WorldWideScience

Sample records for oxidative lung damage

  1. Oxidative DNA damage in lung tissue from patients with COPD is clustered in functionally significant sequences

    Directory of Open Access Journals (Sweden)

    Viktor M Pastukh

    2011-03-01

    Full Text Available Viktor M Pastukh1, Li Zhang2, Mykhaylo V Ruchko1, Olena Gorodnya1, Gina C Bardwell1, Rubin M Tuder2, Mark N Gillespie11Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL, USA; 2Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado at Denver, Aurora, CO, USAAbstract: Lung tissue from COPD patients displays oxidative DNA damage. The present study determined whether oxidative DNA damage was randomly distributed or whether it was localized in specific sequences in either the nuclear or mitochondrial genomes. The DNA damage-specific histone, gamma-H2AX, was detected immunohistochemically in alveolar wall cells in lung tissue from COPD patients but not control subjects. A PCR-based method was used to search for oxidized purine base products in selected 200 bp sequences in promoters and coding regions of the VEGF, TGF-β1, HO-1, Egr1, and β-actin genes while quantitative Southern blot analysis was used to detect oxidative damage to the mitochondrial genome in lung tissue from control subjects and COPD patients. Among the nuclear genes examined, oxidative damage was detected in only 1 sequence in lung tissue from COPD patients: the hypoxic response element (HRE of the VEGF promoter. The content of VEGF mRNA also was reduced in COPD lung tissue. Mitochondrial DNA content was unaltered in COPD lung tissue, but there was a substantial increase in mitochondrial DNA strand breaks and/or abasic sites. These findings show that oxidative DNA damage in COPD lungs is prominent in the HRE of the VEGF promoter and in the mitochondrial genome and raise the intriguing possibility that genome and sequence-specific oxidative DNA damage could contribute to transcriptional dysregulation and cell fate decisions in COPD.Keywords: DNA damage, VEGF hypoxic response element, mtDNA, COPD

  2. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    Directory of Open Access Journals (Sweden)

    N.B.R. Colombo

    2015-01-01

    Full Text Available The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress.

  3. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

    Directory of Open Access Journals (Sweden)

    Samanta Portão de Carlos

    2014-08-01

    Full Text Available OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively] in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group: a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice, the greatest differences (increases in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

  4. Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages

    DEFF Research Database (Denmark)

    Jantzen, Kim; Roursgaard, Martin; Madsen, Claus Desler

    2012-01-01

    Studies in mono-culture of cells have shown that diesel exhaust particles (DEPs) increase the production of reactive oxygen species (ROS) and oxidative stress-related damage to DNA. However, the level of particle-generated genotoxicity may depend on interplay between different cell types, e.g. lung...... treatment with standard reference DEPs, SRM2975 and SRM1650b. The exposure to DEPs did not affect the colony-forming ability of A549 cells in co-culture with THP-1a cells. The DEPs generated DNA strand breaks and oxidatively damaged DNA, measured using the alkaline comet assay as formamidopyrimidine...... relationship between levels of respiration and ROS production. In conclusion, exposure of mono-cultured cells to DEPs generated oxidative stress to DNA, whereas co-cultures with macrophages had lower levels of oxidatively damaged DNA than A549 epithelial cells....

  5. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice

    Directory of Open Access Journals (Sweden)

    Abderrahim Nemmar

    2017-11-01

    Full Text Available It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2 in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.

  6. MTH1 deficiency selectively increases non-cytotoxic oxidative DNA damage in lung cancer cells: more bad news than good?

    Science.gov (United States)

    Abbas, Hussein H K; Alhamoudi, Kheloud M H; Evans, Mark D; Jones, George D D; Foster, Steven S

    2018-04-16

    Targeted therapies are based on exploiting cancer-cell-specific genetic features or phenotypic traits to selectively kill cancer cells while leaving normal cells unaffected. Oxidative stress is a cancer hallmark phenotype. Given that free nucleotide pools are particularly vulnerable to oxidation, the nucleotide pool sanitising enzyme, MTH1, is potentially conditionally essential in cancer cells. However, findings from previous MTH1 studies have been contradictory, meaning the relevance of MTH1 in cancer is still to be determined. Here we ascertained the role of MTH1 specifically in lung cancer cell maintenance, and the potential of MTH1 inhibition as a targeted therapy strategy to improve lung cancer treatments. Using siRNA-mediated knockdown or small-molecule inhibition, we tested the genotoxic and cytotoxic effects of MTH1 deficiency on H23 (p53-mutated), H522 (p53-mutated) and A549 (wildtype p53) non-small cell lung cancer cell lines relative to normal MRC-5 lung fibroblasts. We also assessed if MTH1 inhibition augments current therapies. MTH1 knockdown increased levels of oxidatively damaged DNA and DNA damage signaling alterations in all lung cancer cell lines but not normal fibroblasts, despite no detectable differences in reactive oxygen species levels between any cell lines. Furthermore, MTH1 knockdown reduced H23 cell proliferation. However, unexpectedly, it did not induce apoptosis in any cell line or enhance the effects of gemcitabine, cisplatin or radiation in combination treatments. Contrastingly, TH287 and TH588 MTH1 inhibitors induced apoptosis in H23 and H522 cells, but only increased oxidative DNA damage levels in H23, indicating that they kill cells independently of DNA oxidation and seemingly via MTH1-distinct mechanisms. MTH1 has a NSCLC-specific p53-independent role for suppressing DNA oxidation and genomic instability, though surprisingly the basis of this may not be reactive-oxygen-species-associated oxidative stress. Despite this, overall

  7. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    International Nuclear Information System (INIS)

    Li Hui; Berlo, Damien van; Shi Tingming; Speit, Guenter; Knaapen, Ad M.; Borm, Paul J.A.; Albrecht, Catrin; Schins, Roel P.F.

    2008-01-01

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1β) and tumour necrosis factor-alpha (TNFα). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure

  8. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    OpenAIRE

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Moller, Lennart

    2005-01-01

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyg...

  9. Evaluation of oxidative response and tissular damage in rat lungs exposed to silica-coated gold nanoparticles under static magnetic fields

    Directory of Open Access Journals (Sweden)

    Ferchichi S

    2016-06-01

    Full Text Available Soumaya Ferchichi,1 Hamdi Trabelsi,1 Inès Azzouz,1 Amel Hanini,2 Ahmed Rejeb,3 Olfa Tebourbi,1 Mohsen Sakly,1 Hafedh Abdelmelek1 1Laboratory of Integrative Physiology, Faculty Of Sciences of Bizerte, 2Laboratory of Vascular Pathology, Carthage University, Carthage 3Laboratory of Pathological Anatomy, National School of Veterinary Medicine of Sidi Thabet, Manouba Univeristy, Manouba, Tunisia Abstract: The purpose of our study was the evaluation of toxicological effects of silica-coated gold nanoparticles (GNPs and static magnetic fields (SMFs; 128 mT exposure in rat lungs. Animals received a single injection of GNPs (1,100 µg/kg, 100 nm, intraperitoneally and were exposed to SMFs, over 14 days (1 h/day. Results showed that GNPs treatment induced a hyperplasia of bronchus-associated lymphoid tissue. Fluorescence microscopy images showed that red fluorescence signal was detected in rat lungs after 2 weeks from the single injection of GNPs. Oxidative response study showed that GNPs exposure increased malondialdehyde level and decreased CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in rat lungs. Furthermore, the histopathological study showed that combined effects of GNPs and SMFs led to more tissular damages in rat lungs in comparison with GNPs-treated rats. Interestingly, intensity of red fluorescence signal was enhanced after exposure to SMFs indicating a higher accumulation of GNPs in rat lungs under magnetic environment. Moreover, rats coexposed to GNPs and SMFs showed an increased malondialdehyde level, a fall of CuZn-superoxide dismutase, catalase, and glutathione peroxidase activities in comparison with GNPs-treated group. Hence, SMFs exposure increased the accumulation of GNPs in rat lungs and led to more toxic effects of these nanocomplexes. Keywords: malondialdehyde, catalase, superoxide dismutase, glutathione peroxidase, bronchus-associated lymphoid tissue, nanotoxicity, histopathological study

  10. Oxidative stress and DNA damage caused by the urban air pollutant 3-NBA and its isomer 2-NBA in human lung cells analyzed with three independent methods.

    Science.gov (United States)

    Nagy, Eszter; Johansson, Clara; Zeisig, Magnus; Möller, Lennart

    2005-11-15

    The air pollutant 3-nitrobenzanthrone (3-NBA), emitted in diesel exhaust, is a potent mutagen and genotoxin. 3-NBA can isomerise to 2-nitrobenzanthrone (2-NBA), which can become more than 70-fold higher in concentration in ambient air. In this study, three independent methods have been employed to evaluate the oxidative stress and genotoxicity of 2-NBA compared to 3-NBA in the human A549 lung cell line. HPLC-EC/UV was applied for measurements of oxidative damage in the form of 8-oxo-2'-deoxyguanosine (8-oxodG), (32)P-HPLC for measurements of lipophilic DNA-adducts, and the Comet assay to measure a variety of DNA lesions, including oxidative stress. No significant oxidative damage from either isomer was found regarding formation of 8-oxodG analysed using HPLC-EC/UV. However, the Comet assay (with FPG-treatment), which is more sensitive and detects more types of damages compared to HPLC-EC/UV, showed a significant effect from both 3-NBA and 2-NBA. (32)P-HPLC revealed a strong DNA-adduct formation from both 3-NBA and 2-NBA, and also a significant difference between both isomers compared to negative control. These results clearly show that 2-NBA has a genotoxic potential. Even if the DNA-adduct forming capacity and the amount of DNA lesions measured with the (32)P-HPLC and Comet assay is about one third of 3-NBA, the high abundance of 2-NBA in ambient air calls for further investigation and evaluation of its health hazard.

  11. [Effect of oxidative stress-associated damage to the lung tissue caused by different body mass index in the rat models].

    Science.gov (United States)

    Li, X Y; Zhang, X J; Zhao, J H; Xu, J Y

    2016-12-12

    Objective: To investigate the influence of different diets on serum protein expression levels of 4-hydroxynonenal (4-HNE), thioredoxin (Trx), thioredoxin reductase (TrxR) and the activities of Trx and TrxR, and to explore the effect of damage to the lung tissue and the underlying mechanisms of different body mass index caused by different diets in the rat models . Method: Healthy clean male SD rats were randomly divided into normal group, emaciation group and fat group, which were raised by different diets for 6 months.Then the rats were sacrificed and the serum and lung tissue were prepared. The levels of 4-HNE, Trx and TrxR in peripheral blood were quantitatively analyzed by enzyme-linked immunosorbent assay(ELISA), and the activities of Trx and TrxR were measured by chemical methods. Results: Compared with the normal group, the lung tissue had more apparent emphysema in the emaciation and the fat groups under light microscope, and more inflammatory cell infiltration in alveolar septum was observed in the fat group.The levels of 4-HNE in the fat group[(24.7±8.7)mg/L]was significantly higher than that in the normal group[(15.4±4.7)mg/L, P 0.05)in the levels of 4-HNE between the emaciation and the normal groups. The levels of TrxR in the emaciation group[(7.7±1.4)μg/ml]was significantly higher than that in the normal and the fat groups[(6.2±1.1), (4.9±1.4)μg/ml, all P 0.05). The activity of Trx in the emaciation group[(32.4±8.5)×10 -3 A ·min -1 ·mg -1 ]was significantly higher than that in the normal group[(19.6±3.3)×10 -3 A ·min -1 ·mg -1 ]and the fat group[(11.3±7.5)×10 -3 A ·min -1 ·mg -1 , all P 0.05). Conclusion: Both high BMI and low BMI can affect the oxidative stress of the body, resulting in increased oxidants and decreased antioxidants, and can cause damage to the lung tissue in the rat models.

  12. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    Science.gov (United States)

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent

  13. Pathology of radiation induced lung damage

    International Nuclear Information System (INIS)

    Kawabata, Yoshinori; Murata, Yoshihiko; Ogata, Hideo; Katagiri, Shiro; Sugita, Hironobu; Iwai, Kazuo; Sakurai, Isamu.

    1985-01-01

    We examined pathological findings of radiation induced lung damage. Twenty-three cases are chosen from our hospital autopsy cases for 9 years, which fulfil strict criteria of radiation lung damage. Lung damage could be classified into 3 groups : 1) interstitial pneumonia type (9 cases), 2) intermediate pneumonia type (8 cases), and 3) alveolar pneumonia type (6 cases), according to the degree of intra-luminal exudation. These classification is well correlated with clinical findings. Pathological alveolar pneumonia type corresponds to symptomatic, radiologic ground glass pneumonic shadow. And pathologic interstitial type corresponds to clinical asymptomatic, radiologic reticulo-nodular shadow. From the clinico-pathological view point these classification is reasonable one. Radiation affects many lung structures and showed characteristic feature of repair. Elastofibrosis of the alveolar wall is observed in every cases, obstructive bronchiolitis are observed in 5 cases, and obstructive bronchiolitis in 9 cases. They are remarkable additional findings. Thickening of the interlobular septum, broncho-vascular connective tissue, and pleural layer are observed in every cases together with vascular lesions. (author)

  14. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line.

    Science.gov (United States)

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-06-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro.

  15. Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Borghini, Andrea; Roursgaard, Martin; Andreassi, Maria Grazia

    2017-01-01

    One type of carbon nanotubes (CNTs) (MWCNT-7, from Mitsui) has been classified as probably carcinogenic to humans, however insufficient data does not warrant the same classification for other types of CNTs. Experimental data indicate that CNT exposure can result in oxidative stress and DNA damage...... the cells toward replicative senescence, assessed by attrition of telomeres. To investigate this, H2O2 and KBrO3 were used to induce DNA damage in the cells and the effect of pre-exposure to MWCNT tested for a change in repair activity inside the cells or in the extract of treated cells. The effect of MWCNT...... in cultured cells, whereas these materials appear to induce low or no mutagenicity. Therefore, the present study aimed to investigate whether in vitro exposure of cultured airway epithelial cells (A549) to multi-walled CNTs (MWCNTs) could increase the DNA repair activity of oxidatively damaged DNA and drive...

  16. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  17. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  18. Cellular and molecular mechanisms of cigarette smoke-induced lung damage and prevention by vitamin C

    Directory of Open Access Journals (Sweden)

    Roy Siddhartha

    2008-11-01

    Full Text Available Abstract Background Cigarette smoke-induced cellular and molecular mechanisms of lung injury are not clear. Cigarette smoke is a complex mixture containing long-lived radicals, including p-benzosemiquinone that causes oxidative damage. Earlier we had reported that oxidative protein damage is an initial event in smoke-induced lung injury. Considering that p-benzosemiquinone may be a causative factor of lung injury, we have isolated p-benzosemiquinone and compared its pathophysiological effects with cigarette smoke. Since vitamin C is a strong antioxidant, we have also determined the modulatory effect of vitamin C for preventing the pathophysiological events. Methods Vitamin C-restricted guinea pigs were exposed to cigarette smoke (5 cigarettes/day; 2 puffs/cigarette for 21 days with and without supplementation of 15 mg vitamin C/guinea pig/day. Oxidative damage, apoptosis and lung injury were assessed in vitro, ex vivo in A549 cells as well as in vivo in guinea pigs. Inflammation was measured by neutrophilia in BALF. p-Benzosemiquinone was isolated from freshly prepared aqueous extract of cigarette smoke and characterized by various physico-chemical methods, including mass, NMR and ESR spectroscopy. p-Benzosemiquinone-induced lung damage was examined by intratracheal instillation in guinea pigs. Lung damage was measured by increased air spaces, as evidenced by histology and morphometric analysis. Oxidative protein damage, MMPs, VEGF and VEGFR2 were measured by western blot analysis, and formation of Michael adducts using MALDI-TOF-MS. Apoptosis was evidenced by TUNEL assay, activation of caspase 3, degradation of PARP and increased Bax/Bcl-2 ratio using immunoblot analysis and confocal microscopy. Results Exposure of guinea pigs to cigarette smoke resulted in progressive protein damage, inflammation, apoptosis and lung injury up to 21 days of the experimental period. Administration of 15 mg of vitamin C/guinea pig/day prevented all these

  19. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals

    DEFF Research Database (Denmark)

    Møller, Peter; Jensen, Ditte Marie; Christophersen, Daniel Vest

    2015-01-01

    -reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations...... of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure...... and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential. Environ. Mol. Mutagen., 2014. © 2014 Wiley Periodicals, Inc....

  20. Oxidative DNA damage & repair: An introduction.

    Science.gov (United States)

    Cadet, Jean; Davies, Kelvin J A

    2017-06-01

    This introductory article should be viewed as a prologue to the Free Radical Biology & Medicine Special Issue devoted to the important topic of Oxidatively Damaged DNA and its Repair. This special issue is dedicated to Professor Tomas Lindahl, co-winner of the 2015 Nobel Prize in Chemistry for his seminal discoveries in the area repair of oxidatively damaged DNA. In the past several years it has become abundantly clear that DNA oxidation is a major consequence of life in an oxygen-rich environment. Concomitantly, survival in the presence of oxygen, with the constant threat of deleterious DNA mutations and deletions, has largely been made possible through the evolution of a vast array of DNA repair enzymes. The articles in this Oxidatively Damaged DNA & Repair special issue detail the reactions by which intracellular DNA is oxidatively damaged, and the enzymatic reactions and pathways by which living organisms survive such assaults by repair processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. DNA damage in lung after oral exposure to diesel exhaust particles in Big Blue (R) rats

    DEFF Research Database (Denmark)

    Müller, Anne Kirstine; Farombi, E.O.; Møller, P.

    2004-01-01

    Several chemical mutagens and carcinogens, including polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs, are adsorbed to the surface of diesel exhaust particles (DEP). DEP can induce formation of reactive oxygen species and cause oxidative DNA damage as well as bulky carcinogen DNA adducts....... Lung tissue is a target organ for DEP induced cancer following inhalation. Recent studies have provided evidence that the lung is also a target organ for DNA damage and cancer after oral exposure to other complex mixtures of PAHs. The genotoxic effect of oral administration of DEP was investigated...

  2. The mean lung dose (MLD). Predictive criterion for lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, Peter; Appold, Steffen [Dresden University of Technology (TU Dresden), Clinic and Polyclinic for Radiotherapy and Radiation Oncology, Carl Gustav Carus Medical Faculty, Dresden (Germany); Herrmann, Thomas

    2015-07-15

    The purpose of this work was to prove the validity of the mean lung dose (MLD), widely used in clinical practice to estimate the lung toxicity of a treatment plan, by reevaluating experimental data from mini pigs. A total of 43 mini pigs were irradiated in one of four dose groups (25, 29, 33, and 37 Gy). Two regimens were applied: homogeneous irradiation of the right lung or partial irradiation of both lungs - including parts with lower dose - but with similar mean lung doses. The animals were treated with five fractions with a linear accelerator applying a CT-based treatment plan. The clinical lung reaction (breathing frequency) and morphological changes in CT scans were examined frequently during the 48 weeks after irradiation. A clear dose-effect relationship was found for both regimens of the trial. However, a straightforward relationship between the MLD and the relative number of responders with respect to different grades of increased breathing frequency for both regimens was not found. A morphologically based parameter NTCP{sub lung} was found to be more suitable for this purpose. The dependence of this parameter on the MLD is markedly different for the two regimens. In clinical practice, the MLD can be used to predict lung toxicity of a treatment plan, except for dose values that could lead to severe side effects. In the latter mentioned case, limitations to the predictive value of the MLD are possible. Such severe developments of a radiation-induced pneumopathy are better predicted by the NTCP{sub lung} formalism. The predictive advantage of this parameter compared to the MLD seems to remain in the evaluation and comparison of widely differing dose distributions, like in the investigated trial. (orig.) [German] Es soll unter Reevaluation von Tierversuchsdaten am Minischwein geprueft werden, ob die in der klinischen Praxis zur Beurteilung der Lungentoxizitaet eines Bestrahlungsregims regelhaft verwendete mittlere Lungendosis (MLD) eine zuverlaessige

  3. Long term radiological features of radiation-induced lung damage.

    Science.gov (United States)

    Veiga, Catarina; Landau, David; McClelland, Jamie R; Ledermann, Jonathan A; Hawkes, David; Janes, Sam M; Devaraj, Anand

    2018-02-01

    To describe the radiological findings of radiation-induced lung damage (RILD) present on CT imaging of lung cancer patients 12 months after radical chemoradiation. Baseline and 12-month CT scans of 33 patients were reviewed from a phase I/II clinical trial of isotoxic chemoradiation (IDEAL CRT). CT findings were scored in three categories derived from eleven sub-categories: (1) parenchymal change, defined as the presence of consolidation, ground-glass opacities (GGOs), traction bronchiectasis and/or reticulation; (2) lung volume reduction, identified through reduction in lung height and/or distortions in fissures, diaphragm, anterior junction line and major airways anatomy, and (3) pleural changes, either thickening and/or effusion. Six patients were excluded from the analysis due to anatomical changes caused by partial lung collapse and abscess. All remaining 27 patients had radiological evidence of lung damage. The three categories, parenchymal change, shrinkage and pleural change were present in 100%, 96% and 82% respectively. All patients had at least two categories of change present and 72% all three. GGOs, reticulation and traction bronchiectasis were present in 44%, 52% and 37% of patients. Parenchymal change, lung shrinkage and pleural change are present in a high proportion of patients and are frequently identified in RILD. GGOs, reticulation and traction bronchiectasis are common at 12 months but not diagnostic. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthetic Secoisolariciresinol Diglucoside (LGM2605 Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    Directory of Open Access Journals (Sweden)

    Anastasia Velalopoulou

    2017-11-01

    Full Text Available Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS, pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  5. Methimazole-induced hypothyroidism causes cellular damage in the spleen, heart, liver, lung and kidney.

    Science.gov (United States)

    Cano-Europa, Edgar; Blas-Valdivia, Vanessa; Franco-Colin, Margarita; Gallardo-Casas, Carlos Angel; Ortiz-Butrón, Rocio

    2011-01-01

    It is known that a hypothyroidism-induced hypometabolic state protects against oxidative damage caused by toxins. However, some workers demonstrated that antithyroid drug-induced hypothyroidism can cause cellular damage. Our objective was to determine if methimazole (an antithyroid drug) or hypothyroidism causes cellular damage in the liver, kidney, lung, spleen and heart. Twenty-five male Wistar rats were divided into 5 groups: euthyroid, false thyroidectomy, thyroidectomy-induced hypothyroidism, methimazole-induced hypothyroidism (60 mg/kg), and treatment with methimazole (60 mg/kg) and a T₄ injection (20 μg/kg/d sc). At the end of the treatments (4 weeks for the pharmacological groups and 8 weeks for the surgical groups), the animals were anesthetized with sodium pentobarbital and they were transcardially perfused with 10% formaldehyde. The spleen, heart, liver, lung and kidney were removed and were processed for embedding in paraffin wax. Coronal sections were stained with hematoxylin-eosin. At the end of treatment, animals with both the methimazole- and thyroidectomy-induced hypothyroidism had a significant reduction of serum concentration of thyroid hormones. Only methimazole-induced hypothyroidism causes cellular damage in the kidney, lung, liver, heart, kidney and spleen. In addition, animals treated with methimazole and T₄ showed cellular damage in the lung, spleen and renal medulla with lesser damage in the liver, renal cortex and heart. The thyroidectomy only altered the lung structure. The alterations were prevented by T₄ completely in the heart and partially in the kidney cortex. These results indicate that tissue damage found in hypothyroidism is caused by methimazole. Copyright © 2009 Elsevier GmbH. All rights reserved.

  6. Experimental study of oxidative DNA damage

    DEFF Research Database (Denmark)

    Loft, Steffen; Deng, Xin-Sheng; Tuo, Jingsheng

    1998-01-01

    Animal experiments allow the study of oxidative DNA damage in target organs and the elucidation of dose-response relationships of carcinogenic and other harmful chemicals and conditions as well as the study of interactions of several factors. So far the effects of more than 50 different chemical ...

  7. Inflammation, oxidative DNA damage, and carcinogenesis

    International Nuclear Information System (INIS)

    Lewis, J.G.; Adams, D.O.

    1987-01-01

    Inflammation has long been associated with carcinogenesis, especially in the promotion phase. The mechanism of action of the potent inflammatory agent and skin promoter 12-tetradecanoyl phorbol-13-acetate (TPA) is unknown. It is though that TPA selectively enhances the growth of initiated cells, and during this process, initiated cells progress to the preneoplastic state and eventually to the malignant phenotype. The authors and others have proposed that TPA may work, in part, by inciting inflammation and stimulating inflammatory cells to release powerful oxidants which then induce DNA damage in epidermal cells. Macrophages cocultured with target cells and TPA induce oxidized thymine bases in the target cells. This process is inhibited by both catalase and inhibitors of lipoxygenases, suggesting the involvement of both H 2 O 2 and oxidized lipid products. In vivo studies demonstrated that SENCAR mice, which are sensitive to promotion by TPA, have a more intense inflammatory reaction in skin that C57LB/6 mice, which are resistant to promotion by TPA. In addition, macrophages from SENCAR mice release more H 2 O 2 and metabolites of AA, and induce more oxidative DNA damage in cocultured cells than macrophages from C57LB/6 mice. These data support the hypothesis that inflammation and the release of genotoxic oxidants may be one mechanism whereby initiated cells receive further genetic insults. They also further complicate risk assessment by suggesting that some environmental agents may work indirectly by subverting host systems to induce damage rather than maintaining homeostasis

  8. Oxidative DNA damage in vitamin C-supplemented guinea pigs after intratracheal instillation of diesel exhaust particles

    DEFF Research Database (Denmark)

    Moller, P.; Daneshvar, B.; Loft, S.

    2003-01-01

    . The concentrations of ascorbate in liver, lung, and plasma were unaltered by the DEP exposure. The results indicate that in guinea pigs DEP causes oxidative DNA damage rather than bulky DNA adducts in the lung. Guinea pigs, which are similar to humans with respect to vitamin C metabolism, may serve as a new model...... for the study of oxidative damage induced by particulate matter. (C) 2003 Elsevier Science (USA). All rights reserved....

  9. Immunochemical detection of oxidatively damaged DNA

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Šrám, Radim

    2012-01-01

    Roč. 46, č. 4 (2012), s. 492-522 ISSN 1071-5762 R&D Projects: GA MŽP(CZ) SP/1B3/50/07; GA MŠk 2B08005; GA ČR GAP503/11/0084 Institutional research plan: CEZ:AV0Z50390703 Institutional support: RVO:68378041 Keywords : oxidative DNA damage * ELISA * immunohistochemistry Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.279, year: 2012

  10. Dissociation of DNA damage and mitochondrial injury caused by hydrogen peroxide in SV-40 transformed lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Adcock Ian M

    2002-11-01

    Full Text Available Abstract Background Since lung epithelial cells are constantly being exposed to reactive oxygen intermediates (ROIs, the alveolar surface is a major site of oxidative stress, and each cell type may respond differently to oxidative stress. We compared the extent of oxidative DNA damage with that of mitochondrial injury in lung epithelial cells at the single cell level. Result DNA damage and mitochondrial injury were measured after oxidative stress in the SV-40 transformed lung epithelial cell line challenged with hydrogen peroxide (H2O2. Single cell analysis of DNA damage was determined by assessing the number of 8-oxo-2-deoxyguanosine (8-oxo-dG positive cells, a marker of DNA modification, and the length of a comet tail. Mitochondrial membrane potential, ΔΨm, was determined using JC-1. A 1 h pulse of H2O2 induced small amounts of apoptosis (3%. 8-oxo-dG-positive cells and the length of the comet tail increased within 1 h of exposure to H2O2. The number of cells with reduced ΔΨm increased after the addition of H2O2 in a concentration-dependent manner. In spite of a continual loss of ΔΨm, DNA fragmentation was reduced 2 h after exposure to H2O2. Conclusion The data suggest that SV-40 transformed lung epithelial cells are resistant to oxidative stress, showing that DNA damage can be dissociated from mitochondrial injury.

  11. Dexmedetomidine protects from post-myocardial ischaemia reperfusion lung damage in diabetic rats

    Science.gov (United States)

    Kip, Gülay; Çelik, Ali; Bilge, Mustafa; Alkan, Metin; Kiraz, Hasan Ali; Özer, Abdullah; Şıvgın, Volkan; Erdem, Özlem; Arslan, Mustafa; Kavutçu, Mustafa

    2015-01-01

    Objective Diabetic complications and lipid peroxidation are known to have a close association. Lipid peroxidation commonly occurs at sites exposed to ischaemia, but distant organs and tissues also get damaged during ischaemia/reperfusion (I/R). Some of these targets are vital organs, such as the lung, liver, and kidney; the lung is the most frequently affected. The aim of our study was to investigate the effects of dexmedetomidine on I/R damage in lung tissue and on the oxidant/anti-oxidant system in diabetic rats. Material and methods Diabetes was induced with streptozotocin (55 mg/kg) in 18 Wistar Albino rats, which were then randomly divided into three groups (diabetes control (DC), diabetes plus ischaemia-reperfusion (DIR), and diabetes plus dexmedetomidine-ischaemia/reperfusion (DIRD)) after the effects of diabetes were clearly evident. The rats underwent a left thoracotomy and then ischaemia was produced in the myocardium muscle by a left anterior descending artery ligation for 30 min in the DIR and DIRD groups. I/R was performed for 120 min. The DIRD group received a single intraperitoneal dose of dexmedetomidine (100 µg/kg); the DIR group received no dexmedetomidine. Group DC was evaluated as the diabetic control group and also included six rats (C group) in which diabetes was not induced. These mice underwent only left thoracotomy and were closed without undergoing myocardial ischaemia. Histopathological changes, activities of catalase (CAT) and glutathione-S-transferase anti-oxidant enzymes, and malondialdehyde (MDA) levels were evaluated in the lung tissues of all rats. Results Neutrophil infiltration/aggregation was higher in the DIR group than in the C, DC, and DIRD groups (p=0.001, p=0.013, and p=0.042, respectively). The lung injury score was significantly higher in the DIR group than in the C and DC groups (p<0.0001 and p=0.024, respectively). The levels of MDA were significantly higher in the DIR group than in the C and DIRD groups. CAT activity

  12. Dexmedetomidine protects from post-myocardial ischaemia reperfusion lung damage in diabetic rats

    Directory of Open Access Journals (Sweden)

    Gülay Kip

    2015-09-01

    Full Text Available Objective: Diabetic complications and lipid peroxidation are known to have a close association. Lipid peroxidation commonly occurs at sites exposed to ischaemia, but distant organs and tissues also get damaged during ischaemia/reperfusion (I/R. Some of these targets are vital organs, such as the lung, liver, and kidney; the lung is the most frequently affected. The aim of our study was to investigate the effects of dexmedetomidine on I/R damage in lung tissue and on the oxidant/anti-oxidant system in diabetic rats. Material and methods: Diabetes was induced with streptozotocin (55 mg/kg in 18 Wistar Albino rats, which were then randomly divided into three groups (diabetes control (DC, diabetes plus ischaemia-reperfusion (DIR, and diabetes plus dexmedetomidine-ischaemia/reperfusion (DIRD after the effects of diabetes were clearly evident. The rats underwent a left thoracotomy and then ischaemia was produced in the myocardium muscle by a left anterior descending artery ligation for 30 min in the DIR and DIRD groups. I/R was performed for 120 min. The DIRD group received a single intraperitoneal dose of dexmedetomidine (100 µg/kg; the DIR group received no dexmedetomidine. Group DC was evaluated as the diabetic control group and also included six rats (C group in which diabetes was not induced. These mice underwent only left thoracotomy and were closed without undergoing myocardial ischaemia. Histopathological changes, activities of catalase (CAT and glutathione-S-transferase anti-oxidant enzymes, and malondialdehyde (MDA levels were evaluated in the lung tissues of all rats. Results: Neutrophil infiltration/aggregation was higher in the DIR group than in the C, DC, and DIRD groups (p=0.001, p=0.013, and p=0.042, respectively. The lung injury score was significantly higher in the DIR group than in the C and DC groups (p<0.0001 and p=0.024, respectively. The levels of MDA were significantly higher in the DIR group than in the C and DIRD groups. CAT

  13. Diagnosis of Lung Cancer by Fractal Analysis of Damaged DNA

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.

  14. Uranium induces oxidative stress in lung epithelial cells

    International Nuclear Information System (INIS)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T.

    2007-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  15. Post-irradiation dietary vitamin E does not affect the development of radiation-induced lung damage in rats

    NARCIS (Netherlands)

    Wiegman, EA; van Gameren, MA; Kampinga, HH; Szabo, BG; Coppes, RP

    The purpose of this study was to investigate whether application of post-irradiation vitamin E, an anti-oxidant, could prevent the development of radiation induced lung damage. Wistar rats were given vitamin E enriched or vitamin E deprived food starting from 4 weeks after 18 Gy single dose

  16. NEIL2 protects against oxidative DNA damage induced by sidestream smoke in human cells.

    Directory of Open Access Journals (Sweden)

    Altaf H Sarker

    Full Text Available Secondhand smoke (SHS is a confirmed lung carcinogen that introduces thousands of toxic chemicals into the lungs. SHS contains chemicals that have been implicated in causing oxidative DNA damage in the airway epithelium. Although DNA repair is considered a key defensive mechanism against various environmental attacks, such as cigarette smoking, the associations of individual repair enzymes with susceptibility to lung cancer are largely unknown. This study investigated the role of NEIL2, a DNA glycosylase excising oxidative base lesions, in human lung cells treated with sidestream smoke (SSS, the main component of SHS. To do so, we generated NEIL2 knockdown cells using siRNA-technology and exposed them to SSS-laden medium. Representative SSS chemical compounds in the medium were analyzed by mass spectrometry. An increased production of reactive oxygen species (ROS in SSS-exposed cells was detected through the fluorescent detection and the induction of HIF-1α. The long amplicon-quantitative PCR (LA-QPCR assay detected significant dose-dependent increases of oxidative DNA damage in the HPRT gene of cultured human pulmonary fibroblasts (hPF and BEAS-2B epithelial cells exposed to SSS for 24 h. These data suggest that SSS exposure increased oxidative stress, which could contribute to SSS-mediated toxicity. siRNA knockdown of NEIL2 in hPF and HEK 293 cells exposed to SSS for 24 h resulted in significantly more oxidative DNA damage in HPRT and POLB than in cells with control siRNA. Taken together, our data strongly suggest that decreased repair of oxidative DNA base lesions due to an impaired NEIL2 expression in non-smokers exposed to SSS would lead to accumulation of mutations in genomic DNA of lung cells over time, thus contributing to the onset of SSS-induced lung cancer.

  17. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling.

    Science.gov (United States)

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-09-29

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells.

  18. Radiation-induced Pulmonary Damage in Lung Cancer Patients

    International Nuclear Information System (INIS)

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Mi Mun; Kim, In Ah; Shinn, Kyung Sub

    1993-01-01

    Purpose: A retrospective analysis was performed to evaluate the incidence of radiation induced lung damage after the radiation therapy for the patients with carcinoma of the lung. Method and Materials: Sixty-six patients with lung cancer (squamous cell carcinoma 27, adenocarcinoma 14, large cell carcinoma 2, small cell carcinoma 13, unknown 10) were treated with definitive, postoperative or palliative radiation therapy with or without chemotherapy between July 1987 and December 1991. There were 50 males and 16 females with median age of 63 years(range: 33-80 years). Total lung doses ranged from 500 to 6,660 cGy (median 3960 cGy) given in 2 to 38 fractions (median 20) over a range of 2 to 150 days (median 40 days) using 6 MV or 15 MV linear accelerator. To represent different fractionation schedules of equivalent biological effect, the estimated single dose(ED) model, ED=D·N-0.377·T-0.058 was used in which D was the lung dose in cGy, N was the number of fractions, and T was the overall treatment time in days. The range of ED was 370 to 1357. The endpoint was a visible increase in lung density within the irradiated volume on chest X-ray as observed independently by three diagnostic radiologists. Patients were grouped according to ED, treatment duration, treatment modality and age, and the percent incidence of pulmonary damage for each group was determined. Result: In 40 of 66 patients, radiation induced change was seen on chest radiographs between 11 days and 314 days after initiation of radiation therapy. The incidence of radiation pneumonitis was increased according to increased ED, which was statistically significant (p=0.001). Roentgenographic charges consistent with radiation pneumonitis were seen in 100% of patients receiving radiotherapy after lobectomy or pneumonectomy, which was not statistically significant. In 32 patients who also received chemotherapy, there was no difference in the incidence of radiation induced charge between the group with radiation

  19. Aging and oxidatively damaged nuclear DNA in animal organs

    DEFF Research Database (Denmark)

    Møller, Peter; Løhr, Mille; Folkmann, Janne K

    2010-01-01

    Oxidative stress is considered to contribute to aging and is associated with the generation of oxidatively damaged DNA, including 8-oxo-7,8-dihydroguanine. We have identified 69 studies that have measured the level of oxidatively damaged DNA in organs of animals at various ages. In general, organs...... with limited cell proliferation, i.e., liver, kidney, brain, heart, pancreas, and muscle, tended to show accumulation of DNA damage with age, whereas organs with highly proliferating cells, such as intestine, spleen, and testis, showed more equivocal or no effect of age. A restricted analysis of studies...... evidence for aging-associated accumulation of oxidatively damaged DNA in organs with limited cell proliferation....

  20. OXIDATIVE STRESS AND VASCULAR DAMAGE IN HYPOXIA PROCESSES. MALONDIALDEHYDE (MDA AS BIOMARKER FOR OXIDATIVE DAMAGE

    Directory of Open Access Journals (Sweden)

    Muñiz P

    2014-05-01

    Full Text Available Changes in the levels oxidative stress biomarkers are related with different diseases such as ischemia/reperfusion, cardiovascular, renal, aging, etc. One of these biomarkers is the malondialdehyde (MDA generated as resulted of the process of lipid peroxidation. This biomarker is increased under conditions of the oxidative stress. Their levels, have been frequently used to measure plasma oxidative damage to lipids by their atherogenic potential. Its half-life high and their reactivity allows it to act both inside and outside of cells and interaction with proteins and DNA involve their role in different pathophysiological processes. This paper presents an analysis of the use of MDA as a biomarker of oxidative stress and its implications associated pathologies such as cardiovascular diseases ago.

  1. Potential role of Saudi red propolis in alleviating lung damage induced by methicillin resistant Staphylococcus aureus virulence in rats.

    Science.gov (United States)

    Saddiq, Amna Ali; Mohamed, Azza Mostafa

    2016-07-01

    The aim of this study was to explore the protective impact of aqueous extract of Saudi red propolis against rat lung damage induced by the pathogenic bacteria namely methicillin resistant Staphylococcus aureus (MRSA) ATCC 6538 strain. Infected rats were received a single intraperitoneal (i.p.) injection of bacterial suspension at a dose of 1 X 10(6) CFU / 100g body weight. Results showed that oral administration of an aqueous extract of propolis (50mg/100g body weight) daily for two weeks to infected rats simultaneously with bacterial infection, effectively ameliorated the alteration of oxidative stress biomarker, malondialdehyde (MDA), as well as the antioxidant markers, glutathione peroxidase (GPx) and superoxide dismutase (SOD), in lungs of infected rats compared with infected untreated ones. Also, the used propolis extract successfully modulated the alterations in proinflammatory mediators, tumor necrosis factor-α (TNF- α) and vascular endothelial growth factor (VEGF) in serum. In addition, the propolis extract successfully modulated the oxidative DNA damage and the apoptosis biomarker, caspase 3, in lungs of S aureus infected rats compared with infected untreated animals. The biochemical results were supported by histo-pathological observation of lung tissues. In conclusion, the beneficial prophylactic role of the aqueous extract of Saudi red propolis against lung damage induced by methicillin resistant S aureus may be related to the antioxidant, anti-inflammatory, immunomodulatory and antiapoptosis of its active constituents.

  2. Oxidative Damage and Its Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2016-06-01

    Full Text Available Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNAdamage, then to investigate the possible mechanism.Methods: The protective effect was evaluated based on the content of malondialdehyde(MDA. The possible mechanism was analyzed using various antioxidant methods in vitro,including •OH scavenging (deoxyribose degradation, •O2- scavenging (pyrogallolautoxidation, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays.Results: Fisetin increased dose-dependently its protective percentages against •OH-inducedDNA damage (IC50 value =1535.00±29.60 μM. It also increased its radical-scavengingpercentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in•OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 μM, 34.05±0.87 μM, 9.69±0.53 μM, 2.43±0.14μM, and 1.49±0.16 μM, respectively.Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damagepossibly via reactive oxygen species (ROS scavenging approach, which is assumed to behydrogen atom (H• and/or single electron (e donation (HAT/SET pathways. In the HATpathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an importantrole, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  3. Post-irradiation dietary vitamin E does not affect the development of radiation-induced lung damage in rats

    International Nuclear Information System (INIS)

    Wiegman, Erwin M.; Gameren, Mieke M. van; Kampinga, Harm H.; Szabo, Ben G.; Coppes, Rob P.

    2004-01-01

    The purpose of this study was to investigate whether application of post-irradiation vitamin E, an anti-oxidant, could prevent the development of radiation induced lung damage. Wistar rats were given vitamin E enriched or vitamin E deprived food starting from 4 weeks after 18 Gy single dose irradiation of the right thorax. Neither breathing frequencies nor CT density measurements revealed differences between the groups. It is concluded that post-irradiation vitamin E does not influence radiation-induced fibrosis to the lung

  4. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage

    International Nuclear Information System (INIS)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J.; Rudich, Yinon

    2016-01-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. - Highlights: • Repeated exposure to urban PM cause systemic inflammation and oxidative damage to lung tissue lipids and proteins. • Repeated exposure to these PM extracts decreased transcription of Nrf2 protective genes. • Single as opposed to repeated exposure, induced confined lung response accompanied by activated defense mechanisms. • Metals, potentially from break and tire wear, drive the pulmonary response with exposure to urban PM. - Repeated exposures to urban PM water extracts

  5. Oxidative DNA damage during night shift work.

    Science.gov (United States)

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2017-09-01

    We previously reported that compared with night sleep, day sleep among shift workers was associated with reduced urinary excretion of 8-hydroxydeoxyguanosine (8-OH-dG), potentially reflecting a reduced ability to repair 8-OH-dG lesions in DNA. We identified the absence of melatonin during day sleep as the likely causative factor. We now investigate whether night work is also associated with reduced urinary excretion of 8-OH-dG. For this cross-sectional study, 50 shift workers with the largest negative differences in night work versus night sleep circulating melatonin levels (measured as 6-sulfatoxymelatonin in urine) were selected from among the 223 shift workers included in our previous study. 8-OH-dG concentrations were measured in stored urine samples using high performance liquid chromatography with electrochemical detection. Mixed effects models were used to compare night work versus night sleep 8-OH-dG levels. Circulating melatonin levels during night work (mean=17.1 ng/mg creatinine/mg creatinine) were much lower than during night sleep (mean=51.7 ng/mg creatinine). In adjusted analyses, average urinary 8-OH-dG levels during the night work period were only 20% of those observed during the night sleep period (95% CI 10% to 30%; psleep, is associated with reduced repair of 8-OH-dG lesions in DNA and that the effect is likely driven by melatonin suppression occurring during night work relative to night sleep. If confirmed, future studies should evaluate melatonin supplementation as a means to restore oxidative DNA damage repair capacity among shift workers. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Protection of naturally occurring antioxidants against oxidative damages to protein

    International Nuclear Information System (INIS)

    Zhu Hongping; Zhang Zhaoxia; Hao Shumei; Wang Wenfeng; Yao Side

    2006-01-01

    One of the most compelling theories explaining age-related deterioration is the free radical theory of aging. It has been shown that reactive oxygen species are involved in oxidative damages to biomolecules and this is related to a number of diseases. Proteins, the second most abundant components of cells (next to water by weight), are now increasingly recognized as major biological targets of oxidative damages. Convincing evidences have indicated that damages to protein have been implicated in Alzheimer's disease, Parkinson's disease, cancer, and aging. Antioxidant has been the subject of great attention because they are known to lower the risk of cardiovascular and other diseases. Hydroxycinnamic acid derivatives (HCAs) are antioxidants abundant in tea, red wine, fruits, beverages and various medicinal plants. Results showed that they exhibit remarkable activity for scavenging oxidizing radicals and triplet states. The protective effects of four kinds of HCAs on oxidative damages to lysozyme were investigated in our lab. Protein damages induced by two different paradigms: riboflavin-sensitized photooxidation and hydroxyl ( . OH)-mediated oxidation, were investigated using polyacrylamide gel electrophoresis. HCAs were found to inhibit the cross-linking of protein induced by riboflavin-mediated photooxidation. HCAs also exhibited protection effect on lysozyme damage induced by γ-ray irradiation. The rate constants for quenching triplet state of riboflavin by lysozyme and HCAs were obtained using laser flash photolysis. The protective mechanism was proposed based on the dynamic study. HCAs were found to protect protein against oxidation by scavenging oxidizing species and repairing the damaged protein. (authors)

  7. Oxidative damage and aging: spotlight on mitochondria.

    Science.gov (United States)

    Linford, Nancy J; Schriner, Samuel E; Rabinovitch, Peter S

    2006-03-01

    Whereas free radical damage has been proposed as a key component in the tissue degeneration associated with aging, there has been little evidence that free radical damage limits life span in mammals. The current research shows that overexpression of the antioxidant enzyme catalase in mitochondria can extend mouse life span. These results highlight the importance of mitochondrial damage in aging and suggest that when targeted appropriately, boosting antioxidant defenses can increase mammalian life span.

  8. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    Directory of Open Access Journals (Sweden)

    REYHANEH SEPEHR

    2013-07-01

    Full Text Available Reactive oxygen species (ROS have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI in adults and bronchopulmonary dysplasia (BPD in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD, referred to as NADH redox ratio (NADH RR has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2 pups, hyperoxic (90% O2 pups, pups treated with LPS (normoxic + LPS, and pups treated with LPS and hyperoxia (hyperoxic + LPS. Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~ 31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  9. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    Science.gov (United States)

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  10. Natural plant polyphenols for alleviating oxidative damage in man ...

    African Journals Online (AJOL)

    prevent the body from oxidative damage over human life span. This review .... Antioxidant supplementation/treatment has been adopted for .... deacetylase family regulates gene silencing and .... Drug News Perspect 2007; 20: 579-. 585. 12.

  11. Single Molecule Scanning of DNA Radiation Oxidative Damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  12. Hawkmoths use nectar sugar to reduce oxidative damage from flight.

    Science.gov (United States)

    Levin, E; Lopez-Martinez, G; Fane, B; Davidowitz, G

    2017-02-17

    Nectar-feeding animals have among the highest recorded metabolic rates. High aerobic performance is linked to oxidative damage in muscles. Antioxidants in nectar are scarce to nonexistent. We propose that nectarivores use nectar sugar to mitigate the oxidative damage caused by the muscular demands of flight. We found that sugar-fed moths had lower oxidative damage to their flight muscle membranes than unfed moths. Using respirometry coupled with δ 13 C analyses, we showed that moths generate antioxidant potential by shunting nectar glucose to the pentose phosphate pathway (PPP), resulting in a reduction in oxidative damage to the flight muscles. We suggest that nectar feeding, the use of PPP, and intense exercise are causally linked and have allowed the evolution of powerful fliers that feed on nectar. Copyright © 2017, American Association for the Advancement of Science.

  13. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  14. Oxidative stress generated damage to DNA by gastrointestinal exposure to insoluble particles

    DEFF Research Database (Denmark)

    Møller, Peter; Folkmann, J K; Danielsen, P H

    2012-01-01

    that gastrointestinal exposure to single-walled carbon nanotubes (SWCNT), fullerenes C60, carbon black, titanium dioxide and diesel exhaust particles generates oxidized DNA base lesions in organs such as the bone marrow, liver and lung. Oral exposure to nanosized carbon black has also been associated with increased...... level of lipid peroxidation derived exocyclic DNA adducts in the liver, suggesting multiple pathways of oxidative stress for particle-generated damage to DNA. At equal dose, diesel exhaust particles (SRM2975) generated larger levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat liver than carbon black...

  15. Early bichemical markers of effects: Enzyme induction, oncogene activation and markers of oxidative damage

    DEFF Research Database (Denmark)

    Poulsen, Henrik E.; Loft, Steffen

    1995-01-01

    Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein......Early bichemical marker, enzyme induction, oncogene activation, oxidative damage, low-density lipoprotein...

  16. Quercitrin protects skin from UVB-induced oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yuanqin [Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Yao, Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang (China); Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J. [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Luo, Jia [Department of Internal Medicine, University of Kentucky, 800 Rose Street, Lexington, KY (United States); Gao, Ning [Department of Pharmacognos, College of Pharmacy, 3rd Military Medical University, Chongqing (China); Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY (United States)

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  17. Quercitrin protects skin from UVB-induced oxidative damage

    International Nuclear Information System (INIS)

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries

  18. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    International Nuclear Information System (INIS)

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin

    2007-01-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17β-estradiol (E 2 ) resulted from an interaction between TCDD and E 2 could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE 2 ), especially 4-MeOE 2 , accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E 2 . In the present study, we demonstrate unique accumulation of 4-MeOE 2 , as a result of TCDD/E 2 interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE 2 -treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE 2 -treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE 2 were unaffected by NAC. We concluded that 4-MeOE 2 accumulation resulting from TCDD and E 2 interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD

  19. [Effects of hydrogen on the lung damage of mice at early stage of severe burn].

    Science.gov (United States)

    Qin, C; Bian, Y X; Feng, T T; Zhang, J H; Yu, Y H

    2017-11-20

    Objective: To investigate the effects of hydrogen on the lung damage of mice at early stage of severe burn. Methods: One hundred and sixty ICR mice were divided into sham injury, hydrogen, pure burn, and burn+ hydrogen groups according to the random number table, with 40 mice in each group. Mice in pure burn group and burn+ hydrogen group were inflicted with 40% total body surface area full-thickness scald (hereafter referred to as burn) on the back, while mice in sham injury group and hydrogen group were sham injured. Mice in hydrogen group and burn+ hydrogen group inhaled 2% hydrogen for 1 h at post injury hour (PIH) 1 and 6, respectively, while mice in sham injury group and pure burn group inhaled air for 1 h. At PIH 24, lung tissue of six mice in each group was harvested, and then pathological changes of lung tissue were observed by HE staining and the lung tissue injury pathological score was calculated. Inferior vena cava blood and lung tissue of other eight mice in each group were obtained, and then content of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) in serum and lung tissue was determined by enzyme-linked immunosorbent assay. Activity of superoxide dismutase (SOD) in serum and lung tissue was detected by spectrophotometry. After arterial blood of other six mice in each group was collected for detection of arterial partial pressure of oxygen (PaO(2)), the wet and dry weight of lung tissue were weighted to calculate lung wet to dry weight ratio. The survival rates of the other twenty mice in each group during post injury days 7 were calculated. Data were processed with one-way analysis of variance, LSD test and log-rank test. Results: (1) At PIH 24, lung tissue of mice in sham injury group and hydrogen group showed no abnormality. Mice in pure burn group were with pulmonary interstitial edema, serious rupture of alveolar capillary wall, and infiltration of a large number of inflammatory cells. Mice in burn+ hydrogen group were with mild

  20. Natural plant polyphenols for alleviating oxidative damage in man ...

    African Journals Online (AJOL)

    cumulative effects of oxidative damage over human life span. Current research reveals ... aging, cardiovascular and neurodegenerative diseases [3,4]. .... natural antioxidants and mortality from age- .... health and longevity in normal cells by calorie restriction [63]. ..... H(2)O(2)-induced oxidative stress and senescence via.

  1. Protein Oxidation in the Lungs of C57BL/6J Mice Following X-Irradiation

    Science.gov (United States)

    Barshishat-Kupper, Michal; McCart, Elizabeth A.; Freedy, James G.; Tipton, Ashlee J.; Nagy, Vitaly; Kim, Sung-Yop; Landauer, Michael R.; Mueller, Gregory P.; Day, Regina M.

    2015-01-01

    Damage to normal lung tissue is a limiting factor when ionizing radiation is used in clinical applications. In addition, radiation pneumonitis and fibrosis are a major cause of mortality following accidental radiation exposure in humans. Although clinical symptoms may not develop for months after radiation exposure, immediate events induced by radiation are believed to generate molecular and cellular cascades that proceed during a clinical latent period. Oxidative damage to DNA is considered a primary cause of radiation injury to cells. DNA can be repaired by highly efficient mechanisms while repair of oxidized proteins is limited. Oxidized proteins are often destined for degradation. We examined protein oxidation following 17 Gy (0.6 Gy/min) thoracic X-irradiation in C57BL/6J mice. Seventeen Gy thoracic irradiation resulted in 100% mortality of mice within 127–189 days postirradiation. Necropsy findings indicated that pneumonitis and pulmonary fibrosis were the leading cause of mortality. We investigated the oxidation of lung proteins at 24 h postirradiation following 17 Gy thoracic irradiation using 2-D gel electrophoresis and OxyBlot for the detection of protein carbonylation. Seven carbonylated proteins were identified using mass spectrometry: serum albumin, selenium binding protein-1, alpha antitrypsin, cytoplasmic actin-1, carbonic anhydrase-2, peroxiredoxin-6, and apolipoprotein A1. The carbonylation status of carbonic anhydrase-2, selenium binding protein, and peroxiredoxin-6 was higher in control lung tissue. Apolipoprotein A1 and serum albumin carbonylation were increased following X-irradiation, as confirmed by OxyBlot immunoprecipitation and Western blotting. Our findings indicate that the profile of specific protein oxidation in the lung is altered following radiation exposure. PMID:28248270

  2. The Flaxseed-Derived Lignan Phenolic Secoisolariciresinol Diglucoside (SDG) Protects Non-Malignant Lung Cells from Radiation Damage.

    Science.gov (United States)

    Velalopoulou, Anastasia; Tyagi, Sonia; Pietrofesa, Ralph A; Arguiri, Evguenia; Christofidou-Solomidou, Melpo

    2015-12-22

    Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS) has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed's protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG). SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR)-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure.

  3. The Flaxseed-Derived Lignan Phenolic Secoisolariciresinol Diglucoside (SDG Protects Non-Malignant Lung Cells from Radiation Damage

    Directory of Open Access Journals (Sweden)

    Anastasia Velalopoulou

    2015-12-01

    Full Text Available Plant phenolic compounds are common dietary antioxidants that possess antioxidant and anti-inflammatory properties. Flaxseed (FS has been reported to be radioprotective in murine models of oxidative lung damage. Flaxseed’s protective properties are attributed to its main biphenolic lignan, secoisolariciresinol diglucoside (SDG. SDG is a free radical scavenger, shown in cell free systems to protect DNA from radiation-induced damage. The objective of this study was to investigate the in vitro radioprotective efficacy of SDG in murine lung cells. Protection against irradiation (IR-induced DNA double and single strand breaks was assessed by γ-H2AX labeling and alkaline comet assay, respectively. The role of SDG in modulating the levels of cytoprotective enzymes was evaluated by qPCR and confirmed by Western blotting. Additionally, effects of SDG on clonogenic survival of irradiated cells were evaluated. SDG protected cells from IR-induced death and ameliorated DNA damage by reducing mean comet tail length and percentage of γ-H2AX positive cells. Importantly, SDG significantly increased gene and protein levels of antioxidant HO-1, GSTM1 and NQO1. Our results identify the potent radioprotective properties of the synthetic biphenolic SDG, preventing DNA damage and enhancing the antioxidant capacity of normal lung cells; thus, rendering SDG a potential radioprotector against radiation exposure.

  4. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    Science.gov (United States)

    Rationale: Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  5. Photoexcited riboflavin induces oxidative damage to human serum albumin

    Science.gov (United States)

    Hirakawa, Kazutaka; Yoshioka, Takuto

    2015-08-01

    Photoexcited riboflavin induced damage of human serum albumin (HSA), a water soluble protein, resulting in the diminishment of fluorescence from the tryptophan residue. Because riboflavin hardly photosensitized singlet oxygen generation and sodium azide, a singlet oxygen quencher, did not inhibit protein damage, electron transfer-mediated oxidation of HSA was speculated. Fluorescence lifetime of riboflavin was not affected by HSA, suggesting that the excited triplet state of riboflavin is responsible for protein damage through electron transfer. In addition, the preventive effect of xanthone derivatives, triplet quenchers, on photosensitized protein damage could be evaluated using this photosensitized reaction system of riboflavin and HSA.

  6. Macrophages as key elements of Mixed-oxide [U-Pu(O2)] distribution and pulmonary damage after inhalation?

    Science.gov (United States)

    Van der Meeren, Anne; Moureau, Agnes; Griffiths, Nina M

    2014-11-01

    Abstract Purpose: To investigate the consequences of alveolar macrophage (AM) depletion on Mixed OXide fuel (MOX: U, Pu oxide) distribution and clearance, as well as lung damage following MOX inhalation. Rats were exposed to MOX by nose only inhalation. AM were depleted with intratracheal administration of liposomal clodronate at 6 weeks. Lung changes, macrophage activation, as well as local and systemic actinide distribution were studied up to 3 months post-inhalation. Clodronate administration modified excretion/retention patterns of α activity. At 3 months post-inhalation lung retention was higher in clodronate-treated rats compared to Phosphate Buffered Saline (PBS)-treated rats, and AM-associated α activity was also increased. Retention in liver was higher in clodronate-treated rats and fecal and urinary excretions were lower. Three months after inhalation, rats exhibited lung fibrotic lesions and alveolitis, with no marked differences between the two groups. Foamy macrophages of M2 subtype [inducible Nitric Oxide Synthase (iNOS) negative but galectin-3 positive] were frequently observed, in correlation with the accumulation of MOX particles. AM from all MOX-exposed rats showed increased chemokine levels as compared to sham controls. Despite the transient reduced AM numbers in clodronate-treated animals no major differences on lung damage were observed as compared to non-treated rats after MOX inhalation. The higher lung activity retention in rats receiving clodronate seems to be part of a general inflammatory response and needs further investigation.

  7. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  8. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, Lisa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)]. E-mail: lisag@pharm.unifi.it; Bellandi, Serena [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Pitozzi, Vanessa [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Fabbri, Paolo [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Dolara, Piero [Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy); Moretti, Silvia [Department of Dermatological Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence (Italy)

    2004-11-22

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo.

  9. Increased oxidative DNA damage in mononuclear leukocytes in vitiligo

    International Nuclear Information System (INIS)

    Giovannelli, Lisa; Bellandi, Serena; Pitozzi, Vanessa; Fabbri, Paolo; Dolara, Piero; Moretti, Silvia

    2004-01-01

    Vitiligo is an acquired pigmentary disorder of the skin of unknown aetiology. The autocytotoxic hypothesis suggests that melanocyte impairment could be related to increased oxidative stress. Evidences have been reported that in vitiligo oxidative stress might also be present systemically. We used the comet assay (single cell alkaline gel electrophoresis) to evaluate DNA strand breaks and DNA base oxidation, measured as formamidopyrimidine DNA glycosylase (FPG)-sensitive sites, in peripheral blood cells from patients with active vitiligo and healthy controls. The basal level of oxidative DNA damage in mononuclear leukocytes was increased in vitiligo compared to normal subjects, whereas DNA strand breaks (SBs) were not changed. This alteration was not accompanied by a different capability to respond to in vitro oxidative challenge. No differences in the basal levels of DNA damage in polymorphonuclear leukocytes were found between patients and healthy subjects. Thus, this study supports the hypothesis that in vitiligo a systemic oxidative stress exists, and demonstrates for the first time the presence of oxidative alterations at the nuclear level. The increase in oxidative DNA damage shown in the mononuclear component of peripheral blood leukocytes from vitiligo patients was not particularly severe. However, these findings support an adjuvant role of antioxidant treatment in vitiligo

  10. Seawater immersion aggravates burn-associated lung injury and inflammatory and oxidative-stress responses.

    Science.gov (United States)

    Ma, Jun; Wang, Ying; Wu, Qi; Chen, Xiaowei; Wang, Jiahan; Yang, Lei

    2017-08-01

    With the increasing frequency of marine development activities and local wars at sea, the incidence of scald burns in marine accidents or wars has been increasing yearly. Various studies have indicated that immersion in seawater has a systemic impact on some organs of animals or humans with burn. Thus, for burn/scald injuries after immersion in seawater, it is desirable to study the effects and mechanisms of action on important organs. In the present study, we aimed to investigate the effect of immersion in seawater on lung injury, inflammatory and oxidative-stress responses in scalded rats. The structural damage to lungs was detected by hematoxylin and eosin staining and the results showed that seawater immersion aggravated structural lung injury in scalded rats. The expression of HMGB1 in lung tissues was detected by immunohistochemical analysis and the results showed that seawater immersion increased HMGB1 expression in lung tissues of scalded rats. Apoptosis in lung tissues was detected by terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling (TUNEL) staining and the results showed that seawater immersion increased apoptosis rate in lung tissues of scalded rats. In addition, the expression levels of TNF-α, IL-6, IL-8, SOD, and MDA in serum were analyzed by enzyme-linked immunosorbent assays (ELISAs) and the results showed that seawater immersion induced secretion of proinflammatory factors (TNF-α, IL-6, and IL-8), increased MDA protein level, and suppressed SOD activity in the serum of scalded rats. Furthermore, measurement of plasma volume and pH showed that seawater immersion decreased plasma volume and pH value. Overall, the results indicated that all effects induced by immersion in seawater in scalded rats are more pronounced than those induced by freshwater. In conclusion, seawater immersion may aggravate lung injury and enhance inflammatory and oxidative-stress responses after burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights

  11. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs

    Directory of Open Access Journals (Sweden)

    Ronaldo Lopes Torres

    2014-06-01

    Full Text Available Objective: To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO and total reactive antioxidant potential (TRAP, in rat lungs. Methods: Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.; acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days; and chronic control, comprising rats receiving normal drinking water. Results: The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. Conclusions: Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels.

  12. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  13. Solubility of indium-tin oxide in simulated lung and gastric fluids: Pathways for human intake.

    Science.gov (United States)

    Andersen, Jens Christian Østergård; Cropp, Alastair; Paradise, Diane Caroline

    2017-02-01

    From being a metal with very limited natural distribution, indium (In) has recently become disseminated throughout the human society. Little is known of how In compounds behave in the natural environment, but recent medical studies link exposure to In compounds to elevated risk of respiratory disorders. Animal tests suggest that exposure may lead to more widespread damage in the body, notably the liver, kidneys and spleen. In this paper, we investigate the solubility of the most widely used In compound, indium-tin oxide (ITO) in simulated lung and gastric fluids in order to better understand the potential pathways for metals to be introduced into the bloodstream. Our results show significant potential for release of In and tin (Sn) in the deep parts of the lungs (artificial lysosomal fluid) and digestive tract, while the solubility in the upper parts of the lungs (the respiratory tract or tracheobronchial tree) is very low. Our study confirms that ITO is likely to remain as solid particles in the upper parts of the lungs, but that particles are likely to slowly dissolve in the deep lungs. Considering the prolonged residence time of inhaled particles in the deep lung, this environment is likely to provide the major route for uptake of In and Sn from inhaled ITO nano- and microparticles. Although dissolution through digestion may also lead to some uptake, the much shorter residence time is likely to lead to much lower risk of uptake. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Targeting the Renin–Angiotensin System Combined With an Antioxidant Is Highly Effective in Mitigating Radiation-Induced Lung Damage

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Javed [Ontario Cancer Institute and the Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Radiation Medicine Program, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Jelveh, Salomeh [Radiation Medicine Program, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Zaidi, Asif [Ontario Cancer Institute and the Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Doctrow, Susan R. [Pulmonary Center, Department of Medicine, Boston University, Boston, Massachusetts (United States); Medhora, Meetha [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Hill, Richard P., E-mail: hill@uhnres.utoronto.ca [Ontario Cancer Institute and the Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2014-07-15

    Purpose: To investigate the outcome of suppression of the renin angiotensin system using captopril combined with an antioxidant (Eukarion [EUK]-207) for mitigation of radiation-induced lung damage in rats. Methods and Materials: The thoracic cavity of female Sprague-Dawley rats was irradiated with a single dose of 11 Gy. Treatment with captopril at a dose of 40 mg/kg/d in drinking water and EUK-207 given by subcutaneous injection (8 mg/kg daily) was started 1 week after irradiation (PI) and continuing until 14 weeks PI. Breathing rate was monitored until the rats were killed at 32 weeks PI, when lung fibrosis was assessed by lung hydroxyproline content. Lung levels of the cytokine transforming growth factor-β1 and macrophage activation were analyzed by immunohistochemistry. Oxidative DNA damage was assessed by 8-hydroxy-2-deoxyguanosine levels, and lipid peroxidation was measured by a T-BARS assay. Results: The increase in breathing rate in the irradiated rats was significantly reduced by the drug treatments. The drug treatment also significantly decreased the hydroxyproline content, 8-hydroxy-2-deoxyguanosine and malondialdehyde levels, and levels of activated macrophages and the cytokine transforming growth factor-β1 at 32 weeks. Almost complete mitigation of these radiation effects was observed by combining captopril and EUK-207. Conclusion: Captopril and EUK-207 can provide mitigation of radiation-induced lung damage out to at least 32 weeks PI after treatment given 1-14 weeks PI. Overall the combination of captopril and EUK-207 was more effective than the individual drugs used alone.

  15. Endogenous melatonin and oxidatively damaged guanine in DNA

    DEFF Research Database (Denmark)

    Davanipour, Zoreh; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were...... attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. METHODS: Mother...

  16. Oxidative stress and lung function profiles of male smokers free from ...

    African Journals Online (AJOL)

    Oxidative stress and lung function profiles of male smokers free from COPD compared to those with COPD: A case-control study. ... However, conclusions about the role of blood or lung oxidative stress markers were disparate. Aims: To ... Keywords: inflammation; lung disease; spirometry; tobacco; sedentarily; stress oxidant ...

  17. Preterm newborns show slower repair of oxidative damage and paternal smoking associated DNA damage.

    Science.gov (United States)

    Vande Loock, Kim; Ciardelli, Roberta; Decordier, Ilse; Plas, Gina; Haumont, Dominique; Kirsch-Volders, Micheline

    2012-09-01

    Newborns have to cope with hypoxia during delivery and a sudden increase in oxygen at birth. Oxygen will partly be released as reactive oxygen species having the potential to cause damage to DNA and proteins. In utero, increase of most (non)-enzymatic antioxidants occurs during last weeks of gestation, making preterm neonates probably more sensitive to oxidative stress. Moreover, it has been hypothesized that oxidative stress might be the common etiological factor for certain neonatal diseases in preterm infants. The aim of this study was to assess background DNA damage; in vitro H(2)O(2) induced oxidative DNA damage and repair capacity (residual DNA damage) in peripheral blood mononucleated cells from 25 preterm newborns and their mothers. In addition, demographic data were taken into account and repair capacity of preterm was compared with full-term newborns. Multivariate linear regression analysis revealed that preterm infants from smoking fathers have higher background DNA damage levels than those from non-smoking fathers, emphasizing the risk of paternal smoking behaviour for the progeny. Significantly higher residual DNA damage found after 15-min repair in preterm children compared to their mothers and higher residual DNA damage after 2 h compared to full-term newborns suggest a slower DNA repair capacity in preterm children. In comparison with preterm infants born by caesarean delivery, preterm infants born by vaginal delivery do repair more slowly the in vitro induced oxidative DNA damage. Final impact of passive smoking and of the slower DNA repair activity of preterm infants need to be confirmed in a larger study population combining transgenerational genetic and/or epigenetic effects, antioxidant levels, genotypes, repair enzyme efficiency/levels and infant morbidity.

  18. Oxidative DNA damage during sleep periods among nightshift workers.

    Science.gov (United States)

    Bhatti, Parveen; Mirick, Dana K; Randolph, Timothy W; Gong, Jicheng; Buchanan, Diana Taibi; Zhang, Junfeng Jim; Davis, Scott

    2016-08-01

    Oxidative DNA damage may be increased among nightshift workers because of suppression of melatonin, a cellular antioxidant, and/or inflammation related to sleep disruption. However, oxidative DNA damage has received limited attention in previous studies of nightshift work. From two previous cross-sectional studies, urine samples collected during a night sleep period for 217 dayshift workers and during day and night sleep (on their first day off) periods for 223 nightshift workers were assayed for 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, using high-performance liquid chromatography with electrochemical detection. Urinary measures of 6-sulfatoxymelatonin (aMT6s), a marker of circulating melatonin levels, and actigraphy-based sleep quality data were also available. Nightshift workers during their day sleep periods excreted 83% (p=0.2) and 77% (p=0.03) of the 8-OH-dG that dayshift workers and they themselves, respectively, excreted during their night sleep periods. Among nightshift workers, higher aMT6s levels were associated with higher urinary 8-OH-dG levels, and an inverse U-shaped trend was observed between 8-OH-dG levels and sleep efficiency and sleep duration. Reduced excretion of 8-OH-dG among nightshift workers during day sleep may reflect reduced functioning of DNA repair machinery, which could potentially lead to increased cellular levels of oxidative DNA damage. Melatonin disruption among nightshift workers may be responsible for the observed effect, as melatonin is known to enhance repair of oxidative DNA damage. Quality of sleep may similarly impact DNA repair. Cellular levels of DNA damage will need to be evaluated in future studies to help interpret these findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Oxidative damage of DNA in subjects occupationally exposed to lead.

    Science.gov (United States)

    Pawlas, Natalia; Olewińska, Elżbieta; Markiewicz-Górka, Iwona; Kozłowska, Agnieszka; Januszewska, Lidia; Lundh, Thomas; Januszewska, Ewa; Pawlas, Krystyna

    2017-09-01

    Exposure to lead (Pb) in environmental and occupational settings continues to be a serious public health problem and may pose an elevated risk of genetic damage. The aim of this study was to assess the level of oxidative stress and DNA damage in subjects occupationally exposed to lead. We studied a population of 78 male workers exposed to lead in a lead and zinc smelter and battery recycling plant and 38 men from a control group. Blood lead levels were detected by graphite furnace atomic absorption spectrophotometry and plasma lead levels by inductively coupled plasma-mass spectrometry. The following assays were performed to assess the DNA damage and oxidative stress: comet assay, determination of 8-hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation and total antioxidant status (TAS). The mean concentration of lead in the blood of the exposed group was 392 ± 103 μg/L and was significantly higher than in the control group (30.3 ± 29.4 μg/L, p lead exposure [lead in blood, lead in plasma, zinc protoporphyrin (ZPP)] and urine concentration of 8-OHdG. The level of oxidative damage of DNA was positively correlated with the level of lipid peroxidation (TBARS) and negatively with total anti-oxidative status (TAS). Our study suggests that occupational exposure causes an increase in oxidative damage to DNA, even in subjects with relatively short length of service (average length of about 10 years). 8-OHdG concentration in the urine proved to be a sensitive and non-invasive marker of lead induced genotoxic damage.

  20. Surfactant Protein D is a candidate biomarker for subclinical tobacco smoke-induced lung damage

    DEFF Research Database (Denmark)

    Lock Johansson, Sofie; Tan, Qihua; Holst, Rene

    2014-01-01

    Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage. The associat......Variation in Surfactant Protein D (SP-D) is associated with lung function in tobacco smoke-induced chronic respiratory disease. We hypothesized that the same association exists in the general population and could be used to identify individuals sensitive to smoke-induced lung damage...... or haplotypes, and expiratory lung function were assessed using twin study methodology and mixed-effects models. Significant inverse associations were evident between sSP-D and the forced expiratory volume in 1 second and forced vital capacity in the presence of current tobacco smoking but not in non...... with lung function measures in interaction with tobacco smoking. The obtained data suggest sSP-D as a candidate biomarker in risk assessments for subclinical tobacco smoke-induced lung damage. The data and derived conclusion warrant confirmation in a longitudinal population following chronic obstructive...

  1. Biomarkers of oxidative damage to DNA and repair

    DEFF Research Database (Denmark)

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone

    2008-01-01

    environmental factors, including particulate air pollution, cause oxidative damage to DNA, whereas diets rich in fruit and vegetables or antioxidant supplements may reduce the levels and enhance repair. Urinary excretion of 8-oxodG, genotype and expression of OGG1 have been associated with risk of cancer...

  2. Cancer risk and oxidative DNA damage in man

    DEFF Research Database (Denmark)

    Loft, S; Poulsen, H E

    1996-01-01

    with a mechanistically based increased risk of cancer, including Fanconi anemia, chronic hepatitis, cystic fibrosis, and various autoimmune diseases, the biomarker studies indicate an increased rate of oxidative DNA damage or in some instances deficient repair. Human studies support the experimentally based notion...

  3. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Renata Salatti Ferrari

    2015-01-01

    Full Text Available Ischemia-reperfusion (IR injury is directly related to the formation of reactive oxygen species (ROS, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.

  4. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.

    Science.gov (United States)

    Doudican, Nicole A; Song, Binwei; Shadel, Gerald S; Doetsch, Paul W

    2005-06-01

    Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.

  5. Repeated exposures to roadside particulate matter extracts suppresses pulmonary defense mechanisms, resulting in lipid and protein oxidative damage.

    Science.gov (United States)

    Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2016-03-01

    Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nigella sativa improves the carbon tetrachloride-induced lung damage in rats through repression of erk/akt pathway

    Directory of Open Access Journals (Sweden)

    Abdullah Aslan

    2015-08-01

    Full Text Available The objective of this study was to examine whether Nigella sativa plays a protective role against the damage in the lung by administering carbon tetra-chloride (CCl4 to rats. Male Wistar albino (n=28, 8 weeks old rats were divided into 4 groups: a negative control: Normal water consuming group to which no CCl4 and N. sativa was administered; b Positive control: Normal water consuming group to which no CCl4 was administered but N. sativa was administered; c CCl4 Group: Normal water consuming and group to which CCl4 was administered (1.5 mL/kg, ip; d N. sativa plus CCl4 group: CCl4 and N. sativa administered group (1.5 mL/kg, ip. Caspase-3, caspase -9, erk, akt protein syntheses were examined via Western blotting. Malondialdehyde determination in lung tissue was made using spectrophotometer. As a results, malondialdehyde amount was decreased in the CCl4 plus N. sativa group in comparison to CCl4 group whereas caspase-3, caspase-9 was increased and erk, akt had decreased. These results show that N. sativa protects the lung against oxidative damage.

  7. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  8. Carvacrol and Pomegranate Extract in Treating Methotrexate-Induced Lung Oxidative Injury in Rats

    Science.gov (United States)

    Şen, Hadice Selimoğlu; Şen, Velat; Bozkurt, Mehtap; Türkçü, Gül; Güzel, Abdulmenap; Sezgi, Cengizhan; Abakay, Özlem; Kaplan, Ibrahim

    2014-01-01

    Background This study was designed to evaluate the effects of carvacrol (CRV) and pomegranate extract (PE) on methotrexate (MTX)-induced lung injury in rats. Material/Methods A total of 32 male rats were subdivided into 4 groups: control (group I), MTX treated (group II), MTX+CRV treated (group III), and MTX+PE treated (group IV). A single dose of 73 mg/kg CRV was administered intraperitoneally to rats in group III on Day 1 of the investigation. To group IV, a dose of 225 mg/kg of PE was administered via orogastric gavage once daily over 7 days. A single dose of 20 mg/kg of MTX was given intraperitoneally to groups II, III, and IV on Day 2. The total duration of experiment was 8 days. Malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) were measured from rat lung tissues and cardiac blood samples. Results Serum and lung specimen analyses demonstrated that MDA, TOS, and OSI levels were significantly greater in group II relative to controls. Conversely, the TAC level was significantly reduced in group II when compared to the control group. Pre-administering either CRV or PE was associated with decreased MDA, TOS, and OSI levels and increased TAC levels compared to rats treated with MTX alone. Histopathological examination revealed that lung injury was less severe in group III and IV relative to group II. Conclusions MTX treatment results in rat lung oxidative damage that is partially counteracted by pretreatment with either CRV or PE. PMID:25326861

  9. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  10. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    International Nuclear Information System (INIS)

    Cheng, Ya-Hsin; Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan; Li, Lih-Ann

    2012-01-01

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  11. Aryl hydrocarbon receptor protects lung adenocarcinoma cells against cigarette sidestream smoke particulates-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ya-Hsin [Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung 40402, Taiwan, ROC (China); Huang, Su-Chin; Lin, Chun-Ju; Cheng, Li-Chuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China); Li, Lih-Ann, E-mail: lihann@nhri.org.tw [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan, ROC (China)

    2012-03-15

    Environmental cigarette smoke has been suggested to promote lung adenocarcinoma progression through aryl hydrocarbon receptor (AhR)-signaled metabolism. However, whether AhR facilitates metabolic activation or detoxification in exposed adenocarcinoma cells remains ambiguous. To address this question, we have modified the expression level of AhR in two human lung adenocarcinoma cell lines and examined their response to an extract of cigarette sidestream smoke particulates (CSSP). We found that overexpression of AhR in the CL1-5 cell line reduced CSSP-induced ROS production and oxidative DNA damage, whereas knockdown of AhR expression increased ROS level in CSSP-exposed H1355 cells. Oxidative stress sensor Nrf2 and its target gene NQO1 were insensitive to AhR expression level and CSSP treatment in human lung adenocarcinoma cells. In contrast, induction of AhR expression concurrently increased mRNA expression of xenobiotic-metabolizing genes CYP1B1, UGT1A8, and UGT1A10 in a ligand-independent manner. It appeared that AhR accelerated xenobiotic clearing and diminished associated oxidative stress by coordinate regulation of a set of phase I and II metabolizing genes. However, the AhR-signaled protection could not shield cells from constant oxidative stress. Prolonged exposure to high concentrations of CSSP induced G0/G1 cell cycle arrest via the p53–p21–Rb1 signaling pathway. Despite no effect on DNA repair rate, AhR facilitated the recovery of cells from growth arrest when CSSP exposure ended. AhR-overexpressing lung adenocarcinoma cells exhibited an increased anchorage-dependent and independent proliferation when recovery from exposure. In summary, our data demonstrated that AhR protected lung adenocarcinoma cells against CSSP-induced oxidative stress and promoted post-exposure clonogenicity. -- Highlights: ► AhR expression level influences cigarette sidestream smoke-induced ROS production. ► AhR reduces oxidative stress by coordinate regulation of

  12. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  13. Bee products prevent agrichemical-induced oxidative damage in fish.

    Directory of Open Access Journals (Sweden)

    Daiane Ferreira

    Full Text Available In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™ and a group that was exposed to 0.88 mg L(-1 of TEB alone (corresponding to 16.6% of the 96-h LC50. We show that waterborne bee products, including royal jelly (RJ, honey (H, bee pollen (BP and propolis (P, reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD, catalase (CAT and glutathione-S-transferase (GST are increased.

  14. Bee products prevent agrichemical-induced oxidative damage in fish.

    Science.gov (United States)

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; da Rosa, João Gabriel Santos; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L(-1) of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased.

  15. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    Science.gov (United States)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  16. Supplementation with vitamin A enhances oxidative stress in the lungs of rats submitted to aerobic exercise.

    Science.gov (United States)

    Gasparotto, Juciano; Petiz, Lyvia Lintzmaier; Girardi, Carolina Saibro; Bortolin, Rafael Calixto; de Vargas, Amanda Rodrigues; Henkin, Bernardo Saldanha; Chaves, Paloma Rodrigues; Roncato, Sabrina; Matté, Cristiane; Zanotto-Filho, Alfeu; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2015-12-01

    Exercise training induces reactive oxygen species production and low levels of oxidative damage, which are required for induction of antioxidant defenses and tissue adaptation. This process is physiological and essential to improve physical conditioning and performance. During exercise, endogenous antioxidants are recruited to prevent excessive oxidative stress, demanding appropriate intake of antioxidants from diet or supplements; in this context, the search for vitamin supplements that enhance the antioxidant defenses and improve exercise performance has been continuously increasing. On the other hand, excess of antioxidants may hinder the pro-oxidant signals necessary for this process of adaptation. The aim of this study was to investigate the effects of vitamin A supplementation (2000 IU/kg, oral) upon oxidative stress and parameters of pro-inflammatory signaling in lungs of rats submitted to aerobic exercise (swimming protocol). When combined with exercise, vitamin A inhibited biochemical parameters of adaptation/conditioning by attenuating exercise-induced antioxidant enzymes (superoxide dismutase and glutathione peroxidase) and decreasing the content of the receptor for advanced glycation end-products. Increased oxidative damage to proteins (carbonylation) and lipids (lipoperoxidation) was also observed in these animals. In sedentary animals, vitamin A decreased superoxide dismutase and increased lipoperoxidation. Vitamin A also enhanced the levels of tumor necrosis factor alpha and decreased interleukin-10, effects partially reversed by aerobic training. Taken together, the results presented herein point to negative effects associated with vitamin A supplementation at the specific dose here used upon oxidative stress and pro-inflammatory cytokines in lung tissues of rats submitted to aerobic exercise.

  17. LYCOPENE EFFICIENCY IN THE MODULATION OF OXIDATIVE DAMAGE IN DIFFERENT TISSUES OF GAMMA IRRADIATED RATS

    International Nuclear Information System (INIS)

    EL-TAHAWY, N.A.; NADA, A.S.; REZK, R.G.

    2008-01-01

    Exposure to ionizing radiation induces oxidative stress that has been recognized as an important etiological factor in the causation of several chronic diseases. Lycopene, a carotenoid almost exclusively present in tomatoes and tomatoes products, is a lipid soluble antioxidant claimed to possess cardio protective and anticancer properties. The present study was designed to determine the possible modulator effects of lycopene on radiation-induced oxidative damage to liver, spleen and lung tissues. Animals were supplemented with lycopene (5 mg/kg body weight/ day) by gavages for two weeks before whole body exposure to gamma rays and within the period of irradiation (3 successive doses, each of 3 Gy at 72 hours intervals). Animals were sacrificed on the 3 r d day post the last irradiation session.The results obtained in the present study showed that whole body gamma irradiation produced oxidative stress manifested by significant elevation in lipid peroxides levels measured as thiobarbituric acid reactive substances (TBARS) associated with significant decrease of nitric oxide (NO) content. Non-significant change in total cupper (Cu) in the three tissues was recorded while significant increase of total iron (Fe) was observed in liver and spleen tissues only. Liver tissue of irradiated rats showed significant decrease in the activities of the antioxidant enzymes as superoxide dismutase (SOD) and catalase (CAT). In spleen tissues, there was a significant increase of SOD and significant decrease of CAT activities while in lung tissues, both SOD and CAT activities showed significant increase.Histological observations of photomicrograph of liver sections showed that radiation-induced sever damage obvious by dilated portal vein, ruptured hepatocytes, necrotic, pyknotic, karyolitic nuclei and vacuolated cytoplasm. In spleen tissue, radiation was induced degeneration of lymphatic nodules, dilation follicular artery and marked hemorrhage. In lung tissue, radiation- induces ill

  18. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation

    Directory of Open Access Journals (Sweden)

    Arya A

    2013-11-01

    Full Text Available Aditya Arya,1 Niroj Kumar Sethy,1 Sushil Kumar Singh,2 Mainak Das,3 Kalpana Bhargava1 1Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Delhi, 2Functional Materials Division, Solid State Physics Laboratory, Defence Research and Development Organization, Delhi, 3Biological Science and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India Background: Cerium oxide nanoparticles (nanoceria are effective at quenching reactive oxygen species (ROS in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. Methods: A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]. Animals were injected intraperitoneally with either a dose of 0.5 µg/kg body weight/week of nanoceria (T and T+H groups or vehicle (C and H groups for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Results: Spherical nanoceria of 7–10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated

  19. Viewing oxidative stress through the lens of oxidative signalling rather than damage.

    Science.gov (United States)

    Foyer, Christine H; Ruban, Alexander V; Noctor, Graham

    2017-03-07

    Concepts of the roles of reactive oxygen species (ROS) in plants and animals have shifted in recent years from focusing on oxidative damage effects to the current view of ROS as universal signalling metabolites. Rather than having two opposing activities, i.e. damage and signalling, the emerging concept is that all types of oxidative modification/damage are involved in signalling, not least in the induction of repair processes. Examining the multifaceted roles of ROS as crucial cellular signals, we highlight as an example the loss of photosystem II function called photoinhibition, where photoprotection has classically been conflated with oxidative damage. © 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution Licence 4.0 (CC BY).

  20. Role of oxidative damage in toxicity of particulates

    DEFF Research Database (Denmark)

    Møller, Peter; Jacobsen, Nicklas R; Folkmann, Janne K

    2010-01-01

    composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels......Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical...

  1. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    International Nuclear Information System (INIS)

    Risom, Lotte

    2004-01-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  2. DNA damage and defence gene expression after oxidative stress induced by x-rays and diesel exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Risom, Lotte

    2004-07-01

    Particulate air pollution is one the most important environmental health factors for people living in cities. Especially the exhaust particles from traffic are possible causes for cancer and cardiopulmonary diseases. The aim of this thesis was to characterize the health effects of diesel exhaust particles (DEP) by inducing oxidative stress and analyse the underlying mechanisms. Methods for determining oxidative stress, DNA damage, and gene expression were validated and calibrated in lung tissue by studying the dose response relations after ionizing radiation. The study showed the feasibility of partial-body x-ray irradiation as an in vivo model for induction and repair of oxidative DNA damage, of DNA repair enzymes expression, and antioxidant defense genes. A 'nose-only' mouse model for inhalation of ultra-fine particles showed that particles induce oxidative DNA damage in lung tissue and in bronchoalveolar lavage cells. The exposure increased the expression of HO-1 mRNA and oxoguanine DNA glycosylase OGG1 mRNA. The levels of 8-oxodG and OGG1 mRNA were mirror images. Colon and liver were analysed after administration of DEP in the diet with or without increasing doses of sucrose. This study indicated that DEP induces DNA adducts and oxidative stress through formation of DNA strand breaks, DNA repair enzyme expression, apoptosis, and protein oxidisation in colon and liver at relatively low exposure doses. The thesis is based on four published journal articles. (ln)

  3. Bicarbonate modulates oxidative and functional damage in ischemia-reperfusion.

    Science.gov (United States)

    Queliconi, Bruno B; Marazzi, Thire B M; Vaz, Sandra M; Brookes, Paul S; Nehrke, Keith; Augusto, Ohara; Kowaltowski, Alicia J

    2013-02-01

    The carbon dioxide/bicarbonate (CO(2)/HCO(3)(-)) pair is the main biological pH buffer. However, its influence on biological processes, and in particular redox processes, is still poorly explored. Here we study the effect of CO(2)/HCO(3)(-) on ischemic injury in three distinct models (cardiac HL-1 cells, perfused rat heart, and Caenorhabditis elegans). We found that, although various concentrations of CO(2)/HCO(3)(-) do not affect function under basal conditions, ischemia-reperfusion or similar insults in the presence of higher CO(2)/HCO(3)(-) resulted in greater functional loss associated with higher oxidative damage in all models. Because the effect of CO(2)/HCO(3)(-) was observed in all models tested, we believe this buffer is an important determinant of oxidative damage after ischemia-reperfusion. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Field oxide radiation damage measurements in silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  5. Deformability of Erythrocytes and Oxidative Damage in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Mukerrem Betul Yerer

    2012-04-01

    Full Text Available Purpose: A lowered cerebral perfusion as a consequence of hemodynamic microcirculatory insufficiency is one of the factors underlying in Alzheimer's disease, which is a neurodegenerative disorder leading to progressive cognitive impairment. Erythrocyte deformability is one of the major factors affecting the microcirculatory hemodynamics which is closely related to the oxidative damage. The aim of this study is to investigate the relationship between the erythrocyte deformability, nitric oxide levels and oxidative stress in Alzheimer's disease. Methods: The blood samples of 30 elderly people in three groups consisting of healthy control and different severities of the disease (low and severe were used. Then the erythrocytes were isolated and the deformability of erythrocytes was determined by Rheodyne SSD evaluating the elongation indexes of the erythrocytes under different shear stress. The catalase, glutathione peroxidase and plasma nitric oxide levels were measured spectrophotometric ally. Results: The plasma nitric oxide levels, catalase activities were found significantly higher and glutathione peroxidase activity was significantly lower in severe Alzheimer's disease patients compared to the control group. However, the deformability of erythrocytes was not significantly affected from these alterations. Conclusion: the oxidant-antioxidant status is dramatically changed in Alzheimer's disease patients with the severity of the disease and similar alterations were seen in the nitric oxide levels without any significant change in erythrocyte deformability. [Cukurova Med J 2012; 37(2.000: 65-75

  6. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  7. Role of oxidative DNA damage in genome instability and cancer

    International Nuclear Information System (INIS)

    Bignami, M.; Kunkel, T.

    2009-01-01

    Inactivation of mismatch repair (MMR) is associated with a dramatic genomic instability that is observed experimentally as a mutator phenotype and micro satellite instability (MSI). It has been implicit that the massive genetic instability in MMR defective cells simply reflects the accumulation of spontaneous DNA polymerase errors during DNA replication. We recently identified oxidation damage, a common threat to DNA integrity to which purines are very susceptible, as an important cofactor in this genetic instability

  8. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    International Nuclear Information System (INIS)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Yu, Yingchun; Aschner, Michael

    2009-01-01

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F 2 -isoprostanes (F 2 -IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 μM Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E 2 (PGE 2 ). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F 2 -IsoPs and PGE 2 in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  9. Modeling of the Nitric Oxide Transport in the Human Lungs.

    Science.gov (United States)

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  10. Evaluation of sex specificity on oxidative stress induced in lungs of mice irradiated by 12C6+ ions

    International Nuclear Information System (INIS)

    Liu Yang; Zhang Hong; Zhang Luwei

    2008-01-01

    The aim of this work is to identify if there is sex specificity on 12 C 6+ ion-induced oxidative damage in mouse lung at different time points. Kun-Ming mice were divided into two groups, each composed of six males and six females: control group and irradiation group with a single acute dose of 4 Gy. Animals were sacrificed at 2, 4 and 12 h respectively, there lungs were removed immediately, and the oxidative stress-related biomarkers were measured by Diagnostic Reagent Kits. The results showed that the relative activities of superoxide dismutase (4 h), catalase (2 h) and Se-dependent glutathione peroxidase (12 h) have significant changes (P 12 C 6+ ion is pronounced in the lungs of males. We thought that these sex-responded differences may be attributed to the influence of sex hormones. (authors)

  11. Elevated oxidative damage in kitchen workers in Chinese restaurants.

    Science.gov (United States)

    Wang, Jiajia; Luo, Xiaolin; Xu, Bin; Wei, Jun; Zhang, Zhenzhen; Zhu, Huilian

    2011-01-01

    To investigate associations between occupational exposure to cooking oil fumes (COFs) and potential oxidative and genotoxic effects in kitchen workers. Sixty-seven male kitchen workers and 43 male controls from Chinese restaurants in Guangzhou were recruited. For all the participants, the levels of 1-hydroxypyrene (1-OHP) and 8-hydroxy-2-deoxyguanosine (8-oxodG) in urine, binucleated micronucleus (BNMN) frequency, comet tail length and tail DNA% in peripheral blood lymphocytes (PBLs) and malondialdehyde (MDA) and superoxide dismutase (SOD) in serum were measured. The inhalable particulates (PM(10)) in their workplaces were also monitored. Our results showed that the exposed group had a significantly higher median level of urinary 1-OHP than that of the control group (pkitchen and cooking time per day. All these positive associations remained after adjusting for the four confounders in a subsequent multivariate linear regression analysis. Occupational exposure to COFs led to increased oxidative damage in Chinese kitchen workers. The health consequences of these oxidative changes need further investgation. Urinary 1-OHP and 8-oxodG are noninvasive and effective biomarkers for assessment of oxidative damage in restaurants workers.

  12. Dietary unsaponifiable fraction of extra virgin olive oil supplementation attenuates lung injury and DNA damage of rats co-exposed to aluminum and acrylamide.

    Science.gov (United States)

    Ghorbel, Imen; Chaâbane, Mariem; Boudawara, Ons; Kamoun, Naziha Grati; Boudawara, Tahia; Zeghal, Najiba

    2016-10-01

    Aluminum chloride (AlCl3) and acrylamide (ACR) are well known as environmental pollutants inducing oxidative stress. Our study investigated the effects of these contaminants and if the hydrophilic fraction of extra virgin olive oil was able to prevent lung oxidative stress and DNA damage. Animals were divided into four groups of six each: group 1, serving as controls, received distilled water; group 2 received in drinking water aluminum chloride (50 mg/ kg body weight) and by gavage acrylamide (20 mg/kg body weight); group 3 received both aluminum and acrylamide in the same way and the same dose as group 2 and hydrophilic fraction from olive oil (OOHF) (1 ml) by gavage; group 4 received only OOHF by gavage. Exposure of rats to both aluminum and acrylamide provoked oxidative stress in lung tissue based on biochemical parameters and histopathological alterations. In fact, we have observed an increase in malondialdehyde (MDA), H2O2, and advanced oxidation protein product (AOPP) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH), and vitamin C levels. Activities of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were also decreased. Histopathological changes in lung tissue were noted like emphysema, vascular congestion, and infiltration of inflammatory cells. A random DNA degradation was observed on agarose gel in the lung of AlCl3 and acrylamide (ACR)-treated rats. Co-administration of OOHF to treated rats improved biochemical parameters to near control values and lung histoarchitecture. The smear formation of genomic DNA was reduced. The hydrophilic fraction of extra virgin olive oil might provide a basis for developing a new dietary supplementation strategy in order to prevent lung tissue damage.

  13. The role of zinc supplementation in the inhibition of tissue damage caused by exposure to electromagnetic field in rat lung and liver tissues.

    Science.gov (United States)

    Baltaci, A K; Mogulkoc, R; Salbacak, A; Celik, I; Sivrikaya, A

    2012-01-01

    The objective of the present study was to examine the effects of zinc supplementation on the oxidant damage in lung and liver tissues in rats exposed to a 50-Hz frequency magnetic field for 5 minutes every other day over a period of 6 months. The study included 24 adult male Sprague-Dawley rats, which were divided into the three groups in equal numbers: Group 1, the control group (G1); Group 2, the group exposed to an electromagnetic field (G2); and Group 3, the group, which was exposed to an EMF and supplemented with zinc (G3). At the end of the 6-month procedures, the animals were decapitated to collect lung and liver tissue samples, in which MDA was analyzed using the "TBARS method (nmol/g/protein)", GSH by the "biuret method (mg/g/protein)" and zinc levels by atomic emission (µg/dl). MDA levels in lung and liver tissues in G2 were higher than those in G1 and G3, and the levels in G3 were higher than those in G1 (pelectromagnetic field caused cellular damage in lung and liver tissues and zinc supplementation inhibited the inflicted cellular damage. Another important result of this study that needs emphasis was that exposure to an electromagnetic field led to a significant decrease in zinc levels in lung and liver tissues (Tab. 3, Ref. 23).

  14. Desferrioxamine Reduces Oxidative Stress in the Lung Contusion

    Directory of Open Access Journals (Sweden)

    Umit Nusret Basaran

    2013-01-01

    Full Text Available Our hypothesis in this study is that desferrioxamine (DFX has therapeutic effects on experimental lung contusions in rats. The rats were divided into four groups (n=8: control, control+DFX, contusion, and contusion+DFX. In the control+DFX and contusion+DFX groups, 100 mg/kg DFX was given intraperitoneally once a day just after the contusion and the day after the contusion. Contusions led to a meaningful rise in the malondialdehyde (MDA level in lung tissue. MDA levels in the contusion+DFX group experienced a significant decline. Glutathione levels were significantly lower in the contusion group than in the control group and significantly higher in the contusion+DFX group. Glutathione peroxidase (GPx and superoxide dismutase (SOD levels in the contusion group were significantly lower than those in the control group. In the contusion+DFX group, SOD and GPx levels were significantly higher than those in the contusion group. In light microscopic evaluation, the contusion and contusion+DFX groups showed edema, hemorrhage, alveolar destruction, and leukocyte infiltration. However, histological scoring of the contusion+DFX group was significantly more positive than that of the contusion group. The iNOS staining in the contusion group was significantly more intensive than that in all other groups. DFX reduced iNOS staining significantly in comparison to the contusion group. This study showed that DFX reduced oxidative stress in lung contusions in rats and histopathologically ensured the recovery of the lung tissue.

  15. Lung damage and pulmonary uptake of serotonin in intact dogs

    International Nuclear Information System (INIS)

    Dawson, C.A.; Christensen, C.W.; Rickaby, D.A.; Linehan, J.H.; Johnston, M.R.

    1985-01-01

    The authors examined the influence of glass bead embolization and oleic acid, dextran, and imipramine infusion on the pulmonary uptake of trace doses of [ 3 H]serotonin and the extravascular volume accessible to [ 14 C]antipyrine in anesthetized dogs. Embolization and imipramine decreased serotonin uptake by 53 and 61%, respectively, but no change was observed with oleic acid or dextran infusion. The extravascular volume accessible to the antipyrine was reduced by 77% after embolization and increased by 177 and approximately 44% after oleic acid and dextran infusion, respectively. The results suggest that when the perfused endothelial surface is sufficiently reduced, as with embolization, the uptake of trace doses of serotonin will be depressed. In addition, decreases in serotonin uptake in response to imipramine in this study and in response to certain endothelial toxins in other studies suggest that serotonin uptake can reveal certain kinds of changes in endothelial function. However, the lack of a response to oleic acid-induced damage in the present study suggests that serotonin uptake is not sensitive to all forms of endothelial damage

  16. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model.

    Science.gov (United States)

    Yumoto, Masato; Nishida, Osamu; Nakamura, Fujio; Katsuya, Hirotada

    2005-01-01

    Reactive oxygen species have been strongly implicated in the pathogenesis of acute lung injury (ALI). Some animal studies suggest that free radical scavengers inhibit the onset of oxidant-induced ALI. Propofol (2,6-diisopropylphenol) is chemically similar to phenol-based free radical scavengers such as the endogenous antioxidant vitamin E. Both in vivo and in vitro studies have suggested that propofol has antioxidant potential. We hypothesized that propofol may attenuate ALI by acting as a free-radical scavenger. We investigated the effects of propofol on oxidant-induced ALI induced by purine and xanthine oxidase (XO), in isolated perfused rabbit lung, in two series of experiments. In series 1, we examined the relationship between the severity of ALI and the presence of hydrogen peroxide (H2O2). In series 2, we evaluated the effects of propofol on attenuating ALI and the dose dependence of these effects. The lungs were perfused for 90 min, and we evaluated the effects on the severity of ALI by monitoring the pulmonary capillary filtration coefficient (Kfc), pulmonary arterial pressure (Ppa), and the pulmonary capillary hydrostatic pressure (Ppc). In series 1, treatment with catalase (an H2O2 scavenger) prior to the addition of purine and XO resulted in complete prevention of ALI, suggesting that H2O2 may be involved closely in the pathogenesis of ALI. In series 2, pretreatment with propofol at concentrations in excess of 0.5 mM significantly inhibited the increases in the Kfc values, and that in excess of 0.75 mM significantly inhibited the increase in the Ppa values. Propofol attenuates oxidant-induced ALI in an isolated perfused rabbit lung model, probably due to its antioxidant action.

  17. Endogenous melatonin and oxidatively damaged guanine in DNA

    Directory of Open Access Journals (Sweden)

    Poulsen Henrik E

    2009-10-01

    Full Text Available Abstract Background A significant body of literature indicates that melatonin, a hormone primarily produced nocturnally by the pineal gland, is an important scavenger of hydroxyl radicals and other reactive oxygen species. Melatonin may also lower the rate of DNA base damage resulting from hydroxyl radical attack and increase the rate of repair of that damage. This paper reports the results of a study relating the level of overnight melatonin production to the overnight excretion of the two primary urinary metabolites of the repair of oxidatively damaged guanine in DNA. Methods Mother-father-daughter(s families (n = 55 were recruited and provided complete overnight urine samples. Total overnight creatinine-adjusted 6-sulphatoxymelatonin (aMT6s/Cr has been shown to be highly correlated with total overnight melatonin production. Urinary 8-oxo-7,8-dihydro-guanine (8-oxoGua results from the repair of DNA or RNA guanine via the nucleobase excision repair pathway, while urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG may possibly result from the repair of DNA guanine via the nucleotide excision repair pathway. Total overnight urinary levels of 8-oxodG and 8-oxoGua are therefore a measure of total overnight guanine DNA damage. 8-oxodG and 8-oxoGua were measured using a high-performance liquid chromatography-electrospray ionization tandem mass spectrometry assay. The mother, father, and oldest sampled daughter were used for these analyses. Comparisons between the mothers, fathers, and daughters were calculated for aMT6s/Cr, 8-oxodG, and 8-oxoGua. Regression analyses of 8-oxodG and 8-oxoGua on aMT6s/Cr were conducted for mothers, fathers, and daughters separately, adjusting for age and BMI (or weight. Results Among the mothers, age range 42-80, lower melatonin production (as measured by aMT6s/CR was associated with significantly higher levels of 8-oxodG (p Conclusion Low levels of endogenous melatonin production among older individuals may lead to

  18. Curcumin Attenuates Methotrexate-Induced Hepatic Oxidative Damage in Rats

    International Nuclear Information System (INIS)

    HEMEIDA, R.A.M.; MOHAFEZ, O.M.

    2008-01-01

    In the present study, we have addressed the ability of curcumin to suppress MTX-induced liver damage. Hepatotoxicity was induced by injection of a single dose of MTX (20 mg/kg I.P.). MTX challenge induced liver damage that was well characterized histopathologically and biochemically. MTX increased relative liver/body weight ratio. Histologically, MTX produced fatty changes in hepatocytes and sinusoidal lining cells, mild necrosis and inflammation. Biochemically, the test battery entailed elevated activities of serum ALT and AST. Liver activities of superoxide dismutase (SOD), catalase (CAT) and level of reduced glutathione (GSH), were notably reduced, while lipid peroxidation, expressed as malondialdhyde (MDA) level was significantly increased. Administration of curcumin (100mg/kg, I.P.) once daily for 5 consecutive days after MTX challenge mitigated the injurious effects of MTX and ameliorated all the altered biochemical parameters. These results showed that administration of curcumin decreases MTX-induced liver damage probably via regulation of oxidant/anti-oxidant balance. In conclusion, the present study indicates that curcumin may be of therapeutic benefit against MTX-cytotoxicity.

  19. Oxidative DNA damage and oxidative stress in lead-exposed workers.

    Science.gov (United States)

    Dobrakowski, M; Pawlas, N; Kasperczyk, A; Kozłowska, A; Olewińska, E; Machoń-Grecka, A; Kasperczyk, S

    2017-07-01

    There are many discrepancies among the results of studies on the genotoxicity of lead. The aim of the study was to explore lead-induced DNA damage, including oxidative damage, in relation to oxidative stress intensity parameters and the antioxidant defense system in human leukocytes. The study population consisted of 100 male workers exposed to lead. According to the blood lead (PbB) levels, they were divided into the following three subgroups: a group with PbB of 20-35 μg/dL (low exposure to lead (LE) group), a group with a PbB of 35-50 µg/dL (medium exposure to lead (ME) group), and a group with a PbB of >50 μg/dL (high exposure to lead (HE) group). The control group consisted of 42 healthy males environmentally exposed to lead (PbB lead exposure induces DNA damage, including oxidative damage, in human leukocytes. The increase in DNA damage was accompanied by an elevated intensity of oxidative stress.

  20. Metoprolol induces oxidative damage in common carp (Cyprinus carpio).

    Science.gov (United States)

    Martínez-Rodríguez, Héctor; Donkor, Kingsley; Brewer, Sharon; Galar-Martínez, Marcela; SanJuan-Reyes, Nely; Islas-Flores, Hariz; Sánchez-Aceves, Livier; Elizalde-Velázquez, Armando; Gómez-Oliván, Leobardo Manuel

    2018-04-01

    During the last decade, β-blockers such as metoprolol (MTP) have been frequently detected in surface water, aquatic systems and municipal water at concentrations of ng/L to μg/L. Only a small number of studies exist on the toxic effects induced by this group of pharmaceuticals on aquatic organisms. Therefore, the present study aimed to evaluate the oxidative damage induced by MTP in the common carp Cyprinus carpio, using oxidative stress biomarkers. To this end, indicators of cellular oxidation such as hydroperoxide content (HPC), lipid peroxidation (LPX) and protein carbonyl content (PCC) were determined, as well as the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). Also, concentrations of MTP and its metabolite O-desmethyl metoprolol were determined in water as well as carp gill, liver, kidney, brain and blood, along with the partial uptake pattern of these compounds. Results show that carp takes up MTP and its metabolite in the different organs evaluated, particularly liver and gill. The oxidative stress biomarkers, HPC, LPX, and PCC, as well as SOD and CAT activity all increased significantly at most exposure times in all organs evaluated. Results indicate that MTP and its metabolite induce oxidative stress on the teleost C. carpio and that the presence of these compounds may constitute a risk in water bodies for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia.

    LENUS (Irish Health Repository)

    Young, Orla

    2012-02-01

    BACKGROUND: This study assessed the presence of oxidative damage and lipid peroxidation in thyroid neoplasia. METHODS: Using tissue microarrays and immunohistochemistry, we assessed levels of DNA damage (8-oxo-dG) and lipid peroxidation (4-HNE) in 71 follicular thyroid adenoma (FTA), 45 papillary thyroid carcinoma (PTC), and 17 follicular thyroid carcinoma (FTC) and matched normal thyroid tissue. RESULTS: Cytoplasmic 8-oxo-dG and 4-HNE expression was significantly higher in FTA, FTC, and PTC tissue compared to matched normal tissue (all p values < .001). Similarly, elevated nuclear levels of 8-oxo-dG were seen in all in FTA, FTC, and PTC tissue compared to matched normal (p values < .07, < .001, < .001, respectively). In contrast, a higher level of 4-HNE expression was detected in normal thyroid tissue compared with matched tumor tissue (p < .001 for all groups). Comparing all 3 groups, 4-HNE levels were higher than 8-oxo-dG levels (p < .001 for all groups) except that cytoplasmic levels of 8-oxo-dG were higher than 4-HNE in all (p < .001). These results were independent of proliferation status. CONCLUSION: High levels of DNA damage and lipid peroxidation in benign and malignant thyroid neoplasia indicates this damage is an early event that may influence disease progression.

  2. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells

    OpenAIRE

    Lee, Hyun-Wook; Park, Sung-Hyun; Weng, Mao-wen; Wang, Hsiang-Tsui; Huang, William C.; Lepor, Herbert; Wu, Xue-Ru; Chen, Lung-Chi; Tang, Moon-shong

    2018-01-01

    Significance E-cigarette smoke (ECS) delivers nicotine through aerosols without burning tobacco. ECS is promoted as noncarcinogenic. We found that ECS induces DNA damage in mouse lung, bladder, and heart and reduces DNA-repair functions and proteins in lung. Nicotine and its nitrosation product 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone can cause the same effects as ECS and enhance mutations and tumorigenic cell transformation in cultured human lung and bladder cells. These results indica...

  3. The Inhibition Effect of Cell DNA Oxidative Damage and LDL Oxidation by Bovine Colostrums

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chen

    2016-10-01

    Full Text Available In the present study, we investigated the effect of bovine colostrums on inhibition of DNA oxidative damage and low density lipoprotein (LDL oxidation in vitro. Results showed that whey and skimmed milk exhibited not only higher inhibitory activities of oxidative damage of deoxyribose but also an inhibitory effect on the breakdown of supercoiled DNA into open circular DNA and linear DNA. The quantities of 8-OH-2′-dG formed under whey, caseins and skimmed milk treatment were 0.24, 0.24 and 1.24 μg/mL, respectively. The quantity of malondialdehyde formed through LDL oxidation induced by copprous ion was significantly decreased as colostrums protein solutions were added, in which whey and caseins led to a more significant decrease than skimmed milk. The formation of conjugated dienes could be inhibited by treatment with colostrums protein solutions. Whey exhibited the longest lag time of conjugated dienes formation among the colostrums proteins. The lag time of the whey was 2.33 times that of the control. From the results of foregoing, the bovine colostrums protein has potential value in the inhibition of DNA oxidation damage and LDL oxidation.

  4. Proceedings of damage and oxidation protection in high temperature composites

    International Nuclear Information System (INIS)

    Haritos, G.K.; Ochoa, O.O.

    1991-01-01

    This book contains proceedings of Damage and Oxidation Protection in High Temperature Composites. Topics covered include: current issues in the development of new materials and structural concepts for the aerospace structures of the future; transportation vehicles of the future; materials and structural concepts; fundamental understanding and quantitative descriptions of the physical processes and mechanisms controlling the behavior of emerging materials and structures; and the critical need for advances in our understanding of how the interaction of service loads and environment influences the lifecycle of emerging structures and materials

  5. Systemic oxidatively generated DNA/RNA damage in clinical depression

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Krogh, Jesper; Miskowiak, Kamilla

    2013-01-01

    oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), respectively, were determined in healthy controls (N=28), moderately depressed, non-medicated patients (N=26) and severely depressed patients eligible for electroconvulsive therapy...... for trend=0.004). The 8-oxoGuo excretion was further increased after clinically effective ECT compared with pre-ECT values (P=0.006). There were no differences in 8-oxodG excretion between the groups or pre- vs. post-ECT. LIMITATIONS: Small sample size and the inclusion of both unipolar and bipolar patients...

  6. Oxidatively damaged DNA in animals exposed to particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Jantzen, Kim

    2013-01-01

    on optimal methods. The majority of studies have used single intracavitary administration or inhalation with dose rates exceeding the pulmonary overload threshold, resulting in cytotoxicity and inflammation. It is unclear whether this is relevant for the much lower human exposure levels. Still...... not be equivocally determined. Roles of cytotoxicity or inflammation for oxidatively induced DNA damage could not be documented or refuted. Studies on exposure to particles in the gastrointestinal tract showed consistently increased levels of 8-oxo-7,8-dihydroguanine in the liver. Collectively, there is evidence...

  7. Maresin 1 Ameliorates Lung Ischemia/Reperfusion Injury by Suppressing Oxidative Stress via Activation of the Nrf-2-Mediated HO-1 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Quanchao Sun

    2017-01-01

    Full Text Available Lung ischemia/reperfusion (I/R injury occurs in various clinical conditions and heavily damaged lung function. Oxidative stress reaction and antioxidant enzymes play a pivotal role in the etiopathogenesis of lung I/R injury. In the current study, we investigated the impact of Maresin 1 on lung I/R injury and explored the possible mechanism involved in this process. MaR 1 ameliorated I/R-induced lung injury score, wet/dry weight ratio, myeloperoxidase, tumor necrosis factor, bronchoalveolar lavage fluid (BALF leukocyte count, BALF neutrophil ratio, and pulmonary permeability index levels in lung tissue. MaR 1 significantly reduced ROS, methane dicarboxylic aldehyde, and 15-F2t-isoprostane generation and restored antioxidative enzyme (superoxide dismutase, glutathione peroxidase, and catalase activities. Administration of MaR 1 improved the expression of nuclear Nrf-2 and cytosolic HO-1 in I/R-treated lung tissue. Furthermore, we also found that the protective effects of MaR 1 on lung tissue injury and oxidative stress were reversed by HO-1 activity inhibitor, Znpp-IX. Nrf-2 transcription factor inhibitor, brusatol, significantly decreased MaR 1-induced nuclear Nrf-2 and cytosolic HO-1 expression. In conclusion, these results indicate that MaR 1 protects against lung I/R injury through suppressing oxidative stress. The mechanism is partially explained by activation of the Nrf-2-mediated HO-1 signaling pathway.

  8. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2...... the morning after exposure measurement. Cumulated outdoor and cumulated indoor exposures to UFPs each were independent significant predictors of the level of purine oxidation in DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aerodynamic diameter of ..., particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution....

  9. Mitochondrial DNA damage and oxidative damage in HL-60 cells exposed to 900 MHz radiofrequency fields

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yulong; Zong, Lin; Gao, Zhen [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Zhu, Shunxing [Laboratory Animal Center, Nantong University, Nantong, Jiangsu Province (China); Tong, Jian [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China); Cao, Yi, E-mail: yicao@suda.edu.cn [School of Public Health, Soochow University, Suzhou, Jiangsu Province (China)

    2017-03-15

    Highlights: • Increased reactive oxygen species. • Decreased mitochondrial transcription Factor A and polymerase gamma. • Decreased mitochondrial transcripts (ND1 and 16S) and mtDNA copy number. • Increased 8-hydroxy-2′deoxyguanosine. • Decreased adenosine triphosphate. - Abstract: HL-60 cells, derived from human promyelocytic leukemia, were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm{sup 2} power intensity for 4 h/day for 5 consecutive days to examine whether such exposure is capable damaging the mitochondrial DNA (mtDNA) mediated through the production of reactive oxygen species (ROS). In addition, the effect of RF exposure was examined on 8-hydroxy-2′-dexoyguanosine (8-OHdG) which is a biomarker for oxidative damage and on the mitochondrial synthesis of adenosine triphosphate (ATP) which is the energy required for cellular functions. The results indicated a significant increase in ROS and significant decreases in mitochondrial transcription factor A, mtDNA polymerase gamma, mtDNA transcripts and mtDNA copy number in RF-exposed cells compared with those in sham-exposed control cells. In addition, there was a significant increase in 8-OHdG and a significant decrease in ATP in RF-exposed cells. The response in positive control cells exposed to gamma radiation (GR, which is also known to induce ROS) was similar to those in RF-exposed cells. Thus, the overall data indicated that RF exposure was capable of inducing mtDNA damage mediated through ROS pathway which also induced oxidative damage. Prior-treatment of RF- and GR-exposed the cells with melatonin, a well-known free radical scavenger, reversed the effects observed in RF-exposed cells.

  10. Experimental study of lung perfusion scintigraphy with sup(99m)Tc-MAA to radiation damaged lung

    International Nuclear Information System (INIS)

    Harada, Tateki

    1976-01-01

    The histological changes including blood flow damage due to the irradiation were studied on the rabbits which received the fractionated irradiation of 60 Co from the standpoint of the correlationship with the nuclide concentration of the lesion. 1) The histological changes, such as edema, and the congestion in the alveolar wall, initiated right after the 4,000 R of 60 Co irradiation, and they become worse with the increase of irradiation dose and with passage of time. In the group of rabbits which was given 10,000 R of irradiation, the remarkable hyperplasia of the alveolar wall, and emphysema manifested, and the fibrosis of the stroma advanced remarkably. 2) X-ray examination revealed the abnormal shadow in the lung only in the group of 10,000 R irradiation right after the end of irradiation. 3) Digital scintigram revealed that in the groups of less than 8,000 R of irradiation blood flow damage recovered, on the other hand, in the group of 10,000 R irradiation, remarkable damage continued for 3 months. These results were assumed to correspond to the degree of abnormality of the histological findings, such as the hyperplasia of the alveolar wall and the blood vessels, emphysem, and fibrosis. 4) Digital scintigram which was processed with computer provided the clearer image of the degree and extent of blood flow damage than those of the original scintigram. (Mukohata, S.)

  11. Experimental study of lung perfusion scintigraphy with sup(99m)Tc-MAA in radiation damaged lung

    Energy Technology Data Exchange (ETDEWEB)

    Harada, T [Kurume Univ., Fukuoka (Japan). School of Medicine

    1976-11-01

    The histological changes including blood flow damage due to the irradiation were studied on the rabbits which received the fractionated irradiation of /sup 60/Co from the standpoint of the correlationship with the nuclide concentration of the lesion. 1) The histological changes, such as edema, and the congestion in the alveolar wall, initiated right after the 4,000 R of /sup 60/Co irradiation, and they become worse with the increase of irradiation dose and with passage of time. In the group of rabbits which was given 10,000 R of irradiation, the remarkable hyperplasia of the alveolar wall, and emphysemaa manifested, and the fibrosis of the stroma advanced remarkably. 2) X-ray examination revealed the abnormal shadow in the lung only in the group of 10,000 R irradiation right after the end of irradiation. 3) Digital scintigram revealed that in the groups of less than 8,000 R of irradiation blood flow damage recovered, on the other hand, in the group of 10,000 R irradiation, remarkable damage continued for 3 months. These results were assumed to correspond to the degree of abnormality of the histological findings, such as the hyperplasia of the alveolar wall and the blood vessels, emphysem, and fibrosis. 4) Digital scintigram which was processed with computer provided the clearer image of the degree and extent of blood flow damage than those of the original scintigram.

  12. DNA-damage effect of polycyclic aromatic hydrocarbons from urban area, evaluated in lung fibroblast cultures

    International Nuclear Information System (INIS)

    Calesso Teixeira, Elba; Pra, Daniel; Idalgo, Daniele; Henriques, João Antonio Pêgas; Wiegand, Flavio

    2012-01-01

    This study was designed to biomonitor the effect of PAH extracts from urban areas on the DNA of lung cell cultures. The analyses of the polycyclic aromatic hydrocarbons (PAHs) were performed in atmospheric PM 2.5 and PM 10 collected at three sampling sites with heavy traffic located in the Metropolitan Area of Porto Alegre (MAPA) (Brazil). The concentrations of 16 major PAHs were determined according to EPA. Comet assay on V79 hamster lung cells was chosen for genotoxicity evaluation. Temperature, humidity, and wind speed were recorded. With regard to the damage index, higher levels were reported in the extract of particulate matter samples from the MAPA during the summer. High molecular weight compounds showed correlation with DNA damage frequency and their respective carcinogenicity. - Highlights: ► Cell line V79 was used to assess the effect of PAHs in PM 2.5 and PM 10 from urban area. ► Temperature showed a significant seasonal variation with the level of DNA damage. ► PAHs with higher molecular weight contributed to higher DNA damage levels. - DNA-damage effect of polycyclic aromatic hydrocarbons from urban area, showed difference according to season

  13. Assessments of risk following the inhalation of plutonium oxide using observed lung clearance patterns

    International Nuclear Information System (INIS)

    Ramsden, D.

    1977-10-01

    Dose commitments and risk estimates for the inhalation of plutonium oxide are calculated using the lung clearance patterns observed at AEE Winfrith. These risks are compared with published data on risks arising from a lung clearance based on the ICRP Lung Model. (author)

  14. Hydroxytyrosol Protects against Oxidative DNA Damage in Human Breast Cells

    Directory of Open Access Journals (Sweden)

    José J. Gaforio

    2011-10-01

    Full Text Available Over recent years, several studies have related olive oil ingestion to a low incidence of several diseases, including breast cancer. Hydroxytyrosol and tyrosol are two of the major phenols present in virgin olive oils. Despite the fact that they have been linked to cancer prevention, there is no evidence that clarifies their effect in human breast tumor and non-tumor cells. In the present work, we present hydroxytyrosol and tyrosol’s effects in human breast cell lines. Our results show that hydroxytyrosol acts as a more efficient free radical scavenger than tyrosol, but both fail to affect cell proliferation rates, cell cycle profile or cell apoptosis in human mammary epithelial cells (MCF10A or breast cancer cells (MDA-MB-231 and MCF7. We found that hydroxytyrosol decreases the intracellular reactive oxygen species (ROS level in MCF10A cells but not in MCF7 or MDA-MB-231 cells while very high amounts of tyrosol is needed to decrease the ROS level in MCF10A cells. Interestingly, hydroxytyrosol prevents oxidative DNA damage in the three breast cell lines. Therefore, our data suggest that simple phenol hydroxytyrosol could contribute to a lower incidence of breast cancer in populations that consume virgin olive oil due to its antioxidant activity and its protection against oxidative DNA damage in mammary cells.

  15. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    Directory of Open Access Journals (Sweden)

    Zacharias E. Suntres

    2011-01-01

    Full Text Available Reactive oxygen species (ROS, including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress.

  16. Dissolution of uranium oxide materials in simulated lung fluid

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Soderholm, S.C.

    1985-01-01

    Depleted uranium (DU) oxide aerosols prepared in the laboratory and collected in the field were tested to characterize their dissolution in simulated lung fluid and to determine how dissolution is affected by aerosol preparation. DU, a by-product of the uranium fuel cycle, has been selected by the US military for use in several types of munitions. During development, manufacture, testing, and use of these munitions, opportunities exist for inhalation exposure to various (usually oxide) aerosol forms of DU. The hazard potential associated with such exposures is closely related to the chemical form, the size of the DU aerosol material, and its dissolution properties. Five DU sample materials produced by exposing uranium alloy penetrators to certain controlled oxidation atmospheres were studied (oxidation temperatures ranged from 500 to 900 0 C). In addition, two DU sample materials collected in the field were provided by the US Air Force. All sample materials were generated as aerosols and the respirable fraction was separated and collected. Data suggest that under some conditions a rapidly dissolving U 3 O 8 fraction may be formed concurrent with the production of UO 2

  17. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism.

    Science.gov (United States)

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-06-01

    The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2 (-) scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays. Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2(-) scavenging, DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3',4'-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  18. Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells.

    Science.gov (United States)

    Karlsson, Hanna L; Nilsson, Lennart; Möller, Lennart

    2005-01-01

    Epidemiological studies have shown an association between airborne particles and a wide range of adverse health effects. The mechanisms behind these effects include oxidative stress and inflammation. Even though traffic gives rise to high levels of particles in the urban air, people are exposed to even higher levels in the subway. However, there is a lack of knowledge regarding how particles from different urban subenvironments differ in toxicity. The main aim of the present study was to compare the ability of particles from a subway station and a nearby very busy urban street, respectively, to damage DNA and to induce oxidative stress. Cultured human lung cells (A549) were exposed to particles, DNA damage was analyzed using single cell gel electrophoresis (the comet assay), and the ability to induce oxidative stress was measured as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation in lung cell DNA. We found that the subway particles were approximately eight times more genotoxic and four times more likely to cause oxidative stress in the lung cells. When the particles, water extracts from the particles, or particles treated with the metal chelator deferoxamine mesylate were incubated with 2'-deoxyguanosine (dG) and 8-oxodG was analyzed, we found that the oxidative capacity of the subway particles was due to redox active solid metals. Furthermore, analysis of the atomic composition showed that the subway particles to a dominating degree (atomic %) consisted of iron, mainly in the form of magnetite (Fe3O4). By using electron microscopy, the interaction between the particles and the lung cells was shown. The in vitro reactivity of the subway particles in combination with the high particle levels in subway systems give cause of concern due to the high number of people that are exposed to subway particles on a daily basis. To what extent the subway particles cause health effects in humans needs to be further evaluated.

  19. Repair of oxidative DNA damage by amino acids.

    Science.gov (United States)

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  20. Imidacloprid enhances liver damage in Wistar rats: Biochemical, oxidative damage and histological assessment

    Directory of Open Access Journals (Sweden)

    Sana Chakroun

    2017-12-01

    Full Text Available Objective: To investigate the potential adverse effects of imidacloprid on biochemical parameters, oxidative stress and liver damage induced in the rat by oral sub-chronic imidaclopride exposure. Methods: Rats received three different doses of imidacloprid (1/45, 1/22 and 1/10 of LD50 given through gavage for 60 days. Two dozen of male Wistar rats were randomly divided into four experimental groups. Liver damage was determined by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase leakages. The prooxidant-antioxydant status in hepatic tissue homogenate was evaluated by measuring the degree of lipid peroxidation, the antioxidant enzymes activities such as catalase, superoxide dismutase and glutathione peroxidase (GPx. Results: The relative liver weight was significantly higher than that of control and other treated groups at the highest dose 1/10 of LD50 of imidacloprid. Additionally, treatment of rats with imidacloprid significantly increased liver lipid peroxidation (P ≤ 0.05 or 0.01 which went together with a significant decrease in the levels of superoxide dismutase and catalase activities. Parallel to these changes, imidacloprid treatment enhanced liver damage as evidence by sharp increase in the liver enzyme activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and lactate dehydrogenase. These results were also confirmed by histopathology. Conclusions: In light of the available data, it is our thought that after imidacloprid sub-chronic exposure, depletion of antioxidant enzymes is accompanied by induction of potential oxidative stress in the hepatic tissues that might affect the function of the liver which caused biochemical and histopathological alteration.

  1. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signalling and their interplay

    Directory of Open Access Journals (Sweden)

    James Nathan Cobley

    2015-06-01

    Full Text Available Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1 redox signalling and (2 macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH and hydrogen peroxide (H2O2 as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation.

  2. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation

    DEFF Research Database (Denmark)

    Ciofu, Oana; Riis, Bente; Pressler, Tacjana

    2005-01-01

    Oxidative stress caused by chronic lung inflammation in patients with cystic fibrosis (CF) and chronic lung infection with Pseudomonas aeruginosa is characterized by the reactive oxygen species (ROS) liberated by polymorphonuclear leukocytes (PMNs). We formulated the hypothesis that oxidation...

  3. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    International Nuclear Information System (INIS)

    Yanamala, Naveena; Hatfield, Meghan K.; Farcas, Mariana T.; Schwegler-Berry, Diane; Hummer, Jon A.; Shurin, Michael R.; Birch, M. Eileen; Gutkin, Dmitriy W.; Kisin, Elena; Kagan, Valerian E.; Bugarski, Aleksandar D.; Shvedova, Anna A.

    2013-01-01

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure

  4. Biodiesel versus diesel exposure: Enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Yanamala, Naveena, E-mail: wqu1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hatfield, Meghan K., E-mail: wla4@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Farcas, Mariana T., E-mail: woe7@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Schwegler-Berry, Diane [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Hummer, Jon A., E-mail: qzh3@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shurin, Michael R., E-mail: shurinmr@upmc.edu [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Birch, M. Eileen, E-mail: mib2@cdc.gov [NIOSH/CDC, 4676 Columbia Parkway, Cincinnati, OH 45226 (United States); Gutkin, Dmitriy W., E-mail: dwgutkin@hotmail.com [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Kisin, Elena, E-mail: edk8@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, University of Pittsburgh, PA (United States); Bugarski, Aleksandar D., E-mail: zjl1@cdc.gov [Office of Mine Safety and Health Research/NIOSH/CDC, Pittsburgh, PA 15236 (United States); Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch/NIOSH/CDC, Morgantown, WV 26505 (United States); Department Physiology and Pharmacology, WVU, Morgantown, WV 26505 (United States)

    2013-10-15

    The use of biodiesel (BD) or its blends with petroleum diesel (D) is considered to be a viable approach to reduce occupational and environmental exposures to particulate matter (PM). Due to its lower particulate mass emissions compared to D, use of BD is thought to alleviate adverse health effects. Considering BD fuel is mainly composed of unsaturated fatty acids, we hypothesize that BD exhaust particles could induce pronounced adverse outcomes, due to their ability to readily oxidize. The main objective of this study was to compare the effects of particles generated by engine fueled with neat BD and neat petroleum-based D. Biomarkers of tissue damage and inflammation were significantly elevated in lungs of mice exposed to BD particulates. Additionally, BD particulates caused a significant accumulation of oxidatively modified proteins and an increase in 4-hydroxynonenal. The up-regulation of inflammatory cytokines/chemokines/growth factors was higher in lungs upon BD particulate exposure. Histological evaluation of lung sections indicated presence of lymphocytic infiltrate and impaired clearance with prolonged retention of BD particulate in pigment laden macrophages. Taken together, these results clearly indicate that BD exhaust particles could exert more toxic effects compared to D. - Highlights: • Exposure of mice to BDPM caused higher pulmonary toxicity compared to DPM. • Oxidative stress and inflammation were higher in BD vs to D exposed mice. • Inflammatory lymphocyte infiltrates were seen only in lungs of mice exposed to BD. • Ineffective clearance, prolonged PM retention was present only after BD exposure.

  5. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  6. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart.

    Science.gov (United States)

    Gredilla, R; Barja, G; López-Torres, M

    2001-10-01

    Oxygen radicals of mitochondrial origin are involved in oxidative damage. In order to analyze the possible relationship between metabolic rate, oxidative stress and oxidative damage, OF1 female mice were rendered hyper- and hypothyroid by chronic administration of 0.0012% L-thyroxine (T4) and 0.05% 6-n-propyl-2-thiouracil (PTU), respectively, in their drinking water for 5 weeks. Hyperthyroidism significantly increased the sensitivity to lipid peroxidation in the heart, although the endogenous levels of lipid peroxidation were not altered. Thyroid hormone-induced oxidative stress also resulted in higher levels of GSSG and GSSG/GSH ratio. Oxidative damage to mitochondrial DNA was greater than that to genomic DNA. Hyperthyroidism decreased oxidative damage to genomic DNA. Hypothyroidism did not modify oxidative damage in the lipid fraction but significantly decreased GSSG and GSSG/GSH ratio and oxidative damage to mitochondrial DNA. These results indicate that thyroid hormones modulate oxidative damage to lipids and DNA, and cellular redox potential in the mouse heart. A higher oxidative stress in the hyperthyroid group is presumably neutralized in the case of nuclear DNA by an increase in repair activity, thus protecting this key molecule. Treatment with PTU, a thyroid hormone inhibitor, reduced oxidative damage in the different cell compartments.

  7. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  8. Hesperidin as radioprotector against radiation-induced lung damage in rat: A histopathological study

    Directory of Open Access Journals (Sweden)

    Gholam Hassan Haddadi

    2017-01-01

    Full Text Available Reactive oxygen species (ROS are generated by ionizing radiation, and one of the organs commonly affected by ROS is the lung. Radiation-induced lung injury including pneumonia and lung fibrosis is a dose-limiting factor in radiotherapy (RT of patients with thorax irradiation. Administration of antioxidants has been proved to protect against ROS. The present study was aimed to assess the protective effect of hesperidin (HES against radiation-induced lung injury of male rats. Fifty rats were divided into three groups. G1: Received no HES and radiation (sham. G2: Underwent γ-irradiation to the thorax. G3: Received HES and underwent γ-irradiation. The rats were exposed to a single dose of 18 Gy using cobalt-60 unit and were administered HES (100 mg/kg for 7 days before irradiation. Histopathological analysis was performed 24 h and 8 weeks after RT. Histopathological results in 24 h showed radiation-induced inflammation and presence of more inflammatory cells as compared to G1 (P < 0.05. Administration of HES significantly decreased such an effect when compared to G2 (P < 0.05. Histopathological evaluation in 8 weeks showed a significant increase in mast cells, inflammation, inflammatory cells, alveolar thickness, vascular thickness, pulmonary edema, and fibrosis in G2 when compared to G1 (P < 0.05. HES significantly decreased inflammatory response, fibrosis, and mast cells when compared to G2 (P < 0.05. Administration of HES resulted in decreased radiation pneumonitis and radiation fibrosis in the lung tissue. Thus, the present study showed HES to be an efficient radioprotector against radiation-induced damage in the lung of tissue rats.

  9. Andrographolide protects against cigarette smoke-induced oxidative lung injury via augmentation of Nrf2 activity

    Science.gov (United States)

    Guan, SP; Tee, W; Ng, DSW; Chan, TK; Peh, HY; Ho, WE; Cheng, C; Mak, JC; Wong, WSF

    2013-01-01

    Background and Purpose Cigarette smoke is a major cause for chronic obstructive pulmonary disease (COPD). Andrographolide is an active biomolecule isolated from the plant Andrographis paniculata. Andrographolide has been shown to activate nuclear factor erythroid-2-related factor 2 (Nrf2), a redox-sensitive antioxidant transcription factor. As Nrf2 activity is reduced in COPD, we hypothesize that andrographolide may have therapeutic value for COPD. Experimental Approach Andrographolide was given i.p. to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage fluid and lungs were collected for analyses of cytokines, oxidative damage markers and antioxidant activities. BEAS-2B bronchial epithelial cells were exposed to cigarette smoke extract (CSE) and used to study the antioxidant mechanism of action of andrographolide. Key Results Andrographolide suppressed cigarette smoke-induced increases in lavage fluid cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Andrographolide promoted inductions of glutathione peroxidase (GPx) and glutathione reductase (GR) activities in lungs from cigarette smoke-exposed mice. In BEAS-2B cells, andrographolide markedly increased nuclear Nrf2 accumulation, promoted binding to antioxidant response element (ARE) and total cellular glutathione level in response to CSE. Andrographolide up-regulated ARE-regulated gene targets including glutamate-cysteine ligase catalytic (GCLC) subunit, GCL modifier (GCLM) subunit, GPx, GR and heme oxygenase-1 in BEAS-2B cells in response to CSE. Conclusions Andrographolide possesses antioxidative properties against cigarette smoke-induced lung injury probably via augmentation of Nrf2 activity and may have therapeutic potential for treating COPD. PMID:23146110

  10. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable instr......, particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution.......Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable...... instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood...

  11. Resveratrol Protects the Brain of Obese Mice from Oxidative Damage

    Directory of Open Access Journals (Sweden)

    Shraddha D. Rege

    2013-01-01

    Full Text Available Resveratrol (3,5,4′-trihydroxy-trans-stilbene is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.

  12. Pathomorphologic observation on treatment of radiation-induced lung damage in rats with

    International Nuclear Information System (INIS)

    Ye Jiangfeng; Qi Haowen; Zhao Feng; Fan Fengyun; Shi Mei; Zhao Yiling; Meng Yulin

    2004-01-01

    Objective: To inquire into the means of preventing lung damage induced by thoracic irradiation. Methods: SD rats were divided randomly into 3 groups: normal control, irradiated control (Group IC) and irradiated and fluvastatin (Flu)-treated group (Group F). The later two groups of rats were irradiated with X-rays at a dose of 20 Gy thoracically. Beginning from the seventh day before irradiation the rats in the Group F were treated with Flu at a dose of 20 mg per day by garaging until the end of the experiment. Animals from each group were sacrificed on days 5, 15, 30, 60 respectively after irradiation. Sections of lung were examined with light microscopy, electron microscopy and morphometry. Results: The rats in the Group IC suffered from typical radiation pneumonitis (P<0.01). Electron microscopy indicated type II pneumonocytes and capillary endothelial cells were injured in rats of Group IC on days 30, 60. There were increase of collagen and a great quantity of mast cells in irradiated control rats. In rats of the Group F there was slight reaction in the lung. Conclusion: Fluvastatin could reduce radiation pneumonitis and inhibit increase of collagen. The treatment and prevention of radiation-induced lung injury in rats with fluvastatin is effective

  13. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage.

    Science.gov (United States)

    Kim, Seok-Jo; Cheresh, Paul; Jablonski, Renea P; Morales-Nebreda, Luisa; Cheng, Yuan; Hogan, Erin; Yeldandi, Anjana; Chi, Monica; Piseaux, Raul; Ridge, Karen; Michael Hart, C; Chandel, Navdeep; Scott Budinger, G R; Kamp, David W

    2016-12-01

    Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. Crocidolite asbestos (100µg/50µL), TiO 2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role

  14. Stable markers of oxidant damage to proteins and their application in the study of human disease

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan; Fu, S; Wang, H

    1999-01-01

    The mechanisms of formation and the nature of the altered amino acid side chains formed on proteins subjected to oxidant attack are reviewed. The use of stable products of protein side chain oxidation as potential markers for assessing oxidative damage in vivo in humans is discussed. The methods...... developed in the authors laboratories are outlined, and the advantages and disadvantages of these techniques compared with other methodologies for assessing oxidative damage to proteins and other macromolecules. Evidence is presented to show that protein oxidation products are sensitive markers of oxidative...... damage, that the pattern of products detected may yield information as to the nature of the original oxidative insult, and that the levels of oxidized side-chains can, in certain circumstances, be much higher than those of other markers of oxidation such as lipid hydroperoxides....

  15. Evaluation of N-acetylcysteine and methylprednisolone as therapies for oxygen and acrolein-induced lung damage

    Energy Technology Data Exchange (ETDEWEB)

    Critchley, J.A.J.H. (Univ. of Edinburgh (England)); Beeley, J.M.; Clark, R.J.; Buchanan, J.D. (Royal Naval Hospital Hoslar, Gosport (England)); Summerfield, M.; Bell, S. (Admiralty Research Establishment, Alverstoke (England)); Spurlock, M.S.; Edginton, J.A.G. (Chemical Defence Establishment, Porton Down (England))

    1990-04-01

    Reactive oxidizing species are implicated in the etiology of a range of inhalational pulmonary injuries. Consequently, various free radical scavengers have been tested as potential prophylactic agents. The sulfydryl compound, N-acetylcysteine (NAC) is the only such compound clinically available for use in realistic dosages, and it is well established as an effective antidote for the hepatic and renal toxicity of paracetamol. Another approach in pulmonary injury prophylaxis is methylprednisolone therapy. The authors evaluated NAC and methylprednisolone in two rats models of inhalation injury: 40-hr exposure to >97% oxygen at 1.1 bar and 15-min exposure to acrolein vapor (210 ppm). The increases in lung wet/dry weight ratios, seen with both oxygen and acrolein toxicity were reduced with both treatments. However, with oxygen, NAC therapy was associated with considerably increased mortality and histological changes. Furthermore, IP NAC administration resulted in large volumes of ascitic fluid. With acrolein, IV, NAC had no significant effect on mortality or pulmonary histological damage. Methylprednisolone had no beneficial effects on either the mortality or histological damage observed in either toxicity model. They caution against the ad hoc use of NAC in the management of inhalational pulmonary injury.

  16. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  17. Oxidative lung injury correlates with one-lung ventilation time during pulmonary lobectomy: a study of exhaled breath condensate and blood.

    Science.gov (United States)

    García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier

    2015-09-01

    During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the

  18. Molecular Analysis of a Multistep Lung Cancer Model Induced by Chronic Inflammation Reveals Epigenetic Regulation of p16, Activation of the DNA Damage Response Pathway

    Directory of Open Access Journals (Sweden)

    David Blanco

    2007-10-01

    Full Text Available The molecular hallmarks of inflammation-mediated lung carcinogenesis have not been fully clarified, mainly due to the scarcity of appropriate animal models. We have used a silica-induced multistep lung carcinogenesis model driven by chronic inflammation to study the evolution of molecular markers, genetic alterations. We analyzed markers of DNA damage response (DDR, proliferative stress, telomeric stress: δ-H2AX, p16, p53, TERT. Lung cancer-related epigenetic, genetic alterations, including promoter hypermethylation status of p16(CDKN2A, APC, CDH13, Rassf1, Nore1A, as well as mutations of Tp53, epidermal growth factor receptor, K-ras, N-ras, c-H-ras, have been also studied. Our results showed DDR pathway activation in preneoplastic lesions, in association with inducible nitric oxide synthase, p53 induction. p16 was also induced in early tumorigenic progression, was inactivated in bronchiolar dysplasias, tumors. Remarkably, lack of mutations of Ras, epidermal growth factor receptor, a very low frequency of Tp53 mutations suggest that they are not required for tumorigenesis in this model. In contrast, epigenetic alterations in p16(CDKN2A, CDH13, APC, but not in Rassf1, Nore1A, were clearly observed. These data suggest the existence of a specific molecular signature of inflammation-driven lung carcinogenesis that shares some, but not all, of the molecular landmarks of chemically induced lung cancer.

  19. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Rodrigo Silva Macedo

    2016-01-01

    Full Text Available Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days and treated or not with PBMT (1 and 5 h after each FA exposure. Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment.

  20. Streptococcus pneumoniae-Induced Oxidative Stress in Lung Epithelial Cells Depends on Pneumococcal Autolysis and Is Reversible by Resveratrol.

    Science.gov (United States)

    Zahlten, Janine; Kim, Ye-Ji; Doehn, Jan-Moritz; Pribyl, Thomas; Hocke, Andreas C; García, Pedro; Hammerschmidt, Sven; Suttorp, Norbert; Hippenstiel, Stefan; Hübner, Ralf-Harto

    2015-06-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia worldwide. During pneumococcal pneumonia, the human airway epithelium is exposed to large amounts of H2O2 as a product of host and pathogen oxidative metabolism. Airway cells are known to be highly vulnerable to oxidant damage, but the pathophysiology of oxidative stress induced by S. pneumoniae and the role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant systems of the host are not well characterized. For gluthation/gluthathion disulfide analysis BEAS-2B cells, primary broncho-epithelial cells (pBEC), explanted human lung tissue and mouse lungs were infected with different S. pneumoniae strains (D39, A66, R6x, H2O2/pneumolysin/LytA- deficient mutants of R6x). Cell death was proven by LDH assay and cell viability by IL-8 ELISA. The translocation of Nrf2 and the expression of catalase were shown via Western blot. The binding of Nrf2 at the catalase promoter was analyzed by ChIP. We observed a significant induction of oxidative stress induced by S. pneumoniae in vivo, ex vivo, and in vitro. Upon stimulation, the oxidant-responsive transcription factor Nrf2 was activated, and catalase was upregulated via Nrf2. The pneumococci-induced oxidative stress was independent of S. pneumoniae-derived H2O2 and pneumolysin but depended on the pneumococcal autolysin LytA. The Nrf2 inducer resveratrol, as opposed to catalase, reversed oxidative stress in lung epithelial cells. These observations indicate a H2O2-independent induction of oxidative stress in lung epithelial cells via the release of bacterial factors of S. pneumoniae. Resveratrol might be an option for prevention of acute lung injury and inflammatory responses observed in pneumococcal pneumonia. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide.

    Science.gov (United States)

    Zhou, Jie; Lu, Qian; Tong, Ying; Wei, Wei; Liu, Songqin

    2012-09-15

    A hairpin molecular beacon tagged with carboxyfluorescein in combination with graphene oxide as a quencher reagent was used to detect the DNA damage by chemical reagents. The fluorescence of molecular beacon was quenched sharply by graphene oxide; while in the presence of its complementary DNA the quenching efficiency decreased because their hybridization prevented the strong adsorbability of molecular beacon on graphene oxide. If the complementary DNA was damaged by a chemical reagent and could not form intact duplex structure with molecular beacon, more molecular beacon would adsorb on graphene oxide increasing the quenching efficiency. Thus, damaged DNA could be detected based on different quenching efficiencies afforded by damaged and intact complementary DNA. The damage effects of chlorpyrifos-methyl and three metabolites of styrene such as mandelieaeids, phenylglyoxylieaeids and epoxystyrene on DNA were studied as models. The method for detection of DNA damage was reliable, rapid and simple compared to the biological methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase

    Directory of Open Access Journals (Sweden)

    Eric Aeby

    2016-12-01

    Full Text Available Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1 is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2′deoxyguanosine-5′-triphosphate (8oxodGTP causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.

  3. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  4. UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense

    Science.gov (United States)

    Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea

    2012-01-01

    UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638

  5. Camptosorus sibiricus rupr aqueous extract prevents lung tumorigenesis via dual effects against ROS and DNA damage.

    Science.gov (United States)

    He, Shugui; Ou, Rilan; Wang, Wensheng; Ji, Liyan; Gao, Hui; Zhu, Yuanfeng; Liu, Xiaomin; Zheng, Hongming; Liu, Zhongqiu; Wu, Peng; Lu, Linlin

    2018-06-28

    Camptosorus sibiricus Rupr (CSR) is a widely used herbal medicine with antivasculitis, antitrauma, and antitumor effects. However, the effect of CSR aqueous extract on B[a]P-initiated tumorigenesis and the underlying mechanism remain unclear. Moreover, the compounds in CSR aqueous extract need to be identified and structurally characterized. We aim to investigate the chemopreventive effect of CSR and the underlying molecular mechanism. A B[a]P-stimulated normal cell model (BEAS.2B) and lung adenocarcinoma animal model were established on A/J mice. In B[a]P-treated BEAS.2B cells, the protective effects of CSR aqueous extract on B[a]P-induced DNA damage and ROS production were evaluated through flow cytometry, Western blot, real-time quantitative PCR, single-cell gel electrophoresis, and immunofluorescence. Moreover, a model of B[a]P-initiated lung adenocarcinoma was established on A/J mice to determine the chemopreventive effect of CSR in vivo. The underlying mechanism was analyzed via immunohistochemistry and microscopy. Furthermore, the new compounds in CSR aqueous extract were isolated and structurally characterized using IR, HR-ESI-MS, and 1D and 2D NMR spectroscopy. CSR effectively suppressed ROS production by re-activating Nrf2-mediated reductases HO-1 and NQO-1. Simultaneously, CSR attenuated the DNA damage of BEAS.2B cells in the presence of B[a]P. Moreover, CSR at 1.5 and 3 g/kg significantly suppressed tumorigenesis with tumor inhibition ratios of 36.65% and 65.80%, respectively. The tumor volume, tumor size, and multiplicity of B[a]P-induced lung adenocarcinoma were effectively decreased by CSR in vivo. After extracting and identifying the compounds in CSR aqueous extract, three new triterpene saponins were isolated and characterized structurally. CSR aqueous extract prevents lung tumorigenesis by exerting dual effects against ROS and DNA damage, suggesting that CSR is a novel and effective agent for B[a]P-induced carcinogenesis. Moreover, by isolating

  6. Watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice modulates oxidative damage induced by low dose X-ray in mice.

    Science.gov (United States)

    Mohammad, Mohd Khairul Amran; Mohamed, Muhamad Idham; Zakaria, Ainul Mardhiyah; Abdul Razak, Hairil Rashmizal; Saad, Wan Mazlina Md

    2014-01-01

    Watermelon is a natural product that contains high level of antioxidants and may prevent oxidative damage in tissues due to free radical generation following an exposure to ionizing radiation. The present study aimed to investigate the radioprotective effects of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice against oxidative damage induced by low dose X-ray exposure in mice. Twelve adult male ICR mice were randomly divided into two groups consisting of radiation (Rx) and supplementation (Tx) groups. Rx received filtered tap water, while Tx was supplemented with 50% (v/v) watermelon juice for 28 days ad libitum prior to total body irradiation by 100 μGy X-ray on day 29. Brain, lung, and liver tissues were assessed for the levels of malondialdehyde (MDA), apurinic/apyrimidinic (AP) sites, glutathione (GSH), and superoxide dismutase (SOD) inhibition activities. Results showed significant reduction of MDA levels and AP sites formation of Tx compared to Rx (P watermelon juice restore the intracellular antioxidant activities by significantly increased SOD inhibition activities and GSH levels compared to Rx. These findings may postulate that supplementation of 50% watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) juice could modulate oxidative damage induced by low dose X-ray exposure.

  7. Vascular and epithelial damage in the lung of the mouse after X rays or neutrons

    International Nuclear Information System (INIS)

    Law, M.P.; Ahier, R.G.

    1989-01-01

    The response of the lung was studied in CFLP mice after exposure of the whole thorax to X rays (250 kVp) or cyclotron neutrons (16 MeV deuterons on Be, mean energy 7.5 MeV). To measure blood volume and leakage of plasma proteins, 51Cr-labeled red blood cells and 125I-albumin were injected intravenously and 24 h later lungs were lavaged via the trachea. Radioactivities in lung tissue and lavage fluid were determined to estimate the accumulation of albumin in the interstitial and alveolar spaces indicating damage to blood vessels and alveolar epithelium respectively. Function of type II pneumonocytes was assessed by the amounts of surfactant (assayed as lipid phosphorous) released into the lavage fluid. During the first 6 weeks, lavage protein and surfactant were increased, the neutron relative biological effectiveness (RBE) being unity. During pneumonitis at 12-24 weeks, surfactant levels were normal, blood volume was decreased, and both interstitial and alveolar albumin were increased. Albumin levels then decreased. At late times after exposure (42-64 weeks) alveolar albumin returned to normal but interstitial albumin was still slightly elevated. Values of RBE for changes in blood volume and interstitial and alveolar albumin at 15 weeks and for changes in blood volume and interstitial albumin at 46 weeks were 1.4, comparable with that for animal survival at 180 days. The results indicate that surfactant production is not critical for animal survival. They suggest that changes in blood vessels and alveolar epithelium occur during acute pneumonitis; epithelial repair follows but some vascular damage may persist. The time course of the changes in albumin levels did not correlate with increases in collagen biosynthesis which have been observed as early as 1 month after exposure and persist for up to 1 year

  8. Role of Nrf2 in preventing oxidative stress induced chloride current alteration in human lung cells.

    Science.gov (United States)

    Canella, Rita; Benedusi, Mascia; Martini, Marta; Cervellati, Franco; Cavicchio, Carlotta; Valacchi, Giuseppe

    2018-08-01

    The lung tissue is one of the main targets of oxidative stress due to external sources and respiratory activity. In our previous work, we have demonstrated in that O 3 exposure alters the Cl - current-voltage relationship, with the appearance of a large outward rectifier component mainly sustained by outward rectifier chloride channels (ORCCs) in human lung epithelial cells (A549 line). In the present study, we have performed patch clamp experiments, in order to identify which one of the O 3 byproducts (4hydroxynonenal (HNE) and/or H 2 O 2 ) was responsible for chloride current change. While 4HNE exposition (up to 25 μM for 30' before electrophysiological analysis) did not reproduce O 3 effect, H 2 O 2 produced by glucose oxidase 10 mU for 24 hr before electrophysiological analysis mimicked O 3 response. This result was confirmed treating the cell with catalase (CAT) before O 3 exposure (1,000 U/ml for 2 hr): CAT was able to rescue Cl - current alteration. Since CAT is regulated by Nrf2 transcription factor, we pre-treated the cells with the Nrf2 activators, resveratrol and tBHQ. Immunochemical and immunocytochemical results showed Nrf2 activation with both substances that lead to prevent OS effect on Cl - current. These data bring new insights into the mechanisms involved in OS-induced lung tissue damage, pointing out the role of H 2 O 2 in chloride current alteration and the ability of Nfr2 activation in preventing this effect. © 2017 Wiley Periodicals, Inc.

  9. Propolis attenuates oxidative injury in brain and lung of nitric oxide synthase inhibited rats

    Directory of Open Access Journals (Sweden)

    Zeliha Selamoglu-Talas

    2015-10-01

    Full Text Available Background: The blocking of nitric oxide synthase (NOS activity may reason vasoconstriction with formation of reactive oxygen species. Propolis has biological and pharmacological properties, such as antioxidant. The aim of this study was to examine the antioxidant effects of propolis which natural product on biochemical parameters in brain and lung tissues of acute nitric oxide synthase inhibited rats by Nω-nitro-L-arginine methyl ester (L-NAME.Methods: Rats have been received L-NAME (40 mg/kg, intraperitoneally, NOS inhibitor for 15 days to produce hypertension and propolis (200mg/kg, by gavage the lastest 5 of 15 days.Results: There  were  the  increase  (P<0.001  in  the  malondialdehyde  levels  in  the  L-NAME treatment groups when compared to control rats, but the decrease (P<0.001 in the catalase activities in both brain and lung tissues. There were statistically changes (P<0.001 in these parameters of L-NAME+propolis treated rats as compared with L-NAME-treated group.Conclusion: The application of L-NAME to the Wistar rats resulted in well developed oxidative stress. Also, propolis may influence endothelial NO production. Identification of such compounds and characterisation of their cellular actions may increase our knowledge of the regulation of endothelial NO production and could provide valuable clues for the prevention or treatment of hypertensive diseases and oxidative stress.

  10. Interactions between Biliverdin, Oxidative Damage, and Spleen Morphology after Simulated Aggressive Encounters in Veiled Chameleons.

    Directory of Open Access Journals (Sweden)

    Michael W Butler

    Full Text Available Stressors frequently increase oxidative damage--unless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (Chamaeleo calyptratus, which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with smaller spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleen's importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdin's antioxidant role in this species.

  11. Radiation-induced lung damage in rats: The influence of fraction spacing on effect per fraction

    International Nuclear Information System (INIS)

    Haston, C.K.; Hill, R.P.; Newcomb, C.H.; Van Dyk, J.

    1994-01-01

    When the linear-quadratic model is used to predict fractionated treatments which are isoeffective, it is usually assumed that each (equal size) treatment fraction has an equal effect, independent of the time at which it was delivered during a course of treatment. Previous work has indicated that this assumption may not be valid in the context of radiation-induced lung damage in rats. Consequently the authors tested directly the validity of the assumption that each fraction has an equal effect, independent of the time it is delivered. An experiment was completed in which fractionated irradiation was given to whole thoraces of Sprague-Dawley rats. All treatment schedules consisted of eleven equal dose fractions in 36 days given as a split course, with some groups receiving the bulk of the doses early in the treatment schedule, before a 27-day gap, and others receiving most of the dose toward the end of the treatment schedule, after the time gap. To monitor the incidence of radiation-induced damage, breathing rate and lethality assays were used. The maximum differences in the LD 50 s and breathing rate ED 50 s for the different fractionation schedules were 4.0% and 7.7% respectively. The lethality data and breathing rate data were consistent with results expected from modelling using the linear-quadratic model with the inclusion of an overall time factor, but not the generalized linear-quadratic model which accounted for fraction spacing. For conventional daily fractionation, and within the range of experimental uncertainties, the results indicate that the effect of a treatment fraction does not depend on the time at which it is given (its position) in the treatment. The results indicate no need to extend isoeffect formulae to consider the effect of each fraction separately for radiation-induced lung damage. 21 refs., 6 figs., 3 tabs

  12. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver.

    Science.gov (United States)

    Pardo, Michal; Xu, Fanfan; Qiu, Xinghua; Zhu, Tong; Rudich, Yinon

    2018-06-01

    Exposure to air pollution can induce oxidative stress, inflammation and adverse health effects. To understand how seasonal and chemical variations drive health impacts, we investigated indications for oxidative stress and inflammation in mice exposed to water and organic extracts from urban fine particles/PM 2.5 (particles with aerodynamic diameter ≤ 2.5 μm) collected in Beijing, China. Higher levels of pollution components were detected in heating season (HS, winter and part of spring) PM 2.5 than in the non-heating season (NHS, summer and part of spring and autumn) PM 2.5 . HS samples were high in metals for the water extraction and high in polycyclic aromatic hydrocarbons (PAHs) for the organic extraction compared to their controls. An increased inflammatory response was detected in the lung and liver following exposure to the organic extracts compared to the water extracts, and mostly in the HS PM 2.5 . While reduced antioxidant response was observed in the lung, it was activated in the liver, again, more in the HS extracts. Nrf2 transcription factor, a master regulator of stress response that controls the basal oxidative capacity and induces the expression of antioxidant response, and its related genes were induced. In the liver, elevated levels of lipid peroxidation adducts were measured, correlated with histologic analysis that revealed morphologic features of cell damage and proliferation, indicating oxidative and toxic damage. In addition, expression of genes related to detoxification of PAHs was observed. Altogether, the study suggests that the acute effects of PM 2.5 can vary seasonally with stronger health effects in the HS than in the NHS in Beijing, China and that some secondary organs may be susceptible for the exposure damage. Specifically, the liver is a potential organ influenced by exposure to organic components such as PAHs from coal or biomass burning and heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage.

    Science.gov (United States)

    Venditti, P; Pamplona, R; Ayala, V; De Rosa, R; Caldarone, G; Di Meo, S

    2006-03-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T3)- or thyroxine (T4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most extensive damage to lipids and proteins was found in T3-treated and cold-exposed rats, respectively. Increase in oxygen reactive species released by mitochondria and microsomes was found to contribute to tissue oxidative damage, whereas the determination of single antioxidants did not provide information about the possible contribution of a reduced effectiveness of the antioxidant defence system. Indeed, liver oxidative damage in hyperthyroid rats was scarcely related to levels of the liposoluble antioxidants and activities of antioxidant enzymes. Conversely, other biochemical changes, such as the degree of fatty acid unsaturation and hemoprotein content, appeared to predispose hepatic tissue to oxidative damage associated with oxidative challenge elicited by hyperthyroid state. As a whole, our results confirm the idea that T3 plays a key role in metabolic changes and oxidative damage found in cold liver. However, only data concerning changes in glutathione peroxidase activity and mitochondrial protein content favour the idea that dissimilarities in effects of cold exposure and T3 treatment could depend on differences in serum levels of T4.

  14. Smoking modify the effects of polycyclic aromatic hydrocarbons exposure on oxidative damage to DNA in coke oven workers.

    Science.gov (United States)

    Yang, Jin; Zhang, Hongjie; Zhang, Huitao; Wang, Wubin; Liu, Yanli; Fan, Yanfeng

    2017-07-01

    Coke oven emissions containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Numerous epidemiological studies have suggested that oxidative DNA damage may play a pivotal role in the carcinogenic mechanism of lung cancer. Little is known about the effect of interaction between PAHs exposure and lifestyle on DNA oxidative damage. The study population is composed by coke oven workers (365) and water treatment workers (144), and their urinary levels of four PAH metabolites and 8-hydroxydeoxyguanosine (8-OHdG) were determined. Airborne samples of exposed sites (4) and control sites (3) were collected, and eight carcinogenic PAHs were detected by high-performance liquid chromatography. The median values of the sum of eight carcinogenic PAHs and BaP in exposed sites were significantly higher than control sites (P < 0.01). The study found that the urinary PAH metabolites were significantly elevated in coke oven workers (P < 0.01). Multivariate logistic regression analysis revealed that the risk of high levels of urinary 8-OHdG will increase with increasing age, cigarette consumption, and levels of urinary 1-hydroxypyrene, and P for trend were all <0.05. Smoking can significantly modify the effects of urinary 1-hydroxypyrene on high concentrations urinary 8-OHdG, during co-exposure to both light or heavy smoking and high 1-hydroxypyrene levels (OR 4.28, 95% CI 1.32-13.86 and OR 5.05, 95% CI 1.63-15.67, respectively). Our findings quantitatively demonstrate that workers exposed to coke oven fumes and smoking will cause more serious DNA oxidative damage.

  15. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Einor, D., E-mail: daniel@einor.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Bonisoli-Alquati, A., E-mail: andreabonisoli@gmail.com [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA 70803 (United States); Costantini, D., E-mail: davidcostantini@libero.it [Department of Biology, University of Antwerp, Wilrijk, B-2610, Antwerp (Belgium); Mousseau, T.A., E-mail: mousseau@sc.edu [Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 (United States); Faculty of Bioscience and Biotechnology, Chubu University, Kasugai (Japan); Møller, A.P., E-mail: anders.moller@u-psud.fr [Laboratoire d' Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 362, F-91405 Orsay Cedex (France)

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and − 0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. - Highlights: • There is interest in variation in metabolic effects of chronic low-dose ionizing radiation • A random effect meta-analysis of effect sizes of radioactive contamination was performed • We found significant effects of radiation on oxidative damage and antioxidant response • We found significant heterogeneity among

  16. Application of lipid peroxidation and protein oxidation biomarkers for oxidative damage in mammalian cells. A comparison with two fluorescent probes

    NARCIS (Netherlands)

    Orhan, H.; Gurer-Orhan, H.; Vriese, E.; Vermeulen, N.P.E.; Meerman, J.H.N.

    2006-01-01

    We recently developed two biomarker sets for oxidative damage: one for determination of lipid peroxidation (LPO) degradation products; acetaldehyde, propanal, butanal, pentanal, hexanal, heptanal, octanal, nonanal, malondialdehyde and acetone, by a gas chromatography-electron capture detection

  17. Polymorphic trial in oxidative damage of arsenic exposed Vietnamese

    International Nuclear Information System (INIS)

    Fujihara, Junko; Soejima, Mikiko; Yasuda, Toshihiro; Koda, Yoshiro; Kunito, Takashi; Iwata, Hisato; Tanabe, Shinsuke; Takeshita, Haruo

    2011-01-01

    Arsenic causes DNA damage and changes the cellular capacity for DNA repair. Genes in the base excision repair (BER) pathway influence the generation and repair of oxidative lesions. Single nucleotide polymorphisms (SNPs) in human 8-oxoguanine DNA glycosylase (hOGG1) Ser326Cys; apurinic/apyrimidinic endonuclease (APE1) Asp148Glu; X-ray and repair and cross-complementing group 1 (XRCC1) Arg280His and Arg399Gln in the BER genes were analyzed, and the relationship between these 4 SNPs and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations of 100 Vietnamese population exposed to arsenic was investigated. Individuals with hOGG1 326Cys/Cys showed significantly higher urinary 8-OHdG concentrations than did those with 326 Ser/Cys and Ser/Ser. As for APE1 Asp148Glu, heterozygous subjects showed significantly higher urinary 8-OHdG concentrations than did those homozygous for Asp/Asp. Moreover, global ethnic comparison of the allelic frequencies of the 4SNPs was performed in 10 population and previous reported data. The mutant allele frequencies of hOGG1 Ser326Cys in the Asian populations were higher than those in the African and Caucasian populations. As for APE1 Asp148Glu, Caucasians showed higher mutant frequencies than those shown by African and Asian populations. Among Asian populations, the Bangladeshi population showed relatively higher mutant allele frequencies of the APE1 Asp148Glu polymorphism. This study is the first to demonstrate the existence of genetic heterogeneity in a worldwide distribution of SNPs (hOGG1 Ser326Cys, APE1 Asp148Glu, XRCC1 Arg280His, and XRCC1 Arg399Gln) in the BER genes. - Highlights: → We showed that hOGG1 and APE1 are associated with urinary 8-OHdG concentrations. → We showed the existence of inter-ethnic differences in hOGG1 and APE1 polymorphism. → These polymorphisms is a genetic marker of susceptibility to oxidative stress.

  18. Nuclear oxidative damage correlates with poor survival in colorectal cancer.

    LENUS (Irish Health Repository)

    Sheridan, J

    2012-02-01

    Oxidative DNA damage results from DNA adducts such as 8-oxo-7, 8 dihydro-2\\'-deoxyguanosine (8-oxo-dG), which is a pro-mutagenic lesion. No known association between 8-oxo-dG, disease progression and survival exists in colorectal cancer (CRC). We examined levels of 8-oxo-dG in sporadic CRC to determine its relationship with pathological stage and outcome. A total of 143 CRC patients and 105 non-cancer patients were studied. Nuclear and cytoplasmic 8-oxo-dG was assessed using immunohistochemistry. Double immunofluorescence using 8-oxo-dG and manganese superoxide dismutase (MnSOD) antibodies localised cytoplasmic 8-oxo-dG. Apoptosis was detected using TUNEL. Nuclear staining levels were similar in tumour tissue and matched normal mucosa in both epithelial (P=0.22) and stromal (P=0.85) cells. Epithelial cytoplasmic staining was greater in tumour tissue (P<0.001). Double immunofluorescence localised cytoplasmic 8-oxo-dG to mitochondria. Epithelial and stromal nuclear 8-oxo-dG decreased with local disease spread, but highest levels were found in distant disease (P<0.01). Survival was related to epithelial nuclear and stromal staining in normal mucosa (P<0.001) and tumour (P<0.01) but was unrelated to cytoplasmic staining. Normal control cells in tissue from cancer patients with high levels of 8-oxo-dG failed to undergo cell death. 8-oxo-dG may be an important biomarker of disease risk, progression and survival for CRC patients.

  19. The distribution of lung damage in children with cystic fibrosis and its relationship to colonisation with Pseudomonas aeroginosa

    International Nuclear Information System (INIS)

    Evans, I.; Hambleton, G.; Mann, N.; Brown, J.

    1987-01-01

    Ventilation-perfusion lung scans were performed with 81m Kr inhalation and 99m Tc-albumin injection in 33 children with cystic fibrosis. It was found that both ventilation and perfusion scans yielded more information than radiographs of the chest in assessing lung damage. Using a scoring system, it was demonstrated by statistical methods that in the worst affected patients the disease was worse in the upper zones of the lungs, where changes were not detectable on chest radiographs. Pseudomonas was present in the sputum of these patients. (orig.)

  20. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    International Nuclear Information System (INIS)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho; Kim, Hyung Jung; Yoo, Young Do

    2013-01-01

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H 2 O 2 ) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H 2 O 2 treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells

  1. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Ar [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Chung, Jin Sil [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Sang-Ho [Department of Pathology, Pochon CHA University, College of Medicine, Gyeonggi-do (Korea, Republic of); Kim, Hyung Jung, E-mail: khj57@yuhs.ac.kr [Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul 135-270 (Korea, Republic of); Yoo, Young Do, E-mail: ydy1130@korea.ac.kr [Laboratory of Molecular Cell Biology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713 (Korea, Republic of)

    2013-09-20

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain. Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.

  2. Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat.

    Science.gov (United States)

    Sepand, Mohammad Reza; Razavi-Azarkhiavi, Kamal; Omidi, Ameneh; Zirak, Mohammad Reza; Sabzevari, Samin; Kazemi, Ali Reza; Sabzevari, Omid

    2016-05-01

    Arsenic (As) is a widespread environmental contaminant present around the world in both organic and inorganic forms. Oxidative stress is postulated as the main mechanism for As-induced toxicity. This study was planned to examine the protective effect of acetyl-L-carnitine (ALC) on As-induced oxidative damage in male rats. Animals were randomly divided into four groups of control (saline), sodium arsenite (NaAsO2, 20 mg/kg), ALC (300 mg/kg), and NaAsO2 plus ALC. Animals were dosed orally for 28 successive days. Blood and tissue samples including kidney, brain, liver, heart, and lung were collected on the 28th day and evaluated for oxidative damage and histological changes. NaAsO2 exposure caused a significant lipid peroxidation as evidenced by elevation in thiobarbituric acid-reactive substances (TBARS). The activity of antioxidant enzymes such as glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), as well as sulfhydryl group content (SH group) was significantly suppressed in various organs following NaAsO2 treatment (P < 0.05). Furthermore, NaAsO2 administration increased serum values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and bilirubin. Our findings revealed that co-administration of ALC and NaAsO2 significantly suppressed the oxidative damage induced by NaAsO2. Tissue histological studies have confirmed the biochemical findings and provided evidence for the beneficial role of ALC. The results concluded that ALC attenuated NaAsO2-induced toxicity, and this protective effect may result from the ability of ALC in maintaining oxidant-antioxidant balance.

  3. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  4. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  5. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  6. PKC 412 sensitizes U1810 non-small cell lung cancer cells to DNA damage

    International Nuclear Information System (INIS)

    Hemstroem, Therese H.; Joseph, Bertrand; Schulte, Gunnar; Lewensohn, Rolf; Zhivotovsky, Boris

    2005-01-01

    Non-small cell lung carcinoma (NSCLC) is characterized by resistance to drug-induced apoptosis, which might explain the survival of lung cancer cells following treatment. Recently we have shown that the broad-range kinase inhibitor staurosporine (STS) reactivates the apoptotic machinery in U1810 NSCLC cells [Joseph et al., Oncogene 21 (2002) 65]. Lately, several STS analogs that are more specific in kinase inhibition have been suggested for tumor treatment. In this study the apoptosis-inducing ability of the STS analogs PKC 412 and Ro 31-8220 used alone or in combination with DNA-damaging agents in U1810 cells was investigated. In these cells Ro 31-8220 neither induced apoptosis when used alone, nor sensitized cells to etoposide treatment. PKC 412 as a single agent induced death of a small number of U1810 cells, whereas it efficiently triggered a dose- and time-dependent apoptosis in U1285 small cell lung carcinoma cells. In both cell types PKC 412 triggered release of mitochondrial proteins followed by caspase activation. However, concomitant activation of a caspase-independent pathway was essential to kill NSCLC cells. Importantly, PKC 412 was able to sensitize etoposide- and radiation-induced death of U1810 cells. The best sensitization was achieved when PKC 412 was administered 24 h after treatments. In U1810 cells, Ro 31-8220 decreased PMA-induced ERK phosphorylation as efficiently as PKC 412, indicating that the failure of Ro 31-8220 to induce apoptosis was not due to weaker inhibition of conventional and novel PKC isoforms. However, Ro 31-8220 increased the basal level of ERK and Akt phosphorylation in both cell lines, whereas Akt phosphorylation was suppressed in the U1810 cells, which might influence apoptosis. These results suggest that PKC 412 could be a useful tool in increasing the efficiency of therapy of NSCLC

  7. Differential effects of experimental and cold-induced hyperthyroidism on factors inducing rat liver oxidative damage

    OpenAIRE

    Venditti, Paola; Pamplona Gras, Reinald; Ayala, Victoria; Rosa, R. de; Caldarone, G.; Di Meo, S.

    2006-01-01

    Thyroid hormone-induced increase in metabolic rates is often associated with increased oxidative stress. The aim of the present study was to investigate the contribution of iodothyronines to liver oxidative stress in the functional hyperthyroidism elicited by cold, using as models cold-exposed and 3,5,3'-triiodothyronine (T-3)- or thyroxine (T-4)-treated rats. The hyperthyroid state was always associated with increases in both oxidative capacity and oxidative damage of the tissue. The most ex...

  8. Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia.

    Science.gov (United States)

    Aslan, Mehmet; Horoz, Mehmet; Kocyigit, Abdurrahim; Ozgonül, Saadet; Celik, Hakim; Celik, Metin; Erel, Ozcan

    2006-10-10

    Oxidant stress has been shown to play an important role in the pathogenesis of iron deficiency anemia. The aim of this study was to investigate the association between lymphocyte DNA damage, total antioxidant capacity and the degree of anemia in patients with iron deficiency anemia. Twenty-two female with iron deficiency anemia and 22 healthy females were enrolled in the study. Peripheral DNA damage was assessed using alkaline comet assay and plasma total antioxidant capacity was determined using an automated measurement method. Lymphocyte DNA damage of patients with iron deficiency anemia was significantly higher than controls (ptotal antioxidant capacity was significantly lower (ptotal antioxidant capacity and hemoglobin levels (r=0.706, ptotal antioxidant capacity and hemoglobin levels were negatively correlated with DNA damage (r=-0.330, p<0.05 and r=-0.323, p<0.05, respectively). In conclusion, both oxidative stress and DNA damage are increased in IDA patients. Increased oxidative stress seems as an important factor that inducing DNA damage in those IDA patients. The relationships of oxidative stress and DNA damage with the severity of anemia suggest that both oxidative stress and DNA damage may, in part, have a role in the pathogenesis of IDA.

  9. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    International Nuclear Information System (INIS)

    Muniz, Juan F.; McCauley, Linda; Scherer, J.; Lasarev, M.; Koshy, M.; Kow, Y.W.; Nazar-Stewart, Valle; Kisby, G.E.

    2008-01-01

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects

  10. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    Science.gov (United States)

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. DNA damage and cytotoxicity in type II lung epithelial (A549) cell cultures after exposure to diesel exhaust and urban street particles

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Loft, Steffen; Møller, Peter

    2008-01-01

    ABSTRACT: BACKGROUND: Exposure to air pollution particles has been acknowledged to be associated with excess generation of oxidative damage to DNA in experimental model systems and humans. The use of standard reference material (SRM), such as SRM1650 and SRM2975, is advantageous because experiments...... collected at a traffic intensive road in Copenhagen, Denmark. RESULTS: All of the particles generated strand breaks and oxidized purines in A549 lung epithelial cells in a dose-dependent manner and there were no overt differences in their potency. The exposures also yielded dose-dependent increase...... of cytotoxicity (as lactate dehydrogenase release) and reduced colony forming ability with slightly stronger cytotoxicity of SRM1650 than of the other particles. In contrast, only the authentic street particles were able to generate 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA, which might...

  12. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-01-01

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ m ). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  13. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  14. Protective Effect of Nicotine on Sepsis-Induced Oxidative Multiorgan Damage: Role of Neutrophils.

    Science.gov (United States)

    Özdemir-Kumral, Zarife N; Özbeyli, Dilek; Özdemir, Ahmet F; Karaaslan, Bugra M; Kaytaz, Kübra; Kara, Mustafa F; Tok, Olgu E; Ercan, Feriha; Yegen, Berrak Ç

    2017-07-01

    Despite its adverse health consequences, tobacco smoking is associated with lower incidence of several neurodegenerative and inflammatory diseases. The present study is aimed to show the effects of nicotine, major tobacco constituent, on five organs targeted by sepsis. Male Wistar albino rats received tap water with (5mg/kg) or without nicotine for 14 days. Under ketamine anesthesia, sepsis (n = 50) was induced by ligation and puncture of the cecum, while sham group (n = 8) had only laparotomy. In other rats, nicotine drink was withdrawn for 5 days before sepsis induction, while in acute nicotine group, rats were injected with nicotine (30mg/kg, i.p.) before sepsis, but had no oral intake. Rats were decapitated 24 hours after surgery to obtain lung, liver, ileum, heart, and kidney tissues to determine malondialdehyde (MDA) and glutathione (GSH) levels and myeloperoxidase (MPO) activities. Data were analyzed by one-way analysis of variance and Tukey multiple comparison tests or Student's t test. Chronic nicotine administration or its withdrawal reduced lipid peroxidation and MPO activity and prevented GSH depletion with some varying results in different target tissues. Nicotine injection prior to sepsis depressed MPO activity in all tissues and reduced MDA levels except for the lung, while GSH levels were elevated only in the hepatic and ileal tissues. Histologically observed injury was ameliorated by all nicotine treatments at varying degrees. The findings of the present study indicate that long-term nicotine administration reduces sepsis-induced oxidative damage in several tissues, which appears to involve inhibition of neutrophil activity in the inflamed tissues. Nicotine administration or its withdrawal reduced lipid peroxidation and neutrophil content and prevented GSH depletion with some varying results in different target tissues. A single injection prior to sepsis induction depressed MPO activity in all the tissues and reduced all tissue MDA levels except

  15. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    Directory of Open Access Journals (Sweden)

    Nevzat Selim Gokay

    2016-01-01

    Full Text Available The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg, inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg, or nitric oxide precursor L-arginine (200 mg/kg. After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P=0.044 positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders.

  16. Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke

    Directory of Open Access Journals (Sweden)

    Kai-Li Lee

    2013-08-01

    Conclusion: Our results suggest that, in diabetic animals, HBO2 therapy may improve outcomes of HS in part by reducing heat-induced activated inflammation and ischemic and oxidative damage in the hypothalamus and other brain regions.

  17. Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace.

    Science.gov (United States)

    Hecker, Louise

    2018-04-01

    The rapid expansion of the elderly population has led to the recent epidemic of age-related diseases, including increased incidence and mortality of chronic and acute lung diseases. Numerous studies have implicated aging and oxidative stress in the pathogenesis of various pulmonary diseases; however, despite recent advances in these fields, the specific contributions of aging and oxidative stress remain elusive. This review will discuss the consequences of aging on lung morphology and physiology, and how redox imbalance with aging contributes to lung disease susceptibility. Here, we focus on three lung diseases for which aging is a significant risk factor: acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Preclinical and clinical development for redox- and senescence-altering therapeutic strategies are discussed, as well as scientific advancements that may direct current and future therapeutic development. A deeper understanding of how aging impacts normal lung function, redox balance, and injury-repair processes will inspire the development of new therapies to prevent and/or reverse age-associated pulmonary diseases, and ultimately increase health span and longevity. This review is intended to encourage basic, clinical, and translational research that will bridge knowledge gaps at the intersection of aging, oxidative stress, and lung disease to fuel the development of more effective therapeutic strategies for lung diseases that disproportionately afflict the elderly.

  18. Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia.

    Science.gov (United States)

    Wang, Yaping; Zhao, Zhen; Zhu, Zhiyong; Li, Pingying; Li, Xiaolin; Xue, Xiaohong; Duo, Jie; Ma, Yingcai

    2018-02-17

    The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

  19. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  20. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel

    Directory of Open Access Journals (Sweden)

    Ralph A. Pietrofesa

    2016-06-01

    Full Text Available Spaceflight occasionally requires multiple extravehicular activities (EVA that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10 were exposed to >95% O2 for 8 h only (O2, 0.25 Gy ionizing γ-radiation (IR only, or a double-hit combination of both challenges (O2 + IR followed by 16 h of normoxia (ambient air containing 21% O2 and 5% CO2 (1 cycle = 24 h, 2 cycles = 48 h. Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05 decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP, apoptotic (cleaved caspase-3 and BAX, and antioxidant (HO-1 and Nqo1 proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O2 + IR exacerbated cell death and DNA damage compared to individual exposures O2 or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia

  1. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...... and indicate that replication stress, rather than oxidative stress, fuels the DNA damage signalling in early stages of astrocytoma development.......Malignant gliomas, the deadliest of brain neoplasms, show rampant genetic instability and resistance to genotoxic therapies, implicating potentially aberrant DNA damage response (DDR) in glioma pathogenesis and treatment failure. Here, we report on gross, aberrant constitutive activation of DNA...

  2. Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells.

    Science.gov (United States)

    Könczöl, Mathias; Weiß, Adilka; Gminski, Richard; Merfort, Irmgard; Mersch-Sundermann, Volker

    2013-02-04

    Reports on adverse health effects related to occupational exposure to toner powder are still inconclusive. Therefore, we have previously conducted an in vitro-study to characterize the genotoxic potential of three commercially available black printer toner powders in A549 lung cells. In these cell-based assays it was clearly demonstrated that the tested toner powders damage DNA and induce micronucleus (MN) formation. Here, we have studied the cytotoxic and proinflammatory potential of these three types of printer toner particles and the influence of ROS and NF-κB induction in order to unravel the underlying mechanisms. A549 cells were exposed to various concentrations of printer toner particle suspensions for 24 h. The toner particles were observed to exert significant cytotoxic effects in the WST-1 and neutral red (NR)-assays, although to a varying extent. Caspase 3/7 activity increased, while the mitochondrial membrane potential (MMP) was not affected. Particles of all three printer toner powders induced concentration-dependent formation of reactive oxygen species (ROS), as measured in the DCFH-DA assay. Furthermore, toner particle exposure enhanced interleukin-6 and interleukin-8 production, which is in agreement with activation of the transcription factor NF-κB in A549 cells shown by the electrophoretic mobility shift assay (EMSA). Therefore, it can be concluded that exposure of A549 lung cells to three selected printer toner powders caused oxidative stress through induction of ROS. Increased ROS formation may trigger genotoxic effects and activate proinflammatory pathways. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Urinary excretion of biomarkers of oxidatively damaged DNA and RNA in hereditary hemochromatosis

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Poulsen, Henrik E; Weimann, Allan

    2009-01-01

    Oxidatively generated damage to nucleic acids is considered to play a significant role in carcinogenesis, and it has been shown that people with hereditary hemochromatosis are at increased risk of cancer. In this study we used a new refined liquid chromatography-tandem mass spectrometry method...... of the iron overload seen in this disease. By this mechanism cellular damage resulting in end organ damage, typically seen in the liver of such patients, may be mediated....

  4. Oxide growth and damage evolution in thermal barrier coatings

    NARCIS (Netherlands)

    Hille, T.S.; Turteltaub, S.R.; Suiker, A.S.J.

    2011-01-01

    Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the

  5. Contribution of Human Lung Parenchyma and Leukocyte Influx to Oxidative Stress and Immune System-Mediated Pathology following Nipah Virus Infection.

    Science.gov (United States)

    Escaffre, Olivier; Saito, Tais B; Juelich, Terry L; Ikegami, Tetsuro; Smith, Jennifer K; Perez, David D; Atkins, Colm; Levine, Corri B; Huante, Matthew B; Nusbaum, Rebecca J; Endsley, Janice J; Freiberg, Alexander N; Rockx, Barry

    2017-08-01

    Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh

  6. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  7. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    DEFF Research Database (Denmark)

    Lundby, Carsten; Pilegaard, Henriette; van Hall, Gerrit

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming...

  8. Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2017-09-01

    tissues showed that lung damage was reduced after porous Se@SiO2 nanosphere treatment. These data indicate that porous Se@SiO2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO2 nanospheres may be a therapeutic method for use in the future for PQ poisoning. Keywords: porous Se@SiO2 nanospheres, acute lung injury, paraquat poisoning, oxidative stress, inflammatory cytokines, ROS, NF-kappa B

  9. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Halliday, Gary M. [Dermatology Research Laboratories, Division of Medicine, Melanoma and Skin Cancer Research Institute, Royal Prince Alfred Hospital at the University of Sydney, Sydney, NSW (Australia)]. E-mail: garyh@med.usyd.edu.au

    2005-04-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans.

  10. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis

    International Nuclear Information System (INIS)

    Halliday, Gary M.

    2005-01-01

    Ultraviolet (UV) radiation causes inflammation, gene mutation and immunosuppression in the skin. These biological changes are responsible for photocarcinogenesis. UV radiation in sunlight is divided into two wavebands, UVB and UVA, both of which contribute to these biological changes, and therefore probably to skin cancer in humans and animal models. Oxidative damage caused by UV contributes to inflammation, gene mutation and immunosuppression. This article reviews evidence for the hypothesis that UV oxidative damage to these processes contributes to photocarcinogenesis. UVA makes a larger impact on oxidative stress in the skin than UVB by inducing reactive oxygen and nitrogen species which damage DNA, protein and lipids and which also lead to NAD+ depletion, and therefore energy loss from the cell. Lipid peroxidation induces prostaglandin production that in association with UV-induced nitric oxide production causes inflammation. Inflammation drives benign human solar keratosis (SK) to undergo malignant conversion into squamous cell carcinoma (SCC) probably because the inflammatory cells produce reactive oxygen species, thus increasing oxidative damage to DNA and the immune system. Reactive oxygen or nitrogen appears to cause the increase in mutational burden as SK progress into SCC in humans. UVA is particularly important in causing immunosuppression in both humans and mice, and UV lipid peroxidation induced prostaglandin production and UV activation of nitric oxide synthase is important mediators of this event. Other immunosuppressive events are likely to be initiated by UV oxidative stress. Antioxidants have also been shown to reduce photocarcinogenesis. While most of this evidence comes from studies in mice, there is supporting evidence in humans that UV-induced oxidative damage contributes to inflammation, gene mutation and immunosuppression. Available evidence implicates oxidative damage as an important contributor to sunlight-induced carcinogenesis in humans

  11. Assays for urinary biomarkers of oxidatively damaged nucleic acids

    DEFF Research Database (Denmark)

    Weimann, Allan; Broedbaek, Kasper; Henriksen, Trine

    2012-01-01

    Abstract The analysis of oxidized nucleic acid metabolites can be performed by a variety of methodologies: liquid chromatography coupled with electrochemical or mass-spectrometry detection, gas chromatography coupled with mass spectrometry, capillary electrophoresis and ELISA (Enzyme-linked immun...

  12. Nontypeable Haemophilus influenzae induces sustained lung oxidative stress and protease expression.

    Directory of Open Access Journals (Sweden)

    Paul T King

    Full Text Available Nontypeable Haemophilus influenzae (NTHi is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1, oxidative stress and 2, protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps.

  13. Radiation damage of uranium-thorium oxide, irradiated in water

    International Nuclear Information System (INIS)

    Bloem, P.J.C.; Nagel, W.; Plas, T. van der; Kema, N.V.

    1977-01-01

    A suspension in water of spherical particles of UO 2 -ThO 2 with diameter 5μm has been considered as the working fluid in an aqueous, homogeneous, thermal nuclear reactor. Irradiation experiments have shown that these particles suffer a gradual breakdown when irradiated in water. This behaviour is markedly different from that shown on irradiation in absence of water. As damage was defined the amount of solid dissolved by an etching liquid. Electron microscopic pictures showed that at higher irradiation temperatures in water the actual damage was larger than the etching values indicated. (orig.) [de

  14. Therapeutic Hypothermia Reduces Oxidative Damage and Alters Antioxidant Defenses after Cardiac Arrest

    Science.gov (United States)

    Hackenhaar, Fernanda S.; Medeiros, Tássia M.; Heemann, Fernanda M.; Behling, Camile S.; Putti, Jordana S.; Mahl, Camila D.; Verona, Cleber; da Silva, Ana Carolina A.; Guerra, Maria C.; Gonçalves, Carlos A. S.; Oliveira, Vanessa M.; Riveiro, Diego F. M.; Vieira, Silvia R. R.

    2017-01-01

    After cardiac arrest, organ damage consequent to ischemia-reperfusion has been attributed to oxidative stress. Mild therapeutic hypothermia has been applied to reduce this damage, and it may reduce oxidative damage as well. This study aimed to compare oxidative damage and antioxidant defenses in patients treated with controlled normothermia versus mild therapeutic hypothermia during postcardiac arrest syndrome. The sample consisted of 31 patients under controlled normothermia (36°C) and 11 patients treated with 24 h mild therapeutic hypothermia (33°C), victims of in- or out-of-hospital cardiac arrest. Parameters were assessed at 6, 12, 36, and 72 h after cardiac arrest in the central venous blood samples. Hypothermic and normothermic patients had similar S100B levels, a biomarker of brain injury. Xanthine oxidase activity is similar between hypothermic and normothermic patients; however, it decreases posthypothermia treatment. Xanthine oxidase activity is positively correlated with lactate and S100B and inversely correlated with pH, calcium, and sodium levels. Hypothermia reduces malondialdehyde and protein carbonyl levels, markers of oxidative damage. Concomitantly, hypothermia increases the activity of erythrocyte antioxidant enzymes superoxide dismutase, glutathione peroxidase, and glutathione S-transferase while decreasing the activity of serum paraoxonase-1. These findings suggest that mild therapeutic hypothermia reduces oxidative damage and alters antioxidant defenses in postcardiac arrest patients. PMID:28553435

  15. An ECVAG trial on assessment of oxidative damage to DNA measured by the comet assay

    DEFF Research Database (Denmark)

    Johansson, Clara; Møller, Peter; Forchhammer, Lykke

    2010-01-01

    The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due...... to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet...... assay end points to number of lesions/10(6) bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA...

  16. Genetic and environmental influences on oxidative damage assessed in elderly Danish twins

    DEFF Research Database (Denmark)

    Broedbaek, Kasper; Ribel-Madsen, Rasmus; Henriksen, Trine

    2011-01-01

    Previous studies have shown an association between oxidative stress and various diseases in humans including cancer, cardiovascular disease, diabetes, and chronic respiratory disease. To what extents this damage is determined by genetic and environmental factors is unknown. In a classical twin...... of oxidative stress were closely correlated (r=0.60-0.84). In conclusion, we demonstrated in a large population of elderly Danish twins that "whole-body" oxidative damage to nucleic acids and lipids is predominantly determined by potentially modifiable nongenetic factors....

  17. Effects of a Brussels sprouts extract on oxidative DNA damage and metabolising enzymes in rat liver

    DEFF Research Database (Denmark)

    Sørensen, Mette; Jensen, B.R.; Poulsen, Henrik E.

    2001-01-01

    and catalase activity was also assessed in the kidneys. In order to examine a possible effect of the Brussels sprouts related to oxidative stress, we measured oxidative DNA damage in terms of 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) and lipid peroxidation in terms of malondialdehyde (MDA) formation...... on MDA levels were found. The present results support the data obtained in several studies that consumption of cruciferous vegetables is capable of inducing various phase II enzyme systems. However, the observed increase in oxidative DNA damage raises the question of whether greatly increased ingestion...

  18. Analysis of the static pressure volume curve of the lung in experimentally induced pulmonary damage by CT-densitometry

    International Nuclear Information System (INIS)

    David, M.; Karmrodt, J.; Herwelling, A.; Bletz, C.; David, S.; Heussel, C.P.; Markstaller, K.

    2005-01-01

    Purpose: To study quantitative changes of lung density distributions when recording in- and expiratory static pressure-volume curves by single slice computed tomography (CT). Materials and Methods: Static in- and expiratory pressure volume curves (0 to 1000 ml, increments of 100 ml) were obtained in random order in 10 pigs after induction of lung damage by saline lavage. Simultaneously, CT acquisitions (slice thickness 1 mm, temporal increment 2 s) were performed in a single slice (3 cm below the carina). In each CT image lung segmentation and planimetry of defined density ranges were achieved. The lung density ranges were defined as: hyperinflated (-1024 to -910 HU), normal aerated (-910 to -600 HU), poorly aerated (-600 to -300 HU), and non aerated (-300 to 200 HU) lung. Fractional areas of defined density ranges in percentage of total lung area were compared to recorded volume increments and airway pressures (atmospheric pressure, lower inflection point (LIP), LIP*0.5, LIP*1.5, peak airway pressure) of in- and expiratory pressure-volume curves. Results: Quantitative analysis of defined density ranges showed no differences between in- and expiratory pressure-volume curves. The amount of poorly aerated lung decreased and normal aerated lung increased constantly when airway pressure and volume were increased during inspiratory pressure-volume curves and vice versa during expiratory pressure-volume loops. Conclusion: Recruitment and derecruitment of lung atelectasis during registration of static in- and expiratory pressure-volume loops occurred constantly, but not in a stepwise manner. CT was shown to be an appropriate method to analyse these recruitment process. (orig.)

  19. Fluorescence studies on radiation oxidative damage to membranes ...

    Indian Academy of Sciences (India)

    Unknown

    genesis including induction of cancer.4,5 The damaging events at the molecular ... old mice as described earlier.14 Thymocytes (1 × 107 cells/ml) were labelled with DCFH- .... toxicity (eds) M W Miller and A E Shamou (New York: Plenum) p.

  20. Oxidative damage and antioxidant defense in thymus of malnourished lactating rats.

    Science.gov (United States)

    Gavia-García, Graciela; González-Martínez, Haydeé; Miliar-García, Ángel; Bonilla-González, Edmundo; Rosas-Trejo, María de Los Ángeles; Königsberg, Mina; Nájera-Medina, Oralia; Luna-López, Armando; González-Torres, María Cristina

    2015-01-01

    Malnutrition has been associated with oxidative damage by altered antioxidant protection mechanisms. Specifically, the aim of this study was to evaluate oxidative damage (DNA and lipid) and antioxidant status (superoxide dismutase [SOD], glutathione peroxidase [GPx], and catalase [CAT] mRNA, and protein expression) in thymus from malnourished rat pups. Malnutrition was induced during the lactation period by the food competition method. Oxidative DNA damage was determined quantifying 8-oxo-7, 8-dihydro-2'-deoxyguanosine adduct by high-performance liquid chromatography. Lipid peroxidation was assessed by the formation of thiobarbituric acid-reactive substances. Levels of gene and protein expression of SOD, GPx, and CAT were evaluated by real-time polymerase chain reaction and Western blot, respectively. Antioxidant enzyme activities were measured spectrophotometrically. Oxidative DNA damage and lipid peroxidation significantly increased in second-degree (MN-2) and third-degree malnourished (MN-3) rats compared with well-nourished rats. Higher amounts of oxidative damage, lower mRNA expression, and lower relative concentrations of protein, as well as decreased antioxidant activity of SOD, GPx, and CAT were associated with the MN-2 and MN-3 groups. The results of this study demonstrated that higher body-weight deficits were related to alterations in antioxidant protection, which contribute to increased levels of damage in the thymus. To our knowledge, this study demonstrated for the first time that early in life, malnutrition leads to increased DNA and lipid oxidative damage, attributable to damaged antioxidant mechanisms including transcriptional and enzymatic activity alterations. These findings may contribute to the elucidation of the causes of previously reported thymus dysfunction, and might explain partially why children and adults who have overcome child undernourishment experience immunologic deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  2. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  3. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  4. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    Directory of Open Access Journals (Sweden)

    José A. Hernández

    2016-01-01

    Full Text Available The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms.

  5. ATM-activated autotaxin (ATX) propagates inflammation and DNA damage in lung epithelial cells: a new mode of action for silica-induced DNA damage?

    Science.gov (United States)

    Zheng, Huiyuan; Högberg, Johan; Stenius, Ulla

    2017-12-07

    Silica exposure is a common risk factor for lung cancer. It has been claimed that key elements in cancer development are activation of inflammatory cells that indirectly induce DNA damage and proliferative stimuli in respiratory epithelial cells. We studied DNA damage induced by silica particles in respiratory epithelial cells and focused the role of the signaling enzyme autotaxin (ATX). A549 and 16 bronchial epithelial cells (16HBE) lung epithelial cells were exposed to silica particles. Reactive oxygen species (ROS), NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasome activation, ATX, ataxia telangiectasia mutated (ATM), and DNA damage (γH2AX, pCHK1, pCHK2, comet assay) were end points. Low doses of silica induced NLRP3 activation, DNA damage accumulation, and ATM phosphorylation. A novel finding was that ATM induced ATX generation and secretion. Not only silica but also rotenone, camptothecin and H2O2 activated ATX via ATM, suggesting that ATX is part of a generalized ATM response to double-strand breaks (DSBs). Surprisingly, ATX inhibition mitigated DNA damage accumulation at later time points (6-16 h), and ATX transfection caused NLRP3 activation and DNA damage. Furthermore, the product of ATX enzymatic activity, lysophosphatidic acid, recapitulated the effects of ATX transfection. These data indicate an ATM-ATX-dependent loop that propagates inflammation and DSB accumulation, making low doses of silica effective inducers of DSBs in epithelial cells. We conclude that an ATM-ATX axis interconnects DSBs with silica-induced inflammation and propagates these effects in epithelial cells. Further studies of this adverse outcome pathway may give an accurate assessment of the lowest doses of silica that causes cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Lung damage following bone marrow transplantation. II. The contribution of cyclophosphamide

    International Nuclear Information System (INIS)

    Varekamp, A.E.; de Vries, A.J.; Zurcher, C.; Hagenbeek, A.

    1987-01-01

    The effect of high-dose cyclophosphamide (Cy), either alone or in combination with irradiation, upon the development of interstitial pneumonitis (IP) after bone marrow transplantation (BMT) was investigated in a Brown Norway rat model. The parameters that were examined included ventilation rate, mortality, and histopathology. No damage to the lungs was observed in rats given Cy alone in supralethal dosages plus BMT, and mortality resulted from severe aplasia of hemopoietic and lymphoid tissues with multifocal hemorrhages, secondary infections, and sepsis. Two separate periods of mortality were observed within the first 180 days following whole thorax irradiation with a high dose rate (HDR; 0.8 Gy/min) or a low dose rate (LDR; 0.05 Gy/min). The addition of Cy prior to irradiation resulted in an increased mortality in the first period (before day 100) in all experimental groups. The influence of Cy on mortality at 180 days however, was different for the HDR and LDR experiments. The LD50-180 after HDR irradiation, dose range 8 to 18 Gy, was not significantly altered by the addition of Cy (100 mg/kg) 1 day prior to irradiation, whereas Cy (100 mg/kg) 1 day prior to LDR irradiation, dose range: 16 to 24 Gy, caused an enhancement of radiation damage with a decrease of the LD50-180 by 1.33 Gy. The dose modification factor (DMF) was 1.07. This enhancement was no longer significant after splitting up the dose of Cy in two dosages of 50 mg/kg given on 2 consecutive days prior to irradiation with a LDR. The extrapolation of the data in this rat model to available dose-response curves on IP after BMT and radiation pneumonitis in humans, implied that non-infectious IP is a radiation pneumonitis that is only slightly enhanced by Cy

  7. Modulation of oxidative damage by nitroxide free radicals.

    Science.gov (United States)

    Dragutan, Ileana; Mehlhorn, Rolf J

    2007-03-01

    Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.

  8. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    International Nuclear Information System (INIS)

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-01-01

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain

  9. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    Energy Technology Data Exchange (ETDEWEB)

    Laha, Dipranjan; Pramanik, Arindam [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Laskar, Aparna [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Jana, Madhurya [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India)

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  10. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  11. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion.

    Science.gov (United States)

    Soluri-Martins, André; Moraes, Lillian; Santos, Raquel S; Santos, Cintia L; Huhle, Robert; Capelozzi, Vera L; Pelosi, Paolo; Silva, Pedro L; de Abreu, Marcelo Gama; Rocco, Patricia R M

    2017-01-01

    Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV ( n = 6/group) [tidal volume (V T ) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH 2 O, fraction of inspired oxygen (FiO 2 ) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated V T values ( n = 1200; mean V T = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH 2 0/ml and 2.0 ± 0.8 cmH 2 0/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9-33.1] and VV 5.4% [3.1-8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and

  12. Variable Ventilation Improved Respiratory System Mechanics and Ameliorated Pulmonary Damage in a Rat Model of Lung Ischemia-Reperfusion

    Directory of Open Access Journals (Sweden)

    Patricia R. M. Rocco

    2017-05-01

    Full Text Available Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1 ischemia-reperfusion (IR, in which the left pulmonary hilum was completely occluded and released after 30 min; and (2 Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured and right (contralateral lungs from 6 animals per group were removed, and served as non-ventilated group (NV for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group [tidal volume (VT = 6 mL/kg, positive end-expiratory pressure (PEEP = 2 cmH2O, fraction of inspired oxygen (FiO2 = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated VT values (n = 1200; mean VT = 6 mL/kg, with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final, respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH20/ml and 2.0 ± 0.8 cmH20/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9–33.1] and VV 5.4% [3.1–8.8], p = 0.04, respectively. In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular

  13. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, T.P.; Loft, Steffen Huitfeldt; Nyyssonen, K.

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration...... with daily urinary 8-hydroxydeoxyguanosine excretion, a marker of oxidative stress, in 48 mildly dyslipidemic men in East Finland. In multivariate linear regression analyses allowing for age, smoking, body mass index and physical exercise, serum ferritin concentration predicted the excretion rate at B = 0.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  14. Body iron is a contributor to oxidative damage of DNA

    DEFF Research Database (Denmark)

    Tuomainen, Tomi-Pekka; Loft, Steffen; Nyyssönen, Kristiina

    2007-01-01

    The transition metal iron is catalytically highly active in vitro, and not surprisingly, body iron has been suggested to promote oxidative stress in vivo. In the current analysis we studied the association of serum ferritin concentration and serum soluble transferrin receptor concentration.......17 (95% CI 0.08-0.26, P = 0.001), and serum soluble transferrin receptor to ferritin concentration ratio (TfR/ferritin) predicted the excretion rate at B = - 0.13 (95% CI - 0.21 to - 0.05, P = 0.002). Our data suggest that body iron contributes to excess oxidative stress already at non-iron overload...

  15. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation.

    Science.gov (United States)

    Ghosh, Somnath; Narang, Himanshi; Sarma, Asitikantha; Krishna, Malini

    2011-11-01

    Carbon beams (5.16MeV/u, LET=290keV/μm) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ-rays and carbon ion-irradiation. A549 cells were irradiated with 1Gy carbon or γ-rays. Carbon beam was found to be three times more cytotoxic than γ-rays despite the fact that the numbers of γ-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with γ-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike γ-rays irradiated cells and prosurvival ERK pathway was activated after γ-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Lung vitamin E transport processes are affected by both age and environmental oxidants in mice

    International Nuclear Information System (INIS)

    Valacchi, Giuseppe; Vasu, Vihas T.; Yokohama, Wallace; Corbacho, Ana M.; Phung, Anh; Lim, Yunsook; Aung, Hnin Hnin; Cross, Carroll E.; Davis, Paul A.

    2007-01-01

    Despite the physiological importance of alpha-tocopherol (AT), the molecular mechanisms involved in maintaining cellular and tissue tocopherol levels remain to be fully characterized. Scavenger receptor B1 (SRB1), one of a large family of scavenger receptors, has been shown to facilitate AT transfer from HDL to peripheral tissues via apo A-1-mediated processes and to be important in the delivery of AT to the lung cells. In the present studies the effects of age and two environmental oxidants ozone (O 3 ) (0.25 ppm 6 h/day) and cigarette smoke (CS) (60 mg/m 3 6 h/day) for 4 days on selected aspects of AT transport in murine lung tissues were assessed. While AT levels were 25% higher (p 3 or CS at the doses used had no effect. Gene expression levels, determined by RT-PCR of AT transport protein (ATTP), SRB1, CD36, ATP binding cassette 3 (ABCA3) and ABCA1 and protein levels, determined by Western blots for SRB1, ATTP and ABCA1 were assessed. Aged mouse lung showed a lower levels of ATTP, ABCA3 and SRB1 and a higher level CD36 and ABCA1. Acute exposure to either O 3 or CS induced declines in ATTP and SRB1 in both aged and young mice lung. CD36 increased in both young and aged mice lung upon exposure to O 3 and CS. These findings suggest that both age and environmental oxidant exposure affect pathways related to lung AT homeostasis and do so in a way that favors declines in lung AT. However, given the approach taken, the effects cannot be traced to changes in these pathways or AT content in any specific lung associated cell type and thus highlight the need for further follow-up studies looking at specific lung associated cell types

  17. Increased systemic oxidatively generated DNA and RNA damage in schizophrenia

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Brødbæk, Kasper; Fink-Jensen, Anders

    2013-01-01

    such as cardiovascular disease, type 2 diabetes and dementia. We determined the urinary excretion of markers of systemic Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine, respectively, in 40 schizophrenia patients and 40 age- and sex...

  18. Three model systems measure oxidation/nitration damage caused ...

    Indian Academy of Sciences (India)

    Unknown

    caused by peroxynitrite ... (OONO–) or its carbon dioxide derivatives cause oxidation/nitration and hence mutation to various body poly- mers e.g. .... The work described in this paper is quite brief due to ex- ... exact way to balance the dose of antioxidants in mixtures ... tralizing conditions the half-life of OONO– is less than.

  19. Moisture damage with magnesium oxide boards in Danish facade structures

    DEFF Research Database (Denmark)

    Rode, Carsten; Bunch-Nielsen, Tommy; Hansen, Kurt Kielsgaard

    2017-01-01

    Magnesium oxide boards have been widely used on facades in Denmark during 2010-2015. However, the magnesium salts absorb humidity from the ambient, and they begin to leak salty water, which is highly corrosive, and leads to moisture and mould problems in wooden members of the structures. Mg...

  20. Correlation of the acute oxidative stress markers with radiation induced late lung disease response of pneumonitis and/or fibrosis

    International Nuclear Information System (INIS)

    Kunwar, Amit

    2016-01-01

    Biomarkers which predict for the occurrence of radiation-induced lung responses of pneumonitis and/or fibrosis are largely unknown. Herein, we investigated whether markers of oxidative stress and intracellular antioxidants, measured within days of radiation exposure, correlated with the lung tissue injury response occurring weeks later. Inbred strains of mice (KK/HIJ, C57BL/6J, 129S1/SvImJ, C3H/HeJ, A/J, AKR/J, CBA/J, NZW/LacJ) known to differ in their susceptibility to radiation induced pulmonary fibrosis, and to vary in time to onset of respiratory distress post thoracic irradiation (from 10-23 weeks) were studied. Mice were unirradiated (controls) or received whole thorax irradiation (18 Gy) and were euthanized at 6h, 1d, 7d, 8w and upon presentation of respiratory distress. Pulmonary levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase (GPx) and glutathione, and of oxidative damage (reactive oxygen species (ROS), 8-hydroxydeoxyguanosine (8-OHdG) and numbers of γH2AX foci), were assessed

  1. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes.

    Science.gov (United States)

    Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su

    2016-09-01

    The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes.

  2. Lycopene Protects the Diabetic Rat Kidney Against Oxidative Stress-mediated Oxidative Damage Induced by Furan

    Directory of Open Access Journals (Sweden)

    Dilek Pandir

    2016-01-01

    Full Text Available Furan is a food and environmental contaminant and a potent carcinogen in animals. Lycopene is one dietary carotenoid found in fruits such as tomato, watermelon and grapefruit. The present study was designed to explore the protective effect of lycopene against furan-induced oxidative damage in streptozotocin (STZ-induced diabetic rat kidney. At the end of the experimental period (28 days, we found that lycopene markedly decreased the malondialdehide (MDA levels in the kidney, urea, uric acid and creatinine levels in the serum of furan-treated rats. The increase of histopathology in the kidney of furan-treated rats were effectively suppressed by lycopene. Furthermore, lycopene markedly restored superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and glutathione-S-transferase (GST activities in the kidney of furan-treated rats. In conclusion, these results suggested that lycopene could protect the rat kidney against furan-induced injury by improving renal function, attenuating histopathologic changes, reducing MDA production and renewing the activities of antioxidant enzymes.

  3. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    Directory of Open Access Journals (Sweden)

    Luna C

    2016-02-01

    Full Text Available Carlos Luna,1,* Matilde Alique,2,* Estefanía Navalmoral,2 Maria-Victoria Noci,3 Lourdes Bohorquez-Magro,2 Julia Carracedo,1 Rafael Ramírez2 1Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC, Reina Sofía University Hospital, Córdoba, Spain; 2Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain; 3Anesthesia Unit, Reina sofía University Hospital, Córdoba, Spain*These authors contributed equally to this work Abstract: Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.Keywords: elderly, oxidative stress, microparticles, vascular damage

  4. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Iyer, Smita S; Ramirez, Allan M; Ritzenthaler, Jeffrey D; Torres-Gonzalez, Edilson; Roser-Page, Susanne; Mora, Ana L; Brigham, Kenneth L; Jones, Dean P; Roman, Jesse; Rojas, Mauricio

    2009-01-01

    Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.

  5. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  6. Nox1 oxidase suppresses influenza a virus-induced lung inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Stavros Selemidis

    Full Text Available Influenza A virus infection is an ongoing clinical problem and thus, there is an urgent need to understand the mechanisms that regulate the lung inflammation in order to unravel novel generic pharmacological strategies. Evidence indicates that the Nox2-containing NADPH oxidase enzyme promotes influenza A virus-induced lung oxidative stress, inflammation and dysfunction via ROS generation. In addition, lung epithelial and endothelial cells express the Nox1 isoform of NADPH oxidase, placing this enzyme at key sites to regulate influenza A virus-induced lung inflammation. The aim of this study was to investigate whether Nox1 oxidase regulates the inflammatory response and the oxidative stress to influenza infection in vivo in mice. Male WT and Nox1-deficient (Nox1(-/y mice were infected with the moderately pathogenic HkX-31 (H3N2, 1×10(4 PFU influenza A virus for analysis of bodyweight, airways inflammation, oxidative stress, viral titre, lung histopathology, and cytokine/chemokine expression at 3 and 7 days post infection. HkX-31 virus infection of Nox1(-/y mice resulted in significantly greater: loss of bodyweight (Day 3; BALF neutrophilia, peri-bronchial, peri-vascular and alveolar inflammation; Nox2-dependent inflammatory cell ROS production and peri-bronchial, epithelial and endothelial oxidative stress. The expression of pro-inflammatory cytokines including CCL2, CCL3, CXCL2, IL-1β, IL-6, GM-CSF and TNF-α was higher in Nox1(-/y lungs compared to WT mice at Day 3, however, the expression of CCL2, CCL3, CXCL2, IFN-γ and the anti-inflammatory cytokine IL-10 were lower in lungs of Nox1(-/y mice vs. WT mice at Day 7. Lung viral titre, and airways infiltration of active CD8(+ and CD4(+ T lymphocytes, and of Tregs were similar between WT and Nox1(-/y mice. In conclusion, Nox1 oxidase suppresses influenza A virus induced lung inflammation and oxidative stress in mice particularly at the early phases of the infection. Nox1 and Nox2 oxidases appear

  7. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids

    DEFF Research Database (Denmark)

    Cadet, Jean; Loft, Steffen; Olinski, Ryszard

    2012-01-01

    A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the ...

  8. IFN-γ Induces Mimic Extracellular Trap Cell Death in Lung Epithelial Cells Through Autophagy-Regulated DNA Damage.

    Science.gov (United States)

    Lin, Chiou-Feng; Chien, Shun-Yi; Chen, Chia-Ling; Hsieh, Chia-Yuan; Tseng, Po-Chun; Wang, Yu-Chih

    2016-02-01

    Treatment of interferon-γ (IFN-γ) causes cell growth inhibition and cytotoxicity in lung epithelial malignancies. Regarding the induction of autophagy related to IFN-γ signaling, this study investigated the link between autophagy and IFN-γ cytotoxicity. In A549 human lung cancer cells, IFN-γ treatment induced concurrent apoptotic and nonapoptotic events. Unexpectedly, the nonapoptotic cells present mimic extracellular trap cell death (ETosis), which was regulated by caspase-3 and by autophagy induction through immunity-related GTPase family M protein 1 and activating transcription factor 6. Furthermore, IFN-γ signaling controlled mimic ETosis through a mechanism involving an autophagy- and Fas-associated protein with death domain-controlled caspase-8/-3 activation. Following caspase-mediated lamin degradation, IFN-γ caused DNA damage-associated ataxia telangiectasia and Rad3-related protein (ATR)/ataxia telangiectasia mutated (ATM)-regulated mimic ETosis. Upon ATR/ATM signaling, peptidyl arginine deiminase 4 (PAD4)-mediated histone 3 citrullination promoted mimic ETosis. Such IFN-γ-induced effects were defective in PC14PE6/AS2 human lung cancer cells, which were unsusceptible to IFN-γ-induced autophagy. Due to autophagy-based caspase cascade activation, IFN-γ triggers unconventional caspase-mediated DNA damage, followed by ATR/ATM-regulated PAD4-mediated histone citrullination during mimic ETosis in lung epithelial malignancy.

  9. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Eleutherio Elis CA

    2001-07-01

    Full Text Available Abstract Background Living cells constantly sense and adapt to redox shifts by the induction of genes whose products act to maintain the cellular redox environment. In the eukaryote Saccharomyces cerevisiae, while stationary cells possess a degree of constitutive resistance towards oxidants, treatment of exponential phase cultures with sub-lethal stresses can lead to the transient induction of protection against subsequent lethal oxidant conditions. The sensors of oxidative stress and the corresponding transcription factors that activate gene expression under these conditions have not yet been completely identified. Results We report the role of SOD1, SOD2 and TPS1 genes (which encode the cytoplasmic Cu/Zn-superoxide dismutase, the mitochondrial Mn-isoform and trehalose-6-phosphate synthase, respectively in the development of resistance to oxidative stress. In all experimental conditions, the cultures were divided into two parts, one was immediately submitted to severe stress (namely: exposure to H2O2, heat shock or ethanol stress while the other was initially adapted to 40°C for 60 min. The deficiency in trehalose synthesis did not impair the acquisition of tolerance to H2O2, but this disaccharide played an essential role in tolerance against heat and ethanol stresses. We also verified that the presence of only one Sodp isoform was sufficient to improve cellular resistance to 5 mM H2O2. On the other hand, while the lack of Sod2p caused high cell sensitivity to ethanol and heat shock, the absence of Sod1p seemed to be beneficial to the process of acquisition of tolerance to these adverse conditions. The increase in oxidation-dependent fluorescence of crude extracts of sod1 mutant cells upon incubation at 40°C was approximately 2-fold higher than in sod2 and control strain extracts. Furthermore, in Western blots, we observed that sod mutants showed a different pattern of Hsp104p and Hsp26p expression also different from that in their control

  10. Elevated levels of urinary markers of oxidatively generated DNA and RNA damage in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Poulsen, Henrik Enghusen; Kessing, Lars Vedel

    2015-01-01

    OBJECTIVES: The pathophysiological mechanisms underlying bipolar disorder and its multi-system nature are unclear. Oxidatively generated damage to nucleosides has been demonstrated in metabolic disorders; however, the extent to which this occurs in bipolar disorder in vivo is unknown. We...... investigated oxidatively generated damage to DNA and RNA in patients with bipolar disorder and its relationship with the affective phase compared with healthy control subjects. METHODS: Urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo), markers...... of oxidatively generated DNA and RNA damage, respectively, was measured in 37 rapid cycling patients with bipolar disorder and in 40 age- and gender-matched healthy control subjects. Employing a longitudinal design, repeated measurements of both markers were evaluated in various affective phases in patients...

  11. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution

    DEFF Research Database (Denmark)

    Møller, Peter; Loft, Steffen

    2010-01-01

    BACKGROUND: Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE: We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers...... of biologically effective dose in studies of the health effects of exposure to particulate matter (PM) from combustion processes. DATA SOURCES: We identified publications that reported estimated associations between environmental exposure to PM and oxidative damage to DNA and lipids in PubMed and EMBASE. We also...... identified publications from reference lists and articles cited in the Web of Science. DATA EXTRACTION: For each study, we obtained information on the estimated effect size to calculate the standardized mean difference (unitless) and determined the potential for errors in exposure assessment and analysis...

  12. Brain, lung, and heart oxidative stress assessment of an over-the ...

    African Journals Online (AJOL)

    We evaluated the brain, lung, and heart oxidative stress in rats exposed to aerosol of an over-thecounter pyrethroid insecticide product in Nigeria. The experimental animals were randomly divided into four groups: group I (control) was not exposed to the insecticide aerosol, while groups II, III, and IV were exposed to 6.0 mL ...

  13. Oxidative stress and lung function profiles of male smokers free from ...

    African Journals Online (AJOL)

    2014-06-12

    Jun 12, 2014 ... continues to cause heavy health and economic burden around ... smoking is associated with increased oxidative stress in the lungs (7, 8). ... The present study aims to investigate the blood and ... from COPD compared to smokers with COPD (among ... oral or inhaled N-acetylcysteine or vitamin C and/or E.

  14. Comparison of single, fractionated and hyperfractionated irradiation on the development of normal tissue damage in rat lung

    International Nuclear Information System (INIS)

    Giri, P.G.S.; Kimler, B.F.; Giri, U.P.; Cox, G.G.; Reddy, E.K.

    1985-01-01

    The effect of fractionated thoracic irradiation on the development of normal tissue damage in rats was compared to that produced by single doses. Animals received a single dose of 15 Gy, 30 Gy in 10 daily fractions of 3 Gy each (fractionation), or 30 Gy in 30 fractions of 1 Gy each 3 times a day (hyperfractionation). The treatments produced minimal lethality since a total of only 6 animals died between days 273 and 475 after the initiation of treatment, with no difference in survival observed between the control and any of the 3 treated groups. Despite the lack of lethality, evidence of lung damage was obtained by histological examination. Animals that had received either single doses or fractionated doses had more of the pulmonary parenchyma involved than did animals that had received hyperfractionated doses. The authors conclude that, in the rat lung model, a total radiation dose of 30 Gy fractionated over 14 days produces no more lethality nor damage to lung tissue than does 15 Gy delivered as a single dose. However, long-term effects as evidenced by deposits of collagen and development of fibrosis are significantly reduced by hyperfractionation when compared to single doses and daily fractionation

  15. Treatment with glial derived neurotropic factor (GDNF attenuates oxidative damages of spinal

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-05-01

    Full Text Available Spinal cord injury (SCI is a serious and debilitating issue being suffered by wide population worldwide. Extensive treatment approaches have been tested and being verified for their efficacy. Owing to the nature of central nervous system (CNS, the resident stem cells would be triggered in response to any sort of trauma with nerve factors as their communication signals. Apart from physical injuries, damages due to oxidative stress also need to be addressed while CNS repair mechanism takes place. This study looks at the potential of glial derived nerve factor (GDNF in addressing the SCI in regard to oxidative damages. A total of 60 Wistar rats were clustered into five groups and GDNF at various concentrations was tested in each group. Assessments in terms of oxidative stress parameters were noted and analyzed accordingly. It was noted that GDNF had reduced oxidative damages and increased the levels of anti-oxidants in dose-dependent manner (p < 0.05. Though treatment with 10 mg/mL and 20 mg/mL showed significant changes as compared to control group, these treatment modalities remained insignificant among each other. In conclusion, we demonstrated that GDNF exerted a neuro-protective effect on CNS by inducing anti-oxidants and reducing the levels of oxidative stress in SCI induced rat models.

  16. Sevoflurane posttreatment prevents oxidative and inflammatory injury in ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Julie Wagner

    Full Text Available Mechanical ventilation is a life-saving clinical treatment but it can induce or aggravate lung injury. New therapeutic strategies, aimed at reducing the negative effects of mechanical ventilation such as excessive production of reactive oxygen species, release of pro-inflammatory cytokines, and transmigration as well as activation of neutrophil cells, are needed to improve the clinical outcome of ventilated patients. Though the inhaled anesthetic sevoflurane is known to exert organ-protective effects, little is known about the potential of sevoflurane therapy in ventilator-induced lung injury. This study focused on the effects of delayed sevoflurane application in mechanically ventilated C57BL/6N mice. Lung function, lung injury, oxidative stress, and inflammatory parameters were analyzed and compared between non-ventilated and ventilated groups with or without sevoflurane anesthesia. Mechanical ventilation led to a substantial induction of lung injury, reactive oxygen species production, pro-inflammatory cytokine release, and neutrophil influx. In contrast, sevoflurane posttreatment time dependently reduced histological signs of lung injury. Most interestingly, increased production of reactive oxygen species was clearly inhibited in all sevoflurane posttreatment groups. Likewise, the release of the pro-inflammatory cytokines interleukin-1β and MIP-1β and neutrophil transmigration were completely prevented by sevoflurane independent of the onset of sevoflurane administration. In conclusion, sevoflurane posttreatment time dependently limits lung injury, and oxidative and pro-inflammatory responses are clearly prevented by sevoflurane irrespective of the onset of posttreatment. These findings underline the therapeutic potential of sevoflurane treatment in ventilator-induced lung injury.

  17. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas

    DEFF Research Database (Denmark)

    Bartkova, J; Hamerlik, P; Stockhausen, Marie

    2010-01-01

    damage signalling in low- and high-grade human gliomas, and analyze the sources of such endogenous genotoxic stress. Based on analyses of human glioblastoma multiforme (GBM) cell lines, normal astrocytes and clinical specimens from grade II astrocytomas (n=41) and grade IV GBM (n=60), we conclude...... that the DDR machinery is constitutively activated in gliomas, as documented by phosphorylated histone H2AX (gammaH2AX), activation of the ATM-Chk2-p53 pathway, 53BP1 foci and other markers. Oxidative DNA damage (8-oxoguanine) was high in some GBM cell lines and many GBM tumors, while it was low in normal...... brain and grade II astrocytomas, despite the degree of DDR activation was higher in grade II tumors. Markers indicative of ongoing DNA replication stress (Chk1 activation, Rad17 phosphorylation, replication protein A foci and single-stranded DNA) were present in GBM cells under high- or low...

  18. Oxidative Damage in Erythrocytes During Cold Storage With Organ Preservation Solution

    OpenAIRE

    MEMMEDOĞLU, Akif B.

    1999-01-01

    It is known that erythrocyte aggregation in renal tissue during preserva-tion is cause of microcirculation defects in the reperfusion period. The aim of our study is to investigate oxidative damage in erythrocytes relative to the time of cold ischemia during organ preservation and relationship between lipid peroxidation and development of these damages. In experiments with a rabbit model, explanted kidneys were exposed to perfusion and 96 hours preservation with Euro-Collins (EC) in the 1...

  19. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    Science.gov (United States)

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Is reproduction costly? No increase of oxidative damage in breeding bank voles.

    Science.gov (United States)

    Ołdakowski, Łukasz; Piotrowska, Zaneta; Chrzaácik, Katarzyna M; Sadowska, Edyta T; Koteja, Paweł; Taylor, Jan R E

    2012-06-01

    According to life-history theory, investment in reproduction is associated with costs, which should appear as decreased survival to the next reproduction or lower future reproductive success. It has been suggested that oxidative stress may be the proximate mechanism of these trade-offs. Despite numerous studies of the defense against reactive oxygen species (ROS) during reproduction, very little is known about the damage caused by ROS to the tissues of wild breeding animals. We measured oxidative damage to lipids and proteins in breeding bank vole (Myodes glareolus) females after rearing one and two litters, and in non-breeding females. We used bank voles from lines selected for high maximum aerobic metabolic rates (which also had high resting metabolic rates and food intake) and non-selected control lines. The oxidative damage was determined in heart, kidneys and skeletal muscles by measuring the concentration of thiobarbituric acid-reactive substances, as markers of lipid peroxidation, and carbonyl groups in proteins, as markers of protein oxidation. Surprisingly, we found that the oxidative damage to lipids in kidneys and muscles was actually lower in breeding than in non-breeding voles, and it did not differ between animals from the selected and control lines. Thus, contrary to our predictions, females that bred suffered lower levels of oxidative stress than those that did not reproduce. Elevated production of antioxidant enzymes and the protective role of sex hormones may explain the results. The results of the present study do not support the hypothesis that oxidative damage to tissues is the proximate mechanism of reproduction costs.

  1. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Nakadate, Yusuke [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kodera, Yasuo; Kitamura, Yuka [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Tachibana, Taro [Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Tamura, Tomohide [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Koizumi, Fumiaki, E-mail: fkoizumi@ncc.go.jp [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  2. The protective effect of propolis on damage to lung and blood in rats by inhaled radioactive radon and its progeny

    International Nuclear Information System (INIS)

    Ding Jiansong; Nie Jihua; Tong Jian

    2006-01-01

    Twenty-eight male wistar rats were randomly divided into seven groups, i.e. the radon groups (3), the propolis+radon groups (3) and the control (1). The propolis+radon groups were fed intragastrically with propolis 0.2 g/kg, before exposing them, together with the radon groups, to radon and its progeny with the cumulative dose up to 30, 67 and 111 working level month (WLM), respectively. The levels of SOD (superoxide dismutase) and MDA (Malonic dialdehyde) in blood and lung tissue were determined. The SOD level of in blood and lung tissues of the radon groups decreased significantly and the MDA level increased. The MDA level in lung tissue of the 30 WLM propolis+radon group was significantly higher than the 30 WLM radon group. The SOD level in lung tissue of the 67 WLM propolis+radon group was significantly higher, but the MDA level was significantly lower, than the 67 WLM radon group. Both the SOD and MDA levels in blood and lung tissue of the 111 WLM propolis+radon group were significantly higher than the 111 WLM radon group. In conclusion, the inhalation of radon and its progeny can lead to persistent disturbance of the redox state in rats. Propolis show some protective effects on the redox damage under the experimental conditions. (authors)

  3. Radio-oxidative membrane damage and its possible role as an indicator of radiation exposure

    International Nuclear Information System (INIS)

    Amit Kumar; Pandey, B.N.; Mishra, K.P.

    2004-01-01

    Cellular membranes have been recognized as a sensitive target in the mechanism of ionizing radiation-induced cell killing. In our laboratory, studies have been devoted to investigations on gamma radiation induced oxidative damage to model and cellular membrane damage by employing fluorescence and electron spin resonance (ESR) methods Considerable evidences has accumulated to suggest that radiation induced oxidative damage was related to apoptotic death of a variety of cells in culture. Radiation induced damage involving lipid peroxidation, altered bilayer fluidity, permeability changes and intracellular generated ROS have been evaluated by chemical and physical methods. Modification of damage by structural modulating agents such as cholesterol and antioxidants such as eugenol, ascorbic acid, ellagic acid, triphala have been extensively investigated. Generation of intracellular ROS in radiation stressed normal cell e.g. mouse thymocytes, tumor cells e.g. Ehrlich ascites cells and human cervical cell line were evaluated after exposure from low to moderate doses of α-radiation. Results suggest that modulation of intracellular ROS level may be an important approach to alter radio-cytotoxicity of cells. This presentation would describe results of our study together with an overview of free radical mediated oxidative damage to cellular membrane as an indicator of radiation exposure. (author)

  4. Ghrelin Pre-treatment Attenuates Local Oxidative Stress and End Organ Damage During Cardiopulmonary Bypass in Anesthetized Rats

    Science.gov (United States)

    Sukumaran, Vijayakumar; Tsuchimochi, Hirotsugu; Fujii, Yutaka; Hosoda, Hiroshi; Kangawa, Kenji; Akiyama, Tsuyoshi; Shirai, Mikiyasu; Tatsumi, Eisuke; Pearson, James T.

    2018-01-01

    Cardiopulmonary bypass (CPB) induced systemic inflammation significantly contributes to the development of postoperative complications, including respiratory failure, myocardial, renal and neurological dysfunction and ultimately can lead to failure of multiple organs. Ghrelin is a small endogenous peptide with wide ranging physiological effects on metabolism and cardiovascular regulation. Herein, we investigated the protective effects of ghrelin against CPB-induced inflammatory reactions, oxidative stress and acute organ damage. Adult male Sprague Dawley rats randomly received vehicle (n = 5) or a bolus of ghrelin (150 μg/kg, sc, n = 5) and were subjected to CPB for 4 h (protocol 1). In separate rats, ghrelin pre-treatment (protocol 2) was compared to two doses of ghrelin (protocol 3) before and after CPB for 2 h followed by recovery for 2 h. Blood samples were taken prior to CPB, and following CPB at 2 h and 4 h. Organ nitrosative stress (3-nitrotyrosine) was measured by Western blotting. CPB induced leukocytosis with increased plasma levels of tumor necrosis factor-α and interleukin-6 indicating a potent inflammatory response. Ghrelin treatment significantly reduced plasma organ damage markers (lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase) and protein levels of 3-nitrotyrosine, particularly in the brain, lung and liver, but only partly suppressed inflammatory cell invasion and did not reduce proinflammatory cytokine production. Ghrelin partially attenuated the CPB-induced elevation of epinephrine and to a lesser extent norepinephrine when compared to the CPB saline group, while dopamine levels were completely suppressed. Ghrelin treatment sustained plasma levels of reduced glutathione and decreased glutathione disulphide when compared to CPB saline rats. These results suggest that even though ghrelin only partially inhibited the large CPB induced increase in catecholamines and organ macrophage infiltration, it reduced oxidative

  5. Urea-induced oxidative damage in Elodea densa leaves.

    Science.gov (United States)

    Maleva, Maria; Borisova, Galina; Chukina, Nadezda; Prasad, M N V

    2015-09-01

    Urea being a fertilizer is expected to be less toxic to plants. However, it was found that urea at 100 mg L(-1) caused the oxidative stress in Elodea leaves due to the formation of reactive oxygen species (ROS) and lipid peroxidation that are known to stimulate antioxidant pathway. Urea at a concentration of 500 and 1000 mg L(-1) decreased low-molecular-weight antioxidants. In this case, the antioxidant status of plants was supported by the activity of antioxidant enzymes such as superoxide dismutase and guaiacol peroxidase. A significant increase in the soluble proteins and -SH groups was observed with high concentrations of urea (30-60 % of control). Thus, the increased activity of antioxidant enzymes, low-molecular-weight antioxidants, and induced soluble protein thiols are implicated in plant resistance to oxidative stress imposed by urea. We found that guaiacol peroxidase plays an important role in the removal of the peroxide in Elodea leaves exposed to 1000 mg L(-1)of urea.

  6. Celiac Disease, Inflammation and Oxidative Damage: A Nutrigenetic Approach

    Directory of Open Access Journals (Sweden)

    Letizia Saturni

    2012-03-01

    Full Text Available Celiac disease (CD, a common heritable chronic inflammatory condition of the small intestine caused by permanent intolerance to gluten/gliadin (prolamin, is characterized by a complex interplay between genetic and environmental factors. Developments in proteomics have provided an important contribution to the understanding of the biochemical and immunological aspects of the disease and the mechanisms involved in toxicity of prolamins. It has been demonstrated that some gliadin peptides resistant to complete proteolytic digestion may directly affect intestinal cell structure and functions by modulating gene expression and oxidative stress. In recent years, the creation of the two research fields Nutrigenomics and Nutrigenetics, has enabled the elucidation of some interactions between diet, nutrients and genes. Various dietary components including long chain ω-3 fatty acids, plant flavonoids, and carotenoids have been demonstrated to modulate oxidative stress, gene expression and production of inflammatory mediators. Therefore their adoption could preserve intestinal barrier integrity, play a protective role against toxicity of gliadin peptides and have a role in nutritional therapy of celiac disease.

  7. Oxidative Damage to RPA Limits the Nucleotide Excision Repair Capacity of Human Cells.

    Science.gov (United States)

    Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter

    2015-11-01

    Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin interact with UVA radiation to generate reactive oxygen species that diminish NER capacity by causing protein damage. The replication protein A (RPA) DNA-binding protein has a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation, and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage, and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself, is likely to be an important contributor to skin cancer risk.

  8. Epiphytes modulate Posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms and oxidative damage

    Directory of Open Access Journals (Sweden)

    Monya Mendes Costa

    2015-12-01

    Full Text Available Epiphytes impose physical barriers to light penetration into seagrass leaves causing shading, which may decrease the production of oxygen reactive species (ROS, but also constitute a physical aggression that may trigger the production of ROS, leading to oxidative damage. Here we investigate the effects of epiphytes on Posidonia oceanica under both interactive perspectives, light attenuation and oxidative stress. Specifically the role of epiphytes in net photosynthesis, chlorophyll a and b, photoprotection (Violaxanthin+Anteraxanthin+Zeaxanthin cycle, soluble sugar and starch contents, enzymatic (ascorbate peroxidase (APX and dehydroascorbate reductase (DHAR and global (trolox equivalent antioxidant capacity (TEAC and oxygen radical antioxidant capacity (ORAC antioxidant responses, phenolics and oxidative damage (malondialdehyde are tested. Leaves with epiphytes showed higher chlorophyll b and lower content in VAZ cycle carotenoids. Epiphyte shading was the probable reason for the lower VAZ de-epoxidation-ratio of leaves with epiphytes. In spite of being shaded, leaves with epiphytes showed higher antioxidant levels, indicating that epiphytes trigger the production of ROS. Both ORAC and TEAC and also APX and DHAR activities were higher in leaves with epiphytes, indicating that this response was related with its presence. Malondialdehyde concentrations also suggest oxidative damage caused by epiphytes. We conclude that the epiphyte load causes oxidative stress in P. oceanica and the mechanisms to scavenge ROS were not completely effective to avoid cell damage.

  9. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    We investigated the seasonal variability of 8-oxodeoxyguanosine (8-oxodG), a marker of oxidative damage to DNA, in urine of 50 bus drivers and 50 controls in Prague, Czech Republic, in three seasons with different levels of air pollution: winter 2005, summer 2006 and winter 2006. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter (PM), and volatile organic compounds (VOC)) was monitored by personal and/or stationary monitors. For the analysis of 8-oxodG levels, the ELISA technique was used. Bus drivers were exposed to significantly higher levels of c-PAHs in winter 2006, while in the other two seasons the exposure of controls was unexpectedly higher than that of bus drivers. We did not see any difference in VOC exposure between both groups in summer 2006 and in winter 2006; VOC were not monitored in winter 2005. 8-OxodG levels were higher in bus drivers than in controls in all seasons. The median levels of 8-oxodG (nmol/mmol creatinine) in bus drivers vs. controls were as follows: winter 2005: 7.79 vs. 6.12 (p=0.01); summer 2006: 6.91 vs. 5.11 (p<0.01); winter 2006: 5.73 vs. 3.94 (p<0.001). Multivariate logistic regression analysis identified PM2.5 and PM10 levels, measured by stationary monitors during a 3-day period before urine collection, as the only factors significantly affecting 8-oxodG levels, while the levels of c-PAHs had no significant influence.

  10. Oxidative stress and nerve damage: Role in chemotherapy induced peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Aparna Areti

    2014-01-01

    Full Text Available Peripheral neuropathy is a severe dose limiting toxicity associated with cancer chemotherapy. Ever since it was identified, the clear pathological mechanisms underlying chemotherapy induced peripheral neuropathy (CIPN remain sparse and considerable involvement of oxidative stress and neuroinflammation has been realized recently. Despite the empirical use of antioxidants in the therapy of CIPN, the oxidative stress mediated neuronal damage in peripheral neuropathy is still debatable. The current review focuses on nerve damage due to oxidative stress and mitochondrial dysfunction as key pathogenic mechanisms involved in CIPN. Oxidative stress as a central mediator of apoptosis, neuroinflammation, metabolic disturbances and bioenergetic failure in neurons has been highlighted in this review along with a summary of research on dietary antioxidants and other nutraceuticals which have undergone prospective controlled clinical trials in patients undergoing chemotherapy.

  11. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.

    Science.gov (United States)

    Bhattacharya, Kunal; Naha, Pratap C; Naydenova, Izabela; Mintova, Svetlana; Byrne, Hugh J

    2012-12-17

    MFI-50 nanoparticles was found to accumulate over a longer period of time as compared to MFI-100 nanoparticles. The study therefore points towards the capability of the non-cytotoxic zeolite nanoparticles to induce oxidative stress resulting in short-term altered cellular metabolism up-regulation and genomic instability. Although the damage was found to be short-lived, its persistence over longer durations, or stabilization cannot be neglected. Further studies are in progress to yield a better understanding of the mechanisms for oxidative stress and resulting cascade of events leading to genetic damage in the human lung alveolar epithelial cells following exposure to zeolite nanoparticles of different sizes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    Directory of Open Access Journals (Sweden)

    Ana Laura Nicoletti Carvalho

    2013-01-01

    Full Text Available Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP- induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF, and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  13. Protective effects of lipoic acid against oxidative stress induced by lead acetate and gamma-irradiation in the kidney and lung in albino rats

    International Nuclear Information System (INIS)

    Rezk, R.G.; Abdel-Rahman, N.A.

    2013-01-01

    Lipoic acid is widely used as antioxidant that protects tissues against a range of oxidative stress. The present study was designed to determine the protective effect of lipoic acid against oxidative organ damage induced by lead intoxication and/or gamma-irradiation. Rats were treated daily intrapritonealy (i. p.) with lipoic acid( 200 mg/kg/b.w.) for 15 consecutive days before lead acetate injection(30 mg/kg/b.w) i.p. for 5 days and/ or whole body. gamma-irradiation (3 Gy). Animals were sacrificed on the 3rd day post the last treatment. Histological examination of kidney and lung tissues through light microscope showed that lead acetate injection and/or exposure to gamma radiation has provoked severe architectural damage in both tissues as necrotic lesions, atrophoid glomerulei and degenerated proximal and distal convoluted tubules, severe bronchiole fibrosis, decreased ciliated bronchioles and dilated and widened pulmonary artery. Histological damage was associated with significant biochemical. changes as increase in lead, copper, iron, zinc and calcium levels in both kidney and lung tissues. Kidney and lung of rats treated with lipoic acid before lead intoxication and/or gamma-irradiation showed significant regenerated glomerulei structure, well-defined structure of proximal and distal convoluted tubules, regenerated ciliated bronchiole structure and improved pulmonary artery. Tissue regeneration was associated with significant decrease in Pb, Cu, Fe, Zn, and Ca levels in kidney and lung and prevented the accumulation of metals in these organs. It could be concluded that lipoic acid administration before lead and/or whole body gamma-irradiation might be capable to attenuate lead and/or gamma radiation induced organ injury and organ metals disruption

  14. Lung injury-dependent oxidative status and chymotrypsin-like activity of skeletal muscles in hamsters with experimental emphysema

    Directory of Open Access Journals (Sweden)

    Tonon Jair

    2013-01-01

    Full Text Available Abstract Background Peripheral skeletal muscle is altered in patients suffering from emphysema and chronic obstructive pulmonary disease (COPD. Oxidative stress have been demonstrated to participate on skeletal muscle loss of several states, including disuse atrophy, mechanical ventilation, and chronic diseases. No evidences have demonstrated the occurance in a severity manner. Methods We evaluated body weight, muscle loss, oxidative stress, and chymotrypsin-like proteolytic activity in the gastrocnemius muscle of emphysemic hamsters. The experimental animals had 2 different severities of lung damage from experimental emphysema induced by 20 mg/mL (E20 and 40 mg/mL (E40 papain. Results The severity of emphysema increased significantly in E20 (60.52 ± 2.8, p Conclusions Taken together, the results of the present study suggest that muscle atrophy observed in this model of emphysema is mediated by increased muscle chymotrypsin-like activity, with possible involvement of oxidative stress in a severity-dependent manner.

  15. Curcumin ameliorates gastrointestinal dysfunction and oxidative damage in diabetic rats

    Directory of Open Access Journals (Sweden)

    Nitin Indarchandji Kochar

    2014-05-01

    Full Text Available Diabetes is known to be associated with gastrointestinal complications characterized by nausea, vomiting, early satiety, bloating, and abdominal discomfort or pain commonly occurring in the advanced stages of the disease. Curcumin is the lipid-soluble antioxidant obtained from the rhizomes of Curcuma longa Linn, also known as turmeric. Curcumin targets multiple chemotherapeutic and oxidative stress pathways and has demonstrated safety and tolerability in humans, supporting its potential as a therapeutic agent; however, literature lacks conclusive evidence supporting its use as a therapeutic agent for the treatment of diabetes induced gastrointestinal complications. Hence, Curcumin was given in different doses to SD rats after 4 weeks of diabetic GI complication induction. At the end of 4 weeks, significant GI dysfunction characterized by weight loss, delayed gastric emptying and intestinal transit associated with reduction in antioxidant enzyme levels and increased lipid peroxidation was observed.  Upon treatment with Curcumin for further 4 weeks, reversal of GI dysfunction evidenced by restoration of body weight, GI emptying, intestinal transit, and restoration of antioxidant enzyme level and lipid peroxidation proves the beneficial role of Curcumin in diabetes induced GI complications due to its antioxidant potential.     

  16. Prolonged fasting does not increase oxidative damage or inflammation in postweaned northern elephant seal pups.

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Crocker, Daniel E; Forman, Henry Jay; Ortiz, Rudy M

    2010-07-15

    Elephant seals are naturally adapted to survive up to three months of absolute food and water deprivation (fasting). Prolonged food deprivation in terrestrial mammals increases reactive oxygen species (ROS) production, oxidative damage and inflammation that can be induced by an increase in the renin-angiotensin system (RAS). To test the hypothesis that prolonged fasting in elephant seals is not associated with increased oxidative stress or inflammation, blood samples and muscle biopsies were collected from early (2-3 weeks post-weaning) and late (7-8 weeks post-weaning) fasted seals. Plasma levels of oxidative damage, inflammatory markers and plasma renin activity (PRA), along with muscle levels of lipid and protein oxidation, were compared between early and late fasting periods. Protein expression of angiotensin receptor 1 (AT(1)), pro-oxidant (Nox4) and antioxidant enzymes (CuZn- and Mn-superoxide dismutases, glutathione peroxidase and catalase) was analyzed in muscle. Fasting induced a 2.5-fold increase in PRA, a 50% increase in AT(1), a twofold increase in Nox4 and a 70% increase in NADPH oxidase activity. By contrast, neither tissue nor systemic indices of oxidative damage or inflammation increased with fasting. Furthermore, muscle antioxidant enzymes increased 40-60% with fasting in parallel with an increase in muscle and red blood cell antioxidant enzyme activities. These data suggest that, despite the observed increases in RAS and Nox4, an increase in antioxidant enzymes appears to be sufficient to suppress systemic and tissue indices of oxidative damage and inflammation in seals that have fasted for a prolonged period. The present study highlights the importance of antioxidant capacity in mammals during chronic periods of stress to help avoid deleterious systemic consequences.

  17. Oxidative DNA damage in bone marrow cells of patients with low-risk myelodysplastic syndrome

    Czech Academy of Sciences Publication Activity Database

    Novotná, Božena; Bagryantseva, Yana; Šišková, M.; Neuwirtová, R.

    2009-01-01

    Roč. 33, č. 2 (2009), s. 340-343 ISSN 0145-2126 R&D Projects: GA MZd NR8265 Institutional research plan: CEZ:AV0Z50390512 Keywords : Myelodysplastic syndrome * Refractory anemia * Oxidative DNA damage Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.358, year: 2009

  18. Sildenafil Attenuates Inflammation and Oxidative Stress in Pelvic Ganglia Neurons after Bilateral Cavernosal Nerve Damage

    Directory of Open Access Journals (Sweden)

    Leah A. Garcia

    2014-09-01

    Full Text Available Erectile dysfunction is a common complication for patients undergoing surgeries for prostate, bladder, and colorectal cancers, due to damage of the nerves associated with the major pelvic ganglia (MPG. Functional re-innervation of target organs depends on the capacity of the neurons to survive and switch towards a regenerative phenotype. PDE5 inhibitors (PDE5i have been successfully used in promoting the recovery of erectile function after cavernosal nerve damage (BCNR by up-regulating the expression of neurotrophic factors in MPG. However, little is known about the effects of PDE5i on markers of neuronal damage and oxidative stress after BCNR. This study aimed to investigate the changes in gene and protein expression profiles of inflammatory, anti-inflammatory cytokines and oxidative stress related-pathways in MPG neurons after BCNR and subsequent treatment with sildenafil. Our results showed that BCNR in Fisher-344 rats promoted up-regulation of cytokines (interleukin- 1 (IL-1 β, IL-6, IL-10, transforming growth factor β 1 (TGFβ1, and oxidative stress factors (Nicotinamide adenine dinucleotide phosphate (NADPH oxidase, Myeloperoxidase (MPO, inducible nitric oxide synthase (iNOS, TNF receptor superfamily member 5 (CD40 that were normalized by sildenafil treatment given in the drinking water. In summary, PDE5i can attenuate the production of damaging factors and can up-regulate the expression of beneficial factors in the MPG that may ameliorate neuropathic pain, promote neuroprotection, and favor nerve regeneration.

  19. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    Czech Academy of Sciences Publication Activity Database

    Gillard, N.; Goffinont, S.; Buré, C.; Davídková, Marie; Maurizot, J. C.; Cadene, M.; Spotheim-Maurizot, M.

    2007-01-01

    Roč. 403, part 3 (2007), s. 463-472 ISSN 0264-6021 R&D Projects: GA MŠk 1P05OC085 Institutional research plan: CEZ:AV0Z10480505 Keywords : ionizing radiation * oxidative damage * DNA binding domain * lac repressor Subject RIV: CE - Biochemistry Impact factor: 4.009, year: 2007

  20. Base excision repair of oxidative DNA damage and association with cancer and aging

    DEFF Research Database (Denmark)

    Maynard, Scott; Schurman, Shepherd H; Harboe, Charlotte

    2009-01-01

    Aging has been associated with damage accumulation in the genome and with increased cancer incidence. Reactive oxygen species (ROS) are produced from endogenous sources, most notably the oxidative metabolism in the mitochondria, and from exogenous sources, such as ionizing radiation. ROS attack DNA...

  1. [Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases].

    Science.gov (United States)

    Lucio, Lorena M C; Braz, Mariana G; do Nascimento Junior, Paulo; Braz, José Reinaldo C; Braz, Leandro G

    The waste anesthetic gases (WAGs) present in the ambient air of operating rooms (OR), are associated with various occupational hazards. This paper intends to discuss occupational exposure to WAGs and its impact on exposed professionals, with emphasis on genetic damage and oxidative stress. Despite the emergence of safer inhaled anesthetics, occupational exposure to WAGs remains a current concern. Factors related to anesthetic techniques and anesthesia workstations, in addition to the absence of a scavenging system in the OR, contribute to anesthetic pollution. In order to minimize the health risks of exposed professionals, several countries have recommended legislation with maximum exposure limits. However, developing countries still require measurement of WAGs and regulation for occupational exposure to WAGs. WAGs are capable of inducing damage to the genetic material, such as DNA damage assessed using the comet assay and increased frequency of micronucleus in professionals with long-term exposure. Oxidative stress is also associated with WAGs exposure, as it induces lipid peroxidation, oxidative damage in DNA, and impairment of the antioxidant defense system in exposed professionals. The occupational hazards related to WAGs including genotoxicity, mutagenicity and oxidative stress, stand as a public health issue and must be acknowledged by exposed personnel and responsible authorities, especially in developing countries. Thus, it is urgent to stablish maximum safe limits of concentration of WAGs in ORs and educational practices and protocols for exposed professionals. Copyright © 2017 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  2. Coordinating repair of oxidative DNA damage with transcription and replication

    International Nuclear Information System (INIS)

    Cooper, P.K.

    2003-01-01

    Transcription-coupled repair (TCR) preferentially removes DNA lesions from template strands of active genes. Defects in TCR, which acts both on lesions removed by nucleotide excision repair (NER) and on oxidative lesions removed by base excision repair (BER), underlie the fatal developmental disorder Cockayne syndrome. Although its detailed mechanism remains unknown, TCR involves recognition of a stalled RNA polymerase (RNAP), removal or remodeling of RNAP to allow access to the lesion, and recruitment of repair enzymes. At a minimum, these early steps require a non-enzymatic function of the multifunctional repair protein XPG, the CSB protein with ATP-dependent chromatin remodeling activity, and the TFIIH complex (including the XPB and XPD helicases) that is also required for basal transcription initiation and NER. XPG exists in the cell in a complex with TFIIH, and in vitro evidence has suggested that it interacts with CSB. To address the mechanism of TCR, we are characterizing protein-DNA and protein-protein interactions of XPG. We show that XPG preferentially binds to double-stranded DNA containing bubbles resembling in size the unpaired regions associated with transcription. Two distinct domains of XPG are required for the observed strong binding specificity and stability. XPG both interacts directly with CSB and synergistically binds with it to bubble DNA, and it strongly stimulates the bubble DNA-dependent ATPase activity of CSB. Significantly for TCR, XPG also interacts directly with RNAP II, binds both the protein and nucleic acid components (the R-loop) of a stalled RNA polymerase, and forms a ternary complex with CSB and the stalled RNAP. These results are consistent with the model that XPG and CSB jointly interact with the DNA/chromatin structure in the vicinity of the stalled transcriptional apparatus and with the transcriptional machinery itself to remodel the chromatin and either move or remodel the blocked RNA polymerase to expose the lesion

  3. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress.

    Science.gov (United States)

    Ciniglia, Claudia; Mastrobuoni, Francesco; Scortichini, Marco; Petriccione, Milena

    2015-05-01

    The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.

  4. Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Løhr, Mille; Jensen, Annie; Eriksen, Louise

    2015-01-01

    Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged...... 18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency......, cholesterol and glycosylated hemoglobin (HbA1c). In the group of men, there were significant positive associations between alcohol intake, HbA1c and FPG-sensitive sites in multivariate analysis. The levels of metabolic risk factors were positively associated with age, yet only few subjects fulfilled all...

  5. Structural influences on the laser damage resistance of optical oxide coatings for use at 1064 nm

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, E; Lauth, H; Meyer, J; Weissbrodt, P [Zeiss Jena GmbH, Jena (Germany, F.R.); Wolf, R; Zscherpe, G [Ingenieurhochschule Mittweida (Germany, F.R.); Heyer, H [Sektion Physik, Friedrich-Schiller-Univ. Jena (Germany, F.R.)

    1990-11-01

    Optical coatings of titania (TiO{sub 2}) and tantala (Ta{sub 2}O{sub 5}) prepared by reactive r.f. diode and d.c. plasmatron sputtering were investigated for the influence of structural properties on the 1064 nm laser damage resistance. Using various methods of characterizing the compositional, crystallographic, microstructural and optical properties, it was found that the damage thresholds are directly related to the content of oxygen in the films in excess of the stoichiometric values, whereas grain sizes and refractive indices show no systematic influences valid for both oxide materials. The highest oxygen-to-metal atomic ratios and thus the highest damage threshold were achieved by the use of r.f diode sputtering. X-ray photospectroscopy investigations of tantala coatings with different oxygen-to-tantalum atomic ratios up to 2.75 revealed for both constituents of the oxide only binding energies representative for tantalum pentoxide. (orig.).

  6. Oxidative DNA damage and repair in skeletal muscle of humans exposed to high-altitude hypoxia

    International Nuclear Information System (INIS)

    Lundby, Carsten; Pilegaard, Henriette; Hall, Gerrit van; Sander, Mikael; Calbet, Jose; Loft, Steffen; Moeller, Peter

    2003-01-01

    Recent research suggests that high-altitude hypoxia may serve as a model for prolonged oxidative stress in healthy humans. In this study, we investigated the consequences of prolonged high-altitude hypoxia on the basal level of oxidative damage to nuclear DNA in muscle cells, a major oxygen-consuming tissue. Muscle biopsies from seven healthy humans were obtained at sea level and after 2 and 8 weeks of hypoxia at 4100 m.a.s.l. We found increased levels of strand breaks and endonuclease III-sensitive sites after 2 weeks of hypoxia, whereas oxidative DNA damage detected by formamidopyrimidine DNA glycosylase (FPG) protein was unaltered. The expression of 8-oxoguanine DNA glycosylase 1 (OGG1), determined by quantitative RT-PCR of mRNA levels did not significantly change during high-altitude hypoxia, although the data could not exclude a minor upregulation. The expression of heme oxygenase-1 (HO-1) was unaltered by prolonged hypoxia, in accordance with the notion that HO-1 is an acute stress response protein. In conclusion, our data indicate high-altitude hypoxia may serve as a good model for oxidative stress and that antioxidant genes are not upregulated in muscle tissue by prolonged hypoxia despite increased generation of oxidative DNA damage

  7. Spectroellipsometric detection of silicon substrate damage caused by radiofrequency sputtering of niobium oxide

    Science.gov (United States)

    Lohner, Tivadar; Serényi, Miklós; Szilágyi, Edit; Zolnai, Zsolt; Czigány, Zsolt; Khánh, Nguyen Quoc; Petrik, Péter; Fried, Miklós

    2017-11-01

    Substrate surface damage induced by deposition of metal atoms by radiofrequency (rf) sputtering or ion beam sputtering onto single-crystalline silicon (c-Si) surface has been characterized earlier by electrical measurements. The question arises whether it is possible to characterize surface damage using spectroscopic ellipsometry (SE). In our experiments niobium oxide layers were deposited by rf sputtering on c-Si substrates in gas mixture of oxygen and argon. Multiple angle of incidence spectroscopic ellipsometry measurements were performed, a four-layer optical model (surface roughness layer, niobium oxide layer, native silicon oxide layer and ion implantation-amorphized silicon [i-a-Si] layer on a c-Si substrate) was created in order to evaluate the spectra. The evaluations yielded thicknesses of several nm for the i-a-Si layer. Better agreement could be achieved between the measured and the generated spectra by inserting a mixed layer (with components of c-Si and i-a-Si applying the effective medium approximation) between the silicon oxide layer and the c-Si substrate. High depth resolution Rutherford backscattering (RBS) measurements were performed to investigate the interface disorder between the deposited niobium oxide layer and the c-Si substrate. Atomic resolution cross-sectional transmission electron microscopy investigation was applied to visualize the details of the damaged subsurface region of the substrate.

  8. The effect of obstructive sleep apnea on DNA damage and oxidative stress.

    Science.gov (United States)

    Kang, Il Gyu; Jung, Joo Hyun; Kim, Seon Tae

    2013-06-01

    Obstructive sleep apnea syndrome (OSAS) is associated with repeated hypoxia and re-oxygenation. This characteristic of OSAS may cause oxidative stress and DNA damage. However, the link of OSAS with oxidative stress and DNA damage is still controversial. In the current study, we investigated whether OSAS causes DNA damage using alkaline single-cell gel electrophoresis (comet assay) and measuring oxidative stress by monitoring serum malondialdehyde (MDA) levels. From March 2009 to August 2010, 51 patients who underwent polysomnography (PSG) during the night were enrolled in this study. We obtained serum from the patients at 6 AM. DNA damage and oxidative stress were evaluated using a comet assay and measuring serum MDA, respectively. We divided the patients into two groups according to the existence of comets appearing in the comet assay. Group 1 included 44 patients with negative assay results and group 2 consisted of seven patients with positive comet assay findings. We compared the age, gender proportion, PSG data (respiratory disturbance index [RDI], lowest O2 saturation level, and arousal index [AI]), time of disease onset, smoking habits, and serum MDA levels between the two groups. The average age and gender proportion of the two groups were not statistically different (P>0.05). The average of RDI for group 1 was 30.4±18.4 and 8.0±7.7 (P0.05). No relationship between positive comet assay results and OSAS severity was identified. Results of the current study showed that OSAS was not associated with DNA damage as measured by comet assays or oxidative stress according to serum MDA levels.

  9. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts.

    Science.gov (United States)

    Xie, Xiaoxian; Wang, Liangliang; Zhao, Binggong; Chen, Yangyang; Li, Jiaqi

    2017-05-15

    Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD + )-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway.

    Science.gov (United States)

    Cui, Qunli; Li, Xin; Zhu, Hongcan

    2016-02-01

    Parkinson's disease (PD) is an age-related complex neurodegenerative disease that affects ≤ 80% of dopaminergic neurons in the substantia nigra pars compacta (SNpc). It has previously been suggested that mitochondrial dysfunction, oxidative stress and oxidative damage underlie the pathogenesis of PD. Curcumin, which is a major active polyphenol component extracted from the rhizomes of Curcuma longa (Zingiberaceae), has been reported to exert neuroprotective effects on an experimental model of PD. The present study conducted a series of in vivo experiments, in order to investigate the effects of curcumin on behavioral deficits, oxidative damage and related mechanisms. The results demonstrated that curcumin was able to significantly alleviate motor dysfunction and increase suppressed tyrosine hydroxylase (TH) activity in the SNpc of rotenone (ROT)-injured rats. Biochemical measurements indicated that rats pretreated with curcumin exhibited increased glutathione (GSH) levels, and reduced reactive oxygen species activity and malondialdehyde content. Mechanistic studies demonstrated that curcumin significantly restored the expression levels of heme oxygenase-1 and quinone oxidoreductase 1, thus ameliorating ROT-induced damage in vivo, via the phosphorylation of Akt and nuclear factor erythroid 2-related factor 2 (Nrf2). Further studies indicated that the Akt/Nrf2 signaling pathway was associated with the protective role of curcumin in ROT-treated rats. Inhibiting the Akt/Nrf2 pathway using a lentiviral vector containing Nrf2-specific short hairpin RNA, or the phosphoinositide 3-kinase inhibitor LY294002, markedly reduced the expression levels of TH and GSH, ultimately attenuating the neuroprotective effects of curcumin against oxidative damage. These results indicated that curcumin was able to significantly ameliorate ROT-induced dopaminergic neuronal oxidative damage in the SNpc of rats via activation of the Akt/Nrf2 signaling pathway.

  11. Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress

    International Nuclear Information System (INIS)

    Pina-Guzman, B.; Solis-Heredia, M.J.; Rojas-Garcia, A.E.; Uriostegui-Acosta, M.; Quintanilla-Vega, B.

    2006-01-01

    Organophosphorous (OP) pesticides are considered genotoxic mainly to somatic cells, but results are not conclusive. Few studies have reported OP alterations on sperm chromatin and DNA, and oxidative stress has been related to their toxicity. Sperm cells are very sensitive to oxidative damage which has been associated with reproductive dysfunctions. We evaluated the effects of methyl-parathion (Me-Pa; a widely used OP) on sperm DNA, exploring the sensitive stage(s) of spermatogenesis and the relationship with oxidative stress. Male mice (10-12-weeks old) were administered Me-Pa (3-20 mg/kg bw/i.p.) and euthanized at 7- or 28-days post-treatment. Mature spermatozoa were obtained and evaluated for chromatin structure through SCSA (Sperm Chromatin Structure Assay; DNA Fragmentation Index parameters: Mean DFI and DFI%) and chromomycin-A 3 (CMA 3 )-staining, for DNA damage through in situ-nick translation (NT-positive) and for oxidative stress through lipid peroxidation (LPO; malondialdehyde production). At 7-days post-treatment (mature spermatozoa when Me-Pa exposure), dose-dependent alterations in chromatin structure (Mean DFI and CMA 3 -staining) were observed, as well as increased DNA damage, from 2-5-fold in DFI% and NT-positive cells. Chromatin alterations and DNA damage were also observed at 28-days post-treatment (cells at meiosis at the time of exposure); suggesting that the damage induced in spermatocytes was not repaired. Positive correlations were observed between LPO and sperm DNA-related parameters. These data suggest that oxidative stress is related to Me-Pa alterations on sperm DNA integrity and cells at meiosis (28-days post-treatment) and epididymal maturation (7-days post-treatment) are Me-Pa targets. These findings suggest a potential risk of Me-Pa to the offspring after transmission

  12. Oxidative Stress Facilitates IFN-γ-Induced Mimic Extracellular Trap Cell Death in A549 Lung Epithelial Cancer Cells.

    Science.gov (United States)

    Lin, Chiou-Feng; Chen, Chia-Ling; Chien, Shun-Yi; Tseng, Po-Chun; Wang, Yu-Chih; Tsai, Tsung-Ting

    2016-01-01

    We previously demonstrated that IFN-γ induces an autophagy-regulated mimic extracellular trap cell death (ETosis) in A549 human lung cancer cells. Regarding reactive oxygen species (ROS) are involved in ETosis, this study investigated the role of oxidative stress. After IFN-γ stimulation, a necrosis-like cell death mimic ETosis occurred accompanied by the inhibition of cell growth, aberrant nuclear staining, and nucleosome release. ROS were generated in a time-dependent manner with an increase in NADPH oxidase component protein expression. STAT1-mediated IFN regulatory factor-1 activation was essential for upregulating ROS production. By genetically silencing p47phox, IFN-γ-induced ROS and mimic ETosis were significantly attenuated. This mechanistic study indicated that ROS may mediate DNA damage followed by histone H3 citrullination. Furthermore, ROS promoted IFN-γ-induced mimic ETosis in cooperation with autophagy. These findings further demonstrate that ROS regulates IFN-γ-induced mimic ETosis in lung epithelial malignancy.

  13. Metabolic Imbalance Associated with Methylation Dysregulation and Oxidative Damage in Children with Autism

    Science.gov (United States)

    Melnyk, Stepan; Fuchs, George J.; Schulz, Eldon; Lopez, Maya; Kahler, Stephen G.; Fussell, Jill J.; Bellando, Jayne; Pavliv, Oleksandra; Rose, Shannon; Seidel, Lisa; Gaylor, David W.

    2012-01-01

    Oxidative stress and abnormal DNA methylation have been implicated in the pathophysiology of autism. We investigated the dynamics of an integrated metabolic pathway essential for cellular antioxidant and methylation capacity in 68 children with autism, 54 age-matched control children and 40 unaffected siblings. The metabolic profile of unaffected siblings differed significantly from case siblings but not from controls. Oxidative protein/DNA damage and DNA hypomethylation (epigenetic alteration) were found in autistic children but not paired siblings or controls. These data indicate that the deficit in antioxidant and methylation capacity is specific for autism and may promote cellular damage and altered epigenetic gene expression. Further, these results suggest a plausible mechanism by which pro-oxidant environmental stressors may modulate genetic predisposition to autism. PMID:21519954

  14. Association between Urinary Excretion of Cortisol and Markers of Oxidatively Damaged DNA and RNA in Humans

    DEFF Research Database (Denmark)

    Joergensen, Anders; Broedbaek, Kasper; Weimann, Allan

    2011-01-01

    Chronic psychological stress is associated with accelerated aging, but the underlying biological mechanisms are not known. Prolonged elevations of the stress hormone cortisol is suspected to play a critical role. Through its actions, cortisol may potentially induce oxidatively generated damage...... to cellular constituents such as DNA and RNA, a phenomenon which has been implicated in aging processes. We investigated the relationship between 24 h excretion of urinary cortisol and markers of oxidatively generated DNA and RNA damage, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine......, in a sample of 220 elderly men and women (age 65 - 83 years). We found a robust association between the excretion of cortisol and the oxidation markers (R(2)¿=¿0.15, P...

  15. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage

    Directory of Open Access Journals (Sweden)

    Jiaxiang Shao

    2016-03-01

    Full Text Available Abstract SIRT6 is a NAD+-dependent histone deacetylase and has been implicated in the regulation of genomic stability, DNA repair, metabolic homeostasis and several diseases. The effect of SIRT6 in cerebral ischemia and oxygen/glucose deprivation (OGD has been reported, however the role of SIRT6 in oxidative stress damage remains unclear. Here we used SH-SY5Y neuronal cells and found that overexpression of SIRT6 led to decreased cell viability and increased necrotic cell death and reactive oxygen species (ROS production under oxidative stress. Mechanistic study revealed that SIRT6 induced autophagy via attenuation of AKT signaling and treatment with autophagy inhibitor 3-MA or knockdown of autophagy-related protein Atg5 rescued H2O2-induced neuronal injury. Conversely, SIRT6 inhibition suppressed autophagy and reduced oxidative stress-induced neuronal damage. These results suggest that SIRT6 might be a potential therapeutic target for neuroprotection.

  16. Quantification of in vivo oxidative damage in Caenorhabditis elegans during aging by endogenous F3-isoprostane measurement

    NARCIS (Netherlands)

    Labuschagne, C.F.; Stigter, E.C.; Hendriks, M.M.; Berger, R.; Rokach, J.; Korswagen, H.C.; Brenkman, A.B.

    2013-01-01

    Oxidative damage is thought to be a major cause in development of pathologies and aging. However, quantification of oxidative damage is methodologically difficult. Here, we present a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach for accurate, sensitive, and linear in vivo

  17. Clinical application of exhaled nitric oxide measurement in pediatric lung diseases

    Directory of Open Access Journals (Sweden)

    Manna Angelo

    2012-12-01

    Full Text Available Summary Fractional exhaled nitric oxide (FeNO is a non invasive method for assessing the inflammatory status of children with airway disease. Different ways to measure FeNO levels are currently available. The possibility of measuring FeNO levels in an office setting even in young children, and the commercial availability of portable devices, support the routine use of FeNO determination in the daily pediatric practice. Although many confounding factors may affect its measurement, FeNO is now widely used in the management of children with asthma, and seems to provide significantly higher diagnostic accuracy than lung function or bronchial challenge tests. The role of FeNO in airway infection (e.g. viral bronchiolitis and common acquired pneumonia, in bronchiectasis, or in cases with diffuse lung disease is less clear. This review focuses on the most recent advances and the current clinical applications of FeNO measurement in pediatric lung disease.

  18. Bisphenol a promotes cell survival following oxidative DNA damage in mouse fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie R Gassman

    Full Text Available Bisphenol A (BPA is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3 or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway.

  19. Protection of ionizing radiation-induced cytogenetic damage by hydroalcoholic extract of Cynodon dactylon in Chinese hamster lung fibroblast cells and human peripheral blood lymphocytes.

    Science.gov (United States)

    Rao, Bola Sadashiva Satish; Upadhya, Dinesh; Adiga, Satish Kumar

    2008-01-01

    The radiomodulatory potential of hydroalcoholic extract of a medicinal plant Cynodon dactylon (family: Poaceae) against radiation-induced cytogenetic damage was analyzed using Chinese hamster lung fibroblast (V79) cells and human peripheral blood lymphocytes (HPBLs) growing in vitro. Induction of micronuclei was used as an index of cytogenetic damage, evaluated in cytokinesis blocked binucleate cells. The hydroalcoholic Cynodon dactylon extract (CDE) rendered protection against the radiation-induced DNA damage, as evidenced by the significant (p<0.001) reduction in micronucleated binucleate cells (MNBNC%) after various doses of CDE treatment in V79 cells and HPBLs. The optimum dose of CDE (40 and 50 microg/ml in HPBLs and V79 cells, respectively) with the greatest reduction in micronuclei was further used in combination with various doses of gamma radiation (0.5, 1, 2, 3, and 4 Gy) exposed 1 h after CDE treatment. A linear dose-dependent MNBNC% increase in radiation alone group was observed, while 40/50 microg/ml CDE significantly resulted in the reduction of MNBNC%, compared to the respective radiation alone groups. CDE resulted in a dose-dependent increase in free radical scavenging ability against various free radicals, viz., 2, 2-diphenyl-2-picryl-hydrazyl (DPPH); 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS); superoxide anion (O2*-); hydroxyl radical (OH*) and nitric oxide radical (NO*) generated in vitro. Also, an excellent (70%) inhibition of lipid peroxidation in vitro was observed at a dose of 300 microg/ml CDE, attaining the saturation point at higher doses. The present findings demonstrated the radioprotective effect of CDE, also rendering protection against radiation-induced genomic instability and DNA damage. The observed radioprotective effect may be partly attributed to the free radical scavenging and antilipid peroxidative potential of CDE.

  20. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: involvement of reactive oxygen species.

    Science.gov (United States)

    Maciag, Anna E; Chakrapani, Harinath; Saavedra, Joseph E; Morris, Nicole L; Holland, Ryan J; Kosak, Ken M; Shami, Paul J; Anderson, Lucy M; Keefer, Larry K

    2011-02-01

    Non-small-cell lung cancer is among the most common and deadly forms of human malignancies. Early detection is unusual, and there are no curative therapies in most cases. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Here, we show that O(2)-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) is a potent cytotoxic agent against a subset of human non-small-cell lung cancer cell lines both in vitro and as xenografts in mice. JS-K treatment led to 75% reduction in the growth of H1703 lung adenocarcinoma cells in vivo. Differences in sensitivity to JS-K in different lung cancer cell lines seem to be related to their endogenous levels of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Other related factors, levels of peroxiredoxin 1 (PRX1) and 8-oxo-deoxyguanosine glycosylase (OGG1), also correlated with drug sensitivity. Treatment of the lung adenocarcinoma cells with JS-K resulted in oxidative/nitrosative stress in cells with high basal levels of ROS/RNS, which, combined with the arylating properties of the compound, was reflected in glutathione depletion and alteration in cellular redox potential, mitochondrial membrane permeabilization, and cytochrome c release. Inactivation of manganese superoxide dismutase by nitration was associated with increased superoxide and significant DNA damage. Apoptosis followed these events. Taken together, the data suggest that diazeniumdiolate-based NO-releasing prodrugs may have application as a personalized therapy for lung cancers characterized by high levels of ROS/RNS. PRX1 and OGG1 proteins, which can be easily measured, could function as biomarkers for identifying tumors sensitive to the therapy.

  1. Evaluation of oxidative DNA damage promoted by storage in sperm from sex-reversed rainbow trout.

    Science.gov (United States)

    Pérez-Cerezales, S; Martínez-Páramo, S; Cabrita, E; Martínez-Pastor, F; de Paz, P; Herráez, M P

    2009-03-01

    Short-term storage and cryopreservation of sperm are two common procedures in aquaculture, used for routine practices in artificial insemination reproduction and gene banking, respectively. Nevertheless, both procedures cause injuries affecting sperm motility, viability, cell structure and DNA stability, which diminish reproductive success. DNA modification is considered extremely important, especially when sperm storage is carried out with gene banking purposes. DNA damage caused by sperm storage is not well characterized and previous studies have reported simple and double strand breaks that have been attributed to oxidative events promoted by the generation of free radicals during storage. The objective of this study was to reveal DNA fragmentation and to explore the presence of oxidized bases that could be produced by oxidative events during short-term storage and cryopreservation in sex-reversed rainbow trout (Oncorhynchus mykiss) spermatozoa. Sperm from six males was analyzed separately. Different aliquots of the samples were stored 2h (fresh) or 5 days at 4 degrees C or were cryopreserved. Then spermatozoa were analyzed using the Comet assay, as well as combining this method with digestion with two endonucleases from Escherichia coli (Endonuclease III, that cut in oxidized cytosines, and FPG, cutting in oxidized guanosines). Both storage procedures yielded DNA fragmentation, but only short-term storage oxidative events were clearly detected, showing that oxidative processes affect guanosines rather than cytosines. Cryopreservation increases DNA fragmentation but the presence of oxidized bases was not noticed, suggesting that mechanisms other than oxidative stress could be involved in DNA fragmentation promoted by freezing.

  2. Protective Effect of Nitric Oxide (NO against Oxidative Damage in Larix gmelinii Seedlings under Ultraviolet-B Irradiation

    Directory of Open Access Journals (Sweden)

    Haiqing Hu

    2016-10-01

    Full Text Available Ultraviolet-B (UV-B stress appears to be more striking than other research works because of the thin ozone layer. The protective influence of an exogenous nitric oxide donor and sodium nitroprusside (SNP on the growth properties of Larix gmelinii seedlings was investigated under ultraviolet-B radiation conditions. The results indicated that 0.1 mM SNP could effectively alleviate the damage caused by ultraviolet-B radiation, and improved the seedling growth properties, the relative water content, and photosynthetic pigment content in leaves. Additionally, the photosynthetic capacity and antioxidant enzyme activity were increased during the exposure. On the contrary, the damage caused by active oxygen was decreased in SNP-treated seedling leaves. The damage caused by ultraviolet-B radiation was slightly reduced after treating with 0.01 mM SNP. Nevertheless, treatment with 0.5 mM SNP had a negative effect under ultraviolet-B radiation. Furthermore, supplementing NO (nitric oxide improved the photosynthetic capacity and antioxidant enzyme activity and alleviated the damage of caused by active oxygen. The best effective concentration of SNP was 0.1 mM. Therefore, a suitable amount of exogenous NO can protect the Larix gmelinii seedlings and increase their tolerance to ultraviolet-B radiation.

  3. Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis.

    Science.gov (United States)

    Gupta, Indranil; Ganguly, Souradipta; Rozanas, Christine R; Stuehr, Dennis J; Panda, Koustubh

    2016-07-19

    Cigarette smoking causes emphysema, a fatal disease involving extensive structural and functional damage of the lung. Using a guinea pig model and human lung cells, we show that oxidant(s) present in tobacco smoke not only cause direct oxidative damage of lung proteins, contributing to the major share of lung injury, but also activate Rtp801, a key proinflammatory cellular factor involved in tobacco smoke-induced lung damage. Rtp801 triggers nuclear factor κB and consequent inducible NOS (iNOS)-mediated overproduction of NO, which in combination with excess superoxide produced during Rtp801 activation, contribute to increased oxido-nitrosative stress and lung protein nitration. However, lung-specific inhibition of iNOS with a iNOS-specific inhibitor, N6-(1-iminoethyl)-L-lysine, dihydrochloride (L-NIL) solely restricts lung protein nitration but fails to prevent or reverse the major tobacco smoke-induced oxidative lung injury. In comparison, the dietary antioxidant, ascorbate or vitamin C, can substantially prevent such damage by inhibiting both tobacco smoke-induced lung protein oxidation as well as activation of pulmonary Rtp801 and consequent iNOS/NO-induced nitration of lung proteins, that otherwise lead to increased proteolysis of such oxidized or nitrated proteins by endogenous lung proteases, resulting in emphysematous lung damage. Vitamin C also restricts the up-regulation of matrix-metalloproteinase-9, the major lung protease involved in the proteolysis of such modified lung proteins during tobacco smoke-induced emphysema. Overall, our findings implicate tobacco-smoke oxidant(s) as the primary etiopathogenic factor behind both the noncellular and cellular damage mechanisms governing emphysematous lung injury and demonstrate the potential of vitamin C to accomplish holistic prevention of such damage.

  4. Removal of inhaled industrial mixed oxide aerosols from Beagle dogs by lung lavage and chelation therapy

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Mewhinney, J.A.; Eidson, A.F.; Guilmette, R.A.

    1978-01-01

    An experiment was conducted in 15 adult Beagle dogs to evaluate lung lavage and chelation therapy for the removal of inhaled particles of mixed actinide oxides. The dogs were divided into three groups of five dogs each. Each group was exposed to an aerosol from a different industrial process. Group 1 was exposed to mixed oxide material which had been calcined at 750 0 C collected from a ball milling process. Group 2 was exposed to mixed oxide material from a centerless grinding operation which had been previously heat treated to 1750 0 C. The third group was exposed to 239 PuO 2 not containing uranium from a V-blending procedure which had been heat treated at 850 0 C. After exposure, three dogs in each group were given ten lung lavages and 18 intravenous injections of calcium trisodium diethylenetriaminepentaacetate (DTPA). All dogs were sacrificed 64 days after inhalation exposure. The tissues were radioanalyzed for plutonium and americium. Fluorimetric analyses for uranium in the tissues are in progress. The urine, feces and lavage fluid are also being analyzed for plutonium, americium and uranium. The distribution of plutonium and americium expressed as percentages of the sacrifice body burden was similar in the tissues of the treated and unteated dogs. The lungs contained most of the radionuclides with a small amount in the liver, skeleton and tracheobronchial lymph nodes. The percentage of the sacrifice body burden of americium and plutonium that was present in the lung was less in the treated dogs and was higher in the TBLN's and skeleton than in the untreated dogs. The ratio of Pu/Am was higher in the lungs than in the original material obtained from the industrial sites suggesting a shorter retention time for americium than plutonium to 64 days in the dog

  5. Chorioamnionitis and lung damage in the extremely low birth weight infant

    Directory of Open Access Journals (Sweden)

    Gustavo Rocha

    2007-09-01

    Full Text Available Some experimental work suggests that exposure to intrauterine infection is associated, not only, with lung maturation and a reduced risk of respiratory distress syndrome, but also, with delayed alveolarization and increased risk of bronchopulmonary dysplasia. Aim: To evaluate the association between histological chorioamnionitis and lung disease in extremely low birth weight preterm infants. Methods: A retrospective chart review of 63 less than 1000 g birthweight, appropriated for gestational age neonates, delivered at three tertiary medical centers in the north of Portugal, between 2001 and 2002. The association between histological chorioamnionitis and lung damage (respiratory distress syndrome and bronchopulmonary dysplasia was evaluated through the calculation of crude and adjusted odds ratio. Results: There were 32 newborns from mothers with histological chorioamnionitis and 31 without the condition. The association between histological chorioamnionitis and respiratory distress syndrome was OR 0.23 (95% CI 0.01 – 2.51. The association between chorioamnionitis and bronchopulmonary dysplasia was OR 1.61 (95% CI 0.38 – 6.97. The association between histological chorioamnionitis and bronchopulmonary dysplasia when adjusted for gestational age, multiple birth and C-section revealed no statistical significance: OR 2.66 (95% CI 0.36 – 19.60 for chorioamnionitis without funisitis or vasculitis and OR 1.68 (95% CI 0.25 – 11.18 for funisitis and/or vasculitis. Conclusion: In this study we could not confirm a decreased risk of respiratory distress syndrome nor an increased risk of bronchopulmonary dysplasia in extremely low birth weight preterm neonates with histological chorioamnionitis. Resumo: Alguns estudos experimentais sugerem que a exposição a infecção intra-uterina associa-se, não só, a maturação pulmonar e menor risco de doença das membranas hialinas, mas também a atraso na forma

  6. Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Filippo Cellai

    2017-04-01

    Full Text Available Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosylpyrimido[1,2-α]purin-10(3H-one deoxyguanosine (M1dG and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe3O4-nanoparticles (NPs versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF of 186 kHz using 32P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe3O4-NPs. Significant dose–response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.

  7. Magnetic Hyperthermia and Oxidative Damage to DNA of Human Hepatocarcinoma Cells.

    Science.gov (United States)

    Cellai, Filippo; Munnia, Armelle; Viti, Jessica; Doumett, Saer; Ravagli, Costanza; Ceni, Elisabetta; Mello, Tommaso; Polvani, Simone; Giese, Roger W; Baldi, Giovanni; Galli, Andrea; Peluso, Marco E M

    2017-04-29

    Nanotechnology is addressing major urgent needs for cancer treatment. We conducted a study to compare the frequency of 3-(2-deoxy-β-d-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3 H )-one deoxyguanosine (M₁dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) adducts, biomarkers of oxidative stress and/or lipid peroxidation, on human hepatocarcinoma HepG2 cells exposed to increasing levels of Fe₃O₄-nanoparticles (NPs) versus untreated cells at different lengths of incubations, and in the presence of increasing exposures to an alternating magnetic field (AMF) of 186 kHz using 32 P-postlabeling. The levels of oxidative damage tended to increase significantly after ≥24 h of incubations compared to controls. The oxidative DNA damage tended to reach a steady-state after treatment with 60 μg/mL of Fe₃O₄-NPs. Significant dose-response relationships were observed. A greater adduct production was observed after magnetic hyperthermia, with the highest amounts of oxidative lesions after 40 min exposure to AMF. The effects of magnetic hyperthermia were significantly increased with exposure and incubation times. Most important, the levels of oxidative lesions in AMF exposed NP treated cells were up to 20-fold greater relative to those observed in nonexposed NP treated cells. Generation of oxidative lesions may be a mechanism by which magnetic hyperthermia induces cancer cell death.

  8. Assessment of DNA damage and oxidative stress induced by radiation in Eisenia fetida

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Tae Ho; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Exposure of eukaryotic cells to ionizing radiation results in the immediate formation of free radicals and the occurrence of oxidative cell damage. Recently International Commission on Radiological Protection (ICRP) requires the effect data of ionizing radiation on non-human biota for the radiological protection of the environment. Based on their radioecological properties and their important role in the soil ecosystem, earthworms have been identified by the ICRP as one of the reference animals and plants (RAPs) to be used in environmental radiation protection. The investigation shows that oxidative stress is closely related to the exposed dose of radiation in the environment. To evaluate oxidative stress by ionizing radiation in the earthworm, we performed several experiments. The comet assay is known as a measurement which is one of the best techniques in assessing the DNA damage by oxidative stress. The SOD is a key enzyme in protecting cells against oxidative stress. An increase in the level of antioxidant enzyme such as SOD indicated that the exposure to radiation caused stress responses. Glutathione oxidation is considered as a maker for detection of reactive oxygen species (ROS). The GSSG levels increased progressively with increased exposure dose of ionizing radiation, which suggested a dose-dependent ROS generation.

  9. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes

    International Nuclear Information System (INIS)

    Zana, Marianna; Szecsenyi, Anita; Czibula, Agnes; Bjelik, Annamaria; Juhasz, Anna; Rimanoczy, Agnes; Szabo, Krisztina; Vetro, Agnes; Szucs, Peter; Varkonyi, Agnes; Pakaski, Magdolna; Boda, Krisztina; Rasko, Istvan; Janka, Zoltan; Kalman, Janos

    2006-01-01

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n = 7) and adults (n = 18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults

  10. Comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium

    International Nuclear Information System (INIS)

    Crist, K.C.

    1984-10-01

    An in-vitro dissolution study was conducted on two respirable oxidized depleted uranium samples. The dissolution rates generated from this study were then utilized in the International Commission on Radiological Protection Task Group lung clearance model and a lung clearance model proposed by Cuddihy. Predictions from both models based on the dissolution rates of the amount of oxidized depleted uranium that would be cleared to blood from the pulmonary region following an inhalation exposure were compared. It was found that the predictions made by both models differed considerably. The difference between the predictions was attributed to the differences in the way each model perceives the clearance from the pulmonary region. 33 references, 11 figures, 9 tables

  11. Comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Crist, K.C.

    1984-10-01

    An in-vitro dissolution study was conducted on two respirable oxidized depleted uranium samples. The dissolution rates generated from this study were then utilized in the International Commission on Radiological Protection Task Group lung clearance model and a lung clearance model proposed by Cuddihy. Predictions from both models based on the dissolution rates of the amount of oxidized depleted uranium that would be cleared to blood from the pulmonary region following an inhalation exposure were compared. It was found that the predictions made by both models differed considerably. The difference between the predictions was attributed to the differences in the way each model perceives the clearance from the pulmonary region. 33 references, 11 figures, 9 tables.

  12. Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline

    International Nuclear Information System (INIS)

    Ma Huaxian; Wang Jianling; Abdel-Rahman, Sherif Z.; Boor, Paul J.; Khan, M. Firoze

    2008-01-01

    The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ∼ 1.3 fold in the nuclear protein extracts (NE) and ∼ 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ∼ 1.5 fold higher, whereas in the MEs it was ∼ 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative

  13. Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage

    Directory of Open Access Journals (Sweden)

    Jie Deng

    2018-04-01

    Full Text Available Oxidative DNA damage in bone marrow cells is the main side effect of chemotherapy drugs including cyclophosphamide (CTX. However, not all antioxidants are effective in inhibiting oxidative DNA damage. In this study, we report the beneficial effect of carnosine (β-alanyl-l-histidine, a special antioxidant with acrolein-sequestering ability, on CTX-induced bone marrow cell suppression. Our results show that carnosine treatment (100 and 200 mg/kg, i.p. significantly inhibited the generation of reactive oxygen species (ROS and 8-hydroxy-2′-deoxyguanosine (8-oxo-dG, and decreased chromosomal abnormalities in the bone marrow cells of mice treated with CTX (20 mg/kg, i.v., 24 h. Furthermore, carnosine evidently mitigated CTX-induced G2/M arrest in murine bone marrow cells, accompanied by reduced ratios of p-Chk1/Chk1 and p-p53/p53 as well as decreased p21 expression. In addition, cell apoptosis caused by CTX was also suppressed by carnosine treatment, as assessed by decreased TUNEL-positive cell counts, down-regulated expressions of Bax and Cyt c, and reduced ratios of cleaved Caspase-3/Caspase-3. These results together suggest that carnosine can protect murine bone marrow cells from CTX-induced DNA damage via its antioxidant activity. Keywords: Carnosine, Cyclophosphamide, Oxidative DNA damage, Sister chromatid exchange, Apoptosis, Cell cycle arrest

  14. [Damage effects of chronic hypoxia on medulla oblongata associated with oxidative stress and cell apoptosis].

    Science.gov (United States)

    Hou, Xuefei; Ding, Yan; Nie, Zheng; Li, Hui; Tang, Yuhong; Zhou, Hua; Chen, Li; Zheng, Yu

    2012-08-01

    The aim of this study is to study the damage effects of chronic hypoxia on medulla oblongata and to explore whether the damage is associated with oxidative stress and cell apoptosis. Adult male SD rats were randomly divided into two groups: control group and chronic hypoxia group. Medulla oblongata was obtained for the following methods of analyses. Nissl's staining was used to examine the Niss bodies of neurons in medullary respiratory related nuclei, biochemistry methods were utilized to examine oxidant stress damage induced by chronic hypoxia on medulla oblongata through measuring malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, and RT-PCR technique was used to study the influence of apoptosis induced by chronic hypoxia on medulla oblongata through analyzing the levels of Bax mRNA and Bcl-2 mRNA. The results showed the optical densities of Nissl's staining in pre-BötC, NA, NTS, FN, and 12N were significantly decreased in chronic hypoxia group in comparison with that in control group (P 0.05). Bax mRNA expression had no obvious change and Bcl-2 mRNA expression significantly decreased in chronic hypoxia group in comparison with that in control group (P < 0.05). The results suggest that chronic hypoxia could bring about serious damage to medullary respiratory centers through aggravating oxidative stress and increasing cell apoptosis.

  15. Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins.

    Science.gov (United States)

    Venditti, Elisabetta; Scirè, Andrea; Tanfani, Fabio; Greci, Lucedio; Damiani, Elisabetta

    2008-01-01

    Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.

  16. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  17. Glutathione oxidation correlates with one-lung ventilation time and PO2/FiO2 ratio during pulmonary lobectomy.

    Science.gov (United States)

    García-de-la-Asunción, José; García-Del-Olmo, Eva; Galan, Genaro; Guijarro, Ricardo; Martí, Francisco; Badenes, Rafael; Perez-Griera, Jaume; Duca, Alejandro; Delgado, Carlos; Carbonell, Jose; Belda, Javier

    2016-09-01

    During lung lobectomy, the operated lung completely collapses with simultaneous hypoxic pulmonary vasoconstriction, followed by expansion and reperfusion. Here, we investigated glutathione oxidation and lipoperoxidation in patients undergoing lung lobectomy, during one-lung ventilation (OLV) and after resuming two-lung ventilation (TLV), and examined the relationship with OLV duration. We performed a single-centre, observational, prospective study in 32 patients undergoing lung lobectomy. Blood samples were collected at five time-points: T0, pre-operatively; T1, during OLV, 5 minutes before resuming TLV; and T2, T3, and T4, respectively, 5, 60, and 180 minutes after resuming TLV. Samples were tested for reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione redox potential, and malondialdehyde (MDA). GSSG and MDA blood levels increased at T1, and increased further at T2. OLV duration directly correlated with marker levels at T1 and T2. Blood levels of GSH and glutathione redox potential decreased at T1-T3. GSSG, oxidized glutathione/total glutathione ratio, and MDA levels were inversely correlated with arterial blood PO2/FiO2 at T1 and T2. During lung lobectomy and OLV, glutathione oxidation, and lipoperoxidation marker blood levels increase, with further increases after resuming TLV. Oxidative stress degree was directly correlated with OLV duration, and inversely correlated with arterial blood PO2/FiO2.

  18. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Palli, Domenico, E-mail: d.palli@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Sera, Francesco, E-mail: f.sera@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Giovannelli, Lisa, E-mail: lisag@pharm.unifi.i [Department of Pharmacology, University of Florence, Viale G.Pieraccini 6, 50139 Florence (Italy); Masala, Giovanna, E-mail: g.masala@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Grechi, Daniele [Regional Environmental Protection Agency of Tuscany (ARPAT), Via Porpora 22, 50144 Florence (Italy); Bendinelli, Benedetta, E-mail: b.bendinelli@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Caini, Saverio, E-mail: s.caini@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy); Dolara, Piero, E-mail: piero.dolara@unifi.i [Department of Pharmacology, University of Florence, Viale G.Pieraccini 6, 50139 Florence (Italy); Saieva, Calogero, E-mail: c.saieva@ispo.toscana.i [Molecular and Nutritional Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Via Cosimo il Vecchio 2, 50139 Florence (Italy)

    2009-05-15

    In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system. Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows. Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas. - Ozone concentrations over the 60-90 days before blood drawing correlated with DNA damage in circulating lymphocytes of adults living in the metropolitan area of Florence, Italy.

  19. Environmental ozone exposure and oxidative DNA damage in adult residents of Florence, Italy

    International Nuclear Information System (INIS)

    Palli, Domenico; Sera, Francesco; Giovannelli, Lisa; Masala, Giovanna; Grechi, Daniele; Bendinelli, Benedetta; Caini, Saverio; Dolara, Piero; Saieva, Calogero

    2009-01-01

    In 71 adults residing in Florence, Italy, enrolled in a prospective study, we investigated the correlation between individual levels of oxidative DNA damage detected by the Comet assay in circulating lymphocytes, and a specific ozone exposure score calculated in 10 different time-windows (0-5 to 0-90 days) before blood drawing, based on daily measurements provided by the local environmental monitoring system. Overall, statistically significant positive correlations between average ozone concentrations and DNA damage emerged in almost all time-windows considered; correlations were more evident among males, non-smokers, and traffic-exposed workers. Multivariate regression analyses taking into account selected individual characteristics, showed an independent effect on DNA damage of average ozone concentrations in the last 60-90 days before blood drawing. Local residents showed a divergent pattern with correlations restricted to shorter time-windows. Our results suggest that ozone concentrations at ground levels modulate oxidative DNA damage in circulating lymphocytes of residents of polluted areas. - Ozone concentrations over the 60-90 days before blood drawing correlated with DNA damage in circulating lymphocytes of adults living in the metropolitan area of Florence, Italy.

  20. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage

    Science.gov (United States)

    Redgrove, Kate A.; McLaughlin, Eileen A.

    2017-01-01

    In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte. PMID:29312475

  1. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins.

    Science.gov (United States)

    Park, Su-Jung; Ciccone, Samantha L M; Beck, Brian D; Hwang, Byounghoon; Freie, Brian; Clapp, D Wade; Lee, Suk-Hee

    2004-07-16

    Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.

  2. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-01-01

    Full Text Available Sirtuin type 1 (SIRT1 belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs, as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP. The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1.

  3. A Voxel-Based Approach to Explore Local Dose Differences Associated With Radiation-Induced Lung Damage

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Giuseppe [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Monti, Serena [IRCCS SDN, Naples (Italy); D' Avino, Vittoria [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Conson, Manuel [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Liuzzi, Raffaele [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pressello, Maria Cristina [Department of Health Physics, S. Camillo-Forlanini Hospital, Rome (Italy); Donato, Vittorio [Department of Radiation Oncology, S. Camillo-Forlanini Hospital, Rome (Italy); Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY (United States); Quarantelli, Mario [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Pacelli, Roberto [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy); Department of Advanced Biomedical Sciences, Federico II University School of Medicine, Naples (Italy); Cella, Laura, E-mail: laura.cella@cnr.it [Institute of Biostructure and Bioimaging, National Research Council, Naples (Italy)

    2016-09-01

    Purpose: To apply a voxel-based (VB) approach aimed at exploring local dose differences associated with late radiation-induced lung damage (RILD). Methods and Materials: An interinstitutional database of 98 patients who were Hodgkin lymphoma (HL) survivors treated with postchemotherapy supradiaphragmatic radiation therapy was analyzed in the study. Eighteen patients experienced late RILD, classified according to the Radiation Therapy Oncology Group scoring system. Each patient's computed tomographic (CT) scan was normalized to a single reference case anatomy (common coordinate system, CCS) through a log-diffeomorphic approach. The obtained deformation fields were used to map the dose of each patient into the CCS. The coregistration robustness and the dose mapping accuracy were evaluated by geometric and dose scores. Two different statistical mapping schemes for nonparametric multiple permutation inference on dose maps were applied, and the corresponding P<.05 significance lung subregions were generated. A receiver operating characteristic (ROC)-based test was performed on the mean dose extracted from each subregion. Results: The coregistration process resulted in a geometrically robust and accurate dose warping. A significantly higher dose was consistently delivered to RILD patients in voxel clusters near the peripheral medial-basal portion of the lungs. The area under the ROC curves (AUC) from the mean dose of the voxel clusters was higher than the corresponding AUC derived from the total lung mean dose. Conclusions: We implemented a framework including a robust registration process and a VB approach accounting for the multiple comparison problem in dose-response modeling, and applied it to a cohort of HL survivors to explore a local dose–RILD relationship in the lungs. Patients with RILD received a significantly greater dose in parenchymal regions where low doses (∼6 Gy) were delivered. Interestingly, the relation between differences in the high

  4. Modelling of Zircaloy-steam-oxidation under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Malang, S.; Neitzel, H.J.

    1983-01-01

    Small break loss-of-coolant accidents and special transients in an LWR, in combination with loss of required safety systems, may lead to an uncovered core for an extended period of time. As a consequence, the cladding temperature could rise up to the melting point due to the decay heat, resulting in severely damaged fuel rods. During heat-up the claddings oxidize due to oxygen uptake from the steam atmosphere in the core. The modeling and assessment of the Zircaloy-steam oxidation under such conditions is important, mainly for two reasons: The oxidation of the cladding influences the temperature transients due to the exothermic heat of reaction; the amount of liquified fuel depends on the oxide layer thickness and the oxygen content of the remaining Zircaloy metal when the melting point is reached. (author)

  5. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2.

    Directory of Open Access Journals (Sweden)

    Annemarie Grindel

    Full Text Available Diabetes mellitus type 2 (T2DM is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration.Female T2DM patients (n = 146 were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72. In addition, tertiles according to diabetes duration (DD were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49. Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals.No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group.BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical

  6. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    International Nuclear Information System (INIS)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-01-01

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75±1.55 μm versus after supplementation: 70.25±1.31 μm; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels

  7. Daily grape juice consumption reduces oxidative DNA damage and plasma free radical levels in healthy Koreans

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoo Kyoung; Park, Eunju; Kim, Jung-Shin; Kang, Myung-Hee

    2003-08-28

    Grape contains flavonoids with antioxidant properties which are believed to be protective against various types of cancer. This antioxidative protection is possibly provided by the effective scavenging of reactive oxygen species (ROS), thus defending cellular DNA from oxidative damage and potential mutations. This study of healthy adults tested whether a daily regimen of grape juice supplementation could reduce cellular DNA damage in peripheral lymphocytes and reduce the amount of free radicals released. Sixty-seven healthy volunteers (16 women and 51 men) aged 19-57 years were given 480 ml of grape juice daily for 8 weeks in addition to their normal diet, and blood samples were drawn before and after the intervention. The DNA damage was determined by using the single cell gel (comet) assay with alkaline electrophoresis and was quantified by measuring tail length (TL). Levels of free radicals were determined by reading the lucigenin-perborate ROS generating source, using the Ultra-Weak Chemiluminescence Analyzer System. Grape juice consumption resulted in a significant decrease in lymphocyte DNA damage expressed by TL (before supplementation: 88.75{+-}1.55 {mu}m versus after supplementation: 70.25{+-}1.31 {mu}m; P=0.000 by paired t-test). Additionally, grape juice consumption for 8 weeks reduced the ROS/photon count by 15%, compared to the beginning of the study. The preventive effect of grape juice against DNA damage was simultaneously shown in both sexes. These results indicate that the consumption of grape juice may increase plasma antioxidant capacity, resulting in reduced DNA damage in peripheral lymphocytes achieved at least partially by a reduced release of ROS. Our findings support the hypothesis that polyphenolic compounds contained in grape juice exert cancer-protective effects on lymphocytes, limiting oxidative DNA damage possibly via a decrease in free radical levels.

  8. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs

    Directory of Open Access Journals (Sweden)

    Nikolai Engedal

    2018-01-01

    Full Text Available Oxidative stress can alter the expression level of many microRNAs (miRNAs, but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.

  9. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  10. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    Science.gov (United States)

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  11. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.

    Science.gov (United States)

    Lee, Su Min; Koh, Ho-Jin; Park, Dong-Chan; Song, Byoung J; Huh, Tae-Lin; Park, Jeen-Woo

    2002-06-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.

  12. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    Science.gov (United States)

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  13. Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages

    Directory of Open Access Journals (Sweden)

    Liwei Dong

    2015-06-01

    Full Text Available Echinacoside is a natural compound with potent reactive oxygen species (ROS-scavenging and anti-oxidative bioactivities, which protect cells from oxidative damages. As cancer cells are often under intense oxidative stress, we therefore tested if Echinacoside treatment would promote cancer development. Surprisingly, we found that Echinacoside significantly inhibited the growth and proliferation of a panel of cancer cell lines. Treatment of the human SW480 cancer cells with Echinacoside resulted in marked apoptosis and cell cycle arrest, together with a significant increase in active caspase 3 and cleaved PARP, and upregulation of the G1/S-CDK blocker CDKN1B (p21. Interestingly, immunocytochemistry examination of drug-treated cancer cells revealed that Echinacoside caused a significant increase of intracellular oxidized guanine, 8-oxoG, and dramatic upregulation of the double-strand DNA break (DSB-binding protein 53BP1, suggesting that Echinacoside induced cell cycle arrest and apoptosis in SW480 cancer cells via induction of oxidative DNA damages. These results establish Echinacoside as a novel chemical scaffold for development of anticancer drugs.

  14. Mild Oxidative Damage in the Diabetic Rat Heart Is Attenuated by Glyoxalase-1 Overexpression

    Directory of Open Access Journals (Sweden)

    Casper G. Schalkwijk

    2013-07-01

    Full Text Available Diabetes significantly increases the risk of heart failure. The increase in advanced glycation endproducts (AGEs and oxidative stress have been associated with diabetic cardiomyopathy. We recently demonstrated that there is a direct link between AGEs and oxidative stress. Therefore, the aim of the current study was to investigate if a reduction of AGEs by overexpression of the glycation precursor detoxifying enzyme glyoxalase-I (GLO-I can prevent diabetes-induced oxidative damage, inflammation and fibrosis in the heart. Diabetes was induced in wild-type and GLO-I transgenic rats by streptozotocin. After 24-weeks of diabetes, cardiac function was monitored with ultrasound under isoflurane anesthesia. Blood was drawn and heart tissue was collected for further analysis. Analysis with UPLC-MSMS showed that the AGE Nε-(1-carboxymethyllysine and its precursor 3-deoxyglucosone were significantly elevated in the diabetic hearts. Markers of oxidative damage, inflammation, and fibrosis were mildly up-regulated in the heart of the diabetic rats and were attenuated by GLO-I overexpression. In this model of diabetes, these processes were not accompanied by significant changes in systolic heart function, i.e., stroke volume, fractional shortening and ejection fraction. This study shows that 24-weeks of diabetes in rats induce early signs of mild cardiac alterations as indicated by an increase of oxidative stress, inflammation and fibrosis which are mediated, at least partially, by glycation.

  15. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans

    DEFF Research Database (Denmark)

    Møller, P; Loft, S; Lundby, C

    2001-01-01

    ; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage...... oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity...

  16. γ-Glutamyl semialdehyde and 2-amino-adipic semialdehyde: biomarkers of oxidative damage to proteins

    DEFF Research Database (Denmark)

    Daneshvar, B.; Frandsen, H.; Autrup, Herman

    1997-01-01

    proteins collected from eight different mammalian species was found to be inversely proportional to their maximum lifespan potential. The content of AAS in plasma proteins of untreated adult rats showed a positive correlation with the age of the rat. In young rats a negative correlation with age was found......Reactive oxygen species are formed in the body by several natural processes and by induced oxidative stress. The reactive oxygen species may react with the various biomolecules of the body, including proteins. In order to assess the impact of oxidative damage to proteins, we have tried to identify...

  17. Oxidative stress damage as a detrimental factor in preterm birth pathology.

    Science.gov (United States)

    Menon, Ramkumar

    2014-01-01

    Normal term and spontaneous preterm births (PTB) are documented to be associated with oxidative stress (OS), and imbalances in the redox system (balance between pro- and antioxidant) have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term) and pathophysiologic (preterm) pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging). The aging of the fetal cells is predominated by p38 mitogen activated kinase (p38MAPK) pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.

  18. Oxidative stress damage as a detrimental factor in preterm birth pathology

    Directory of Open Access Journals (Sweden)

    Ramkumar eMenon

    2014-11-01

    Full Text Available Normal term and spontaneous preterm births (PTB are documented to be associated with oxidative stress (OS, and imbalances in the redox system (balance between pro- and antioxidant have been reported in the maternal-fetal intrauterine compartments. The exact mechanism of labor initiation either at term or preterm by OS is still unclear, and this lack of understanding can partially be blamed for failure of antioxidant supplementation trials in PTB prevention. Based on recent findings from our laboratory, we postulate heterogeneity in host OS response. The physiologic (at term and pathophysiologic (preterm pathways of labor are not mediated by OS alone but by OS-induced damage to intrauterine tissues, especially fetal membranes of the placenta. OS damage affects all major cellular elements in the fetal cells, and this damage promotes fetal cell senescence (aging. The aging of the fetal cells are predominated by p38 mitogen activated kinase (p38MAPK pathways. Senescing cells generate biomolecular signals that are uterotonic, triggering labor process. The aging of fetal cells is normal at term. However, aging is premature in PTB, especially in those PTBs complicated by preterm premature rupture of the membranes (pPROM, where elements of redox imbalances and OS damage are more dominant. We postulate that fetal cell senescence signals generated by OS damage are likely triggers for labor. This review highlights the mechanisms involved in senescence development at term and preterm by OS damage and provides insight into novel fetal signals of labor initiation pathways.

  19. ATM-dependent pathways of chromatin remodelling and oxidative DNA damage responses.

    Science.gov (United States)

    Berger, N Daniel; Stanley, Fintan K T; Moore, Shaun; Goodarzi, Aaron A

    2017-10-05

    Ataxia-telangiectasia mutated (ATM) is a serine/threonine protein kinase with a master regulatory function in the DNA damage response. In this role, ATM commands a complex biochemical network that signals the presence of oxidative DNA damage, including the dangerous DNA double-strand break, and facilitates subsequent repair. Here, we review the current state of knowledge regarding ATM-dependent chromatin remodelling and epigenomic alterations that are required to maintain genomic integrity in the presence of DNA double-strand breaks and/or oxidative stress. We will focus particularly on the roles of ATM in adjusting nucleosome spacing at sites of unresolved DNA double-strand breaks within complex chromatin environments, and the impact of ATM on preserving the health of cells within the mammalian central nervous system.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Author(s).

  20. Female plumage colour influences seasonal oxidative damage and testosterone profiles in a songbird.

    Science.gov (United States)

    Vitousek, Maren N; Stewart, Rosemary A; Safran, Rebecca J

    2013-10-23

    Across diverse taxa, morphological traits mediate social interactions and mate selection. Physiological constraints on signal elaboration have been widely documented, but the potential for trait display to influence physiological state remains poorly understood. We tested for the presence of causal links between ventral plumage colour-a trait known to covary with reproductive performance-and physiological measures in female North American barn swallows, Hirundo rustica erythrogaster. Naturally darker swallows have lower levels of plasma oxidative damage. Females manipulated to display darker ventral plumage during reproduction rapidly decreased oxidative damage, adopting the physiological state of naturally darker individuals. These results support the presence of a social mechanism that links static plumage traits with the physiological state of their bearer during trait advertisement, long after the completion of signal development.

  1. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway

    Science.gov (United States)

    Weeden, Clare E.; Chen, Yunshun; Ma, Stephen B.; Hu, Yifang; Ramm, Georg; Sutherland, Kate D.; Smyth, Gordon K.

    2017-01-01

    Lung squamous cell carcinoma (SqCC), the second most common subtype of lung cancer, is strongly associated with tobacco smoking and exhibits genomic instability. The cellular origins and molecular processes that contribute to SqCC formation are largely unexplored. Here we show that human basal stem cells (BSCs) isolated from heavy smokers proliferate extensively, whereas their alveolar progenitor cell counterparts have limited colony-forming capacity. We demonstrate that this difference arises in part because of the ability of BSCs to repair their DNA more efficiently than alveolar cells following ionizing radiation or chemical-induced DNA damage. Analysis of mice harbouring a mutation in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key enzyme in DNA damage repair by nonhomologous end joining (NHEJ), indicated that BSCs preferentially repair their DNA by this error-prone process. Interestingly, polyploidy, a phenomenon associated with genetically unstable cells, was only observed in the human BSC subset. Expression signature analysis indicated that BSCs are the likely cells of origin of human SqCC and that high levels of NHEJ genes in SqCC are correlated with increasing genomic instability. Hence, our results favour a model in which heavy smoking promotes proliferation of BSCs, and their predilection for error-prone NHEJ could lead to the high mutagenic burden that culminates in SqCC. Targeting DNA repair processes may therefore have a role in the prevention and therapy of SqCC. PMID:28125611

  2. Benchmark Theoretical and Experimental Study on N-15 NMR Shifts of Oxidatively Damaged Guanine

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Šála, Michal; Klepetářová, Blanka; Šebera, Jakub; Fukal, Jiří; Holečková, Veronika; Tanaka, Y.; Nencka, Radim; Sychrovský, Vladimír

    2016-01-01

    Roč. 120, č. 5 (2016), s. 915-925 ISSN 1520-6106 R&D Projects: GA ČR GA13-27676S; GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * DFT calculations * oxidatively damaged guanine * hOGG1 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.177, year: 2016

  3. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  4. Effect of Oxidative Damage on the Stability and Dimerization of Superoxide Dismutase 1

    OpenAIRE

    Petrov, Drazen; Daura, Xavier; Zagrovic, Bojan

    2016-01-01

    During their life cycle, proteins are subject to different modifications involving reactive oxygen species. Such oxidative damage to proteins may lead to the formation of insoluble aggregates and cytotoxicity and is associated with age-related disorders including neurodegenerative diseases, cancer, and diabetes. Superoxide dismutase 1 (SOD1), a key antioxidant enzyme in human cells, is particularly susceptible to such modifications. Moreover, this homodimeric metalloenzyme has been directly l...

  5. Effects of environmental pollution on endogenous oxidative DNA damage in humans

    Czech Academy of Sciences Publication Activity Database

    Singh, R.; Kaur, B.; Kalina, I.; Popov, T. A.; Georgieva, T.; Garte, S.; Binková, Blanka; Šrám, Radim; Taioli, E.; Farmer, P. B.

    2007-01-01

    Roč. 620, - (2007), s. 71-82 ISSN 0027-5107 Grant - others:EU(NO) 2000 -00091; EU(NO) G0100873 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK ; R - rámcový projekt EK Keywords : oxidative DNA damage * polycyclic aromatic hydrocarbons * -oxo-deoxyguanosine Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.159, year: 2007

  6. Role of Oxidants in Interstitial Lung Diseases: Pneumoconioses, Constrictive Bronchiolitis, and Chronic Tropical Pulmonary Eosinophilia

    Directory of Open Access Journals (Sweden)

    William N. Rom

    2011-01-01

    Full Text Available Oxidants such as superoxide anion, hydrogen peroxide, and myeloperoxidase from activated inflammatory cells in the lower respiratory tract contribute to inflammation and injury. Etiologic agents include inorganic particulates such as asbestos, silica, or coal mine dust or mixtures of inorganic dust and combustion materials found in World Trade Center dust and smoke. These etiologic agents are phagocytosed by alveolar macrophages or bronchial epithelial cells and release chemotactic factors that recruit inflammatory cells to the lung. Chemotactic factors attract and activate neutrophils, eosinophils, mast cells, and lymphocytes and further activate macrophages to release more oxidants. Inorganic dusts target alveolar macrophages, World Trade Center dust targets bronchial epithelial cells, and eosinophils characterize tropical pulmonary eosinophilia (TPE caused by filarial organisms. The technique of bronchoalveolar lavage in humans has recovered alveolar macrophages (AMs in dust diseases and eosinophils in TPE that release increased amounts of oxidants in vitro. Interestingly, TPE has massively increased eosinophils in the acute form and after treatment can still have ongoing eosinophilic inflammation. A course of prednisone for one week can reduce the oxidant burden and attendant inflammation and may be a strategy to prevent chronic TPE and interstitial lung disease.

  7. Protective role of lycopene against damage induced in liver, lung and vertebrae of gamma irradiated rat fetus

    International Nuclear Information System (INIS)

    Ismail, N.H.; Ramadan, F.L.

    2007-01-01

    The present study was designed to investigate the protective effects of lycopene (0.9 mg/100 g/day) orally given pre and post gamma irradiation on the histological changes in the liver, lung and vertebrae of fetuses. Four groups of pregnant female rats were irradiated as follows: first group represented control (C), second group treated with lycopene (L), third group exposed to radiation (R) and fourth group exposed to radiation and treated with lycopene (R+L). Pregnant female rats of group 3 and 4 were exposed to gamma irradiation at a dose level of 1.5 Gy at day 5 and 1.5 Gy at day 10 of gestation. All groups were sacrificed on day 20 of gestation. Histological results showed serious injury in the liver after exposure to gamma irradiation, where hemo siderosis was noted surrounding the dilated central vein and hepatocytes were atrophied with depression in the hemopoiesis process. Lung sections of fetuses maternally subjected to 1.5 Gy at day 5 and at day 10 of gestation and inspected on day 20 of gestation exhibited dilated and atrophied air alveoli with flattened lining epithelium. Vertebrae of these fetuses showed reductions in number of mitoses and disorderly maturation followed by the asymptomatic degeneration and necrosis of less mature element and bleeding in the periosteum of vertebra. Oral administration of lycopene pre and post gamma irradiation markedly reduced the radiation injury and showed marked protection against the liver and lung damaging effects of irradiation. On the other hand, the vertebrae sections showed no protective role of lycopene from the irradiation damage. Therefore, it may be suggested that lycopene, a potent antioxidant, can attenuate radiation injuries in certain organ

  8. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Patel-Vayas, Kinal; Shen, Jianliang [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  9. Oxidative Damage Caused by Common Foodborne Pathogenic Bacteria in Egg Yolk

    Directory of Open Access Journals (Sweden)

    Reyhaneh Afshordi

    2016-02-01

    Full Text Available Background: Bacteria in foodstuff are the most important agent of foodborne disease. Aside from their infectious effects, obligate aerobes have a respiratory metabolism with oxygen as the terminal electron acceptor. Therefore, they can produce reactive oxygen species and free radicals in contaminated food. Malondialdehyde (MDA is a product of lipid peroxidation used as an indicator of oxidative stress. Objectives: This study aimed to evaluate the oxidative damage produced by two common food pathogenic bacteria in foodstuff. Materials and Methods: The egg yolks were incubated with different dilutions (105,106, and 107 of Staphylococcus aureus and Salmonella enteritidis at 37°C for 20 hours. The level of MDA in egg yolk was measured by fast and simple enzymatic or colorimetric methods, such as the thiobarbituric acid reactive species method. Results: The high group (107 had a higher MDA level of 1.97 ± 0.11 (μg MDA/g in S. aureus and 1.65 ± 0.27 (mg MDA/L in S. enteritidis than the control (0.90 ± 0.13 mg MDA/L. Conclusions: We concluded that common food pathogenic bacteria can induce oxidative damage in foodstuff aside from other common problems. Heating or sterilization methods cannot protect foodstuff from the damage caused by the presence of pathogenic bacteria.

  10. Pigmented macrophage aggregates as a biomarker of oxidative damage in yellow bullhead catfish, Ameiurus natalis

    International Nuclear Information System (INIS)

    McCreedy, C.D.; HoganEsch, H.; Turek, J.; Jagoe, C.H.

    1995-01-01

    Pigmented macrophage aggregates (PMs) occur when peroxidized lipids resulting from oxidative damage in tissues are scavenged by macrophages. Ionizing radiation causes oxidative damage, so the authors evaluated PMs as a biomarker in the pronephros of yellow bullheads (Ameiurus natalis) inhabiting Pond B, Savannah River Site, SC, a reservoir contaminated with low levels of 137 Cs. ANOVA, ANCOVA, and stepwise regression were used to relate the mean number of PMs, per 0.15 mm 2 of tissue section, to fish sex (females: N = 61; males: N = 84), age (1--6 yrs), body-condition, and muscle 137 Cs concentration. Mean pronephric PMs differed by six and with fish muscle 137 Cs concentration. Among males, PMs were positively correlated with fish age and 137 Cs. In females, PMs were also correlated with fish age and 137 Cs. ANCOVA, with age as covariate, affirmed that sex and muscle 137 Cs were significantly associated with the mean number of pronephric PMs. Using stepwise regression, the interaction of age and 137 Cs concentration was most strongly associated with pronephric PMs in males. Among females, the product of age, body-condition, and 137 Cs concentration was most strongly associated with pronephric PMs. The positive relationships between the number of pronephric PMs and 137 Cs concentration suggest that oxidative damage related to long-term exposure to low-level radiation is detectable in these fish. Secondarily, these results demonstrate the importance of considering covariates such as age and sex when evaluating effects of environmental contaminants

  11. Increased Chromosomal and Oxidative DNA Damage in Patients with Multinodular Goiter and Their Association with Cancer

    Directory of Open Access Journals (Sweden)

    Hamiyet Donmez-Altuntas

    2017-01-01

    Full Text Available Thyroid nodules are a common clinical problem worldwide. Although thyroid cancer accounts for a small percentage of thyroid nodules, the majority are benign. 8-Hydroxy-2′-deoxyguanosine (8-OHdG levels are a marker of oxidative stress and play a key role in the initiation and development of a range of diseases and cancer types. This study evaluates cytokinesis-block micronucleus cytome (CBMN-cyt assay parameters and plasma 8-OHdG levels and their association with thyroid nodule size and thyroid hormones in patients with multinodular goiter. The study included 32 patients with multinodular goiter and 18 age- and sex-matched healthy controls. CBMN-cyt assay parameters in peripheral blood lymphocytes of patients with multinodular goiter and controls were evaluated, and plasma 8-OHdG levels were measured. The micronucleus (MN frequency (chromosomal DNA damage, apoptotic and necrotic cells (cytotoxicity, and plasma 8-OHdG levels (oxidative DNA damage were significantly higher among patients with multinodular goiter. Our study is the first report of increased chromosomal and oxidative DNA damage in patients with multinodular goiter, which may predict an increased risk of thyroid cancer in these patients. MN frequency and plasma 8-OHdG levels may be markers of the carcinogenic potential of multinodular goiters and could be used for early detection of different cancer types, including thyroid cancer.

  12. Evaluation of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage

    Directory of Open Access Journals (Sweden)

    R Sunil Kumar

    2017-01-01

    Full Text Available Objective: The present study aims to evaluate antioxidants and protective role of Cassia tora Linn. against oxidative stress-induced DNA and cell membrane damage. Materials and Methods: The total and profiles of flavonoids were identified and quantified through reversed-phase high-performance liquid chromatography. In vitro antioxidant activity was determined using standard antioxidant assays. The protective role of C. tora extracts against oxidative stress-induced DNA and cell membrane damage was examined by electrophoretic and scanning electron microscopic studies, respectively. Results: The total flavonoid content of CtEA was 106.8 ± 2.8 mg/g d.w.QE, CtME was 72.4 ± 1.12 mg/g d.w.QE, and CtWE was 30.4 ± 0.8 mg/g d.w.QE. The concentration of flavonoids present in CtEA in decreasing order: quercetin >kaempferol >epicatechin; in CtME: quercetin >rutin >kaempferol; whereas, in CtWE: quercetin >rutin >kaempferol. The CtEA inhibited free radical-induced red blood cell hemolysis and cell membrane morphology better than CtME as confirmed by a scanning electron micrograph. CtEA also showed better protection than CtME and CtWE against free radical-induced DNA damage as confirmed by electrophoresis. Conclusion: C. tora contains flavonoids and inhibits oxidative stress and can be used for many health benefits and pharmacotherapy.

  13. Effect of recoiled O on damage regrowth and electrical properties of through-oxide implanted Si

    International Nuclear Information System (INIS)

    Sadana, D.K.; Wu, N.R.; Washburn, J.; Current, M.; Morgan, A.; Reed, D.; Maenpaa, M.

    1982-10-01

    High dose (4 to 7.5 x 10 15 cm -2 ) As implantations into p-type (100) Si have been carried out through a screen-oxide of thicknesses less than or equal to 775A and without screen oxide. The effect of recoiled O on damage annealing and electrical properties of the implanted layers has been investigated using a combination of the following techniques: TEM, RBS/MeV He + channeling, SIMS and Hall measurements in conjunction with chemical stripping and sheet resistivity measurements. The TEM results show that there is a dramatically different annealing behavior of the implantation damage for the through oxide implants (Case I) as compared to implants into bare silicon (Case II). Comparison of the structural defect profiles with O distributions obtained by SIMS demonstrated that retardation in the secondary damage growth in Case I can be directly related with the presence of O. Weak-beam TEM showed that a high density of fine defect clusters (less than or equal to 50A) were present both in Case I and Case II. The electrical profiles showed only 30% of the total As to be electrically active. The structural and electrical results have been explained by a model that entails As-O, Si-O and As-As complex formation and their interaction with the dislocations

  14. Grape (Vitis vinifera) extracts protect against radiation-induced oxidative stress and DNA damage

    International Nuclear Information System (INIS)

    Singha, Indrani; Das, Subir Kumar; Saxena, S.; Gautam, S.

    2016-01-01

    Ionizing radiation (IR) causes oxidative stress through the overwhelming generation of reactive oxygen species (ROS) in the living cells leading further to the oxidative damage to biomolecules. Grapes (Vitis vinifera) contain several bioactive phytochemicals and are the richest source of antioxidant. In this study, we investigated and compared in vitro antioxidant activity and DNA damage protective property of the grape extracts of four different cultivars, including the Thompson seedless, Flame seedless, Kishmish chorni and Red globe. The activities of ascorbic acid oxidase and catalase significantly (p<0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly among extracts of any cultivar. In vitro antioxidant activities were assessed by ferric-reducing antioxidant power (FRAP) assay and ABTS. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. DNA damage was evaluated in acellular system using pBR322 plasmid relaxation. Grape extract was able to effectively scavenge free radicals in vitro. It could significantly prevent radiation-induced DNA damage. Furthermore, the protective action of grape depends on the source of extract and type of the cultivars. (author)

  15. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  16. Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Quan-Guang Zhang

    Full Text Available BACKGROUND: Oxidative stress is known to play an important role in the pathology of traumatic brain injury. Mitochondria are thought to be the major source of the damaging reactive oxygen species (ROS following TBI. However, recent work has revealed that the membrane, via the enzyme NADPH oxidase can also generate the superoxide radical (O(2(-, and thereby potentially contribute to the oxidative stress following TBI. The current study thus addressed the potential role of NADPH oxidase in TBI. METHODOLOGY/PRINCIPAL FINDINGS: The results revealed that NADPH oxidase activity in the cerebral cortex and hippocampal CA1 region increases rapidly following controlled cortical impact in male mice, with an early peak at 1 h, followed by a secondary peak from 24-96 h after TBI. In situ localization using oxidized hydroethidine and the neuronal marker, NeuN, revealed that the O(2(- induction occurred in neurons at 1 h after TBI. Pre- or post-treatment with the NADPH oxidase inhibitor, apocynin markedly inhibited microglial activation and oxidative stress damage. Apocynin also attenuated TBI-induction of the Alzheimer's disease proteins β-amyloid and amyloid precursor protein. Finally, both pre- and post-treatment of apocynin was also shown to induce significant neuroprotection against TBI. In addition, a NOX2-specific inhibitor, gp91ds-tat was also shown to exert neuroprotection against TBI. CONCLUSIONS/SIGNIFICANCE: As a whole, the study demonstrates that NADPH oxidase activity and superoxide production exhibit a biphasic elevation in the hippocampus and cortex following TBI, which contributes significantly to the pathology of TBI via mediation of oxidative stress damage, microglial activation, and AD protein induction in the brain following TBI.

  17. Inhibition of myeloperoxidase oxidant production by N-acetyl lysyltyrosylcysteine amide reduces brain damage in a murine model of stroke.

    Science.gov (United States)

    Yu, Guoliang; Liang, Ye; Huang, Ziming; Jones, Deron W; Pritchard, Kirkwood A; Zhang, Hao

    2016-05-24

    Oxidative stress plays an important and causal role in the mechanisms by which ischemia/reperfusion (I/R) injury increases brain damage after stroke. Accordingly, reducing oxidative stress has been proposed as a therapeutic strategy for limiting damage in the brain after stroke. Myeloperoxidase (MPO) is a highly potent oxidative enzyme that is capable of inducing both oxidative and nitrosative stress in vivo. To determine if and the extent to which MPO-generated oxidants contribute to brain I/R injury, we treated mice subjected to middle cerebral artery occlusion (MCAO) with N-acetyl lysyltyrosylcysteine amide (KYC), a novel, specific and non-toxic inhibitor of MPO. Behavioral testing, ischemic damage, blood-brain-barrier disruption, apoptosis, neutrophils infiltration, microglia/macrophage activation, and MPO oxidation were analyzed within a 7-day period after MCAO. Our studies show that KYC treatment significantly reduces neurological severity scores, infarct size, IgG extravasation, neutrophil infiltration, loss of neurons, apoptosis, and microglia/macrophage activation in the brains of MCAO mice. Immunofluorescence studies show that KYC treatment reduces the formation of chlorotyrosine (ClTyr), a fingerprint biomarker of MPO oxidation, nitrotyrosine (NO2Tyr), and 4-hydroxynonenal (4HNE) in MCAO mice. All oxidative products colocalized with MPO in the infarcted brains, suggesting that MPO-generated oxidants are involved in forming the oxidative products. MPO-generated oxidants play detrimental roles in causing brain damage after stroke which is effectively reduced by KYC.

  18. In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells

    Science.gov (United States)

    Tabish, Tanveer A.; Pranjol, Md Zahidul I.; Hayat, Hasan; Rahat, Alma A. M.; Abdullah, Trefa M.; Whatmore, Jacqueline L.; Zhang, Shaowei

    2017-12-01

    The intriguing properties of reduced graphene oxide (rGO) have paved the way for a number of potential biomedical applications such as drug delivery, tissue engineering, gene delivery and bio-sensing. Over the last decade, there have been escalating concerns regarding the possible toxic effects, behaviour and fate of rGO in living systems and environments. This paper reports on integrative chemical-biological interactions of rGO with lung cancer cells, i.e. A549 and SKMES-1, to determine its potential toxicological impacts on them, as a function of its concentration. Cell viability, early and late apoptosis and necrosis were measured to determine oxidative stress potential, and induction of apoptosis for the first time by comparing two lung cancer cells. We also showed the general trend between cell death rates and concentrations for different cell types using a Gaussian process regression model. At low concentrations, rGO was shown to significantly produce late apoptosis and necrosis rather than early apoptotic events, suggesting that it was able to disintegrate the cellular membranes in a dose dependent manner. For the toxicity exposures undertaken, late apoptosis and necrosis occurred, which was most likely resultant from limited bioavailability of unmodified rGO in lung cancer cells.

  19. Obesity disproportionately impacts lung volumes, airflow and exhaled nitric oxide in children.

    Science.gov (United States)

    Yao, Tsung-Chieh; Tsai, Hui-Ju; Chang, Su-Wei; Chung, Ren-Hua; Hsu, Jing-Ya; Tsai, Ming-Han; Liao, Sui-Ling; Hua, Man-Chin; Lai, Shen-Hao; Chen, Li-Chen; Yeh, Kuo-Wei; Tseng, Yu-Lun; Lin, Wan-Chen; Chang, Su-Ching; Huang, Jing-Long

    2017-01-01

    The current literature focusing on the effect of obesity and overweight on lung function and fraction of exhaled nitric oxide (FeNO) in children, particularly among healthy children of non-European descent, remains controversial. Furthermore, whether the relationship of obesity and overweight with lung function and FeNO in children is modified by atopy is unclear. The objective of this study was to examine the effect of excess weight on lung function parameters and FeNO among Asian children, with a particular focus on exploring the potential effect modification by atopy. We investigated the effect of excess weight on lung function and FeNO in a population sample of 1,717 children aged 5 to 18 years and explored the potential modifying effect of atopy. There were positive associations of body mass index (BMI) z-score with forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), peak expiratory flow (PEF), and forced expiratory flow at 25-75% (FEF25-75) (all Pchildren from the general population, independent of atopic status. Excess weight inversely affects FeNO in atopic but not in non-atopic children.

  20. Dexmedetomidine Attenuates Oxidative Stress Induced Lung Alveolar Epithelial Cell Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Jian Cui

    2015-01-01

    Full Text Available Background. Oxidative stress plays a pivotal role in the lung injuries of critical ill patients. This study investigates the protection conferred by α2 adrenoceptor agonist dexmedetomidine (Dex from lung alveolar epithelial cell injury induced by hydrogen peroxide (H2O2 and the underlying mechanisms. Methods. The lung alveolar epithelial cell line, A549, was cultured and then treated with 500 μM H2O2 with or without Dex (1 nM or Dex in combination with atipamezole (10 nM, an antagonist of α2 receptors. Their effect on mitochondrial membrane potential (Δψm, reactive oxygen species (ROS, and the cell cycle was assessed by flow cytometry. Cleaved-caspases 3 and 9, BAX, Bcl-2, phospho-mTOR (p-mTOR, ERK1/2, and E-cadherin expression were also determined with immunocytochemistry. Results. Upregulation of cleaved-caspases 3 and 9 and BAX and downregulation of Bcl-2, p-mTOR, and E-cadherin were found following H2O2 treatment, and all of these were reversed by Dex. Dex also prevented the ROS generation, cytochrome C release, and cell cycle arrest induced by H2O2. The effects of Dex were partially reversed by atipamezole. Conclusion. Our study demonstrated that Dex protected lung alveolar epithelial cells from apoptotic injury, cell cycle arrest, and loss of cell adhesion induced by H2O2 through enhancing the cell survival and proliferation.

  1. Enantioselective oxidative stress and oxidative damage caused by Rac- and S-metolachlor to Scenedesmus obliquus.

    Science.gov (United States)

    Liu, Huijun; Xia, YiLu; Cai, Weidan; Zhang, Yina; Zhang, Xiaoqiang; Du, Shaoting

    2017-04-01

    The rational use and environmental security of chiral pesticides has gained the interest of many researchers. The enantioselective effects of Rac- and S-metolachlor on oxidative stress in Scenedesmus obliquus were determined in this study. Stronger green fluorescence was observed in response to S-metolachlor treatment than to Rac-metolachlor treatment, suggesting that more reactive oxygen species (ROS) were stimulated by S-metolachlor. ROS levels following S-metolachlor treatment were 1.92-, 8.31-, and 1.08-times higher than those observed following Rac-metolachlor treatment at 0.1, 0.2, and 0.3 mg/L, respectively. Superoxide dismutase (SOD) and catalase (CAT) were stimulated with increasing herbicide concentrations, with S-metolachlor exhibiting a greater effect. Oxidative damage in terms of chlorophyll (Chl) content, cellular membrane permeability, and cellular ultrastructures of S. obliquus were investigated. Chla and Chlb contents in algae treated with Rac-metolachlor were 2-6-fold higher than those in algae treated with S-metolachlor at 0.1, 0.2, and 0.3 mg/L. The cellular membrane permeability of algae exposed to 0.3 mg/L Rac- and S-metolachlor was 6.19- and 42.5-times that of the control. Correlation analysis implied that ROS are the major factor responsible for the oxidative damage caused by Rac- and S-metolachlor. Damage to the chloroplasts and cell membrane of S. obliquus, low production of starch granules, and an increased number of vacuoles were observed upon ultrastructural morphology analysis by transmission electron microscope. These results indicate that S-metolachlor has a greater effect on S. obliquus than Rac-metolachlor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Damage recovery and optical activity in europium implanted wide gap oxides

    International Nuclear Information System (INIS)

    Alves, E.; Marques, C.; Franco, N.; Alves, L.C.; Peres, M.; Soares, M.J.; Monteiro, T.

    2010-01-01

    In this study we compare and discuss the defects and optical behaviour of sapphire and magnesium oxide single crystals implanted at room temperature with different fluences (1 x 10 15 -1 x 10 16 cm -2 ) of europium ions. Rutherford backscattering channelling shows that for fluences above 5 x 10 15 cm -2 the surface disorder level in the Al-sublattice reaches the random level. Implantation damage recovers fast for annealing in oxidizing atmosphere but even for the highest fluence we recover almost completely all the damage after annealing at 1300 o C, independently of the annealing environment (reducing or oxidizing). Annealing above 1000 o C promotes the formation of Eu 2 O 3 in the samples with higher concentration of Eu. The optical activation of the rare earth ions at room temperature was observed after annealing at 800 o C by photoluminescence and ionoluminescence. In Al 2 O 3 lattice the highest intensity line of the Eu 3+ ions corresponds to the forced electric dipole 5 D 0 → 7 F 2 transition that occurs ∼616 nm. For the MgO samples the Eu 3+ optical activation was also achieved after implantation with different fluences. Here, the lanthanide recombination is dominated by the magnetic dipole 5 D 0 → 7 F 1 transition near by 590 nm commonly observed for samples were Eu 3+ is placed in a high symmetry local site. The results clearly demonstrate the possibility to get Eu incorporated in optical active regular lattice sites in wide gap oxides.

  3. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    Directory of Open Access Journals (Sweden)

    Ye Han

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer and analyzed by high performance liquid chromatography (HPLC and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days drastically prevented the elevated activities of aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP and triglyceride (TG in serum and the levels of malondialdehyde (MDA, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β in liver tissue (p < 0.05. Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT, superoxide dismutase (SOD, glutathione peroxidase (GSH-Px were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05. Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties.

  4. Renal damage mediated by oxidative stress: a hypothesis of protective effects of red wine.

    Science.gov (United States)

    Rodrigo, Ramón; Rivera, Gonzalo

    2002-08-01

    Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.

  5. [Effect of germacrone in alleviating HUVECs damaged by H2O2-induced oxidative stress].

    Science.gov (United States)

    Chen, Qiong-Fang; Wang, Gang; Tang, Li-Qing; Yu, Xian-Wen; Li, Zhao-Fei; Yang, Xiu-Fen

    2017-09-01

    This study focuses on the protective effect of germacrone on human umbilical vein endothelial cells(HUVECs) damaged by H2O2-induced oxidative stress and its possible mechanisms. The oxidative damage model was established by using 500 μmol•L⁻¹ H2O2 to treat HUVECs for 3 hours, and then protected with different concentrations of germacrone for 24 hours. The effect of germacrone on cell viability of HUVECs damaged by H2O2 was detected by MTT. The contents of PGI2, TXB2, ET-1, t-PA, PAI-1, TNF-α and IL-6 were detected by ELISA. The content of NO was detected by using nitrate reductase method. Colorimetry was used to detect NOS and GSH-Px. The contents of MDA, SOD and LDH were detected by TBA, WST-1 and microplate respectively. Apoptosis was observed by Hoechst 33258 fluorescent staining. The mRNA expressions of Bax, Bcl-2 and Caspase-3 in cells were detected by RT-PCR. The results showed that the cell damage rate was 52% after treated with 500 μmol•L⁻¹ H2O2 for 3 hours. The cell activity was increasing with the rise of germacrone concentration within the range of 20-200 mol•L⁻¹. Compared with normal group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were lower after damaged with H2O2. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were increased. Compared with model group, the contents of PGI2, NO, T-NOS, t-PA, SOD, GSH-Px and Bcl-2 mRNA expressions were increased after treated with germacrone. The contents of PAI-1, ET-1, IL-6, TNF-α, TXB2, LDH, MDA, Bax mRNA and Caspase-3 mRNA expressions were lower after treated with germacrone. According to Hoechst 33258 fluorescence staining, compared with normal group, the cell membrane and the nucleus showed strong dense blue fluorescence, and the number of cells significantly decreased in model group. Compared with model group, blue fluorescence intensity decreased in drug group. The above findings demonstrate that

  6. [Endonuclease modified comet assay for oxidative DNA damage induced by detection of genetic toxicants].

    Science.gov (United States)

    Zhao, Jian; Li, Hongli; Zhai, Qingfeng; Qiu, Yugang; Niu, Yong; Dai, Yufei; Zheng, Yuxin; Duan, Huawei

    2014-03-01

    The aim of this study was to investigate the use of the lesion-specific endonucleases-modified comet assay for analysis of DNA oxidation in cell lines. DNA breaks and oxidative damage were evaluated by normal alkaline and formamidopyrimidine-DNA-glycosylase (FPG) modified comet assays. Cytotoxicity were assessed by MTT method. The human bronchial epithelial cell (16HBE) were treated with benzo (a) pyrene (B(a)P), methyl methanesulfonate (MMS), colchicine (COL) and vincristine (VCR) respectively, and the dose is 20 µmol/L, 25 mg/ml, 5 mg/L and 0.5 mg/L for 24 h, respectively. Oxidative damage was also detected by levels of reactive oxygen species in treated cells. Four genotoxicants give higher cytotoxicity and no significant changes on parameters of comet assay treated by enzyme buffer. Cell survival rate were (59.69 ± 2.60) %, (54.33 ± 2.81) %, (53.11 ± 4.00) %, (51.43 ± 3.92) % in four groups, respectively. There was the direct DNA damage induced by test genotoxicants presented by tail length, Olive tail moment (TM) and tail DNA (%) in the comet assay. The presence of FPG in the assays increased DNA migration in treated groups when compared to those without it, and the difference was statistically significant which indicated that the clastogen and aneugen could induce oxidative damage in DNA strand. In the three parameters, the Olive TM was changed most obviously after genotoxicants treatment. In the contrast group, the Olive TM of B(a) P,MMS, COL,VCR in the contrast groups were 22.99 ± 17.33, 31.65 ± 18.86, 19.86 ± 9.56 and 17.02 ± 9.39, respectively, after dealing with the FPG, the Olive TM were 34.50 ± 17.29, 43.80 ± 10.06, 33.10 ± 12.38, 28.60 ± 10.53, increased by 58.94%, 38.48%, 66.86% and 68.21%, respectively (t value was 3.91, 3.89, 6.66 and 3.87, respectively, and all P comet assay appears more specific for detecting oxidative DNA damage induced by genotoxicants exposure, and the application of comet assay will be expanded. The endonuclease

  7. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    Science.gov (United States)

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. Copyright 2005 Wiley-Liss, Inc.

  8. Extracellular histones are essential effectors of C5aR- and C5L2-mediated tissue damage and inflammation in acute lung injury.

    Science.gov (United States)

    Bosmann, Markus; Grailer, Jamison J; Ruemmler, Robert; Russkamp, Norman F; Zetoune, Firas S; Sarma, J Vidya; Standiford, Theodore J; Ward, Peter A

    2013-12-01

    We investigated how complement activation promotes tissue injury and organ dysfunction during acute inflammation. Three models of acute lung injury (ALI) induced by LPS, IgG immune complexes, or C5a were used in C57BL/6 mice, all models requiring availability of both C5a receptors (C5aR and C5L2) for full development of ALI. Ligation of C5aR and C5L2 with C5a triggered the appearance of histones (H3 and H4) in bronchoalveolar lavage fluid (BALF). BALF from humans with ALI contained H4 histone. Histones were absent in control BALF from healthy volunteers. In mice with ALI, in vivo neutralization of H4 with IgG antibody reduced the intensity of ALI. Neutrophil depletion in mice with ALI markedly reduced H4 presence in BALF and was highly protective. The direct lung damaging effects of extracellular histones were demonstrated by airway administration of histones into mice and rats (Sprague-Dawley), which resulted in ALI that was C5a receptor-independent, and associated with intense inflammation, PMN accumulation, damage/destruction of alveolar epithelial cells, together with release into lung of cytokines/chemokines. High-resolution magnetic resonance imaging demonstrated lung damage, edema and consolidation in histone-injured lungs. These studies confirm the destructive C5a-dependent effects in lung linked to appearance of extracellular histones.

  9. Herpes simplex virus induces neural oxidative damage via microglial cell Toll-like receptor-2

    Directory of Open Access Journals (Sweden)

    Little Morgan R

    2010-06-01

    Full Text Available Abstract Background Using a murine model of herpes simplex virus (HSV-1 encephalitis, our laboratory has determined that induction of proinflammatory mediators in response to viral infection is largely mediated through a Toll-like receptor-2 (TLR2-dependent mechanism. Published studies have shown that, like other inflammatory mediators, reactive oxygen species (ROS are generated during viral brain infection. It is increasingly clear that ROS are responsible for facilitating secondary tissue damage during central nervous system infection and may contribute to neurotoxicity associated with herpes encephalitis. Methods Purified microglial cell and mixed neural cell cultures were prepared from C57B/6 and TLR2-/- mice. Intracellular ROS production in cultured murine microglia was measured via 2', 7'-Dichlorofluorescin diacetate (DCFH-DA oxidation. An assay for 8-isoprostane, a marker of lipid peroxidation, was utilized to measure free radical-associated cellular damage. Mixed neural cultures obtained from β-actin promoter-luciferase transgenic mice were used to detect neurotoxicity induced by HSV-infected microglia. Results Stimulation with HSV-1 elevated intracellular ROS in wild-type microglial cell cultures, while TLR2-/- microglia displayed delayed and attenuated ROS production following viral infection. HSV-infected TLR2-/- microglia produced less neuronal oxidative damage to mixed neural cell cultures in comparison to HSV-infected wild-type microglia. Further, HSV-infected TLR2-/- microglia were found to be less cytotoxic to cultured neurons compared to HSV-infected wild-type microglia. These effects were associated with decreased activation of p38 MAPK and p42/p44 ERK in TLR2-/- mice. Conclusions These studies demonstrate the importance of microglial cell TLR2 in inducing oxidative stress and neuronal damage in response to viral infection.

  10. [Action mechanism of electroacupuncture at stomach meridian acupoints for oxidative damage in rats with gastric ulcer].

    Science.gov (United States)

    Yang, Zongbao; Wang, Yadong; Liu, Qiong; Liu, Mi; Chen, Huijuan; Chang, Xiaorong

    2016-06-12

    To observe the effects of electroacupuncture (EA) at stomach meridian acupoints on expression of oxidation damage factors in serum and gastric mucosal cells in rats with gastric ulcer, and to explore the mechanism of EA at stomach meridian acupoints for oxidative damage in rats with gastric ulcer. Forty clean-grade SD rats were randomly divided into a normal group, a model group, a stomach meridian group and a gallbladder meridian group, ten rats in each one. Except the normal group, rats in the remaining groups were applied the restraint-cold stress method to establish the model of gastric ulcer. Rats in the normal group and model group received no treatment; rats in the stomach meridian group were treated with EA at "Liangmen" (ST 21) and "Zusanli" (ST 36); rats in the gallbladder meridian group were treated with EA at "Riyue" (GB 24) and "Yanglingquan" (GB 34). The EA was given for 30 min, once a day for 7 days totally. The change of gastric mucosal morphology was observed by routine light microscope; enzyme linked immunosorbent assay was used to detect the expressions of malondialdehyde (MDA), glutathione peroxidase (GSH-px) and tumor necrosis factor-α (TNF-α), interleukin-2(IL-2), interleukin-6(IL-6) in serum and gastric mucosal cells of rats. After treatment, compared with the model group, the gastric mucosal damage index was decreased in the stomach meridian group and gallbladder meridian group (both P stomach meridian group (all P stomach meridian group rats ( P stomach meridian acupoints is likely to inhibit the expressions of oxidative damage factors to promote the repair of gastric mucosal injury, which indicates the correlation between meridians and zang-fu .

  11. Modification of radiation damage in mouse lung by DNA-binding radioprotectors

    International Nuclear Information System (INIS)

    Budd, R.; D'Abrew, S.; Coultas, P.; Martin, R.F.

    1996-01-01

    Full text: The limited diffusion of Hoechst 33342 through cell layers, which has been exploited in mapping the location of cells in multi-cellular spheroids, and in vivo, reflects a general characteristic of DNA-ligands. This property may confer special advantages on DNA-binding radioprotectors in the context of radiotherapy, where it is important to minimise delivery of the radioprotector to the tumour. For example, one might expect limited diffusion to capillaries and systemic uptake following topical application to epithelial cells, which can be dose-limiting tissues in radiotherapy. These potential applications will require delivery of sufficient concentrations of the DNA-binding radioprotectors to cells in vivo. In this context, the findings of Young and Hill, who could not detect any radioprotective effect in an in vivo setting, is of concern. We have re-examined this question by investigating radioprotection in the mouse lung model. A single intravenous injection of Hoechst 33342 (80mg/kg) given 30min prior to the lung irradiation, extends the radiation dose required for death in 50% of mice at 16 weeks post irradiation, from 19Gy to 23Gy (ie: a DMF of 1.2). This is similar to the extent of radioprotection reported by Travis et al for WR2721 (300 mg/kg) in this model. These results auger well for the potential of the more potent radioprotectors, and indeed preliminary experiments with methylproamine in the mouse lung model suggests a DMF of 1.35

  12. Respiratory failure following anti-lung serum: study on mechanisms associated with surfactant system damage

    International Nuclear Information System (INIS)

    Lachmann, B.; Hallman, M.; Bergmann, K.C.

    1987-01-01

    Within 2 minutes intravenous anti-lung serum (ALS) into guinea pig induces a respiratory failure that is fatal within 30 min. The relationship between surfactant, alveolar-capillary permeability and respiratory failure was studied. Within two minutes ALS induced a leak in the alveolar-capillary barrier. Within 30 minutes 28.3% (controls, given normal rabbit serum: 0.7%) of iv 131 I-albumin, and 0.5% (controls 0.02%) of iv surfactant phospholipid tracer were recovered in bronchoalveolar lavage. Furthermore, 57% (controls 32%) of the endotracheally administered surfactant phospholipid became associated with lung tissue and only less than 0.5% left the lung. The distribution of proteins and phospholipids between the in vivo small volume bronchoalveolar lavages and the ex vivo bronchoalveolar lavages were dissimilar: 84% (controls 20%) of intravenously injected, lavageable 131 I-albumin and 23% (controls 18%) of total lavageable phospholipid were recovered in the in vivo small volume bronchoalveolar lavages. ALS also decreased lavageable surfactant phospholipid by 41%. After ALS the minimum surface tension increased. The supernatant of the lavage increased the minimum surface tension of normal surfactant. In addition, the sediment fraction of the lavage had slow surface adsorption, and a marked reduction in 35,000 and 10,000 MW peptides. Exogenous surfactant ameliorated the ALS-induced respiratory failure. We propose that inhibition, altered intrapulmonary distribution, and dissociation of protein and phospholipid components of surfactant are important in early pathogenesis of acute respiratory failure

  13. Innate lymphoid cells: the role in respiratory infections and lung tissue damage.

    Science.gov (United States)

    Głobińska, Anna; Kowalski, Marek L

    2017-10-01

    Innate lymphoid cells (ILCs) represent a diverse family of cells of the innate immune system, which play an important role in regulation of tissue homeostasis, immunity and inflammation. Emerging evidence has highlighted the importance of ILCs in both protective immunity to respiratory infections and their pathological roles in the lungs. Therefore, the aim of this review is to summarize the current knowledge, interpret and integrate it into broader perspective, enabling greater insight into the role of ILCs in respiratory diseases. Areas covered: In this review we highlighted the role of ILCs in the lungs, citing the most recent studies in this area. PubMed searches (2004- July 2017) were conducted using the term 'innate lymphoid cells respiratory viral infections' in combination with other relevant terms including various respiratory viruses. Expert commentary: Since studies of ILCs have opened new areas of investigation, understanding the role of ILCs in respiratory infections may help to clarify the mechanisms underlying viral-induced exacerbations of lung diseases, providing the basis for novel therapeutic strategies. Potential therapeutic targets have already been identified. So far, the most promising strategy is cytokine-targeting, although further clinical trials are needed to verify its effectiveness.

  14. Lung damage following bone marrow transplantation after hyperfractionated total body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Latini, Paolo; Aristei, Cynthia; Checcaglini, Franco; Maranzano, Ernesto; Panizza, B.M.; Perrucci, Elisabetta (University and Hospital, Policlinico, Perugia (Italy). Radiation Oncology Service); Aversa, Franco; Martelli, M.F. (University and Hospital, Policlinico, Perugia (Italy). Department of Haematology); Raymondi, Carlo (University and Hospital, Policlinico, Perugia (Italy). Radiation Physics Service)

    1991-10-01

    From July 1985 to December 1989, 72 evaluable patients aged 6-51 (median age 27) suffering from hematological malignancies received allo-geneic bone marrow transplant (BMT) depleted of T-lymphocytes to reduce risks of graft-versus-host-disease (GvHD); 57 were matched and 15 mis-matched. Three different conditioning regiments were used in an effort to enhance cytoreduction without increase extramedullary toxicity. Mis-matched patients were treated with more immunosuppressive regimens. Total body irradiation (TBI) was given in 3 doses/day, 5 h apart over 4 days for a total of 12 fractions. The dose to the lungs was 14.4, 15.6 and 9 Gy according to the conditioning regimen. The incidence of inter-stitial pneumonia (IP) was 12.3 percent in matched and 46.7 in mis-matched patients. The results seem to indicate that lung toxicity is correlated with the intensity of the conditioning regimen, the stage of disease and, in mismatched patients, with the degree of human leucocyte antigen (HLA) disparity and the poor post-BMT reconstitution, rather than the radiotherapy dose delivered to the lungs. On the contrary, the hyperfractionated scheme adopted, the absence of GvHD and, perhaps, the post-TBI administration of cyclophosphamide all seem to have contributed to the low incidence of IP in the matched patients. (author). 30 refs.; 5 figs.; 1 tab.

  15. Lung damage following bone marrow transplantation after hyperfractionated total body irradiation

    International Nuclear Information System (INIS)

    Latini, Paolo; Aristei, Cynthia; Checcaglini, Franco; Maranzano, Ernesto; Panizza, B.M.; Perrucci, Elisabetta; Aversa, Franco; Martelli, M.F.; Raymondi, Carlo

    1991-01-01

    From July 1985 to December 1989, 72 evaluable patients aged 6-51 (median age 27) suffering from hematological malignancies received allo-geneic bone marrow transplant (BMT) depleted of T-lymphocytes to reduce risks of graft-versus-host-disease (GvHD); 57 were matched and 15 mis-matched. Three different conditioning regiments were used in an effort to enhance cytoreduction without increase extramedullary toxicity. Mis-matched patients were treated with more immunosuppressive regimens. Total body irradiation (TBI) was given in 3 doses/day, 5 h apart over 4 days for a total of 12 fractions. The dose to the lungs was 14.4, 15.6 and 9 Gy according to the conditioning regimen. The incidence of inter-stitial pneumonia (IP) was 12.3 percent in matched and 46.7 in mis-matched patients. The results seem to indicate that lung toxicity is correlated with the intensity of the conditioning regimen, the stage of disease and, in mismatched patients, with the degree of human leucocyte antigen (HLA) disparity and the poor post-BMT reconstitution, rather than the radiotherapy dose delivered to the lungs. On the contrary, the hyperfractionated scheme adopted, the absence of GvHD and, perhaps, the post-TBI administration of cyclophosphamide all seem to have contributed to the low incidence of IP in the matched patients. (author). 30 refs.; 5 figs.; 1 tab

  16. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Feltens, Ralph; Moegel, Iljana; Roeder-Stolinski, Carmen; Simon, Jan-Christoph; Herberth, Gunda; Lehmann, Irina

    2010-01-01

    Chlorobenzene is a volatile organic compound (VOC) that is widely used as a solvent, degreasing agent and chemical intermediate in many industrial settings. Occupational studies have shown that acute and chronic exposure to chlorobenzene can cause irritation of the mucosa of the upper respiratory tract and eyes. Using in vitro assays, we have shown in a previous study that human bronchial epithelial cells release inflammatory mediators such as the cytokine monocyte chemoattractant protein-1 (MCP-1) in response to chlorobenzene. This response is mediated through the NF-κB signaling pathway. Here, we investigated the effects of monochlorobenzene on human lung cells, with emphasis on potential alterations of the redox equilibrium to clarify whether the chlorobenzene-induced inflammatory response in lung epithelial cells is caused via an oxidative stress-dependent mechanism. We found that expression of cellular markers for oxidative stress, such as heme oxygenase 1 (HO-1), glutathione S-transferase π1 (GSTP1), superoxide dismutase 1 (SOD1), prostaglandin-endoperoxide synthase 2 (PTGS2) and dual specificity phosphatase 1 (DUSP1), were elevated in the presence of monochlorobenzene. Likewise, intracellular reactive oxygen species (ROS) were increased in response to exposure. However, in the presence of the antioxidants N-(2-mercaptopropionyl)-glycine (MPG) or bucillamine, chlorobenzene-induced upregulation of marker proteins and release of the inflammatory mediator MCP-1 are suppressed. These results complement our previous findings and point to an oxidative stress-mediated inflammatory response following chlorobenzene exposure.

  17. Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain.

    Science.gov (United States)

    Megha, Kanu; Deshmukh, Pravin Suryakantrao; Banerjee, Basu Dev; Tripathi, Ashok Kumar; Ahmed, Rafat; Abegaonkar, Mahesh Pandurang

    2015-12-01

    Over the past decade people have been constantly exposed to microwave radiation mainly from wireless communication devices used in day to day life. Therefore, the concerns over potential adverse effects of microwave radiation on human health are increasing. Until now no study has been proposed to investigate the underlying causes of genotoxic effects induced by low intensity microwave exposure. Thus, the present study was undertaken to determine the influence of low intensity microwave radiation on oxidative stress, inflammatory response and DNA damage in rat brain. The study was carried out on 24 male Fischer 344 rats, randomly divided into four groups (n=6 in each group): group I consisted of sham exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation at frequencies 900, 1800 and 2450 MHz, specific absorption rates (SARs) 0.59, 0.58 and 0.66 mW/kg, respectively in gigahertz transverse electromagnetic (GTEM) cell for 60 days (2h/day, 5 days/week). Rats were sacrificed and decapitated to isolate hippocampus at the end of the exposure duration. Low intensity microwave exposure resulted in a frequency dependent significant increase in oxidative stress markers viz. malondialdehyde (MDA), protein carbonyl (PCO) and catalase (CAT) in microwave exposed groups in comparison to sham exposed group (pmicrowave exposed groups (pmicrowave exposed animal (pmicrowave exposed groups as compared to their corresponding values in sham exposed group (pmicrowave radiation induces oxidative stress, inflammatory response and DNA damage in brain by exerting a frequency dependent effect. The study also indicates that increased oxidative stress and inflammatory response might be the factors involved in DNA damage following low intensity microwave exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moritake, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Proton Medical Research Center, University of Tsukuba, Tsukuba (Japan); Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Imai, Takashi, E-mail: imait@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  19. Guidance for the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health (Revision 1)

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2018-01-01

    of additional health claim applications related to antioxidants, oxidative damage and cardiovascular health, and the information collected from a Grant launched in 2014. This guidance is intended to assist applicants in preparing applications for the authorisation of health claims related to the antioxidants......EFSA asked the Panel on Dietetic Products, Nutrition and Allergies (NDA) to update the guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health published in 2011. The update takes into accounts experiences gained with evaluation......, oxidative damage and cardiovascular health. The document was subject to public consultation (from 12 July to 3 September 2017). This document supersedes the guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health published in 2011...

  20. Increased urinary excretion of 8-oxo-2'-deoxyguanosine, a biomarker of oxidative DNA damage, in urban bus drivers

    DEFF Research Database (Denmark)

    Loft, S; Poulsen, H E; Vistisen, K

    1999-01-01

    Oxidative damage to DNA could be involved in the increased risk of cancer associated with exposure to polluted urban air, which contains a number of oxidants. CYP1A2 is induced by and metabolizes polyaromatic hydrocarbons (PAH) and aromatic amines and could modify effects of exposure to ambient air...... pollution. Similarly, DNA repair may be influenced by occupational and other exposures as well as modify the effect of DNA damaging agents. As part of a large investigation of the genotoxic burden to diesel exposed workers in transport sectors we studied oxidative DNA damage in 57 non-smoking bus drivers...... from the greater Copenhagen area. The drivers were studied on a workday and on a day off work. Comparisons were made between drivers from the central (n=30) and rural/suburban (n=27) areas of Copenhagen. The rate of oxidative DNA damage was estimated from 24 h urinary excretion of 8-oxo-2...

  1. Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury.

    Science.gov (United States)

    Benzing, A; Loop, T; Mols, G; Geiger, K

    1999-10-01

    Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the

  2. Oxidative Glial Cell Damage Associated with White Matter Lesions in the Aging Human Brain.

    Science.gov (United States)

    Al-Mashhadi, Sufana; Simpson, Julie E; Heath, Paul R; Dickman, Mark; Forster, Gillian; Matthews, Fiona E; Brayne, Carol; Ince, Paul G; Wharton, Stephen B

    2015-09-01

    White matter lesions (WML) are common in brain aging and are associated with dementia. We aimed to investigate whether oxidative DNA damage and occur in WML and in apparently normal white matter in cases with lesions. Tissue from WML and control white matter from brains with lesions (controls lesional) and without lesions (controls non-lesional) were obtained, using post-mortem magnetic resonance imaging-guided sampling, from the Medical Research Council Cognitive Function and Ageing Study. Oxidative damage was assessed by immunohistochemistry to 8-hydroxy-2'-deoxoguanosine (8-OHdG) and Western blotting for malondialdehyde. DNA response was assessed by phosphorylated histone H2AX (γH2AX), p53, senescence markers and by quantitative Reverse transcription polymerase chain reaction (RT-PCR) panel for candidate DNA damage-associated genes. 8-OHdG was expressed in glia and endothelium, with increased expression in both WML and controls lesional compared with controls non-lesional (P glial dysfunction. Their expression in apparently normal white matter in cases with WML suggests that white matter dysfunction is not restricted to lesions. The role of this field-effect lesion pathogenesis and cognitive impairment are areas to be defined. © 2014 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  3. Possible role of licorice roots (glycyrrhiza glabra) as a natural radioprotector against oxidative damage in rats

    International Nuclear Information System (INIS)

    Darwish, M. M.; Hussien, E. M.; Haggag, A. M.

    2007-01-01

    This study was conducted to investigate the possible role of Licorice against damages induced by gamma rays. Adult female albino rats (130-140 g) were divided into four groups. Group 1: control animals, group 2: rats whole body exposed to gamma radiations (6.5 Gy), group 3: animals received Licorice in drinking water for four weeks (100 mg/ kg body wt/ day), and group 4: received Licorice two weeks before and two weeks after irradiation. Blood and liver samples were obtained two weeks post-irradiation. Total cholesterol (TC), triglycerides (TG), high density lipoprotein-cholesterol (HDL-C) and low density lipoprotein-cholesterol (LDL-C), glucose, sodium (Na + ) and potassium (K + ) levels were determined in serum. Per oxidative hepatic damage was studied by assessing; thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH) contents, as well as, superoxide dismutase (SOD) and catalase (CAT) activities in liver tissue. The data obtained revealed a significant increase in serum glucose, K + , TC, TG and LDL-C and liver TABRs. While, significant decreases were recorded for serum Na + and HDL-C levels, liver GSH content, SOD and CAT activities. On the other hand, Licorice treated irradiation rats showed a significant amelioration in the changes produced by gamma radiation with variable degree. Thus, it could be concluded that Licorice might provide protection against radiation-induced disturbances in metabolic activities and oxidative damage in liver tissues

  4. Alpha-Lipoic acid counteracts the promoted oxidative DNA damage in the liver of septic rats

    International Nuclear Information System (INIS)

    Abd-Allah, Adel R.A.

    2006-01-01

    Viral, parasitic infections and chemical carcinogens are among the etiological factors of liver cancer. It seems important to study the initiating and promoting agents to evaluate the etiology and prevention of such life threatening disease. Intestine-derived bacteria product, lipopolysaccharide (LPS), is mainly detoxified by the liver. It has shown to induce a state of oxidative DNA damage is not fully investigated. Increased oxidative DNA damage and rate of cell proliferation may initiate or even promote cancer. In the present work, the capability of LPS to induce 8-hydroxydeoxyguanosine (8-HDG), a specific DNA adduct for oxidative DNA damage, in rat livers is tested. Furthermore, a possible protective effect of alpha lipoic acid (ALA) is also assessed. Investigated parameters are liver contents of glutathione (GSH), lipid peroxides (MDA), nitric oxide (NO) and 8-HDG in the liver-extracted DNA. Serum activities of ALT, AST and GGT as liver-function markers as well as IL2 are assessed. Moreover, liver histology is examined. LPS was given doses of 1, 3, 5, 7 and 9 mg/kg once i.p. while, the rat mortality was examined 24 hours later. ALA was given in doses of 50, 100 and 200 mg/kg once i.p. 3h before LPS is found to be 5mg/kg. LPS increased the level of 8-HDG, MDA and NO in the liver. It also induced acute liver necrosis and inflammatory cell infiltration as shown in liver-histopathology and in the significant increase in the activities of ALT, AST and GGT. LPS increased the serum level of IL2 as well. The dose 200mg/kg of ALA revealed a 100% protection against LPS-induced lethality. It also, prevented the LPS-induced increase in 8-HDG in liver extracted DNA, the liver contents of MDA and NO. ALA also rescued the LPS-induced GSH depletion. It corrected the liver function as shown by the prevention of increases in the activity of ALT, AST and GGT with a remarkable improvement in the liver histology. Moreover, it prevented the increase in serum level of IL2. These

  5. Screening for oxidative damage by engineered nanomaterials: a comparative evaluation of FRAS and DCFH

    Science.gov (United States)

    Pal, Anoop K.; Hsieh, Shu-Feng; Khatri, Madhu; Isaacs, Jacqueline A.; Demokritou, Philip; Gaines, Peter; Schmidt, Daniel F.; Rogers, Eugene J.; Bello, Dhimiter

    2014-02-01

    Several acellular assays are routinely used to measure oxidative stress elicited by engineered nanomaterials (ENMs), yet little comparative evaluations of such methods exist. This study compares for the first time the performance of the dichlorofluorescein (DCFH) assay which measures reactive oxygen species (ROS) generation, to that of the ferric-reducing ability of serum (FRAS) assay, which measures biological oxidant damage in serum. A diverse set of 28 commercially important and extensively characterized ENMs were tested on both the assays. Intracellular oxidative stress was also assessed on a representative subset of seven ENMs in THP-1 (phorbol 12-myristate 13-acetate matured human monocytes) cells. Associations between assay responses and ENM physicochemical properties were assessed via correlation and regression analysis. DCFH correlated strongly with FRAS after dose normalization for mass ( R 2 = 0.78) and surface area ( R 2 = 0.68). Only 10/28 ENMs were positive in DCFH versus 21/28 in FRAS. Both assays were strongly associated with specific surface area and transition metal content. Qualitatively, a similar response ranking was observed for acellular FRAS and intracellular reduced:oxidized glutathione ratio (GSH:GSSG) in cells. Quantitatively, weak correlation was found between intracellular GSSG and FRAS or DCFH ( R 2 < 0.25) even after calculating effective dose to cells. The FRAS assay was more sensitive than DCFH, especially for ENMs with low to moderate oxidative damage potential, and may serve as a more biologically relevant substitute for acellular ROS measurements of ENMs. Further in vitro and in vivo validations of FRAS against other toxicological endpoints with larger datasets are recommended.

  6. An association of cocoa consumption with improved physical fitness and decreased muscle damage and oxidative stress in athletes.

    Science.gov (United States)

    González-Garrido, José A; García-Sánchez, José R; Garrido-Llanos, Silvia; Olivares-Corichi, Ivonne M

    2017-04-01

    Several studies have demonstrated the protective effects of cocoa consumption, due to its anti-inflammatory and antioxidant properties. Acute exercise induces oxidative stress and causes muscular damage during training. This study was designed to examine the effect of cocoa consumption on the markers of muscle damage, oxidative stress and physical fitness in professional soccer players. Fifteen players (15-18 years old) were included in the study. Biochemical parameters, markers of muscle damage and oxidative stress, and physical performance were evaluated before and after cocoa consumption. Biochemical parameters determined the healthy metabolic status of the study group; biomarkers of muscle and oxidative damage were measured in blood to establish muscle and redox status. However, high levels of biomarkers of muscle damage were detected. Interestingly, cocoa consumption decreased the muscle damage biomarkers of CK and LDH by 39.4% and 23.03%, respectively. The redox status was modified by a decrease in oxidative damage (carbonyl groups, 26.31%; thiol groups, 27.52%; MDA, 32.42%) and an increase in total antioxidant capacity (15.98%) and GSH-Px activity (26.37%). In addition, we observed an increase in physical performance by 4% in the Cooper Test. Our findings suggest that a short period of cocoa consumption could be useful in maintaining a good physical fitness, due to the favourable effects on muscle and redox status in athletes during exhaustive exercise.

  7. Photo-oxidative damage to isolated rat liver mitochondria induced by phenothiazines

    Directory of Open Access Journals (Sweden)

    T. RODRIGUES

    2009-01-01

    Full Text Available

    Photosensitization is a well-known side-effect of phenothiazines that could involve photochemically promoted oxidative damage to mitochondria, leading to the impairment of metabolic functions and apoptosis. In this work, for the first time, we investigated the effects of photoexcited thioridazine (TR, trifluoperazine (TFP and fluphenazine (FP on isolated rat liver mitochondria. Under UV irradiation, the presence of these phenothiazines led to a dose-dependent lack of the respiratory control ratio. These effects were not accompanied by significant swelling and oxidation of protein thiol groups but were accompanied by lipid peroxidation. Lycopene and sorbate, well-known quenchers of singlet oxygen and triplet species, respectively, were ineffective at protecting mitochondrial lipids against the damage promoted by the excited phenothiazines, suggesting that photochemically-produced cation radicals were the prooxidant species. Corroborating this proposal, butylated hydroxytoluene (BHT completely inhibited the lipid peroxidation induced by UV irradiation in the presence of phenothiazines. These novel results make a significant contribution to the understanding of the photochemical properties of phenothiazines in biological systems. Keywords: Trifluoperazine, thioridazine, fluphenazine, rat liver mitochondria, oxidative stress, photochemistry, photodamage, respiratory chain.

  8. Chrysin Administration Protects against Oxidative Damage in Varicocele-Induced Adult Rats

    Directory of Open Access Journals (Sweden)

    Gabriela Missassi

    2017-01-01

    Full Text Available Oxidative stress is known as the leading factor responsible for varicocele-related infertility and for that reason, many antioxidant therapies have been proposed. Considering that, we evaluated the reproductive outcomes and fertility of varicocelized rats and the impact of chrysin within these parameters. The animals were allocated into three groups: sham (control, varicocele treated via gavage with 50 mg/kg/day of chrysin (V1, or vehicle (V2 for 56 days. Chrysin treatment prevented oxidative damage resulting from varicocele by decreasing testicular concentrations of malondialdehyde and sperm DNA fragmentation. It also improved histological aspect of the testis and maintained morphometric parameters similar to the sham group. Furthermore, there were no differences in body and reproductive organ weights, histopathological analysis of epididymis, sperm counts and morphology, testosterone levels, sexual behavior, and fertility parameters among experimental groups. Our results reinforce the idea that injuries provoked by experimental varicocele are related, at least in part, to oxidative stress. Moreover, varicocele showed bilateral deleterious effects without interfering with fertility. Chrysin administration significantly ameliorated sperm parameters, protecting the reproductive system against varicocele damages. For that reason, chrysin might be an alternative adjuvant therapy to improve sperm quality in men presenting this condition.

  9. Oxidative stress induced damage in benign and malignant breast diseases: histopathological and biochemical aspects

    Directory of Open Access Journals (Sweden)

    Seema Khanna

    2012-04-01

    Full Text Available Increasing evidences indicate involvement of free radicals in the pathogenesis of benign and malignant breast diseases. Free radicals are highly reactive molecules and react with non–radicals in chain reaction leading to formation of new free radicals. If the defense mechanism of body fails to combat them, these free radicals pose a threat of injuring tissues by reacting with cell lipids. Lipids in the cell membrane undergo degradation to form hydroperoxides, which decompose to form a variety of products including malondialdehyde (MDA. MDA therefore was used as a marker to assess oxidative damage of cells and tissues. The aim of the present study was to assess the status of oxidative stress in the patients of benign and malignant breast diseases. Study has been made on the blood samples of 25 cases of benign breast disease and on an equal number of breast carcinoma patients. 20 healthy subjects were taken as the control cases.Mean MDA levels were significantly raised with depletion of antioxidant activity in all the patients in comparison to their control group suggesting the role of oxidative damage in the aetiopathogenesis of disease.

  10. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  11. Prdx6 Upregulation by Curcumin Attenuates Ischemic Oxidative Damage via SP1 in Rats after Stroke

    Directory of Open Access Journals (Sweden)

    Gongwei Jia

    2017-01-01

    Full Text Available Background. The role of Peroxiredoxin 6 (Prdx6 in brain ischemia remains unclear. Curcumin (Cur treatment elicits neuroprotective effects against cerebral ischemic injury, and the associated mechanisms may involve Prdx6. In this study, we investigated whether Prdx6 and the transcription factor specific protein 1 (SP1 were involved in the antioxidant effect of Cur after stoke. Methods. Focal cerebral ischemic injury was induced by transient middle cerebral artery occlusion for 2 hours in male Sprague-Dawley rats treated with or without Prdx6 siRNA. Expression of Prdx6 in the penumbra was assessed by Real-Time PCR (RT-PCR, Western blot analysis, and immunoflourescent staining. In addition, infarct volume, neurological deficit score, and oxidative stress were evaluated. Prdx6 levels were also determined in the presence and absence of SP1 antagonist mithramycin A (MTM-A. Results. Cur treatment upregulated Prdx6 protein expression and the number of Prdx6-positive neuronal cells 24 hours after reperfusion. Cur treatment also attenuated oxidative stress and induced neuroprotective effects against ischemic damage, whereas the beneficial effects of Cur treatment were lost in animals treated with Prdx6-siRNA. Prdx6 upregulation by Cur treatment was abolished by SP1 antagonists MTM. Conclusions. Prdx6 upregulation by Cur treatment attenuates ischemic oxidative damage through SP1 induction in rats after stroke. This represents a novel mechanism of Cur-induced neuroprotection against cerebral ischemia.

  12. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    Science.gov (United States)

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  13. Experimental study of the preventional effects of drugs to lung radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, N [Kurume Univ., Fukuoka (Japan). School of Medicine

    1977-01-01

    The author experimented on effects of Cepharanthin (CR) and Urokinase (UK) on the lung of rabbits to which /sup 60/Co was irradiated by dividing a total dose of 10,000R into 500R a day. The rabbits irradiated were divided into 3 groups: a group administered ''CR'' (Group A), a group administered ''UK'' (Group B) and a control group (Group C). Body weight, leukocytes and chest x-ray findings were examined, and macroscopic and microscopic findings were discussed immediately and 3 months after irradiation. CR was effective in preventing the decrease of leukocytes and body weight. In the case of 5000R irradiation, an abnormal shadow was not recognized, but in the case of 10,000R irradiation, radiation pneumonitis began to appear immediately after the irradiation, and heart dilation and the shift of mediastinum on the side of irradiation were observed 3 months after that. In Group C, adhesion, hydropericardium and bleeding lesion were observed. In Groups A and B, the preventive effects were noted macroscopically. Group A seemed to show more significant results. In this group, the infiltration of the cells, and the appearance of foamy cells and eosinophyl cells which are characteristic of lung radiation disease were less observed than those in the other groups, and therefore, Group A showed more preventive effect upon inflammation than the other groups. In Group B, the thickness of the wall of the blood vessel tended to be improved 3 months after irradiation. Microthrombosis was not recognized, either. From these results, CR was effective in decreasing the infiltration of the cells, and UK was effective in decreasing the thickness of the wall of the blood vessel and in forming thromboses. Thus, these drugs should be used simultaneously because they had different reaction to the prevention of lung radiation disease.

  14. The experimental study of the preventional effects of drugs to lung radiation damage

    International Nuclear Information System (INIS)

    Tomita, Naoaki

    1977-01-01

    The author experimented on effects of Cepharanthin (CR) and Urokinase (UK) on the lung of rabbits to which 60 Co was irradiated by dividing a total dose of 10,000R into 500R a day. The rabbits irradiated were divided into 3 groups: a group administered ''CR'' (Group A), a group administered ''UK'' (Group B) and a control group (Group C). Body weight, leukocytes and chest x-ray findings were examined, and macroscopic and microscopic findings were discussed immediately and 3 months after irradiation. CR was effective in preventing the decrease of leukocytes and body weight. In the case of 5000R irradiation, an abnormal shadow was not recognized, but in the case of 10,000R irradiation, radiation pneumonitis began to appear immediately after the irradiation, and heart dilation and the shift of mediastinum on the side of irradiation were observed 3 months after that. In Group C, adhesion, hydropericardium and bleeding lesion were observed. In Groups A and B, the preventive effects were noted macroscopically. Group A seemed to show more significant results. In this group, the infiltration of the cells, and the appearance of foamy cells and eosinophyl cells which are characteristic of lung radiation disease were less observed than those in the other groups, and therefore, Group A showed more preventive effect upon inflammation than the other groups. In Group B, the thickness of the wall of the blood vessel tended to be improved 3 months after irradiation. Microthrombosis was not recognized, either. From these results, CR was effective in decreasing the infiltration of the cells, and UK was effective in decreasing the thickness of the wall of the blood vessel and in forming thromboses. Thus, these drugs should be used simultaneously because they had different reaction to the prevention of lung radiation disease. (J.P.N.)

  15. Damage to Aspergillus fumigatus and Rhizopus oryzae Hyphae by Oxidative and Nonoxidative Microbicidal Products of Human Neutrophils In Vitro

    OpenAIRE

    Diamond, Richard D.; Clark, Robert A.

    1982-01-01

    Our previous studies established that human neutrophils could damage and probably kill hyphae of Aspergillus fumigatus and Rhizopus oryzae in vitro, primarily by oxygen-dependent mechanisms active at the cell surface. These studies were extended, again quantitating hyphal damage by reduction in uptake of 14C-labeled uracil or glutamine. Neither A. fumigatus nor R. oryzae hyphae were damaged by neutrophils from patients with chronic granulomatous disease, confirming the importance of oxidative...

  16. Vapors produced by electronic cigarettes and e-juices with flavorings induce toxicity, oxidative stress, and inflammatory response in lung epithelial cells and in mouse lung.

    Directory of Open Access Journals (Sweden)

    Chad A Lerner

    Full Text Available Oxidative stress and inflammatory response are the key events in the pathogenesis of chronic airway diseases. The consumption of electronic cigarettes (e-cigs with a variety of e-liquids/e-juices is alarmingly increasing without the unrealized potential harmful health effects. We hypothesized that electronic nicotine delivery systems (ENDS/e-cigs pose health concerns due to oxidative toxicity and inflammatory response in lung cells exposed to their aerosols. The aerosols produced by vaporizing ENDS e-liquids exhibit oxidant reactivity suggesting oxidants or reactive oxygen species (OX/ROS may be inhaled directly into the lung during a "vaping" session. These OX/ROS are generated through activation of the heating element which is affected by heating element status (new versus used, and occurs during the process of e-liquid vaporization. Unvaporized e-liquids were oxidative in a manner dependent on flavor additives, while flavors containing sweet or fruit flavors were stronger oxidizers than tobacco flavors. In light of OX/ROS generated in ENDS e-liquids and aerosols, the effects of ENDS aerosols on tissues and cells of the lung were measured. Exposure of human airway epithelial cells (H292 in an air-liquid interface to ENDS aerosols from a popular device resulted in increased secretion of inflammatory cytokines, such as IL-6 and IL-8. Furthermore, human lung fibroblasts exhibited stress and morphological change in response to treatment with ENDS/e-liquids. These cells also secrete increased IL-8 in response to a cinnamon flavored e-liquid and are susceptible to loss of cell viability by ENDS e-liquids. Finally, exposure of wild type C57BL/6J mice to aerosols produced from a popular e-cig increase pro-inflammatory cytokines and diminished lung glutathione levels which are critical in maintaining cellular redox balance. Thus, exposure to e-cig aerosols/juices incurs measurable oxidative and inflammatory responses in lung cells and tissues that

  17. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage

    Science.gov (United States)

    Klungland, Arne; Rosewell, Ian; Hollenbach, Stephan; Larsen, Elisabeth; Daly, Graham; Epe, Bernd; Seeberg, Erling; Lindahl, Tomas; Barnes, Deborah E.

    1999-01-01

    DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency. PMID:10557315

  18. Retrospective review of thoracic neural damage during lung ablation - what the interventional radiologist needs to know about neural thoracic anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonie, Department of Interventional Radiology (France); Canella, Mathieu [Centre Hospitalier Pau, Department of Radiology (France); Cornelis, Francois; Catena, Vittorio; Descat, Edouard [Institut Bergonie, Department of Interventional Radiology (France); Brouste, Veronique [Institut Bergonie, Clinical and Epidemiological Research Unit (France); Montaudon, Michel [CHU Haut Leveque, Department of Radiology (France)

    2013-12-15

    Background and Purpose: Radiofrequency ablation (RFA) is associated with low neural morbidity compared with surgery, which commonly causes debilitating long-term pain. The purpose was to review the thoracic neural anatomy relevant to percutaneous RFA and to retrospectively review symptomatic nerve injury after lung RFA at our institution. Materials and Methods: We retrospectively examined all symptomatic nerve injuries occurring after computed tomography (CT)-guided RFA treatment of lung tumors for 462 patients/509 procedures/708 lesions treated at our large tertiary referral centre during 10 years. Results: Eight patients experienced neurological complications after heating during the RFA procedure. These complications occurred in the phrenic (n = 1), brachial (n = 3), left recurrent (n = 1), and intercostal nerves (n = 2) and the stellate ganglion (n = 1). Three were grade 2, four grade 3 and one grade 4 injuries (CTCAE v3). Conclusion: Although rare, neurological complications can occur after RFA, and they can occasionally be severe. To prevent these complications, it is important for the interventional radiologist to be aware of the anatomy of nervous structures and to attempt to identify nerves on CT scans during the RFA procedure. Creating a pneumothorax can be useful to avoid nerve damage and related clinical complications.

  19. Inhalation exposure to chloramine T induces DNA damage and inflammation in lung of Sprague-Dawley rats.

    Science.gov (United States)

    Shim, Ilseob; Seo, Gyun-Baek; Oh, Eunha; Lee, Mimi; Kwon, Jung-Taek; Sul, Donggeun; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee; Kim, Hyun-Mi

    2013-01-01

    Chloramine T has been widely used as a disinfectant in many areas such as kitchens, laboratories and hospitals. It has been also used as a biocide in air fresheners and deodorants which are consumer products; however, little is known about its toxic effects by inhalation route. This study was performed to identify the subacute inhalation toxicity of chloramine T under whole-body inhalation exposure conditions. Male and female groups of rats were exposed to chloramine T at concentrations of 0.2, 0.9 and 4.0 mg/m³ for 6 hr/day, 5 days/week during 4 weeks. After 28-day repeated inhalation of chloramine T, there were dose-dependently significant DNA damage in the rat tissues evaluated and inflammation was histopathologically noted around the terminal airways of the lung in both genders. As a result of the expression of three types of antioxidant enzymes (SOD-2, GPx-1, PRX-1) in rat's lung after exposure, there was no significant change of all antioxidant enzymes in the male and female rats. The results showed that no observed adverse effect level (NOAEL) was 0.2 mg/m³ in male rats and 0.9 mg/m³ in female rats under the present experimental condition.

  20. Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo.

    Science.gov (United States)

    Giovannelli, L; Testa, G; De Filippo, C; Cheynier, V; Clifford, M N; Dolara, P

    2000-10-01

    Dietary polyphenols have been reported to have a variety of biological actions, including anti-carcinogenic, antioxidant and anti-inflammatory activities. In the present study we have evaluated the effect of an oral treatment with complex polyphenols and tannins from red wine and tea on DNA oxidative damage in the rat colon mucosa. Isolated colonocytes were prepared from the colon mucosa of rats treated for ten days with either wine complex polyphenols (57.2 mg/kg/d) or thearubigin (40 mg/kg/d) by oral gavage. Colonocyte oxidative DNA damage was analysed at the single cell level using a modification of the comet assay technique. The results show that wine complex polyphenols and tannins induce a significant decrease (-62% for pyrimidine and -57% for purine oxidation) in basal DNA oxidative damage in colon mucosal cells without affecting the basal level of single-strand breaks. On the other hand, tea polyphenols, namely a crude extract of thearubigin, did not affect either strand breaks or pyrimidine oxidation in colon mucosal cells. Our experiments are the first demonstration that dietary polyphenols can modulate in vivo oxidative damage in the gastrointestinal tract of rodents. These data support the hypothesis that dietary polyphenols might have both a protective and a therapeutic potential in oxidative damage-related pathologies.

  1. Ellipticine induces apoptosis in T-cell lymphoma via oxidative DNA damage

    DEFF Research Database (Denmark)

    Savorani, Cecilia; Manfé, Valentina; Biskup, Edyta

    2015-01-01

    (CTCL), a disease that is progressive, chemoresistant and refractory to treatment. We tested the effect of ellipticine in three cell lines with different p53 status: MyLa2000 (p53(wt/wt)), SeAx ((G245S)p53) and Hut-78 ((R196Stop)p53). Ellipticine caused apoptosis in MyLa2000 and SeAx and restored...... the transcriptional activity of (G245S)p53 in SeAx. However, p53 siRNA knockdown experiments revealed that p53 was not required for ellipticine-induced apoptosis in CTCL. The lipophilic antioxidant α-tocopherol inhibited ellipticine-dependent apoptosis and we linked the apoptotic response to the oxidative DNA damage....... Our results provide evidence that ellipticine-induced apoptosis is exerted through DNA damage and does not require p53 activation in T-cell lymphoma....

  2. Oxidative damage in liver after perinatal intoxication with lead and/or cadmium.

    Science.gov (United States)

    Massó, Elvira Luján; Corredor, Laura; Antonio, Maria Teresa

    2007-01-01

    Lead acetate (300 mg Pb/L) and/or cadmium acetate (10mg Cd/L) in blood and liver were administrated as drinking water to pregnant Wistar rats from day 1 of pregnancy to parturition (day 0) or until weaning (day 21), to investigate the toxic effects in blood and in the liver. Both metals produced mycrocitic anaemia in the pups as well as oxidative damage in the liver, as suggested by the significant increase in TBARS production and the high catalase activity. Moreover, intense alkaline and acid phosphatase activity, used as biomarkers of liver adaptation to damaging factors, was observed. In addition, the toxikinetics are different for Pb and Cd: while Cd is a hepatotoxic from day 0, Pb is not until day 21. Finally, simultaneous perinatal administration of both metals seems to protect, at least, in the liver TBARS production against the toxicity produced by Cd or Pb separately.

  3. Oxidative damage induced by heat stress could be relieved by nitric oxide in Trichoderma harzianum LTR-2.

    Science.gov (United States)

    Yu, Yang; Yang, Zijun; Guo, Kai; Li, Zhe; Zhou, Hongzi; Wei, Yanli; Li, Jishun; Zhang, Xinjian; Harvey, Paul; Yang, Hetong

    2015-04-01

    Trichoderma harzianum is an important commercial biocontrol fungal agent. The temperature has been shown to be an important parameter and strain-specific to the mycelia growth of fungi, but less report makes the known of the mechanisms in T. harzianum. In our study, a 6-h treatment of heat increased the thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO) concentration in mycelia to 212 and 230 % the level of the control, respectively. The exogenous NO donor sodium nitroprusside (150 μM) reduced the TBARS concentration to 53 % of that under heat stress (HS). At the same time, the NO-specific scavenger at 250 μM, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-1-oxyl-3-oxide, prevented the exogenous NO-relieved TBARS accumulation under HS. The increased NO concentration under HS was reduced 41 % by the NO synthase (NOS) inhibitor L-N(G)-nitroarginine methyl ester, but not the nitrate reductase (NR) inhibitor tungstate. Our study exhibited that NO can protect the mycelia of T. harzianum from HS and reduce the oxidative damage by enhancing the activity of NOS and NR.

  4. Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    The aim of the present study was to investigate the seasonal variability of markers of oxidative damage to lipids (15-F2t-isoprostane, 15-F2t-IsoP) and proteins (protein carbonyl levels) in 50 bus drivers and 50 controls from Prague, Czech Republic, and to identify factors affecting oxidative stress markers. The samples were collected in three seasons with different levels of air pollution. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter, PM2.5 and PM10, and volatile organic compounds, VOC) was monitored by personal and/or stationary monitors. For the analysis of both markers, ELISA techniques were used. The median levels of individual markers in bus drivers versus controls were as follows: 15-F2t-IsoP (nmol/mmol creatinine): winter 2005, 0.81 versus 0.68 (pbus drivers in winter seasons, but not in summer. Lipid peroxidation was positively correlated with c-PAHs and PM exposure; protein oxidation correlated negatively and was highest in summer suggesting another factor(s) affecting protein carbonyl levels.

  5. Effects of various timings and concentrations of inhaled nitric oxide in lung ischemia-reperfusion. The Paris-Sud University Lung Transplantation Group.

    Science.gov (United States)

    Murakami, S; Bacha, E A; Mazmanian, G M; Détruit, H; Chapelier, A; Dartevelle, P; Hervé, P

    1997-08-01

    Experimental studies reveal that inhaled nitric oxide (NO) can prevent, worsen, or have no effect on lung injury in the setting of ischemia-reperfusion (I-R). We tested the hypothesis that these disparate effects could be related to differences in the timing of administration and/or concentration of inhaled NO during I-R. Isolated rat lungs were subjected to 1-h periods of ischemia followed by 1-h periods of blood reperfusion. We investigated the effects of NO (30 ppm) given during ischemia, NO (30 or 80 ppm) begun immediately at reperfusion, or NO (30 ppm) given 15 min after the beginning of reperfusion, on total pulmonary vascular resistance (PVR), the coefficient of filtration (Kfc), the lung wet/dry weight ratio (W/D) of lung tissue, and lung myeloperoxidase activity (MPO). A control group did not receive NO. NO given during ischemia had no effect on Kfc or MPO, but decreased PVR. NO (30 ppm) during reperfusion (early or delayed) decreased PVR, W/D, Kfc and MPO. NO at 80 ppm decreased PVR and MPO but not W/D or Kfc. In conclusion, NO at 30 ppm, given immediately or in a delayed fashion during reperfusion, attenuates I-R-induced lung injury. NO at 30 ppm given during ischemia or at 80 ppm during reperfusion is not protective.

  6. CCK1-Receptor Stimulation Protects Against Gut Mediator-Induced Lung Damage During Endotoxemia

    Directory of Open Access Journals (Sweden)

    Friederike Eisner

    2013-12-01

    Full Text Available Background/Aims: Cholecystokinin 1-receptor (CCK1-R activation by long chain fatty acid (LCFA absorption stimulates vago-vagal reflex pathways in the brain stem. The present study determines whether this reflex also activates the cholinergic anti-inflammatory pathway, a pathway known to modulate cytokine release during endotoxemia. Methods:Mesenteric lymph was obtained from wild type (WT and CCK1-R knockout (CCK1-R-/- mice intraperitoneally challenged with Lipopolysaccharid (LPS (endotoxemic lymph, EL and intestinally infused with vehicle or LCFA-enriched solution. The lymph was analyzed for TNFα, IL-6 and IL-10 concentration and administered to healthy recipient mice via jugular infusion. Alveolar wall thickness, myeloperoxidase (MPO and TUNEL positive cells were determined in lung tissue of recipient mice. Results: LCFA infusion in WT mice reduced TNFα concentration in EL by 49% compared to vehicle infusion, but had no effect in CCK1-R-/- mice. EL significantly increased the alveolar wall thickness, the number of MPO-positive and TUNEL-positive cells compared to control lymph administration. LCFA infusion in WT, but not in CCK1R-/- mice, significantly reduced these pathological effects of EL. Conclusion: During endotoxemia enteral LCFA absorption reduces TNFα release into mesenteric lymph and attenuates histomorphologic parameters of lung dysfunction. Failure to elicit this effect in CCK1R-/- mice demonstrates that anti-inflammatory properties of LCFAs are mediated through CCK1-Rs.

  7. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    International Nuclear Information System (INIS)

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. (author)

  8. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    Science.gov (United States)

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  9. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    Science.gov (United States)

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  10. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  11. A chronic increase of corticosterone age-dependently reduces systemic DNA damage from oxidation in rats

    DEFF Research Database (Denmark)

    Jorgensen, Anders; Kalliokoski, Otto; Forsberg, Kristin

    2017-01-01

    Stress and depression are associated with an acceleration of brain and bodily aging; effects which have been attributed to chronic elevations of glucocorticoids. We tested the hypothesis that a three week administration of stress-associated levels of corticosterone (CORT, the principal rodent...... glucocorticoid) would increase systemic and CNS DNA and RNA damage from oxidation; a phenomenon known to be centrally involved in the aging process. We also hypothesized that older individuals would be more sensitive to this effect and that the chronic CORT administration would exacerbate age-related memory...

  12. Guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health

    DEFF Research Database (Denmark)

    Tetens, Inge

    2011-01-01

    The Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked by the European Food Safety Authority (EFSA) t to draft guidance on scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health. This guidance has been drawn from scientific...... opinions of the NDA Panel on such health claims. Thus, this guidance document represents the views of the NDA Panel based on the experience gained to date with the evaluation of health claims in these areas. It is not intended that the document should include an exhaustive list of beneficial effects...

  13. Heavy Metal-Induced Oxidative DNA Damage in Earthworms: A Review

    Directory of Open Access Journals (Sweden)

    Takeshi Hirano

    2010-01-01

    Full Text Available Earthworms can be used as a bio-indicator of metal contamination in soil, Earlier reports claimed the bioaccumulation of heavy metals in earthworm tissues, while the metal-induced mutagenicity reared in contaminated soils for long duration. But we examined the metal-induced mutagenicity in earthworms reared in metal containing culture beddings. In this experiment we observed the generation of 8-oxoguanine (8-oxo-Gua in earthworms exposed to cadmium and nickel in soil. 8-oxo-Gua is a major premutagenic form of oxidative DNA damage that induces GC-to-TA point mutations, leading to carcinogenesis.

  14. Grape Seed Oil Extract Protects Against Radiation-Induced Oxidative Damage in Rats Eyes

    International Nuclear Information System (INIS)

    Naguib, N.I.

    2011-01-01

    The present study was carried out to investigate the beneficial effects of grape seed oil on radiation-induced oxidative stress in the irradiated rat eyes. The rats were divided into three groups; control group that received distilled water, irradiated group (R) that exposed to gamma radiation as a single dose of 6.4 Gy and irradiated + grape seed oil group (R+GSO) that administered grape seed oil for seven consecutive days then exposed to the same single gamma radiation dose followed by grape seed oil for seven additional days. Histopathological results revealed protective effect of grape seed oil on the eye tissues of rat. The results lead to the conclusion that administration of GSO prior to radiation exposure may be a promising attempt in attenuating the extent of oxidative damage accompanying radiotherapy

  15. Zinc Supplementation against Eimeria acervulina-Induced Oxidative Damage in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Nedyalka V. Georgieva

    2011-01-01

    Full Text Available This study was undertaken to determine the dietary supplements of Zn containing diet on the antioxidant status in chickens experimentally infected with Eimeria acervulina. The antioxidant status was monitored via determination of MDA concentrations and erythrocyte SOD and CAT activities, as well as vitamin E, vitamin C, Cu, and Zn in liver, muscle, and serum. The results showed increased MDA (<.05, CAT (<.001, and decreased SOD (<.001 in the infected birds. Significant changes in Cu and Zn concentrations and dramatically reduction of vitamin C and E concentrations in the infected chickens were found. The observed deviations in the studied enzymes and nonenzymatic parameters evidence the occurrence of oxidative stress following the infection and impaired antioxidant status of chickens, infected with Eimeria acervulina. Our results proved the ameliorating role of CuZn(OH3Cl (0.170 g per kg food against Eimeria acervulina-induced oxidative damage in infected chickens.

  16. Melatonin Protects the Heart, Lungs and Kidneys from Oxidative Stress under Intermittent Hypobaric Hypoxia in Rats

    Directory of Open Access Journals (Sweden)

    Jorge G Farías

    2012-01-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine is the main secretory product of the pineal gland in all mammals including humans, but it is also produced in other organs. It has been previously demonstrated to be a powerful organ-protective substance under oxidative stress conditions. The aim of this study was to evaluate the protective effect of melatonin in several organs such as heart, lung, kidney, and of the reproductive system, such as testis and epididymis in animals exposed to intermittent hypobaric hypoxia and therefore exposed to oxidative stress and analyzed by lipid peroxidation. Ten-week-old male Wistar rats were divided into 6 groups for 96 hours during 32 days under: 1 Normobaric conditions, 2 plus physiologic solution, 3 plus melatonin, 4 intermittent hypobaric hypoxia, 5 plus physiologic solution and 6 plus melatonin. The animals were injected with melatonin (10 mg/kg body weight at an interval of 96 hours during 32 days. Results indicated that melatonin decreased lipid peroxidation in heart, kidneys and lung under intermittent hypobaric hypoxia conditions. However, it did not exhibit any protective effect in liver, testis, epididymis and sperm count.

  17. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    Science.gov (United States)

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Oxidation damage evaluation by non-destructive method for graphite components in high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shibata, Taiju; Tada, Tatsuya; Sumita, Junya; Sawa, Kazuhiro

    2008-01-01

    To develop non-destructive evaluation methods for oxidation damage on graphite components in High Temperature Gas-cooled Reactors (HTGRs), the applicability of ultrasonic wave and micro-indentation methods were investigated. Candidate graphites, IG-110 and IG-430, for core components of Very High Temperature Reactor (VHTR) were used in this study. These graphites were oxidized uniformly by air at 500degC. The following results were obtained from this study. (1) Ultrasonic wave velocities with 1 MHz can be expressed empirically by exponential formulas to burn-off, oxidation weight loss. (2) The porous condition of the oxidized graphite could be evaluated with wave propagation analysis with a wave-pore interaction model. It is important to consider the non-uniformity of oxidized porous condition. (3) Micro-indentation method is expected to determine the local oxidation damage. It is necessary to assess the variation of the test data. (author)

  19. Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats.

    Science.gov (United States)

    Kao, Shang Jyh; Peng, Tai-Chu; Lee, Ru Ping; Hsu, Kang; Chen, Chao-Fuh; Hung, Yu-Kuen; Wang, David; Chen, Hsing I

    2003-01-01

    Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R. Copyright 2003 National Science Council, ROC and S. Karger AG, Basel

  20. DNA damage responsive miR-33b-3p promoted lung cancer cells survival and cisplatin resistance by targeting p21WAF1/CIP1.

    Science.gov (United States)

    Xu, Shun; Huang, Haijiao; Chen, Yu-Ning; Deng, Yun-Ting; Zhang, Bing; Xiong, Xing-Dong; Yuan, Yuan; Zhu, Yanmei; Huang, Haiyong; Xie, Luoyijun; Liu, Xinguang

    2016-11-01

    Cisplatin is the most potent and widespread used chemotherapy drug for lung cancer treatment. However, the development of resistance to cisplatin is a major obstacle in clinical therapy. The principal mechanism of cisplatin is the induction of DNA damage, thus the capability of DNA damage response (DDR) is a key factor that influences the cisplatin sensitivity of cancer cells. Recent advances have demonstrated that miRNAs (microRNAs) exerted critical roles in DNA damage response; nonetheless, the association between DNA damage responsive miRNAs and cisplatin resistance and its underlying molecular mechanism still require further investigation. The present study has attempted to identify differentially expressed miRNAs in cisplatin induced DNA damage response in lung cancer cells, and probe into the effects of the misexpressed miRNAs on cisplatin sensitivity. Deep sequencing showed that miR-33b-3p was dramatically down-regulated in cisplatin-induced DNA damage response in A549 cells; and ectopic expression of miR-33b-3p endowed the lung cancer cells with enhanced survival and decreased γH2A.X expression level under cisplatin treatment. Consistently, silencing of miR-33b-3p in the cisplatin-resistant A549/DDP cells evidently sensitized the cells to cisplatin. Furthermore, we identified CDKN1A (p21) as a functional target of miR-33b-3p, a critical regulator of G1/S checkpoint, which potentially mediated the protection effects of miR-33b-3p against cisplatin. In aggregate, our results suggested that miR-33b-3p modulated the cisplatin sensitivity of cancer cells might probably through impairing the DNA damage response. And the knowledge of the drug resistance conferred by miR-33b-3p has great clinical implications for improving the efficacy of chemotherapies for treating lung cancers.

  1. H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Hong-Xia Zhang

    2016-12-01

    Full Text Available Background: Hydrogen sulfide (H2S, known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI induced by endotoxemia. Methods: Male ICR mice were divided in six groups: (1 Control group; (2 GYY4137treatment group; (3 L-NAME treatment group; (4 lipopolysaccharide (LPS treatment group; (5 LPS with GYY4137 treatment group; and (6 LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting. Results: GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase (NOS inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC and theactivities of catalase (CAT and superoxide dismutase (SOD but decreased a marker of peroxynitrite (ONOO- action and 3-nitrotyrosine (3-NT in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL-6, IL-8, and myeloperoxidase (MPO and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA, hydrogenperoxide (H2O2 and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS expression and nitric oxide (NO production in the

  2. Does the phycotoxin Okadaic acid cause oxidative stress damages and histological alterations to seabream (Sparus aurata)?

    Science.gov (United States)

    Souid, Ghada; Souayed, Nouha; Haouas, Zohra; Maaroufi, Khira

    2018-03-15

    Okadaic Acid (OA) is a marine toxin responsible for DSP (Diarrheic Shellfish Poisoning) in humans produced by dinoflagellate. The genotoxic and cytotoxic effects of OA have been well reported in mammalian experimental animals and in vitro cultured cells. However, there are no available investigations regarding the involvement of the oxidative stress pathways in OA toxicity, especially on aquatic animals such as fish. In this context, we aimed in the present work to demonstrate whether OA (7.5 μg/ml) induces oxidative stress and histopathological damages in the fish species Sparus aurata under short term exposure (2 h, 4 h and 24 h). To this end, we have assessed lipid peroxidation and anti-oxidative stress response in liver tissue, and finally ultrastructural changes were investigated in hepatic and gills tissues. Our results clearly showed that OA induced significant enhancement in all tested parameters in a time dependent manner and seems to be a strong inducer of oxidative stress in aquatic animals. The data of the present study indicate also that histology is a successful tool to reveal OA impact on liver and gill tissues of Sparus aurata since the animal showed vascular dilation and hepatocellular membrane disintegration in liver and hypertrophy in secondary lamellae and necrotic aspect in the primary lamellae in gill tissue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Protective Effect of Cleistocalyx nervosum var. paniala Fruit Extract against Oxidative Renal Damage Caused by Cadmium

    Directory of Open Access Journals (Sweden)

    Warut Poontawee

    2016-01-01

    Full Text Available Cadmium nephrotoxicity is a serious environmental health problem as it will eventually end up with end stage renal disease. The pathobiochemical mechanism of this toxic heavy metal is related to oxidative stress. This study investigated whether Cleistocalyx nervosum var. paniala fruit extract (CNFE could protect the kidney against oxidative injury caused by cadmium. Initial analysis of the extract revealed antioxidant abilities and high levels of polyphenols, particularly catechin. Its potential renal benefits was further explored in rats treated with vehicle, CNFE, cadmium (2 mg/kg, and cadmium plus CNFE (0.5, 1, 2 g/kg for four weeks. Oxidative renal injury was developed after cadmium exposure as evidenced by blood urea nitrogen and creatinine retention, glomerular filtration reduction, renal structural damage, together with increased nitric oxide and malondialdehyde, but decreased antioxidant thiols, superoxide dismutase, and catalase in renal tissues. Cadmium-induced nephrotoxicity was diminished in rats supplemented with CNFE, particularly at the doses of 1 and 2 g/kg. It is concluded that CNFE is able to protect against the progression of cadmium nephrotoxicity, mostly via its antioxidant power. The results also point towards a promising role for this naturally-occurring antioxidant to combat other human disorders elicited by disruption of redox homeostasis.

  4. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    Science.gov (United States)

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  5. Late non-infectious lung damage in children after allogeneic hematopoietic stem cells transplantation

    Directory of Open Access Journals (Sweden)

    Yu. V. Skvortsova

    2015-06-01

    Full Text Available Hematopoietic stem cells transplantation (HSCT technology currently allows curing a lot of malignant and non-malignant diseases in adults and children. However, HSCT is highly toxic treatment. HSCT complications include the possibility of prolonged immunodeficiency, alloand autoimmune reactions and various organs dysfunction. These conditions require careful monitoring by specialists, early diagnosis and appropriate treatment. This article discusses the clinical features, diagnosis and treatment options of such late complications as non-infectious lung disease. These conditions can lead to disability of patients. Relevance and importance of timely diagnosis of these pathological conditions, including the range of clinical tests available on a residence, with a view to effective treatment can improve the quality of life ofchildren with complications after HSCT. Theoretical issues are illustrated by case report.

  6. An anthocyanin/polyphenolic-rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands.

    Science.gov (United States)

    Weisel, Tamara; Baum, Matthias; Eisenbrand, Gerhard; Dietrich, Helmut; Will, Frank; Stockis, Jean-Pierre; Kulling, Sabine; Rüfer, Corinna; Johannes, Christian; Janzowski, Christine

    2006-04-01

    Oxidative cell damage is involved in the pathogenesis of atherosclerosis, cancer, diabetes and other diseases. Uptake of fruit juice with especially high content of antioxidant flavonoids/polyphenols, might reduce oxidative cell damage. Therefore, an intervention study was performed with a red mixed berry juice [trolox equivalent antioxidative capacity (TEAC): 19.1 mmol/L trolox] and a corresponding polyphenol-depleted juice (polyphenols largely removed, TEAC 2.4 mmol/L trolox), serving as control. After a 3-week run-in period, 18 male probands daily consumed 700 mL juice, and 9 consumed control juice, in a 4-week intervention, followed by a 3-week wash-out. Samples were collected weekly to analyze DNA damage (comet assay), lipid peroxidation (plasma malondialdehyde: HPLC/fluorescence; urinary isoprostanes: GC-MS), blood glutathione (photometrically), DNA-binding activity of nuclear factor-kappaB (ELISA) and plasma carotenoid/alpha-tocopherol levels (HPLC-DAD). During intervention with the fruit juice, a decrease of oxidative DNA damage (p<5x10(-4)) and an increase of reduced glutathione (p<5x10(-4)) and of glutathione status (p<0.05) were observed, which returned to the run-in levels in the subsequent wash-out phase. The other biomarkers were not significantly modulated by the juice supplement. Intervention with the control juice did not result in reduction of oxidative damage. In conclusion, the fruit juice clearly reduces oxidative cell damage in healthy probands.

  7. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    Science.gov (United States)

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  8. Angiotensin-(1?7) inhibits inflammation and oxidative stress to relieve lung injury induced by chronic intermittent hypoxia in rats

    OpenAIRE

    Lu, W.; Kang, J.; Hu, K.; Tang, S.; Zhou, X.; Yu, S.; Li, Y.; Xu, L.

    2016-01-01

    Obstructive sleep apnea is associated with inflammation and oxidative stress in lung tissues and can lead to metabolic abnormalities. We investigated the effects of angiotensin1–7 [Ang-(1–7)] on lung injury in rats induced by chronic intermittent hypoxia (CIH). We randomly assigned 32 male Sprague-Dawley rats (180–200 g) to normoxia control (NC), CIH-untreated (uCIH), Ang-(1–7)-treated normoxia control (N-A), and Ang-(1–7)-treated CIH (CIH-A) groups. Oxidative stress biomarkers were measured ...

  9. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  10. Lack of association of colonic epithelium telomere length and oxidative DNA damage in Type 2 diabetes under good metabolic control

    Directory of Open Access Journals (Sweden)

    Kennedy Hugh

    2008-10-01

    Full Text Available Abstract Background Telomeres are DNA repeat sequences necessary for DNA replication which shorten at cell division at a rate directly related to levels of oxidative stress. Critical telomere shortening predisposes to cell senescence and to epithelial malignancies. Type 2 diabetes is characterised by increased oxidative DNA damage, telomere attrition, and an increased risk of colonic malignancy. We hypothesised that the colonic mucosa in Type 2 diabetes would be characterised by increased DNA damage and telomere shortening. Methods We examined telomere length (by flow fluorescent in situ hybridization and oxidative DNA damage (flow cytometry of 8 – oxoguanosine in the colonic mucosal cells of subjects with type 2 diabetes (n = 10; mean age 62.2 years, mean HbA1c 6.9% and 22 matched control subjects. No colonic pathology was apparent in these subjects at routine gastrointestinal investigations. Results Mean colonic epithelial telomere length in the diabetes group was not significantly different from controls (10.6 [3.6] vs. 12.1 [3.4] Molecular Equivalent of Soluble Fluorochrome Units [MESF]; P = 0.5. Levels of oxidative DNA damage were similar in both T2DM and control groups (2.6 [0.6] vs. 2.5 [0.6] Mean Fluorescent Intensity [MFI]; P = 0.7. There was no significant relationship between oxidative DNA damage and telomere length in either group (both p > 0.1. Conclusion Colonic epithelium in Type 2 diabetes does not differ significantly from control colonic epithelium in oxidative DNA damage or telomere length. There is no evidence in this study for increased oxidative DNA damage or significant telomere attrition in colonic mucosa as a carcinogenic mechanism.

  11. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    Science.gov (United States)

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-05-01

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na + and Cl - than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H 2 O 2 ) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

    Science.gov (United States)

    Oh, Joo-Yeun; Stapley, Ryan; Harper, Victoria; Marques, Marisa B; Patel, Rakesh P

    2015-12-01

    Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme. © 2015 AABB.

  13. Multitracer Stable Isotope Quantification of Arginase and Nitric Oxide Synthase Activity in a Mouse Model of Pseudomonas Lung Infection

    Directory of Open Access Journals (Sweden)

    Hartmut Grasemann

    2014-01-01

    Full Text Available Cystic fibrosis airways are deficient for L-arginine, a substrate for nitric oxide synthases (NOSs and arginases. The rationale for this study was to quantify NOS and arginase activity in the mouse lung. Anesthetized unventilated mice received a primed constant stable isotope intravenous infusion containing labeled L-arginine, ornithine, and citrulline. The isotopic enrichment of each of the infused isotopomers and its product amino acids were measured in plasma and organ homogenates using liquid chromatography-tandem mass spectrometry. The effect of infection was studied three days after direct tracheal instillation of Pseudomonas-coated agar beads. In the infusion model, lung infection resulted in a significant (28-fold increase in NOS activity in lung but not in trachea, kidney, liver, or plasma. Absolute rates of arginase activity in solid tissues could not be calculated in this model. In an isolated lung perfusion model used for comparison increased NOS activity in infected lungs was confirmed (28.5-fold and lung arginase activity was increased 9.7-fold. The activity of L-arginine metabolizing enzymes can be measured using stable isotope conversion in the mouse. Accumulation of L-ornithine in the whole mouse model hindered the exact quantification of arginase activity in the lung, a problem that was overcome utilizing an isolated lung perfusion model.

  14. Bioavailability of andrographolide and protection against carbon tetrachloride-induced oxidative damage in rats.

    Science.gov (United States)

    Chen, Haw-Wen; Huang, Chin-Shiu; Li, Chien-Chun; Lin, Ai-Hsuan; Huang, Yu-Ju; Wang, Tsu-Shing; Yao, Hsien-Tsung; Lii, Chong-Kuei

    2014-10-01

    Andrographolide, a bioactive diterpenoid, is identified in Andrographis paniculata. In this study, we investigated the pharmacokinetics and bioavailability of andrographolide in rats and studied whether andrographolide enhances antioxidant defense in a variety of tissues and protects against carbon tetrachloride-induced oxidative damage. After a single 50-mg/kg administration, the maximum plasma concentration of andrographolide was 1μM which peaked at 30min. The bioavailability of andrographolide was 1.19%. In a hepatoprotection study, rats were intragastrically dosed with 30 or 50mg/kg andrographolide for 5 consecutive days. The results showed that andrographolide up-regulated glutamate cysteine ligase (GCL) catalytic and modifier subunits, superoxide dismutase (SOD)-1, heme oxygenase (HO)-1, and glutathione (GSH) S-transferase (GST) Ya/Yb protein and mRNA expression in the liver, heart, and kidneys. The activity of SOD, GST, and GSH reductase was also increased in rats dosed with andrographolide (pandrographolide increased nuclear Nrf2 contents and Nrf2 binding to DNA, respectively. After the 5-day andrographolide treatment, one group of animals was intraperitoneally injected with carbon tetrachloride (CCl4) at day 6. Andrographolide pretreatment suppressed CCl4-induced plasma aminotransferase activity and hepatic lipid peroxidation (pandrographolide is quickly absorbed in the intestinal tract in rats with a bioavailability of 1.19%. Andrographolide protects against chemical-induced oxidative damage by up-regulating the gene transcription and activity of antioxidant enzymes in various tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring

    Directory of Open Access Journals (Sweden)

    Jehane I. Eid

    2015-08-01

    Full Text Available Bisphenol A (BPA is an endocrine disrupting compound widely spread in our living environment. It is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to the limited information concerning the effect of BPA on the liver, the present study was designed to assess hepatic tissue injury induced by early life exposure to BPA in female rat offspring. Rat dams (n = 9 were gavaged with 0.5 and 50 mg of BPA/kg b.w./day throughout lactation until weaning. The sham group received olive oil for the same duration while the control group did not receive any injection. The liver tissue was collected from female pups at different pubertal periods (PND50, 90 and 110 to evaluate oxidative stress biomarkers, extent of DNA damage and histopathological changes. Our results indicated that early life exposure to BPA significantly increased oxidative/nitrosative stress, decreased antioxidant enzyme activities, induced DNA damage and chronic severe inflammation in the hepatic tissue in a time dependent manner. These data suggested that BPA causes long-term adverse effects on the liver, which leads to deleterious effects in the liver of female rat offspring.

  16. Effects of Bauhinia forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice.

    Science.gov (United States)

    Salgueiro, Andréia Caroline Fernandes; Folmer, Vanderlei; da Silva, Marianne Pires; Mendez, Andreas Sebastian Loureiro; Zemolin, Ana Paula Pegoraro; Posser, Thaís; Franco, Jeferson Luis; Puntel, Robson Luiz; Puntel, Gustavo Orione

    2016-01-01

    This study was designed to evaluate the effects of Bauhinia forficata Link subsp. pruinosa (BF) tea on oxidative stress and liver damage in streptozotocin (STZ)-induced diabetic mice. Diabetic male mice have remained 30 days without any treatment. BF treatment started on day 31 and continued for 21 days as a drinking-water substitute. We evaluated (1) BF chemical composition; (2) glucose levels; (3) liver/body weight ratio and liver transaminases; (4) reactive oxygen species (ROS), lipid peroxidation, and protein carbonylation in liver; (5) superoxide dismutase (SOD) and catalase (CAT) activities in liver; (6) δ-aminolevulinate dehydratase (δ-ALA-D) and nonprotein thiols (NPSH) in liver; (7) Nrf2, NQO-1, and HSP70 levels in liver and pancreas. Phytochemical analyses identified four phenols compounds. Diabetic mice present high levels of NQO-1 in pancreas, increased levels of ROS and lipid peroxidation in liver, and decrease in CAT activity. BF treatment normalized all these parameters. BF did not normalize hyperglycemia, liver/body weight ratio, aspartate aminotransferase, protein carbonyl, NPSH levels, and δ-ALA-D activity. The raised oxidative stress seems to be a potential mechanism involved in liver damage in hyperglycemic conditions. Our results indicated that BF protective effect could be attributed to its antioxidant capacity, more than a hypoglycemic potential.