturated fatty acids is strongly associated with reduced cardiovascular events. Collectively, NO-dependent mechanisms in healthy and diseased hearts are better understood and shed light on the therapeutic prospects for NO and NOSs in clinical applications for fatal human heart diseases.

  6. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress

    Science.gov (United States)

    Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S.

    2016-01-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  7. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Therese Wilhelm

    2016-05-01

    Full Text Available Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es. Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3% rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing, and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and

  8. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.

    Science.gov (United States)

    Wilhelm, Therese; Ragu, Sandrine; Magdalou, Indiana; Machon, Christelle; Dardillac, Elodie; Técher, Hervé; Guitton, Jérôme; Debatisse, Michelle; Lopez, Bernard S

    2016-05-01

    Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation

  9. Obesity induced alterations in redox homeostasis and oxidative stress are present from an early age.

    Science.gov (United States)

    Lechuga-Sancho, Alfonso M; Gallego-Andujar, David; Ruiz-Ocaña, Pablo; Visiedo, Francisco M; Saez-Benito, Ana; Schwarz, Mónica; Segundo, Carmen; Mateos, Rosa M

    2018-01-01

    Oxidative stress and inflammation have been postulated as underlying mechanisms for the development of obesity-related insulin resistance. This association however, remains elusive especially in childhood. We sought to investigate this relation by measuring oxidative stress and antioxidant response biomarkers, before and during an oral glucose tolerance test (OGTT), in different biological samples from obese children. 24 children were recruited for the study, (18 obese and 6 controls). After OGTT, the obese group was subdivided in two, according to whether or not carbohydrate metabolic impairment (Ob.IR+, Ob.IR-; respectively) was found. Different biomarkers were analyzed after fasting (T = 0) and during an OGTT (T = 60 and 120 min). Lipoperoxides were measured in plasma, erythrocytes, and urine; while advanced glycation end products were determined in plasma, and redox status (GSH/GSSG ratio) in erythrocytes. We found marked differences in the characterization of the oxidative status in urine and erythrocytes, and in the dynamics of the antioxidant response during OGTT. Specifically, Ob.IR+ children show increased oxidative stress, deficient antioxidant response and a significant imbalance in redox status, in comparison to controls and Ob.IR- children. Obese children with insulin resistance show increased levels of oxidative stress biomarkers, and a stunted antioxidant response to an OGTT leading to increased oxidative stress after a single glucose load, as detected in erythrocytes, but not in plasma. We propose erythrocytes as sensors of early and acute changes in oxidative stress associated with insulin resistance in childhood obesity. This is a pilot study, performed with a limited sample size, so data should be interpreted with caution until reproduced.

  10. Dehydrins Impart Protection against Oxidative Stress in Transgenic Tobacco Plants.

    Science.gov (United States)

    Halder, Tanmoy; Upadhyaya, Gouranga; Basak, Chandra; Das, Arup; Chakraborty, Chandrima; Ray, Sudipta

    2018-01-01

    Environmental stresses generate reactive oxygen species (ROS) which might be detrimental to the plants when produced in an uncontrolled way. However, the plants ameliorate such stresses by synthesizing antioxidants and enzymes responsible for the dismutation of ROS. Additionally, the dehydrins were also able to protect the inactivation of the enzyme lactate dehydrogenase against hydroxyl radicals (OH ⋅ ) generated during Fenton's reaction. SbDhn1 and SbDhn2 overexpressing transgenic tobacco plants were able to protect against oxidative damage. Transgenic tobacco lines showed better photosynthetic efficiency along with high chlorophyll content, soluble sugar and proline. However, the malonyl dialdehyde (MDA) content was significantly lower in transgenic lines. Experimental evidence demonstrates the protective effect of dehydrins on electron transport chain in isolated chloroplast upon methyl viologen (MV) treatment. The transgenic tobacco plants showed significantly lower superoxide radical generation () upon MV treatment. The accumulation of the H 2 O 2 was also lower in the transgenic plants. Furthermore, in the transgenic plants the expression of ROS scavenging enzymes was higher compared to non-transformed (NT) or vector transformed (VT) plants. Taken together these data, during oxidative stress dehydrins function by scavenging the () directly and also by rendering protection to the enzymes responsible for the dismutation of () thereby significantly reducing the amount of hydrogen peroxides formed. Increase in proline content along with other antioxidants might also play a significant role in stress amelioration. Dehydrins thus function co-operatively with other protective mechanisms under oxidative stress conditions rendering protection in stress environment.

  11. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  12. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black

    Science.gov (United States)

    Hepel, Maria; Stobiecka, Magdalena

    2018-03-01

    Oxidative stress biomarkers, including glutathione (GSH) and related compounds, are involved in a variety of interactions enabling redox potential maintenance in living cells and protection against radicals. Since the oxidative stress is promoting and, in many cases, inducing serious illnesses, monitoring of GSH levels can aid in diagnostics and disease prevention. Herein, we report on the discovery of the formation of a supramolecular ensemble of GSH with fluorone black (9-phenyl fluorone, FB) which is optically active and enables sensitive determination of GSH by resonance elastic light scattering (RELS). We have found that supramolecular interactions of GSH with FB can be probed with spectroscopic, RELS, and electrochemical methods. Our investigations show that RELS intensity for FB solutions increases with GSH concentration while fluorescence emission of FB is not affected, as quenching begins only above 0.8 mM GSH. The UV-Vis difference spectra show a positive peak at 383 nm and a negative peak at 458 nm, indicating a higher-energy absorbing complex in comparison to the non-bonded FB host. Supramolecular interactions of FB with GSH have also been corroborated by electrochemical measurements involving two configurations of FB-GSH ensembles on electrodes: (i) an inverted orientation on Au-coated quartz crystal piezoelectrode (Au@SG-FB), with strong thiolate bonding to gold, and (ii) a non-inverted orientation on glassy carbon electrode (GCE@FB-GS), with weak π-π stacking attachment and efficient charge mediation through the ensemble. The formation of a supramolecular ensemble with hydrogen bonding has also been confirmed by quantum mechanical calculations. The discovery of supramolecular FB-GSH ensemble formation enables elucidating the mechanisms of strong RELS responses, changes in UV-Vis absorption spectra, and the electrochemical reactivity. Also, it provides new insights to the understanding of the efficient charge-transfer in redox potential homeostasis

  13. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-04-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. EFFECT OF CAFFEINE ON OXIDATIVE STRESS DURING MAXIMUM INCREMENTAL EXERCISE

    Directory of Open Access Journals (Sweden)

    Guillermo J. Olcina

    2006-12-01

    Full Text Available Caffeine (1,3,7-trimethylxanthine is an habitual substance present in a wide variety of beverages and in chocolate-based foods and it is also used as adjuvant in some drugs. The antioxidant ability of caffeine has been reported in contrast with its pro- oxidant effects derived from its action mechanism such as the systemic release of catecholamines. The aim of this work was to evaluate the effect of caffeine on exercise oxidative stress, measuring plasma vitamins A, E, C and malonaldehyde (MDA as markers of non enzymatic antioxidant status and lipid peroxidation respectively. Twenty young males participated in a double blind (caffeine 5mg·kg- 1 body weight or placebo cycling test until exhaustion. In the exercise test, where caffeine was ingested prior to the test, exercise time to exhaustion, maximum heart rate, and oxygen uptake significantly increased, whereas respiratory exchange ratio (RER decreased. Vitamins A and E decreased with exercise and vitamin C and MDA increased after both the caffeine and placebo tests but, regarding these particular variables, there were no significant differences between the two test conditions. The results obtained support the conclusion that this dose of caffeine enhances the ergospirometric response to cycling and has no effect on lipid peroxidation or on the antioxidant vitamins A, E and C

  15. Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes

    DEFF Research Database (Denmark)

    Pantleon, Karen; Montgomery, Melanie

    2012-01-01

    During long-term, high-temperature exposure of superheater tubes in thermal power plants, various oxides are formed on the inner side (steamside) of the tubes, and oxide spallation is a serious problem for the power plant industry. Most often, oxidation in a steam atmosphere is investigated...... in laboratory experiments just mimicking the actual conditions in the power plant for simplified samples. On real plant-exposed superheater tubes, the steamside oxides are solely investigated microscopically. The feasibility of X-ray diffraction for the characterization of steamside oxidation on real plant......-exposed superheater tubes was proven in the current work; the challenges for depth-resolved phase analysis and phase-specific residual stress analysis at the inner side of the tubes with concave surface curvature are discussed. Essential differences between the steamside oxides formed on two different steels...

  16. Oxidative stress and antioxidant defenses in pregnant women.

    Science.gov (United States)

    Leal, Claudio A M; Schetinger, Maria R C; Leal, Daniela B R; Morsch, Vera M; da Silva, Aleksandro Schafer; Rezer, João F P; de Bairros, André Valle; Jaques, Jeandre Augusto Dos Santos

    2011-01-01

    Oxidative stress (OS) is defined as an imbalance in the production of reactive oxygen species and the capacity of antioxidant defenses. The objective of this work was to investigate OS and antioxidant capacity in pregnant women. Parameters of the oxidative status and antioxidant capacity in serum and whole blood were evaluated in thirty-nine women with normal pregnancy. The assessment of antioxidants indicated an increase in superoxide dismutase and catalase activities (P0.05) in protein carbonylation. This study demonstrates that there is a change in the pro-oxidant and antioxidant defenses associated with body and circulation changes that are inherent to the pregnancy process.

  17. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    2009-11-01

    Full Text Available Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability.Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity.H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  18. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  19. Effects of silver nanoparticles to soil invertebrates: Oxidative stress biomarkers in Eisenia fetida

    International Nuclear Information System (INIS)

    Gomes, Susana I.L.; Hansen, Ditte; Scott-Fordsmand, Janeck J.; Amorim, Mónica J.B.

    2015-01-01

    Silver nanoparticles (Ag-NPs) are among the most produced NPs worldwide having several applications in consumer products. Ag-NPs are known to cause oxidative stress in several organisms and cell lines, however comparatively less information is available regarding their effects on soil living invertebrates. The purpose of this study was to investigate if Ag-NPs cause oxidative stress on soil invertebrates. The model soil species Eisenia fetida was used. Our results showed that total glutathione (TG) is the first mechanism triggered by Ag-NPs, followed by glutathione peroxidase (GPx) and glutathione reductase (GR), however oxidative damage was observed for higher doses and exposure time (increased lipid peroxidation, LPO). AgNO 3 exposure caused impairment in GPx and glutathione-S-transferase (GST), probably as result of the higher bioavailability of Ag in the salt-form. The current results indicate that effects are partly caused by Ag ions released from Ag-NPs, but specific particle effects cannot be excluded. - Highlights: • Oxidative stress of Ag-NPs and AgNO 3 was assessed in Eisenia fetida. • Both Ag forms induced oxidative damage (LPO) via different mechanisms. • Ag-NPs activated total glutathione, followed by GPx and GR. • AgNO 3 impaired GPx and GST. • Overall results indicated effects from Ag ionization and NPs specific effects. - Oxidative stress to Ag in Eisenia fetida occurs via different mechanisms for Ag nanoparticles and AgNO 3

  20. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival

    Science.gov (United States)

    Navarro-Yepes, Juliana; Burns, Michaela; Anandhan, Annadurai; Khalimonchuk, Oleh; del Razo, Luz Maria; Quintanilla-Vega, Betzabet; Pappa, Aglaia; Panayiotidis, Mihalis I.

    2014-01-01

    Abstract Significance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. Critical Issues: In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. Future Directions: Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders. Antioxid. Redox Signal. 21, 66–85. PMID:24483238

  1. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  2. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  3. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    Science.gov (United States)

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  4. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    Science.gov (United States)

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  5. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  6. The role of oxidative stress in nervous system aging.

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  7. Mastitis and oxidative stress in vitamin E supplemented dairy cows

    NARCIS (Netherlands)

    Bouwstra, R.J.

    2010-01-01

    The research described in this thesis evaluated the effect of vitamin E supplementation under field conditions on the udder health of Dutch dairy cows. Additionally, it investigated the mechanism by which vitamin E influenced oxidative stress, especially during the dry period. Moreover, it

  8. The role of oxidative stress in corneal diseases and injuries

    Czech Academy of Sciences Publication Activity Database

    Čejková, Jitka; Čejka, Čestmír

    2015-01-01

    Roč. 30, č. 8 (2015), s. 893-900 ISSN 0213-3911 R&D Projects: GA ČR(CZ) GA14-12580S Keywords : Diseased corneas * Immunohistochemistry * Oxidative stress Subject RIV: FF - HEENT, Dentistry Impact factor: 1.875, year: 2015

  9. Cigarette smoke-induced mitochondrial dysfunction and oxidative stress in

    NARCIS (Netherlands)

    Toorn, Marco van der

    2009-01-01

    In this thesis we studied the effects of cigarette smoke (CS) on mitochondrial function and oxidative stress in epithelial cells and discussed the potential of these phenomena in the pathogenesis of chronic obstructive pulmonary diseases (COPD). In the first three chapters we demonstrated that CS

  10. Thoracic radiography and oxidative stress indices in heartworm affected dogs

    Directory of Open Access Journals (Sweden)

    P. K. Rath

    2014-09-01

    Full Text Available Aim: The aim was to study the pathomorphological changes through thoracic radiography and status of oxidative stress parameters in heartworm affected dogs in Odisha. Materials and Methods: A total of 16 dogs with clinically established diagnosis of dirofilariasis by wet blood smear and modified Knott’s test and equal numbers of dogs as control were included in this study. The present study was conducted in heartworm affected dogs to see the pathomorphological changes through thoracic radiography. Similarly, the evaluation was undertaken for observing any alterations in oxidative stress status in affected as well as non-affected, but healthy control dogs by adopting standard procedure. Results: Thoracic radiography revealed cardiac enlargement, round heart appearance suggestive of right ventricular hypertrophy, tortuous pulmonary artery and darkening of lungs. Alterations in oxidative stress indices showed a significant rise of lipid peroxidase activity, non-significant rise of superoxide dismutase and a significant although reverse trend for catalase levels in affected dogs in comparison to Dirofilaria negative control but apparently healthy dogs. Conclusions: Radiographic changes, as well as alterations in oxidative stress parameters, may not be diagnostic for heartworm infection, but useful for detecting heartworm disease, assessing severity and evaluating cardiopulmonary parenchyma changes and gives a fair idea about the degree of severity of the disease. It aids as contributing factors in disease pathogenesis.

  11. Maternal Parity and Blood Oxidative Stress in Mother and Neonate

    OpenAIRE

    Golalizadeh; Shobeiri; Ranjbar; Nazari

    2016-01-01

    Background Parturition has been associated with free radicals, itself linked with poor pregnancy outcome. Objectives This study aimed to investigate the relationship between oxidative stress biomarkers levels of maternal and cord blood samples at the second stage of labor with the maternal parity number. Materials and Methods In this analytical cross-sectional study, subjects were ...

  12. Mixed chemical-induced oxidative stress in occupational exposure ...

    African Journals Online (AJOL)

    Mixed chemical-induced oxidative stress in occupational exposure in Nigerians. JI Anetor, SA Yaqub, GO Anetor, AC Nsonwu, FAA Adeniyi, S Fukushima. Abstract. Exposure to single chemicals and associated disorders in occupational environments has received significant attention. Understanding these events holds ...

  13. Effect of moxifloxacin on oxidative stress, paraoxonase-1 (PON1 ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of moxifloxacin on paraoxonase-1 (PON1) activity, and serum oxidative stress in patients with multiple drug-resistant tuberculosis (MDR-TB). Methods: A total ofof 130 MDR-TB patients who were treated with moxifloxacin from October 2014 to October 2010 in Eastern Medical District of Linyi ...

  14. Oxidative stress induced pulmonary endothelial cell proliferation is ...

    African Journals Online (AJOL)

    Cellular hyper-proliferation, endothelial dysfunction and oxidative stress are hallmarks of the pathobiology of pulmonary hypertension. Indeed, pulmonary endothelial cells proliferation is susceptible to redox state modulation. Some studies suggest that superoxide stimulates endothelial cell proliferation while others have ...

  15. Effects of micronutrients on oxidative stress in HIV positive patients ...

    African Journals Online (AJOL)

    Micronutrient supplementation was therefore shown to reduce oxidative stress in HIV positive patients on HAART and could possibly be very helpful as an adjunct in the treatment of this disease. Key Words: Antiretroviral, micronutrients, malondialdehyde, ART naïve, reactive oxygen species, supplementation.

  16. The Role of Oxidative Stress in Nervous System Aging

    Science.gov (United States)

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  17. The role of oxidative stress in nervous system aging.

    Directory of Open Access Journals (Sweden)

    Catrina Sims-Robinson

    Full Text Available While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/- mice, a mouse model of increased oxidative stress. Sod1(-/- mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+ mice at 30 months and the Sod1(-/- mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  18. Resveratrol Ameliorates Experimental Alcoholic Liver Disease by Modulating Oxidative Stress

    Directory of Open Access Journals (Sweden)

    He Peiyuan

    2017-01-01

    Full Text Available The aim of this study was to investigate the hepatoprotective effects of resveratrol in alcoholic liver disease (ALD. Alcohol was administered to healthy female rats starting from 6% (v/v and gradually increased to 20% (v/v by the fifth week. After 16 weeks of intervention, liver enzymes (aspartate aminotransferase [AST] and alanine aminotransferase [ALT] were analyzed using a chemistry analyzer, while hepatic antioxidant enzymes, oxidative stress markers, and caspase 3 activity were assessed using ELISA kits. Furthermore, hepatic CYP2E1 protein levels and mRNA levels of antioxidant and inflammation-related genes were determined using western blotting and RT-PCR, respectively. The results showed that resveratrol significantly attenuated alcohol-induced elevation of liver enzymes and improved hepatic antioxidant enzymes. Resveratrol also attenuated alcohol-induced CYP2E1 increase, oxidative stress, and apoptosis (caspase 3 activity. Moreover, genes associated with oxidative stress and inflammation were regulated by resveratrol supplementation. Taken together, the results suggested that resveratrol alleviated ALD through regulation of oxidative stress, apoptosis, and inflammation, which was mediated at the transcriptional level. The data suggests that resveratrol is a promising natural therapeutic agent against chronic ALD.

  19. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch

    2015-01-01

    Full Text Available Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C. However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t was used, compared to wild-type (WT mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.

  20. Oxidative stress among subjects with metabolic syndrome in Sokoto ...

    African Journals Online (AJOL)

    2015-08-20

    Aug 20, 2015 ... Background: Oxidative stress is known to play a role in the ... others to remix, tweak, and build upon the work non-commercially, as long as the ..... Report of the National Heart, Lung, and Blood Institute/American Heart.

  1. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    Science.gov (United States)

    Gupta, Sajal; Sharma, Rakesh; Agarwal, Ashok

    2014-01-01

    Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM), cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions. PMID:24900998

  2. Oxidative stress biomarkers in Oreochromis niloticus as early ...

    African Journals Online (AJOL)

    2018-04-10

    Apr 10, 2018 ... stress biomarkers and sub-cellular components are the most commonly used ..... metal ions usually occur in low concentrations in the aquatic environment and ..... injured cells from a reduced to an oxidized state (Gul et al.,. 2004). ... ions through their gills, impaired respiration may result from chronic and ...

  3. Oxidative Stress -a Phenotypic Hallmark of Fanconi Anemia and ...

    African Journals Online (AJOL)

    ... major role in the pathogenesis of leukemia.prone diseases such as Fanconi anemia (FA) and ... Aim: To explore the oxidative stress state in children with DS and FA by ... and to evaluate of the effect of antioxidant treatment on these patients.

  4. Oxidative stress biomarkers in West African Dwarf goats reared ...

    African Journals Online (AJOL)

    Oxidative stress biomarkers in West African Dwarf goats reared under intensive and semi-intensive production systems. ... Animals raised intensively were fed Megathyrsus maximus hay ad libitum, while those reared semi-intensively were allowed to graze freely in a fenced ... Keywords: bucks, immune response, season ...

  5. Impact of weight loss on oxidative stress and inflammatory cytokines ...

    African Journals Online (AJOL)

    Background: Type 2 diabetes mellitus is associated with abnormal markers of inflammatory cytokines and oxidative stress markers. Although, these abnormalities could be modulated with weight reduction; there is limitation in clinical studies that have addressed the beneficial effects of weight reduction in modulating ...

  6. Power of Proteomics in Linking Oxidative Stress and Female Infertility

    Directory of Open Access Journals (Sweden)

    Sajal Gupta

    2014-01-01

    Full Text Available Endometriosis, PCOS, and unexplained infertility are currently the most common diseases rendering large numbers of women infertile worldwide. Oxidative stress, due to its deleterious effects on proteins and nucleic acids, is postulated to be the one of the important mechanistic pathways in differential expression of proteins and in these diseases. The emerging field of proteomics has allowed identification of proteins involved in cell cycle, as antioxidants, extracellular matrix (ECM, cytoskeleton, and their linkage to oxidative stress in female infertility related diseases. The aim of this paper is to assess the association of oxidative stress and protein expression in the reproductive microenvironments such as endometrial fluid, peritoneal fluid, and follicular fluid, as well as reproductive tissues and serum. The review also highlights the literature that proposes the use of the fertility related proteins as potential biomarkers for noninvasive and early diagnosis of the aforementioned diseases rather than utilizing the more invasive methods used currently. The review will highlight the power of proteomic profiles identified in infertility related disease conditions and their linkage with underlying oxidative stress. The power of proteomics will be reviewed with regard to eliciting molecular mechanisms for early detection and management of these infertility related conditions.

  7. Oxidative stress and chromosomal aberrations in an environmentally exposed population

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Rössnerová, Andrea; Šrám, Radim

    2011-01-01

    Roč. 707, 1-2 (2011), s. 34-41 ISSN 0027-5107 R&D Projects: GA MŽP(CZ) SP/1B3/8/08 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * oxidative stress * chromosomal aberrations Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.850, year: 2011

  8. Morin mitigates oxidative stress, apoptosis and inflammation in ...

    African Journals Online (AJOL)

    Background: Morin is a flavanoid which exhibits potent antioxidant activity in various oxidative stress related diseases. The current study was attempted to scrutinize the preclinical bio-efficacy of morin on focal ischemia. Methods: The animal model of focal cerebral ischemic injury was done by midbrain carotid artery ...

  9. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis

    NARCIS (Netherlands)

    Boots, Agnes W.; Drent, Marjolein; de Boer, Vincent C. J.; Bast, Aalt; Haenen, Guido R. M. M.

    2011-01-01

    Oxidative stress and low antioxidant levels are implicated in the aetiology of sarcoidosis, an inflammatory disease. Quercetin is a potent dietary antioxidant that also displays anti-inflammatory activities. Consequently, the aim is to examine the effect of quercetin supplementation on markers of

  10. Altered DNA repair, oxidative stress and antioxidant status

    Indian Academy of Sciences (India)

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an ...

  11. Palladium induced oxidative stress and cell death in normal ...

    African Journals Online (AJOL)

    Our findings clearly indicate that Pd induces reactive oxygen species (ROS) formation and oxidative stress, mitochondrial and lysosomal injury and finally cell death. These effects are reversed by antioxidants and ROS scavengers, mitochondrial permeability transmission [1] pore sealing agent, ATP progenitor, and ...

  12. Protection by 6-aminonicotinamide against oxidative stress in cardiac cells

    DEFF Research Database (Denmark)

    Hofgaard, Johannes P; Sigurdardottir, Kristin Sigridur; Treiman, Marek

    2006-01-01

    necrosis following global ischemia in an isolated rat heart, apparently by limiting the oxidative injury component. We therefore explored the antioxidative potential of 6AN in a model using H9C2(2-1) rat cardiac myoblasts exposed to H2O2 stress. Dependent on the specific protocol, 6AN pretreatment for 6...

  13. Oxidative Stress Markers and Genetic Polymorphisms of Glutathione ...

    African Journals Online (AJOL)

    Hence, we evaluated the serum levels of oxidative stress markers and investigated genetic polymorphisms of glutathione S-transferase associated with autism. Materials and Methods: Forty-two children clinically diagnosed with ASD using the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) criteria and a ...

  14. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the.

  15. Oxidative stress and antioxidant status in sportsmen two hours after ...

    African Journals Online (AJOL)

    This study was designed to investigate the serum lipid profile and non-enzymatic antioxidants markers (serum uric acid and albumin) as well as lipid hydroperoxide (a marker of oxidative stress) in 39 sportsmen after 2 h of strenuous training exercise and also in 24 sedentary age-matched males who served as controls ...

  16. Oxidative-stress-mediated teratogenesis and the role of folate

    NARCIS (Netherlands)

    Tran, Y.H.; Bergman, J.; Bakker, M.; Groen, H.; Wilffert, B.

    2016-01-01

    Background: Oxidative stress (OS) is one of the underlying teratogenic mechanisms of medical drugs. Folate is indirectly involved in OS because of its role in the methylation steps in the detoxification of xenobiotics and in the repair of OS-induced DNA damage. Our study was to explore the

  17. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi

    2012-01-01

    Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and

  18. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  19. Oxidative stress induced inflammation initiates functional decline of tear production.

    Directory of Open Access Journals (Sweden)

    Yuichi Uchino

    Full Text Available Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1 using a modified tetracycline system (Tet-On/Off system. This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b(560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC in humans. The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease.

  20. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  1. Interferon-gamma regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, Carmen; Penkowa, Milena; Sáez-Torres, Irene

    2002-01-01

    disease eliciting secretion of proinflammatory cytokines like IFN-gamma or TNF-alpha, and it has been suggested that cytokine-induced oxidative stress could have a role in EAE neuropathology. However, the individual roles of these and other cytokines in the pathogenesis of the disease are still uncertain....... Here we analyze the role of IFN-gamma during EAE by using both IFN-gamma receptor-knockout (IFN-gamma R(-/-)) and wild-type mice, both strains immunized with peptide 40-55 from rat myelin oligodendrocyte glycoprotein. The levels of oxidative stress were determined through the analysis...... of immunoreactivity for inducible NO synthase, nitrotyrosine, and malondialdehyde, as well as through the expression of the tissue-protective antioxidant factors metallothionein I+II (MT-I+II). We also examined the number of cells undergoing apoptosis as judged by using the TUNEL technique. The levels of oxidative...

  2. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants.

    Science.gov (United States)

    Lee, Seung-Yup; Lee, Soo-Jung; Han, Changsu; Patkar, Ashwin A; Masand, Prakash S; Pae, Chi-Un

    2013-10-01

    The brain is an organ predisposed to oxidative/nitrosative stress. This is especially true in the case of aging as well as several neurodegenerative diseases. Under such circumstances, a decline in the normal antioxidant defense mechanisms leads to an increase in the vulnerability of the brain to the deleterious effects of oxidative damage. Highly reactive oxygen/nitrogen species damage lipids, proteins, and mitochondrial and neuronal genes. Unless antioxidant defenses react appropriately to damage inflicted by radicals, neurons may experience microalteration, microdysfunction, and degeneration. We reviewed how oxidative and nitrosative stresses contribute to the pathogenesis of depressive disorders and reviewed the clinical implications of various antioxidants as future targets for antidepressant treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Experimental Hepatic Carcinogenesis: Oxidative Stress and Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Velid Unsal

    2017-08-01

    Full Text Available Hepatocellular carcinoma is one of the most common cancers in the world, and it is influenced by agents such as DEN, 2-AAF, phenobarbital, alcohol, aflatoxin B1 metabolite or hepatitis viruses (B and C. Oxidative stress is becoming recognized as a key factor in the progression of hepatocarcinogenesis. Reactive oxygen species can play a leading role in initiation and promotion of hepatic carcinogenesis. The metabolites of DEN Diethylnitrosamine (DEN mediate the binding of tumour promoters by covalently binding to the DNA with one or two oxidation-providing electrons. 2-AAF is the inducer of DEN, and it is involved in tumour formation in the bladder and liver. Reactive Oxygen species (ROS; carbohydrates, lipids, DNA and enzymes, such as affect all important structures. Additionally, an excessive amount of ROS is highly toxic to cells. Antioxidants are protects against ROS, toxic substances, carcinogens. This review focuses on the literature on studies of Hepatic Carcinogenesis, oxidative stress and antioxidant therapy.

  4. Marine Carotenoids against Oxidative Stress: Effects on Human Health.

    Science.gov (United States)

    Gammone, Maria Alessandra; Riccioni, Graziano; D'Orazio, Nicolantonio

    2015-09-30

    Carotenoids are lipid-soluble pigments that are produced in some plants, algae, fungi, and bacterial species, which accounts for their orange and yellow hues. Carotenoids are powerful antioxidants thanks to their ability to quench singlet oxygen, to be oxidized, to be isomerized, and to scavenge free radicals, which plays a crucial role in the etiology of several diseases. Unusual marine environments are associated with a great chemical diversity, resulting in novel bioactive molecules. Thus, marine organisms may represent an important source of novel biologically active substances for the development of therapeutics. In this respect, various novel marine carotenoids have recently been isolated from marine organisms and displayed several utilizations as nutraceuticals and pharmaceuticals. Marine carotenoids (astaxanthin, fucoxanthin, β-carotene, lutein but also the rare siphonaxanthin, sioxanthin, and myxol) have recently shown antioxidant properties in reducing oxidative stress markers. This review aims to describe the role of marine carotenoids against oxidative stress and their potential applications in preventing and treating inflammatory diseases.

  5. The Role of Oxidative Stress in Aging and Dementia

    Directory of Open Access Journals (Sweden)

    Joana Teixeira

    2014-12-01

    Full Text Available Introduction: Biologic aging is a process, and oxidative stress theory, which is one of the most accepted biological theories for aging, states that oxidative stress causes cumulative damage to mitochondrial DNA resulting in cellular senescence. Dementia is a neurodegenerative disorder whose major risk factor is aging. Although the exact neuronal lesion mechanisms underlying neurodegenerative disorders, including dementia, are not yet known, most recent studies suggest oxidative stress and mitochondrial dynamics’ role in the process.Objective: Literature review on the role of oxidative stress’ role in aging and dementia.Methods: Literature review of selected arti-cles and books deemed relevant by the authors, supplemented by Medline/Pubmed database search using combinations of the following key-words: “oxidative stress”, “de-mentia”, “aging” and “pathogenesis”, published between 1950 and 2013. References of the selected articles and books were also considered.Results: In the last five years new research has been undertaken that enlightens the relation between oxidative stress and aging. One of the considered hypotheses states that during aging, the homeostatic regulation of biogenesis, dynamics and autophagic turnover of mitochondria disturbs their functioning, resulting in cellular senescence. Consequently, the oxidative burden may reach a critical threshold above which apoptosis is triggered, leading to irreversible mitochondrial derangement and cellular death. Although the exact neuronal lesion mechanisms underlying dementias are not known, multiple studies have consistently found increased oxidative damage in brain of patients with Alzheimer disease and recent data suggests involvement of mitochondrial dynamics in dementia processes, such as in aging.Conclusions: Most recent studies suggest the role of oxidative stress and mitochondrial dynamics’ in aging and dementia, either directly or

  6. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial.

    Directory of Open Access Journals (Sweden)

    Norma Amador-Licona

    Full Text Available HIV-seropositive patients show high incidence of coronary heart disease and oxidative stress has been described as relevant key in atherosclerosis development. The aim of this study was to assess the effect of omega 3 fatty acids on different markers of oxidative stress in HIV-seropositive patients. We performed a randomized parallel controlled clinical trial in The Instituto Mexicano del Seguro Social, a public health hospital. 70 HIV-seropositive patients aged 20 to 55 on clinical score A1, A2, B1 or B2 receiving highly active antiretroviral therapy (HAART were studied. They were randomly assigned to receive omega 3 fatty acids 2.4 g (Zonelabs, Marblehead MA or placebo for 6 months. At baseline and at the end of the study, anthropometric measurements, lipid profile, glucose and stress oxidative levels [nitric oxide catabolites, lipoperoxides (malondialdehyde plus 4-hydroxialkenals, and glutathione] were evaluated. Principal HAART therapy was EFV/TDF/FTC (55% and AZT/3TC/EFV (15% without difference between groups. Treatment with omega 3 fatty acids as compared with placebo decreased triglycerides (-0.32 vs. 0.54 mmol/L; p = 0.04, but oxidative stress markers were not different between groups.

  7. The divergence between the virus and cellular oxidative stress as separate environmental agents that trigger autoimmunity originates from their different procedural mechanisms of activating the same molecular entity: the transcription factor NF-kappa B

    Directory of Open Access Journals (Sweden)

    Norbert O. Temajo

    2017-07-01

    Full Text Available To happen, autoimmunity in man requires triggering by environmental factors: the viruses and cellular stress, in genetically primed individuals. The viruses and stress are operatives in this scene as stimuli for the activation of the transcription factor (TF, NF-ΚB. NF-ΚB is unusually activated: the viral activation occurs via serine residues-phosphorylation by IKKβ and IKKε, while the activation by oxidative stress occurs via tyrosine phosphorylation of IΚBα. The phosphorylation of particular amino acid residues of a given protein molecule modulates that protein’s polymorphic conformations, appropriately. For a TF, a given conformation influences its choice of cognate DNA sequence recognition as well as its interactions with neighboring molecules. The TF NF-ΚB performs a battery of regulatory functions. Because it is variously phosphorylated as seen above this implies that NF-ΚB is capable of assuming a multitude of polymorphic conformations that we refer to as “derivative isoforms”. Thus the virus activation of NF-ΚB occurring by phosphorylation at serines S536 and S468 is observed to generate the isoforms with the potential to activate the transcription of viral latency genes, hereby installing a latent infection. But oxidative stress activation of NF-ΚB occurs via phosphorylation of Tyr42 of IΚBα and this yields isoforms that activate the transcription of replication and transcription activator (RTA, the master lytic switch, which thereby abrogates the latency. The steps involved are that the stress-activated NF-ΚB and the viral miRNAs conjoin in a regulatory circuitry identified as feedback and feed-forward network motifs that co-accomplish the switching on of RTA which in turn activates the transcription of the immediate early genes BZLF1 and BRLF1. These two latter genes together mobilize the expression of the set of lytic genes, resulting in a lytic cascade and consequentially set in trend the viral journey to the

  8. Asymmetrical cross-talk between the endoplasmic reticulum stress and oxidative stress caused by dextrose.

    Science.gov (United States)

    Mooradian, Arshag D; Onstead-Haas, Luisa; Haas, Michael J

    2016-01-01

    Oxidative and endoplasmic reticulum (ER) stresses are implicated in premature cardiovascular disease in people with diabetes. The aim of the present study was to characterize the nature of the interplay between the oxidative and ER stresses to facilitate the development of therapeutic agents that can ameliorate these stresses. Human coronary artery endothelial cells were treated with varying concentrations of dextrose in the presence or absence of three antioxidants (alpha tocopherol, ascorbate and ebselen) and two ER stress modifiers (ERSMs) (4-phenylbutyrate and taurodeoxycholic acid). ER stress was measured using the placental alkaline phosphatase assay and superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence. The SO generation was increased with increasing concentrations of dextrose. The ER stress was increased with both low (0 and 2.75 mM) and high (13.75 and 27.5 mM) concentrations of dextrose. The antioxidants inhibited the dextrose induced SO production while in high concentrations they aggravated ER stress. The ERSM reduced ER stress and potentiated the efficacy of the three antioxidants. Tunicamycin-induced ER stress was not associated with increased SO generation. Time course experiments with a high concentration of dextrose or by overexpressing glucose transporter one in endothelial cells revealed that dextrose induced SO generation undergoes adaptive down regulation within 2 h while the ER stress is sustained throughout 72 h of observation. The nature of the cross talk between oxidative stress and ER stress induced by dextrose may explain the failure of antioxidant therapy in reducing diabetes complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The effects of anesthetic agents on oxidative stress

    Science.gov (United States)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  10. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  11. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    Science.gov (United States)

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  12. Short overview on metabolomics approach to study pathophysiology of oxidative stress in cancer

    Directory of Open Access Journals (Sweden)

    Luka Andrisic

    2018-04-01

    Full Text Available Association of oxidative stress with carcinogenesis is well known, but not understood well, as is pathophysiology of oxidative stress generated during different types of anti-cancer treatments. Moreover, recent findings indicate that cancer associated lipid peroxidation might eventually help defending adjacent nonmalignant cells from cancer invasion. Therefore, untargeted metabolomics studies designed for advanced translational and clinical studies are needed to understand the existing paradoxes in oncology, including those related to controversial usage of antioxidants aiming to prevent or treat cancer. In this short review we have tried to put emphasis on the importance of pathophysiology of oxidative stress and lipid peroxidation in cancer development in relation to metabolic adaptation of particular types of cancer allowing us to conclude that adaptation to oxidative stress is one of the main driving forces of cancer pathophysiology. With the help of metabolomics many novel findings are being achieved thus encouraging further scientific breakthroughs. Combined with targeted qualitative and quantitative methods, especially immunochemistry, further research might reveal bio-signatures of individual patients and respective malignant diseases, leading to individualized treatment approach, according to the concepts of modern integrative medicine. Keywords: Carcinogenesis, Cancer, Oxidative stress, Lipid peroxidation, 4-hydroxynonenal, Glutathione, Metabolomics, Immunochemistry, Biomarkers, Omics science

  13. Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity.

    Science.gov (United States)

    Li, Chunyan; Feng, Feihu; Xiong, Xiaoling; Li, Rui; Chen, Ning

    2017-04-01

    The increased oxidative stress is usually observed in obese population, but the control of body weight by calorie restriction and/or exercise training can ameliorate oxidative stress. In order to evaluate oxidative stress in response to exercise and dietary restriction in obese adolescents, a total of 20 obese volunteers were enrolled in a 4-week intervention program including exercise training and dietary restriction. Body compositions and blood samples were analysed before and after 4-week intervention, and biomarkers associated with oxidative stress were examined. After 4-week exercise training coupled with dietary restriction, physical composition parameters including body mass, body mass index (BMI), lean body mass, body fat mass and fat mass ratio had obvious reduction by 12.43%, 13.51%, 5.83%, 25.05% and 14.52%, respectively. In addition, the activities of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) revealed a remarkable enhancement. On the other hand, protein carbonyls (PC) exhibited an obvious reduction. Moreover, total thiols and nitrites with respect to baseline revealed a reducing trend although no significant difference was observed. Therefore, the 4-week exercise intervention coupled with dietary restriction is benefit for the loss of body weight and the mitigation of oxidative stress in obese population so that it can be a recommendable intervention prescription for the loss of body weight.

  14. Involvement of oxidative stress in SAMP10 mice with age-related neurodegeneration.

    Science.gov (United States)

    Wang, Jun; Lei, Hongtao; Hou, Jincai; Liu, Jianxun

    2015-05-01

    Age-related changes in the brain tissue are reflected in many aspects. We sought to determine the morphology, Nissl bodies, behavioral appearance and oxidative stress in the brain using SAMP10 mice, a substrain of the senescence-accelerated mouse. SAMP10 mice groups divided by different ages (3, 5, 8 and 14 months) were compared with those of control groups with the above corresponding ages. Cortical thickness, Nissl bodies, behavioral appearance and oxidative stress were evaluated through image software, thionine staining, step-down test and colorimetry, respectively. The weight and cortical thickness of the brain in SAMP10 mice significantly reduced from 8 months of age. The results showed that the number of Nissl bodies decreased or Nissl bodies shrank with dark staining in histology. The same result appeared in a step-down test. As the SAMP10 mice grew older, the oxidative stress-related markers superoxide dismutase decreased and malondialdehyde increased after 8 months. Glutathione peroxidase activities showed no age-related changes. The changes of brain morphology and productions of oxidative stress in the brain tissue might contribute to the behavioral abnormality. Deceleration of age-related production of oxidative stress might be expected to be a potent strategy for anti-aging interventions.

  15. Impaired Mitochondrial Respiratory Functions and Oxidative Stress in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Subbuswamy K. Prabu

    2011-05-01

    Full Text Available We have previously shown a tissue-specific increase in oxidative stress in the early stages of streptozotocin (STZ-induced diabetic rats. In this study, we investigated oxidative stress-related long-term complications and mitochondrial dysfunctions in the different tissues of STZ-induced diabetic rats (>15 mM blood glucose for 8 weeks. These animals showed a persistent increase in reactive oxygen and nitrogen species (ROS and RNS, respectively production. Oxidative protein carbonylation was also increased with the maximum effect observed in the pancreas of diabetic rats. The activities of mitochondrial respiratory enzymes ubiquinol: cytochrome c oxidoreductase (Complex III and cytochrome c oxidase (Complex IV were significantly decreased while that of NADH:ubiquinone oxidoreductase (Complex I and succinate:ubiquinone oxidoreductase (Complex II were moderately increased in diabetic rats, which was confirmed by the increased expression of the 70 kDa Complex II sub-unit. Mitochondrial matrix aconitase, a ROS sensitive enzyme, was markedly inhibited in the diabetic rat tissues. Increased expression of oxidative stress marker proteins Hsp-70 and HO-1 was also observed along with increased expression of nitric oxide synthase. These results suggest that mitochondrial respiratory complexes may play a critical role in ROS/RNS homeostasis and oxidative stress related changes in type 1 diabetes and may have implications in the etiology of diabetes and its complications.

  16. Association Between Selenium and Malondialdehyde as an Efficient Biomarker of Oxidative Stress in Infantile Cardiac Surgery.

    Science.gov (United States)

    de Oliveira Ulbrecht, Marlice Oliveira; Gonçalves, Daniel Araujo; Zanoni, Lourdes Zélia Garcia; do Nascimento, Valter Aragão

    2018-05-12

    The present work describes a method to quantify the level of oxidative stress in infantile cardiac surgery. Fifteen patients, 6 girls and 9 boys, aged between 3 months and 16 years were divided into three groups. The first group sought to quantify the oxidative stress from differing concentrations of selenium. The second group used malondialdehyde as an indicator of oxidative stress. Finally, the third group quantified oxidative stress by normalizing the selenium concentration via malondialdehyde. Blood aliquots of 1.50 ml, drawn from the radial artery, were collected and centrifuged for quantification of Se and MDA in plasma. The statistical method ANOVA was used with a 95% confidence interval to indicate significant statistical differences between the post- and pre-operative stage for each group. The concentrations of malondialdehyde were measured by using UV-Vis following the thiobarbituric acid reaction method. For quantification of selenium, the samples were submitted to assisted microwave digestion and measured by ICP OES. In the first two groups, it was not possible to affirm that selenium and malondialdehyde could be biomarkers of oxidative stress, so a statistic test (ANOVA) was performed. However, the selenium/malondialdehyde ratios in the pre-operative and post-operative stage were 2.10 ± 0.70 and 3.20 ± 0.40, respectively. The ANOVA test confirmed a statistically significant difference between the pre- and post-operative stages with p value = 0.004. Here, the ratio of selenium concentration by malondialdehyde was confirmed to be an effective parameter for demonstration and quantification of oxidative stress activity at the post-operative stage.

  17. Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy.

    Science.gov (United States)

    Liu, Dexiang; Ke, Zunji; Luo, Jia

    2017-09-01

    Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.

  18. Fibroblast growth factor 21 and its novel association with oxidative stress

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Gómez-Sámano

    2017-04-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is an endocrine-member of the FGF family. It is synthesized mainly in the liver, but it is also expressed in adipose tissue, skeletal muscle, and many other organs. It has a key role in glucose and lipid metabolism, as well as in energy balance. FGF21 concentration in plasma is increased in patients with obesity, insulin resistance, and metabolic syndrome. Recent findings suggest that such increment protects tissue from an increased oxidative stress environment. Different types of physical stress, such as strenuous exercising, lactation, diabetic nephropathy, cardiovascular disease, and critical illnesses, also increase FGF21 circulating concentration. FGF21 is now considered a stress-responsive hormone in humans. The discovery of an essential response element in the FGF21 gene, for the activating transcription factor 4 (ATF4, involved in the regulation of oxidative stress, and its relation with genes such as NRF2, TBP-2, UCP3, SOD2, ERK, and p38, places FGF21 as a key regulator of the oxidative stress cell response. Its role in chronic diseases and its involvement in the treatment and follow-up of these diseases has been recently the target of new studies. The diminished oxidative stress through FGF21 pathways observed with anti-diabetic therapy is another clue of the new insights of this hormone.

  19. Oxidative Stress Function in Women over 40 Years of Age, Considering Their Lifestyle.

    Science.gov (United States)

    Gonçalves Mota, Maria Paula; Santos, Zirlene; Soares, Jorge; Pereira, Ana; Fonseca, Sandra; Peixoto, Francisco; Gaivão, Isabel; Oliveira, Maria

    2017-01-01

    Aging is dependent on biological processes that determine the aging of the organism at the cellular level. The Oxidative Stress Theory of Aging might explain some of the age-related changes in cell macromolecules. Moreover, exposome and lifestyle may also induce changes in cell damage induced by oxidative stress. The aim of the present study was to analyze the related redox changes in lymphocyte function of healthy women over 40 years old. Three groups: younger (YG: 40-49 years), middle aged (MAG: 50-59 years), and older (OG: ≥60 years) were evaluated on anthropometric variables, blood pressure, cardiovascular fitness, lifestyle habits, perceived stress, DNA damage, malondialdehyde, catalase activity, and total antioxidant capacity. Physical activity and cardiovascular fitness were significantly higher in YG and MAG as compared to the OG. Systolic blood pressure increased significantly with group age. Frequency and total amount of alcohol intake were lower in the OG and higher in the MAG. No significant differences were observed between the three groups in oxidative stress parameters. Only alcohol consumption was associated with the higher DNA FPG-sensitive sites, and only in the YG ( p  stress parameters measured in the healthy women over the age of 40 who took part in the study. Conscious lifestyle behaviors (decrease in alcohol and smoking habits) could have impaired the expected age-related oxidative stress increase.

  20. Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity in human cancer cells and catalase-silencing sensitizes to oxidative stress

    Directory of Open Access Journals (Sweden)

    Klingelhoeffer Christoph

    2012-05-01

    Full Text Available Abstract Background Ascorbic acid demonstrates a cytotoxic effect by generating hydrogen peroxide, a reactive oxygen species (ROS involved in oxidative cell stress. A panel of eleven human cancer cell lines, glioblastoma and carcinoma, were exposed to serial dilutions of ascorbic acid (5-100 mmol/L. The purpose of this study was to analyse the impact of catalase, an important hydrogen peroxide-detoxifying enzyme, on the resistance of cancer cells to ascorbic acid mediated oxidative stress. Methods Effective concentration (EC50 values, which indicate the concentration of ascorbic acid that reduced the number of viable cells by 50%, were detected with the crystal violet assay. The level of intracellular catalase protein and enzyme activity was determined. Expression of catalase was silenced by catalase-specific short hairpin RNA (sh-RNA in BT-20 breast carcinoma cells. Oxidative cell stress induced apoptosis was measured by a caspase luminescent assay. Results The tested human cancer cell lines demonstrated obvious differences in their resistance to ascorbic acid mediated oxidative cell stress. Forty-five percent of the cell lines had an EC50 > 20 mmol/L and fifty-five percent had an EC50 50 of 2.6–5.5 mmol/L, glioblastoma cells were the most susceptible cancer cell lines analysed in this study. A correlation between catalase activity and the susceptibility to ascorbic acid was observed. To study the possible protective role of catalase on the resistance of cancer cells to oxidative cell stress, the expression of catalase in the breast carcinoma cell line BT-20, which cells were highly resistant to the exposure to ascorbic acid (EC50: 94,9 mmol/L, was silenced with specific sh-RNA. The effect was that catalase-silenced BT-20 cells (BT-20 KD-CAT became more susceptible to high concentrations of ascorbic acid (50 and 100 mmol/L. Conclusions Fifty-five percent of the human cancer cell lines tested were unable to protect themselves

  1. Oxidative Stress Associated with Chilling Injury in Immature Fruit: Postharvest Technological and Biotechnological Solutions.

    Science.gov (United States)

    Valenzuela, Juan Luis; Manzano, Susana; Palma, Francisco; Carvajal, Fátima; Garrido, Dolores; Jamilena, Manuel

    2017-07-08

    Immature, vegetable-like fruits are produced by crops of great economic importance, including cucumbers, zucchini, eggplants and bell peppers, among others. Because of their high respiration rates, associated with high rates of dehydration and metabolism, and their susceptibility to chilling injury (CI), vegetable fruits are highly perishable commodities, requiring particular storage conditions to avoid postharvest losses. This review focuses on the oxidative stress that affects the postharvest quality of vegetable fruits under chilling storage. We define the physiological and biochemical factors that are associated with the oxidative stress and the development of CI symptoms in these commodities, and discuss the different physical, chemical and biotechnological approaches that have been proposed to reduce oxidative stress while enhancing the chilling tolerance of vegetable fruits.

  2. Oxidative stress in tumor microenvironment——Its role in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Armando ROJAS; Raúl SILVA; Héctor FIGUEROA; Miguel A MORALES

    2008-01-01

    The tumor angiogenesis process is believed to be dependent on an "angiogenic switch" formed by a cascade of biologic events as a consequence of the "cross-talk" between tumor cells and several components of local microenvironment including endothelial cells, macrophages, mast cells and stromal components. Oxidative stress represents an important stimulus that widely contributes to this angiogenic switch, which is particularly relevant in lungs,where oxidative stress is originated from different sources including the incomplete reduction of oxygen during respiration,exposure to hypoxia/reoxygenation, stimulated resident or chemoattracted immune ceils to lung tissues, as well as by a variety of chemicals compounds. In the present review we highlight the role of oxidative stress in tumor angiogenesis as a key signal linked to other relevant actors in this complex process.

  3. Understanding Oxidative Stress in Aedes during Chikungunya and Dengue Virus Infections Using Integromics Analysis

    Directory of Open Access Journals (Sweden)

    Jatin Shrinet

    2018-06-01

    Full Text Available Arboviral infection causes dysregulation of cascade of events involving numerous biomolecules affecting fitness of mosquito to combat virus. In response of the viral infection mosquito’s defense mechanism get initiated. Oxidative stress is among the first host responses triggered by the vector. Significant number of information is available showing changes in the transcripts and/or proteins upon Chikungunya virus and Dengue virus mono-infections and as co-infections. In the present study, we collected different -omics data available in the public database along with the data generated in our laboratory related to mono-infections or co-infections of these viruses. We analyzed the data and classified them into their respective pathways to study the role of oxidative stress in combating arboviral infection in Aedes mosquito. The analysis revealed that the oxidative stress related pathways functions in harmonized manner.

  4. Psychological stress during exercise: immunoendocrine and oxidative responses.

    Science.gov (United States)

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  5. Oxidised fish oil does not influence established markers of oxidative stress in healthy human subjects

    DEFF Research Database (Denmark)

    Ottestad, Inger; Vogt, Gjermund; Retterstøl, Kjetil

    2012-01-01

    markers of oxidative stress, lipid peroxidation and inflammation, and the level of plasma n-3 FA after intake of oxidised fish oil. In a double-blinded randomised controlled study, healthy subjects (aged 18–50 years, n 54) were assigned into one of three groups receiving capsules containing either 8 g...... difference was observed between the fish oil groups. No changes in a variety of in vivo markers of oxidative stress, lipid peroxidation or inflammation were observed after daily intake of oxidised fish oil for 3 or 7 weeks, indicating that intake of oxidised fish oil may not have unfavourable short......-term effects in healthy human subjects....

  6. Bactericidal Antibiotics Do Not Appear To Cause Oxidative Stress in Listeria monocytogenes

    DEFF Research Database (Denmark)

    Feld, Louise; Knudsen, Gitte Maegaard; Gram, Lone

    2012-01-01

    Oxidative stress can be an important contributor to the lethal effect of bactericidal antibiotics in some bacteria, such as Escherichia coli and Staphylococcus aureus. Thus, despite the different target-specific actions of bactericidal antibiotics, they have a common mechanism leading to bacterial...... to cause oxidative stress in L. monocytogenes and propose that this is caused by its noncyclic tricarboxylic acid (TCA) pathway. Hence, in this noncyclic metabolism, there is a decoupling between the antibiotic-mediated cellular requirement for NADH and the induction of TCA enzyme activity, which...

  7. Experimental and Clinical Studies of Oxidative Stress in Pre-Eclampsia

    OpenAIRE

    Nash, Peppi

    2007-01-01

    Impaired placentation and oxidative stress are proposed to play major roles in the pathogenesis of pre-eclampsia (PE). It has recently been pointed out that PE might be more than one disease and may have several different pathogeneses. This thesis describes a new animal model for PE and examines the role of oxidative stress in early respective late onset PE. The effects of Suramin injections on day 10 and 11 of pregnancy were investigated in normal and diabetic rats of two strains (U and H), ...

  8. The effects of propolis extract on ovarian tissue and oxidative stress in rats with maternal separation stress

    Directory of Open Access Journals (Sweden)

    Atefeh Arabameri

    2017-09-01

    Full Text Available Abstract Background: Stress in infancy has dramatic effects on different systems, including the nervous system, endocrine, immune, reproductive and etc. Objective: The purpose of this study was to investigate the effects of extract of Iranian propolis (EIP on ovarian tissue and oxidative stress in rats with maternal separation stress. Materials and Methods: 48 immature female rats were divided randomly into six groups. 1 Control group, 2 Control group+saline, 3 Stress group, includes infants that were separated from their mothers 6 hr/day, the 4th, 5th and 6th groups consisted of infants who in addition to daily stress received 50, 100 and 200 mg/kg of EIP, respectively. Then serum corticosterone, 17-beta-estradiol, malondialdehyde, total superoxide dismutase, glutathione peroxidase and ferric reducing antioxidant power levels were measured. The ovarian sections were stained by H&E, PAS, and TUNEL methods and were studied with optical microscopy. Results: Stress increased the blood serum corticosterone levels and 17-beta-estradiol reduced significantly (p<0.001 and EIP prevented from this changes (p<0.01. EIP significantly increased the number of ovarian follicles, oocytes and oocytes diameter in neonatal rat following stress (p<0.01. EIP also significantly decreased the number of atretic follicles, TUNEL+granulosa cells, malondialdehyde levels and increased ferric reducing antioxidant power, total superoxide dismutase and glutathione peroxidase serum levels in neonatal rats following stress. The dose of 200 mg/kg EIP was more effective. Conclusion: This Study showed that the Iranian Propolis significantly could prevent oxidative stress and histopathological changes in the ovary of the neonatal rat the following stress.

  9. Glutathione--linking cell proliferation to oxidative stress.

    Science.gov (United States)

    Diaz-Vivancos, Pedro; de Simone, Ambra; Kiddle, Guy; Foyer, Christine H

    2015-12-01

    The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. The nuclear GSH pool provides an appropriate redox environment

  10. Salinity-dependent nickel accumulation and oxidative stress responses in the euryhaline killifish (Fundulus heteroclitus).

    Science.gov (United States)

    Blewett, Tamzin A; Wood, Chris M

    2015-02-01

    The mechanisms of nickel (Ni) toxicity in marine fish remain unclear, although evidence from freshwater (FW) fish suggests that Ni can act as a pro-oxidant. This study investigated the oxidative stress effects of Ni on the euryhaline killifish (Fundulus heteroclitus) as a function of salinity. Killifish were exposed to sublethal levels (5, 10, and 20 mg L(-1)) of waterborne Ni for 96 h in FW (0 ppt) and 100 % saltwater (SW) (35 ppt). In general, SW was protective against both Ni accumulation and indicators of oxidative stress [protein carbonyl formation and catalase (CAT) activity]. This effect was most pronounced at the highest Ni exposure level. For example, FW intestine showed increased Ni accumulation relative to SW intestine at 20 mg Ni L(-1), and this was accompanied by significantly greater protein carbonylation and CAT activity in this tissue. There were exceptions, however, in that although liver of FW killifish at the highest exposure concentration showed greater Ni accumulation relative to SW liver, levels of CAT activity were greatly decreased. This may relate to tissue- and salinity-specific differences in oxidative stress responses. The results of the present study suggest (1) that there was Ni-induced oxidative stress in killifish, (2) that the effects of salinity depend on differences in the physiology of the fish in FW versus SW, and (3) that increased levels of cations (sodium, calcium, potassium, and magnesium) and anions (SO4 and Cl) in SW are likely protective against Ni accumulation in tissues exposed to the aquatic environment.

  11. Drug-induced oxidative stress in rat liver from a toxicogenomics perspective

    International Nuclear Information System (INIS)

    McMillian, Michael; Nie, Alex; Parker, J. Brandon; Leone, Angelique; Kemmerer, Michael; Bryant, Stewart; Herlich, Judy; Yieh, Lynn; Bittner, Anton; Liu, Xuejun; Wan, Jackson; Johnson, Mark D.; Lord, Peter

    2005-01-01

    Macrophage activators (MA), peroxisome proliferators (PP), and oxidative stressors/reactive metabolites (OS/RM) all produce oxidative stress and hepatotoxicity in rats. However, these three classes of hepatotoxicants give three distinct gene transcriptional profiles on cDNA microarrays, an indication that rat hepatocytes respond/adapt quite differently to these three classes of oxidative stressors. The differential gene responses largely reflect differential activation of transcription factors: MA activate Stat-3 and NFkB, PP activate PPARa, and OS/RM activate Nrf2. We have used gene signature profiles for each of these three classes of hepatotoxicants to categorize over 100 paradigm (and 50+ in-house proprietary) compounds as to their oxidative stress potential in rat liver. In addition to a role for microarrays in predictive toxicology, analyses of small subsets of these signature profiles, genes within a specific pathway, or even single genes often provide important insights into possible mechanisms involved in the toxicities of these compounds

  12. Probiotics enhance pancreatic glutathione biosynthesis and reduce oxidative stress in experimental acute pancreatitis

    NARCIS (Netherlands)

    Lutgendorff, Femke; Trulsson, Lena M.; van Minnen, L. Paul; Rijkers, Ger T.; Timmerman, Harro M.; Franzen, Lennart E.; Gooszen, Hein G.; Akkermans, Louis M. A.; Soderholm, Johan D.; Sandstrom, Per A.

    2008-01-01

    Factors determining severity of acute pancreatitis (AP) are poorly understood. Oxidative stress causes acinar cell injury and contributes to the severity, whereas prophylactic probiotics ameliorate experimental pancreatitis. Our objective was to study how probiotics affect oxidative stress,

  13. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    Science.gov (United States)

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  14. Mitochondrial oxidative stress in aortic stiffening with age: the role of smooth muscle cell function.

    Science.gov (United States)

    OBJECTIVE: Age-related aortic stiffness is an independent risk factor for cardiovascular diseases. Although oxidative stress is implicated in aortic stiffness, the underlying molecular mechanisms remain unelucidated. Here, we examined the source of oxidative stress in aging and i...

  15. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  16. Toxicological and pharmacological concerns on oxidative stress and related diseases

    Energy Technology Data Exchange (ETDEWEB)

    Saeidnia, Soodabeh [Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon (Canada); Abdollahi, Mohammad, E-mail: Mohammad@TUMS.Ac.Ir [Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of)

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.

  17. Oxidative stress in resuscitation and in ventilation of newborns.

    Science.gov (United States)

    Gitto, E; Pellegrino, S; D'Arrigo, S; Barberi, I; Reiter, R J

    2009-12-01

    The lungs of newborns are especially prone to oxidative damage induced by both reactive oxygen and reactive nitrogen species. Yet, these infants are often 1) exposed to high oxygen concentrations, 2) have infections or inflammation, 3) have reduced antioxidant defense, and 4) have high free iron levels which enhance toxic radical generation. Oxidative stress has been postulated to be implicated in several newborn conditions with the phrase "oxygen radical diseases of neonatology" having been coined. There is, however, reason to believe that oxidative stress is increased more when resuscitation is performed with pure oxygen compared with ambient air and that the most effective ventilatory strategy is the avoidance of mechanical ventilation with the use of nasopharyngeal continuous positive airway pressure whenever possible. Multiple ventilation strategies have been attempted to reduce injury and improve outcomes in newborn infants. In this review, the authors summarise the scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the various modalities of ventilation.

  18. Toxicological and pharmacological concerns on oxidative stress and related diseases

    International Nuclear Information System (INIS)

    Saeidnia, Soodabeh; Abdollahi, Mohammad

    2013-01-01

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD

  19. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease

    Science.gov (United States)

    Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.

    2018-01-01

    Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698

  20. An update on oxidative stress-mediated organ pathophysiology.

    Science.gov (United States)

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    Science.gov (United States)

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  2. Oxidation and stress corrosion cracking of stainless steels in SCWRs

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Castro, L.; Blazquez, F.

    2008-01-01

    SCWRs are high-temperature, high-pressure, water-cooled reactors that operate above the thermodynamic critical point of water (374 deg C, 22.1 MPa). The SCWR offers many advantages compared to state-of- the-art LWRs including the use of a single phase coolant with high enthalpy, the elimination of components such as steam generators and steam separators and dryers, a low coolant mass inventory resulting in smaller components, and a much higher efficiency ∼ 44% vs. 33% in current LWRs). In these systems high pressure (25 MPa) coolant enters the vessel at 280 deg C which is heated to about 500 deg C and delivered to a power conversion cycle. Supercritical water (SCW) exhibits properties significantly different from those of liquid water below the critical point. Supercritical water acting essentially as a non-polar dense gas with solvation properties approaching those of a low-polarity organic. In this conditions, can dissolve gases like oxygen to complete miscibility. Depending upon what species are present and how much oxygen is present in the solution can becomes a very aggressive oxidising environment. Most of the data on corrosion in supercritical water are from fossil plant or oxidation waste disposal systems. However there is very limited data on corrosion in low conductivity de-aerated SCW and less on stress corrosion cracking behaviour under operating conditions foreseen for SCWR. Candidate materials for structural components are materials for high temperatures and include ferritic-martensitic alloys; oxide dispersion strengthened (ODS) ferritic/martensitic steels and strengthened steels by precipitation and for lower temperatures the austenitic stainless steels, such as 304 and 316, used in the LWR. Low swelling austenitic steels are also of high interest for areas with high dpa and high temperature. A review of the available information on corrosion and stress corrosion behaviour of different types of stainless steels in supercritical water at high

  3. Systemic oxidative stress markers in animal model for depression

    DEFF Research Database (Denmark)

    Bouzinova, Elena; Kravtsova, Violetta; Aalkjær, Christian

    Involvement of oxidative stress (OxS) in development of major depressive disorder has recently become evident, though mechanisms behind this remain elusive. We analyzed therefore OxS pathways in rat Chronic Mild Stress (CMS) model of depression. Rats are exposed to chronic unpredictable mild...... mg/kg/day). Saline injections were done to control the vehicle effect. Escitalopram treated rats were sub-divided into 2 groups: responders and non-responders, according to their hedonic state and compared to non-stressed rats, treated with either saline or Escitalopram. Measurement of total...... glutathione and malondialdehyde (MDA) in lungs, heart, skeletal muscles, liver, saphenous, mesenteric, and tail arteries were used as estimates for OxS. In heart, glutathione was increased in CMS rats in comparison with non-stressed vehicle group. Accordingly, an estimate for free radical activity, MDA...

  4. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress

    International Nuclear Information System (INIS)

    Crobeddu, Bélinda; Aragao-Santiago, Leticia; Bui, Linh-Chi; Boland, Sonja; Baeza Squiban, Armelle

    2017-01-01

    Particulate air pollution being recognized to be responsible for short and long term health effects, regulations for particulate matter with an aerodynamic diameter less than 2.5 (PM 2.5 ) are more and more restrictive. PM 2.5 regulation is based on mass without taking into account PM 2.5 composition that drives toxicity. Measurement of the oxidative potential (OP) of PM could be an additional PM indicator that would encompass the PM components involved in oxidative stress, the main mechanism of PM toxicity. We compared different methods to evaluate the intrinsic oxidative potential of PM 2.5 sampled in Paris and their ability to reflect the oxidative and inflammatory response in bronchial epithelial cells used as relevant target organ cells. The dithiothreitol depletion assay, the antioxidant (ascorbic acid and glutathione) depletion assay (OP AO ), the plasmid scission assay and the dichlorofluorescein (DCFH) oxidation assay used to characterize the OP of PM 2.5 (10–100 μg/mL) provided positive results of different magnitude with all the PM 2.5 samples used with significant correlation with different metals such as Cu and Zn as well as total polyaromatic hydrocarbons and the soluble organic fraction. The OP AO assay showed the best correlation with the production of intracellular reactive oxygen species by NCI-H292 cell line assessed by DCFH oxidation and with the expression of anti-oxidant genes (superoxide dismutase 2, heme-oxygenase-1) as well as the proinflammatory response (Interleukin 6) when exposed from 1 to 10 μg/cm 2 . The OP AO assay appears as the most prone to predict the biological effect driven by PM 2.5 and related to oxidative stress. - Highlights: • 5 Acellular assays were used to compare the intrinsic oxidative potential (OP) of PM. • The amount of ROS generation in bronchial cells is particle dependent. • Particles induce the expression of anti-oxidant and proinflammatory genes. • Biological effects correlates with OP assay

  5. No effect of melatonin on oxidative stress after laparoscopic cholecystectomy: a randomized placebo-controlled trial

    DEFF Research Database (Denmark)

    Kucukakin, B.; Klein, M.; Lykkesfeldt, Jens

    2010-01-01

    melatonin and 21 patients received placebo during surgery. No significant differences were observed between the groups in the oxidative stress variables MDA, TAA, AA and DHA or in the inflammatory variable CRP (repeated-measures ANOVA, P > 0.05 for all variables). Conclusions Administration of 10 mg...

  6. Digestibility of energy and lipids and oxidative stress in nursery pigs fed commercially available lipids

    Science.gov (United States)

    An experiment was conducted to evaluate the impact of lipid source on GE and ether extract (EE) digestibility, oxidative stress, and gut integrity in nursery pigs fed diets containing 10% of soybean oil (SO), choice white grease (CWG), palm oil (PO), or 2 different distillers corn oils (DCO-1 and DC...

  7. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel's ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H 2 O 2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  8. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ricardo Bisquert

    2018-02-01

    Full Text Available Melatonin (Mel is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm. Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments.

  9. Protective Role of Intracellular Melatonin Against Oxidative Stress and UV Radiation in Saccharomyces cerevisiae

    Science.gov (United States)

    Bisquert, Ricardo; Muñiz-Calvo, Sara; Guillamón, José M.

    2018-01-01

    Melatonin (Mel) is considered a potent natural antioxidant molecule given its free-radical scavenging ability. Its origin is traced back to the origin of aerobic life as early defense against oxidative stress and radiation. More complex signaling functions have been attributed to Mel as a result of evolution in different biological kingdoms, which comprise gene expression modulation, enzyme activity, and mitochondrial homeostasis regulation processes, among others. Since Mel production has been recently reported in wine yeast, we tested the protective effect of Mel on Saccharomyces cerevisiae against oxidative stress and UV light. As the optimal conditions for S. cerevisiae to synthesize Mel are still unknown, we developed an intracellular Mel-charging method to test its effect against stresses. To assess Mel’s ability to protect S. cerevisiae from both stresses, we ran growth tests in liquid media and viability assays by colony count after Mel treatment, followed by stress. We also analyzed gene expression by qPCR on a selection of genes involved in stress protection in response to Mel treatment under oxidative stress and UV radiation. The viability in the Mel-treated cells after H2O2 stress was up to 35% greater than for the untreated controls, while stress amelioration reached 40% for UVC light (254 nm). Mel-treated cells showed a significant shortened lag phase compared to the control cells under the stress and normal growth conditions. The gene expression analysis showed that Mel significantly modulated gene expression in the unstressed cells in the exponential growth phase, and also during various stress treatments. PMID:29541065

  10. Oxidative stress markers at birth: Analyses of a neonatal population.

    Science.gov (United States)

    Giuffrè, Mario; Rizzo, Manfredi; Scaturro, Giusy; Pitruzzella, Alessandro; M