WorldWideScience

Sample records for oxidative coupling experiments

  1. Oxidative electrochemical aryl C-C coupling of spiropyrans

    NARCIS (Netherlands)

    Ivashenko, Oleksii; van Herpt, Jochem T.; Rudolf, Petra; Feringa, Ben L.; Browne, Wesley R.

    2013-01-01

    The isolation and definitive assignment of the species formed upon electrochemical oxidation of nitro-spiropyran (SP) is reported. The oxidative aryl C-C coupling at the indoline moiety of the SP radical cation to form covalent dimers of the ring-closed SP form is demonstrated. The coupling is

  2. Reaction path of the oxidative coupling of methane over a lithium-doped magnesium oxide catalyst : Factors affecting the Rate of Total Oxidation of Ethane and Ethylene

    NARCIS (Netherlands)

    Roos, J.A.; Korf, S.J.; Veehof, R.H.J.; van Ommen, J.G.; Ross, J.R.H.

    1989-01-01

    Experiments using gas mixtures of O2, C2H6 or C2H4 and CH4 or He have been carried out with a Li/MgO catalyst using a well-mixed reaction system which show that the total oxidation products, CO and CO2, are formed predominantly from ethylene, formed in the oxidative coupling of methane. It is

  3. Modification of aniline containing proteins using an oxidative coupling strategy.

    Science.gov (United States)

    Hooker, Jacob M; Esser-Kahn, Aaron P; Francis, Matthew B

    2006-12-13

    A new bioconjugation reaction has been developed based on the chemoselective modification of anilines through an oxidative coupling pathway. Aryl amines were installed on the surface of protein substrates through lysine acylation reactions or through the use of native chemical ligation techniques. Upon exposure to NaIO4 in aqueous buffer, the anilines coupled rapidly to the aromatic rings of N,N-dialkyl-N'-acyl-p-phenylenediamines. The identities of the reaction products were confirmed using ESI-MS and through comparison to small molecule analogs. Control experiments indicated that none of the native amino acids participated in the reaction. The resulting bioconjugates were found to be stable toward hydrolysis from pH 4 to pH 11 and in the presence of many commonly used oxidants, reductants, and nucleophiles. A fluorescent phenylenediamine reagent was synthesized for the selective detection of aniline labeled proteins in mixtures, and the reaction was used to append the C-terminus of the green fluorescent protein with a single PEG chain. When combined with techniques for the incorporation of unnatural amino acids into proteins, this bioorthogonal coupling method should prove useful for a number of applications requiring a high degree of labeling specificity.

  4. Perovskite catalysts for oxidative coupling

    Science.gov (United States)

    Campbell, Kenneth D.

    1991-01-01

    Perovskites of the structure A.sub.2 B.sub.2 C.sub.3 O.sub.10 are useful as catalysts for the oxidative coupling of lower alkane to heavier hydrocarbons. A is alkali metal; B is lanthanide or lanthanum, cerium, neodymium, samarium, praseodymium, gadolinium or dysprosium; and C is titanium.

  5. -3000 V dc bias Ti oxidation by inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; Lopez-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Pena-Eguiluz, R; Munoz-Castro, A E; De la Piedad-Beneitez, A; De la Rosa-Vazquez, J

    2008-01-01

    Broadening the outer oxidized layer of titanium by means of plasmas commands considerable interest in the biomedical research area due to its potential in human biocompatibility enhancement. Some early results of titanium substrate superficial oxidation experiments which have been conducted in a cylindrical vessel inductively coupled to a 13.56 MHz RF generator with a 500 W output are presented. The oxidation process was carried out in a 20 % oxygen and 80 % argon mixture at work pressures in the 5x10 -3 -1 mbar range, while the samples were dc biased down to -3000 V. The substrate temperature appears to be directly dependent on this voltage, reaching 685 deg. C at the maximum bias when a diffusive oxidation process gives rise to the TiO 2 and α-TiO rutile phases. These were characterized by means of x-ray diffraction and scanning electron microscopy revealing atomic percentage concentrations of oxygen, with respect to those of titanium, between 68 and 13 at.%. The optimum modified layer depth reached 5 μm at a 5x10 -2 mbar work pressure.

  6. Potassium/calcium/nickel oxide catalysts for the oxidative coupling of methane

    NARCIS (Netherlands)

    Dooley, K.; Dooley, Kerry M.; Ross, J.R.H.; Ross, Julian R.H.

    1992-01-01

    A series of potassium/calcium/nickel oxides were tested for the oxidative coupling of methane (OCM) at 843–943 K and water addition to the feed at 0–66 mol-%. The K/Ni ratios varied from 0.0–0.6 and Ca/Ni from 0.0–11; catalysts with no nickel were also tested. At least 10% water in the feed and

  7. Miscarriage experiences of lesbian couples.

    Science.gov (United States)

    Wojnar, Danuta

    2007-01-01

    This was a descriptive phenomenological study of 10 self-identified lesbian couples who had experienced miscarriage in the context of a committed relationship. Analysis of individual and joint open-ended interviews revealed that the experience of miscarriage for lesbian couples must be viewed from the perspective of the difficulties surrounding conception as well as the actual pregnancy loss. The overarching theme, "We are not in control," captures the struggles lesbian couples faced in conceiving their pregnancies and the sense of loss that accompanied miscarrying. These experiences constituted two sub-themes: "We work so hard to get a baby" and "It hurts so bad: The sorrow of miscarriage." Our results indicate that the experience of miscarriage is compounded by the complexities of planning and achieving pregnancy. Practitioners need to be aware of the unique perspectives lesbian couples have on pregnancy and miscarriage and remain sensitive to their unique needs. Findings may serve as an intervention framework for nurse midwives and others caring for lesbian couples after miscarriage.

  8. Isotopic studies on oxidative methane coupling over samarium oxide

    International Nuclear Information System (INIS)

    Otsuka, Kiyoshi; Inaida, Masakatsu; Wada, Yuji; Komatsu, Takayuki; Morikawa, Akira

    1989-01-01

    The evident kinetic isotope effect was observed for the formations of ethylene and ethane through the oxidative coupling of methane on Sm 2 O 3 , when CH 4 and CD 4 were used as the reactants. Ethanes formed in the reaction of a mixture of CH 4 , CD 4 , and O 2 were C 2 H 6 , C 2 H 3 D 3 , and C 2 D 6 as major products. These results indicate that the rate-determining step of the reaction is abstraction of hydrogen from methane and that ethane is formed through the coupling of methyl intermediate. (author)

  9. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  10. Oxidative coupling of methane over alkali-promoted simple molybdate catalysts

    International Nuclear Information System (INIS)

    Discoll, S.A.; Zhang, L.; Ozkan, U.S.

    1992-01-01

    The study of various metal oxides and alkali promoted metal oxide catalysts has received much interest in recent years after the earlier reports of ethylene synthesis through oxidative coupling of methane, and of achieving high selectivities over a Li/MgO catalyst under methane and oxygen cofeed conditions. The addition of promoter ions to several oxide catalysts has been studied to determine the effect of the promoter ion on catalytic activity and selectivity. The authors' work has focused on the use of alkali promoters for a simple molybdate catalyst. MnMoO 4 . A study of Na, Li, K, Mg, Ba, Mn, Co, Fe, Cu, Zn, and Ni molybdates by Kiwi et al showed that with the exception of NiMoO 4 , the molybdates were stable for long periods of time under reaction conditions for oxidative coupling. At a conversion level of about 60%, selectivities ranged from 9.8% to 16.6%. The MnMoO 4 and K 2 MnMoO 4 molybdates were the least selective catalysts. Another molybdate, PbMoO 4 , was studied by Baerns et al., with 19% selectivity to C 2 hydrocarbons at 1% conversion. An 11.4% conversion to form aldehyde was also reported. In this paper the authors report the characterization and catalytic behavior of MnMoO 4 catalysts promoted with either Li, Na, or K in oxidative coupling of methane

  11. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    Science.gov (United States)

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  12. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  13. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.

    Science.gov (United States)

    Liu, Lianghui; Wang, Zikuan; Fu, Xuefeng; Yan, Chun-Hua

    2012-11-16

    In the presence of a catalytic amount of radical initiator AIBN, primary amines are oxidatively coupled to imines and tertiary amines are cyanated to α-aminonitriles. These "metal-free" aerobic oxidative coupling reactions may find applications in a wide range of "green" oxidation chemistry.

  14. The oxidative coupling of methane and the oxidative dehydrogenation of ethane over a niobium promoted lithium doped magnesium oxide catalyst

    NARCIS (Netherlands)

    Swaan, H.M.; Swaan, H.M.; Li, X.; Seshan, Kulathuiyer; van Ommen, J.G.; Ross, J.R.H.; Ross, J.R.H.

    1993-01-01

    The promoting effect of niobium in a Li/MgO catalyst for the oxidative coupling of methane (OCM) and for the oxidative dehydrogenation of ethane (ODHE) has been studied in some detail. It has been found that a Li/Nb/MgO catalyst with 16 wt % niobium showed the highest activity for the C2 production

  15. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  16. Biotic manganese oxidation coupled with methane oxidation using a continuous-flow bioreactor system under marine conditions.

    Science.gov (United States)

    Kato, Shingo; Miyazaki, Masayuki; Kikuchi, Sakiko; Kashiwabara, Teruhiko; Saito, Yumi; Tasumi, Eiji; Suzuki, Katsuhiko; Takai, Ken; Cao, Linh Thi Thuy; Ohashi, Akiyoshi; Imachi, Hiroyuki

    2017-10-01

    Biogenic manganese oxides (BioMnOx) can be applied for the effective removal and recovery of trace metals from wastewater because of their high adsorption capacity. Although a freshwater continuous-flow system for a nitrifier-based Mn-oxidizing microbial community for producing BioMnOx has been developed so far, a seawater continuous-flow bioreactor system for BioMnOx production has not been established. Here, we report BioMnOx production by a methanotroph-based microbial community by using a continuous-flow bioreactor system. The bioreactor system was operated using a deep-sea sediment sample as the inoculum with methane as the energy source for over 2 years. The BioMnOx production became evident after 370 days of reactor operation. The maximum Mn oxidation rate was 11.4 mg L -1 day -1 . An X-ray diffraction analysis showed that the accumulated BioMnOx was birnessite. 16S rRNA gene-based clone analyses indicated that methanotrophic bacterial members were relatively abundant in the system; however, none of the known Mn-oxidizing bacteria were detected. A continuous-flow bioreactor system coupled with nitrification was also run in parallel for 636 days, but no BioMnOx production was observed in this bioreactor system. The comparative experiments indicated that the methanotroph-based microbial community, rather than the nitrifier-based community, was effective for BioMnOx production under the marine environmental conditions.

  17. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    Science.gov (United States)

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  18. Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation

    Science.gov (United States)

    Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.

    2013-09-01

    Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.

  19. Effects of quantum coupling on the performance of metal-oxide ...

    Indian Academy of Sciences (India)

    LING-FENG MAO. School of Electronics & Information Engineering, Soochow University, ... Quantum coupling; metal-oxide-semiconductor field transistors. ... effects of the barrier height reduction caused by the channel electron velocity due to.

  20. Following Bariatric Surgery: an Exploration of the Couples' Experience.

    Science.gov (United States)

    Pories, Mary Lisa; Hodgson, Jennifer; Rose, Mary Ann; Pender, John; Sira, Natalia; Swanson, Melvin

    2016-01-01

    Bariatric surgery is the most effective intervention for morbid obesity, resulting in substantial weight loss and the resolution of co-morbid conditions. It is not clear what impact bariatric surgery and the subsequent life-style changes have on patients' couple relationships. The purpose of this phenomenological study was to examine the lived experience of couples after one member of the couple underwent bariatric surgery. This study utilized a phenomenological approach of semi-structured interviews of the couples jointly (n = 10 couples). Colaizzi's method of analysis for phenomenological studies was utilized to elucidate the central themes and distill the essence of the participants' experience. All of the couples felt their post-operative success was due to a joint effort on both members of the couples' part. The participant couples described the following five emerging thematic experiences: (a) changes in physical health, (b) changes in emotional health, (c) changes in eating habits, (d) greater intimacy in the relationship, and (e) the joint journey. This research provides greater insight into the experience of the couple than has been previously reported. The use of qualitative research techniques offer new approaches to examine the biopsychosocial outcomes and needs of bariatric surgery patients. Further research is warranted in order to develop culturally appropriate interventions to improve the patient's surgical and biopsychosocial outcomes.

  1. Palladium-catalyzed aerobic oxidative cross-coupling of arylhydrazines with terminal alkynes.

    Science.gov (United States)

    Zhao, Yingwei; Song, Qiuling

    2015-09-04

    The palladium-catalyzed Sonogashira-type aerobic oxidative coupling of arylhydrazines with terminal alkynes via C-N bond cleavage has been developed; internal alkynes were afforded with a broad substrate scope. This reaction proceeds under copper- and base-free conditions with molecular oxygen as the sole oxidant and nitrogen and water as the only by-products.

  2. Effect of additives on lithium doped magnesium oxide catalysts used in the oxidative coupling of methane

    NARCIS (Netherlands)

    Korf, S.J.; Roos, J.A.; Veltman, L.J.; van Ommen, J.G.; Ross, J.R.H.

    1989-01-01

    It has been found that it is possible to improve the activity and stability for the oxidative coupling of methane of a Li/MgO catalyst by the addition of small amounts of the oxides of various transition and rare earth metals. A number of these additives, e.g. SnO2, TiO2, Dy2O3 and Tb4O7, caused

  3. A mechanistic study on the oxidative coupling of methane over lithium doped magnesium oxide catalysts

    NARCIS (Netherlands)

    Geerts, J.W.M.H.; Kasteren, van J.M.N.; Wiele, van der K.; Imarisio, G.; Frias, M.; Berntgen, J.M.

    1988-01-01

    To elucidate the importance of various reaction steps in the oxidative convers ion of methane, experiments were carried out with three reaction products: ethane, ethylene and carbon monoxide. These products were studied seperately, in oxidation experiments with and without a catalyst. Moreover , the

  4. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    Science.gov (United States)

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  5. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would

  6. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    Science.gov (United States)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  7. Synthesis of Arylthiopyrimidines by Copper-catalyzed Aerobic Oxidative C-S Cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Suk; Kim, Hyeji; Sohn, Jeong-Hun [Chungnam National University, Daejeon (Korea, Republic of); Lee, Hee-Seung [KAIST, Daejeon (Korea, Republic of); Shin, Hyunik [Yonsung Fine Chemicals R and D Center, Suwon (Korea, Republic of)

    2016-02-15

    Copper-catalyzed C–S cross-coupling reactions have been considered as powerful tools in synthetic chemistry and utilized for diverse heterocycle syntheses. In the reactions, the aspects of no need of ligands has been particular advantage over other metal catalysis. We have developed a Cu-catalyzed cascade reaction for the synthesis of fully substituted 2-arylthiopyrimidines from 3,4-dihydropyrimidine-2(1H)-thiones (DHPMs) under aerobic conditions. This cascade reaction of DHPM with aryl iodide proceeds presumably via sequential tautomerization, C–S cross-coupling, and oxidative dehydrogenation (oxidation followed by elimination). Considering that DHPM substrates were easily synthesized by Biginelli three component coupling reaction of aryl aldehyde, β-ketoester, and thiourea, the present method provides a direct access toward diverse 2-arylthiopyrimidines which have been used as a prominent substructure of drug molecules.

  8. The oxidative coupling of methane with cofeeding of ethane

    NARCIS (Netherlands)

    Chen, Q.; Couwenberg, P.M.; Marin, G.B.

    1994-01-01

    The oxidative coupling of methane with cofeeding of ethane was investigated experimentally both in the absence and in the presence of a Sn/Li/MgO catalyst. Cofeeding ethane in the absence of catalyst results in a higher total radical concentration, explaining the strong increase of the observed feed

  9. Fostering new relational experience: clinical process in couple psychotherapy.

    Science.gov (United States)

    Marmarosh, Cheri L

    2014-03-01

    One of the most critical goals for couple psychotherapy is to foster a new relational experience in the session where the couple feels safe enough to reveal more vulnerable emotions and to explore their defensive withdrawal, aggressive attacking, or blaming. The lived intimate experience in the session offers the couple an opportunity to gain integrative insight into their feelings, expectations, and behaviors that ultimately hinder intimacy. The clinical processes that are necessary include empathizing with the couple and facilitating safety within the session, looking for opportunities to explore emotions, ruptures, and unconscious motivations that maintain distance in the relationship, and creating a new relational experience in the session that has the potential to engender integrative insight. These clinical processes will be presented with empirical support. Experts from a session will be used to highlight how these processes influence the couple and promote increased intimacy. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  10. Aluminum cladding oxidation of prefilmed in-pile fueled experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.edu [Oregon State University, School of Nuclear Science and Engineering, 116 Radiation Center, Corvallis, OR 97331 (United States); Wachs, D.M.; Robinson, A.B.; Lillo, M.A. [Idaho National Laboratory, Nuclear Fuels & Materials Department, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2016-04-01

    A series of fueled irradiation experiments were recently completed within the Advanced Test Reactor Full size plate In center flux trap Position (AFIP) and Gas Test Loop (GTL) campaigns. The conduct of the AFIP experiments supports ongoing efforts within the global threat reduction initiative (GTRI) to qualify a new ultra-high loading density low enriched uranium-molybdenum fuel. This study details the characterization of oxide growth on the fueled AFIP experiments and cross-correlates the empirically measured oxide thickness values to existing oxide growth correlations and convective heat transfer correlations that have traditionally been utilized for such an application. This study adds new and valuable empirical data to the scientific community with respect to oxide growth measurements of highly irradiated experiments, of which there is presently very limited data. Additionally, the predicted oxide thickness values are reconstructed to produce an oxide thickness distribution across the length of each fueled experiment (a new application and presentation of information that has not previously been obtainable in open literature); the predicted distributions are compared against experimental data and in general agree well with the exception of select outliers. - Highlights: • New experimental data is presented on oxide layer thickness of irradiated aluminum fuel. • Five oxide growth correlations and four convective heat transfer correlations are used to compute the oxide layer thickness. • The oxide layer thickness distribution is predicted via correlation for each respective experiment. • The measured experiment and predicted distributions correlate well, with few outliers.

  11. Electrochemistry coupled to (LC-)MS for the simulation of oxidative biotransformation reactions of PAHs.

    Science.gov (United States)

    Wigger, Tina; Seidel, Albrecht; Karst, Uwe

    2017-06-01

    Electrochemistry coupled to liquid chromatography and mass spectrometry was used for simulating the biological and environmental fate of polycyclic aromatic hydrocarbons (PAHs) as well as for studying the PAH degradation behavior during electrochemical remediation. Pyrene and benzo[a]pyrene were selected as model compounds and oxidized within an electrochemical thin-layer cell equipped with boron-doped diamond electrode. At potentials of 1.2 and 1.6 V vs. Pd/H 2 , quinones were found to be the major oxidation products for both investigated PAHs. These quinones belong to a large group of PAH derivatives referred to as oxygenated PAHs, which have gained increasing attention in recent years due to their high abundance in the environment and their significant toxicity. Separation of oxidation products allowed the identification of two pyrene quinone and three benzo[a]pyrene quinone isomers, all of which are known to be formed via photooxidation and during mammalian metabolism. The good correlation between electrochemically generated PAH quinones and those formed in natural processes was also confirmed by UV irradiation experiments and microsomal incubations. At potentials higher than 2.0 V, further degradation of the initial oxidation products was observed which highlights the capability of electrochemistry to be used as remediation technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  13. Lignins : natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids

    Science.gov (United States)

    John Ralph; Knut Lundquist; Gosta Brunow; Fachuang Lu; Hoon Kim; Paul F. Schatz; Jane M. Marita; Ronald D. Hatfield; Sally A. Ralph; Jorgen Holst Christensen; Wout Boerjan

    2004-01-01

    Lignins are complex natural polymers resulting from oxidative coupling of, primarily, 4-hydroxyphenylpropanoids. An understanding of their nature is evolving as a result of detailed structural studies, recently aided by the availability of lignin-biosynthetic-pathway mutants and transgenics. The currently accepted theory is that the lignin polymer is formed by...

  14. Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gruverman, Alexei [Univ. of Nebraska, Lincoln, NE (United States); Tsymbal, Evgeny Y. [Univ. of Nebraska, Lincoln, NE (United States); Eom, Chang-Beom [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-03

    This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modeling of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.

  15. Oxidative coupling of 1-naphthols over noble and base metal catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2014-01-01

    Full Text Available Bismuth-promoted platinum catalysts were tested for the oxidative coupling of 2- and 4-substituted 1-naphthols at different temperatures and ambient pressure. The principal final products are the 3,3'-substituted 1,1'-binaphthalenylidene-4,4'-diones...

  16. Criticality calculations in reactor accelerator coupling experiment (Race)

    International Nuclear Information System (INIS)

    Reda, M.A.; Spaulding, R.; Hunt, A.; Harmon, J.F.; Beller, D.E.

    2005-01-01

    A Reactor Accelerator Coupling Experiment (RACE) is to be performed at the Idaho State University Idaho Accelerator Center (IAC). The electron accelerator is used to generate neutrons by inducing Bremsstrahlung photon-neutron reactions in a Tungsten- Copper target. This accelerator/target system produces a source of ∼1012 n/s, which can initiate fission reactions in the subcritical system. This coupling experiment between a 40-MeV electron accelerator and a subcritical system will allow us to predict and measure coupling efficiency, reactivity, and multiplication. In this paper, the results of the criticality and multiplication calculations, which were carried out using the Monte Carlo radiation transport code MCNPX, for different coupling design options are presented. The fuel plate arrangements and the surrounding tank dimensions have been optimized. Criticality using graphite instead of water for reflector/moderator outside of the core region has been studied. The RACE configuration at the IAC will have a criticality (k-effective) of about 0,92 and a multiplication of about 10. (authors)

  17. A laboratory experiment on coupled non-identical pendulums

    International Nuclear Information System (INIS)

    Li Ang; Zeng Jingyi; Yang Hujiang; Xiao Jinghua

    2011-01-01

    In this paper, coupled pendulums with different lengths are studied. Through steel magnets, each pendulum is coupled with others, and a stepping motor is used to drive the whole system. To record the data automatically, we designed a data acquisition system with a CCD camera connected to a computer. The coupled system shows in-phase, locked-phase and anti-phase synchronizations when the driving frequency and the coupling strength are changed. With background knowledge from general physics and the simplicity of the equipment, this experiment is easy to implement and would be of interest to undergraduate students.

  18. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  19. Synthesis of Formate Esters and Formamides Using an Au/TiO2-Catalyzed Aerobic Oxidative Coupling of Paraformaldehyde

    Directory of Open Access Journals (Sweden)

    Ioannis Metaxas

    2017-12-01

    Full Text Available A simple method for the synthesis of formate esters and formamides is presented based on the Au/TiO2-catalyzed aerobic oxidative coupling between alcohols or amines and formaldehyde. The suitable form of formaldehyde is paraformaldehyde, as cyclic trimeric 1,3,5-trioxane is inactive. The reaction proceeds via the formation of an intermediate hemiacetal or hemiaminal, respectively, followed by the Au nanoparticle-catalyzed aerobic oxidation of the intermediate. Typically, the oxidative coupling between formaldehyde (2 equiv and amines occurs quantitatively at room temperature within 4 h, and there is no need to add a base as in analogous coupling reactions. The oxidative coupling between formaldehyde (typically 3 equiv and alcohols is unprecedented and occurs more slowly, yet in good to excellent yields and selectivity. Minor side-products (2–12% from the acetalization of formaldehyde by the alcohol are also formed. The catalyst is recyclable and can be reused after a simple filtration in five consecutive runs with a small loss of activity.

  20. The Experience of Couples in the Process of Treatment of Pathological Gambling: Couple vs. Individual Therapy

    Science.gov (United States)

    Tremblay, Joël; Dufour, Magali; Bertrand, Karine; Blanchette-Martin, Nadine; Ferland, Francine; Savard, Annie-Claude; Saint-Jacques, Marianne; Côté, Mélissa

    2018-01-01

    Context: Couple treatment for pathological gambling is an innovative strategy. There are some results supporting its potential effectiveness, but little is known about the subjective experiences of the participants. Objective: The aim of this article is to document the experiences of gamblers and their partners participating in one of two treatments, namely individual or couple. Method: In a study aiming to evaluate the efficacy of the Integrative Couple Treatment for Pathological Gambling (ICT-PG), couples who were entering specialized treatment for the addiction of one member who was a pathological gambler were randomly assigned to individual or ICT-PG. Nine months after their admission to treatment, gamblers and partners (n = 21 couples; n = 13 ICT-PG; n = 8 individual treatment) were interviewed in semi-structured interviews. A sequenced thematization method was used to extract the major themes. Results: This study highlighted five major themes in the therapeutic process noted by the gamblers and their partners mainly after the couple treatment but also partly through the individual therapy. These were: (1) the gamblers' anxiety about having to reveal their gambling problems in couple therapy; (2) the wish to develop a mutually beneficial understanding of gambling and its effects on the partners in the two types of treatments; (3) the transformation of negative attributions through a more effective intra-couple communication fostered by the couple therapy; (4) the partners' contribution to changes in gambling behavior and prevention of relapses, which were both better supported in couple therapy; and (5) the interpersonal nature of gambling and its connections with the couples' relationship. However, gamblers who were in individual treatment were more likely to mention that their partners' involvement was not necessary. Participants likewise made a few recommendations about the conditions underlying the choice of one treatment method or the other. Discussion

  1. The Experience of Couples in the Process of Treatment of Pathological Gambling: Couple vs. Individual Therapy

    Directory of Open Access Journals (Sweden)

    Joël Tremblay

    2018-01-01

    Full Text Available Context: Couple treatment for pathological gambling is an innovative strategy. There are some results supporting its potential effectiveness, but little is known about the subjective experiences of the participants.Objective: The aim of this article is to document the experiences of gamblers and their partners participating in one of two treatments, namely individual or couple.Method: In a study aiming to evaluate the efficacy of the Integrative Couple Treatment for Pathological Gambling (ICT-PG, couples who were entering specialized treatment for the addiction of one member who was a pathological gambler were randomly assigned to individual or ICT-PG. Nine months after their admission to treatment, gamblers and partners (n = 21 couples; n = 13 ICT-PG; n = 8 individual treatment were interviewed in semi-structured interviews. A sequenced thematization method was used to extract the major themes.Results: This study highlighted five major themes in the therapeutic process noted by the gamblers and their partners mainly after the couple treatment but also partly through the individual therapy. These were: (1 the gamblers' anxiety about having to reveal their gambling problems in couple therapy; (2 the wish to develop a mutually beneficial understanding of gambling and its effects on the partners in the two types of treatments; (3 the transformation of negative attributions through a more effective intra-couple communication fostered by the couple therapy; (4 the partners' contribution to changes in gambling behavior and prevention of relapses, which were both better supported in couple therapy; and (5 the interpersonal nature of gambling and its connections with the couples' relationship. However, gamblers who were in individual treatment were more likely to mention that their partners' involvement was not necessary. Participants likewise made a few recommendations about the conditions underlying the choice of one treatment method or the other

  2. Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity.

    Science.gov (United States)

    Li, Chunyan; Feng, Feihu; Xiong, Xiaoling; Li, Rui; Chen, Ning

    2017-04-01

    The increased oxidative stress is usually observed in obese population, but the control of body weight by calorie restriction and/or exercise training can ameliorate oxidative stress. In order to evaluate oxidative stress in response to exercise and dietary restriction in obese adolescents, a total of 20 obese volunteers were enrolled in a 4-week intervention program including exercise training and dietary restriction. Body compositions and blood samples were analysed before and after 4-week intervention, and biomarkers associated with oxidative stress were examined. After 4-week exercise training coupled with dietary restriction, physical composition parameters including body mass, body mass index (BMI), lean body mass, body fat mass and fat mass ratio had obvious reduction by 12.43%, 13.51%, 5.83%, 25.05% and 14.52%, respectively. In addition, the activities of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) revealed a remarkable enhancement. On the other hand, protein carbonyls (PC) exhibited an obvious reduction. Moreover, total thiols and nitrites with respect to baseline revealed a reducing trend although no significant difference was observed. Therefore, the 4-week exercise intervention coupled with dietary restriction is benefit for the loss of body weight and the mitigation of oxidative stress in obese population so that it can be a recommendable intervention prescription for the loss of body weight.

  3. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    Science.gov (United States)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  4. Self-Driven Bioelectrochemical Mineralization of Azobenzene by Coupling Cathodic Reduction with Anodic Intermediate Oxidation

    International Nuclear Information System (INIS)

    Liu, Rong-Hua; Li, Wen-Wei; Sheng, Guo-Ping; Tong, Zhong-Hua; Lam, Michael Hon-Wah; Yu, Han-Qing

    2015-01-01

    Highlights: • Azobenzene was reduced to aniline at the cathode of an acetate-fueled MFC. • Aniline was degraded at the bioanode of a single-chamber MFC. • Cathodic reduction of azobenzene was coupled with anodic oxidation of aniline. • Self-driven, complete mineralization of azobenzene in an MFC was accomplished. - Abstract: Bioelectrochemical systems have been intensively studied as a promising technology for wastewater treatment and environment remediation. Coupling of the anodic and cathodic electrochemical reactions allows an enhanced degradation of recalcitrant organics, but external power supply is usually needed to overcome the thermodynamic barrier. In this work, we report a self-driven degradation of azobenzene in a microbial fuel cell (MFC), where the cathodic reduction of azobenzene was effectively coupled with the anodic oxidation of its reduction degradation intermediate (i.e., aniline). The anodic degradation rate of aniline, as the sole carbon source, was significantly higher than that under open-circuit conditions, suggesting a considerable bioelectrochemical oxidation of aniline. Output voltages up to 8 mV were obtained in the MFC. However, a shift of cathodic electron acceptor from oxygen to azobenzene resulted in a decreased aniline degradation rate and output voltage. The present work may provide valuable implications for development of sustainable bioelectrochemical technologies for environmental remediation

  5. Treatment of a Textile Effluent by Electrochemical Oxidation and Coupled System Electooxidation–Salix babylonica

    Directory of Open Access Journals (Sweden)

    Alejandra Sánchez-Sánchez

    2018-01-01

    Full Text Available The removal of pollutants from textile wastewater via electrochemical oxidation and a coupled system electrooxidation—Salix babylonica, using boron-doped diamond electrodes was evaluated. Under optimal conditions of pH 5.23 and 3.5 mA·cm−2 of current density, the electrochemical method yields an effective reduction of chemical oxygen demand by 41.95%, biochemical oxygen demand by 83.33%, color by 60.83%, and turbidity by 26.53% at 300 minutes of treatment. The raw and treated wastewater was characterized by infrared spectroscopy to confirm the degradation of pollutants. The wastewater was oxidized at 15-minute intervals for one hour and was placed in contact with willow plants for 15 days. The coupled system yielded a reduction of the chemical oxygen demand by 14%, color by 85%, and turbidity by 93%. The best efficiency for the coupled system was achieved at 60 minutes, at which time the plants achieved more biomass and photosynthetic pigments.

  6. Coupled Josephson local oscillator and detector experiments in the terahertz regime

    International Nuclear Information System (INIS)

    Robertazzi, R.P.; Hallen, H.D.; Buhrman, R.A.

    1988-01-01

    Recent coupled Josephson junction experiments in the authors' laboratory have demonstrated that high critical current density tunnel junctions can serve as effective local oscillators at frequencies up to and in excess of the gap sum frequency of the junction, i.e. well above 1 Terahertz for a niobium or niobium compound tunnel junction. While the details of the behavior of such a THz. oscillator were found not to be in accord with the predictions of the accepted theory of the A.C. Josephson effect in the gap region significant radiation could be capacitively coupled from the oscillator junction to an adjacent junction, sufficient for SIS mixer experiments at Terahertz frequencies. Research efforts are now under way to further extend and expand these studies. A high critical current density all NbN tunnel junction system is now under development for Terahertz applications and a new set of coupled Josephson oscillator - SIS detector experiments is being initiated using NbN tunnel junctions. In this paper the authors review the original coupled junction high frequency experiments and report on the recent progress of the current NbN tunnel junction experiments

  7. PRS and POS/PRS coupling experiments on Hawk

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, G G; Apruzese, J P; Commisso, R J [Naval Research Laboratory, Washington, DC (United States). Plasma Physics Div.; and others

    1997-12-31

    Experiments are being conducted on Hawk to investigate the electrical coupling of a plasma opening switch (POS) to a neon plasma radiation source (PRS) and to evaluate the K SHELL x-ray yield scaling of implosions with different initial radii, mass, and implosion times. Understanding the coupling and scaling is important for optimizing the performance of more powerful inductive-storage generators that rely on POS technology. (author). 1 tab., 5 figs., 7 refs.

  8. Perchlorate-Coupled Carbon Monoxide (CO Oxidation: Evidence for a Plausible Microbe-Mediated Reaction in Martian Brines

    Directory of Open Access Journals (Sweden)

    Marisa R. Myers

    2017-12-01

    Full Text Available The presence of hydrated salts on Mars indicates that some regions of its surface might be habitable if suitable metabolizable substrates are available. However, several lines of evidence have shown that Mars’ regolith contains only trace levels of the organic matter needed to support heterotrophic microbes. Due to the scarcity of organic carbon, carbon monoxide (CO at a concentration of about 700 parts per million (about 0.4 Pa might be the single most abundant readily available substrate that could support near-surface bacterial activity. Although a variety of electron acceptors can be coupled to CO oxidation, perchlorate is likely the most abundant potential oxidant in Mars’ brines. Whether perchlorate, a potent chaotrope, can support microbial CO oxidation has not been previously documented. We report here the first evidence for perchlorate-coupled CO oxidation based on assays with two distinct euryarchaeal extreme halophiles. CO oxidation occurred readily in 3.8 M NaCl brines with perchlorate concentrations from 0.01 to 1 M. Both isolates were able to couple CO with perchlorate or chlorate under anaerobic conditions with or without nitrate as an inducer for nitrate reductase, which serves as a perchlorate reductase in extreme halophiles. In the presence of perchlorate, CO concentrations were reduced to levels well below those found in Mars’ atmosphere. This indicates that CO could contribute to the survival of microbial populations in hydrated salt formations or brines if water activities are suitably permissive.

  9. Oxidative coupling polymerization in a Langmuir monolayer of octadecyl 3,5-diaminobenzoate

    NARCIS (Netherlands)

    Kimkes, P.; Sohling, U.; Oostergetel, G.T.; Schouten, A.J.

    1996-01-01

    In a Langmuir monolayer of the surface active monomer octadecyl 3,5-diaminobenzoate (ODDB), stabilized at a surface pressure of 10 mN/m and a temperature of 23.7 degrees C at the air-water interface, oxidative coupling polymerization occurs when copper(II) chloride was added or already was present

  10. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    Science.gov (United States)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  11. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    International Nuclear Information System (INIS)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel; Kittel, Jean; Grosjean, Francois; Ropital, Francois

    2014-01-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C 4 H 10 + H 2 + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  12. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Böhlke, J.K.

    2017-01-01

    Nitrate has become an increasingly abundant potential electron acceptor for Fe(II) oxidation in groundwater, but this redox couple has not been well characterized within aquifer settings. To investigate this reaction and some of its implications for redox-sensitive groundwater contaminants, we conducted an in situ field study in a wastewater-contaminated aquifer on Cape Cod. Long-term (15 year) geochemical monitoring within the contaminant plume indicated interacting zones with variable nitrate-, Fe(II)-, phosphate-, As(V)-, and As(III)-containing groundwater. Nitrate and phosphate were derived predominantly from wastewater disposal, whereas Fe(II), As(III), and As(V) were mobilized from the aquifer sediments. Multiple natural gradient, anoxic tracer tests were conducted in which nitrate and bromide were injected into nitrate-free, Fe(II)-containing groundwater. Prior to injection, aqueous Fe(II) concentrations were approximately 175 μM, but sorbed Fe(II) accounted for greater than 90% of the total reactive Fe(II) in the aquifer. Nitrate reduction was stimulated within 1 m of transport for 100 μM and 1000 μM nitrate additions, initially producing stoichiometric quantities of nitrous oxide (>300 μM N). In subsequent injections at the same site, nitrate was reduced even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and were accompanied by Fe(III) oxyhydroxide precipitation and decreases in dissolved phosphate, As(III), and As(V) concentrations. Nitrate N and O isotope fractionation effects during nitrate reduction were approximately equal (ε15N/ε18O = 1.11) and were similar to those reported for laboratory studies of biological nitrate reduction, including denitrification, but unlike some reported effects on nitrate by denitrification in aquifers. All constituents affected by the in situ tracer experiments returned to pre-injection levels after several

  13. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    Science.gov (United States)

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fuel cracking in relation to fuel oxidation in support of an out-reactor instrumented defected fuel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Quastel, A.; Thiriet, C. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Lewis, B., E-mail: brent.lewis@uoit.ca [Univ. of Ontario Inst. of Tech., Oshawa, ON (Canada); Corcoran, E., E-mail: emily.corcoran@rmc.ca [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    An experimental program funded by the CANDU Owners Group (COG) is studying an out-reactor instrumented defected fuel experiment in Stern Laboratories (Hamilton, Ontario) with guidance from Atomic Energy of Canada Limited (AECL). The objective of this test is to provide experimental data for validation of a mechanistic fuel oxidation model. In this experiment a defected fuel element with UO{sub 2} pellets will be internally heated with an electrical heater element, causing the fuel to crack. By defecting the sheath in-situ the fuel will be exposed to light water coolant near normal reactor operating conditions (pressure 10 MPa and temperature 265-310{sup o}C) causing fuel oxidation, especially near the hotter regions of the fuel in the cracks. The fuel thermal conductivity will change, resulting in a change in the temperature distribution of the fuel element. This paper provides 2D r-θ plane strain solid mechanics models to simulate fuel thermal expansion, where conditions for fuel crack propagation are investigated with the thermal J integral to predict fuel crack stress intensity factors. Finally since fuel crack geometry can affect fuel oxidation this paper shows that the solid mechanics model with pre-set radial cracks can be coupled to a 2D r-θ fuel oxidation model. (author)

  15. Experiments on MCCI with oxide and steel

    International Nuclear Information System (INIS)

    Foit, J.J.; Fischer, M.; Journeau, Ch.; Langrock, G.

    2014-01-01

    Highlights: • Study of the influence of reinforcement in the concrete on the erosion behaviour. • Prototypic heating of both melt phases (oxide/metal) was achieved. • In contrast to a concrete without rebars, an almost isotropic erosion was obtained. • Tests with UO 2 -containing melt showed a fast oxidation of the stainless steel melt. • Distribution of the metal phase in the oxide melt depends on the heating power. - Abstract: Recently performed experimental programmes at the French VULCANO and the German MOCKA and SICOPS facilities aimed at the further elucidation of various phenomena of molten core-concrete interaction (MCCI). Questions on these phenomena arose during the scientific discussion of MCCI in the last years. The large-scale MOCKA (KIT, Karlsruhe) experiments study the interaction of a simulant oxide (Al 2 O 3 , ZrO 2, CaO) and metal melt (Fe) with concrete. To allow for a long-term interaction, internal heating was provided by alternating additions of alumino-thermite and Zr metal to the upper oxide layer of the stratified melt. Since the heat generated by the thermite reaction and the exothermal oxidation reaction of Zr is mainly deposited in the oxide phase, prototypic heating of both melt phases is achieved. Recent tests in the MOCKA (KIT, Germany) program are focused on assessing the influence of a typical 6 wt.% reinforcement in the concrete on the erosion behaviour. The experiments were performed in siliceous concrete crucibles with an inner diameter of 25 cm and a height of 1.3 m. In these experiments, the overall downward erosion by the metal melt was of the same order as the sideward one. In addition, the lateral erosion in the overlaid oxide melt region was about the same as in the metal melt region. Experiments with prototypic UO 2 -containing melts have been conducted in parallel in the VULCANO (CEA, Cadarache) and SICOPS (AREVA, Erlangen) facilities. In VULCANO a plasma arc furnace melts the oxide corium while three 1-L steel

  16. Parenting experiences of couples living with human ...

    African Journals Online (AJOL)

    Belinda Chimphamba Gombachika

    2014-05-12

    May 12, 2014 ... qualitative study was to explore and describe parenting experiences of seroconcordant couples who have a child while living with HIV in Malawi. .... 2008). This development raises issues not yet much explored; par- ..... sible for instituting and maintaining life style changes necessary to reduce risk and ...

  17. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    Science.gov (United States)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k

  18. Reduced coupling of oxidative phosphorylation in vivo precedes electron transport chain defects due to mild oxidative stress in mice.

    Directory of Open Access Journals (Sweden)

    Michael P Siegel

    Full Text Available Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ treatment of wild type mice and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1(-/- models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain.

  19. Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer

    Science.gov (United States)

    Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy

    2018-05-01

    mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.

  20. Coupling between eddy currents and rigid body rotation: analysis, computation, and experiments

    International Nuclear Information System (INIS)

    Hua, T.Q.; Turner, L.R.

    1985-01-01

    Computation and experiment show that the coupling between eddy currents and the angular deflections resulting from those eddy currents can reduce electromagnetic effects such as forces, torques, and power dissipation to levels far less severe than would be predicted without regard for the coupling. This paper explores the coupling effects beyond the parameter range that has been explored experimentally, using analytical means and the eddy-current computer code EDDYNET. The paper also describes upcoming FELIX experiments with cantilevered beams

  1. Couple-level Minority Stress: An Examination of Same-sex Couples' Unique Experiences.

    Science.gov (United States)

    Frost, David M; LeBlanc, Allen J; de Vries, Brian; Alston-Stepnitz, Eli; Stephenson, Rob; Woodyatt, Cory

    2017-12-01

    Social stress resulting from stigma, prejudice, and discrimination-"minority stress"-negatively impacts sexual minority individuals' health and relational well-being. The present study examined how being in a same-sex couple can result in exposure to unique minority stressors not accounted for at the individual level. Relationship timeline interviews were conducted with 120 same-sex couples equally distributed across two study sites (Atlanta and San Francisco), gender (male and female), and relationship duration (at least six months but less than three years, at least three years but less than seven years, and seven or more years). Directed content analyses identified 17 unique couple-level minority stressors experienced within nine distinct social contexts. Analyses also revealed experiences of dyadic minority stress processes (stress discrepancies and stress contagion). These findings can be useful in future efforts to better understand and address the cumulative impact of minority stress on relational well-being and individual health.

  2. An autoclave system for uranium oxide dissolution experiments

    International Nuclear Information System (INIS)

    Nykyri, Mikko

    1985-05-01

    According to the decision in principle of the Council of State of Finland the nuclear energy producers must provide preparedness for carrying out the final disposal of spent nuclear fuel in Finland. By the present principal concept the spent fuel will be disposed deep into the granitic bedrock. A parameter needed by risk analysis models is the dissolution rate of the uranium oxide matrix in the fuel pellets. In order to approach conditions prevailing deep in the groundwater, and autoclave system for dissolution experiments was developed at the Technical Research Centre of Finland. The low oxygen content and high pressure at elevated temperatures are simulated in the system. 20 MPa and 100 deg C are the upper operation limits of pressure and temperature. Water can be changed in the experiment autoclave without remarkable pressure and temperature variations. This has been arranged by using three pressure vessels: a supply vessel, a dissolution vessel and a depletion vessel. The extreme vessels serve pressure balancing purposes during water exchange. The water is deoxygenated during a preparation phase in the supply vessel by flushing it with nitrogen gas. Polytetrafluoroethylene is the principal material in contact with the water. A redox electrode couple was developed for potential measurements inside the dissolution vessel. The reference electrode is of Ag/AgCl-type with saturated KC1 electrolyte. A platinum wire operates as a measuring electrode

  3. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Critical experiments with mixed oxide fuel

    International Nuclear Information System (INIS)

    Harris, D.R.

    1997-01-01

    This paper very briefly outlines technical considerations in performing critical experiments on weapons-grade plutonium mixed oxide fuel assemblies. The experiments proposed would use weapons-grade plutonium and Er 2 O 3 at various dissolved boron levels, and for specific fuel assemblies such as the ABBCE fuel assembly with five large water holes. Technical considerations described include the core, the measurements, safety, security, radiological matters, and licensing. It is concluded that the experiments are feasible at the Rensselaer Polytechnic Institute Reactor Critical Facility. 9 refs

  5. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  6. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  7. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  8. Coupling ultraviolet light and ultrasound irradiation with Conductive-Diamond Electrochemical Oxidation for the removal of progesterone

    International Nuclear Information System (INIS)

    Vidales, María J. Martín de; Barba, Silvia; Sáez, Cristina; Cañizares, Pablo; Rodrigo, Manuel A.

    2014-01-01

    Highlights: • Single sonolysis and photolysis technologies entail a slight progesterone removal and nil mineralization. • Synergistic effects of irradiating UV light and US are clearly observed in the oxidation rate. • The energy required by CDSEO and CDSPEO prevents against their application. • CDSEO mainly favors the mass transfer of organics to the conductive-diamond surface. • CDPEO promotes the formation of radicals in the bulk solution. - Abstract: This work focusses on the improvement of the efficiency of Conductive Diamond Electrochemical Oxidation (CDEO) by coupling US and UV irradiation in the degradation of progesterone from wastewater. Results show that CDEO is a promising technology for the degradation of progesterone, just the opposite of that observed for single sonolysis and photolysis technologies, which only entail a slight removal of progesterone and nil mineralization. Coupling UV light and US irradiations with CDEO seems to have a very positive effect, improving results obtained by single CDEO very significantly. Conductive Diamond Sono Electrochemical Oxidation (CDSEO) mainly seems to improve the transfer of pollutants to the conductive-diamond surface, while Conductive Diamond Photo Electrochemical Oxidation (CDPEO) seems to promote the formation of radicals from oxidants produced electrochemically. Soft oxidation conditions are obtained with the single application of both irradiation technologies, whereas an efficient mineralization is attained with CDEO, CDSEO, CDPEO and Conductive Diamond Sono-Photo Electrochemical Oxidation (CDSPEO). However, the high energy demands of US irradiation technologies advices against the use of CDSEO and CDSPEO

  9. Exploring gay couples' experience with sexual dysfunction after radical prostatectomy: a qualitative study.

    Science.gov (United States)

    Hartman, Mary-Ellen; Irvine, Jane; Currie, Kristen L; Ritvo, Paul; Trachtenberg, Lianne; Louis, Alyssa; Trachtenberg, John; Jamnicky, Leah; Matthew, Andrew G

    2014-01-01

    This exploratory study examines the experience of three gay couples managing sexual dysfunction as a result of undergoing a radical prostatectomy. Semi-structured interviews were conducted as part of a larger study at an urban hospital in Toronto, Ontario, Canada. Interview transcripts were transcribed verbatim, and analyzed using interpretative phenomenological analysis. The authors clustered 18 subordinate themes under 3 superordinate themes: (a) acknowledging change in sexual experience (libido, erectile function, sexual activity, orgasmic function); (b) accommodating change in sexual experience (strategies: emphasizing intimacy, embracing plan B, focus on the other; barriers: side-effect concerns, loss of naturalness, communication breakdown, failure to initiate, trial and failure, partner confounds); and (c) accepting change in sexual experience (indicators: emphasizing health, age attributions, finding a new normal; barriers: uncertain outcomes, treatment regrets). Although gay couples and heterosexual couples share many similar challenges, we discovered that gay men have particular sexual roles and can engage in novel accommodation practices, such as open relationships, that have not been noted in heterosexual couples. All couples, regardless of their level of sexual functioning, highlighted the need for more extensive programming related to sexual rehabilitation. Equitable rehabilitative support is critical to assist homosexual couples manage distress associated with prostatectomy-related sexual dysfunction.

  10. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Radaelli, Guido [Siluria Technologies, Inc., San Francisco, CA (United States); Chachra, Gaurav [Siluria Technologies, Inc., San Francisco, CA (United States); Jonnavittula, Divya [Siluria Technologies, Inc., San Francisco, CA (United States)

    2017-12-30

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The output of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.

  11. Developing confidence in a coupled TH model based on the results of experiment by using engineering scale test facility, 'COUPLE'

    International Nuclear Information System (INIS)

    Fujisaki, Kiyoshi; Suzuki, Hideaki; Fujita, Tomoo

    2008-03-01

    It is necessary to understand quantitative changes of near-field conditions and processes over time and space for modeling the near-field evolution after emplacement of engineered barriers. However, the coupled phenomena in near-field are complicated because thermo-, hydro-, mechanical, chemical processes will interact each other. The question is, therefore, whether the applied model will represent the coupled behavior adequately or not. In order to develop confidence in the modeling, it is necessary to compare with results of coupled behavior experiments in laboratory or in site. In this report, we evaluated the applicability of a coupled T-H model under the conditions of simulated near-field for the results of coupled T-H experiment in laboratory. As a result, it has been shown that the fitting by the modeling with the measured data is reasonable under this condition. (author)

  12. Measurements of the Top-Higgs Coupling with the CMS Experiment

    CERN Document Server

    Mildner, Hannes

    The top-Higgs coupling is constrained using data measured with the CMS experiment in LHC Run 1 and 2. Constraints on anomalous top-Higgs couplings are derived by re-analyzing CMS Run 1 measurements. Furthermore, a search for Higgs production in association with a top-quark pair and Higgs-boson decays into b-quarks in Run 2 data is presented. Upper limits on ttH production are calculated and it is demonstrated that the analysis can also be used to constrain anomalous top-Higgs couplings.

  13. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    International Nuclear Information System (INIS)

    Tajima, Satomi; Tsuchiya, Shouichi; Matsumori, Masashi; Nakatsuka, Shigeki; Ichiki, Takanori

    2011-01-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu 2 O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu 2 O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  14. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satomi; Tsuchiya, Shouichi [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Matsumori, Masashi; Nakatsuka, Shigeki [Panasonic Factory Solutions Co., Ltd., 2-7 Matsuba-cho, Kadoma-city, Osaka, 571-8502 (Japan); Ichiki, Takanori, E-mail: ichiki@sogo.t.u-tokyo.ac.jp [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Institute of Engineering Innovation, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2011-08-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu{sub 2}O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu{sub 2}O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  15. Endogenous influences on anammox and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) and dynamic operating strategy.

    Science.gov (United States)

    Sun, Xinbo; Du, Lingfeng; Hou, Yuqian; Cheng, Shaoju; Zhang, Xuxiang; Liu, Bo

    2018-02-21

    The anaerobic ammonia oxidation (anammox) and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) was initiated in an expanded granular sludge bed (EGSB) reactor for nitrogen removal from high-strength wastewater. Owing to cooperation between anammox and partial sulfocompound-oxidation autotrophic denitrification coupling system (PSAD), the highest nitrogen removal efficiency (NRE) of 98.1% ± 0.4% achieved at the optimal influent conditions of conversion efficiency of ammonium (CEA) of 55% and S 2 O 3 2- -S/NO 3 - -N (S/N) of 1.4 mol mol -1 . The activity of the short-cut sulfocompound-oxidizing autotrophic denitrification (SSAD) was also regulated to cope with dynamic CEA in the influent by changing the S/N, which was demonstrated to be effective in alleviating nitrite accumulation when the CEA was between 57% and 61%. Both the anammox and SAD bacteria enriched in the reactor after long-term incubation. Candidatus Brocadia and Candidatus Jettenia might be potentially contributing the most to anammox, while the Thiobacillus was the dominant taxa related to SAD. Copyright © 2018. Published by Elsevier Ltd.

  16. Experiences of Attachment Injury in Heterosexual Couple Relationships

    Science.gov (United States)

    Pelling, Cate; Arvay-Buchanan, Marla

    2004-01-01

    The aim of this study was to explore the lived experience of women's attachment injuries within heterosexual couple relationships. An interpretative, phenomenological approach (van Manen, 1990) was used in this exploratory study. Four women participated in three separate research interviews in order to illuminate the phenomenon of "attachment…

  17. Copper-promoted oxidative coupling of enamides and alkynes for the synthesis of substituted pyrroles.

    Science.gov (United States)

    Zhao, Mi-Na; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2014-02-10

    An efficient copper-promoted oxidative coupling of enamides with alkynes has been developed for the synthesis of substituted pyrroles. The reaction proceeded through C-H and N-H bond functionalization of enamides under mild conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Coupling between angular deflection and eddy currents in the FELIX plate experiment

    International Nuclear Information System (INIS)

    Turner, L.R.; Cuthbertson, J.W.

    1983-08-01

    For a conducting body experiencing superimposed changing and steady magnetic field, for example a limiter in a tokamak during plasma quench, the induced eddy currents and the deflections resulting from those eddy currents are coupled. Experimental study of these coupled deflections and currents can be performed with the FELIX (Fusion Electromagnetic Induction Experiment) facility nearing completion at ANL. Predictions of the coupling are described, as computed with the code EDDYNET, which has been modified for this purpose. Effects of the coupling will be readily observable experimentally. In the FELIX plate experiment, the coupling between deflection and eddy currents was readily calculated because the rigid-body rotation of the plate is equivalent to a contrarotation of the applied magnetic fields. For a geometry such as a plasma limiter, in which the eddy currents would cause a deformation of the conducting body, an analysis of the coupling between eddy currents and deformation would require a structural-analysis code and an eddy current code to be simultaneously computing from the same mesh

  19. GLOBAL AND LOCAL COUPLING COMPENSATION EXPERIMENTS IN RHIC USING AC DIPOLES

    International Nuclear Information System (INIS)

    CALAGA, R.; FRANCHI, A., TOMAS, R.; CERN)

    2006-01-01

    Compensation of transverse coupling during the RHIC energy ramp has been proven to be non-trivial and tedious. The lack of accurate knowledge of the coupling sources has initiated several efforts to develop fast techniques using turn-by-turn BPM data to identify and compensate these sources. This paper aims to summarize the beam experiments performed to measure the coupling, matrix and resonance driving terms with the aid of RHIC ac dipoles at injection energy

  20. Bending localization of nitrous oxide under anharmonicity and Fermi coupling: the dynamical potential approach

    International Nuclear Information System (INIS)

    Zhang Chi; Wu Guo-Zhen; Fang Chao

    2010-01-01

    This paper studies the vibrational nonlinear dynamics of nitrous oxide with Fermi coupling between the symmetric stretching and bending coordinates by classical dynamical potential approach. This is a global approach in the sense that the overall dynamics is evidenced by the classical nonlinear variables such as the fixed points and the focus are on a set of levels instead of individual ones. The dynamics of nitrous oxide is demonstrated to be not so much dependent on the excitation energy. Moreover, the localized bending mode is shown to be ubiquitous in all the energy range studied

  1. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    Science.gov (United States)

    Tham, Kim Kong; Kushibiki, Ryosuke; Kamada, Tomonari; Hinata, Shintaro; Saito, Shin

    2018-05-01

    Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms), uniaxial magnetocrystalline anisotropy (Ku), and magnetic grain diameter (GD) of the granular media show linear correlation with volume weighted average for melting point (Tm) of each oxides (Tmave). Ku of magnetic grains (Kugrain) shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α). By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  2. Effort to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Langenhoff, A.A.M.; Rijnaarts, H.H.M.

    2011-01-01

    Purpose - In order to provide highly effective yet relatively inexpensive strategies for the remediation of recalcitrant organic contaminants, research has focused on in situ treatment technologies. Recent investigation has shown that coupling two common treatments-in situ chemical oxidation (ISCO)

  3. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  4. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2014-08-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron were measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454-pyrosequencing, and real-time quantitative PCR analysis. We believe that one of the dominant microbial species in our system (an uncultured Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  5. Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions

    Science.gov (United States)

    Huang, S.; Jaffé, P. R.

    2015-02-01

    Incubation experiments were conducted using soil samples from a forested riparian wetland where we have previously observed anaerobic ammonium oxidation coupled to iron reduction. Production of both nitrite and ferrous iron was measured repeatedly during incubations when the soil slurry was supplied with either ferrihydrite or goethite and ammonium chloride. Significant changes in the microbial community were observed after 180 days of incubation as well as in a continuous flow membrane reactor, using 16S rRNA gene PCR-denaturing gradient gel electrophoresis, 454 pyrosequencing, and real-time quantitative PCR analysis. We be Acidimicrobiaceae bacterium A6), belonging to the Acidimicrobiaceae family, whose closest cultivated relative is Ferrimicrobium acidiphilum (with 92% identity) and Acidimicrobium ferrooxidans (with 90% identity), might play a key role in this anaerobic biological process that uses ferric iron as an electron acceptor while oxidizing ammonium to nitrite. After ammonium was oxidized to nitrite, nitrogen loss proceeded via denitrification and/or anammox.

  6. Synthesis of novel bis(perfluorophenyl azides) coupling agents: Evaluation of their performance by crosslinking of poly(ethylene oxide)

    KAUST Repository

    Mehenni, Hakim

    2011-11-01

    Novel bis(perfluorophenyl azides) coupling agents, containing spacer arms from ethylene or ethylene glycol subunits, were successfully synthesized. Nitrenes photogenerated from these novel bis(PFPA) coupling agents were applied successfully to the cross-linking of poly(ethylene oxide) (PEO10,000) in either aqueous medium or at the solid state, thus, we demonstrated the potential of these bis(PFPA) molecules as promising coupling agents in surface engineering. © 2011 Elsevier Ltd. All rights reserved.

  7. Different sources of nitric oxide mediate neurovascular coupling in the lateral geniculate nucleus of the cat

    Directory of Open Access Journals (Sweden)

    Carmen De Labra

    2009-09-01

    Full Text Available Understanding the link between neuronal responses and metabolic signals is fundamental to our knowledge of brain function and it is a milestone in our efforts to interpret data from modern non invasive optical techniques such as fMRI, which are based on the close coupling between metabolic demand of active neurons and local changes in blood flow. The challenge is to unravel the link. Here we show, using spectrophotometry to record oxyhemoglobin (OxyHb and metahemoglobin (MetHb (surrogate markers of cerebral flow and nitric oxide levels respectively together with extracellular neuronal recordings in vivo and applying a multiple polynomial regression model, that the markers are able to predict up about 80% of variability in neuronal response. Furthermore, we show that the coupling between blood flow and neuronal activity is heavily influenced by nitric oxide (NO. While neuronal responses show the typical saturating response, blood flow shows a linear behaviour during contrast-response curves, with nitric oxide from different sources acting differently for low and high intensity.

  8. Oxidation of formic acid by oxyanions of chlorine and its implications to the Viking Labeled Release experiment

    Science.gov (United States)

    Martinez, P.; Navarro-gonzalez, R.

    2013-05-01

    The Viking Landers that arrived on Mars in 1976 carried out three biological experiments designed to investigate if there was microbial life. These were the Gas-Exchange, Pyrolitic Release and Labeled Release experiments. The three experiments yielded positive responses but the Labeled Release experiment had a kinetic response indicative of microbial activity. The experiment consisted of adding a broth of nutrients (formic acid, glycolic acid, glycine, D- and L-alanine and D- and L-lactic acid uniformly marked with 14C) to martian soil samples. The results were surprising; the nutrients were consumed releasing radioactive gases in a manner that is compatible by terrestrial microorganisms. The existence of Martian life was contradicted by soil chemical analysis that indicated the absence of organic compounds above the detection limits of parts per billion (ppb). Instead the positive response of the Labeled Release Experiment was attributed to the existence of peroxides and/or superoxides in the Martian soils that destroyed the nutrients upon contact. Recently, the Phoenix mission that landed in the Martian Arctic in 2008 revealed the presence of a highly oxidized form of the element chlorine in the soil: perchlorate. Perchlorate is thought to have formed in the Martian atmosphere by the oxidation of chloride from volcanic sources with ozone. Therefore perchlorate is formed by the stepwise oxidation of hypochlorite, chlorite and chlorate. These oxyanions of chlorine are powerful oxidizers that may exist in the Martian soil and may have reacted with the nutrients of the Labeled Release Experiment. This paper aims to better understand these results by designing experiments to determine the kinetics of decomposition of formic acid to carbon dioxide with different oxidized forms of chlorine by headspace technique in gas chromatography coupled to mass spectrometry (GC / MS). Previous studies done in the laboratory showed that only hypochlorite quantitatively reacted with

  9. Oxidative coupling and polymerization of pyrroles

    International Nuclear Information System (INIS)

    Hansen, Gregers Hendrik; Henriksen, Rikke Morck; Kamounah, Fadhil S.; Lund, Torben; Hammerich, Ole

    2005-01-01

    The electrochemical oxidation of 2,4-dimethyl-3-ethylpyrrole in acetonitrile has been studied using cyclic voltammetry, constant current coulometry, preparative electrolyses and ab initio calculations. The product analysis after the preparative electrolyses was carried out by HPLC combined with UV-vis and electrospray ionization MS detection. The aim of the work was to address some of the unresolved problems in the oxidative oligomerization and polymerization of alkylpyrroles. The title compound was chosen as a model for studies of pyrroles that are more basic than the solvent-supporting electrolyte system and for that reason are forced to serve as the base accepting the protons released during the coupling steps. The voltammograms obtained by cyclic voltammetry at a substrate concentration of 2 mM and voltage scan rates between 0.02 and 2 V s -1 showed a characteristic trace-crossing phenomenon that could be demonstrated by digital simulation to be related to that fact that the deprotonations of the initially formed dimer dication are slow with second order rate constants in the range 10 3 -10 4 M -1 s -1 . The relative stability of the different tautomers of the protonated pyrrole monomer and the corresponding 2,2'-dimer was determined by ab initio calculations at the RHF 6-31G(d) level. The studies also included investigations of the effects resulting from addition of a non-nucleophilic base, 2,6-di-tert-butylpyridine, to the voltammetry solutions. The major product observed after preparative electrolyses was a trimer the structure of which is proposed to include a central 2H-pyrrole unit. Since 2H-pyrroles are stronger bases than the corresponding 1H-pyrroles, the trimer is effectively protected against further oxidation by protonation. Two other trimers were observed as minor or trace products as well as a 1H,2H-dimer and several tetramers, also in trace amounts. In addition to the dimer, the trimers and the tetramers, a number of other minor products could be

  10. Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and Caucasians in the arctic winter.

    Science.gov (United States)

    Gnaiger, E; Boushel, R; Søndergaard, H; Munch-Andersen, T; Damsgaard, R; Hagen, C; Díez-Sánchez, C; Ara, I; Wright-Paradis, C; Schrauwen, P; Hesselink, M; Calbet, J A L; Christiansen, M; Helge, J W; Saltin, B

    2015-12-01

    During evolution, mitochondrial DNA haplogroups of arctic populations may have been selected for lower coupling of mitochondrial respiration to ATP production in favor of higher heat production. We show that mitochondrial coupling in skeletal muscle of traditional and westernized Inuit habituating northern Greenland is identical to Danes of western Europe haplogroups. Biochemical coupling efficiency was preserved across variations in diet, muscle fiber type, and uncoupling protein-3 content. Mitochondrial phenotype displayed plasticity in relation to lifestyle and environment. Untrained Inuit and Danes had identical capacities to oxidize fat substrate in arm muscle, which increased in Danes during the 42 days of acclimation to exercise, approaching the higher level of the Inuit hunters. A common pattern emerges of mitochondrial acclimatization and evolutionary adaptation in humans at high latitude and high altitude where economy of locomotion may be optimized by preservation of biochemical coupling efficiency at modest mitochondrial density, when submaximum performance is uncoupled from VO2max and maximum capacities of oxidative phosphorylation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Numerical experiments on 2D strongly coupled complex plasmas

    International Nuclear Information System (INIS)

    Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E

    2010-01-01

    The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.

  12. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  13. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    Directory of Open Access Journals (Sweden)

    Kim Kong Tham

    2018-05-01

    Full Text Available Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms, uniaxial magnetocrystalline anisotropy (Ku, and magnetic grain diameter (GD of the granular media show linear correlation with volume weighted average for melting point (Tm of each oxides (Tmave. Ku of magnetic grains (Kugrain shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α. By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  14. Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO{sub 2} emission

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xun [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Lu, Gongxuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2010-07-15

    Biomass is carbon-neutral and utilization of biomass as hydrogen resource shows no impact on atmospheric CO{sub 2} level. Nevertheless, a significant amount of CO{sub 2} is always produced in biomass gasification processes. If the CO{sub 2} produced can further react with biomass, then the biomass gasification coupled with CO{sub 2} reforming of biomass will result in a net decrease of CO{sub 2} level in atmosphere and produce the chemical raw material, syngas. To achieve this concept, a ''Y'' type reactor is developed and applied in bio-oil steam reforming, partial oxidation, or oxidative steam reforming coupled with CO{sub 2} reforming of bio-oil to eliminate the emission of CO{sub 2}. The experimental results show that the reaction systems can efficiently suppress the emission of CO{sub 2} from various reforming processes. The different coupled reaction systems generate the syngas with different molar ratio of CO/H{sub 2}. In addition, coke deposition is encountered in the different reforming processes. Both catalysts and experimental parameters significantly affect the coke deposition. Ni/La{sub 2}O{sub 3} catalyst shows much higher resistivity toward coke deposition than Ni/Al{sub 2}O{sub 3} catalyst, while employing high reaction temperature is vital for elimination of coke deposition. Although the different coupled reaction systems show different characteristic in terms of product distribution and coke deposition, which all can serve as methods for storage of the carbon from fossil fuels or air. (author)

  15. Pd2+ and Cu2+ catalyzed oxidative cross-coupling of mercaptoacetylenes and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Henke, Adam; Šrogl, Jiří

    2011-01-01

    Roč. 47, č. 14 (2011), s. 4282-4284 ISSN 1359-7345 R&D Projects: GA ČR GA203/08/1318 Grant - others:AV ČR(CZ) M200550908 Institutional research plan: CEZ:AV0Z40550506 Keywords : mercaptoacetylenes * oxidative cross - coupling * Cu/Pd catalysis Subject RIV: CC - Organic Chemistry Impact factor: 6.169, year: 2011

  16. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  17. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.; Streuff, Jan; Mukherjee, Herschel; Virgil, Scott C.; Stoltz, Brian M.

    2010-01-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  18. Cultural intersections: a qualitative inquiry into the experience of Asian Indian-White interracial couples.

    Science.gov (United States)

    Inman, Arpana G; Altman, Abby; Kaduvettoor-Davidson, Anju; Carr, Amanda; Walker, Jessica A

    2011-06-01

    The purpose of this study was to examine the "lived experience" of Asian Indian (AI)-White couples in interracial marriages. Ten highly educated AI-White professional couples were individually interviewed about their subjective experience of being in an interracial marriage, the challenges and strengths of this marriage, and the potential role of culture in their marriages. Data were analyzed using the Consensual Qualitative Research methodology. Results indicated that the couples' marital experiences were influenced by a complex intersection of ecosystemic factors with significant psychological impacts. These findings highlight shortcomings in drawing simplistic conclusions regarding the success or failure of an interracial marriage and have important implications for theory, research, and clinical practice. 2011 © FPI, Inc.

  19. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques...... in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were...

  20. Anaerobic oxidation of methane coupled to thiosulfate reduction in a biotrickling filter.

    Science.gov (United States)

    Cassarini, Chiara; Rene, Eldon R; Bhattarai, Susma; Esposito, Giovanni; Lens, Piet N L

    2017-09-01

    Microorganisms from an anaerobic methane oxidizing sediment were enriched with methane gas as the substrate in a biotrickling filter (BTF) using thiosulfate as electron acceptor for 213days. Thiosulfate disproportionation to sulfate and sulfide were the dominating sulfur conversion process in the BTF and the sulfide production rate was 0.5mmoll -1 day -1 . A specific group of sulfate reducing bacteria (SRB), belonging to the Desulforsarcina/Desulfococcus group, was enriched in the BTF. The BTF biomass showed maximum sulfate reduction rate (0.38mmoll -1 day -1 ) with methane as sole electron donor, measured in the absence of thiosulfate in the BTF. Therefore, a BTF fed with thiosulfate as electron acceptor can be used to enrich SRB of the DSS group and activate the inoculum for anaerobic oxidation of methane coupled to sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stannic Oxide-Titanium Dioxide Coupled Semiconductor Photocatalyst Loaded with Polyaniline for Enhanced Photocatalytic Oxidation of 1-Octene

    Directory of Open Access Journals (Sweden)

    Hadi Nur

    2007-01-01

    Full Text Available Stannic oxide-titanium dioxide (SnO2–TiO2 coupled semiconductor photocatalyst loaded with polyaniline (PANI, a conducting polymer, possesses a high photocatalytic activity in oxidation of 1-octene to 1,2-epoxyoctane with aqueous hydrogen peroxide. The photocatalyst was prepared by impregnation of SnO2 and followed by attachment of PANI onto a TiO2 powder to give sample PANI-SnO2–TiO2. The electrical conductivity of the system becomes high in the presence of PANI. Enhanced photocatalytic activity was observed in the case of PANI-SnO2–TiO2 compared to PANI-TiO2, SnO2–TiO2, and TiO2. A higher photocatalytic activity in the oxidation of 1-octene on PANI-SnO2–TiO2 than SnO2–TiO2, PANI-TiO2, and TiO2 can be considered as an evidence of enhanced charge separation of PANI-SnO2–TiO2 photocatalyst as confirmed by photoluminescence spectroscopy. It suggests that photoinjected electrons are tunneled from TiO2 to SnO2 and then to PANI in order to allow wider separation of excited carriers.

  2. Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode.

    Science.gov (United States)

    Davids, Paul S; Jarecki, Robert L; Starbuck, Andrew; Burckel, D Bruce; Kadlec, Emil A; Ribaudo, Troy; Shaner, Eric A; Peters, David W

    2015-12-01

    Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated. Scaling to the infrared or optical part of the spectrum requires ultrafast rectification that can only be obtained by direct tunnelling. Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement. Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region. Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxide-semiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband blackbody and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mA W(-1) cm(-2) at -0.1 V.

  3. Interactions of hydrogen isotopes and oxides with metal tubes

    International Nuclear Information System (INIS)

    Longhurst, G. R.; Cleaver, J.

    2008-01-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  4. Interactions of hydrogen isotopes and oxides with metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G. R. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Cleaver, J. [Idaho State Univ., 921 South 8th Avenue, Pocatello, ID 83201 (United States)

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  5. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    International Nuclear Information System (INIS)

    Longhurst, Glen R.

    2008-01-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results

  6. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  7. One-pot synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines using supported gold and base as catalysts

    DEFF Research Database (Denmark)

    Kegnæs, Søren; Mielby, Jerrik Jørgen; Mentzel, Uffe Vie

    2012-01-01

    Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol.......Synthesis of amides by aerobic oxidative coupling of alcohols or aldehydes with amines via intermediate formation of methyl esters is highly efficient and selective when using a catalytic system comprised of supported gold nanoparticles and added base in methanol....

  8. Mass Spectrometry Coupled Experiments and Protein Structure Modeling Methods

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2013-10-01

    Full Text Available With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.

  9. Critical experiments on low-enriched uranium oxide system with H/U=1.25

    International Nuclear Information System (INIS)

    Oh, I.; Rothe, R.E.; Tuck, G.

    1982-01-01

    Fifteen (15) critical experiments were performed on a horizontal split table machine using 4.48%-enriched sup(235)U uranium oxide(U 3 O 8 ). The oxide was compacted to a density of 4.68g/cm 3 and placed in 152 mm cubical aluminum cans. Water was added to achive an H/U of 1.25. Various arrays of oxide cans were distributed on each half of the split table, and the separation between halves reduced until criticality occurred. The critical table separation varied from 3.59 mm to 18.40 mm. Twelve (12) experiments required the addition of a high-enriched(-93 %sup(235)U) metal or solution driver to achieve criticality. These experiments were performed in a plastic, concrete, or thin steel reflector. Three additional experiments in the plastic reflector contained either 9.3-mm- or 24.3-mm-thick plastic moderator material between the oxide cans and did not require a driver to achieve criticality. Critical uranium driver masses ranged from 9.999 kg to 14.000 kg (solution driver), and from 25.378 kg to 29.278 kg (metal driver) for 5X5X5 arrays of uranium oxide cans. Always, one or four of these 125 cans had to be removed to make room for the drivers. Therefore, the uranium oxide masses used were 1823.8 kg and 1863.5 kg. For the moderated experiments, the uranium oxide mass ranged between 574.4 kg and 1210.0 kg. (Author)

  10. Development of evaluation method on flow-induced vibration and corrosion of components in two-phase flow by coupled analysis. 5. Evaluation of wall thinning rate with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi

    2008-01-01

    Wall thinning rates due to FAC were calculated with the coupled model of static electrochemical analysis and dynamic double oxide layer analysis at the identified danger zone. Anodic and cathodic current densities and ECPs were calculated with the static electrochemistry model and ferrous ion release rate determined by the anodic current density was used as input for the dynamic double oxide layer model. Thickness of oxide film and its characteristics determined by the dynamic double oxide layer model were used for the electrochemistry model to determine the resistances of cathodic current from the bulk to the surface and anodic current from the surface to the bulk. Two models were coupled to determine local corrosion rate and ECP for various corrosive conditions. The calculated results of the coupled models had good agreement with the measured ones. (author)

  11. Spatial coupling in heterogeneous catalysis

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1995-11-01

    Spatial coupling mechanisms are studied in the heterogeneous catalytic oxidation of carbon monoxide over platinum at atmospheric pressure under oscillatory conditions. Experiments are conducted in a continuous flow reactor, and the reaction rate is monitored using both infrared imaging and thermocouples. The catalysts are in the form of platinum annular thin films on washer-shaped quartz substrates, and they provide highly repeatable oscillatory behavior. Oscillations are typically spatially synchronized with the entire catalyst ``flashing'' on and off uniformly. Spatial coupling is investigated by introducing various barriers which split the annular ring in half. Infrared images show that coupling through the gas phase dominates coupling via the diffusion of CO on the surface or heat diffusion through the substrate. The introduction of a localized heat perturbation to the catalyst surface does not induce a transition in the reaction rate. Thus, it is likely that the primary mode of communication is through the gas-phase diffusion of reactants.

  12. Antenna-coupled TES bolometers for the SPIDER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.L. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States)]. E-mail: clkuo@astro.caltech.edu; Ade, P. [University of Wales, Cardiff, 5 The Parade, Cardiff, CF24 3YB, Wales (United Kingdom); Bock, J.J. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Day, P. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Goldin, A.; Golwala, S.; Hristov, V.; Jones, W.C.; Lange, A.E.; Rossinot, P.; Vayonakis, A.; Wang, G. [California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States); Halpern, M. [University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4 (Canada); Hilton, G.; Irwin, K. [National Institute of Standards and Technology, 325 Broadway, Boulder, CO (United States); Holmes, W.; Kenyon, M.; LeDuc, H.G. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); MacTavish, C. [University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7 (Canada); Montroy, T.; Ruhl, J. [Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Netterfield, C.B. [University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7 (Canada); Yun, M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[University of Pittsburgh, 348 Benedum Engineering Hall, Pittsburgh, PA 15261 (United States); Zmuidzinas, J. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)]|[California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125 (United States)

    2006-04-15

    SPIDER is a proposed balloon-borne experiment designed to search for the imprints of gravity waves on the polarization of the cosmic microwave background radiation. The required wide frequency coverage, large number of sensitive detectors, and the stringent power constraints on a balloon are made possible by antenna-coupled TES bolometers. Several prototype devices have been fabricated and optically characterized. Their spectral and angular responses agree well with the theoretical expectations.

  13. Modell experiments to determine the effect of inhibitive oxide layers on metals against hydrogen permeation

    International Nuclear Information System (INIS)

    Zink, U.

    1983-11-01

    The coupling of H 2 -permeation and corrosion has been examined with the high-temperature alloys Incoloy 800 and Incoloy 802. Permeationsrates as well as corrosionsrates have been measured simultanously under H 2 O-H 2 atmospheres in the test-facility HD-PERM. Test parameters have been temperature and oxidationpotential. Parabolic laws for the growth of the oxide scales have been identified and are considered to be highly important for the efficiency of a permeation barrier. A comparison between the temperature dependencies of corrosionsrates and H 2 -permeationsrates has revealed that permeation and corrosion are coupled only in so far that the permeation barrier is formed by the corrosion reaction. The corrosion data (parabolic rate constant, activation energy) of the oxide scales have given clear indications for the existence of a Cr 2 O 3 -layer, which is considered to be responsible for efficient oxide permeation barriers. (orig.) [de

  14. Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant

    International Nuclear Information System (INIS)

    Cinti, Giovanni; Frattini, Domenico; Jannelli, Elio; Desideri, Umberto; Bidini, Gianni

    2017-01-01

    Highlights: • An innovative NH 3 production plant was designed. • CO 2 emissions and energy consumption are studied in three different designs. • High temperature electrolysis allows to achieve high efficiency and heat recovery. • The coupling permits storage of electricity into a liquid carbon free chemical. - Abstract: Ammonia is one of the most produced chemicals worldwide and is currently synthesized using nitrogen separated from air and hydrogen from natural gas reforming with consequent high consumption of fossil fuel and high emission of CO 2 . A renewable path for ammonia production is desirable considering the potential development of ammonia as energy carrier. This study reports design and analysis of an innovative system for the production of green ammonia using electricity from renewable energy sources. This concept couples Solid Oxide Electrolysis (SOE), for the production of hydrogen, with an improved Haber Bosch Reactor (HBR), for ammonia synthesis. An air separator is also introduced to supply pure nitrogen. SOE operates with extremely high efficiency recovering high temperature heat from the Haber-Bosch reactor. Aspen was used to develop a model to study the performance of the plant. Both the SOE and the HBR operate at 650 °C. Ammonia production with zero emission of CO 2 can be obtained with a reduction of 40% of power input compared to equivalent plants.

  15. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    Science.gov (United States)

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Iron-Coupled Anaerobic Oxidation of Methane Performed by a Mixed Bacterial-Archaeal Community Based on Poorly Reactive Minerals.

    Science.gov (United States)

    Bar-Or, Itay; Elvert, Marcus; Eckert, Werner; Kushmaro, Ariel; Vigderovich, Hanni; Zhu, Qingzeng; Ben-Dov, Eitan; Sivan, Orit

    2017-11-07

    Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13 C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13 C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13 C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13 C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.

  17. Determination of Oxidized Phosphatidylcholines by Hydrophilic Interaction Liquid Chromatography Coupled to Fourier Transform Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pia Sala

    2015-04-01

    Full Text Available A novel liquid chromatography-mass spectrometry (LC-MS approach for analysis of oxidized phosphatidylcholines by an Orbitrap Fourier Transform mass spectrometer in positive electrospray ionization (ESI coupled to hydrophilic interaction liquid chromatography (HILIC was developed. This method depends on three selectivity criteria for separation and identification: retention time, exact mass at a resolution of 100,000 and collision induced dissociation (CID fragment spectra in a linear ion trap. The process of chromatography development showed the best separation properties with a silica-based Kinetex column. This type of chromatography was able to separate all major lipid classes expected in mammalian samples, yielding increased sensitivity of oxidized phosphatidylcholines over reversed phase chromatography. Identification of molecular species was achieved by exact mass on intact molecular ions and CID tandem mass spectra containing characteristic fragments. Due to a lack of commercially available standards, method development was performed with copper induced oxidation products of palmitoyl-arachidonoyl-phosphatidylcholine, which resulted in a plethora of lipid species oxidized at the arachidonoyl moiety. Validation of the method was done with copper oxidized human low-density lipoprotein (LDL prepared by ultracentrifugation. In these LDL samples we could identify 46 oxidized molecular phosphatidylcholine species out of 99 possible candidates.

  18. HFSS Simulation on Cavity Coupling for Axion Detecting Experiment

    CERN Document Server

    Yeo, Beomki

    2015-01-01

    In the resonant cavity experiment, it is vital maximize signal power at detector with the minimized reflection from source. Return loss is minimized when the impedance of source and cavity are matched to each other and this is called impedance matching. Establishing tunable antenna on source is required to get a impedance matching. Geometry and position of antenna is varied depending on the electromagnetic eld of cavity. This research is dedicated to simulation to nd such a proper design of coupling antenna, especially for axion dark matter detecting experiment. HFSS solver was used for the simulation.

  19. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides.

    Science.gov (United States)

    You, Qing; Wang, Fei; Wu, Chaoting; Shi, Tianchao; Min, Dewen; Chen, Huajun; Zhang, Wu

    2015-06-28

    Cu(OAc)2 was found to be an efficient catalyst for dehydrogenative synthesis of 1,3,5-triazine derivatives via oxidative coupling reaction of amidine hydrochlorides and alcohols in air. Both aromatic and aliphatic alcohols can be involved in the reaction and thirty-three products were obtained with good to excellent yields. Moreover, the use of a ligand, strong base and organic oxidant is unnecessary.

  20. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    Science.gov (United States)

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  1. Study of the removal of cesium from aqueous solutions by graphene oxide

    International Nuclear Information System (INIS)

    Bueno, Vanessa N.; Rodrigues, Debora F.; Vitta, Patricia B. Di

    2013-01-01

    Graphene oxide, used in this work, was synthesized from the oxidation of graphite by Hummer method. The experiments were performed in batch and analyzed for the following parameters: contact time, pH, cesium ion concentration in aqueous solution and removing capacity of the graphene oxide. After the experiments the samples were vacuum filtered and the remaining cesium in solution was quantified by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The equilibrium was reached after 60 minutes of contact in neutral solution. The percentage of removal was around 80%

  2. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration.

    Science.gov (United States)

    Lourenço, Cátia F; Ledo, Ana; Barbosa, Rui M; Laranjinha, João

    2017-07-01

    The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O 2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide ( • NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which • NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of • NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which • NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in

  3. Spousal recovery support, recovery experiences, and life satisfaction crossover among dual-earner couples.

    Science.gov (United States)

    Park, YoungAh; Fritz, Charlotte

    2015-03-01

    Research has indicated the importance of recovery from work stress for employee well-being and work engagement. However, very little is known about the specific factors that may support or hinder recovery in the context of dual-earner couples. This study proposes spousal recovery support as a potential resource that dual-earner couples can draw on to enhance their recovery experiences and well-being. It was hypothesized that spousal recovery support would be related to the recipient spouse's life satisfaction via his or her own recovery experiences (i.e., psychological detachment, relaxation, and mastery experiences). The study further investigated the crossover of life satisfaction between working spouses as a potential outcome of recovery processes. Data from 318 full-time employed married couples in South Korea were analyzed using structural equation modeling. Results showed that spousal recovery support was positively related to all 3 recovery experiences of the recipient spouse. Moreover, this recovery support was related to the recipient spouse's life satisfaction via relaxation and mastery experiences. Unexpectedly, psychological detachment was negatively related to life satisfaction, possibly indicating a suppression effect. Life satisfaction crossed over between working spouses. No gender differences were found in the hypothesized paths. Based on these findings, theoretical and practical implications are discussed, and future research directions are presented. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  4. Control of Sulfidogenesis Through Bio-oxidation of H2S Coupled to (per)chlorate Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, Patrick [Univ. of California, Berkeley, CA (United States); Engelbrektson, Anna [Univ. of California, Berkeley, CA (United States); Hubbard, Christopher G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Metlagel, Zoltan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Csencsits, Roseann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Auer, Manfred [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thieme, Jurgen [Brookhaven National Lab. (BNL), Upton, NY (United States); Northrup, Paul [Brookhaven National Lab. (BNL), Upton, NY (United States); Coates, John D. [Univ. of California, Berkeley, CA (United States)

    2014-04-04

    Here, we investigate H2S attenuation by dissimilatory perchlorate-reducing bacteria (DPRB). All DPRB tested oxidized H2S coupled to (per)chlorate reduction without sustaining growth. H2S was preferentially utilized over organic electron donors resulting in an enriched (34S)-elemental sulfur product. Electron microscopy revealed elemental sulfur production in the cytoplasm and on the cell surface of the DPRB Azospira suillum. We also propose a novel hybrid enzymatic-abiotic mechanism for H2S oxidation similar to that recently proposed for nitrate-dependent Fe(II) oxidation. The results of this study have implications for the control of biosouring and biocorrosion in a range of industrial environments.

  5. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-23

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine. The duty cycle and the pulse repetition rate of the laser were optimized for increased tuning range, high chirp rate, and small line width to achieve effective laser-cavity coupling. This enabled spectrally resolved CO line-shape measurements at high pressures (P ~10 bar). A gain factor of 133 and a time resolution of 10 μs were demonstrated. CO concentration-time profiles during the oxidation of highly dilute n-octane/air mixtures were recorded, illustrating new opportunities in RCM experiments for chemical kinetics.

  6. Li-doped MgO as catalysts for oxidative coupling of methane: A positron annihilation study

    Science.gov (United States)

    Dai, G. H.; Yan, Q. J.; Wang, Y.; Liu, Q. S.

    1991-08-01

    Magnesium oxides intentionally doped with lithium (with a maximum Li content of 40 tool%) for use as catalysts for oxidative coupling of methane were characterized by means of positron annihilation. The positron lifetime spectra, which could be reasonably well interpreted within the framework of the well-known trapping model, depend on the amount of Li doping of the MgO suggesting that positrons are trapped at dispersed small Li 2CO 3 precipitates. Very similar dependencies on lithium doping of the C 2 selectivity and the positron trapping rate ϰ imply an intimate relationship between the concentration of [Li] 0-centers (also referred to as [Li +O -] centers) and the selective activity of Li/MgO during catalytic reactions.

  7. High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.

    Science.gov (United States)

    Suarez-Zuluaga, Diego A; Weijma, Jan; Timmers, Peer H A; Buisman, Cees J N

    2015-03-01

    Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.

  8. Design of a visible light driven photo-electrochemical/electro-Fenton coupling oxidation system for wastewater treatment

    International Nuclear Information System (INIS)

    Ding, Xing; Ai, Zhihui; Zhang, Lizhi

    2012-01-01

    Highlights: ► Coupling PEC and EF oxidation significantly improves pollutant degradation efficiency. ► The degradation of the PEC/EF system was increased by 154%. ► The instantaneous current efficiency of the PEC/EF system was increased by 26%. - Abstract: In this study, we report on a photo-electrochemical/electro-Fenton oxidation (PEC/EF) system by coupling visible light driven photo-electrochemical oxidation (PEC) and electro-Fenton oxidation (EF) in an undivided cell. Bi 2 WO 6 nanoplates deposited on FTO glass (Bi 2 WO 6 /FTO) and Fe-Fe 2 O 3 core–shell nanowires supported on activated carbon fiber (Fe-Fe 2 O 3 /ACF) were used as the anode and the cathode in the PEC/EF system, respectively. This novel PEC/EF system showed much higher activity than the single PEC and EF systems on degradation of rhodamine B in aqueous solution at natural pH. Moreover, the degradation and the instantaneous current efficiencies of the PEC/EF system were increased by 154% and 26% in comparison with the sum of those of single PEC and EF systems, respectively. These significant enhancements could be attributed to the synergetic effect from better separation of photo-generated carriers in the photo-anode and the transfer of photo-electrons to the oxygen diffusion cathode to generate more electro-generated H 2 O 2 and hydroxyl radicals on the Fenton cathode. The better separation of photo-generated carriers contribute more to the overall degradation enhancement than the photo-electrons generated H 2 O 2 and the subsequent Fenton reaction on the cathode during the PEC/EF process.

  9. Sensitivity experiments with a one-dimensional coupled plume - iceflow model

    Science.gov (United States)

    Beckmann, Johanna; Perette, Mahé; Alexander, David; Calov, Reinhard; Ganopolski, Andrey

    2016-04-01

    Over the last few decades Greenland Ice sheet mass balance has become increasingly negative, caused by enhanced surface melting and speedup of the marine-terminating outlet glaciers at the ice sheet margins. Glaciers speedup has been related, among other factors, to enhanced submarine melting, which in turn is caused by warming of the surrounding ocean and less obviously, by increased subglacial discharge. While ice-ocean processes potentially play an important role in recent and future mass balance changes of the Greenland Ice Sheet, their physical understanding remains poorly understood. In this work we performed numerical experiments with a one-dimensional plume model coupled to a one-dimensional iceflow model. First we investigated the sensitivity of submarine melt rate to changes in ocean properties (ocean temperature and salinity), to the amount of subglacial discharge and to the glacier's tongue geometry itself. A second set of experiments investigates the response of the coupled model, i.e. the dynamical response of the outlet glacier to altered submarine melt, which results in new glacier geometry and updated melt rates.

  10. Preliminary optimization experiments of coupled liquid hydrogen moderator for KENS-II

    International Nuclear Information System (INIS)

    Watanabe, N.; Kiyanagi, Y.; Inoue, K.; Furusaka, M.; Ikeda, S.; Arai, M.; Iwasa, H.

    1989-01-01

    As a preliminary optimization experiment on the cold-neutron source for KENS-II, energy and time distributions of cold neutrons emanating from coupled liquid-hydrogen moderators with and without a premoderator in a graphite reflector were measured and compared with those from a decoupled liquid-hydrogen moderator. The results showed that the energy spectra from the coupled liquid-hydrogen moderators are almost the same as those from a decoupled one. Relative gain of the former to the latter is fairly high, more than 5, and further increases with increasing wavelength. The broadening of the neutron pulse width in coupled moderators at the cold-neutron region is not so significant and only 1.5 times compared to the solid methane moderator presently operated at KENS-II. 2 refs., 12 figs., 1 tab

  11. Practical Synthesis of Amides via Copper/ABNO-Catalyzed Aerobic Oxidative Coupling of Alcohols and Amines.

    Science.gov (United States)

    Zultanski, Susan L; Zhao, Jingyi; Stahl, Shannon S

    2016-05-25

    A modular Cu/ABNO catalyst system has been identified that enables efficient aerobic oxidative coupling of alcohols and amines to amides. All four permutations of benzylic/aliphatic alcohols and primary/secondary amines are viable in this reaction, enabling broad access to secondary and tertiary amides. The reactions exhibit excellent functional group compatibility and are complete within 30 min-3 h at rt. All components of the catalyst system are commercially available.

  12. Unified biomimetic assembly of voacalgine A and bipleiophylline via divergent oxidative couplings

    Science.gov (United States)

    Lachkar, David; Denizot, Natacha; Bernadat, Guillaume; Ahamada, Kadiria; Beniddir, Mehdi A.; Dumontet, Vincent; Gallard, Jean-François; Guillot, Régis; Leblanc, Karine; N'nang, Elvis Otogo; Turpin, Victor; Kouklovsky, Cyrille; Poupon, Erwan; Evanno, Laurent; Vincent, Guillaume

    2017-08-01

    Bipleiophylline is a highly complex monoterpene indole alkaloid composed of two pleiocarpamine units anchored on an aromatic spacer platform. The synthesis of bipleiophylline is considered as a mountain to climb by the organic chemistry community. Here, a unified oxidative coupling protocol between indole derivatives and 2,3-dihydroxybenzoic acid, mediated by silver oxide, has been developed to produce the core of bipleiophylline. This method also allows the independent preparation of benzofuro[2,3-b]indolenine and isochromano[3,4-b]indolenine scaffolds, depending only on the nature of the aromatic platform used. The procedure has been applied to simple indole derivatives and to more challenging monoterpene indole alkaloids, thereby furnishing natural-product-like structures. The use of scarce pleiocarpamine as the starting indole allows the first syntheses of bipleiophylline and of its biosynthetic precursor, voacalgine A. The structure of the latter has been reassigned in the course of our investigations by 2D NMR and displays an isochromano[3,4-b]indolenine motif instead of a benzofuro[2,3-b]indolenine.

  13. Self-assembly of a superparamagnetic raspberry-like silica/iron oxide nanocomposite using epoxy-amine coupling chemistry.

    Science.gov (United States)

    Cano, Manuel; de la Cueva-Méndez, Guillermo

    2015-02-28

    The fabrication of colloidal nanocomposites would benefit from controlled hetero-assembly of ready-made particles through covalent bonding. Here we used epoxy-amine coupling chemistry to promote the self-assembly of superparamagnetic raspberry-like nanocomposites. This adaptable method induced the covalent attachment of iron oxide nanoparticles sparsely coated with amine groups onto epoxylated silica cores in the absence of other reactants.

  14. UK experience on fuel and cladding interaction in oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Batey, W [Dounreay Experimental Reactor Establishment, Thurso, Caithness (United Kingdom); Findlay, J R [AERE, Harwell, Didcot, Oxon (United Kingdom)

    1977-04-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed.

  15. UK experience on fuel and cladding interaction in oxide fuels

    International Nuclear Information System (INIS)

    Batey, W.; Findlay, J.R.

    1977-01-01

    The occurrence of fuel cladding interactions in fast reactor fuels has been observed in UK irradiations over a period of years. Chemical incompatibility between fuel and clad represents a potential source of failure and has, on this account, been studied using a variety of techniques. The principal fuel of interest to the UK for fast reactor application is mixed uranium plutonium oxide clad in stainless steel and it is in this field that the majority of work has been concentrated. Some consideration has been given to carbide fuels, because of their application as an advanced fuel. This experience is described in the accompanying paper. Several complementary initiatives have been followed to investigate the interactions in oxide fuel. The principal source of experimental information is from the experimental fuel irradiation programme in the Dounreay Fast Reactor (DFR). Supporting information has been obtained from irradiation programmes in Materials Testing Reactors (MTR). Conditions approaching those in a fast reactor are obtained and the effects of specific variables have been examined in specifically designed experiments. Out-of-reactor experiments have been used to determine the limits of fuel and cladding compatibility and also to give indications of corrosion The observations from all experiments have been examined in the light of thermo-dynamic predictions of fuel behaviour to assess the relative significance of various observations and operating conditions. An experimental programme to control and limit the interactions in oxide fuel is being followed

  16. Optical and electrical experiments at some transition-metal oxide foil-electrolyte interfaces

    International Nuclear Information System (INIS)

    Sari, S.O.; Ahlgren, W.L.

    1977-01-01

    Metal-oxide layers formed from transition-metal foils oxidized by heating in air have been examined for their photoelectrolytic response. The metals examined are Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W, and Pt. Weak photoeffects are observed for oxide layers of all of these metals. Sizable light-dependent oxygen gas evolution rates are found in Ti and also in W oxides. The spectral dependence of the oxygen response in these compounds is investigated, and interpretation is given of these experiments

  17. Tyrosine oxidation in heme oxygenase: examination of long-range proton-coupled electron transfer.

    Science.gov (United States)

    Smirnov, Valeriy V; Roth, Justine P

    2014-10-01

    Heme oxygenase is responsible for the degradation of a histidine-ligated ferric protoporphyrin IX (Por) to biliverdin, CO, and the free ferrous ion. Described here are studies of tyrosyl radical formation reactions that occur after oxidizing Fe(III)(Por) to Fe(IV)=O(Por(·+)) in human heme oxygenase isoform-1 (hHO-1) and the structurally homologous protein from Corynebacterium diphtheriae (cdHO). Site-directed mutagenesis on hHO-1 probes the reduction of Fe(IV)=O(Por(·+)) by tyrosine residues within 11 Å of the prosthetic group. In hHO-1, Y58· is implicated as the most likely site of oxidation, based on the pH and pD dependent kinetics. The absence of solvent deuterium isotope effects in basic solutions of hHO-1 and cdHO contrasts with the behavior of these proteins in the acidic solution, suggesting that long-range proton-coupled electron transfer predominates over electron transfer.

  18. Measurement of the surface charge accumulation using anodic aluminum oxide(AAO) structure in an inductively coupled plasma

    Science.gov (United States)

    Park, Ji-Hwan; Oh, Seung-Ju; Lee, Hyo-Chang; Kim, Yu-Sin; Kim, Young-Cheol; Kim, June Young; Ha, Chang-Seoung; Kwon, Soon-Ho; Lee, Jung-Joong; Chung, Chin-Wook

    2014-10-01

    As the critical dimension of the nano-device shrinks, an undesired etch profile occurs during plasma etch process. One of the reasons is the local electric field due to the surface charge accumulation. To demonstrate the surface charge accumulation, an anodic aluminum oxide (AAO) membrane which has high aspect ratio is used. The potential difference between top electrode and bottom electrode in an anodic aluminum oxide contact structure is measured during inductively coupled plasma exposure. The voltage difference is changed with external discharge conditions, such as gas pressure, input power, and gas species and the result is analyzed with the measured plasma parameters.

  19. ICRH coupling experiment in Big D

    International Nuclear Information System (INIS)

    Hoffman, D.J.; Baity, F.W.; Owens, T.L.; Jaeger, E.F.; Bryan, W.E.; Hammonds, C.J.

    1985-01-01

    A 10 MW, 40 to 80 MHz ICRH experiment has been proposed for Big D (at General Atomic). Compact loop antennas have been chosen to convey this power. In order to verify that the antenna will have sufficient loading, a prototype low-power antenna has been designed and will be installed in January 1986. The antenna is a cavity antenna that will operate from 30 to 80 MHz with a 50 Ohm match at R = 1 Ohm. The antenna can be moved from a position flush with the wall to flush with the limiter. By these means, we will establish the maximum acceptable gap from the coupler to the plasma. The electrical, mechanical, and thermal characteristics of this antenna system will be discussed. In addition to experimental exploration of coupling, we have investigated wave propagation and absorption in Big D by using a cold collisional plasma model in straight tokamak geometry with rotational transform. Although loading is dependent on the plasma position, both the reactive and real loads (10 to 20 and 1 to 2 Ohms) are comparable to other experiments. Loading and power deposition profiles as a function of frequency, density, and species mix will be presented. The report consists of viewgraphs of the presentation

  20. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minjae [Kunsan National Univ., Gunsan (Korea, Republic of); Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B. [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2014-07-15

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H{sub 2} and O{sub 2} gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

  1. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    International Nuclear Information System (INIS)

    Lee, Minjae; Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B.

    2014-01-01

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H 2 and O 2 gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance

  2. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  3. Effect of Group Cognitive Behavioral Couples Therapy on Couple Burnout and Divorce Tendency in Couples

    Directory of Open Access Journals (Sweden)

    M Mohammadi

    2017-02-01

    Full Text Available Background & aim: Couple burnout is one of the phenomena which involve many couples, it is among the main causes of emotional divorce, and without proper management and treatment, and it can lay the ground for formal divorce among couples. Cognitive behavioral couple therapy is one of the existing approaches in the couple therapy field, the efficiency of which has been established for resolving many marital problems. The present study was designed by the aim of investigating the effect of group cognitive behavioral couple therapy on couple burnout and divorce tendency in couples.   Methods: The present research was of applied research type. The research method was semi-empirical with a pretest-posttest with control group design. The research population included all the couples with marital conflict and problems who, after a recall announcement of the researcher, visited the counseling and psychological services center located in Gorgan city in 2014. By using the available sampling method, 20 couples were selected among the volunteer and qualified couples for the research, and they were assigned into experiment and control groups (10 couples per group by random assignment. In the present research, the Pines burnout questionnaire (1996 and divorce tendency scale of Rouswelt, Johnson, and Mouro (1986 were used for gathering the data. After taking the pretest, the group cognitive behavioral couple therapy based on the couple therapy model of Baucom  and colleagues (2008 was held in 10 2-hour weekly sessions for the experiment group couples, while the control group couples received no intervention. The data were analyzed through descriptive statistics method and multivariate covariance analysis (MANCOVA in SPSS v.20. Results: The multivariate covariance analysis results for couple burnout (F= 28.80 and divorce tendency (F= 51.25 suggested that there was a significant difference between the couples of experiment and control groups (P< 0

  4. Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

    Directory of Open Access Journals (Sweden)

    Carl J. Mallia

    2016-07-01

    Full Text Available A flow system to perform Chan–Lam coupling reactions of various amines and arylboronic acids has been realised employing molecular oxygen as an oxidant for the re-oxidation of the copper catalyst enabling a catalytic process. A tube-in-tube gas reactor has been used to simplify the delivery of the oxygen accelerating the optimisation phase and allowing easy access to elevated pressures. A small exemplification library of heteroaromatic products has been prepared and the process has been shown to be robust over extended reaction times.

  5. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation

    International Nuclear Information System (INIS)

    Villa, Ricardo D.; Trovo, Alam G.; Nogueira, Raquel F. Pupo

    2010-01-01

    In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p,p'-DDT (DDT) and p,p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments, Triton X-100 (TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT), 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC eff ). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu, Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation.

  6. Soil remediation using a coupled process: soil washing with surfactant followed by photo-Fenton oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Ricardo D., E-mail: ricardovilla@ufmt.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil); Trovo, Alam G., E-mail: alamtrovo@smail.ufsm.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil); Nogueira, Raquel F. Pupo, E-mail: nogueira@iq.unesp.br [UNESP - Sao Paulo State University, Institute of Chemistry of Araraquara, Department of Analytical Chemistry, P.O. Box 355, 14801-970 Araraquara, SP (Brazil)

    2010-02-15

    In the present work the use of a coupled process, soil washing and photo-Fenton oxidation, was investigated for remediation of a soil contaminated with p,p'-DDT (DDT) and p,p'-DDE (DDE), and a soil artificially contaminated with diesel. In the soil washing experiments, Triton X-100 (TX-100) aqueous solutions were used at different concentrations to obtain wastewaters with different compositions. Removal efficiencies of 66% (DDT), 80% (DDE) and 100% (diesel) were achieved for three sequential washings using a TX-100 solution strength equivalent to 12 times the effective critical micelle concentration of the surfactant (12 CMC{sub eff}). The wastewater obtained was then treated using a solar photo-Fenton process. After 6 h irradiation, 99, 95 and 100% degradation efficiencies were achieved for DDT, DDE and diesel, respectively. In all experiments, the concentration of dissolved organic carbon decreased by at least 95%, indicating that residual concentration of contaminants and/or TX-100 in the wastewater was very low. The co-extraction of metals was also evaluated. Among the metals analyzed (Pb, Cr, Ni, Cu, Cd, Mn and Co), only Cr and Mn were detected in the wastewater at concentrations above the maximum value permitted by current Brazilian legislation. The effective removal of contaminants from soil by the TX-100 washing process, together with the high degradation efficiency of the solar photo-Fenton process, suggests that this procedure could be a useful option for soil remediation.

  7. In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones

    Science.gov (United States)

    2016-02-11

    FINAL REPORT In Situ Bioremediation of 1,4-Dioxane by Methane Oxidizing Bacteria in Coupled Anaerobic-Aerobic Zones SERDP Project ER-2306...volatile organic compound (CVOCs), ethene and ethane in groundwater at Raritan Arsenal Area 18C after in situ bioremediation . 4 List of...aquifers, the bioremediation approach most commonly used for chlorinated solvents. The ability of methanotrophs to biodegrade 1,4-dioxane was

  8. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  9. Partial synchronization of relaxation oscillators with repulsive coupling in autocatalytic integrate-and-fire model and electrochemical experiments

    Science.gov (United States)

    Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.

    2018-04-01

    Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.

  10. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  12. Manufacturing Experience for Oxide Dispersion Strengthened Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Wendy D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doherty, Ann L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Montgomery, Robert O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Mark T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Webster, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-22

    This report documents the results of the development and the manufacturing experience gained at the Pacific Northwest National Laboratories (PNNL) while working with the oxide dispersion strengthened (ODS) materials MA 956, 14YWT, and 9YWT. The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. ODS materials have the potential to provide improved performance for the U-Mo concept.

  13. Exchange bias coupling in NiO/Ni bilayer tubular nanostructures synthetized by electrodeposition and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T., E-mail: work_tian@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, Z.W.; Xu, Y.H. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Y. [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Li, W.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Nie, Y.; Zhang, X. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Xiang, G., E-mail: gxiang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-05-01

    In this paper, we reported the synthesis of NiO/Ni bilayer nanotubes by electrodeposition and thermal oxidation using anodic aluminum oxide templates. The morphology, structure, chemical composition and magnetic properties, especially magnetic exchange bias induced by subsequent magnetic field cooling, in this one-dimensional antiferromagnetic/ferromagnetic hybrid system were investigated. It was found that the effect of the annealing temperature, which mainly dominated the thickness of the NiO layer, and the annealing time, which mainly dominated the grain size of the NiO, on the exchange bias field showed competitive relationship. The optimized exchange bias field was achieved by the combination of the shorter annealing time and higher annealing temperature. - Highlights: • NiO-Ni bilayer tubular nanotubes were fabricated by electrodeposition and thermal oxidation. • The exchange bias effect in NiO-Ni nanotubes was induced by magnetic field cooling. • The competitive effect of annealing temperature and annealing time on the exchange bias coupling was analyzed.

  14. The influence of starch oxidization and aluminate coupling agent on interfacial interaction, rheological behavior, mechanical and thermal properties of poly(propylene carbonate)/starch blends

    Science.gov (United States)

    Jiang, Guo; Zhang, Shui-Dong; Huang, Han-Xiong; The Key Laboratory of Polymer Processing Engineering of the Ministry of Education Team

    Poly(propylene carbonate) (PPC) is a kind of new biodegradable polymer that is synthesized by copolymerization of propylene oxide and carbon dioxide. In this work, PPC end-capped with maleic anhydride (PPCMA)/thermoplastic starch (TPS), PPCMA/thermoplastic oxidized starch (TPOS) and PPCMA/AL-TPOS (TPOS modified by aluminate coupling agent) blends were prepared by melt blending to improve its thermal and mechanical properties. FTIR results showed that there existed hydrogen-bonding interaction between PPCMA and starch. SEM observation revealed that the compatibility between PPCMA and TPOS was improved by the oxidation of starch. The enhanced interfacial interactions between PPCMA and TPOS led to a better performance of PPC blends such as storage modulus (G'), loss modulus (G''), complex viscosity (η*), tensile strength and thermal properties. Furthermore, the modification of TPOS by aluminate coupling agent (AL) facilitated the dispersion of oxidized starch in PPC matrix, and resulted in increasing the tensile strength and thermal stability. National Natural Science Foundation of China, National Science Fund of Guangdong Province.

  15. Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity

    Directory of Open Access Journals (Sweden)

    Gaia Tavoni

    2017-10-01

    Full Text Available Functional coupling networks are widely used to characterize collective patterns of activity in neural populations. Here, we ask whether functional couplings reflect the subtle changes, such as in physiological interactions, believed to take place during learning. We infer functional network models reproducing the spiking activity of simultaneously recorded neurons in prefrontal cortex (PFC of rats, during the performance of a cross-modal rule shift task (task epoch, and during preceding and following sleep epochs. A large-scale study of the 96 recorded sessions allows us to detect, in about 20% of sessions, effective plasticity between the sleep epochs. These coupling modifications are correlated with the coupling values in the task epoch, and are supported by a small subset of the recorded neurons, which we identify by means of an automatized procedure. These potentiated groups increase their coativation frequency in the spiking data between the two sleep epochs, and, hence, participate to putative experience-related cell assemblies. Study of the reactivation dynamics of the potentiated groups suggests a possible connection with behavioral learning. Reactivation is largely driven by hippocampal ripple events when the rule is not yet learned, and may be much more autonomous, and presumably sustained by the potentiated PFC network, when learning is consolidated. Cell assemblies coding for memories are widely believed to emerge through synaptic modification resulting from learning, yet their identification from activity is very arduous. We propose a functional-connectivity-based approach to identify experience-related cell assemblies from multielectrode recordings in vivo, and apply it to the prefrontal cortex activity of rats recorded during a task epoch and the preceding and following sleep epochs. We infer functional couplings between the recorded cells in each epoch. Comparisons of the functional coupling networks across the epochs allow us

  16. Kinetic Studies of Oxidative Coupling of Methane Reaction on Model Catalysts

    KAUST Repository

    Khan, Abdulaziz M.

    2016-04-26

    With the increasing production of natural gas as a result of the advancement in the technology, methane conversion to more valuable products has become a must. One of the most attractive processes which allow the utilization of the world’s most abundant hydrocarbon is the oxidative coupling. The main advantage of this process is the ability of converting methane into higher paraffins and olefins (primarily C2) in a direct way using a single reactor. Nevertheless, low C2+ yields have prevented the process to be commercialized despite the fact that great number of attempts to prepare catalysts were conducted so that it can be economically viable. Due to these limitations, understanding the mechanism and kinetics of the reaction can be utilized in improving the catalysts’ performance. The reaction involves the formation of methyl radicals that undergo gas-phase radical reactions. CH4 activation is believed to be done the surface oxygen species. However, recent studies showed that, in addition to the surface oxygen mediated pathway, an OH radical mediated pathway have a large contribution on the CH4 activation. The experiments of Li/MgO, Sr/La2O3 and NaWO4/SiO2 catalysts revealed variation of behavior in activity and selectivity. In addition, water effect analysis showed that Li/MgO deactivate at the presence of water due to sintering phenomena and the loss of active sites. On the other hand, negative effect on the C2 yield and CH4 conversion rate was observed with Sr/La2O3 with increasing the water partial pressure. Na2WO4/SiO2 showed a positive behavior with water in terms of CH4 conversion and C2 yield. In addition, the increment in CH4 conversion rate was found to be proportional with PO2 ¼ PH2O ½ which is consistent with the formation of OH radicals and the OH-mediated pathway. Experiments of using ring-dye laser, which is used to detect OH in combustion experiments, were tried in order to detect OH radicals in the gas-phase of the catalyst. Nevertheless

  17. Coupled heat transfer model and experiment study of semitransparent barrier materials in aerothermal environment

    Science.gov (United States)

    Wang, Da-Lin; Qi, Hong

    Semi-transparent materials (such as IR optical windows) are widely used for heat protection or transfer, temperature and image measurement, and safety in energy , space, military, and information technology applications. They are used, for instance, ceramic coatings for thermal barriers of spacecrafts or gas turbine blades, and thermal image observation under extreme or some dangerous environments. In this paper, the coupled conduction and radiation heat transfer model is established to describe temperature distribution of semitransparent thermal barrier medium within the aerothermal environment. In order to investigate this numerical model, one semi-transparent sample with black coating was considered, and photothermal properties were measured. At last, Finite Volume Method (FVM) was used to solve the coupled model, and the temperature responses from the sample surfaces were obtained. In addition, experiment study was also taken into account. In the present experiment, aerodynamic heat flux was simulated by one electrical heater, and two experiment cases were designed in terms of the duration of aerodynamic heating. One case is that the heater irradiates one surface of the sample continually until the other surface temperature up to constant, and the other case is that the heater works only 130 s. The surface temperature responses of these two cases were recorded. Finally, FVM model of the coupling conduction-radiation heat transfer was validated based on the experiment study with relative error less than 5%.

  18. The Experience of Chinese Couples Undergoing In Vitro Fertilization Treatment: Perception of the Treatment Process and Partner Support.

    Science.gov (United States)

    Ying, Li-Ying; Wu, Lai Har; Loke, Alice Yuen

    2015-01-01

    Couples undergoing In Vitro Fertilization (IVF) Treatment suffer as dyads from the stressful experience of the painful treatment and the fear that the IVF cycle will fail. They are likely to report that their marital relationship has become unstable due to the prolonged period of treatment. This is a qualitative study that was conducted to explore the experiences that Chinese couples have had with IVF treatment, especially their perceptions of the process and the support between couples. The interviews revealed that couples suffered from the process, experiencing physical and emotional pain, struggling with the urgency and inflexibility of bearing a child, and experiencing disturbances in their daily routines and work. The participants described how they endured the hardships as a couple and how it affected their relationship. The couples felt that sharing feelings and supporting each other contribute to psychological well-being and improves the marital relationship. They also identified some unfavorable aspects in their partner relationship. They were ambivalent about receiving social support from friends and family members. With the couples indicating that the support that they received from each other affected their experience during the treatment process, it is suggested that a supportive intervention that focuses on enhancing the partnership of the couples and dealing with their inflexibility on the issue of bearing a child might result in improvements in the psychological status and marital relationship of infertile couples undergoing IVF treatment.

  19. The Experience of Chinese Couples Undergoing In Vitro Fertilization Treatment: Perception of the Treatment Process and Partner Support.

    Directory of Open Access Journals (Sweden)

    Li-Ying Ying

    Full Text Available Couples undergoing In Vitro Fertilization (IVF Treatment suffer as dyads from the stressful experience of the painful treatment and the fear that the IVF cycle will fail. They are likely to report that their marital relationship has become unstable due to the prolonged period of treatment.This is a qualitative study that was conducted to explore the experiences that Chinese couples have had with IVF treatment, especially their perceptions of the process and the support between couples.The interviews revealed that couples suffered from the process, experiencing physical and emotional pain, struggling with the urgency and inflexibility of bearing a child, and experiencing disturbances in their daily routines and work. The participants described how they endured the hardships as a couple and how it affected their relationship. The couples felt that sharing feelings and supporting each other contribute to psychological well-being and improves the marital relationship. They also identified some unfavorable aspects in their partner relationship. They were ambivalent about receiving social support from friends and family members.With the couples indicating that the support that they received from each other affected their experience during the treatment process, it is suggested that a supportive intervention that focuses on enhancing the partnership of the couples and dealing with their inflexibility on the issue of bearing a child might result in improvements in the psychological status and marital relationship of infertile couples undergoing IVF treatment.

  20. Coupling between crystal structure and magnetism in transition-metal oxides

    Science.gov (United States)

    Barton, Phillip Thomas

    Transition-metal oxides exhibit a fascinating array of phenomena ranging from superconductivity to negative thermal expansion to catalysis. This dissertation focuses on magnetism, which is integral to engineering applications such as data storage, electric motors/generators, and transformers. The investigative approach follows structure-property relationships from materials science and draws on intuition from solid-state chemistry. The interplay between crystal structure and magnetic properties is studied experimentally in order to enhance the understanding of magnetostructural coupling mechanisms and provide insight into avenues for tuning behavior. A combination of diffraction and physical property measurements were used to study structural and magnetic phase transitions as a function of chemical composition, temperature, and magnetic field. The systems examined are of importance in Li-ion battery electrochemistry, condensed-matter physics, solid-state chemistry, and p-type transparent conducting oxides. The materials were prepared by solid-state reaction of powder reagents at high temperatures for periods lasting tens of hours. The first project discussed is of a solid solution between NiO, a correlated insulator, and LiNiO2, a layered battery cathode. Despite the deceptive structural and compositional simplicity of this system, a complete understanding of its complex magnetic properties has remained elusive. This study shows that nanoscale domains of chemical order form at intermediate compositions, creating interfaces between antiferromagnetism and ferrimagnetism that give rise to magnetic exchange bias. A simple model of the magnetism is presented along with a comprehensive phase diagram. The second set of investigations focus on the Ge-Co-O system where the spin-orbit coupling of Co(II) plays a significant role. GeCo2O 4 is reported to exhibit unusual magnetic behavior that arises from Ising spin in its spinel crystal structure. Studies by variable

  1. Plasmonic Coupling in Three-Dimensional Au Nanoparticle Assemblies Fabricated by Anodic Aluminum Oxide Templates

    Directory of Open Access Journals (Sweden)

    Ahrum Sohn

    2013-01-01

    Full Text Available We investigated optical properties of three-dimensional (3D assemblies of Au nanoparticles (NPs, which were fabricated by dewetting of thin Au layers on anodic aluminum oxides (AAO. The NP assembly had hexagonal array of repeated multiparticle structures, which consisted of six trimers on the AAO surface and one large NP in the AAO pore (pore-NP. We performed finite-difference time-domain simulation to explain the optical response of the NP assemblies and compared the calculation results with experimental data. Such complementary studies clearly revealed how the plasmonic coupling between the constituent NPs influenced the spectral response of our NP assemblies. In particular, comparison of the assemblies with and without pore-NPs suggested that strong plasmonic coupling between trimers and pore-NP significantly affected the spectra and the field distribution of the NP assemblies. Plasmonic multi-NP assemblies could provide us new platforms to realize novel optoelectronic devices.

  2. Potential coupling effects of ammonia-oxidizing and anaerobic ammonium-oxidizing bacteria on completely autotrophic nitrogen removal over nitrite biofilm formation induced by the second messenger cyclic diguanylate.

    Science.gov (United States)

    Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhao, Chuanqi; Yang, Fenglin; Wang, Dong

    2017-05-01

    The objective of this study was to investigate the influence of extracellular polymeric substance (EPS) on the coupling effects between ammonia-oxidizing bacteria (AOB) and anaerobic ammonium-oxidizing (anammox) bacteria for the completely autotrophic nitrogen removal over nitrite (CANON) biofilm formation in a moving bed biofilm reactor (MBBR). Analysis of the quantity of EPS and cyclic diguanylate (c-di-GMP) confirmed that the contents of polysaccharides and c-di-GMP were correlated in the AOB sludge, anammox sludge, and CANON biofilm. The anammox sludge secreted more EPS (especially polysaccharides) than AOB with a markedly higher c-di-GMP content, which could be used by the bacteria to regulate the synthesis of exopolysaccharides that are ultimately used as a fixation matrix, for the adhesion of biomass. Indeed, increased intracellular c-di-GMP concentrations in the anammox sludge enhanced the regulation of polysaccharides to promote the adhesion of AOB and formation of the CANON biofilm. Overall, the results of this study provide new comprehensive information regarding the coupling effects of AOB and anammox bacteria for the nitrogen removal process.

  3. Mixing of t2 g-eg orbitals in 4 d and 5 d transition metal oxides

    Science.gov (United States)

    Stamokostas, Georgios L.; Fiete, Gregory A.

    2018-02-01

    Using exact diagonalization, we study the spin-orbit coupling and interaction-induced mixing between t2 g and egd -orbital states in a cubic crystalline environment, as commonly occurs in transition metal oxides. We make a direct comparison with the widely used t2 g-only or eg-only models, depending on electronic filling. We consider all electron fillings of the d shell and compute the total magnetic moment, the spin, the occupancy of each orbital, and the effective spin-orbit coupling strength (renormalized through interaction effects) in terms of the bare interaction parameters, spin-orbit coupling, and crystal-field splitting, focusing on the parameter ranges relevant to 4 d and 5 d transition metal oxides. In various limits, we provide perturbative results consistent with our numerical calculations. We find that the t2 g-eg mixing can be large, with up to 20% occupation of orbitals that are nominally "empty," which has experimental implications for the interpretation of the branching ratio in experiments, and can impact the effective local moment Hamiltonian used to study magnetic phases and magnetic excitations in transition metal oxides. Our results can aid the theoretical interpretation of experiments on these materials, which often fall in a regime of intermediate coupling with respect to electron-electron interactions.

  4. Same-Sex Couples' Decisions and Experiences of Marriage in the Context of Minority Stress: Interviews From a Population-Based Longitudinal Study.

    Science.gov (United States)

    Rostosky, Sharon S; Riggle, Ellen D B; Rothblum, Esther D; Balsam, Kimberly F

    2016-08-01

    In the emerging context of marriage equality, it is important to explore the reasons for and experience of marriage for long-term same-sex couples, including the role of minority stress. In Wave 3 of the population-based, longitudinal CUPPLES Study we interviewed 21 long-term same-sex couples (14 female, 7 male) who resided in 12 different states and who were legally married. Couple members ranged in age from 37 to 84 and reported being together as a couple from 15 to 41 years. Seven couples lived in states that did not recognize their marriage at the time of the interview. Legal protection and social validation emerged as the two primary domains that captured couples' lived experiences of marriage. Minority stress experiences emerged in the narratives in the context of couples' long-term commitment, the availability of civil marriage, and couples' participation in activist efforts on behalf of marriage equality for themselves and others.

  5. Mechanistic investigation of the one-pot formation of amides by oxidative coupling of alcohols with amines in methanol

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Riisager, Anders; Fristrup, Peter

    2013-01-01

    The one-pot formation of amides by oxidative coupling of alcohols and amines via intermediate formation of methyl ester using supported gold and base as catalysts was studied using the Hammett methodology. Determining the relative reactivity of four different para-substituted benzyl alcohol deriv...... a theoretical Hammett plot that was in good agreement with the one obtained experimentally....

  6. A Novel Practical Synthesis of Phenanthrenes Using Iron(Ⅲ) Chloride Involved Intramolecular Oxidative Coupling at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    L(U),Mao-Yun; WANG,Kai-Liang; CAI,Fei; WANG,Hai-Ying; WANG,Qing-Min

    2008-01-01

    Iron(Ⅲ) chloride has been used to prepare the polymethoxy substituted phenanthrene derivatives via in-tramolecular oxidative coupling of (E or Z)-2,3-di(substituted phenyl)acrylate at room temperature in excellent yields. Mild reaction conditions and the use of inexpensive and nontoxic FeCI3 provide a novel practical and large-scaled viable route for the synthesis of the important phenanthrene rings.

  7. Simulation and experiment on the thermal performance of U-vertical ground coupled heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinguo; Chen, Zhihao; Zhao, Jun [Department of Thermal Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2006-10-15

    This paper presented both the numerical simulations and experiments on the thermal performance of U-vertical ground coupled heat exchanger (UGCHE). The variation of the ground temperature and heat balance of the system were analyzed and compared in different operation modes in the numerical simulation. Experiments on the operation performance of the ground-coupled heat pump (GCHP) with the UGCHE were carried out. It shows that the ground source can be used as the heat source/sink for GCHP systems to have higher efficiency in saving energy. To preserve the ground resource for the sustainable utilization as heat source/sink, the heat emitted to ground and heat extracted from ground should be balanced. (author)

  8. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    International Nuclear Information System (INIS)

    Richardson, R.A.; Egan, P.O.; Benjamin, R.D.

    1995-05-01

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N 2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  9. Statistical Analysis of Past Catalytic Data on Oxidative Methane Coupling for New Insights into the Composition of High-Performance Catalysts

    Czech Academy of Sciences Publication Activity Database

    Zavyalova, U.; Holeňa, Martin; Schlögl, R.; Baerns, M.

    2011-01-01

    Roč. 3, č. 12 (2011), s. 1935-1947 ISSN 1867-3880 Institutional research plan: CEZ:AV0Z10300504 Keywords : catalyst development * heterogeneous catalysis * methane * oxidative coupling * catalyst composition * statistical analysis Subject RIV: IN - Informatics, Computer Science Impact factor: 5.207, year: 2011

  10. Holey Reduced Graphene Oxide Coupled with an Mo2 N-Mo2 C Heterojunction for Efficient Hydrogen Evolution.

    Science.gov (United States)

    Yan, Haijing; Xie, Ying; Jiao, Yanqing; Wu, Aiping; Tian, Chungui; Zhang, Xiaomeng; Wang, Lei; Fu, Honggang

    2018-01-01

    An in situ catalytic etching strategy is developed to fabricate holey reduced graphene oxide along with simultaneous coupling with a small-sized Mo 2 N-Mo 2 C heterojunction (Mo 2 N-Mo 2 C/HGr). The method includes the first immobilization of H 3 PMo 12 O 40 (PMo 12 ) clusters on graphite oxide (GO), followed by calcination in air and NH 3 to form Mo 2 N-Mo 2 C/HGr. PMo 12 not only acts as the Mo heterojunction source, but also provides the Mo species that can in situ catalyze the decomposition of adjacent reduced GO to form HGr, while the released gas (CO) and introduced NH 3 simultaneously react with the Mo species to form an Mo 2 N-Mo 2 C heterojunction on HGr. The hybrid exhibits superior activity towards the hydrogen evolution reaction with low onset potentials of 11 mV (0.5 m H 2 SO 4 ) and 18 mV (1 m KOH) as well as remarkable stability. The activity in alkaline media is also superior to Pt/C at large current densities (>88 mA cm -2 ). The good activity of Mo 2 N-Mo 2 C/HGr is ascribed to its small size, the heterojunction of Mo 2 N-Mo 2 C, and the good charge/mass-transfer ability of HGr, as supported by a series of experiments and theoretical calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Coupled Inverse Fluidized Bed Bioreactor with Advanced Oxidation Processes for Treatment of Vinasse

    Directory of Open Access Journals (Sweden)

    Karla E. Campos Díaz

    2017-11-01

    Full Text Available Vinasse is the wastewater generated from ethanol distillation; it is characterized by high levels of organic and inorganic matter, high exit temperature, dissolved salts and low pH. In this work the treatment of undiluted vinasse was achieved using sequentially-coupled biological and advanced oxidation processes. The initial characterization of vinasse showed a high Chemical Oxygen Demand (COD, 32 kg m-3, high Total Organic Carbon (TOC, 24.5 kg m-3 and low pH (2.5. The first stage of the biological treatment of the vinasse was carried out in an inverse fluidized bed bioreactor with a microbial consortium using polypropylene as support material. The fluidized bed bioreactor was kept at a constant temperature (37 ± 1ºC and pH (6.0 ± 0.5 for 90 days. After the biological process, the vinasse was continuously fed to the photoreactor using a peristaltic pump 2.8 × 10-3 kg of FeSO4•7H2O were added to the vinasse and allowed to dissolve in the dark for five minutes; after this time, 15.3 m3 of hydrogen peroxide (H2O2 (30% w/w were added, and subsequently, the UV radiation was allowed to reach the photoreactor to treat the effluent for 3600 s at pH = 3. Results showed that the maximum organic matter removed using the biological process, measured as COD, was 80% after 90 days. Additionally, 88% of COD removal was achieved using the photo-assisted Fenton oxidation. The overall COD removal after the sequentially-coupled processes reached a value as low as 0.194 kg m-3, achieving over 99% of COD removal as well as complete TOC removal.

  12. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    Science.gov (United States)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  13. Bioinspired Syntheses of Dimeric Hydroxycinnamic Acids (Lignans and Hybrids, Using Phenol Oxidative Coupling as Key Reaction, and Medicinal Significance Thereof

    Directory of Open Access Journals (Sweden)

    George E. Magoulas

    2014-11-01

    Full Text Available Lignans are mainly dimers of 4-hydroxycinnamic acids (HCAs and reduced analogs thereof which are produced in Nature through phenol oxidative coupling (POC as the primary C-C or C-O bond-forming reaction under the action of the enzymes peroxidases and laccases. They present a large structural variety and particularly interesting biological activities, therefore, significant efforts has been devoted to the development of efficient methodologies for the synthesis of lignans isolated from natural sources, analogs and hybrids with other biologically interesting small molecules. We summarize in the present review those methods which mimic Nature for the assembly of the most common lignan skeleta by using either enzymes or one-electron inorganic oxidants to effect POC of HCAs and derivatives, such as esters and amides, or cross-POC of pairs of HCAs or HCAs with 4-hydrocycinnamyl alcohols. We, furthermore, provide outlines of mechanistic schemes accounting for the formation of the coupled products and, where applicable, indicate their potential application in medicine.

  14. Denial of service to same-sex and interracial couples: Evidence from a national survey experiment.

    Science.gov (United States)

    Powell, Brian; Schnabel, Landon; Apgar, Lauren

    2017-12-01

    Legislatures and courts are debating whether businesses can deny services to same-sex couples for religious reasons. Yet, little is known about public views on this issue. In a national survey experiment, Americans ( n = 2035) responded to an experimental vignette describing a gay or interracial couple refused service. Vignettes varied the reason for refusal (religion/nonreligious) and by business type (individual/corporation). Results confirm greater support of service refusal by the self-employed than by corporations and to gay couples than to interracial couples. However, religious reasons for refusal to gay couples elicit no more support than do nonreligious reasons. In the first national study to experimentally analyze views on service refusal to sexual minorities, we demonstrate that views vary by several factors but not by whether the refusal was for religious reasons.

  15. Beam-plasma coupling physics in support of active experiments

    Science.gov (United States)

    Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.

    2017-12-01

    The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.

  16. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    Science.gov (United States)

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38°C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Insights into organic carbon oxidation potential during fluvial transport from laboratory and field experiments

    Science.gov (United States)

    Scheingross, J. S.; Dellinger, M.; Eglinton, T. I.; Fuchs, M. C.; Golombek, N.; Hilton, R. G.; Hovius, N.; Lupker, M.; Repasch, M. N.; Sachse, D.; Turowski, J. M.; Vieth-Hillebrand, A.; Wittmann, H.

    2017-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, hydropshere, biosphere and geosphere can be a major control on atmospheric carbon dioxide concentrations. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion, transport, and burial of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing increasing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport, where OC is in continual motion within an aerated river, or during periods of temporary storage in river floodplains which may be anoxic. The unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to mechanistically link geochemical and geomorphic processes which are required to develop models capable of predicting OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this knowledge gap, we investigated OC oxidation in controlled laboratory experiments and a simplified field setting. We performed experiments in annular flumes that simulate fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km. Preliminary experiments exploring both rock-derived and biospheric OC sources show minimal OC oxidation during active river transport, consistent with the idea that the majority of OC loss occurs during transient floodplain storage. These results are also consistent with new field data collected in the Rio Bermejo, Argentina, a lowland river traversing 800 km with no tributary inputs, where aged floodplain deposits have 3 to 10 times lower OC concentrations compared to modern river sediments. Together our field data and experiments support the hypothesis that oxidation of OC occurs primarily during

  18. Comparative study of the Peach Bottom turbine trip experiment using two different coupled codes approaches

    International Nuclear Information System (INIS)

    Bambara, M.; Bousbia-Salah, A.; D'Auria, F.

    2005-01-01

    Full text of publication follows: In the last years a great concern about the neutron-3D/thermal-hydraulic codes coupling took place. Owing to the improved computational technology, 'best estimate' analyses are today a common tool to assess safety features, and they are necessary if an asymmetric behaviour in the core region exists, or if strong interactions between the core neutronics and reactor thermal-hydraulic occur. In order to validate the coupled codes performances, several international programmes were issued. Among these activities, the OECD/NEA BWR Turbine Trip (TT) was chosen for further sensitivity analyses. It consists of a turbine trip (TT) experiment carried out at the Peach Bottom 2 BWR. In this paper, the results of two different coupled codes systems are summarized and compared. The BWR TT simulations were carried out coupling the thermal-hydraulic system code RELAP5/mode 3.2 to the 3D neutron kinetics code Parcs/2.3, and also the system code ATHLET to the neutronics code QUABOX-CUBBOX. An exhaustive overview of the main features is given, and those aspects, which need further developments and experiences, are pointed out. (authors)

  19. Simulation with GOTHIC of experiments Oxidation of fuel in Air

    International Nuclear Information System (INIS)

    Martinez-Murillo Mendez, J. C.

    2012-01-01

    In the present work has been addressed for the first time la simulation with the GOTHIC code, experiments oxidation and ignition of SFP in phase 1. This work represents a solid starting point for analysis of specific degradation of fuel in the pools of our facilities.

  20. Insights into organic carbon oxidation potential during fluvial transport from controlled laboratory and natural field experiments

    Science.gov (United States)

    Scheingross, Joel S.; Dellinger, Mathieu; Golombek, Nina; Hilton, Robert G.; Hovius, Niels; Sachse, Dirk; Turowski, Jens M.; Vieth-Hillebrand, Andrea; Wittmann, Hella

    2017-04-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, biosphere and geosphere is thought to be a major control on atmospheric carbon dioxide (CO2) concentrations, and hence global climate. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion and transport of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering (France-Lanord and Derry, 1997; Bouchez et al., 2010). Despite field data showing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in both controlled laboratory experiments and a simplified field setting. We consider both rock-derived and biospheric OC. Our experiments simulated fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km in annular flumes while making time-series measurements of OC concentration in both the solid (POC) and dissolved (DOC) loads, as well as measurements of rhenium concentration, which serves as a proxy for the oxidation of rock-derived OC. These transport experiments were compared to static, control experiments where water and sediment in the same proportion were placed in still water. Initial results for transport of OC-rich soil show similar behavior between the transport and static

  1. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.

    2011-01-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s)and the SU(2) L coupling α 2 (s). I will report on my recent package alphaQED, which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the R had package by Harlander and Steinhauser, the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy.

  2. Electroweak effective couplings for future precision experiments

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Humboldt-Universitaet, Berlin

    2011-07-01

    The leading hadronic effects in electroweak theory derive from vacuum polarization which are non-perturbative hadronic contributions to the running of the gauge couplings, the electromagnetic α em (s) and the SU(2) L coupling α 2 (s). I report on my recent package alphaQED [1], which besides the effective fine structure constant α em (s) also allows for a fairly precise calculation of the SU(2) L gauge coupling α 2 (s). I will briefly review the role, future requirements and possibilities. Applied together with the Rhad package by Harlander and Steinhauser [2], the package allows to calculate all SM running couplings as well as running sin 2 Θ versions with state-of-the-art accuracy. (orig.)

  3. Ferromagnetic coupling strength and electron-doping effects in double perovskites

    International Nuclear Information System (INIS)

    Fontcuberta, J.; Rubi, D.; Frontera, C.; Garcia-Munoz, J.L.; Wojcik, M.; Jedryka, E.; Nadolski, S.; Izquierdo, M.; Avila, J.; Asensio, M.C.

    2005-01-01

    We review experiments and results on ferromagnetic and metallic A 2 FeMoO 6 double perovskites that made it possible to obtain a detailed understanding of the nature of the ferromagnetic coupling and paved the way for further enhancement of the Curie temperature. We show that appropriate chemical substitutions, combined with detailed structural, magnetotransport and spectroscopic data allow us to map quite a complete picture of the properties of these oxides

  4. Experiences Using Pre-Exposure Prophylaxis for Safer Conception Among HIV Serodiscordant Heterosexual Couples in the United States.

    Science.gov (United States)

    Bazzi, Angela R; Leech, Ashley A; Biancarelli, Dea L; Sullivan, Meg; Drainoni, Mari-Lynn

    2017-08-01

    Antiretroviral pre-exposure prophylaxis (PrEP) is a promising HIV prevention strategy for HIV serodiscordant couples (HIV-infected male, uninfected female) seeking safer conception. However, most research on PrEP for safer conception has focused on couples in sub-Saharan Africa; little is known about the perspectives or experiences of heterosexual couples in the United States. We conducted qualitative interviews with six couples (six women and five of their male partners) receiving PrEP for conception services at an urban safety net hospital in the US Northeast. In-depth interview guides explored couple relationships and contextual factors and attitudes, perceptions, and decision-making processes surrounding PrEP for safer conception. Thematic analyses focused on identifying the following emergent themes. We found that couple relationships were situated within broader social and cultural contexts of immigration, family, and community that shaped their experiences with HIV and serodiscordant relationship status. Despite strong partner support within relationships, HIV stigma and disapproval of serodiscordant relationships contributed to couples' feelings of social isolation and subsequent aspirations to have "normal" families. By enabling "natural" conception through condomless sex, PrEP for safer conception provided a sense of enhanced relationship intimacy. Couples called for increasing public awareness of PrEP through positive messaging as a way to combat HIV stigma. Findings suggest that relationship dynamics and broader social contexts appear to shape HIV serodiscordant couples' fertility desires and motivations to use PrEP. However, increased public awareness of PrEP for safer conception may be needed to combat HIV stigma at the community level.

  5. Characterization of the limonene oxidation products with liquid chromatography coupled to the tandem mass spectrometry

    Science.gov (United States)

    Witkowski, Bartłomiej; Gierczak, Tomasz

    2017-04-01

    Composition of the secondary organic aerosol (SOA) generated during ozonolysis of limonene was investigated with liquid chromatography coupled to the negative electrospray ionization (ESI), quadrupole tandem mass spectrometry (MS/MS) as well as high resolution Time-of-Flight mass spectrometry. Aerosol was generated in the flow-tube reactor. HR-MS/MS analysis allowed for proposing structures for the several up-to-date unknown limonene oxidation products. In addition to the low MW limonene oxidation products, significant quantities of oligomers characterized by elemental compositions: C19H30O5, C18H28O6, C19H28O7, C19H30O7 and C20H34O9 were detected in the SOA samples. It was concluded that these compounds are most likely esters, aldol reaction products and/or hemiacetals. In addition to detailed study of the limonene oxidation products, the reaction time as well as initial ozone concentration impact on the limonene SOA composition was investigated. The relative intensities of the two esters of the limonic acid and 7-hydroxy limononic acid increased as a result of lowering the initial ozone concentration and shortening the reaction time, indicating that esterification may be an important oligomerization pathway during limonene SOA formation.

  6. Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Andersson, Martin; Yuan, Jinliang; Sunden, Bengt

    2010-01-01

    A literature study is performed to compile the state-of-the-art, as well as future potential, in SOFC modeling. Principles behind various transport processes such as mass, heat, momentum and charge as well as for electrochemical and internal reforming reactions are described. A deeper investigation is made to find out potentials and challenges using a multiscale approach to model solid oxide fuel cells (SOFCs) and combine the accuracy at microscale with the calculation speed at macroscale to design SOFCs, based on a clear understanding of transport phenomena, chemical reactions and functional requirements. Suitable methods are studied to model SOFCs covering various length scales. Coupling methods between different approaches and length scales by multiscale models are outlined. Multiscale modeling increases the understanding for detailed transport phenomena, and can be used to make a correct decision on the specific design and control of operating conditions. It is expected that the development and production costs will be decreased and the energy efficiency be increased (reducing running cost) as the understanding of complex physical phenomena increases. It is concluded that the connection between numerical modeling and experiments is too rare and also that material parameters in most cases are valid only for standard materials and not for the actual SOFC component microstructures.

  7. Enhancing light out-coupling of organic light-emitting devices using indium tin oxide-free low-index transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi-Hsiang; Lu, Chun-Yang; Tsai, Shang-Ta; Tsai, Yu-Tang; Chen, Chien-Yu; Tsai, Wei-Lung; Lin, Chun-Yu; Chang, Hong-Wei; Lee, Wei-Kai; Jiao, Min; Wu, Chung-Chih, E-mail: wucc@ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, Graduate Institute of Electronics Engineering, and Innovative Photonics Advanced Research Center (i-PARC), National Taiwan University, Taipei 10617, Taiwan (China)

    2014-05-05

    With its increasing and sufficient conductivity, the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been capable of replacing the widely used but less cost-effective indium tin oxides (ITOs) as alternative transparent electrodes for organic light-emitting devices (OLEDs). Intriguingly, PEDOT:PSS also possesses an optical refractive index significantly lower than those of ITO and typical organic layers in OLEDs and well matching those of typical OLED substrates. Optical simulation reveals that by replacing ITO with such a low-index transparent electrode, the guided modes trapped within the organic/ITO layers in conventional OLEDs can be substantially suppressed, leading to more light coupled into the substrate than the conventional ITO device. By applying light out-coupling structures onto outer surfaces of substrates to effectively extract radiation into substrates, OLEDs using such low-index transparent electrodes achieve enhanced optical out-coupling and external quantum efficiencies in comparison with conventional OLEDs using ITO.

  8. Ergosterone-coupled Triazol molecules trigger mitochondrial dysfunction, oxidative stress, and acidocalcisomal Ca2+ release in Leishmania mexicana promastigotes

    Directory of Open Access Journals (Sweden)

    Figarella K

    2015-12-01

    Full Text Available The protozoan parasite Leishmania causes a variety of sicknesses with different clinical manifestations known as leishmaniasis. The chemotherapy currently in use is not adequate because of their side effects, resistance occurrence, and recurrences. Investigations looking for new targets or new active molecules focus mainly on the disruption of parasite specific pathways. In this sense, ergosterol biosynthesis is one of the most attractive because it does not occur in mammals. Here, we report the synthesis of ergosterone coupled molecules and the characterization of their biological activity on Leishmania mexicana promastigotes. Molecule synthesis involved three steps: ergosterone formation using Jones oxidation, synthesis of Girard reagents, and coupling reaction. All compounds were obtained in good yield and high purity. Results show that ergosterone-triazol molecules (Erg-GTr and Erg-GTr2 exhibit an antiproliferative effect in low micromolar range with a selectivity index ~10 when compared to human dermic fibroblasts. Addition of Erg-GTr or Erg-GTr2 to parasites led to a rapid [Ca2+]cyt increase and acidocalcisomes alkalinization, indicating that Ca2+ was released from this organelle. Evaluation of cell death markers revealed some apoptosis-like indicators, as phosphatidylserine exposure, DNA damage, and cytosolic vacuolization and autophagy exacerbation. Furthermore, mitochondrion hyperpolarization and superoxide production increase were detected already 6 hours after drug addition, denoting that oxidative stress is implicated in triggering the observed phenotype. Taken together our results indicate that ergosterone-triazol coupled molecules induce a regulated cell death process in the parasite and may represent starting point molecules in the search of new chemotherapeutic agents to combat leishmaniasis.

  9. Coupling of anodic oxidation and adsorption by granular activated carbon for chemical oxygen demand removal from 4,4'-diaminostilbene-2,2'-disulfonic acid wastewater.

    Science.gov (United States)

    Wang, Lizhang; Zhao, Yuemin

    2010-01-01

    Experiments were performed to reduce chemical oxygen demand (COD) from 4,4'-diaminostilbene-2,2'-disulfonic (DSD) acid manufacturing wastewater using electrochemical oxidation coupled with adsorption by granular activated carbon. The COD removal is affected by the residence time and applied voltage. When the residence time is increased, lower value of COD effluent could be obtained, however, the average current efficiency (ACE) decreased rapidly, and so does the applied voltage. In addition, aeration could effectively enhance COD removal efficiency and protect anodes from corrosion. Furthermore, the acidic condition is beneficial to the rapid decrease of COD and the values of pH effluent are independent of the initial solution pH. The optimization conditions obtained from these experiments are applied voltage of 4.8 V, residence time of 180 min and air-liquid ratio of 4.2 with the COD effluent of about 690 mg L⁻¹. In these cases, the ACE and energy consumption are 388% and 4.144 kW h kg⁻¹ COD, respectively. These perfect results from the experiments illustrate that the combined process is a considerable alternative for the treatment of industrial wastewater containing high concentration of organic pollutants and salinity.

  10. A combination of preliminary results on gauge boson couplings measured by the LEP Experiments

    CERN Document Server

    CERN. Geneva

    2004-01-01

    This note presents a combination of published and preliminary measurements of triple gauge boson couplings (TGCs) and quartic gauge boson couplings (QGCs) from the four LEP experiments. We give an updated combination of the charged TGCs, g1z, kg and lg in single and multi-parameter fits. Updated results from the QGCs from the ZZgg vertex, ac/Lambda^2 and a0/Lambda^2, are given as well. The combinations of neutral TGCs hiv anf fiv are also presented, including an updated fiv combination.

  11. Iron-catalyzed oxidative biaryl cross-couplings via mixed diaryl titanates: significant influence of the order of combining aryl Grignard reagents with titanate.

    Science.gov (United States)

    Liu, Kun Ming; Wei, Juan; Duan, Xin Fang

    2015-03-18

    The mixed diaryl titanates were used for the first time to modify the reactivity of two aryl Grignard reagents. Two titanate intermediates, Ar[Ar'Ti(OR)3]MgX and Ar'[ArTi(OR)3]MgX, formed via alternating the sequence of combining Grignard reagents with ClTi(OR)3 showed a significant reactivity difference. Taking advantage of such different reactivity, two highly structurally similar aryl groups could be facilely assembled through iron-catalyzed oxidative cross-couplings using oxygen as the oxidant.

  12. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  13. Chemical shift-dependent apparent scalar couplings: An alternative concept of chemical shift monitoring in multi-dimensional NMR experiments

    International Nuclear Information System (INIS)

    Kwiatkowski, Witek; Riek, Roland

    2003-01-01

    The paper presents an alternative technique for chemical shift monitoring in a multi-dimensional NMR experiment. The monitored chemical shift is coded in the line-shape of a cross-peak through an apparent residual scalar coupling active during an established evolution period or acquisition. The size of the apparent scalar coupling is manipulated with an off-resonance radio-frequency pulse in order to correlate the size of the coupling with the position of the additional chemical shift. The strength of this concept is that chemical shift information is added without an additional evolution period and accompanying polarization transfer periods. This concept was incorporated into the three-dimensional triple-resonance experiment HNCA, adding the information of 1 H α chemical shifts. The experiment is called HNCA coded HA, since the chemical shift of 1 H α is coded in the line-shape of the cross-peak along the 13 C α dimension

  14. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  15. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  16. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.

    Science.gov (United States)

    Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-12-23

    Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.

  17. Quantitative characterization of colloidal assembly of graphene oxide-silver nanoparticle hybrids using aerosol differential mobility-coupled mass analyses.

    Science.gov (United States)

    Nguyen, Thai Phuong; Chang, Wei-Chang; Lai, Yen-Chih; Hsiao, Ta-Chih; Tsai, De-Hao

    2017-10-01

    In this work, we develop an aerosol-based, time-resolved ion mobility-coupled mass characterization method to investigate colloidal assembly of graphene oxide (GO)-silver nanoparticle (AgNP) hybrid nanostructure on a quantitative basis. Transmission electron microscopy (TEM) and zeta potential (ZP) analysis were used to provide visual information and elemental-based particle size distributions, respectively. Results clearly show a successful controlled assembly of GO-AgNP by electrostatic-directed heterogeneous aggregation between GO and bovine serum albumin (BSA)-functionalized AgNP under an acidic environment. Additionally, physical size, mass, and conformation (i.e., number of AgNP per nanohybrid) of GO-AgNP were shown to be proportional to the number concentration ratio of AgNP to GO (R) and the selected electrical mobility diameter. An analysis of colloidal stability of GO-AgNP indicates that the stability increased with its absolute ZP, which was dependent on R and environmental pH. The work presented here provides a proof of concept for systematically synthesizing hybrid colloidal nanomaterials through the tuning of surface chemistry in aqueous phase with the ability in quantitative characterization. Graphical Abstract Colloidal assembly of graphene oxide-silver nanoparticle hybrids characterized by aerosol differential mobility-coupled mass analyses.

  18. Prompt burst energetics experiments: fresh oxide/sodium series

    International Nuclear Information System (INIS)

    Reil, K.O.; Young, M.F.

    1978-08-01

    A series of in-pile experiments has been performed to provide information on thermal energy to work conversion under prompt burst excursion (PBE) conditions. These consisted of single pin tests using fresh uranium oxide or uranium carbide fuel in a capsule geometry, with either stagnant sodium or helium in the coolant channel. The experiments were irradiated with single or double pulses in the Annular Core Pulse Reactor (ACPR) to provide energy depositions up to 2900 J/g. This report covers the seven single and five double pulse UO 2 sodium-in tests. Experimental data includes pressure and linear motion transducer histories, measured work-energy conversion efficiencies, and post-irradiation examination. Analysis includes derived work-energy conversion efficiencies (up to 0.54%), pin failure modeling, hydrodynamic analysis of pressure pulse propagation in the channel, and piston stopping effects. Initial pressure events in the single pulse experiments appear to be dominated by fuel vapor pressure. Definite fuel-coolant interactions were observed in several experiments, including some that were coincident with stopping of the linear motion transducer piston, suggesting a possible triggering effect by the deceleration pressure

  19. Coupled thermo-hydro-mechanical experiment at Kamaishi mine. Technical note 15-99-02. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Chijimatsu, Masakazu; Sugita, Yutaka; Fujita, Tomoo [Tokai Works, Waste Management and Fuel Cycle Research Center, Waste Isolation Research Division, Barrier Performance Group, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Amemiya, Kiyoshi [Hazama Corp., Tokyo (Japan)

    1999-07-01

    It is an important part of the near field performance assessment of nuclear waste disposal to evaluate coupled thermo-hydro-mechanical (T-H-M) phenomena, e.g., thermal effects on groundwater flow through rock matrix and water seepage into the buffer material, the generation of swelling pressure of the buffer material, and thermal stresses potentially affecting porosity and fracture apertures of the rock. An in-situ T-H-M experiment named Engineered Barrier Experiment' has been conducted at the Kamaishi Mine, of which host rock is granodiorite, in order to establish conceptual models of the coupled T-H-M processes and to build confidence in mathematical and computer codes. In 1995, fourteen boreholes were excavated in order to install the various sensors. After the hydraulic tests, mechanical tests were carried out to obtain the rock properties. After that, a test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. During the excavation, the change of pore pressure, displacement and temperature of rock mass were measured. In 1996, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. The field experiment leads to a better understanding of the behavior of the coupled thermo-hydro-mechanical phenomena in the near field. (author)

  20. Experiments study on attitude coupling control method for flexible spacecraft

    Science.gov (United States)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  1. Solid Oxide Fuel Cells coupled with a biomass gasification unit

    Directory of Open Access Journals (Sweden)

    Skrzypkiewicz Marek

    2016-01-01

    Full Text Available A possibility of fuelling a solid oxide fuel cell stack (SOFC with biomass fuels can be realized by coupling a SOFC system with a self-standing gasification unit. Such a solution enables multi-fuel operation, elasticity of the system as well as the increase of the efficiency of small-scale biomass-to-electricity conversion units. A system of this type, consisting of biomass gasification unit, gas purification unit, SOFC stack, anode off-gas afterburner and peripherals was constructed and operated successfully. During the process, biomass fuel (wood chips was gasified with air as gasification agent. The gasifier was capable of converting up to 30 kW of fuel to syngas with efficiencies up to 75%. Syngas leaving the gasification unit is delivered to a medium temperature adsorber for sulphur compounds removal. Steam is added to the purified fuel to maintain steam to carbon ratio higher than 2. The syngas then is passed to a SOFC stack through a fuel preheater. In such a configuration it was possible to operate a commercial 1.3 kW stack within its working regime. Conducted tests confirmed successful operation of a SOFC stack fuelled by biomass-sourced syngas.

  2. Inelastic electron scattering influence on the strong coupling oxide superconductors

    International Nuclear Information System (INIS)

    Gabovich, A.M.; Voitenko, A.I.

    1995-01-01

    The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering

  3. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    Science.gov (United States)

    2006-11-01

    Contact Areas. Ground Water, 36(4):495-502. Atlas , R.M., and R. Bartha (1987). Microbial Ecology , Benjamin/Cummings Publishing Company, Menlo Park...relatively few species ( Atlas and Bartha 1987). If selection for bioremediation processes following oxidation does occur, competition for substrates...Experiments.....................................................................3-23 3.6.3. Microbial Culture Preparation for Evaluation of Coupling

  4. The role of soil moisture in land surface-atmosphere coupling: climate model sensitivity experiments over India

    Science.gov (United States)

    Williams, Charles; Turner, Andrew

    2015-04-01

    It is generally acknowledged that anthropogenic land use changes, such as a shift from forested land into irrigated agriculture, may have an impact on regional climate and, in particular, rainfall patterns in both time and space. India provides an excellent example of a country in which widespread land use change has occurred during the last century, as the country tries to meet its growing demand for food. Of primary concern for agriculture is the Indian summer monsoon (ISM), which displays considerable seasonal and subseasonal variability. Although it is evident that changing rainfall variability will have a direct impact on land surface processes (such as soil moisture variability), the reverse impact is less well understood. However, the role of soil moisture in the coupling between the land surface and atmosphere needs to be properly explored before any potential impact of changing soil moisture variability on ISM rainfall can be understood. This paper attempts to address this issue, by conducting a number of sensitivity experiments using a state-of-the-art climate model from the UK Meteorological Office Hadley Centre: HadGEM2. Several experiments are undertaken, with the only difference between them being the extent to which soil moisture is coupled to the atmosphere. Firstly, the land surface is fully coupled to the atmosphere, globally (as in standard model configurations); secondly, the land surface is entirely uncoupled from the atmosphere, again globally, with soil moisture values being prescribed on a daily basis; thirdly, the land surface is uncoupled from the atmosphere over India but fully coupled elsewhere; and lastly, vice versa (i.e. the land surface is coupled to the atmosphere over India but uncoupled elsewhere). Early results from this study suggest certain 'hotspot' regions where the impact of soil moisture coupling/uncoupling may be important, and many of these regions coincide with previous studies. Focusing on the third experiment, i

  5. Understanding the Experience of Group Singing for Couples Where One Partner Has a Diagnosis of Dementia.

    Science.gov (United States)

    Unadkat, Shreena; Camic, Paul M; Vella-Burrows, Trish

    2017-06-01

    There is a continuing interest around the use of group singing in dementia care. Although studies generally indicate positive outcomes, limited research has been carried out from a relational perspective, which places the couple relationship in a central position. This study aimed to better understand how group singing benefits people with dementia and their partners. Interview data from 17 couples (N = 34) with one member having dementia, who participated in a range of different types of singing groups, were analyzed using grounded theory methodology. Five key areas were identified, resulting in the development of the group singing model in dementia for couple dyads. Group singing was experienced as being both joyful and accessible. The accessibility of singing, combined with effective facilitation, created an environment for active participation and enjoyment. The group effect mediated further benefits for the person with dementia and for the caregiver which, when combined, increased benefits for the couple through participation in new experiences. An opportunity for couples to share in-the-moment creative expression and the positive affect of artistic creation circumventing cognitive impairment is likely to contribute positively to the experience of the relationship. A more refined understanding of shared creative processes in relationship-centered models of care could inform dementia support services. Future research would benefit from longitudinally exploring the links between creativity in couples and relationship resilience. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  7. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: Direct coupling of two amines to form an imine without oxidant

    KAUST Repository

    He, Lipeng

    2012-07-23

    Dehydrogenative homocoupling of primary alcohols to form esters and coupling of amines to form imines was accomplished using a class of novel pincer ruthenium complexes. The reactivities of the ruthenium pincer complexes for the direct coupling of amines to form imines were enhanced by introducing an imine arm to the pincer ligand. Selective oxidation of benzylamines to imines was achieved using aniline derivatives as the substrate and solvent. © 2012 American Chemical Society.

  8. Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: Direct coupling of two amines to form an imine without oxidant

    KAUST Repository

    He, Lipeng; Chen, Tao; Gong, Dirong; Lai, Zhiping; Huang, Kuo-Wei

    2012-01-01

    Dehydrogenative homocoupling of primary alcohols to form esters and coupling of amines to form imines was accomplished using a class of novel pincer ruthenium complexes. The reactivities of the ruthenium pincer complexes for the direct coupling of amines to form imines were enhanced by introducing an imine arm to the pincer ligand. Selective oxidation of benzylamines to imines was achieved using aniline derivatives as the substrate and solvent. © 2012 American Chemical Society.

  9. Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I2 redox-couple solid polymer electrolyte

    International Nuclear Information System (INIS)

    Gupta, Ravindra Kumar; Rhee, Hee-Woo

    2012-01-01

    Effect of succinonitrile on electrical, structural, optical, and thermal properties of [poly(ethylene oxide)-succinonitrile]/LiI–I 2 redox-couple solid polymer electrolyte is reported for the first time. For the poly(ethylene oxide)-succinonitrile blend-based electrolyte electrical conductivity was noted as high as ∼3 × 10 −4 S cm −1 at 25 °C, which is an order of magnitude higher than that of pure poly(ethylene oxide)-based electrolyte. It also exhibited relatively better pseudo-activation energy (∼0.08 eV). X-ray diffractometry, polarized optical microscopy, and differential scanning calorimetry studies revealed that succinonitrile is helpful in reducing the poly(ethylene oxide) crystallinity due to its plasticizing property. FT-IR study showed significant modification of the poly(ethylene oxide) chain conformation due to the succinonitrile.

  10. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

    Science.gov (United States)

    Lovley, D R; Phillips, E J

    1988-06-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe(3)O(4)). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35 degrees C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO(2) was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO(3)). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.

  11. Oxidation study of the synthetic sulfides molybdenite (MoS2) and covellite (CuS) by acidithiobacillus ferrooxidants using respirometric experiments

    International Nuclear Information System (INIS)

    Francisco Junior, Wilmo E.; Universidade Estadual Paulista; Bevilaqua, Denise; Garcia Junior, Oswaldo

    2009-01-01

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe 3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations. (author)

  12. Zircaloy oxidation and cladding deformation in PWR-specific CORA experiments

    International Nuclear Information System (INIS)

    Minato, K.; Hering, W.; Hagen, S.

    1991-07-01

    Out-of-pile bundle experiments (zircaloy 4) are performed in the CORA facility to investigate the behavior of PWR fuel elements during severe fuel damage (SFD) accidents. Within the international cooperation the most significant phenomena such as cladding deformation, oxidation (especially the zirconium/steam reaction), melt formation, melt release, and relocation which were found in all tests have been analyzed. (orig./MM) [de

  13. On the nature of organic and inorganic centers that bifurcate electrons, coupling exergonic and endergonic oxidation-reduction reactions.

    Science.gov (United States)

    Peters, John W; Beratan, David N; Schut, Gerrit J; Adams, Michael W W

    2018-04-19

    Bifurcating electrons to couple endergonic and exergonic electron-transfer reactions has been shown to have a key role in energy conserving redox enzymes. Bifurcating enzymes require a redox center that is capable of directing electron transport along two spatially separate pathways. Research into the nature of electron bifurcating sites indicates that one of the keys is the formation of a low potential oxidation state to satisfy the energetics required of the endergonic half reaction, indicating that any redox center (organic or inorganic) that can exist in multiple oxidation states with sufficiently separated redox potentials should be capable of electron bifurcation. In this Feature Article, we explore a paradigm for bifurcating electrons down independent high and low potential pathways, and describe redox cofactors that have been demonstrated or implicated in driving this unique biochemistry.

  14. A Laboratory Experiment on Coupled Non-Identical Pendulums

    Science.gov (United States)

    Li, Ang; Zeng, Jingyi; Yang, Hujiang; Xiao, Jinghua

    2011-01-01

    In this paper, coupled pendulums with different lengths are studied. Through steel magnets, each pendulum is coupled with others, and a stepping motor is used to drive the whole system. To record the data automatically, we designed a data acquisition system with a CCD camera connected to a computer. The coupled system shows in-phase, locked-phase…

  15. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  16. Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage.

    Science.gov (United States)

    Perez Velazquez, Jose L; Kokarovtseva, Larisa; Sarbaziha, Raheleh; Jeyapalan, Zina; Leshchenko, Yevgen

    2006-01-01

    While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18alpha-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries.

  17. Enhanced Electron-Phonon Coupling at Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Ward E.

    2010-08-04

    The Born-Oppenheimer approximation (BOA) decouples electronic from nuclear motion, providing a focal point for most quantum mechanics textbooks. However, a multitude of important chemical, physical and biological phenomena are driven by violations of this approximation. Vibronic interactions are a necessary ingredient in any process that makes or breaks a covalent bond, for example, conventional catalysis or enzymatically delivered biological reactions. Metastable phenomena associated with defects and dopants in semiconductors, oxides, and glasses entail violation of the BOA. Charge exchange in inorganic polymers, organic slats and biological systems involves charge- induced distortions of the local structure. A classic example is conventional superconductivity, which is driven by the electron-lattice interaction. High-resolution angle-resolved photoemission experiments are yielding new insight into the microscopic origin of electron-phonon coupling (EPC) in anisotropic two-dimensional systems. Our recent surface phonon measurement on the surface of a high-Tc material clearly indicates an important momentum dependent EPC in these materials. In the last few years we have shifted our research focus from solely looking at electron phonon coupling to examining the structure/functionality relationship at the surface of complex transition metal compounds. The investigation on electron phonon coupling has allowed us to move to systems where there is coupling between the lattice, the electrons and the spin.

  18. Complete Nutrient Removal Coupled to Nitrous Oxide Production as a Bioenergy Source by Denitrifying Polyphosphate-Accumulating Organisms.

    Science.gov (United States)

    Gao, Han; Liu, Miaomiao; Griffin, James S; Xu, Longcheng; Xiang, Da; Scherson, Yaniv D; Liu, Wen-Tso; Wells, George F

    2017-04-18

    Coupled aerobic-anoxic nitrous decomposition operation (CANDO) is a promising emerging bioprocess for wastewater treatment that enables direct energy recovery from nitrogen (N) in three steps: (1) ammonium oxidation to nitrite; (2) denitrification of nitrite to nitrous oxide (N 2 O); and (3) N 2 O conversion to N 2 with energy generation. However, CANDO does not currently target phosphorus (P) removal. Here, we demonstrate that denitrifying polyphosphate-accumulating organism (PAO) enrichment cultures are capable of catalyzing simultaneous biological N and P removal coupled to N 2 O generation in a second generation CANDO process, CANDO+P. Over 7 months (>300 cycles) of operation of a prototype lab-scale CANDO+P sequencing batch reactor treating synthetic municipal wastewater, we observed stable and near-complete N removal accompanied by sustained high-rate, high-yield N 2 O production with partial P removal. A substantial increase in abundance of the PAO Candidatus Accumulibacter phosphatis was observed, increasing from 5% of the total bacterial community in the inoculum to over 50% after 4 months. PAO enrichment was accompanied by a strong shift in the dominant Accumulibacter population from clade IIC to clade IA, based on qPCR monitoring of polyphosphate kinase 1 (ppk1) gene variants. Our work demonstrates the feasibility of combining high-rate, high-yield N 2 O production for bioenergy production with combined N and P removal from wastewater, and it further suggests a putative denitrifying PAO niche for Accumulibacter clade IA.

  19. Three-dimensional coupled kinetics/thermal- hydraulic benchmark TRIGA experiments

    International Nuclear Information System (INIS)

    Feltus, Madeline Anne; Miller, William Scott

    2000-01-01

    This research project provides separate effects tests in order to benchmark neutron kinetics models coupled with thermal-hydraulic (T/H) models used in best-estimate codes such as the Nuclear Regulatory Commission's (NRC) RELAP and TRAC code series and industrial codes such as RETRAN. Before this research project was initiated, no adequate experimental data existed for reactivity initiated transients that could be used to assess coupled three-dimensional (3D) kinetics and 3D T/H codes which have been, or are being developed around the world. Using various Test Reactor Isotope General Atomic (TRIGA) reactor core configurations at the Penn State Breazeale Reactor (PSBR), it is possible to determine the level of neutronics modeling required to describe kinetics and T/H feedback interactions. This research demonstrates that the small compact PSBR TRIGA core does not necessarily behave as a point kinetics reactor, but that this TRIGA can provide actual test results for 3D kinetics code benchmark efforts. This research focused on developing in-reactor tests that exhibited 3D neutronics effects coupled with 3D T/H feedback. A variety of pulses were used to evaluate the level of kinetics modeling needed for prompt temperature feedback in the fuel. Ramps and square waves were used to evaluate the detail of modeling needed for the delayed T/H feedback of the coolant. A stepped ramp was performed to evaluate and verify the derived thermal constants for the specific PSBR TRIGA core loading pattern. As part of the analytical benchmark research, the STAR 3D kinetics code (, STAR: Space and time analysis of reactors, Version 5, Level 3, Users Guide, Yankee Atomic Electric Company, YEAC 1758, Bolton, MA) was used to model the transient experiments. The STAR models were coupled with the one-dimensional (1D) WIGL and LRA and 3D COBRA (, COBRA IIIC: A digital computer program for steady-state and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements, Battelle

  20. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics (3), relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2009-01-01

    Systematic approaches for evaluating flow accelerated corrosion (FAC) are desired before discussing application of countermeasures for FAC. Firstly, future FAC occurrence should be evaluated to identify locations where a higher possibility of FAC occurrence exists, and then, wall thinning rate at the identified FAC occurrence zone is evaluated to obtain the preparation time for applying countermeasures. Wall thinning rates were calculated with the coupled models of static electrochemical analysis and dynamic double oxide layer analysis. Anodic current density and electrochemical corrosion potential (ECP) were calculated with the static electrochemistry model based on an Evans diagram and ferrous ion release rate determined by the anodic current density was applied as input for the dynamic double oxide layer model. Some of the dissolved ferrous ion was removed to the bulk water and others precipitated on the surface as magnetite particles. The thickness of oxide layer was calculated with the dynamic double oxide layer model and then was applied as input for the electrochemistry model. It was confirmed that the calculated results based on the coupled models resulted good agreement with the measured ones. Higher ECP was essential for preventing FAC rate. Moderated conditions due to lower mass transfer coefficients resulted in thicker oxide layer thickness and then higher ECP, while moderated corrosion conditions due to higher oxidant concentrations resulted in larger hematite/magnetite rate and then higher ECP. (author)

  1. Decision for disclosure: The experiences of Iranian infertile couples undergoing assisted reproductive donation procedures.

    Science.gov (United States)

    Hadizadeh-Talasaz, Fatemeh; Roudsari, Robab Latifnejad; Simbar, Masoumeh

    2015-01-01

    Controversy surrounding disclosure among the recipients of assisted reproductive donation procedures is escalating worldwide, but little research has been conducted in this topic. The purpose of this qualitative study was to explore the experiences of infertile couples undergoing assisted reproductive donation procedures. In this exploratory qualitative study, 32 patients (nine couples and 14 women) who were candidates to use donor eggs, donor embryos or surrogacy, and 5 members of infertility treatment team including gynaecologists, midwives and psychologist (total 37) were purposively selected from the Montaserieh Infertility Research Centre at Mashhad, Iran in 2012 and interviewed using a semi-structured in-depth method. Data were analysed using conventional qualitative content analysis with MAXqda software. One overarching theme, entitled 'experiencing uncertainty surrounding the disclosure to others' was identified from the data. This theme contained two subthemes including 'Couples' decisions to not disclose to others' and 'Couples' decisions to disclose to others'. Five categories formed the first subtheme, and the second subtheme emerged from four categories which are discussed in this paper. The main reason for secrecy was concern over societal negative views about assisted reproductive donation procedures. This worry deprived the couples from support from family and friends and as a result requires them to tolerate psychological pressure when using such procedures.

  2. Coupling Solute and Fine Particle Transport with Sand Bed Morphodynamics within a Field Experiment

    Science.gov (United States)

    Phillips, C. B.; Ortiz, C. P.; Schumer, R.; Jerolmack, D. J.; Packman, A. I.

    2017-12-01

    Fine suspended particles are typically considered to pass through streams and rivers as wash load without interacting with the bed, however experiments have demonstrated that hyporheic flow causes advective exchange of fine particles with the stream bed, yielding accumulation of fine particle deposits within the bed. Ultimately, understanding river morphodynamics and ecosystem dynamics requires coupling both fine particle and solute transport with bed morphodynamics. To better understand the coupling between these processes we analyze a novel dataset from a controlled field experiment conducted on Clear Run, a 2nd order sand bed stream located within the North Carolina coastal plain. Data include concentrations of continuously injected conservative solutes and fine particulate tracers measured at various depths within the stream bed, overhead time lapse images of bed forms, stream discharge, and geomorphological surveys of the stream. We use image analysis of bed morphodynamics to assess exchange, retention, and remobilization of solutes and fine particles during constant discharge and a short duration experimental flood. From the images, we extract a time series of bedform elevations and scour depths for the duration of the experiment. The high-resolution timeseries of bed elevation enables us to assess coupling of bed morphodynamics with both the solute and fine particle flux during steady state mobile bedforms prior to the flood and to changing bedforms during the flood. These data allow the application of a stochastic modeling framework relating bed elevation fluctuations to fine particle residence times. This combined experimental and modeling approach ultimately informs our ability to predict not only the fate of fine particulate matter but also associated nutrient and carbon dynamics within streams and rivers.

  3. Evaluation of flow accelerated corrosion by coupled analysis of corrosion and flow dynamics. Relationship of oxide film thickness, hematite/magnetite ratio, ECP and wall thinning rate

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Naitoh, Masanori; Okada, Hidetoshi; Uehara, Yasushi; Koshizuka, Seiichi

    2011-01-01

    Systematic approaches to evaluate flow accelerated corrosion (FAC) are desired before discussing application of countermeasures for FAC. First, future FAC occurrence should be evaluated to identify locations where a higher possibility of FAC occurrence exists, and then, wall thinning rate at the identified FAC occurrence zone is evaluated to obtain the preparation time for applying countermeasures. Wall thinning rates were calculated with two coupled models: 1.static electrochemical analysis and 2.dynamic oxide layer growth analysis. The anodic current density and the electrochemical corrosion potential (ECP) were calculated with the static electrochemistry model based on an Evans diagram. The ferrous ion release rate, determined by the anodic current density, was applied as input for the dynamic double oxide layer model. Some of the dissolved ferrous ion was removed to the bulk water and others precipitated on the surface as magnetite particles. The thickness of oxide layer was calculated with the dynamic oxide layer growth model and then its value was used as input in the electrochemistry model. It was confirmed that the calculated results (corrosion rate and ECP) based on the coupled models were in good agreement with the measured ones. Higher ECP was essential for preventing FAC rate. Moderated conditions due to lower mass transfer coefficients resulted in thicker oxide layer thickness and then higher ECP, while moderated corrosion conditions due to higher oxidant concentrations resulted in larger hematite/magnetite rate and then higher ECP.

  4. Study of the removal of cesium from aqueous solutions by graphene oxide; Estudo da remocao de cesio em solucoes aquosas por oxido de grafeno

    Energy Technology Data Exchange (ETDEWEB)

    Bueno, Vanessa N.; Rodrigues, Debora F. [University of Houston (UH), Houston, TX (United States); Vitta, Patricia B. Di [Universidade de Sao Paulo (STRES/USP), Sao Paulo, SP (Brazil). Inst. de Quimica. Setor Tecnico de Residuos Quimicos e Solventes; Oshiro, Mauricio T.; Vicente, Roberto; Hiromoto, Goro; Potiens Junior, Ademar; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Graphene oxide, used in this work, was synthesized from the oxidation of graphite by Hummer method. The experiments were performed in batch and analyzed for the following parameters: contact time, pH, cesium ion concentration in aqueous solution and removing capacity of the graphene oxide. After the experiments the samples were vacuum filtered and the remaining cesium in solution was quantified by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The equilibrium was reached after 60 minutes of contact in neutral solution. The percentage of removal was around 80%.

  5. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    Science.gov (United States)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  6. Oxidative C-H/C-H Cross-Coupling Reactions between N-Acylanilines and Benzamides Enabled by a Cp*-Free RhCl3/TFA Catalytic System.

    Science.gov (United States)

    You, Jingsong; Shi, Yang; Zhang, Luoqiang; Lan, Jingbo; Zhang, Min; Zhou, Fulin; Wei, Wenlong

    2018-06-03

    Using the dual chelation-assisted strategy, a completely regiocontrolled oxidative C-H/C-H cross-coupling reaction between an N-acylaniline and a benzamide has been accomplished for the first time, which enables a step-economical and highly efficient pathway to 2-amino-2'-carboxybiaryl scaffolds from readily available substrates. A Cp*-free RhCl3/TFA catalytic system has been developed to replace the generally used [Cp*RhCl2]2/AgSbF6 (Cp* = pentamethyl cyclopentadienyl) in oxidative C-H/C-H cross-coupling reactions between two (hetero)arenes. The RhCl3/TFA system avoids the use of expensive Cp* ligand and AgSbF6. As an illustrative example, the protocol developed herein greatly streamlines access to naturally occurring benzo[c]phenanthridine alkaloid oxynitidine in an excellent overall yield. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The coupling of ω-transaminase and Oppenauer oxidation reactions via intra-membrane multicomponent diffusion – A process model for the synthesis of chiral amines

    DEFF Research Database (Denmark)

    Esparza-Isunza, T.; González-Brambila, M.; Gani, Rafiqul

    2015-01-01

    amine product. Using 2-propylamine as the amine donor of the ω-transaminase reaction, gives acetone as a by-product, which in turn allows the coupling of the ω-transaminase reaction with the Oppenauer oxidation. The Oppenauer reaction converts secondary alcohols into ketones, and these can subsequently......In this study we consider the theoretical coupling of an otherwise thermodynamically limited ω-transaminase reaction to an Oppenauer oxidation, in order to shift the equilibria of both reactions, with the aim of achieving a significant (and important) increase in the yield of the desired chiral...... of this paper is to report the development of a mathematical model as a tool for the simulation and potential design of such a process for the production of a range of chiral amines. The mathematical model developed considers that each reaction is performed in a single ideally mixed isothermal reactor operating...

  8. Skeletal Muscle Neurovascular Coupling, Oxidative Capacity, and Microvascular Function with 'One Stop Shop' Near-infrared Spectroscopy.

    Science.gov (United States)

    Rosenberry, Ryan; Chung, Susie; Nelson, Michael D

    2018-02-20

    Exercise represents a major hemodynamic stress that demands a highly coordinated neurovascular response in order to match oxygen delivery to metabolic demand. Reactive hyperemia (in response to a brief period of tissue ischemia) is an independent predictor of cardiovascular events and provides important insight into vascular health and vasodilatory capacity. Skeletal muscle oxidative capacity is equally important in health and disease, as it determines the energy supply for myocellular processes. Here, we describe a simple, non-invasive approach using near-infrared spectroscopy to assess each of these major clinical endpoints (reactive hyperemia, neurovascular coupling, and muscle oxidative capacity) during a single clinic or laboratory visit. Unlike Doppler ultrasound, magnetic resonance images/spectroscopy, or invasive catheter-based flow measurements or muscle biopsies, our approach is less operator-dependent, low-cost, and completely non-invasive. Representative data from our lab taken together with summary data from previously published literature illustrate the utility of each of these end-points. Once this technique is mastered, application to clinical populations will provide important mechanistic insight into exercise intolerance and cardiovascular dysfunction.

  9. Experiences developing ALEGRA: A C++ coupled physics framework

    Energy Technology Data Exchange (ETDEWEB)

    Budge, K.G.; Peery, J.S.

    1998-11-01

    ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA`s success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm.

  10. Experiences developing ALEGRA: A C++ coupled physics framework

    International Nuclear Information System (INIS)

    Budge, K.G.; Peery, J.S.

    1998-01-01

    ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA's success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm

  11. Posttraumatic growth in cancer patients and partners--effects of role, gender and the dyad on couples' posttraumatic growth experience.

    Science.gov (United States)

    Zwahlen, Diana; Hagenbuch, Niels; Carley, Margaret I; Jenewein, Josef; Buchi, Stefan

    2010-01-01

    Little is known about factors influencing positive effects in couples facing a cancer diagnosis. A heterogeneous sample of 224 couples from a multi-site study (four oncology units) completed questionnaire surveys including the Posttraumatic Growth Inventory (PTGI) as a measure of positive psychological effects. The data demonstrated that all three investigated factors--gender, role (patient vs partner) and the dyad (belonging to any of the 224 couples)--significantly contributed to variation in PTGI total scores and subscales. Variability between couples (factor dyad) appeared stronger than variability between patient and partner participants (factor role) and between male and female participants (factor gender). Role and gender analysis showed that patients demonstrated higher levels of posttraumatic growth than partners; and female participants scored higher on PTGI than males. Male patient-female partner pairs show greater association in their experience of posttraumatic growth than female patient-male partner pairs. Correlations also suggested that, regardless of the gender and role composition, patients and partners may experience parallel growth. Our findings indicate that positive psychological experiences may be shared by partners affected by cancer in similar ways as have been shown for negative psychological effects. Intra-couple similarities or processes may have a more important function in experiencing benefits than factors like gender or being the patient or the partner. These results underline the importance of a family approach to understanding negative and positive psychological effects of cancer. (c) 2009 John Wiley & Sons, Ltd.

  12. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    International Nuclear Information System (INIS)

    Borgatti, F.; Torelli, P.; Panaccione, G.

    2016-01-01

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  13. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  14. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  15. Static stress analysis of coupling superconducting solenoid coil assembly for muon ionization cooling experiment

    International Nuclear Information System (INIS)

    Pan Heng; Wang Li; Wu Hong; Guo Xinglong; Xu Fengyu

    2010-01-01

    The stresses in the coupling superconducting solenoid coil assembly, which is applied in the Muon Ionization Cooling Experiment (MICE), are critical for the structure design and mechanical stability because of a large diameter and relative high magnetic field. This paper presents an analytical stress solution for the MICE coupling coil assembly. The stress due to winding tension is calculated by assuming the coil package as a set of combined cylinders. The thermal and electromechanical stresses are obtained by solving the partial differential equations of displacement based on the power series expansion method. The analytical stress solution is proved to be feasible by calculating stresses in a tested superconducting solenoid with 2.58 m bore at room temperature. The analytical result of the MICE coupling coil is in good agreement with that of the finite element which shows that the transverse shear stress induced by Lorentz force is principally dominant to magnet instability. (authors)

  16. Development of a coupled reactor with a catalytic combustor and steam reformer for a 5 kW solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Kang, Sanggyu; Lee, Kanghun; Yu, Sangseok; Lee, Sang Min; Ahn, Kook-Young

    2014-01-01

    Highlights: • Proposes the scale-up strategy to develop a large-scale coupled reactor. • Investigation of performance of steam reformer coupled with catalytic combustor. • Experimental parameters are inlet temp., air excess ratio, SCR, fuel utilization. • Evaluation of the heat transfer distribution along the gas flow direction. • The mean value of methane conversion rate is approximately 93.4%. - Abstract: The methane (CH 4 ) conversion rate of a steam reformer can be increased by thermal integration with a catalytic combustor, called a coupled reactor. In the present study, a 5 kW coupled reactor has been developed based on a 1 kW coupled reactor in previous work. The geometric parameters of the space velocity, diameter and length of the coupled reactor selected from the 1 kW coupled reactor are tuned and applied to the design of the 5 kW coupled reactor. To confirm the scale-up strategy, the performance of 5 kW coupled reactor is experimentally investigated with variations of operating parameters such as the fuel utilization in the solid oxide fuel cell (SOFC) stack, the inlet temperature of the catalytic combustor, the excess air ratio of the catalytic combustor, and the steam to carbon ratio (SCR) in the steam reformer. The temperature distributions of coupled reactors are measured along the gas flow direction. The gas composition at the steam reformer outlet is measured to find the CH 4 conversion rate of the coupled reactor. The maximum value of the CH 4 conversion rate is approximately 93.4%, which means the proposed scale-up strategy can be utilized to develop a large-scale coupled reactor

  17. Cultural Considerations in Counseling Couples Who Experience Infertility

    Science.gov (United States)

    Burnett, Judith A.

    2009-01-01

    Infertility creates challenges affecting various aspects of couples' intimate lives. Practices regarding reproduction are often shaped by cultural messages. Culturally sensitive treatment methods help counselors provide effective therapy to couples with fertility problems. This article describes cultural influences, challenges, and counseling…

  18. Longitudinal links between work experiences and marital satisfaction in african american dual-earner couples.

    Science.gov (United States)

    Sun, Xiaoran; McHale, Susan M; Crouter, Ann C; Jones, Damon E

    2017-12-01

    This study assessed associations between both work demands (pressure, hours) and work resources (self-direction) and marital satisfaction in a sample of 164 African American dual-earner couples who were interviewed annually across 3 years. Grounded in the work-home resources and family systems frameworks, results from longitudinal actor-partner interdependence models (APIM) revealed main effects of spouses' work experiences on their own marital satisfaction, but these effects were qualified by the interactive effects of spouses' and partners' work experiences. Some interactive effects were consistent with an amplifying pattern, for example that, beyond the main effects of actor self-direction, marital satisfaction was highest when both spouses experienced high work self-direction. Other effects were consistent with a comparative pattern, such that shorter work hours were linked to lower marital satisfaction only when partners worked longer hours. Gender moderation also was evident in findings that wives' work pressure was negatively linked to marital satisfaction only when their husbands reported high pressure, but husbands' work pressure was negatively linked to marital satisfaction only when their wives reported low pressure. This study advances understanding of work-marriage linkages in African American couples, an understudied group with a distinctive connection to the labor force. Analyses demonstrate what can be learned from investigating the couple as a unit and illustrate how family systems concepts can be addressed via APIM. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Surface preparation and coupling in plastic scintillator dosimetry

    International Nuclear Information System (INIS)

    Ayotte, Guylaine; Archambault, Louis; Gingras, Luc; Lacroix, Frederic; Beddar, A. Sam; Beaulieu, Luc

    2006-01-01

    One way to improve the performance of scintillation dosimeters is to increase the light-collection efficiency at the coupling interfaces of the detector system. We performed a detailed study of surface preparation of scintillating fibers and their coupling with clear optical fibers to minimize light loss and increase the amount of light collected. We analyzed fiber-surface polishing with aluminum oxide sheets, coating fibers with magnesium oxide, and the use of eight different coupling agents (air, three optical gels, an optical curing agent, ultraviolet light, cyanoacrylate glue, and acetone). We prepared 10 scintillating fiber and clear optical fiber light guide samples to test different coupling methods. To test the coupling, we first cut both the scintillating fiber and the clear optical fiber. Then, we cleaned and polished both ends of both fibers. Finally, we coupled the scintillating fiber with the clear optical fiber in either a polyethylene jacket or a V-grooved support depending on the coupling agent used. To produce more light, we used an ultraviolet lamp to stimulate scintillation. A typical series of similar couplings showed a standard deviation in light-collection efficiency of 10%. This can be explained by differences in the surface preparation quality and alignment of the scintillating fiber with the clear optical fiber. Absence of surface polishing reduced the light collection by approximately 40%, and application of magnesium oxide on the proximal end of the scintillating fiber increased the amount of light collected from the optical fiber by approximately 39%. Of the coupling agents, we obtained the best results using one of the optical gels. Because a large amount of the light produced inside a scintillator is usually lost, better light-collection efficiency will result in improved sensitivity

  20. Illumina sequencing-based analysis of a microbial community enriched under anaerobic methane oxidation condition coupled to denitrification revealed coexistence of aerobic and anaerobic methanotrophs.

    Science.gov (United States)

    Siniscalchi, Luciene Alves Batista; Leite, Laura Rabelo; Oliveira, Guilherme; Chernicharo, Carlos Augusto Lemos; de Araújo, Juliana Calabria

    2017-07-01

    Methane is produced in anaerobic environments, such as reactors used to treat wastewaters, and can be consumed by methanotrophs. The composition and structure of a microbial community enriched from anaerobic sewage sludge under methane-oxidation condition coupled to denitrification were investigated. Denaturing gradient gel electrophoresis (DGGE) analysis retrieved sequences of Methylocaldum and Chloroflexi. Deep sequencing analysis revealed a complex community that changed over time and was affected by methane concentration. Methylocaldum (8.2%), Methylosinus (2.3%), Methylomonas (0.02%), Methylacidiphilales (0.45%), Nitrospirales (0.18%), and Methanosarcinales (0.3%) were detected. Despite denitrifying conditions provided, Nitrospirales and Methanosarcinales, known to perform anaerobic methane oxidation coupled to denitrification (DAMO) process, were in very low abundance. Results demonstrated that aerobic and anaerobic methanotrophs coexisted in the reactor together with heterotrophic microorganisms, suggesting that a diverse microbial community was important to sustain methanotrophic activity. The methanogenic sludge was a good inoculum to enrich methanotrophs, and cultivation conditions play a selective role in determining community composition.

  1. Kinetic study on anaerobic oxidation of methane coupled to denitrification.

    Science.gov (United States)

    Yu, Hou; Kashima, Hiroyuki; Regan, John M; Hussain, Abid; Elbeshbishy, Elsayed; Lee, Hyung-Sool

    2017-09-01

    Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (μ max ) 0.121/d, maximum substrate-utilization rate (q max ) 28.8mmol CH 4 /g cells-d, half maximum-rate substrate concentration (K s ) 83μΜ CH 4 , growth yield (Y) 4.76gcells/mol CH 4 , decay coefficient (b) 0.031/d, and threshold substrate concentration (S min ) 28.8μM CH 4 . Clone library analysis of 16S rRNA and mcrA gene fragments suggested that AOM-D reactions might have occurred via the syntrophic interaction between denitrifying bacteria (e.g., Ignavibacterium, Acidovorax, and Pseudomonas spp.) and hydrogenotrophic methanogens (Methanobacterium spp.), supporting reverse methanogenesis-dependent AOM-D in our culture. High μ max and q max , and low K s for the AOM-D enrichment imply that AOM-D could play a significant role in mitigating atmospheric methane efflux. In addition, these high kinetic features suggest that engineered AOM-D systems may provide a sustainable alternative to nitrogen removal in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Experiments on the interaction between long Josephson junctions and a coplanar strip resonator

    DEFF Research Database (Denmark)

    Davidson, A.; Pedersen, Niels Falsig

    1992-01-01

    Experiments are reported on a new geometry designed to couple long Josephson junction fluxon oscillators to a resonant cavity. The junctions were made with a niobium-aluminum oxide-niobium trilayer process with a critical-current density of around 1000 A/cm2. Various numbers of such junctions wer...

  3. LATTICE: The Lower ATmosphere-Thermosphere-Ionosphere Coupling Experiment

    Science.gov (United States)

    Mlynczak, M. G.; Yee, J. H.

    2017-12-01

    We present the Lower Atmosphere-Thermosphere-Ionosphere Coupling Experiment (LATTICE), which is a candidate mission for proposal to a future NASA Announcement of Opportunity. LATTICE will make the first consistent measurements of global kinetic temperature from the tropopause up to at least 160 km, along with global vector winds from 100 to 160 km at all local times. LATTICE thus provides, for the first time, a consistent picture of the coupling of the terrestrial lower atmosphere to the thermosphere-ionosphere system, which is a major scientific goal outlined in the 2012 Heliophysics Decadal Survey. The core instruments on LATTICE are the Terahertz Limb Sounder (TLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry-II (SABER-II) instrument. The TLS instrument measures the 147 µm (2.04 THz) fine structure line of atomic oxygen. From these measurements TLS will provide kinetic temperature, atomic oxygen density, and vector wind from 100 to at least 160 km altitude. SABER-II is an infrared radiometer and is optically identical to the legacy SABER instrument on the current TIMED satellite. SABER-II is half the mass, half the power, and one-third the volume of the legacy instrument, and expects the same radiometric performance. SABER-II will again measure kinetic temperature from 15 to 110 km and will make measurements of key parameters in the thermosphere-ionosphere system including NO+, the green line and red line emissions, as well as continuing legacy measurements of ozone, water vapor, atomic oxygen, and atomic hydrogen in the mesosphere and lower thermosphere. We will describe the LATTICE mission in detail including other potential instruments for diagnosing thermospheric composition and high latitude energy inputs, and for measuring solar ultraviolet irradiance.

  4. Voltammetry coupled to mass spectrometry in the presence of isotope {sup 18}O labeled water for the prediction of oxidative transformation pathways of activated aromatic ethers: Acebutolol

    Energy Technology Data Exchange (ETDEWEB)

    Bussy, Ugo; Tea, Illa [LUNAM Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse et Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Ferchaud-Roucher, Véronique; Krempf, Michel [Université de Nantes, Plateforme Spectrométrie de Masse, CRNH, SFR Santé F. Bonamy, Institut du Thorax, UMR S1087, IRT-UN, BP 70721, 8 Quai Moncousu, 44007 Nantes cedex 1 (France); Silvestre, Virginie; Galland, Nicolas [LUNAM Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse et Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Jacquemin, Denis [LUNAM Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse et Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Institut Universitaire de France, 103, Boulevard Saint-Michel, 75005 Cedex 5 France (France); Andresen-Bergström, Moa; Jurva, Ulrik [CVGI iMed DMPK, AstraZeneca R and D Mölndal, Mölndal (Sweden); and others

    2013-01-31

    Highlights: ► Voltammetry coupled to mass spectrometry method as a useful tool for on-line predictions of electrochemical transformations. ► Evidence of the O-dealkoxylation reaction pathway of acebutolol in the presence of labeled water. ► New approach for on line EC-MS applications. -- Abstract: The coupling between an electrochemical cell (EC) and a mass spectrometer (MS) is a useful screening tool (EC-MS) to study the oxidative transformation pathways of various electroactive species. For that purpose, we showed that the EC-MS method, carried out in the presence and absence of isotope {sup 18}O labeled water leads not only to a fast identification of oxidation products but also leads to a fast elucidation of the mechanism pathway reaction. We examined herein the case of the electrochemical hydrolysis of activated aromatic ether. Acebutolol (β-blockers) was selected herein as model of activated aromatic ether, and its electrochemical oxidation was examined in both the presence and absence of isotope {sup 18}O labeled water. To elucidate electrochemical hydrolysis pathway reaction: O-dealkylation or O-dealkoxylation, our approach was used to prove its applicability. The electrochemical oxidation mechanism was then elucidated showing an O-dealkoxylation reaction. In addition, density functional theory (DFT) calculations fully support the experimental conclusions.

  5. Contribution of in situ acoustic emission analysis coupled with thermogravimetry to study zirconium alloy oxidation

    International Nuclear Information System (INIS)

    Al Haj, O.; Peres, V.; Serris, E.; Cournil, M.; Grosjean, F.; Kittel, J.; Ropital, F.

    2015-01-01

    Zirconium alloy (zircaloy-4) corrosion behavior under oxidizing atmosphere at high temperature was studied using thermogravimetric experiment associated with acoustic emission analysis. Under a mixture of oxygen and air in helium, an acceleration of the corrosion is observed due to the detrimental effect of nitrogen which produces zirconium nitride. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration is accompanied by an acoustic emission (AE) activity. Most of the acoustic emission bursts were recorded after the kinetic transition or during the cooling of the sample. Acoustic emission signals analysis allows us to distinguish different populations of cracks in the ZrO 2 layer. These cracks have also been observed by SEM on post mortem cross section of oxidized samples and by in-situ microscopy observations on the top surface of the sample during oxidation. The numerous small convoluted thin cracks observed deeper in the zirconia scale are not detected by the AE technique. From these studies we can conclude that mechanisms as irreversible mechanisms, as cracks initiation and propagation, generate AE signals

  6. Coupled assimilation for an intermediated coupled ENSO prediction model

    Science.gov (United States)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  7. Nitrous oxide emissions from European agriculture - an analysis of variability and drivers of emissions from field experiments

    DEFF Research Database (Denmark)

    Rees, R M; Agustin, J; Alberti, G

    2013-01-01

    Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experime......Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot...

  8. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-10-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006 after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.

  9. A novel polygeneration process to co-produce ethylene and electricity from shale gas with zero CO2 emissions via methane oxidative coupling

    International Nuclear Information System (INIS)

    Khojasteh Salkuyeh, Yaser; Adams, Thomas A.

    2015-01-01

    Highlights: • Development of an ethylene plant from shale gases with zero CO 2 emissions. • Oxidative coupling of methane is used for the conversion of gas to ethylene. • Polygeneration strategy is used to improve the profitability of plant. - Abstract: A techno-economic analysis of a novel process to co-produce ethylene and electricity using a recently developed methane oxidative coupling catalyst is presented. Several design variants are considered, featuring the use of traditional gas turbines, chemical looping combustion, and 100% carbon dioxide capture. Mass and energy balance simulations were carried out using Aspen Plus simulations, and particle swarm optimization was used to determine the optimal process design under a variety of market scenarios. A custom model for the gas turbine section was used to ensure that the negative impacts of various cooling strategies were factored into the analysis. The results show that by synergistically co-producing power and ethylene using this catalyst, ethylene can be produced at costs close to traditional steam cracking methods with nearly zero carbon dioxide emissions, even when factoring in the relatively poor conversion and selectivity of the chosen catalyst

  10. Experiments to study the erosive effect of oxide casting streams on structures

    International Nuclear Information System (INIS)

    Stuka, B.; Knauss, H.; Kammerer, B.; Perinic, D.

    1992-04-01

    The experiments performed under an activity of the Nuclear Safety Project (PSF) make a contribution to the study of the erosive effect of oxide casting streams on structures. As aluminothermically generated oxide casting stream, 20 mm in diameter, was applied from 1.0 m dropping height to 40 mm thick horizontal stainless steel plates in free air atmosphere. The test parameters were different temperatures of preheating of the plates (900 and 1200deg C). By means of thermocouples offset in depth in the plates it was possible to record and represent the temperature distribution in the plate correlated with time. Regarding the direct erosive effect of an oxide casting stream as a function of the temperature of plate preheating it appeared that a high initial temperature of the stainless steel plate (1200deg C) causes an increased erosion area at the surface only, but does not exert a macroscopically visible influence on erosion depth. (orig.) [de

  11. Renewable hydrogen production via thermochemical/electrochemical coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Babiniec, Sean Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    A coupled electrochemical/thermochemical cycle was investigated to produce hydrogen from renewable resources. Like a conventional thermochemical cycle, this cycle leverages chemical energy stored in a thermochemical working material that is reduced thermally by solar energy. However, in this concept, the stored chemical energy only needs to be partially, but not fully, capable of splitting steam to produce hydrogen. To complete the process, a proton-conducting membrane is driven to separate hydrogen as it is produced, thus shifting the thermodynamics toward further hydrogen production. This novel coupled-cycle concept provides several benefits. First, the required oxidation enthalpy of the reversible thermochemical material is reduced, enabling the process to occur at lower temperatures. Second, removing the requirement for spontaneous steam-splitting widens the scope of materials compositions, allowing for less expensive/more abundant elements to be used. Lastly, thermodynamics calculations suggest that this concept can potentially reach higher efficiencies than photovoltaic-to-electrolysis hydrogen production methods. This Exploratory Express LDRD involved assessing the practical feasibility of the proposed coupled cycle. A test stand was designed and constructed and proton-conducting membranes were synthesized. While the full proof of concept was not achieved, the individual components of the experiment were validated and new capabilities that can be leveraged by a variety of programs were developed.

  12. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  13. “I had no idea this shame piece was in me”: Couple and family therapists’ experience with learning an evidence-based practice

    Directory of Open Access Journals (Sweden)

    Robert Allan

    2016-12-01

    Full Text Available This study reports on the experience of shame while learning an evidence-based approach to working with couples or families. Couple and family therapists were interviewed about their experience with learning and using an evidence-based practice (EBP and the data was analyzed using a phenomenological approach called interpretative phenomenological analysis. The theme of shame emerged from a number of research participants as part of their development with the EBP they were integrating into their practice. Starting with an exploration of the participants’ experiences and the impact of shame, the paper will then link these experiences with the psychological and sociological research literature about shame.

  14. Alkynes as Allylmetal Equivalents in Redox-Triggered C–C Couplings to Primary Alcohols: (Z)-Homoallylic Alcohols via Ruthenium-Catalyzed Propargyl C–H Oxidative Addition

    Science.gov (United States)

    2015-01-01

    The cationic ruthenium catalyst generated upon the acid–base reaction of H2Ru(CO)(PPh3)3 and 2,4,6-(2-Pr)3PhSO3H promotes the redox-triggered C–C coupling of 2-alkynes and primary alcohols to form (Z)-homoallylic alcohols with good to complete control of olefin geometry. Deuterium labeling studies, which reveal roughly equal isotopic compositions at the allylic and distal vinylic positions, along with other data, corroborate a catalytic mechanism involving ruthenium(0)-mediated allene–aldehyde oxidative coupling to form a transient oxaruthenacycle, an event that ultimately defines (Z)-olefin stereochemistry. PMID:25075434

  15. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring

    Directory of Open Access Journals (Sweden)

    Geng Wu

    2017-07-01

    Full Text Available Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4 formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  16. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring.

    Science.gov (United States)

    Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue'e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang

    2017-01-01

    Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO 4-x S x 2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  17. The grief experience of same-sex couples within an Irish context: tacit acknowledgement.

    Science.gov (United States)

    Glackin, Michelle; Higgins, Agnes

    2008-06-01

    This study sought to explore the grief experience of same sex couples. To date, the majority of research in this area has focused on the bereavement experience of individuals whose partner has died from an AIDS/HIV-related illness. The research design used was descriptive exploratory. A multi-pronged sampling strategy was employed to generate participants. Seven people underwent in-depth interviews once the study had received ethical approval. Data were analysed by coding, comparing, and merging codes into higher order themes. Five themes subsequently emerged that captured the essence of the bereavement experience, namely:'tacit acknowledgement'; 'sculpting the distress'; 'multiple losses'; 'seeking support'; and 'journeying anew.' While not all bereaved gay or lesbian partners experience 'disenfranchized grief', particularly if their relationship with the deceased was not hidden, it is clear from the findings of this study that many of the participants did (Doka, 1989;Wallbank, 1998). Health care professionals need to consider their approach to people who identify themselves as gay or lesbian, if they are to provide support structures (formal and informal) to meet their unique needs.

  18. A New Experiment for the Measurement of nJ(C,P) Coupling Constants Including 3J(C4'i,Pi) and 3J(C4'i,Pi+1) in Oligonucleotides

    International Nuclear Information System (INIS)

    Richter, Christian; Reif, Bernd; Woerner, Karlheinz; Quant, Stefanie; Marino, John P.; Engels, Joachim W.; Griesinger, Christian; Schwalbe, Harald

    1998-01-01

    A new experiment for the measurement of nJ(C,P) coupling constants along the phosphodiester backbone in RNA and DNA based on a quantitative-J HCP experiment is presented. In addition to coupling constants, in which a carbon atom couples to only one phosphorus atom, both the intraresidual 3J(C4'i,Pi) and the sequential 3J(C4'i,Pi+1) for the C4' resonances that couple to two phosphorus atoms can be obtained. Coupling constants obtained by this new method are compared to values obtained from the P-FIDS experiment. Together with 3J(H,P) coupling constants measured using the P-FIDS experiment, the backbone angles β and element of can be determined

  19. Experiments utilizing two coupled TRIGA-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, G [Southern California Edison Co., Rosemead, CA (United States); Jones, B G; Miley, G H [University of Illinois (United States)

    1974-07-01

    An experimental study has been performed on a coupled-core system consisting of two reactors each of which can be made critical by itself, coupled neutronically by a graphite thermal column. Both steady-state and transient measurements were performed on the system. The steady-state measurement consisted of measuring the coupling coefficient between the two reactors. Also, series of measurements were performed while one of the cores was far subcritical and the coupling between the two cores was varied between 1.6 x 10{sup -2} and 1.6 x 10{sup -5} cents by the insertion of a water gap and from 1.6 x 10{sup -2} cents to 6.0 x 10{sup -4} cents by the insertion of a cadmium sheet between the cores. The transient portion of the study was performed by pulsing one of the reactors (the Illinois Advanced TRIGA) and following the pulse into the passive core (the Low Power Reactor Assembly). The first pulse series measured the pulse as it emerged from the thermal column and propagated through the water, where no fuel was present. This provided an analysis of the neutron source to the passive core. The second pulse series was performed with the passive core far subcritical (k{sub eff} {approx_equal} 0.94) and investigated the effects on the transient coupling of the insertion of water gaps of up to 9 inches or a cadmium sheet ({sigma}T = 3.2) between the two cores. Spatial measurements of the pulse in the far subcritical assembly also were performed. The third series of pulses investigated the characteristics of the pulse in the passive core when it was subcritical, just critical, and supercritical, The effects on the FWHM of the pulse in the passive core and on the delay time between the peak of the pulse in the TRIGA and the passive core were measured for the passive core having a k{sub eff} from 0.936 to 1.0015 and the initial period of the pulse in TRIGA varying from 15.6 {+-} .7 ms to 3.58 {+-} .05 ms. The FWHM increased from 13.5 {+-} 0.5 ms to 18.8 {+-} 0.5 ms and delay

  20. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    Science.gov (United States)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  1. Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qingguo; Weber, Walter J., Jr.

    2003-03-26

    This study focuses on elucidation of the reaction behaviors of peroxidase-mediated phenol coupling in the presence of soil/sediment materials. Our goal is a mechanistic understanding of the influences of geosorbent materials on enzymatic coupling reactions in general and the development of methods for predicting such influences. Extensive experimental investigations of coupling reactions were performed under strategically selected conditions in systems containing model geosorbents having different properties and chemical characteristics. The geosorbents tested were found to influence peroxidase-mediated phenol coupling through one or both of two principal mechanisms; i.e., (1) mitigation of enzyme inactivation and/or (2) participation in cross-coupling reactions. Such influences were found to correlate with the chemical characteristics of the sorbent materials and to be simulated well by a modeling approach designed in this paper. The results of the study have important implications for potential engineering implementation and enhancement of enzymatic coupling reactions in soil/subsurface remediation practice.

  2. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    OpenAIRE

    Kaspar, H F; Tiedje, J M

    1981-01-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, whe...

  3. Operating experience gained during the copper oxide plugging incident in Koeberg unit 1 generator stator

    International Nuclear Information System (INIS)

    Mellor, S.P.; Matthee, F.W.

    2002-01-01

    In June 1999 Koeberg's unit 1 started to experience adverse operating conditions which were later ascribed to blockages in the hollow conductors of the generator stator. These blockages were attributed to copper oxide plugs which developed progressively during the following year and culminated in reduced power operation. Many attempts were made to address the plugging by implementing various off-line and on-line cleaning processes. Subsequent to a successful on-line cleaning operation, the unit was returned to full power and the chemistry regime for the stator cooling water system was changed to allow for operation at an elevated pH. This paper discusses Koeberg's experience with copper oxide blockages, describes the initial indications of the problem and the impact on the operating parameters. The remainder of the paper focuses on the actions taken to address the deteriorating situation and the different cleaning methods implemented to remove the copper oxide deposits. The paper concludes with the current status of the unit 1 generator stator and the lessons learned during the resolution of this problem. (authors)

  4. Operating experience gained during the copper oxide plugging incident in Koeberg unit 1 generator stator

    Energy Technology Data Exchange (ETDEWEB)

    Mellor, S.P.; Matthee, F.W. [ESKOM, Koeberg Nuclear Power Station (South Africa)

    2002-07-01

    In June 1999 Koeberg's unit 1 started to experience adverse operating conditions which were later ascribed to blockages in the hollow conductors of the generator stator. These blockages were attributed to copper oxide plugs which developed progressively during the following year and culminated in reduced power operation. Many attempts were made to address the plugging by implementing various off-line and on-line cleaning processes. Subsequent to a successful on-line cleaning operation, the unit was returned to full power and the chemistry regime for the stator cooling water system was changed to allow for operation at an elevated pH. This paper discusses Koeberg's experience with copper oxide blockages, describes the initial indications of the problem and the impact on the operating parameters. The remainder of the paper focuses on the actions taken to address the deteriorating situation and the different cleaning methods implemented to remove the copper oxide deposits. The paper concludes with the current status of the unit 1 generator stator and the lessons learned during the resolution of this problem. (authors)

  5. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.

    Science.gov (United States)

    Sen, Sanghamitra; Sadeghifar, Hasan; Argyropoulos, Dimitris S

    2013-10-14

    Despite its aromatic and polymeric nature, the heterogeneous, stochastic, and reactive characteristics of softwood kraft lignin seriously limit its potential for thermoplastic applications. Our continuing efforts toward creating thermoplastic lignin polymers are now focused at exploring propargylation derivatization chemistry and its potential as a versatile novel route for the eventual utilization of technical lignins with a significant amount of molecular control. To do this, we initially report the systematic propargylation of softwood kraft lignin. The synthesized derivatives were extensively characterized with thermal methods (DSC, TGA), (1)H, (13)C, and quantitative (31)P NMR and IR spectroscopies. Further on, we explore the versatile nature of the lignin pendant propargyl groups by demonstrating two distinct chain extension chemistries; the solution-based, copper-mediated, oxidative coupling and the thermally induced, solid-state, Claissen rearrangement polymerization chemistries. Overall, we show that it is possible to modulate the reactivity of softwood kraft lignin via a combination of methylation and chain extension providing a rational means for the creation of higher molecular weight polymers with the potential for thermoplastic materials and carbon fibers with the desired control of structure-property relations.

  6. Theory of the Spin Galvanic Effect at Oxide Interfaces

    Science.gov (United States)

    Seibold, Götz; Caprara, Sergio; Grilli, Marco; Raimondi, Roberto

    2017-12-01

    The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3 and SrTiO3 . Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t2 g orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.

  7. Complexation Effect on Redox Potential of Iron(III)-Iron(II) Couple: A Simple Potentiometric Experiment

    Science.gov (United States)

    Rizvi, Masood Ahmad; Syed, Raashid Maqsood; Khan, Badruddin

    2011-01-01

    A titration curve with multiple inflection points results when a mixture of two or more reducing agents with sufficiently different reduction potentials are titrated. In this experiment iron(II) complexes are combined into a mixture of reducing agents and are oxidized to the corresponding iron(III) complexes. As all of the complexes involve the…

  8. Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions.

    Science.gov (United States)

    Weißbach, Max; Thiel, Paul; Drewes, Jörg E; Koch, Konrad

    2018-05-01

    A Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) was performed over five months to investigate the performance and dynamics of nitrogen elimination and nitrous oxide production from digester reject water under real feed-stream conditions. A 93% conversion of ammonium to nitrite could be maintained for adapted seed sludge in the first stage (nitritation). The second stage (nitrous denitritation), inoculated with conventional activated sludge, achieved a conversion of 70% of nitrite to nitrous oxide after only 12 cycles of operation. The development of an alternative feeding strategy and the addition of a coagulant (FeCl 3 ) facilitated stable operation and process intensification. Under steady-state conditions, nitrite was reliably eliminated and different nitrous oxide harvesting strategies were assessed. Applying continuous removal increased N 2 O yields by 16% compared to the application of a dedicated stripping phase. These results demonstrate the feasible application of the CANDO process for nitrogen removal and energy recovery from ammonia rich wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Effects of quantum coupling on the performance of metal-oxide

    Indian Academy of Sciences (India)

    Based on the analysis of the three-dimensional Schrödinger equation, the effects of quantum coupling between the transverse and the longitudinal components of channel electron motion on the performance of ballistic MOSFETs have been theoretically investigated by self-consistently solving the coupled ...

  10. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    Science.gov (United States)

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  11. Destruction of commercial pesticides by cerium redox couple mediated electrochemical oxidation process in continuous feed mode

    International Nuclear Information System (INIS)

    Balaji, Subramanian; Chung, Sang Joon; Ryu, Jae-Yong; Moon, Il Shik

    2009-01-01

    Mediated electrochemical oxidation was carried out for the destruction of commercial pesticide formulations using cerium(IV) in nitric acid as the mediator electrolyte solution in a bench scale set up. The mediator oxidant was regenerated in situ using an electrochemical cell. The real application of this sustainable process for toxic organic pollutant destruction lies in its ability for long term continuous operation with continuous organic feeding and oxidant regeneration with feed water removal. In this report we present the results of fully integrated MEO system. The task of operating the continuous feed MEO system for a long time was made possible by continuously removing the feed water using an evaporator set up. The rate of Ce(IV) regeneration in the electrochemical cell and the consumption for the pesticide destruction was matched based on carbon content of the pesticides. It was found that under the optimized experimental conditions for Ce(III) oxidation, organic addition and water removal destruction efficiency of ca. 99% was obtained for all pesticides studied. It was observed that the Ce(IV) concentration was maintained nearly the same throughout the experiment. The stable operation for 6 h proved that the process can be used for real applications and for possible scale up for the destruction of larger volumes of toxic organic wastes.

  12. Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(III) reduction in a riparian zone.

    Science.gov (United States)

    Ding, Bangjing; Li, Zhengkui; Qin, Yunbin

    2017-12-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction (termed Feammox) is a recently discovered pathway of nitrogen cycling. However, little is known about the pathways of N transformation via Feammox process in riparian zones. In this study, evidence for Feammox in riparian zones with or without vegetation cover was demonstrated using isotope tracing technique and high-throughput sequencing technology. The results showed that Feammox could occur in riparian zones, and demonstrated that N 2 directly from Feammox was dominant Feammox pathway. The Feammox rates in vegetated soil samples was 0.32-0.37 mg N kg -1 d -1 , which is higher than that in un-vegetated soil samples (0.20 mg N kg -1 d -1 ). Moreover, the growth of vegetation led to a 4.99-6.41% increase in the abundance of iron reducing bacteria (Anaeromyxobacter, Pseudomonas and Geobacter) and iron reducing bacteria play an essential role in Feammox process. An estimated loss of 23.7-43.9 kg N ha -1 year -1 was associated with Feammox in the examined riparian zone. Overall, the co-occurrence of ammonium oxidation and iron reduction suggest that Feammox can play an essential role in the pathway of nitrogen removal in riparian zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biotechnological aspects of anaerobic oxidation of methane coupled to sulfate reduction

    NARCIS (Netherlands)

    Meulepas, R.J.W.

    2009-01-01

    Sulfate reduction (SR) can be used for the removal and recovery of metals and oxidized sulfur compounds from waste streams. Sulfate-reducing bacteria reduce oxidized sulfur compounds to sulfide. Subsequently, sulfide can precipitate dissolved metals or can be oxidized to elemental sulfur. Both metal

  14. Weathering of the Rio Blanco Quartz Diorite, Luquillo Mountains, Puerto Rico: Coupling Oxidation, Dissolution, And Fracturing

    International Nuclear Information System (INIS)

    Buss, H.L.; Sak, P.B.; Webb, S.M.; Brantley, S.L.

    2008-01-01

    In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (∼2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ΔV of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction. Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 (angstrom), forming 'altered biotite'. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 x 10 -14 mol biotite m -2 s -1 . Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 (micro)m resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone. Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 x 10 -13 mol hornblende m -2 s -1 : the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the

  15. Inductively coupled plasma optical emission spectrometry analysis of lanthanum, samarium and gadolinium oxides for rare earths impurities

    International Nuclear Information System (INIS)

    Reino, L.C.P.; Lordello, A.R.

    1990-09-01

    An inductively coupled plasma optical emission spectrometry method is described for the determination of Sm, Eu, La, Gd, Dy, Pr, Ho, Nd, Tb and Y in purified oxides of lanthanum, samarium and gadolinium. The method enables a simple, precise and readily available determination. Dissolution of the samples is achieved with diluted hydrochloric acid (1:1). The solutions are diluted to volume for a concentration of 1mg/ml. The lowest determination limit is 0,01% for most elements and 0,05 or 0,1% for a few rare earths in samarium and gadolinium matrices. Lanthanum, Samarium and Gadolinium concentrates with purity grade of 99,9%, 99,6% and 99,8%, respectively, can be analysed by this procedure. (author)

  16. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  17. Enhanced photoelectrochemical activity in all-oxide heterojunction devices based on correlated "metallic" oxides.

    Science.gov (United States)

    Apgar, Brent A; Lee, Sungki; Schroeder, Lauren E; Martin, Lane W

    2013-11-20

    n-n Schottky, n-n ohmic, and p-n Schottky heterojunctions based on TiO2 /correlated "metallic" oxide couples exhibit strong solar-light absorption driven by the unique electronic structure of the "metallic" oxides. Photovoltaic and photocatalytic responses are driven by hot electron injection from the "metallic" oxide into the TiO2 , enabling new modalities of operation for energy systems. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Predicting nitrous oxide emissions from manure properties and soil moisture: An incubation experiment

    DEFF Research Database (Denmark)

    Baral, Khagendra Raj; Arthur, Emmanuel; Olesen, Jørgen Eivind

    2016-01-01

    Field-applied manure is a source of essential plant nutrients, but benefits may be partly offset by high rates of nitrous oxide (N2O) emissions, as modified by manure characteristics and soil properties. In a 28-d incubation experiment we quantified short-term emissions of N2O from a sandy loam...

  19. Cognitive-behavioral couple therapy.

    Science.gov (United States)

    Epstein, Norman B; Zheng, Le

    2017-02-01

    This article describes how cognitive-behavioral couple therapy (CBCT) provides a good fit for intervening with a range of stressors that couples experience from within and outside their relationship. It takes an ecological perspective in which a couple is influenced by multiple systemic levels. We provide an overview of assessment and intervention strategies used to modify negative behavioral interaction patterns, inappropriate or distorted cognitions, and problems with the experience and regulation of emotions. Next, we describe how CBCT can assist couples in coping with stressors involving (a) a partner's psychological disorder (e.g. depression), (b) physical health problems (e.g. cancer), (c) external stressors (e.g. financial strain), and (d) severe relational problems (e.g. partner aggression). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Coupled Thermoelectric Devices: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Jaziel A. Rojas

    2016-07-01

    Full Text Available In this paper, we address theoretically and experimentally the optimization problem of the heat transfer occurring in two coupled thermoelectric devices. A simple experimental set up is used. The optimization parameters are the applied electric currents. When one thermoelectric is analysed, the temperature difference Δ T between the thermoelectric boundaries shows a parabolic profile with respect to the applied electric current. This behaviour agrees qualitatively with the corresponding experimental measurement. The global entropy generation shows a monotonous increase with the electric current. In the case of two coupled thermoelectric devices, elliptic isocontours for Δ T are obtained in applying an electric current through each of the thermoelectrics. The isocontours also fit well with measurements. Optimal figure of merit is found for a specific set of values of the applied electric currents. The entropy generation-thermal figure of merit relationship is studied. It is shown that, given a value of the thermal figure of merit, the device can be operated in a state of minimum entropy production.

  1. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Changxiu [School of Environment, Tsinghua University, Beijing 100084 (China); Jiang, Jianguo, E-mail: jianguoj@mail.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China (China); Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing (China); Li, De' an [School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-11-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO{sub 4}{sup 3−} concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton.

  2. Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus

    International Nuclear Information System (INIS)

    Gong, Changxiu; Jiang, Jianguo; Li, De'an

    2015-01-01

    We focused on the effects of ultrasound and Fenton reagent in ultrasonic coupling Fenton oxidation (U + F) pre-treatment processes on the disintegration of wastewater treatment plant sludge. The results demonstrated that U + F treatment could significantly increase soluble COD, TOC, total N, proteins, total P and PO 4 3− concentrations in sludge supernatant. This method was more effective than ultrasonic (U) or Fenton oxidation (F) treatment alone. U + F treatment increased the soluble COD by 2.1- and 1.4-fold compared with U and F alone, respectively. U + F treatment increased the total N and P by 1.7- and 2.2-fold, respectively, compared with F alone. After U + F treatment, sludge showed a considerably finer particle size and looser microstructure based on scanning electron microscopy, and the highest OH· signal intensity increased from 568.7 by F treatment to 1106.3 using electron spin resonance. This demonstrated that U + F treatment induces disintegration of sludge and release of organic carbon, nitrogen and phosphorus better. - Highlights: • Combined ultrasound–Fenton pre-treatment was proposed for sludge disintegration. • Ultrasound–Fenton significantly increased carbon, nitrogen and phosphorus release. • Higher level of OH· was detected after combined disintegration than Fenton

  3. Analysis and optimization of coupled windings in magnetic resonant wireless power transfer systems with orthogonal experiment method

    DEFF Research Database (Denmark)

    Yudi, Xiao; Xingkui, Mao; Mao, Lin

    2017-01-01

    The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual...... inductance model. Then the design method with orthogonal experiments and finite element method simulation is proposed to maximize the kQ due to low precise analytical model of AC resistance and inductance for PCB windings at high- frequency. The method can reduce the design iterations and thereby can get...... more optimal design results. The experiments verified the design objective of kQ as well as the design method effectively. In the optimal PCB windings prototype at operating frequency of 4 MHz, the kQ and the maximum efficiency are increased by about 12% and 4% respectively....

  4. Analysis and optimisation of coupled winding in magnetic resonant wireless power transfer systems with orthogonal experiment results

    DEFF Research Database (Denmark)

    Yudi, Xiao; Xingkui, Mao; Mao, Lin

    2017-01-01

    The coupled magnetic resonant unit (CMRU) has great effect on the transmitting power capability and efficiency of magnetic resonant wireless power transfer system. The key objective i.e. the efficiency coefficient kQ is introduced in the design of CMRU or the coupled windings based on the mutual...... inductance model. Then the design method with orthogonal experiments and finite element method simulation is proposed to maximize the kQ due to low precise analytical model of AC resistance and inductance for PCB windings at high- frequency. The method can reduce the design iterations and thereby can get...... more optimal design results. The experiments verified the design objective of kQ as well as the design method effectively. In the optimal PCB windings prototype at operating frequency of 4 MHz, the kQ and the maximum efficiency are increased by about 12% and 4% respectively....

  5. Kinetics of Carbon Monoxide Electro-Oxidation in Solid-Oxide Fuel Cells from Ni-YSZ Patterned-Anode Measurements

    KAUST Repository

    Hanna, J.; Lee, W. Y.; Ghoniem, A. F.

    2013-01-01

    A mathematical model is developed around the framework of a reduced mechanism describing electrochemical oxidation of carbon monoxide on Ni-YSZ patterned anodes. The electro-oxidation mechanism involves three reactions, one describing adsorption/ desorption of COonNi, and two single-electron charge-transfer steps inwhich the surface adsorbate CO(Ni) participates directly. These steps are coupled with surface transport in a reaction-diffusion model for which analytic equilibrium and steady-state solutions are derived. As much as possible, we make use of existing, independent, published information about heterogeneous chemistry, surface transport, and other model parameters. The only unknowns in our model are taken to be the kinetic rate constants of the electrochemical reactions, which we evaluate by fitting the model predictions to previously published patterned-anode experiments [B. Habibzadeh, Ph.D. Thesis, University of Maryland, College Park, MD, USA (2007)]. The results show that diffusion of CO on the Ni surface to the three-phase boundary is the rate-controlling process for CO electro-oxidation. Moreover, from a reaction standpoint, the charge-transfer process is dominated by a slow step involving CO(Ni). These findings collectively demonstrate the critical dependence of the electro-oxidation process to the direct participation of CO. © 2013 The Electrochemical Society. All rights reserved.

  6. Kinetics of Carbon Monoxide Electro-Oxidation in Solid-Oxide Fuel Cells from Ni-YSZ Patterned-Anode Measurements

    KAUST Repository

    Hanna, J.

    2013-04-17

    A mathematical model is developed around the framework of a reduced mechanism describing electrochemical oxidation of carbon monoxide on Ni-YSZ patterned anodes. The electro-oxidation mechanism involves three reactions, one describing adsorption/ desorption of COonNi, and two single-electron charge-transfer steps inwhich the surface adsorbate CO(Ni) participates directly. These steps are coupled with surface transport in a reaction-diffusion model for which analytic equilibrium and steady-state solutions are derived. As much as possible, we make use of existing, independent, published information about heterogeneous chemistry, surface transport, and other model parameters. The only unknowns in our model are taken to be the kinetic rate constants of the electrochemical reactions, which we evaluate by fitting the model predictions to previously published patterned-anode experiments [B. Habibzadeh, Ph.D. Thesis, University of Maryland, College Park, MD, USA (2007)]. The results show that diffusion of CO on the Ni surface to the three-phase boundary is the rate-controlling process for CO electro-oxidation. Moreover, from a reaction standpoint, the charge-transfer process is dominated by a slow step involving CO(Ni). These findings collectively demonstrate the critical dependence of the electro-oxidation process to the direct participation of CO. © 2013 The Electrochemical Society. All rights reserved.

  7. Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.

    2008-04-01

    Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution

  8. Radical O-O coupling reaction in diferrate-mediated water oxidation studied using multireference wave function theory.

    Science.gov (United States)

    Kurashige, Yuki; Saitow, Masaaki; Chalupský, Jakub; Yanai, Takeshi

    2014-06-28

    The O-O (oxygen-oxygen) bond formation is widely recognized as a key step of the catalytic reaction of dioxygen evolution from water. Recently, the water oxidation catalyzed by potassium ferrate (K2FeO4) was investigated on the basis of experimental kinetic isotope effect analysis assisted by density functional calculations, revealing the intramolecular oxo-coupling mechanism within a di-iron(vi) intermediate, or diferrate [Sarma et al., J. Am. Chem. Soc., 2012, 134, 15371]. Here, we report a detailed examination of this diferrate-mediated O-O bond formation using scalable multireference electronic structure theory. High-dimensional correlated many-electron wave functions beyond the one-electron picture were computed using the ab initio density matrix renormalization group (DMRG) method along the O-O bond formation pathway. The necessity of using large active space arises from the description of complex electronic interactions and varying redox states both associated with two-center antiferromagnetic multivalent iron-oxo coupling. Dynamic correlation effects on top of the active space DMRG wave functions were additively accounted for by complete active space second-order perturbation (CASPT2) and multireference configuration interaction (MRCI) based methods, which were recently introduced by our group. These multireference methods were capable of handling the double shell effects in the extended active space treatment. The calculations with an active space of 36 electrons in 32 orbitals, which is far over conventional limitation, provide a quantitatively reliable prediction of potential energy profiles and confirmed the viability of the direct oxo coupling. The bonding nature of Fe-O and dual bonding character of O-O are discussed using natural orbitals.

  9. Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Appelo, C. A. J.

    2000-01-01

    Cl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe21 reacts with MnO2 producing Fe......The reduction of Mn-oxide by Fe21 was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement...... of adsorbed Ca21 with Mg21. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the Fe...

  10. Fenton Process Coupled to Ultrasound and UV Light Irradiation for the Oxidation of a Model Pollutant

    Directory of Open Access Journals (Sweden)

    Karen E. Barrera-Salgado

    2016-01-01

    Full Text Available The Fenton process coupled to photosonolysis (UV light and Us, using Fe2O3 catalyst supported on Al2O3, was used to oxidize a model pollutant like acid green 50 textile dye (AG50. Dye degradation was followed by AG50 concentration decay analyses. It was observed that parameters like iron content on a fixed amount of catalyst supporting material, catalyst annealing temperature, initial dye concentration, and the solution pH influence the overall treatment efficiency. High removal efficiencies of the model pollutant are achieved. The stability and reusability tests of the Fe2O3 catalyst show that the catalyst can be used up to three cycles achieving high discoloration. Thus, this catalyst is highly efficient for the degradation of AG50 in the Fenton process.

  11. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  12. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    Science.gov (United States)

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly

  13. Fundamental insight in soot oxidation over a Ag/Co3O4 catalyst by means of Environmental TEM

    DEFF Research Database (Denmark)

    Gardini, Diego; Christiansen, J. M.; Jensen, Anker Degn

    A novel Ag/Co3O4 catalyst for low-temperature soot oxidation has been studied by means of environmental TEM in order to get fundamental insight in the oxidation mechanism. Soot particles generated in diesel engines are responsible for respiratory diseases, lung cancer and affect the climate both...... on preparation method, degree of contact with the soot and temperature range. In order to fully understand the role of the single constituents and the influence of different operating conditions in the overall catalytic activity, flow reactor experiments have been coupled with in situ soot oxidation...

  14. Fabrication experience with mixed-oxide LWR fuels at the BELGONUCLEAIRE plant

    International Nuclear Information System (INIS)

    Vanhellemont, G.

    1979-01-01

    For nearly 20 years BELGONUCLEAIRE has been involved in a steadily growing effort to increase its production of mixed oxides. This programme has ranged from basic research and process development through a pilot-scale unit to today's mixed-oxide fuel fabrication plant at Dessel, which has been in operation for just over 5 years. The reference fabrication flow sheet includes UO 2 , PuO 2 and a scraped powder preparation, sintered ground pellets as well as rod fabrication and assembling. With regard to quality, attention is especially paid to the process monitoring and quality controls at the qualification step and during the routine production. Entirely different types of thermal UO 2 -PuO 2 fuel pellets, rods and assemblies have been manufactured for PWR and BWR operation. For these fabrications, some diagrams of the results with regard to the required technical specifications are presented. Special emphasis is placed on the occasional deviations of some finished products from the specifications and on the solutions applied to avoid such problems. Concerning the actual capacity of the mixed-oxide fuel fabrication plant, several limiting factors due to the nature of plutonium itself are discussed. Taking into account all these ambient limitations, a reference PWR mixed-oxide fuel output of nominally 18 t/a is obtained. The industrial feasibility of UO 2 -PuO 2 fuel fabrication has been thoroughly demonstrated by the present BELGONUCLEAIRE plant. The experience obtained has led to progressive improvements of the fabrication process and adaptation of the product controls in order to ensure the requested quality levels. (author)

  15. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material

    International Nuclear Information System (INIS)

    Chang, Xueting; Sun, Shibin; Dong, Lihua; Hu, Xiong; Yin, Yansheng

    2014-01-01

    Graphical abstract: Electrochromic mechanism of tungsten oxide nanowires-reduced graphene oxide composite. - Highlights: • A novel inorganic-nano-carbon hybrid composite was prepared. • The hybrid composite has sandwich-like structure. • The hybrid composite exhibited high-quality electrohcromic performance. - Abstract: In this work, we report the synthesis of a novel hybrid electrochromic composite through nucleation and growth of ultrathin tungsten oxide nanowires on graphene oxide sheets using a facile solvothermal route. The competition between the growth of tungsten oxide nanowires and the reduction of graphene oxide sheets leads to the formation of sandwich-structured tungsten oxide-reduced graphene oxide composite. Due to the strongly coupled effect between the ultrathin tungsten oxide nanowires and the reduced graphene oxide nanosheets, the novel electrochromic composite exhibited high-quality electrochromic performance with fast color-switching speed, good cyclic stability, and high coloration efficiency. The present tungsten oxide-reduced graphene oxide composite represents a new approach to prepare other inorganic-reduced graphene oxide hybrid materials for electrochemical applications

  16. On the effect of the Fe(2+)/Fe(3+) redox couple on oxidation of carbon in hot H3PO4

    Science.gov (United States)

    Dhar, H. P.; Christner, L. G.; Kush, A. K.

    1986-01-01

    Oxidation studies of graphite:glassy carbon composites have been carried out at 1 and 4.7 atm. pressures in conc. H3PO4 in the presence and absence of iron ions. The concentration of the acid was varied over 85-100 wt pct, and of the iron ions over 30-300 ppm; the temperature varied over 190-210 C. Unlike the effect of Fe, which has been observed to increase the corrosion of carbon in sulphuric acid, the corrosion in phosphoric acid was observed to be slightly decreased or not at all affected. This result arises because of the catalytic reduction of the oxidized surface groups of carbon by Fe(2+) ions. The catalytic reduction is possible because under the experimental conditions the redox potential of the Fe(2+)/Fe(3+) couple is lower than the open-circuit voltage of carbon.

  17. Parenting experiences of couples living with human immunodeficiency virus: a qualitative study from rural Southern Malawi.

    Science.gov (United States)

    Gombachika, Belinda Chimphamba; Sundby, Johanne; Chirwa, Ellen; Malata, Address

    2014-01-01

    The advent of antiretroviral therapy (ART) has allowed couples living with human immunodeficiency virus (HIV) to live longer and healthier lives. The reduction in the mother-to-child transmission of HIV has encouraged some people living with HIV (PLWH) to have children. However, little is known about the parenting experiences of couples living with HIV (CLWH). The aim of this qualitative study was to explore and describe parenting experiences of seroconcordant couples who have a child while living with HIV in Malawi. Data were collected using in-depth interviews with 14 couples purposively sampled in matrilineal Chiradzulu and patrilineal Chikhwawa communities from July to December 2010. The research findings shows that irrespective of kinship organization, economic hardships, food insecurity, gender-specific role expectations and conflicting information from health institutions and media about sources of support underpin their parenting roles. In addition, male spouses are directly involved in household activities, childcare and child feeding decisions, challenging the existing stereotyped gender norms. In the absence of widow inheritance, widows from patrilineal communities are not receiving the expected support from the deceased husband relatives. Finally, the study has shown that CLWH are able to find solutions for the challenges they encounter. Contrary to existing belief that such who have children depend solely on public aid. Such claims without proper knowledge of local social cultural contexts, may contribute to stigmatizing CLWH who continue to have children. The study is also relevant to PLWH who, although not parents themselves, are confronted with a situation where they have to accept responsibility for raising children from their kin. We suggest the longer-term vision for ART wide access in Malawi to be broadened beyond provision of ART to incorporate social and economic interventions that support the rebuilding of CLWH social and economic lives. The

  18. The gender gap in relation to happiness and preferences in married couples after childbirth: evidence from a field experiment in rural Ghana.

    Science.gov (United States)

    Kamiya, Yusuke; Akpalu, Bright; Mahama, Emmanuel; Ayipah, Emmanuel Kwesi; Owusu-Agyei, Seth; Hodgson, Abraham; Shibanuma, Akira; Kikuchi, Kimiyo; Jimba, Masamine

    2017-03-15

    How does the gap in preferences between married couples affect their happiness after childbirth? Are couples that share similar preferences happier? In recent years, gender, marriage, and happiness have been considered to be key issues in public health research. Although much research has examined the happiness status of married couples, practically no study has explored the gender gap in relation to happiness and the preferences of married couples after childbirth. Therefore, our study was conducted to assess the association between the preference gap and the happiness status among married couples in the afterbirth period. We conducted a field experiment in rural communities in the Brong-Ahafo region of Ghana. Participants were 80 married couples who had experienced childbirth within 2 years prior to the survey. As preference indicators, we measured trust, reciprocity, altruism, and risk lovingness through an economic experiment. Then, we assessed how, for a couple, the gap between these preferences affected their happiness. Wives' happiness was positively associated with the absolute value of the gap in risk lovingness between a couple (OR = 4.83, p = 0.08), while husbands' happiness was negatively associated with the gap in trust (OR = -3.58, p = 0.04) or altruism (OR = -3.33, p = 0.02). Within a couple, wives felt greater happiness than their husbands if there was a wider gap in trust (OR = 6.22, p = 0.01), reciprocity (OR = 2.80, p = 0.01), or risk lovingness (OR = 3.81, p = 0.07). The gender gaps in the preference indicators were found to be closely associated with the happiness levels between married couples after childbirth. For the further improvement of maternal and child health, we must consider the gender gaps between couples in relation to happiness and preferences.

  19. Relation of extended Van Hove singularities to high-temperature superconductivity within strong-coupling theory

    International Nuclear Information System (INIS)

    Radtke, R.J.; Norman, M.R.

    1994-01-01

    Recent angle-resolved photoemission (ARPES) experiments have indicated that the electronic dispersion in some of the cuprates possesses an extended saddle point near the Fermi level which gives rise to a density of states that diverges like a power law instead of the weaker logarithmic divergence usually considered. We investigate whether this strong singularity can give rise to high transition temperatures by computing the critical temperature T c and isotope effect coefficient α within a strong-coupling Eliashberg theory which accounts for the full energy variation of the density of states. Using band structures extracted from ARPES measurements, we demonstrate that, while the weak-coupling solutions suggest a strong influence of the strength of the Van Hove singularity on T c and α, strong-coupling solutions show less sensitivity to the singularity strength and do not support the hypothesis that band-structure effects alone can account for either the large T c 's or the different T c 's within the copper oxide family. This conclusion is supported when our results are plotted as a function of the physically relevant self-consistent coupling constant, which shows universal behavior at very strong coupling

  20. Parenting experiences of couples living with human ...

    African Journals Online (AJOL)

    Belinda Chimphamba Gombachika

    2014-05-12

    May 12, 2014 ... Data were collected using in-depth interviews with 14 couples purposively sampled in matrilineal. Chiradzulu ..... of a translation was verified by an independent translator who ... formal jobs apart from owning small gardens.

  1. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  2. Coupling Processes and Experiences of Never Married Heterosexual Black Men and Women: A Phenomenological Study.

    Science.gov (United States)

    Awosan, Christiana I; Hardy, Kenneth V

    2017-07-01

    Over the past decades, the decline in Black marriages and the upsurge of never-married Blacks have stimulated much theoretical focus, but researchers conducted few studies on never-married heterosexual Black adults' coupling unions. Guided by an integrated framework of Africana womanism and symbolic interactionism, this qualitative hermeneutic phenomenological study used comprehensive individual interviews to explore the experiences of 26 never-married heterosexual Black men and women between the ages 25 and 35 about their attempts to cultivate and maintain intimate romantic relationships as well as their desire for marriage. Findings revealed mixed emotions from participants' lived experiences in developing and sustaining romantic relationships. Clinical implications highlighted the need to effectively attend to Black romantic relationships and experiences in their sociohistorical and sociocultural contexts. © 2017 American Association for Marriage and Family Therapy.

  3. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    Science.gov (United States)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe

  4. O-O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis.

    Science.gov (United States)

    Xie, Yan; Shaffer, David W; Concepcion, Javier J

    2018-04-30

    A deeper mechanistic understanding of the key O-O bond formation step of water oxidation by the [Ru(bda)(L) 2 ] (bdaH 2 = 2,2'-bipyridine-6,6'-dicarboxylic acid; L is a pyridine or isoquinoline derivative) family of catalysts is reached through harmonious experimental and computational studies of two series of modified catalysts with systematic variations in the axial ligands. The introduction of halogen and electron-donating substituents in [Ru(bda)(4-X-py) 2 ] and [Ru(bda)(6-X-isq) 2 ] (X is H, Cl, Br, and I for the pyridine series and H, F, Cl, Br, and OMe for the isoquinoline series) enhances the noncovalent interactions between the axial ligands in the transition state for the bimolecular O-O coupling, resulting in a lower activation barrier and faster catalysis. From detailed transition state calculations in combination with experimental kinetic studies, we find that the main contributor to the free energy of activation is entropy due to the highly organized transition states, which is contrary to other reports. Previous work has considered only the electronic influence of the substituents, suggesting electron-withdrawing groups accelerate catalysis, but we show that a balance between polarizability and favorable π-π interactions is the key, leading to rationally devised improvements. Our calculations predict the catalysts with the lowest Δ G ⧧ for the O-O coupling step to be [Ru(bda)(4-I-py) 2 ] and [Ru(bda)(6,7-(OMe) 2 -isq) 2 ] for the pyridine and isoquinoline families, respectively. Our experimental results corroborate these predictions: the turnover frequency for [Ru(bda)(4-I-py) 2 ] (330 s -1 ) is a 10-fold enhancement with respect to that of [Ru(bda)(py) 2 ], and the turnover frequency for [Ru(bda)(6-OMe-isq) 2 ] reaches 1270 s -1 , two times faster than [Ru(bda)(isq) 2 ].

  5. Coupling between particle and heat transport during power modulation experiments in Tore Supra

    International Nuclear Information System (INIS)

    Zou, X.L.; Giruzzi, G.; Artaud, J.F.; Bouquey, F.; Bremond, S.; Clary, J.; Darbos, C.; Eury, S.P.; Lennholm, M.; Magne, R.; Segui, J.L.

    2004-01-01

    Power modulations are a powerful tool often used to investigate heat transport processes in tokamaks. In some situations, this could also be an interesting method for the investigation of the particle transport due to the anomalous pinch. Low frequency (∼ 1 Hz) power modulation experiments, using both electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH), have been performed in the Tore Supra tokamak. Strong coupling has been observed between the temperature and density modulations during the low frequency ECRH and ICRH modulation experiments. It has been shown that mechanisms as outgassing, Ware pinch effect, curvature driven pinch are not likely to be responsible for this density modulation. Because of its dependence on temperature or temperature gradient, the thermodiffusion is a serious candidate to be the driving source for this density modulation. This analysis shows that low frequency power modulation experiments have a great potential for the investigation of the anomalous particle pinch in tokamaks. Future plans will include the use of more precise density profile measurements using X-mode reflectometry

  6. Coupling between particle and heat transport during power modulation experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Zou, X.L.; Giruzzi, G.; Artaud, J.F.; Bouquey, F.; Bremond, S.; Clary, J.; Darbos, C.; Eury, S.P.; Lennholm, M.; Magne, R.; Segui, J.L

    2004-07-01

    Power modulations are a powerful tool often used to investigate heat transport processes in tokamaks. In some situations, this could also be an interesting method for the investigation of the particle transport due to the anomalous pinch. Low frequency ({approx} 1 Hz) power modulation experiments, using both electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH), have been performed in the Tore Supra tokamak. Strong coupling has been observed between the temperature and density modulations during the low frequency ECRH and ICRH modulation experiments. It has been shown that mechanisms as outgassing, Ware pinch effect, curvature driven pinch are not likely to be responsible for this density modulation. Because of its dependence on temperature or temperature gradient, the thermodiffusion is a serious candidate to be the driving source for this density modulation. This analysis shows that low frequency power modulation experiments have a great potential for the investigation of the anomalous particle pinch in tokamaks. Future plans will include the use of more precise density profile measurements using X-mode reflectometry.

  7. Exciton-polaritons in cuprous oxide: Theory and comparison with experiment

    Science.gov (United States)

    Schweiner, Frank; Ertl, Jan; Main, Jörg; Wunner, Günter; Uihlein, Christoph

    2017-12-01

    The observation of giant Rydberg excitons in cuprous oxide (Cu2O ) up to a principal quantum number of n =25 by T. Kazimierczuk et al. [Nature (London) 514, 343 (2014), 10.1038/nature13832] inevitably raises the question whether these quasiparticles must be described within a multipolariton framework since excitons and photons are always coupled in the solid. In this paper we present the theory of exciton-polaritons in Cu2O . To this end we extend the Hamiltonian which includes the complete valence-band structure, the exchange interaction, and the central-cell corrections effects, and which has been recently deduced by F. Schweiner et al. [Phys. Rev. B 95, 195201 (2017), 10.1103/PhysRevB.95.195201], for finite values of the exciton momentum ℏ K . We derive formulas to calculate not only dipole but also quadrupole oscillator strengths when using the complete basis of F. Schweiner et al., which has recently been proven as a powerful tool to calculate exciton spectra. Very complex polariton spectra for the three orientations of K along the axes [001 ] , [110 ] , and [111 ] of high symmetry are obtained and a strong mixing of exciton states is reported. The main focus is on the 1 S ortho-exciton-polariton, for which pronounced polariton effects have been measured in experiments. We set up a 5 ×5 matrix model, which accounts for both the polariton effect and the K -dependent splitting, and which allows treating the anisotropic polariton dispersion for any direction of K . We especially discuss the dispersions for K being oriented in the planes perpendicular to [1 1 ¯0 ] and [111 ] , for which experimental transmission spectra have been measured. Furthermore, we compare our results with experimental values of the K -dependent splitting, the group velocity, and the oscillator strengths of this exciton-polariton. The results are in good agreement. This proves the validity of the 5 ×5 matrix model as a useful theoretical model for further investigations on the 1 S

  8. Enhanced removal of aqueous acetaminophen by a laccase-catalyzed oxidative coupling reaction under a dual-pH optimization strategy.

    Science.gov (United States)

    Wang, Kaidong; Huang, Ke; Jiang, Guoqiang

    2018-03-01

    Acetaminophen is one kind of pharmaceutical contaminant that has been detected in municipal water and is hard to digest. A laccase-catalyzed oxidative coupling reaction is a potential method of removing acetaminophen from water. In the present study, the kinetics of radical polymerization combined with precipitation was studied, and the dual-pH optimization strategy (the enzyme solution at pH7.4 being added to the substrate solution at pH4.2) was proposed to enhance the removal efficiency of acetaminophen. The reaction kinetics that consisted of the laccase-catalyzed oxidation, radical polymerization and precipitation were studied by UV in situ, LC-MS and DLS (dynamic light scattering) in situ. The results showed that the laccase-catalyzed oxidation is the rate-limiting step in the whole process. The higher rate of enzyme-catalyzed oxidation under a dual-pH optimization strategy led to much faster formation of the dimer, trimer and tetramer. Similarly, the formation of polymerized products that could precipitate naturally from water was faster. Under the dual-pH optimization strategy, the initial laccase activity was increased approximately 2.9-fold, and the activity remained higher for >250s, during which approximately 63.7% of the total acetaminophen was transformed into biologically inactive polymerized products, and part of these polymerized products precipitated from the water. Laccase belongs to the family of multi-copper oxidases, and the present study provides a universal method to improve the activity of multi-copper oxidases for the high-performance removal of phenol and its derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Mechanistic Study of the Oxidative Coupling of Styrene with 2-Phenylpyridine Derivatives Catalyzed by Cationic Rhodium( III) via C–H Activation

    Science.gov (United States)

    Brasse, Mikaël; Cámpora, Juan; Ellman, Jonathan A.; Bergman, Robert G.

    2013-01-01

    The Rh(III) catalyzed oxidative coupling of alkenes with arenes provides a greener alternative to the classical Heck reaction for the synthesis of arene-functionalized alkenes. The present mechanistic study gives insights for the rational development of this key transformation. The catalyst resting states and the rate law of the reaction have been identified. The reaction rate is solely dependent on catalyst and alkene concentrations and the rate determining step is the migratory insertion of alkene into a Rh–C(aryl) bond. PMID:23590843

  10. Determination of the initial oxidation behavior of Zircaloy-4 by in-situ TEM

    International Nuclear Information System (INIS)

    Harlow, Wayne; Ghassemi, Hessam; Taheri, Mitra L.

    2016-01-01

    The corrosion behavior of Zircaloy-4 (Zry-4), specifically by oxidation, is a problem of great importance as this material is critical for current nuclear reactor cladding. The early formation behavior and structure of the oxide layer during oxidation was studied using in-situ TEM techniques that allowed for Zry-4 to be monitored during corrosion. These environmental exposure experiments were coupled with precession electron diffraction to identify and quantify the phases present in the samples before and after the oxidation. Following short-term, high temperature oxidation, the dominant phase was revealed to be monoclinic ZrO 2 in a columnar structure. These samples oxidized in-situ contained structures that correlated well with bulk Zry-4 subjected to autoclave treatment, which were used for comparison and validation of this technique. By using in-situ TEM the effect of microstructure features, such as grain boundaries, on oxidation behavior of an alloy can be studied. The technique presented herein holds the potential to be applied any alloy system to study these effects. - Highlights: • In-situ TEM was used to oxidize samples of Zircaloy-4. • Similar behavior was found in the in-situ oxidized and autoclave-oxidized samples. • Precession diffraction was used to characterize oxide phase and texture.

  11. A novel approach of periodate oxidation coupled with HPLC-FLD for the quantitative determination of 3-chloro-1,2-propanediol in water and vegetable oil.

    Science.gov (United States)

    Hu, Zhixiong; Cheng, Peng; Guo, Mingli; Zhang, Weinong; Qi, Yutang

    2013-07-10

    A novel approach of periodate oxidation coupled with high-performance liquid chromatography (HPLC)-fluorescence detection (FLD) for the quantitative determination of 3-chloro-1,2-propanediol (3-MCPD) has been established. The essence of this approach lies in the production of chloroacetaldehyde by the oxidization cleavage of 3-MCPD with sodium periodate and the HPLC analysis of chloroacetaldehyde monitored by an FLD detector after fluorescence derivatization with adenine. The experimental parameters relating to the efficiency of the derivative reaction such as concentration of adenine, chloroacetaldehyde reaction temperature, and time were studied. Under the optimized conditions, the proposed method can provide high sensitivity, good linearity (r(2) = 0.999), and repeatability (percent relative standard deviations between 2.57% and 3.44%), the limits of detection and quantification were 0.36 and 1.20 ng/mL, respectively, and the recoveries obtained for water samples were in the range 93.39-97.39%. This method has been successfully applied to the analysis of real water samples. Also this method has been successfully used for the analysis of vegetable oil samples after pretreatment with liquid-liquid extraction; the recoveries obtained by a spiking experiment with soybean oil ranged from 96.27% to 102.42%. In comparison with gas chromatography or gas chromatography-mass spectrometry, the proposed method can provide the advantages of simple instrumental requirement, easy operation, low cost, and high efficiency, thus making this approach another good choice for the sensitive determination of 3-MCPD.

  12. 'We keep her status to ourselves': experiences of stigma and discrimination among HIV-discordant couples in South Africa, Tanzania and Ukraine.

    Science.gov (United States)

    Rispel, Laetitia C; Cloete, Allanise; Metcalf, Carol A

    2015-01-01

    In HIV-discordant relationships, the HIV-negative partner also carries the burden of a stigmatised disease. For this reason, couples often hide their HIV-discordant status from family, friends and community members. This perpetuates the silence around HIV-discordant relationships and impacts on targeted HIV prevention, treatment and counselling efforts. This article reports on experiences of stigma and discrimination among HIV-discordant couples in South Africa, Tanzania and Ukraine. During 2008, HIV-discordant couples who had been in a relationship for at least one year were recruited purposively through health-care providers and civil society organisations in the three countries. Participants completed a brief self-administered questionnaire, while semi-structured interviews were conducted with each partner separately and with both partners together. Interviews were analysed using thematic content analysis. Fifty-one couples were recruited: 26 from South Africa, 10 from Tanzania, and 15 from Ukraine. Although most participants had disclosed their HIV status to someone other than their partner, few were living openly with HIV discordance. Experiences of stigma were common and included being subjected to gossip, rumours and name-calling, and HIV-negative partners being labelled as HIV-positive. Perpetrators of discrimination included family members and health workers. Stigma and discrimination present unique and complex challenges to couples in HIV sero-discordant relationships in these three diverse countries. Addressing stigmatisation of HIV-discordant couples requires a holistic human rights approach and specific programme efforts to address discrimination in the health system.

  13. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    Science.gov (United States)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  14. Potential risk of coupling products between tetrahalobisphenol A and humic acid prepared via oxidation with a biomimetic catalyst.

    Science.gov (United States)

    Kodama, Ritsu; Sazawa, Kazuto; Miyamoto, Takafumi; Zhu, Qianqian; Igarashi, Mami; Oda, Kohki; Kuramitz, Hideki; Fukushima, Masami

    2018-04-04

    Tetrahalobisphenol A (TXPBAs, X = Br or Cl), TBBPA and TCBPA, which are widely used as flame retardants, ultimately disposed of in landfills. In landfills, enzymatically oxidized TXBPAs can be covalently incorporated into humic acids (HAs) to form coupling products (HA-TXBPAs). In the present study, HA-TXBPAs were prepared by catalytic oxidation with iron(III)-phthalocyanine-tetrasulfate as a model of oxidative enzymes. The stability of HA-TXBPAs was evaluated by incubating them under physicochemical conditions of landfills (pH 9 and 50 °C). For HA-TBBPA, 18-26% of TBBPA was released from HA-TBBPA, due to the acid dissociation of the loosely bound TBBPA. However, no additional release was observed, even after 30 days, indicating that 74-82% of the TBBPA was incorporated into the HA. For HA-TCBPA, 3-4% of TCBPA and a major byproduct, 4-(2-hydroxyisopropyl)-2,6-dichlorophenol, was found to be loosely incorporated into HA. For both TBBPA and TCBPA, covalently bound organo-halogens were not released during the 30 days of incubation. Inhibition of the growth of Chlamydomonas reinhardtii was indicated when trace levels of TXBPAs (approximately 0.1 μM) were present. These results suggest that HA-TXBPAs contain not only covalently incorporated TXBPAs but also loosely bound TXBPAs and halophenols. The latter in HA-TXBPAs have the potential to leach from landfills and affect aquatic ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Large coercivity and unconventional exchange coupling in manganese-oxide-coated manganese—gallium nanoparticles

    International Nuclear Information System (INIS)

    Feng Jun-Ning; Liu Wei; Geng Dian-Yu; Ma Song; Yu Tao; Zhao Xiao-Tian; Dai Zhi-Ming; Zhao Xin-Guo; Zhang Zhi-Dong

    2014-01-01

    The microstructures and magnetic properties of nanoparticles, each composed of an antiferromagnetic (AFM) manganese-oxide shell and a ferromagnetic-like core of manganese—gallium (MnGa) compounds, are studied. The core-shell structure is confirmed by transmission electron microscope (TEM). The ferromagnetic-like core contains three kinds of MnGa binary compounds, i.e., ferrimagnetic (FI) D0 22 -type Mn 3 Ga, ferromagnetic (FM) Mn 8 Ga 5 , and AFM D0 19 -type Mn 3 Ga, of which the first two correspond respectively to a hard magnetic phase and to a soft one. Decoupling effect between these two phases is found at low temperature, which weakens gradually with increasing temperature and disappears above 200 K. The exchange bias (EB) effect is observed simultaneously, which is caused by the exchange coupling between the AFM shell and FM-like core. A large coercivity of 6.96 kOe (1 Oe = 79.5775 A·m −1 ) and a maximum EB value of 0.45 kOe are achieved at 300 K and 200 K respectively. (special topic — international conference on nanoscience and technology, china 2013)

  16. The Rashba spin-orbit coupling for superconductivity in oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beyl, Stefan; Orth, Peter P.; Schmalian, Joerg [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2014-07-01

    We investigate the role of the Rashba spin-orbit coupling on the superconducting order parameter and the phase stiffness at the interface of LaAlO{sub 3} and SrTiO{sub 3}. In particular, we analyze the gate controlled crossover between BCS superconductivity and Bose-Einstein condensation of Cooper pairs, amplified by the Rashba coupling and the possibility of a phase fluctuation induced quantum critical point.

  17. Warthog: Coupling Status Update

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Shane W. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reardon, Bradley T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-30

    The Warthog code was developed to couple codes that are developed in both the Multi-Physics Object-Oriented Simulation Environment (MOOSE) from Idaho National Laboratory (INL) and SHARP from Argonne National Laboratory (ANL). The initial phase of this work, focused on coupling the neutronics code PROTEUS with the fuel performance code BISON. The main technical challenge involves mapping the power density solution determined by PROTEUS to the fuel in BISON. This presents a challenge since PROTEUS uses the MOAB mesh format, but BISON, like all other MOOSE codes, uses the libMesh format. When coupling the different codes, one must consider that Warthog is a light-weight MOOSE-based program that uses the Data Transfer Kit (DTK) to transfer data between the various mesh types. Users set up inputs for the codes they want to run, and then Warthog transfers the data between them. Currently Warthog supports XSProc from SCALE or the Sub-Group Application Programming Interface (SGAPI) in PROTEUS for generating cross sections. It supports arbitrary geometries using PROTEUS and BISON. DTK will transfer power densities and temperatures between the codes where the domains overlap. In the past fiscal year (FY), much work has gone into demonstrating two-way coupling for simple pin cells of various materials. XSProc was used to calculate the cross sections, which were then passed to PROTEUS in an external file. PROTEUS calculates the fission/power density, and Warthog uses DTK to pass this information to BISON, where it is used as the heat source. BISON then calculates the temperature profile of the pin cell and sends it back to XSProc to obtain the temperature corrected cross sections. This process is repeated until the convergence criteria (tolerance on BISON solve, or number of time steps) is reached. Models have been constructed and run for both uranium oxide and uranium silicide fuels. These models demonstrate a clear difference in power shape that is not accounted for in a

  18. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  19. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  20. Highly active and non-corrosive catalytic systems for the coupling reactions of ethylene oxide and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuyao; Jin, So Jeong; Kim, Young Jin; Lee, Je Seung; Kim, Hoon Sik [Dept. of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, Seoul (Korea, Republic of); Hong, Jongki; Lee, Won Woong [College of Pharmacy, Kyung Hee University, Seoul (Korea, Republic of); Ryu, Jung Bok [R and D Center, Chuncheon (Korea, Republic of)

    2017-02-15

    Lithium halide-based molten salts (LiX-[BMIm]Br) synthesized from the reactions of lithium halides (LiX, X = Cl or Br) with 1-butyl-3-methylimidazolium bromide ([BMIm]Br), and their catalytic performances and corrosivities were tested for the coupling reactions of ethylene oxide with carbon dioxide to produce ethylene carbonate. The activity of a molten salt was influenced with the change of halide ion. At a fixed molar amount of LiX, the activity of LiX-[BMIm]Br increased with increasing molar ratio of LiX/[BMIm]Br up to 1–1.25, and then decreased thereafter. Fast atom bombardment mass spectral analysis of LiBr-[BMIm]Br, obtained by dissolving LiBr in [BMIm]Br in a 1:1 molar ratio, implies that [Li{sub a} X{sub a+1}]{sup −} are active species for the carboxylation of ethylene oxide with LiX-[BMIm]Br. The corrosion test toward carbon steel coupons demonstrates that all the Cl-containing molten salts are corrosive, whereas the salts without containing Cl{sup −} are non-corrosive under the carboxylation condition.

  1. Reconciling "Whiffs" of O2 with the Archean MIF S Record: Insights from Sulfide Oxidation Experiments

    Science.gov (United States)

    Johnson, A.; Reinhard, C. T.; Romaniello, S. J.; Greaney, A. T.; Garcia-Robledo, E.; Revsbech, N. P.; Canfield, D. E.; Lyons, T. W.; Anbar, A. D.

    2016-12-01

    The Archean-Proterozoic transition is marked by the first appreciable accumulation of O2 in Earth's oceans and atmosphere at 2.4 billion years ago (Ga). However, this Great Oxidation Event (GOE) is not the first evidence for O2 in Earth's surface environment. Paleoredox proxies preserved in ancient marine shales (Mo, Cr, Re, U) suggest transient episodes of oxidative weathering before the GOE, perhaps as early as 3.0 Ga. One marine shale in particular, the 2.5 Ga Mount McRae Shale of Western Australia, contains a euxinic interval with Mo enrichments up to 50 ppm. This enrichment is classically interpreted as the result of oxidative weathering of sulfides on the continental surface. However, prior weathering models based on experiments suggested that sulfides require large amounts of O2 [>10-4 present atmospheric level (PAL) pO2] to produce this weathering signature, in conflict with estimates of Archean pO2 from non-mass-dependent (NMD) sulfur isotope anomalies (molybdenite from 3 - 700 nM O2 (equivalent at equilibrium to 10-5 - 10-3 PAL) to measure oxidation kinetics as a function of the concentration of dissolved O2. We measured rates by injecting oxygenated water at a steady flow rate and monitoring dissolved O2 concentrations with LUMOS sensors. Our data extend the O2 range explored in pyrite oxidation experiments by three orders of magnitude and provide the first rates for molybdenite oxidation at O2 concentrations potentially analogous to those characteristic of the Archean atmosphere. Our results show that pyrite and molybdenite oxidize significantly more rapidly at lower O2 levels than previously thought. As a result, our revised weathering model demonstrates that the Mo enrichments observed in late Archean marine shales are potentially attainable at extremely low atmospheric pO2 values (e.g., <10-5 PAL), reconciling large sedimentary Mo enrichments with co-occurring NMD sulfur isotope anomalies.

  2. Purifications of calcium carbonate and molybdenum oxide powders for neutrinoless double beta decay experiment, AMoRE

    International Nuclear Information System (INIS)

    Park, HyangKyu

    2015-01-01

    The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of 100 Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders

  3. Production of biogenic manganese oxides coupled with methane oxidation in a bioreactor for removing metals from wastewater.

    Science.gov (United States)

    Matsushita, Shuji; Komizo, Daisuke; Cao, Linh Thi Thuy; Aoi, Yoshiteru; Kindaichi, Tomonori; Ozaki, Noriatsu; Imachi, Hiroyuki; Ohashi, Akiyoshi

    2018-03-01

    Biogenic manganese oxide (BioMnO x ) can efficiently adsorb various minor metals. The production of BioMnO x in reactors to remove metals during wastewater treatment processes is a promising biotechnological method. However, it is difficult to preferentially enrich manganese-oxidizing bacteria (MnOB) to produce BioMnO x during wastewater treatment processes. A unique method of cultivating MnOB using methane-oxidizing bacteria (MOB) to produce soluble microbial products is proposed here. MnOB were successfully enriched in a methane-fed reactor containing MOB. BioMnO x production during the wastewater treatment process was confirmed. Long-term continual operation of the reactor allowed simultaneous removal of Mn(II), Co(II), and Ni(II). The Co(II)/Mn(II) and Ni(II)/Mn(II) removal ratios were 53% and 19%, respectively. The degree to which Mn(II) was removed indicated that the enriched MnOB used utilization-associated products and/or biomass-associated products. Microbial community analysis revealed that methanol-oxidizing bacteria belonging to the Hyphomicrobiaceae family played important roles in the oxidation of Mn(II) by using utilization-associated products. Methane-oxidizing bacteria were found to be inhibited by MnO 2 , but the maximum Mn(II) removal rate was 0.49 kg m -3  d -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  5. Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies

    Science.gov (United States)

    Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2017-01-01

    Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814

  6. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    Science.gov (United States)

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  7. Double perovskites with strong spin-orbit coupling

    Science.gov (United States)

    Cook, Ashley M.

    account for the neutron data as well as the measured frustration parameters of these materials, while the uniaxial Ising anisotropy does not. Our findings highlight how even seemingly conventional magnetic orders in oxide materials containing heavy transition metal ions may be driven by highly-directional exchange interactions rooted in strong spin-orbit coupling. Motivated by experiments on the double perovskites La2ZnIrO 6 and La2MgIrO6, we lastly study the magnetism of spin-orbit coupled jeff =1/2 iridium moments on the three-dimensional, geometrically frustrated, facecentered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. A Luttinger-Tisza analysis shows a rich variety of orders, including collinear AII type antiferromagnetism, stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and we use Monte Carlo simulations to determine their magnetic ordering temperatures.

  8. Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride-Molecular Ni Catalyst System.

    Science.gov (United States)

    Kasap, Hatice; Caputo, Christine A; Martindale, Benjamin C M; Godin, Robert; Lau, Vincent Wing-Hei; Lotsch, Bettina V; Durrant, James R; Reisner, Erwin

    2016-07-27

    Solar water-splitting represents an important strategy toward production of the storable and renewable fuel hydrogen. The water oxidation half-reaction typically proceeds with poor efficiency and produces the unprofitable and often damaging product, O2. Herein, we demonstrate an alternative approach and couple solar H2 generation with value-added organic substrate oxidation. Solar irradiation of a cyanamide surface-functionalized melon-type carbon nitride ((NCN)CNx) and a molecular nickel(II) bis(diphosphine) H2-evolution catalyst (NiP) enabled the production of H2 with concomitant selective oxidation of benzylic alcohols to aldehydes in high yield under purely aqueous conditions, at room temperature and ambient pressure. This one-pot system maintained its activity over 24 h, generating products in 1:1 stoichiometry, separated in the gas and solution phases. The (NCN)CNx-NiP system showed an activity of 763 μmol (g CNx)(-1) h(-1) toward H2 and aldehyde production, a Ni-based turnover frequency of 76 h(-1), and an external quantum efficiency of 15% (λ = 360 ± 10 nm). This precious metal-free and nontoxic photocatalytic system displays better performance than an analogous system containing platinum instead of NiP. Transient absorption spectroscopy revealed that the photoactivity of (NCN)CNx is due to efficient substrate oxidation of the material, which outweighs possible charge recombination compared to the nonfunctionalized melon-type carbon nitride. Photoexcited (NCN)CNx in the presence of an organic substrate can accumulate ultralong-lived "trapped electrons", which allow for fuel generation in the dark. The artificial photosynthetic system thereby catalyzes a closed redox cycle showing 100% atom economy and generates two value-added products, a solar chemical, and solar fuel.

  9. Dalton's disputed nitric oxide experiments and the origins of his atomic theory.

    Science.gov (United States)

    Usselman, Melvyn C; Leaist, Derek G; Watson, Katherine D

    2008-01-11

    In 1808 John Dalton published his first general account of chemical atomic theory, a cornerstone of modern chemistry. The theory originated in his earlier studies of the properties of atmospheric gases. In 1803 Dalton discovered that oxygen combined with either one or two volumes of nitric oxide in closed vessels over water and this pioneering observation of integral multiple proportions provided important experimental evidence for his incipient atomic ideas. Previous attempts to reproduce Dalton's experiments have been unsuccessful and some commentators have concluded the results were fraudulent. We report a successful reconstruction of Dalton's experiments and provide an analysis exonerating him of any scientific misconduct. But we conclude that Dalton, already thinking atomistically, adjusted experimental conditions to obtain the integral combining proportions.

  10. Oxidative Reactivity and Cytotoxic Properties of a Platinum(II) Complex Prepared by Outer-Sphere Amide Bond Coupling

    Science.gov (United States)

    Wilson, Justin J.; Lippard, Stephen J.

    2012-01-01

    Benzyl amine was coupled to the dangling carboxylic acid groups of the platinum(II) complex [Pt(edda)Cl2], where edda = ethylenediamine-N,N’-diacetic acid, to give the diamidetethered complex [Pt(L)Cl2] (1), where L = ethylenediamine-N,N’-bis(N-benzylacetamide). Complex 1 was oxidized with both PhICl2 and Br2. Oxidation with PhICl2 cleanly afforded the tetrachloride complex, [Pt(L)Cl4] (2), whereas oxidation with Br2 gave rise to several mixed halide complexes of the general formula, [Pt(L)ClxBr4-x], where x = 1, 2, or 3. Complexes 1 and 2 were fully characterized by 1H, 13C, and 195Pt NMR spectroscopy, as well as by ESI-MS. These compounds exist as a mixture of diastereomers that arise from the chirality of the two coordinated nitrogen atoms. Crystal structures of 1, 2, and [Pt(L)ClxBry] (3) are reported. Although refined as the tetrabromide complex [Pt(L)Br4], the crystal structure of 3 is a mixture of species with site-occupancy disorder of chloride and bromide ligands. DFT calculations indicate that the two sets of diastereomers of 1 and 2 are effectively thermoneutral, a conclusion that is also supported by the observation of both members of each pair by NMR spectroscopy. The cytotoxicity of 1 and 2 was measured by the MTT assay in HeLa cells and compared to that of cisplatin. Both exhibit IC50 values close to 50 μM and are therefore substantially less toxic than cisplatin, for which the IC50 is 1 μM. PMID:24489429

  11. Using Coupled Mesoscale Experiments and Simulations to Investigate High Burn-Up Oxide Fuel Thermal Conductivity

    Science.gov (United States)

    Teague, Melissa C.; Fromm, Bradley S.; Tonks, Michael R.; Field, David P.

    2014-12-01

    Nuclear energy is a mature technology with a small carbon footprint. However, work is needed to make current reactor technology more accident tolerant and to allow reactor fuel to be burned in a reactor for longer periods of time. Optimizing the reactor fuel performance is essentially a materials science problem. The current understanding of fuel microstructure have been limited by the difficulty in studying the structure and chemistry of irradiated fuel samples at the mesoscale. Here, we take advantage of recent advances in experimental capabilities to characterize the microstructure in 3D of irradiated mixed oxide (MOX) fuel taken from two radial positions in the fuel pellet. We also reconstruct these microstructures using Idaho National Laboratory's MARMOT code and calculate the impact of microstructure heterogeneities on the effective thermal conductivity using mesoscale heat conduction simulations. The thermal conductivities of both samples are higher than the bulk MOX thermal conductivity because of the formation of metallic precipitates and because we do not currently consider phonon scattering due to defects smaller than the experimental resolution. We also used the results to investigate the accuracy of simple thermal conductivity approximations and equations to convert 2D thermal conductivities to 3D. It was found that these approximations struggle to predict the complex thermal transport interactions between metal precipitates and voids.

  12. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    Science.gov (United States)

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular

  13. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    International Nuclear Information System (INIS)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying; Lee, Hyung-Sool; Wang, Ai-Jie

    2012-01-01

    Highlights: ► A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. ► Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). ► PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. ► The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 ± 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m −3 d −1 ) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m −3 d −1 (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  14. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China); Lee, Hyung-Sool [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 (Canada); Wang, Ai-Jie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. Black-Right-Pointing-Pointer Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). Black-Right-Pointing-Pointer PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. Black-Right-Pointing-Pointer The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 {+-} 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m{sup -3} d{sup -1}) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m{sup -3} d{sup -1} (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  15. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    Science.gov (United States)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  16. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak, E-mail: zam89blue@gmail.com [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  17. Operating experience of upgraded radio frequency source at 76 MHz coupled to heavy ion RFQ

    International Nuclear Information System (INIS)

    Pande, Manjiri; Shiju, A.; Patel, N.R.; Shrotriya, S.D.; Bhagwat, P.V.

    2015-01-01

    A heavy ion radio frequency quadrupole (RFQ) accelerator has been developed at BARC (BARC). A RF source which was designed and developed at 76 MHz earlier, has been upgraded and coupled to heavy ion RFQ successfully. The DC bias supplies of this source have been replaced with new supplies having high efficiency and well filteration against RF interference (RFI). The driver of main power amplifier has been replaced with indigenously designed and developed unit. The earlier introduced microcontroller based interlock experienced RF noise issues. So, this circuit has been modified with the new circuit. With these modifications, the performance of the RF source was improved. Additionally, a separate low power RF source of around 100 + Watt was designed, developed and integrated with RFQ for its RF conditioning. This paper describes the details of up gradation of technologies implemented and coupling experience of this RF source with heavy ion RFQ. (author)

  18. Designing experiments for maximum information from cyclic oxidation tests and their statistical analysis using half Normal plots

    International Nuclear Information System (INIS)

    Coleman, S.Y.; Nicholls, J.R.

    2006-01-01

    Cyclic oxidation testing at elevated temperatures requires careful experimental design and the adoption of standard procedures to ensure reliable data. This is a major aim of the 'COTEST' research programme. Further, as such tests are both time consuming and costly, in terms of human effort, to take measurements over a large number of cycles, it is important to gain maximum information from a minimum number of tests (trials). This search for standardisation of cyclic oxidation conditions leads to a series of tests to determine the relative effects of cyclic parameters on the oxidation process. Following a review of the available literature, databases and the experience of partners to the COTEST project, the most influential parameters, upper dwell temperature (oxidation temperature) and time (hot time), lower dwell time (cold time) and environment, were investigated in partners' laboratories. It was decided to test upper dwell temperature at 3 levels, at and equidistant from a reference temperature; to test upper dwell time at a reference, a higher and a lower time; to test lower dwell time at a reference and a higher time and wet and dry environments. Thus an experiment, consisting of nine trials, was designed according to statistical criteria. The results of the trial were analysed statistically, to test the main linear and quadratic effects of upper dwell temperature and hot time and the main effects of lower dwell time (cold time) and environment. The nine trials are a quarter fraction of the 36 possible combinations of parameter levels that could have been studied. The results have been analysed by half Normal plots as there are only 2 degrees of freedom for the experimental error variance, which is rather low for a standard analysis of variance. Half Normal plots give a visual indication of which factors are statistically significant. In this experiment each trial has 3 replications, and the data are analysed in terms of mean mass change, oxidation kinetics

  19. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-01-01

    This paper focuses on the use and potential of oxide fuel systems for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Examples are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  20. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-04-01

    This paper focuses on the use and potential of oxide fuel system for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Exampled are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  1. Genetically induced oxidative stress in mice causes thrombocytosis, splenomegaly and placental angiodysplasia that leads to recurrent abortion

    Directory of Open Access Journals (Sweden)

    Takamasa Ishii

    2014-01-01

    Full Text Available Historical data in the 1950s suggests that 7%, 11%, 33%, and 87% of couples were infertile by ages 30, 35, 40 and 45, respectively. Up to 22.3% of infertile couples have unexplained infertility. Oxidative stress is associated with male and female infertility. However, there is insufficient evidence relating to the influence of oxidative stress on the maintenance of a viable pregnancy, including pregnancy complications and fetal development. Recently, we have established Tet-mev-1 conditional transgenic mice, which can express the doxycycline-induced mutant SDHCV69E transgene and experience mitochondrial respiratory chain dysfunction leading to intracellular oxidative stress. In this report, we demonstrate that this kind of abnormal mitochondrial respiratory chain-induced chronic oxidative stress affects fertility, pregnancy and delivery rates as well as causes recurrent abortions, occasionally resulting in maternal death. Despite this, spermatogenesis and early embryogenesis are completely normal, indicating the mutation's effects to be rather subtle. Female Tet-mev-1 mice exhibit thrombocytosis and splenomegaly in both non-pregnant and pregnant mice as well as placental angiodysplasia with reduced Flt-1 protein leading to hypoxic conditions, which could contribute to placental inflammation and fetal abnormal angiogenesis. Collectively these data strongly suggest that chronic oxidative stress caused by mitochondrial mutations provokes spontaneous abortions and recurrent miscarriage resulting in age-related female infertility.

  2. Treating infidelity in same-sex couples.

    Science.gov (United States)

    Martell, Christopher R; Prince, Stacey E

    2005-11-01

    Psychotherapy with same-sex couples does not differ markedly from standard couple therapies; this is also true for treating couples facing infidelity. However, same-sex couples often design their relationships differently, without tradition and formal marital contracts to prescribe behavior. Based on clinical experience and the empirical research, this article addresses the differing norms involved in affirmatively treating infidelity in gay and lesbian couples within the framework of integrative behavioral couple therapy (IBCT). Two cases illustrate the process and outcome of IBCT with same-sex couples.

  3. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  4. Stress analysis of local blisters coupling Raman spectroscopy and X-ray diffraction. Correlation between experimental results and continuous damage modelling for buckling in an iron oxide/phosphated iron system

    Energy Technology Data Exchange (ETDEWEB)

    Panicaud, B., E-mail: benoit.panicaud@utt.fr [Universite de Technologie de Troyes (UTT), CNRS UMR 6279, 12 rue Marie Curie, 10010 Troyes (France); Grosseau-Poussard, J.L. [LEMMA, Pole Sciences et Technologie, Universite de La Rochelle, Av. M. Crepeau, 17042 La Rochelle Cedex (France)

    2010-12-01

    In this present work, local stress development in the iron oxide layers growing on phosphated {alpha}-Fe at 400 deg. C in ambient air is investigated by Raman spectroscopy. Coupled with X-ray diffraction it enables to obtain directly local stresses' maps in the oxide layers. Use of Raman spectroscopy allows obtaining better accuracy on mechanical behaviour at local scale. This characterisation technique is very useful to study systems developing mechanical heterogeneities on surface, especially in case of buckling phenomenon. Investigations on particular local blisters have been done to measure some characteristic lengths at local scale. From local measurements, we are able to evaluate general effect of buckling from simplified scale transition. So, a macroscopic approach has been performed to calculate global stress evolution of the oxide layer, based on continuous damage mechanics. Consequently, it leads to good comparison between modelling and experimental values (global stresses versus oxidation time) in {alpha}-Fe{sub 2}O{sub 3} oxide.

  5. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    Science.gov (United States)

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  6. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    Science.gov (United States)

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  7. Mitochondrial oxidative phosphorylation efficiency is upregulated during fasting in two major oxidative tissues of ducklings.

    Science.gov (United States)

    Monternier, Pierre-Axel; Teulier, Loïc; Drai, Jocelyne; Bourguignon, Aurore; Collin-Chavagnac, Delphine; Hervant, Frédéric; Rouanet, Jean-Louis; Roussel, Damien

    2017-10-01

    Fasted endothermic vertebrates must develop physiological responses to maximize energy conservation and survival. The aim of this study was to determine the effect of 1-wk. fasting in 5-wk. old ducklings (Cairina moschata) from whole-body resting metabolic rate and body temperature to metabolic phenotype of tissues and mitochondrial coupling efficiency. At the level of whole organism, the mass-specific metabolic rate of ducklings was decreased by 40% after 1-wk. of fasting, which was associated with nocturnal Tb declines and shallow diurnal hypothermia during fasting. At the cellular level, fasting induced a large reduction in liver, gastrocnemius (oxidative) and pectoralis (glycolytic) muscle masses together with a fuel selection towards lipid oxidation and ketone body production in liver and a lower glycolytic phenotype in skeletal muscles. At the level of mitochondria, fasting induced a reduction of oxidative phosphorylation activities and an up-regulation of coupling efficiency (+30% on average) in liver and skeletal muscles. The present integrative study shows that energy conservation in fasted ducklings is mainly achieved by an overall reduction in mitochondrial activity and an increase in mitochondrial coupling efficiency, which would, in association with shallow hypothermia, increase the conservation of endogenous fuel stores during fasting. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Comparison of different two-pathway models for describing the combined effect of DO and nitrite on the nitrous oxide production by ammonia-oxidizing bacteria.

    Science.gov (United States)

    Lang, Longqi; Pocquet, Mathieu; Ni, Bing-Jie; Yuan, Zhiguo; Spérandio, Mathieu

    2017-02-01

    The aim of this work is to compare the capability of two recently proposed two-pathway models for predicting nitrous oxide (N 2 O) production by ammonia-oxidizing bacteria (AOB) for varying ranges of dissolved oxygen (DO) and nitrite. The first model includes the electron carriers whereas the second model is based on direct coupling of electron donors and acceptors. Simulations are confronted to extensive sets of experiments (43 batches) from different studies with three different microbial systems. Despite their different mathematical structures, both models could well and similarly describe the combined effect of DO and nitrite on N 2 O production rate and emission factor. The model-predicted contributions for nitrifier denitrification pathway and hydroxylamine pathway also matched well with the available isotopic measurements. Based on sensitivity analysis, calibration procedures are described and discussed for facilitating the future use of those models.

  9. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  10. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    Science.gov (United States)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  11. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  12. Benchmark critical experiments on low-enriched uranium oxide systems with H/U = 0.77

    International Nuclear Information System (INIS)

    Tuck, G.; Oh, I.

    1979-08-01

    Ten benchmark experiments were performed at the Critical Mass Laboratory at Rockwell International's Rocky Flats Plant, Golden, Colorado, for the US Nuclear Regulatory Commission. They provide accurate criticality data for low-enriched damp uranium oxide (U 3 O 8 ) systems. The core studied consisted of 152 mm cubical aluminum cans containing an average of 15,129 g of low-enriched (4.46% 235 U) uranium oxide compacted to a density of 4.68 g/cm 3 and with an H/U atomic ratio of 0.77. One hundred twenty five (125) of these cans were arranged in an approx. 770 mm cubical array. Since the oxide alone cannot be made critical in an array of this size, an enriched (approx. 93% 235 U) metal or solution driver was used to achieve criticality. Measurements are reported for systems having the least practical reflection and for systems reflected by approx. 254-mm-thick concrete or plastic. Under the three reflection conditions, the mass of the uranium metal driver ranged from 29.87 kg to 33.54 kg for an oxide core of 1864.6 kg. For an oxide core of 1824.9 kg, the weight of the high concentration (351.2 kg U/m 3 ) solution driver varied from 14.07 kg to 16.14 kg, and the weight of the low concentration (86.4 kg U/m 3 ) solution driver from 12.4 kg to 14.0 kg

  13. Estimation of subcriticality with the computed values analysis using MCNP of experiment on coupled cores

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro; Arakawa, Takuya; Naito, Yoshitaka

    1998-01-01

    Experiments on coupled cores performed at TCA were analysed using continuous energy Monte Carlo calculation code MCNP 4A. Errors of neutron multiplication factors are evaluated using Indirect Bias Estimation Method proposed by authors. Calculation for simulation of pulsed neutron method was performed for 17 X 17 + 5G + 17 x 17 core system and its of exponential experiment method was also performed for 16 x 9 + 3G + 16 x 9 and 16 x 9 + 5G + 16 x 9 core systems. Errors of neutron multiplication factors are estimated to be (-1.5) - (-0.6)% evaluated by Indirect Bias Estimation Method. Its errors evaluated by conventional pulsed neutron method and exponential experiment method are estimated to be 7%, but it is below 1% for estimation of subcriticality with the computed values by applying Indirect Bias Estimation Method. Feasibility of subcriticality management is higher by application of the method to full scale fuel strage facility. (author)

  14. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    Science.gov (United States)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the

  15. Depression during pregnancy among young couples: the effect of personal and partner experiences of stressors and the buffering effects of social relationships.

    Science.gov (United States)

    Divney, Anna A; Sipsma, Heather; Gordon, Derrick; Niccolai, Linda; Magriples, Urania; Kershaw, Trace

    2012-06-01

    To assess the relationship between personal and romantic partner's experiences of stressful life events and depression during pregnancy, and the social moderators of this relationship, among 296 young couples with low incomes from urban areas. We recruited couples who were expecting a baby from four ob/gyn and ultrasound clinics in southern Connecticut; women were ages 14-21 and male partners were 14+. We analyzed self-reports of stressful events in the previous six months, depression in the past week and current interpersonal social supports. To determine the influence of personal and partner experiences of stressful events on depression, we used multilevel dyadic models and incorporated interaction terms. We also used this model to determine whether social support, family functioning and relationship satisfaction moderated the association between stressful events and depression. Experiences of stressful life events were common; 91.2% of couples had at least one member report an event. Money, employment problems, and moving were the most common events. Personal experiences of stressful life events had the strongest association with depression among men and women; although partner experiences of stressful life events were also significantly associated with depression among women. Social support, family functioning, and romantic relationship satisfaction significantly buffered the association between personal and partner stressful events and depression. Interventions that improve relationships, support systems, and family functioning may reduce the negative impact of stressors, experienced both personally and by a romantic partner, on the emotional well-being of young expectant parents. Copyright © 2012 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  16. Depression during Pregnancy among Young Couples: The Effect of Personal and Partner Experiences of Stressors and the Buffering Effects of Social Relationships

    Science.gov (United States)

    Divney, Anna A.; Sipsma, Heather; Gordon, Derrick; Niccolai, Linda; Magriples, Urania; Kershaw, Trace

    2012-01-01

    Study Objective To assess the relationship between personal and romantic partner’s experiences of stressful life events and depression during pregnancy, and the social moderators of this relationship among 296 young couples with low incomes from urban areas. Participants and Setting We recruited couples who were expecting a baby from four OB/GYN and ultrasound clinics in lower CT; women were ages 14-21 and male partners were 14+. Design and Outcome Measures We analyzed self-reports of stressful events in the previous six months, depression in the past week and current interpersonal social supports. To determine the influence of personal and partner experiences of stressful events on depression, we used multilevel dyadic models and incorporated interaction terms. We also used this model to determine whether social support, family functioning and relationship satisfaction moderated the association between stressful events and depression. Results Experiences of stressful life events were common; 91.2% of couples had at least one member report an event. Money, employment problems and moving were the most common events. Personal experiences of stressful life events had the strongest association with depression among men and women; although partner experiences of stressful life events were also significantly associated with depression among women. Social support, family functioning and romantic relationship satisfaction significantly buffered the association between personal and partner stressful events and depression. Conclusion Interventions that improve relationships, support systems, and family functioning may reduce the negative impact of stressors, experienced both personally and by a romantic partner, on the emotional well-being of young expectant parents. PMID:22578481

  17. Operating experience in processing of differently sourced deeply depleted uranium oxide and production of deeply depleted uranium metal ingots

    International Nuclear Information System (INIS)

    Manna, S.; Ladola, Y.S.; Sharma, S.; Chowdhury, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Uranium Metal Plant (UMP) of BARC had first time experience on production of three Depleted Uranium Metal (DUM) ingots of 76kg, 152kg and 163kg during March 1991. These ingots were produced by processing depleted uranyl nitrate solution produced at Plutonium Plant (PP), Trombay. In recent past Uranium Metal Plant (UMP), Uranium Extraction Division (UED), has been assigned to produce tonnage quantity of Deeply DUM (DDUM) from its oxide obtained from PP, PREFRE and RMP, BARC. This is required for shielding the high radioactive source of BHABHATRON Tele-cobalt machine, which is used for cancer therapy. The experience obtained in processing of various DDU oxides is being utilized for design of large scale DDU-metal plant under XIth plan project. The physico- chemical characteristics like morphology, density, flowability, reactivity, particle size distribution, which are having direct effect on reactivity of the powders of the DDU oxide powder, were studied and the shop-floor operational experience in processing of different oxide powder were obtained and recorded. During campaign trials utmost care was taken to standardized all operating conditions using the same equipment which are in use for natural uranium materials processing including safety aspects both with respect to radiological safety and industrial safety. Necessary attention and close monitoring were specially arranged and maintained for the safety aspects during the trial period. In-house developed pneumatic transport system was used for powder transfer and suitable dust arresting system was used for reduction of powder carry over

  18. The role of metallic impurities in oxide semiconductors: first-principles calculations and PAC experiments

    Energy Technology Data Exchange (ETDEWEB)

    Errico, L.A.; Fabricius, G.; Renteria, M. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)

    2004-08-01

    We report an ab-initio comparative study of the electric-field-gradient tensor (EFG) and structural relaxations introduced by acceptor (Cd) and donor (Ta) impurities when they replace cations in a series of binary oxides: TiO{sub 2}, SnO{sub 2}, and In{sub 2}O{sub 3}. Calculations were performed with the Full-Potential Linearized-Augmented Plane Waves method that allows us to treat the electronic structure and the atomic relaxations in a fully self-consistent way. We considered different charge states for each impurity and studied the dependence on these charge states of the electronic properties and the structural relaxations. Our results are compared with available data coming from PAC experiments and previous calculations, allowing us to obtain a new insight on the role that metal impurities play in oxide semiconductors. It is clear from our results that simple models can not describe the measured EFGs at impurities in oxides even approximately. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Using LGI experiments to achieve better understanding of pedestal-edge coupling in NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    PowerPoint presentation. Latest advances in granule or dust injection technologies, fast and high-resolution imaging, together with micro-/nano-structured material fabrication, provide new opportunities to examine plasma-material interaction (PMI) in magnetic fusion environment. Some of our previous work in these areas is summarized. The upcoming LGI experiments in NSTX-U will shed new light on granular matter transport in the pedestal-edge region. In addition to particle control, these results can also be used for code validation and achieving better understanding of pedestal-edge coupling in fusion plasmas in both NSTX-U and others.

  20. Pyrite oxidation in the presence of hematite and alumina: I. Batch leaching experiments and kinetic modeling calculations.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-02-15

    Pyrite is one of the most common and geochemically important sulfide minerals in nature because of its role in the redox recycling of iron (Fe). It is also the primary cause of acid mine drainage (AMD) that is considered as a serious and widespread problem facing the mining and mineral processing industries. In the environment, pyrite oxidation occurs in the presence of ubiquitous metal oxides, but the roles that they play in this process remain largely unknown. This study evaluates the effects of hematite (α-Fe 2 O 3 ) and alumina (α-Al 2 O 3 ) on pyrite oxidation by batch-reactor type experiments, surface-sensitive characterization of the oxidation layer and thermodynamic/kinetic modeling calculations. In the presence of hematite, dissolved sulfur (S) concentration dramatically decreased independent of the pH, and the formation of intermediate sulfoxy anionic species on the surface of pyrite was retarded. These results indicate that hematite minimized the overall extent of pyrite oxidation, but the kinetic model could not explain how this suppression occurred. In contrast, pyrite oxidation was enhanced in the alumina suspension as suggested by the higher dissolved S concentration and stronger infrared (IR) absorption bands of surface-bound oxidation products. Based on the kinetic model, alumina enhanced the oxidative dissolution of pyrite because of its strong acid buffering capacity, which increased the suspension pH. The higher pH values increased the oxidation of Fe 2+ to Fe 3+ by dissolved O 2 (DO) that enhanced the overall oxidative dissolution kinetics of pyrite. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Micro-coulometric study of bioelectrochemical reaction coupled with TCA cycle.

    Science.gov (United States)

    Tsujimura, Seiya; Fukuda, Jun; Shirai, Osamu; Kano, Kenji; Sakai, Hideki; Tokita, Yuichi; Hatazawa, Tsuyonobu

    2012-04-15

    The mediated electro-enzymatic electrolysis systems based on the tricarboxylic acid (TCA) cycle reaction were examined on a micro-bulk electrolytic system. A series of the enzyme-catalyzed reactions in the TCA cycle was coupled with electrode reaction. Electrochemical oxidation of NADH was catalyzed by diaphorase with an aid of a redox mediator with a formal potential of -0.15 V vs. Ag|AgCl. The mediator was also able to shuttle electrons between succinate dehydrogenase and electrode. The charge during the electrolysis increased on each addition of dehydrogenase reaction in a cascade of the TCA cycle. However, the electrolysis efficiencies were close to or less than 90% because of the product inhibition. Lactate oxidation to acetyl-CoA catalyzed by two NAD-dependent dehydrogenases was coupled with the bioelectrochemical TCA cycle reaction to achieve the 12-electron oxidation of lactate to CO(2). The charge passed in the bioelectrocatalytic oxidation of 5 nmol of lactate was 4 mC, which corresponds to 70% of the electrolysis efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Energy-Efficient and Environmentally Friendly Solid Oxide Membrane Electrolysis Process for Magnesium Oxide Reduction: Experiment and Modeling

    Science.gov (United States)

    Guan, Xiaofei; Pal, Uday B.; Powell, Adam C.

    2014-06-01

    This paper reports a solid oxide membrane (SOM) electrolysis experiment using an LSM(La0.8Sr0.2MnO3-δ)-Inconel inert anode current collector for production of magnesium and oxygen directly from magnesium oxide at 1423 K (1150 °C). The electrochemical performance of the SOM cell was evaluated by means of various electrochemical techniques including electrochemical impedance spectroscopy, potentiodynamic scan, and electrolysis. Electronic transference numbers of the flux were measured to assess the magnesium dissolution in the flux during SOM electrolysis. The effects of magnesium solubility in the flux on the current efficiency and the SOM stability during electrolysis are discussed. An inverse correlation between the electronic transference number of the flux and the current efficiency of the SOM electrolysis was observed. Based on the experimental results, a new equivalent circuit of the SOM electrolysis process is presented. A general electrochemical polarization model of SOM process for magnesium and oxygen gas production is developed, and the maximum allowable applied potential to avoid zirconia dissociation is calculated as well. The modeling results suggest that a high electronic resistance of the flux and a relatively low electronic resistance of SOM are required to achieve membrane stability, high current efficiency, and high production rates of magnesium and oxygen.

  3. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    Directory of Open Access Journals (Sweden)

    Casper Thorup

    2017-07-01

    Full Text Available This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR. Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase.

  4. Stoichiometry of mitochondrial H+ translocation coupled to succinate oxidation at level flow.

    Science.gov (United States)

    Costa, L E; Reynafarje, B; Lehninger, A L

    1984-04-25

    The mechanistic stoichiometry of vectorial H+ translocation coupled to succinate oxidation by rat liver mitochondria in the presence of a permeant cation has been determined under level flow conditions with a membraneless fast responding O2 electrode kinetically matched with a glass pH electrode. The reactions were initiated by rapid injection of O2 into the anaerobically preincubated test system under conditions in which interfering H+ backflow was minimized. The rates of O2 uptake and H+ ejection, obtained from computer-fitted regression lines, were monotonic and first order over 75% of the course of O2 consumption. Extrapolation of the observed rates to zero time, at which zero delta mu H+ and thus level flow prevails, yielded vectorial H+/O flow ratios above 7 and closely approaching 8. The mitochondria undergo no irreversible change and give identical H+/O ratios on repeated tests. In a further refinement, the lower and upper limits of the mechanistic H+/O ratio were determined to be 7.55 and 8.56, respectively, from plots of the rates of O2 uptake versus H+ ejection at increasing malonate and increasing valinomycin concentrations, respectively. It is therefore concluded that the mechanistic H+/O ratio for energy-conserving sites 2 + 3 is 8, in confirmation of earlier measurements. KCl concentration is critical for maximal observed H+/O ratios. Optimum conditions and possible errors in determination of mechanistic H+/O translocation ratios are discussed.

  5. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  6. Magnetic behavior of iron oxide nanoparticle-biomolecule assembly

    International Nuclear Information System (INIS)

    Kim, Taegyun; Reis, Lynn; Rajan, Krishna; Shima, Mutsuhiro

    2005-01-01

    Iron oxide nanoparticles of 8-20 nm in size were investigated as an assembly with biomolecules synthesized in an aqueous solution. The magnetic behavior of the biomolecule-nanoparticles assembly depends sensitively on the morphology and hence the distribution of the nanoparticles, where the dipole coupling between the nanoparticles governs the overall magnetic behavior. In assemblies of iron oxide nanoparticles with trypsin, we observe a formation of unusual self-alignment of nanoparticles within trypsin molecules. In such an assembly structure, the magnetic particles tend to exhibit a lower spin-glass transition temperature than as-synthesized bare iron oxide nanoparticles probably due to reduced interparticle couplings within the molecular matrix. The observed self-alignment of nanoparticles in biomolecules may be a useful approach for directed nanoparticles assembly

  7. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  8. Evolution of Near-Surface Internal and External Oxide Morphology During High-Temperature Selective Oxidation of Steels

    Science.gov (United States)

    Story, Mary E.; Webler, Bryan A.

    2018-05-01

    In this work we examine some observations made using high-temperature confocal scanning laser microscopy (HT-CSLM) during selective oxidation experiments. A plain carbon steel and advanced high-strength steel (AHSS) were selectively oxidized at high temperature (850-900°C) in either low oxygen or water vapor atmospheres. Surface evolution, including thermal grooving along grain boundaries and oxide growth, was viewed in situ during heating. Experiments investigated the influence of the microstructure and oxidizing atmosphere on selective oxidation behavior. Sequences of CSLM still frames collected during the experiment were processed with ImageJ to obtain histograms that showed a general darkening trend indicative of oxidation over time with all samples. Additional ex situ scanning electron microscopy and energy dispersive spectroscopy analysis supported in situ observations. Distinct oxidation behavior was observed for each case. Segregation, grain orientation, and extent of internal oxidation were all found to strongly influence surface evolution.

  9. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    Science.gov (United States)

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  10. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber

    Directory of Open Access Journals (Sweden)

    C. J. Hennigan

    2011-08-01

    Full Text Available Smog chamber experiments were conducted to investigate the chemical and physical transformations of organic aerosol (OA during photo-oxidation of open biomass burning emissions. The experiments were carried out at the US Forest Service Fire Science Laboratory as part of the third Fire Lab at Missoula Experiment (FLAME III. We investigated emissions from 12 different fuels commonly burned in North American wildfires. The experiments feature atmospheric and plume aerosol and oxidant concentrations; aging times ranged from 3 to 4.5 h. OA production, expressed as a mass enhancement ratio (ratio of OA to primary OA (POA mass, was highly variable. OA mass enhancement ratios ranged from 2.9 in experiments where secondary OA (SOA production nearly tripled the POA concentration to 0.7 in experiments where photo-oxidation resulted in a 30 % loss of the OA mass. The campaign-average OA mass enhancement ratio was 1.7 ± 0.7 (mean ± 1σ; therefore, on average, there was substantial SOA production. In every experiment, the OA was chemically transformed. Even in experiments with net loss of OA mass, the OA became increasingly oxygenated and less volatile with aging, indicating that photo-oxidation transformed the POA emissions. Levoglucosan concentrations were also substantially reduced with photo-oxidation. The transformations of POA were extensive; using levoglucosan as a tracer for POA, unreacted POA only contributed 17 % of the campaign-average OA mass after 3.5 h of exposure to typical atmospheric hydroxyl radical (OH levels. Heterogeneous reactions with OH could account for less than half of this transformation, implying that the coupled gas-particle partitioning and reaction of semi-volatile vapors is an important and potentially dominant mechanism for POA processing. Overall, the results illustrate that biomass burning emissions are subject to extensive chemical processing in the atmosphere, and the timescale for these transformations is rapid.

  11. 13C-Tracer Experiments in DIII-D Preliminary to Thermal Oxidation Experiments to Understand Tritium Recovery in DIII-D, JET, C-Mod, and MAST

    International Nuclear Information System (INIS)

    Stangeby, P.; Allen, S.; Bekris, N.; Brooks, N.; Christie, K.; Chrobak, C.; Coad, J.; Counsell, G.; Davis, J.; Elder, J.; Fenstermacher, M.; Groth, M.; Haasz, A.; Likonen, J.; Lipschultz, B.; McLean, A.; Philipps, V.; Porter, G.; Rudakov, D.; Shea, J.; Wampler, W.; Watkins, J.; West, W.; Whyte, D.

    2006-01-01

    Retention of tritium in carbon co-deposits is a serious concern for ITER. Developing a reliable in-situ removal method of the co-deposited tritium would allow the use of carbon plasma-facing components which have proven reliable in high heat flux conditions and compatible with high performance plasmas. Thermal oxidation is a potential solution, capable of reaching even hidden locations. It is necessary to establish the least severe conditions to achieve adequate tritium recovery, minimizing damage and reconditioning time. The first step in this multi-machine project is 13 C-tracer experiments in DIII-D, JET, C-Mod and MAST. In DIII-D and JET, 13 CH 4 has been (and in C-Mod and MAST, will be) injected toroidally symmetrically, facilitating quantification and interpretation of the results. Tiles have been removed, analyzed for 13 C content and will next be evaluated in a thermal oxidation test facility in Toronto with regard to the ability of different severities of oxidation exposure to remove the different types of (known and measured) 13 C co-deposit. Removal of D/T from B on Mo tiles from C-Mod will also be tested. OEDGE interpretive code analysis of the 13 C deposition patterns is used to generate the understanding needed to apply findings to ITER. First results are reported here for the 13 C injection experiments IN DIII-D

  12. Assays for urinary biomarkers of oxidatively damaged nucleic acids

    DEFF Research Database (Denmark)

    Weimann, Allan; Broedbaek, Kasper; Henriksen, Trine

    2012-01-01

    Abstract The analysis of oxidized nucleic acid metabolites can be performed by a variety of methodologies: liquid chromatography coupled with electrochemical or mass-spectrometry detection, gas chromatography coupled with mass spectrometry, capillary electrophoresis and ELISA (Enzyme-linked immun...

  13. Acrolein coupling on reduced TiO 2(1 1 0): The effect of surface oxidation and the role of subsurface defects

    Science.gov (United States)

    Benz, Lauren; Haubrich, Jan; Quiller, Ryan G.; Friend, Cynthia M.

    2009-04-01

    Reactions of acrolein, water, and oxygen with the vacuum-reduced surface of TiO 2(1 1 0) are reported in a temperature programmed reaction study of the interaction of an aldehydic pollutant with a reducible metal oxide. A total of 25% of the acrolein that binds to the surface is converted to products. Notably, carbon-carbon coupling occurs with 86% selectivity for formation of C 6 products: C 6H 8, identified as 1,3-cyclohexadiene, in a peak at 500 K and benzene immediately thereafter at 530 K. Acrolein is evolved from the surface in three peaks: a peak independent of coverage at 495 K, attributed to decomposition of an intermediate that is partly converted to C 6H 8; a coverage-dependent peak that shifts from 370 K (low coverage) to 260 K (high coverage), which is attributed to adsorption at 5-fold coordinated Ti sites; and a multilayer state at 160 K. Water and acrolein compete for 5-fold coordinated titanium sites when dosed sequentially. The addition of water also opens a new reaction pathway, leading to the hydrogenation of acrolein to form propanal. Water has no effect on the yield of 1,3-cyclohexadiene. Exposure of the surface to oxygen prior to acrolein dosing quenches the evolution of acrolein at 495 K and concurrently eliminates the coupling. From these results, we propose that reduced subsurface defects such as titanium ion interstitials play a role in the reactions observed here. The notion that subsurface defects may contribute to the reactivity of organic molecules over reducible oxide substrates may prove to be general.

  14. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode

    Science.gov (United States)

    Fu, Yongsheng; Zhu, Junwu; Hu, Chong; Wu, Xiaodong; Wang, Xin

    2014-10-01

    An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between the g-C3N4 and rGO sheets. The g-C3N4-rGO exhibits an unprecedented high, stable and reversible capacity of 1525 mA h g-1 at a current density of 100 mA g-1 after 50 cycles. Even at a large current density of 1000 mA g-1, a reversible capacity of 943 mA h g-1 can still be retained. The superior electrochemical performance of g-C3N4-rGO is attributed to the specific characteristics of the unique nanostructure of g-C3N4-rGO and the concerted effects of g-C3N4 and rGO, including covalent interactions between the two moieties, the good conductivity and high special surface area of the nanocomposite, as well as the template effect of the planar amino group of g-C3N4 for the dispersed decoration of Li+ ions.An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between

  15. DNA-binding, catalytic oxidation, C—C coupling reactions and antibacterial activities of binuclear Ru(II thiosemicarbazone complexes: Synthesis and spectral characterization

    Directory of Open Access Journals (Sweden)

    Arumugam Manimaran

    2012-07-01

    Full Text Available New hexa-coordinated binuclear Ru(II thiosemicarbazone complexes of the type {[(B(EPh3(COClRu]2L} (where, E = P or As; B = PPh3 or AsPh3 or pyridine; L = mononucleating NS donor of N-substituted thiosemicarbazones have been synthesized and characterized by elemental analysis, FT-IR, UV–vis and 31P{1H} NMR cyclic voltammetric studies. The DNA-binding studies of Ru(II complexes with calf thymus DNA (CT-DNA were investigated by UV–vis, viscosity measurements, gel-electrophoresis and fluorescence spectroscopy. The new complexes have been used as catalysts in C—C coupling reaction and in the oxidation of alcohols to their corresponding carbonyl compounds by using NMO as co-oxidant and molecular oxygen (O2 atmosphere at ambient temperature. Further, the new binucleating thiosemicarbazone ligands and their Ru(II complexes were also screened for their antibacterial activity against Klebsiella pneumoniae, Shigella sp., Micrococcus luteus, Escherichia coli and Salmonella typhi. From this study, it was found out that the activity of the complexes almost reaches the effectiveness of the conventional bacteriocide.

  16. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene.

    Science.gov (United States)

    Kaspar, H F; Tiedje, J M

    1981-03-01

    15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.

  17. Rapid syntheses of dehydrodiferulates via biomimetic radical coupling reactions of ethyl ferulate.

    Science.gov (United States)

    Lu, Fachuang; Wei, Liping; Azarpira, Ali; Ralph, John

    2012-08-29

    Dehydrodimerization of ferulates in grass cell walls provides a pathway toward cross-linking polysaccharide chains limiting the digestibility of carbohydrates by ruminant bacteria and in general affecting the utilization of grass as a renewable bioresource. Analysis of dehydrodiferulates (henceforth termed diferulates) in plant cell walls is useful in the evaluation of the quality of dairy forages as animal feeds. Therefore, there has been considerable demand for quantities of diferulates as standards for such analyses. Described here are syntheses of diferulates from ethyl ferulate via biomimetic radical coupling reactions using the copper(II)-tetramethylethylenediamine [CuCl(OH)-TMEDA] complex as oxidant or catalyst. Although CuCl(OH)-TMEDA oxidation of ethyl ferulate in acetonitrile produced mixtures composed of 8-O-4-, 8-5-, 8-8- (cyclic and noncyclic), and 5-5-coupled diferulates, a catalyzed oxidation using CuCl(OH)-TMEDA as catalyst and oxygen as an oxidant resulted in better overall yields of such diferulates. Flash chromatographic fractionation allowed isolation of 8-8- and 5-5-coupled diferulates. 8-5-Diferulate coeluted with 8-O-4-diferulate but was separated from it via crystallization; the 8-O-4 diferulate left in the mother solution was isolated by rechromatography following a simple tetrabutylammonium fluoride treatment that converted 8-5-diferulate to another useful diferulate, 8-5-(noncyclic) diferulate. Therefore, six of the nine (5-5, 8-O-4, 8-5-c, 8-5-nc, 8-5-dc, 8-8-c, 8-8-nc, 8-8-THF, 4-O-5) diferulic acids that have to date been found in the alkaline hydrolysates of plant cell walls can be readily synthesized by the CuCl(OH)-TMEDA catalyzed aerobic oxidative coupling reaction and subsequent saponification described here.

  18. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    Science.gov (United States)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  19. Couples with dementia: Positioning the 'we'.

    Science.gov (United States)

    Hydén, Lars-Christer; Nilsson, Elin

    2015-11-01

    The aim of this article is to investigate how spouses in couples with dementia position themselves in relation to each other by analysing their use of pronouns, especially the we. The study uses joint interviews with 11 couples. Based on a quantitative analysis of pronoun use, it is argued that the pronoun we is used by all the spouses; however, it is used less frequently by the spouses with dementia in comparison with healthy spouses. A qualitative analysis of the use of the pronoun we shows that the spouses position, experience and consider themselves as a couple and that they position and experience themselves as individuals in relation to the couple. One of the challenges for couples with dementia is to be able to retain a we in face of the progression of the dementia disease. By positioning themselves in various ways, the spouses establish and negotiate quite a complex and emotionally charged web of relationships. © The Author(s) 2013.

  20. When do oxide precipitates form during consolidation of oxide dispersion strengthened steels?

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A., E-mail: alexis.deschamps@grenoble-inp.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); De Geuser, F. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Malaplate, J.; Sornin, D. [DEN, DANS, DMN, Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, 91191 Gif-Sur-Yvette (France)

    2016-12-15

    The processing of oxide dispersion strengthened (ODS) steels involves ball milling, where the oxide forming species are driven in solid solution. Precipitation of the nanometre-scale oxides occurs during subsequent annealing and consolidation. This paper reports in-situ Small-Angle X-ray Scattering measurements of the formation of these precipitates during heating of cold-compressed as-milled powders. Clusters are already initially present, and precipitation starts at 300 °C. The maximum precipitate density is achieved at 600 °C, followed by very slow coarsening at higher temperature. These results open the way to understand the coupled evolution of precipitation and crystalline defects during heating and consolidation of ODS steels.

  1. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    Science.gov (United States)

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Avoiding bias effects in NMR experiments for heteronuclear dipole-dipole coupling determinations: principles and application to organic semiconductor materials.

    Science.gov (United States)

    Kurz, Ricardo; Cobo, Marcio Fernando; de Azevedo, Eduardo Ribeiro; Sommer, Michael; Wicklein, André; Thelakkat, Mukundan; Hempel, Günter; Saalwächter, Kay

    2013-09-16

    Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Tropical-extratropical climate interaction as revealed in idealized coupled climate model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haijun [Peking University, Department of Atmospheric Science and Laboratory for Severe Storm and Flood Disasters, School of Physics, Beijing (China); Liu, Zhengyu [University of Wisconsin-Madison, Center for Climatic Research and Department of the Atmospheric and Oceanic Sciences, Madison, WI (United States)

    2005-06-01

    Tropical-extratropical climate interactions are studied by idealized experiments with a prescribed 2 C SST anomaly at different latitude bands in a coupled climate model. Instead of focusing on intrinsic climate variability, this work investigates the mean climate adjustment to remote external forcing. The extratropical impact on tropical climate can be as strong as the tropical impact on extratropical climate, with the remote sea surface temperature (SST) response being about half the magnitude of the imposed SST change in the forcing region. The equatorward impact of extratropical climate is accomplished by both the atmospheric bridge and the oceanic tunnel. About two-thirds of the tropical SST change comes from the atmospheric bridge, while the remaining one-third comes from the oceanic tunnel. The equatorial SST increase is first driven by the reduced latent heat flux and the weakened poleward surface Ekman transport, and then enhanced by the decrease in subtropical cells' strength and the equatorward subduction of warm anomalies. In contrast, the poleward impact of tropical climate is accomplished mainly by the atmospheric bridge, which is responsible for extratropical temperature changes in both the surface and subsurface. Sensitivity experiments also show the dominant role of the Southern Hemisphere oceans in the tropical climate change. (orig.)

  4. Aespoe Pillar Stability Experiment. Final 2D coupled thermo-mechanical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksson, Anders; Staub, Isabelle; Outters, Nils [Golder Associates AB, Uppsala (Sweden)

    2004-02-01

    A site scale Pillar Stability Experiment is planned in the Aespoe Hard Rock Laboratory. One of the experiment's aims is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar 'prior to experiment' numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The 2D numerical simulations were conducted at two different depth levels, 0.5 and 1.5 m below tunnel floor. The in situ stresses have been confirmed with convergence measurements during the excavation of the tunnel. After updating the mechanical and thermal properties of the rock mass the final simulations have been undertaken. According to the modelling results the temperature in the pillar will increase from the initial 15.2 deg up to 58 deg after 120 days of heating. Based on these numerical simulations and on the thermal induced stresses the total stresses are expected to exceed 210 MPa at the border of the pillar for the level at 0.5 m below tunnel floor and might reach 180-182 MPa for the level at 1.5 m below tunnel floor. The stresses are slightly higher at the border of the confined hole. Upon these results and according to the rock mechanical properties the Crack Initiation Stress is exceeded at the border of the pillar already after the excavation phase. These results also illustrate that the Crack Damage Stress is exceeded only for the level at 0.5 m below tunnel floor and after at least 80 days of heating. The interpretation of the results shows that the required level of stress for spalling can be reached in the pillar.

  5. The Influence of FeO on the Reaction between Fe–Al–Ca Alloy and Al2O3–CaO–FeO Oxide during Heat Treatment at 1473 K

    Directory of Open Access Journals (Sweden)

    Chengsong Liu

    2017-04-01

    Full Text Available Oxygen diffusion from oxides to an alloy during heat treatment could influence the properties of the alloy and oxides. To clarify the influence of FeO on the solid-state reactions between Al2O3–CaO–FeO oxide and Fe–Al–Ca alloy during heat treatment at 1473 K, three diffusion couples with different FeO concentrations in the oxide were produced. The diffusion couples were subjected to several procedures successively including an oxide pre-melting experiment using a confocal scanning laser microscope to obtain good contact between the alloy and oxide, vacuum sealing to protect the specimens from oxidation, heat treatment, and electron probe X-ray microanalysis. The effects of the FeO content in the oxide on the morphology of the interface between the alloy and oxide, change of elements in the alloy, widths of the particle precipitation zone (PPZ and aluminum-depleted zone (ADZ, and size distribution of the particles in the alloy, were investigated and discussed. Based on the Wagner equation of internal oxidation of metals, a modified dynamic model to calculate the PPZ width was established to help understand the mechanism of the solid-state reactions and element diffusion between the Fe–Al–Ca alloy and Al2O3–CaO–FeO oxide with different FeO concentrations.

  6. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-02-21

    Uranium-(VI) phases are the primary alteration products of the UO{sub 2} in spent nuclear fuel and the UO{sub 2+x}, in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO{sub 2}{sup 2+} polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO{sub 2+x}, to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements.

  7. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    International Nuclear Information System (INIS)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-01-01

    Uranium-(VI) phases are the primary alteration products of the UO 2 in spent nuclear fuel and the UO 2+x , in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO 2 2+ polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO 2+x , to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements

  8. Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2010-11-01

    Full Text Available In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide dosage, reaction time and initial pH value were investigated in batch experiments and a plausible mechanism was proposed. The results showed that LA decarboxylation over cupric oxides at around 300 °C under acidic conditions produced the highest yield of butanone (67.5%. In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, XPS and H2-TPR techniques was applied to examine their molecular surfaces and their effects on the reaction process.

  9. Flashing coupled density wave oscillation

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin; Zhang Youjie

    1997-07-01

    The experiment was performed on the test loop (HRTL-5), which simulates the geometry and system design of the 5 MW reactor. The phenomenon and mechanism of different kinds of two-phase flow instabilities, namely geyser instability, flashing instability and flashing coupled density wave instability are described. The especially interpreted flashing coupled density wave instability has never been studied well, it is analyzed by using a one-dimensional non-thermo equilibrium two-phase flow drift model computer code. Calculations are in good agreement with the experiment results. (5 refs.,5 figs., 1 tab.)

  10. Investigation of reactivity between SiC and Nb-1Zr in planned irradiation creep experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, C.A.; Hamilton, M.L.; Jones, R.H.

    1997-08-01

    Thermodynamic calculations and diffusion couple experiments showed that SiC and Nb-1Zr were reactive at the upper range of temperatures anticipated in the planned irradiation creep experiment. Sputter-deposited aluminum oxide (Al{sub 2}O{sub 3}) was selected as a diffusion barrier coating. Experiments showed that although the coating coarsened at high temperature it was an effective barrier for diffusion of silicon from SiC into Nb-1Zr. Therefore, to avoid detrimental reactions between the SiC composite and the Nb-1Zr pressurized bladder during the planned irradiation creep experiment, a coating of Al{sub 2}O{sub 3} will be required on the Nb-1Zr bladder.

  11. Effect of carbo-nitride-rich and oxide-rich inclusions on the pitting susceptibility of depleted uranium

    International Nuclear Information System (INIS)

    Pu, Zhen; Chen, Xianglin; Meng, Xiandong; Wu, Yanping; Shen, Liang; Wang, Qingfu; Liu, Tianwei; Shuai, Maobing

    2017-01-01

    Highlights: •The Volta potential differences relative to the matrix are positive for both types of inclusions. •Both types of inclusions are cathodic in the “inclusion/matrix” microgalvanic couples. •The oxide-rich inclusions show a larger Volta potential value of about 115 mV than the carbo-nitride-rich inclusions. •The oxide-rich inclusions give stronger local galvanic coupling with the matrix. •The oxide-rich inclusions are more predisposed to initiate pitting corrosion. -- Abstract: The effects of carbo-nitride-rich and oxide-rich inclusions on the pitting susceptibility of depleted uranium were investigated by electrochemical corrosion measurements, optical microscopy, scanning Kelvin probe force microscopy (SKPFM), and SEM. The results of the potentiodynamic polarization tests suggest that oxide-rich inclusions are more likely to induce pitting corrosion than carbo-nitride-rich inclusions. This enhanced corrosion may be explained by the strong local galvanic coupling between the oxide-rich inclusion and the surrounding matrix, which, from the sight of SKPFM analysis, exhibits a 115 V higher Volta potential than the coupling between the carbo-nitride-rich inclusions and the matrix, respectively.

  12. Imaging and tuning of coupled photonic crystal cavities (Conference Presentation)

    Science.gov (United States)

    Gurioli, Massimo

    2016-04-01

    Photonic microcavities (PMC) coupled through their evanescent field are used for a large variety of classical and quantum devices. In such systems, a molecular-like spatial delocalization of the coupled modes is achieved by an evanescent tunnelling. The tunnelling rate depends on the height and depth of the photonic barrier between two adjacent resonators and therefore it is sensitive to the fabrication-induced disorder present in the center of the molecule. In this contribution, we address the problem of developing a post fabrication control of the tunnelling rate in photonic crystal coupled PMCs. The value of the photonic coupling (proportional to the tunnelling rate) is directly measured by the molecular mode splitting at the anticrossing point. By exploiting a combination of tuning techniques such as local infiltration of water, micro-evaporation, and laser induced non thermal micro-oxidation, we are able to either increase or decrease the detuning and the photonic coupling, independently. Near field imaging is also used for mapping the modes and establish delocalization. By water micro-infiltration, we were able to increase the photon coupling by 28%. On the contrary, by laser induced non thermal oxidation, we got a reduction of g by 30%. The combination of the two methods would therefore give a complete control of g with excellent accuracy. This could make possible the realization of array of photonic cavities with on demand tunnelling rate between each pair of coupled resonators. We believe that this peculiar engineering of photonic crystal molecules would open the road to possible progress in the exploitation of coherent interference between coupled optical resonators both for quantum information processing and optical communication.

  13. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    Directory of Open Access Journals (Sweden)

    Robert E. Peale

    2016-09-01

    Full Text Available An electronic detector of surface plasmon polaritons (SPPs is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  14. A facile route to porous beta-gallium oxide nanowires-reduced graphene oxide hybrids with enhanced photocatalytic efficiency

    International Nuclear Information System (INIS)

    Xu, X.; Lei, M.; Huang, K.; Liang, C.; Xu, J.C.; Shangguan, Z.C.; Yuan, Q.X.; Ma, L.H.; Du, Y.X.; Fan, D.Y.; Yang, H.J.; Wang, Y.G.; Tang, W.H.

    2015-01-01

    Highlights: • A facile route was developed to fabricate porous β-Ga 2 O 3 NWs-rGO hybrids. • Supercritical water can act as an efficient reductant to situ-reduce GO into RGO. • The Ga 2 O 3 NWs attach on the surface of RGO through a strong coupling forces. • The photocatalytic performance of the hybrids can be obviously improved. - Abstract: A facile route was developed to fabricate porous beta-gallium oxide nanowires (β-Ga 2 O 3 NWs)-reduced graphene oxide (rGO) hybrids using β-Ga 2 O 3 NWs and graphene oxide (GO) as raw materials. The characterization results indicate that supercritical water can act as an efficient reductant to situ-reduce GO into rGO, and porous β-Ga 2 O 3 NWs can further attach on the surface of as-reduced rGO through a strong coupling forces between the β-Ga 2 O 3 NWs and rGO. The photocatalytic performance of the hybrids can be obviously improved (about 74%) for the decomposition of methylene blue (MB) solution after coupling with 1 wt% rGO compared with the pure β-Ga 2 O 3 NWs. The enhanced photocatalytic activity can be attributed to the synergistic effect of extended optical absorption band, the enrichment of MB molecular on the rGO and the valid inhibition of recombination of photo-generated electron–hole pairs induced by the strong coupling interaction between rGO nanosheets and porous β-Ga 2 O 3 NWs

  15. Photoinduced Cross-Linking of Dynamic Poly(disulfide) Films via Thiol Oxidative Coupling.

    Science.gov (United States)

    Feillée, Noémi; Chemtob, Abraham; Ley, Christian; Croutxé-Barghorn, Céline; Allonas, Xavier; Ponche, Arnaud; Le Nouen, Didier; Majjad, Hicham; Jacomine, Léandro

    2016-01-01

    Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 μm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Determination of trace elements in high pure rare earth oxide by double focusing inductively coupled plasma mass spectrometry (HR ICP-MS) and high performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira Filho, Walter dos Reis

    2000-01-01

    Rare earth oxides are used in several technological fields whose applications can be observed in several areas of modern technology, among which are included: lasers, semiconductors semi, high purity materials and metallic alloys. The field of applications of the rare earth elements is quite wide. Several important industrial applications are ceramics, catalysts and metallurgical as well as research areas and high technology sectors. Such applications have been presenting an accentuated growth in the last years. Chemical characterization of rare earth oxides of high purity has been constituting one of the major challenges of analytical chemistry. Several analytical techniques were used for chemical characterization of high purity rare earth the oxides. Even so, those techniques present limitations when one needs to characterize materials of a high level of purity, as in the case of rare earth oxides. Some of those limitations are associated, for example, to spectral interference. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a powerful analytical tool for quantitative analysis of metal impurities in high purity materials. The Instituto de Pesquisas Energeticas e Nucleares (IPEN) has an unit of production and purification of rare earth oxides, with above 99,9% level of purity. In this work, the rare earth impurities were characterized in samples (La 2 O 3 ; CeO 2 ; Pr 6 O 11 ; Nd 2 O 3 ; Sm 2 O 3 ; Gd 2 O 3 ; Y 2 O 3 ) produced at the IPEN and certified standard materials produced by Johnson Matthey Chemical (JMC). The technique of high performance liquid chromatography (HPLC) was used in the separation of the impurities. Quantification of metallic impurities was carried out as inductively coupled plasma mass spectrometer (HR-ICP MS). In this work it is presented a new analytical methodology in the chemical characterization of metallic impurities in rare earth oxides of high purity (> 99,9%) with and without separation of the matrix. Analyses of standard

  17. Alternative RF coupling configurations for H− ion sources

    International Nuclear Information System (INIS)

    Briefi, S.; Fantz, U.; Gutmann, P.

    2015-01-01

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H − current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region

  18. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments.

    Science.gov (United States)

    Dong, Conglin; Yuan, Chengqing; Bai, Xiuqin; Li, Jian; Qin, Honglin; Yan, Xinping

    2017-05-24

    Stainless steel is widely used in strongly oxidizing hydrogen peroxide (H 2 O 2 ) environments. It is crucial to study its wear behaviour and failure mode. The tribological properties and oxidation of 304 stainless steel were investigated using a MMW-1 tribo-tester with a three-electrode setup in H 2 O 2 solutions with different concentrations. Corrosion current densities (CCDs), coefficients of frictions (COFs), wear mass losses, wear surface topographies, and metal oxide films were analysed and compared. The results show that the wear process and oxidation process interacted significantly with each other. Increasing the concentration of H 2 O 2 or the oxidation time was useful to form a layer of integrated, homogeneous, compact and thick metal oxide film. The dense metal oxide films with higher mechanical strengths improved the wear process and also reduced the oxidation reaction. The wear process removed the metal oxide films to increase the oxidation reaction. Theoretical data is provided for the rational design and application of friction pairs in oxidation corrosion conditions.

  19. Oxygen isotope evidence for sorption of molecular oxygen to pyrite surface sites and incorporation into sulfate in oxidation experiments

    International Nuclear Information System (INIS)

    Tichomirowa, Marion; Junghans, Manuela

    2009-01-01

    Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO 4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O 2 ) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O 2 ) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO 4 and water was observed over a pH range of 0-2 only at 50 deg. C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 deg. C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T ≤ 25 deg. C, pH ≥ 3) for decades. Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O 2 to pyrite surface sites. The sorption of molecular O 2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO 4 . The calculated bulk contribution of atmospheric O 2 in the dissolved SO 4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O 2 in the early-formed sulfates, chemisorption and electron transfer of molecular O 2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction

  20. A Coupled Soil-Atmosphere Model of H2O2 on Mars

    Science.gov (United States)

    Bullock, Mark A.; Stoker, Carol R.; Mckay, Christopher P.; Zent, Aaron P.

    1994-01-01

    The Viking Gas Chromatograph Mass Spectrometer failed to detect organic compounds on Mars, and both the Viking Labeled Release and the Viking Gas Exchange experiments indicated a reactive soil surface. These results have led to the widespread belief that there are oxidants in the martian soil. Since H2O2 is produced by photochemical processes in the atmosphere of Mars, and has been shown in the laboratory to reproduce closely the Viking LR results, it is a likely candidate for a martian soil oxidant. Here, we report on the results of a coupled soil/atmosphere transport model for H202 on Mars. Upon diffusing into the soil, its concentration is determined by the extent to which it is adsorbed and by the rate at which it is catalytically destroyed. An analytical model for calculating the distribution of H202 in the martian atmosphere and soil is developed. The concentration of H202 in the soil is shown to go to zero at a finite depth, a consequence of the nonlinear soil diffusion equation. The model is parameterized in terms of an unknown quantity, the lifetime of H202 against heterogeneous catalytic destruction in the soil. Calculated concentrations are compared with a H202 concentration of 30 nmoles/cu cm, inferred from the Viking Labeled Release experiment. A significant result of this model is that for a wide range of H202 lifetimes (up to 105 years), the extinction depth was found to be less than 3 m. The maximum possible concentration in the top 4 cm is calculated to be approx. 240 nmoles/cu cm, achieved with lifetimes of greater than 1000 years. Concentrations higher than 30 nmoles/cu cm require lifetimes of greater than 4.3 terrestrial years. For a wide range of H202 lifetimes, it was found that the atmospheric concentration is only weakly coupled with soil loss processes. Losses to the soil become significant only when lifetimes are less than a few hours. If there are depths below which H202 is not transported, it is plausible that organic compounds

  1. Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments

    International Nuclear Information System (INIS)

    Ferk, Franziska; Chakraborty, Asima; Jaeger, Walter; Kundi, Michael; Bichler, Julia; Misik, Miroslav; Wagner, Karl-Heinz; Grasl-Kraupp, Bettina; Sagmeister, Sandra; Haidinger, Gerald; Hoelzl, Christine; Nersesyan, Armen; Dusinska, Maria; Simic, Tatjana; Knasmueller, Siegfried

    2011-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-π) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against γ-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of formation

  2. Potent protection of gallic acid against DNA oxidation: Results of human and animal experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ferk, Franziska; Chakraborty, Asima [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Jaeger, Walter [Department of Clinical Pharmacy and Diagnostic, University of Vienna, Vienna (Austria); Kundi, Michael [Institute of Environmental Health, Center for Public Health, Medical University of Vienna, A-1090 Vienna (Austria); Bichler, Julia; Misik, Miroslav [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Wagner, Karl-Heinz [Department of Nutritional Sciences, University of Vienna, 1090 Vienna (Austria); Grasl-Kraupp, Bettina; Sagmeister, Sandra [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Haidinger, Gerald [Department of Epidemiology, Center for Public Health, Medical University of Vienna, A-1090 Vienna (Austria); Hoelzl, Christine; Nersesyan, Armen [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Dusinska, Maria [Health Effect Laboratory, Center for Ecological Economics, Norwegian Institute for Air Research, NO-2027 Kjeller (Norway); Simic, Tatjana [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria); Knasmueller, Siegfried, E-mail: siegfried.knasmueller@meduniwien.ac.at [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, A-1090 Vienna (Austria)

    2011-10-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-{pi}) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against {gamma}-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of

  3. Kinetic Coupling of Water Splitting and Photoreforming on SrTiO 3 -Based Photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sanwald, Kai E. [Department of Chemistry and Catalysis Research Center, TU München, Lichtenbergstrasse 4, 85747 Garching, Germany; Berto, Tobias F. [Department of Chemistry and Catalysis Research Center, TU München, Lichtenbergstrasse 4, 85747 Garching, Germany; Jentys, Andreas [Department of Chemistry and Catalysis Research Center, TU München, Lichtenbergstrasse 4, 85747 Garching, Germany; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Gutiérrez, Oliver Y. [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States; Lercher, Johannes A. [Department of Chemistry and Catalysis Research Center, TU München, Lichtenbergstrasse 4, 85747 Garching, Germany; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States

    2018-02-26

    Coupling the anodic half-reactions of overall water splitting and oxygenate photoreforming (i.e., proton reduction and oxygenate oxidations) on Al-doped SrTiO3 decorated with a co-catalyst enables efficient photocatalytic H2 generation along with oxygenate conversion without accumulating undesired intermediates such as formaldehyde. The net H2-evolution rates result from the interplay between water oxidation, oxygenate oxidation, and the back-reaction of H2 and O2 to water. When the latter pathway is quantitatively suppressed (e.g., on RhCrOx co-catalyst or in excess of oxygenated hydrocarbons), the initial H2-evolution rates are independent of the oxygenate nature and concentration. This is a consequence of the reduction equivalents for H2-evolution provided by water oxidation compensating changes in the rates of oxygenate conversion. Thus, under conditions of suppressed back-reaction, water and oxygenate oxidations have equal quantum efficiencies. The selectivities to water and oxygenate oxidation depend on oxygenate nature and concentration. Transformations mediated by indirect hole transfer dominate as a result of the water oxidation at the anode and the associated intermediates generated in O2-evolution catalysis (e.g. ·OH, ·O and ·OOH). On the undecorated semiconductor, the O2 produced during overall water splitting is reductively activated to participate in glycerol oxidation without consuming evolved H2. Acknowledgements The authors would like to thank ESRF in Grenoble, France, for providing beam time at the ID26 station for XAFS experiments. K.E.S. gratefully acknowledges financial support by the Fond der Chemischen Industrie (FCI). J.A.L. and O.Y.G. acknowledge support for his contribution by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multi-program national laboratory operated by Battelle for the U.S. Department of Energy. The authors thank Xaver Hecht for BET measurements, Martin Neukamm for

  4. Oxidation of volatile organic compound vapours by potassium permanganate in a horizontal permeable reactive barrier under unsaturated conditions: experiments and modeling

    NARCIS (Netherlands)

    Ghareh Mahmoodlu, Mojtaba|info:eu-repo/dai/nl/357287746

    2014-01-01

    In this research we evaluated the potential of using solid potassium permanganate to create a horizontal permeable reactive barrier (HPRB) for oxidizing VOC vapours in the unsaturated zone. We have performed batch experiments, short column, and long column experiments, and have fully analyzed the

  5. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    Science.gov (United States)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  6. The Influence of Gender Role and Women's Empowerment on Couples' Fertility Experiences in Urban Society of Mashhad, Iran

    Directory of Open Access Journals (Sweden)

    Talat Khadivzadeh

    2014-07-01

    Full Text Available Background and Aim: Iran has experienced a great variation in women's status in recent years. There is a little knowledge on how and why advancing gender equality and equity and the empowerment of women play a role in recent fertility reduction in the country. This study was conducted to gain insight into the role of gender beliefs and women's empowerment in the couples 'experiences of fertility in Mashhad, Iran in 2011-2012. Methods: In this exploratory qualitative study in-depth interviews were conducted with 54 purposefully selected eligible male and female participants and some key informants who lived in urban society of Mashhad. Data was collected until saturation was happened and analyzed adopting conventional content analysis approach through giving analytical codes and identification of categories using MAXqda software. Study rigor verified via prolonged engagement, thick description and validation of anlysis through member check. Results:Findings from data analysis demonstrated three major categories about the influence of women’s empowerment and gender role on fertility experiences including: 1 The couple’s understanding of gender roles 2 Women’s empowerment and changing gender roles 3 Couple’s interactions in complementary or parallel roles and 4 Fulfillment of fertility goals based on role division. Some aspects of couples' interaction including equal roles in fertility decisions, choosing and using best fit family planning method and participative child care influenced couples' fertility behavior. Women’s empowerment together with balanced gender role in the family resulted in success in attaining couple’s fertility desire. Conclusion: Managing fertility behaviors needs to understand the roles of spouses in their mutual interaction in fertility decision making and related behaviors. Imbalanced gender role in family acts as an obstacle to reach the fertility goals and leads to lower than desired fertility. Reproductive

  7. Development of a global 1-D chemically radiatively coupled model and an introduction to the development of a chemically coupled General Circulation Model

    International Nuclear Information System (INIS)

    Akiyoshi, H.

    1997-01-01

    A global one-dimensional, chemically and radiatively coupled model has been developed. The basic concept of the coupled model, definition of globally averaged zenith angles, the formulation of the model chemistry, radiation, the coupled processes, and profiles and diurnal variations of temperature and chemical species at a normal steady state are presented. Furthermore, a suddenly doubled CO 2 experiment and a Pinatubo aerosol increase experiment were performed with the model. The time scales of variations in ozone and temperature in the lower stratosphere of the coupled system in the doubled CO 2 experiment was long, due to a feedback process among ultra violet radiation, O(1D), NO y , NO x , and O 3 . From the Pinatubo aerosol experiment, a delay of maximum ozone decrease from the maximum aerosol loading is shown and discussed. Developments of 3-D chemical models with coupled processes are briefly described, and the ozone distribution from the first version of the 3-D model are presented. Chemical model development in National Institute for Environmental Studies (NIES) are briefly described. (author)

  8. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  9. Selective oxidation of methane to ethane and ethylene over various oxide catalysts

    NARCIS (Netherlands)

    Roos, J.A.; Bakker, A.G.; Bosch, H.; van Ommen, J.G.; Ross, J.R.H.

    1987-01-01

    Preliminary results are reported for the oxidative coupling of methane to give ethane/ethylene mixtures over a series of different catalyst formulations; the temperature range studied is 650–850°C. A comparison is made of the behaviour of lead/alumina and lithium/magnesia materials. It is found that

  10. Continuous measurements of nitrous oxide isotopomers during incubation experiments

    Science.gov (United States)

    Winther, Malte; Balslev-Harder, David; Christensen, Søren; Priemé, Anders; Elberling, Bo; Crosson, Eric; Blunier, Thomas

    2018-02-01

    Nitrous oxide (N2O) is an important and strong greenhouse gas in the atmosphere. It is produced by microbes during nitrification and denitrification in terrestrial and aquatic ecosystems. The main sinks for N2O are turnover by denitrification and photolysis and photo-oxidation in the stratosphere. In the linear N = N = O molecule 15N substitution is possible in two distinct positions: central and terminal. The respective molecules, 14N15N16O and 15N14N16O, are called isotopomers. It has been demonstrated that N2O produced by nitrifying or denitrifying microbes exhibits a different relative abundance of the isotopomers. Therefore, measurements of the site preference (difference in the abundance of the two isotopomers) in N2O can be used to determine the source of N2O, i.e., nitrification or denitrification. Recent instrument development allows for continuous position-dependent δ15N measurements at N2O concentrations relevant for studies of atmospheric chemistry. We present results from continuous incubation experiments with denitrifying bacteria, Pseudomonas fluorescens (producing and reducing N2O) and Pseudomonas chlororaphis (only producing N2O). The continuous measurements of N2O isotopomers reveals the transient isotope exchange among KNO3, N2O, and N2. We find bulk isotopic fractionation of -5.01 ‰ ± 1.20 for P. chlororaphis, in line with previous results for production from denitrification. For P. fluorescens, the bulk isotopic fractionation during production of N2O is -52.21 ‰ ± 9.28 and 8.77 ‰ ± 4.49 during N2O reduction.The site preference (SP) isotopic fractionation for P. chlororaphis is -3.42 ‰ ± 1.69. For P. fluorescens, the calculations result in SP isotopic fractionation values of 5.73 ‰ ± 5.26 during production of N2O and 2.41 ‰ ± 3.04 during reduction of N2O. In summary, we implemented continuous measurements of N2O isotopomers during incubation of denitrifying bacteria and believe that similar experiments will lead to a better

  11. Zirconium metal-water oxidation kinetics. V. Oxidation of Zircaloy in high pressure steam

    International Nuclear Information System (INIS)

    Pawel, R.E.; Cathcart, J.V.; Campbell, J.J.; Jury, S.H.

    1977-12-01

    A series of scoping tests to determine the influence of steam pressure on the isothermal oxidation kinetics of Zircaloy-4 PWR tubing was undertaken. The oxidation experiments were conducted in flowing steam at 3.45, 6.90, and 10.34 MPa (500, 1000, and 1500 psi) at 905 0 C (1661 0 F), and at 3.45 and 6.90 MPa at 1101 0 C (2014 0 F). A comparison of the results of these experiments with those obtained for oxidation in steam at atmospheric pressure under similar conditions indicated that measurable enhancement of the oxidation rate occurred with increasing pressure at 905 0 C, but not at 1100 0 C

  12. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  13. Clinical processes in behavioral couples therapy.

    Science.gov (United States)

    Fischer, Daniel J; Fink, Brandi C

    2014-03-01

    Behavioral couples therapy is a broad term for couples therapies that use behavioral techniques based on principles of operant conditioning, such as reinforcement. Behavioral shaping and rehearsal and acceptance are clinical processes found across contemporary behavioral couples therapies. These clinical processes are useful for assessment and case formulation, as well as teaching couples new methods of conflict resolution. Although these clinical processes assist therapists in achieving efficient and effective therapeutic change with distressed couples by rapidly stemming couples' corrosive affective exchanges, they also address the thoughts, emotions, and issues of trust and intimacy that are important aspects of the human experience in the context of a couple. Vignettes are provided to illustrate the clinical processes described. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  14. Chameleons with Field Dependent Couplings

    CERN Document Server

    Brax, Philippe; Mota, David F; Nunes, Nelson J; Winther, Hans A

    2010-01-01

    Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power run-away potentials and field independent couplings to matter. In this paper we investigate field-theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for E\\"ot-Wash experiments, fifth-force searches and Casimir force experiments. Requiring that the scalar-field evades gravitational tests, we find that the coupling is sensitive to a mass-scale which is of order of the Hubble scale today.

  15. Chameleons with field-dependent couplings

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Mota, David F.; Winther, Hans A.; Nunes, Nelson J.

    2010-01-01

    Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power runaway potentials and field-independent couplings to matter. In this paper we investigate field theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for Eoet-Wash experiments, fifth-force searches and Casimir-force experiments. Requiring that the scalar field evades gravitational tests, we find that the coupling is sensitive to a mass scale which is of order of the Hubble scale today.

  16. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Science.gov (United States)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  17. Metal oxide nanorod arrays on monolithic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian; Guo, Yanbing; Ren, Zheng

    2018-01-02

    A metal oxide nanorod array structure according to embodiments disclosed herein includes a monolithic substrate having a surface and multiple channels, an interface layer bonded to the surface of the substrate, and a metal oxide nanorod array coupled to the substrate surface via the interface layer. The metal oxide can include ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide. The substrate can include a glass substrate, a plastic substrate, a silicon substrate, a ceramic monolith, and a stainless steel monolith. The ceramic can include cordierite, alumina, tin oxide, and titania. The nanorod array structure can include a perovskite shell, such as a lanthanum-based transition metal oxide, or a metal oxide shell, such as ceria, zinc oxide, tin oxide, alumina, zirconia, cobalt oxide, and gallium oxide, or a coating of metal particles, such as platinum, gold, palladium, rhodium, and ruthenium, over each metal oxide nanorod. Structures can be bonded to the surface of a substrate and resist erosion if exposed to high velocity flow rates.

  18. IRPhE/STEK, Reactor Physics Experiments from Fast-Thermal Coupled Facility

    International Nuclear Information System (INIS)

    Dietze, Klaus; Klippel, Henk Th.; Koning, Arjan; Jacqmin, Robert

    2003-01-01

    1 - Description: The STEK-experiments have been performed to check neutron data of the most important reactor materials, especially of fission product nuclides, fuel isotopes and structural materials. The measured central reactivity worths (CRW) of small samples were compared with calculated values. These C/E-ratios have been used then for data corrections or in adjustment procedures. The reactors STEK (ECN Petten/ Netherlands) was a fast-thermal coupled facility of zero power. The annular thermal drivers were filled by fuel assemblies and moderated by water. The inner insertion lattices were loaded with pellets of fuel and other materials producing the fast neutron flux. The characteristics of the neutron and adjoint spectra were obtained by special arrangements of these pellets in unit cells. In this way, a hard or soft neutron spectrum or a special energy behavior of the adjoint function could be reached. The samples were moved by means of tubes to the central position (pile-oscillation technique). The original information about the facility and measurements is compiled in RCN-209, ECN-10 The 5 STEK configurations cover a broad energy range due to their increasing softness. The experiments are very valuable because of the extensive program of sample reactivity measurements with many fission product nuclides important in reactor burn-up calculations. At first, analyses of the experiments have been performed in Petten. Newer analyses were done later in Cadarache / CEA France using the European scheme for reactor calculation JEF-2.2 / ECCO / ERANOS (see Note Techniques and JEF/DOC-746). Furthermore, re-analyses were performed in O-arai / JNC Japan with the JNC standard route JENDL-3.2 / SLAROM / CITATION / PERKY. Results obtained with both code systems and different data evaluations (JEF-2.2 and JENDL-3.2) are compared in JEF/DOC-861. It contains the following documents: 31 Reports, 2 publications, 5 JEF documents, 4 conferences. 2 - Related or auxiliary programs

  19. The Evonik-Uhde HPPO process for proplene oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, B.; Baerz, M. [Evonik Industries, Hanau (Germany); Schemel, J.; Kolbe, B. [Uhde GmbH, Dortmund/Bad Soden (Germany)

    2011-07-01

    In 2008 the HPPO technology has shown up as an economically and environmentally friendly alternative for manufacturing of propylene oxide. The HPPO technology offers the advantage of an on purpose process for manufacturing of propylene oxide without dependency on disposal or marketing of coupling products. (orig.)

  20. Case series of fertility treatment in HIV-discordant couples (male positive, female negative: the Ontario experience.

    Directory of Open Access Journals (Sweden)

    Trent Newmeyer

    Full Text Available The success of combination antiretroviral therapies for the treatment of human immunodeficiency virus (HIV has resulted in prolonged life expectancy (over 40 years from diagnosis and an improved quality of life for people living with HIV. The risk of vertical HIV transmission during pregnancy has been reduced to less than 1%. As a result of these breakthroughs and as many of these individuals are of reproductive age, fertility issues are becoming increasingly important for this population. One population in which conception planning and reduction of horizontal HIV transmission warrants further research is HIV-discordant couples where the male partner is HIV-positive and the female partner is HIV-negative. Sperm washing is a technique carried out in a fertility clinic that separates HIV from the seminal fluid. Although sperm washing followed by intrauterine insemination significantly reduces the risk of horizontal HIV transmission, there has been limited access to the procedure in North America. Furthermore, little is known about the conception decision-making experiences of HIV-discordant couples who might benefit from sperm washing. Chart reviews and semi-structured interviews were completed with 12 HIV-discordant couples in Ontario, Canada. Couples were recruited through HIV clinics and one fertility clinic that offered sperm washing. Participants identified a number of factors that affected their decision-making around pregnancy planning. Access to sperm washing and other fertility services was an issue (cost, travel and few clinics. Participants identified a lack of information on the procedure (availability, safety. Sources of support (social networks, healthcare providers were unevenly distributed, especially among those who did not disclose their HIV status to friends and family. Finally, the stigmatisation of HIV continues to have a negative affect on HIV-discordant couples and their intentions to conceive. Access to sperm washing and

  1. Topological Oxide Insulator in Cubic Perovskite Structure

    Science.gov (United States)

    Jin, Hosub; Rhim, Sonny H.; Im, Jino; Freeman, Arthur J.

    2013-01-01

    The emergence of topologically protected conducting states with the chiral spin texture is the most prominent feature at the surface of topological insulators. On the application side, large band gap and high resistivity to distinguish surface from bulk degrees of freedom should be guaranteed for the full usage of the surface states. Here, we suggest that the oxide cubic perovskite YBiO3, more than just an oxide, defines itself as a new three-dimensional topological insulator exhibiting both a large bulk band gap and a high resistivity. Based on first-principles calculations varying the spin-orbit coupling strength, the non-trivial band topology of YBiO3 is investigated, where the spin-orbit coupling of the Bi 6p orbital plays a crucial role. Taking the exquisite synthesis techniques in oxide electronics into account, YBiO3 can also be used to provide various interface configurations hosting exotic topological phenomena combined with other quantum phases. PMID:23575973

  2. Indian Ocean experiments with a coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Wainer, I. [Sao Paulo, Univ. (Brazil). Dept. of Oceanography

    1997-03-01

    A coupled ocean-atmosphere model is used to investigate the equatorial Indian Ocean response to the seasonally varying monsoon winds. Special attention is given to the oceanic response to the spatial distribution and changes in direction of the zonal winds. The Indian Ocean is surrounded by an Asian land mass to the North and an African land mass to the West. The model extends latitudinally between 41 N and 41 S. The asymmetric atmospheric model is driven by a mass source/sink term that is proportional to the sea surface temperature (SST) over the oceans and the heat balance over the land. The ocean is modeled using the Anderson and McCreary reduced-gravity transport model that includes a prognostic equation for the SST. The coupled system is driven by the annual cycle as manifested by zonally symmetric and asymmetric land and ocean heating. They explored the different nature of the equatorial ocean response to various patterns of zonal wind stress forcing in order to isolate the impact of the remote response on the Somali current. The major conclusions are : i) the equatorial response is fundamentally different for easterlies and westerlies, ii) the impact of the remote forcing on the Somali current is a function of the annual cycle, iii) the size of the basin sets the phase of the interference of the remote forcing on the Somali current relative to the local forcing.

  3. Trace methane oxidation studied in several Euryarchaeota under diverse conditions

    Directory of Open Access Journals (Sweden)

    James J. Moran

    2005-01-01

    Full Text Available We used 13C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 ± 0.04%, ± 2 standard deviations of the methane produced during growth was less than that by M. barkeri (0.15 ± 0.04%, grown under similar conditions with H2 and CO2. Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 ± 0.05% than during growth on methanol (0.07 ± 0.03%. This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O2, NO3–, SO22–, SO32– or H2 to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD+ showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H2 concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 ± 0.01% of the methane provided to A. fulgidus, 0.002 ± 0.009% to A. lithotrophicus and 0.003 ± 0.02% to A. profundus. Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in

  4. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex.

    Science.gov (United States)

    Sonnay, Sarah; Poirot, Jordan; Just, Nathalie; Clerc, Anne-Catherine; Gruetter, Rolf; Rainer, Gregor; Duarte, João M N

    2018-03-01

    Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (V NT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of V NT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes. © 2017 Wiley Periodicals, Inc.

  5. A facile route to porous beta-gallium oxide nanowires-reduced graphene oxide hybrids with enhanced photocatalytic efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Lei, M., E-mail: minglei@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Huang, K.; Liang, C.; Xu, J.C.; Shangguan, Z.C. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yuan, Q.X. [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Ma, L.H. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Du, Y.X., E-mail: duyinxiao@zzia.edu.cn [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Fan, D.Y.; Yang, H.J.; Wang, Y.G.; Tang, W.H. [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-02-25

    Highlights: • A facile route was developed to fabricate porous β-Ga{sub 2}O{sub 3} NWs-rGO hybrids. • Supercritical water can act as an efficient reductant to situ-reduce GO into RGO. • The Ga{sub 2}O{sub 3} NWs attach on the surface of RGO through a strong coupling forces. • The photocatalytic performance of the hybrids can be obviously improved. - Abstract: A facile route was developed to fabricate porous beta-gallium oxide nanowires (β-Ga{sub 2}O{sub 3} NWs)-reduced graphene oxide (rGO) hybrids using β-Ga{sub 2}O{sub 3} NWs and graphene oxide (GO) as raw materials. The characterization results indicate that supercritical water can act as an efficient reductant to situ-reduce GO into rGO, and porous β-Ga{sub 2}O{sub 3} NWs can further attach on the surface of as-reduced rGO through a strong coupling forces between the β-Ga{sub 2}O{sub 3} NWs and rGO. The photocatalytic performance of the hybrids can be obviously improved (about 74%) for the decomposition of methylene blue (MB) solution after coupling with 1 wt% rGO compared with the pure β-Ga{sub 2}O{sub 3} NWs. The enhanced photocatalytic activity can be attributed to the synergistic effect of extended optical absorption band, the enrichment of MB molecular on the rGO and the valid inhibition of recombination of photo-generated electron–hole pairs induced by the strong coupling interaction between rGO nanosheets and porous β-Ga{sub 2}O{sub 3} NWs.

  6. Developmental Issues in Counseling With Couples.

    Science.gov (United States)

    Seligman, Linda; Deutsch, Marjorie B.

    Marriages, just like the individuals in them, go through stages of development. Understanding these relatively predictable stages can be helpful to couples, by allaying apprehension, promoting preparation for change, and putting fluctuations into perspective. Research on marital stages and experiences in counseling couples suggest that marriages…

  7. A Study On the Effectiveness of Emotionally Focused Couple Therapy and Integrated Systemic Couple Therapy on reducing Intimacy Anxiety

    Directory of Open Access Journals (Sweden)

    هاجر فلاح زاده

    2015-04-01

    Full Text Available This study examined the effectiveness of emotionally focused couple therapy (EFT and integrated systemic couple therapy (IST on resolving intimacy anxiety. For this purpose, 30 couples were randomly selected and based on their pretests were assigned into two experimental and one control groups. Research instruments were Fear of Intimacy Scale (FIS (Descutner & Thelen, and the Dyadic Adjustment Scale (DAS (Spanier, 1976. A Nine-session of EFT was conducted for one experiment group and eight sessions of IST for the other. The control group did not receive any treatment. These three groups completed post test at the end of the experiment, and follow-up test 3 months later. Results indicated that EFT and IST significantly decreased intimacy anxiety in couples, and the treatment effect was consistent after 3 months follow-up.

  8. [Small scale direct oxide reduction (DOR) experiments

    International Nuclear Information System (INIS)

    1987-01-01

    Objectives were to provide process design information to the Plutonium Recovery Project and to produce DOR (direct oxide reduction) product which meets Foundry purity specifications and Oh-0 Foundry specifications

  9. Measurement of triple-gauge-boson couplings in the experiment ALEPH and at LEP; Mesure des couplages a trois bosons dans l'experience ALEPH et au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Bruneliere, R

    2003-04-01

    Precise measurements at LEP1 and SLD dramatically confirm the Standard Model predictions. Nevertheless, the most crucial consequence of a non-Abelian gauge theory, namely the specific form of the self-couplings of the W, Z and {gamma} was poorly tested. W pair production at LEP2 was a unique opportunity to measure accurately both W boson parameters and its gauge couplings. This thesis presents a study of WW events reconstruction on one hand, and a measurement of the anomalous couplings on the other hand. A precise measurement of the W mass (accuracy {approx} 10{sup -4}) is a major goal of the LEP2 program. The reconstruction of W mass disintegration products, used for this measurement, is very sensitive to the simulation defaults: an essential task is to understand and minimize their effects. This work presents a detailed study of the electromagnetic showers simulation in ALEPH. From this study, a new event reconstruction is proposed, which is tested on the LEP energy measurement obtained from Z return process. Triple gauge-boson couplings are measured from the data collected with the ALEPH detector between 1997 and 2000. Then, results are combined with the other three LEP experiments. This measurement directly confirms the non-Abelian nature of the electroweak sector. No deviation from the Standard Model is observed. (author)

  10. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  11. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    International Nuclear Information System (INIS)

    Cowell, B.S.; Fisher, S.E.

    1999-01-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option

  12. Chemical Transformations in Proto-Cytoplasmic Media. Phosphorus Coupling in the Silica Hydrogel Phase

    Directory of Open Access Journals (Sweden)

    Ian B. Gorrell

    2017-11-01

    Full Text Available It has been proposed that prebiotic chemical studies on the emergence of primitive life would be most relevant when performed in a hydrogel, rather than an aqueous, environment. In this paper we describe the ambient temperature coupling of phosphorus oxyacids [Pi] mediated by Fe(II under aerobic conditions within a silica hydrogel (SHG environment. We have chosen to examine SHGs as they have considerable geological precedence as key phases in silicification en route to rock formation. Following a description of the preparation and characterization studies on our SHG formulations, coupling experiments between Pi species are described across multiple permutations of (i Pi compound; (ii gel formulation; (iii metal salt additive; and (iv pH-modifying agent. The results suggest that successful Pi coupling, indicated by observation of pyrophosphate [PPi(V] via 31P-NMR spectroscopy, takes place when the following components are present: (i a mixture of mixture of Pi(III and Pi(V or pure PPi(III-V; (ii Fe(II; (iii acetic or formic acid (not hydrochloric acid; (iv aerobic conditions or the presence of H2O2 as an oxidant; and (v the presence of a gel system. On the basis of these, and aqueous control reactions, we suggest mechanistic possibilities.

  13. A polygeneration from a dual-gas partial catalytic oxidation coupling with an oxygen-permeable membrane reactor

    International Nuclear Information System (INIS)

    Hao, Yanhong; Huang, Yi; Gong, Minhui; Li, Wenying; Feng, Jie; Yi, Qun

    2015-01-01

    Highlights: • A new polygeneration system (PL-PCO-OPMR) to DME/methanol/power is proposed. • Exergeo-economic analysis is adopted to disclose the performance of systems. • Key technological conditions and parameters for PL-PCO-OPMR are optimized. • PL-PCO-OPMR shows high energy efficiency and low CO_2 emission. • PL-PCO-OPMR is an attractive way for high efficient and clean use of COG and CGG. - Abstract: Polygeneration system, typically involving chemicals/fuels and electricity co-production, is a promising technology for the sustainable development of energy and environment. In this study, a new polygeneration system based on coal and coke oven gas (COG) inputs for co-production of dimethyl ether (DME)/methanol and electricity is proposed. In the new system, an appropriate syngas for the synthesis of DME is from coal gasified gas (CGG) reforming of COG coupled with an oxygen-permeable membrane reactor, in which both COG and CGG reforming process and fuel combustion process are incorporated, which reduces exergy destruction in the whole reforming process. In order to obtain the best performance of CO_2 reduction, energy saving and economic benefit, the key operation parameters of the proposed process are analyzed and optimized. The new system is compared with the process based on CH_4/CO_2 dry reforming, in terms of exergy efficiency, exergy cost and CO_2 emissions. Through the new system, the exergy efficiency can be increased by 7.8%, the exergy cost can be reduced by 0.88 USD/GJ and the CO_2 emission can be reduced by 0.023 kg/MJ. These results suggest that the polygeneration system from CGG and COG partial catalytic oxidation coupling with an oxygen-permeable membrane reactor (PL-PCO-OPMR) would be a more attractive way for highly efficient and clean use of CGG and COG.

  14. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luí s Lemos; Marques, Luí s S A; Pintassilgo, Carlos D.; Wattieaux, Gaë tan; Es-sebbar, Et-touhami; Berndt, Johannes; Kovačević, Eva; Carrasco, Nathalie; Boufendi, Laï fa; Cernogora, Guy

    2012-01-01

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups

  15. Controlled nitric oxide production via O(1D  + N2O reactions for use in oxidation flow reactor studies

    Directory of Open Access Journals (Sweden)

    A. Lambe

    2017-06-01

    Full Text Available Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3 is photolyzed at 254 nm to produce O(1D radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA formation pathways. Simple addition of nitric oxide (NO results in fast conversion of NOx (NO + NO2 to nitric acid (HNO3, making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2 radicals as a sink for organic peroxy (RO2 radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D + N2O  →  2NO, followed by the reaction NO + O3  →  NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS measurements with nitrate (NO3− reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  16. Oxidative protein modification as predigestive mechanism of the carnivorous plant Dionaea muscipula: an hypothesis based on in vitro experiments.

    Science.gov (United States)

    Galek, H; Osswald, W F; Elstner, E F

    1990-01-01

    Aqueous leaf extracts from Dionaea muscipula contain quinones such as the naphthoquinone plumbagin that couple to different NADH-dependent diaphorases, producing superoxide and hydrogen peroxide upon autoxidation. Upon preincubation of Dionaea extracts with certain diaphorases and NADH in the presence of serumalbumin (SA), subsequent tryptic digestion of SA is facilitated. Since the secretroy glands of Droseracea contain proteases and possibly other degradative enzymes it is suggested that the presence of oxygen-activating redox cofactors in the extracts function as extracellular predigestive oxidants which render membrane-bound proteins of the prey (insects) more susceptible to proteolytic attacks.

  17. Oxidation of 4-methoxy-1-naphthol on promoted platinum catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2017-07-01

    Full Text Available , July 2017, Volume 58, Issue 4, pp 441–447 Oxidation of 4-methoxy-1-naphthol on promoted platinum catalysts M. V. Maphoru J. Heveling S. Kesavan Pillai Abstract Oxidative coupling of naphthols is a useful method for the formation of new...

  18. Landfill Leachate Treatment Using Coupled, Sequential Coagulation-flocculation and Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    José L. Álvarez Cruz

    2017-11-01

    Full Text Available This study evaluated the efficiency of Fenton (Fe/H2O2 and photo-assisted Fenton (Fe2+/H2O2/UV reactions combined with coagulation-flocculation (C-F processes to remove the chemical oxygen demand (COD in a landfill leachate from Mexico at a laboratory scale. The C-F experiments were carried out in jar test equipment using different FeSO4 concentrations (0.0, 0.6, 1.0, 3, and 6 mM at pH = 3.0. The effluent from the C-F processes were then treated using the Fenton reaction. The experiments were carried out in a 500 mL glass reactor fillet with 250 mL of landfill leachate. Different molar ratio concentrations (Fe/H2O2 were tested (e.g., 1.6, 3.3, 30, 40 and 75, and the reaction was followed until COD analysis showed no significant further variation in concentration or until 90 min of reaction time were completed. The photo-assisted Fenton reaction was carried out using a UV lamp (365 nm, 5 mW with the same Fe/H2O2 molar ratio values described above. The results suggested that the photo-assisted Fenton process is the most efficient oxidation method for removing organic matter and color in the leachate. The photo-assisted Fenton process removed 68% of the COD and 90% of the color at pH = 3 over 30 minutes of reaction time using a H2O2/Fe molar ratio equal to 75 only using a third of the reaction time of the previous process.

  19. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    International Nuclear Information System (INIS)

    Chevremont, A.-C.; Farnet, A.-M.; Coulomb, B.; Boudenne, J.-L.

    2012-01-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO 2 . - Highlights: ► We test UV-LEDs as an urban wastewater tertiary treatment. ► UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. ► Coupled wavelengths have the most efficient bactericidal effect. ► Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  20. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    Science.gov (United States)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  1. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    Science.gov (United States)

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  2. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Ojeda, Maria Eugenia [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain); Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Kim, Jungkwon [Chemical Engineering and Analytical Sciences Department, University of Manchester, Manchester (United Kingdom); Carrera, Julian [Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Metcalfe, Ian S. [Chemical Engineering and Advanced Materials Department, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom); Font, Josep [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain)]. E-mail: jose.font@urv.cat

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P{sub O{sub 2}}) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P{sub O{sub 2}} were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P{sub O{sub 2}}, which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD{sub RB}) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  3. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    International Nuclear Information System (INIS)

    Suarez-Ojeda, Maria Eugenia; Kim, Jungkwon; Carrera, Julian; Metcalfe, Ian S.; Font, Josep

    2007-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P O 2 ) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P O 2 were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P O 2 , which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD RB ) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture

  4. Search for anomalous Wtb couplings and top FCNC in t-channel single-top-quark events in the CMS experiment

    CERN Document Server

    Tsirova, Natalia

    2015-01-01

    Single-top-quark events in the t-channel are used to probe Wtb anomalous couplings and to search for top-quark Flavor-Changing Neutral Current (FCNC) interactions in proton-proton collisions with the CMS experiment. A Bayesian neural network is used to discriminate between signal and backgrounds. The observed event yields are consistent with SM prediction, and exclusion limits at 95\\% C.L. are determined.

  5. Generalized N-coupled maps with invariant measure in Bose ...

    Indian Academy of Sciences (India)

    chronization problem of an array of the linearly coupled map lattices of ... groups and graphs and also in the design of experiments, coding theory, partition ... coupled map lattice which covers internal and external couplings in a form of asso-.

  6. Nanocatalysts for Suzuki cross-coupling reactions

    KAUST Repository

    Fihri, Aziz

    2011-01-01

    This critical review deals with the applications of nanocatalysts in Suzuki coupling reactions, a field that has attracted immense interest in the chemical, materials and industrial communities. We intend to present a broad overview of nanocatalysts for Suzuki coupling reactions with an emphasis on their performance, stability and reusability. We begin the review with a discussion on the importance of Suzuki cross-coupling reactions, and we then discuss fundamental aspects of nanocatalysis, such as the effects of catalyst size and shape. Next, we turn to the core focus of this review: the synthesis, advantages and disadvantages of nanocatalysts for Suzuki coupling reactions. We begin with various nanocatalysts that are based on conventional supports, such as high surface silica, carbon nanotubes, polymers, metal oxides and double hydroxides. Thereafter, we reviewed nanocatalysts based on non-conventional supports, such as dendrimers, cyclodextrin and magnetic nanomaterials. Finally, we discuss nanocatalyst systems that are based on non-conventional media, i.e., fluorous media and ionic liquids, for use in Suzuki reactions. At the end of this review, we summarise the significance of nanocatalysts, their impacts on conventional catalysis and perspectives for further developments of Suzuki cross-coupling reactions (131 references). © 2011 The Royal Society of Chemistry.

  7. Supporting Information Synthesis Procedure: Graphene oxide (GO ...

    Indian Academy of Sciences (India)

    SS

    Synthesis Procedure: Graphene oxide (GO) was prepared by a modified Hummers method using expandable .... anode material for Li ion batteries, J. Solid State Electrochem. ... coupling, doping and nonadiabatic effects, Solid State Commun.

  8. Electro-catalytic oxidation of reactive Orange 107 using cerium doped oxides of Nd3+ nanoparticle

    International Nuclear Information System (INIS)

    Rajkumar, K.; Muthukumar, M.; Mangalaraja, R.V.

    2011-01-01

    A new rare earth doped cerium oxide powder was used as a catalyst to investigate the removal of colour and TOC from simulated wastewater of Reactive Orange 107. The electro oxidation process was carried out in the reactor in presence of an electrolyte NaCl. Graphite electrode was used as anode and cathode and electrolysis were carried out at a current density of 34.96 mAcm -2 with a catalyst concentration of 0.05g L -1 . In order to find the efficiency of nanocatalyst, experiments were also conducted without catalyst. From the experiment, it was found that complete colour removal was achieved on electrocatalytic oxidation as well as electro oxidation. When comparing the above processes, catalytic oxidation shows more efficient than electro oxidation. With respect to the degradation of the dye, catalytic oxidation shows more TOC removal than the oxidation taken place without catalyst. It infers that even though the electro-catalytic oxidation process achieves complete decolouration but it does not achieve complete mineralisation. The FTIR and GCMS studies confirmed the formation of by-products. (author)

  9. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes

    International Nuclear Information System (INIS)

    Wang, Wenjun; Wei, Zengfu; Su, Wei; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei; Zeng, Chaoliu

    2016-01-01

    Highlights: • The VO_2"+/VO"2"+ redox reaction of the electrode could be facilitated to some extent with the increasing anodic corrosion. • A real reaction kinetic equation for the oxidation of VO"2"+ on the electrochemically oxidized electrode has been firstly obtained. • The establishment of the kinetic equation is conducive to predict polarization behaviors of the electrodes in engineering application. - Abstract: The morphology, surface composition, wettability and the kinetic parameters of the electrochemically oxidized graphite electrodes obtained under different anodic polarization conditions have been examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, steady-state polarization and cyclic voltammetry (CV) tests, with an attempt to investigate the inherent correlation between the physicochemical properties and the kinetic characteristics for carbon electrodes used in an all-vanadium redox flow battery (VRFB). When the anodic polarization potential raises up to 1.8 V vs. SCE, the anodic corrosion of the graphite might happen and a large number of oxygen-containing functional groups generate. The VO_2"+/VO"2"+ redox reaction can be facilitated and the reaction reversibility tends to become better with the increasing anodic potential, possibly owing to the increased surface oxides and the resulting improved wettability of the electrode. Based on this, a real reaction kinetic equation for the oxidation of VO"2"+ has been obtained on the electrode polarized at 1.8 V vs. SCE and it can be also well used to predict the polarization behavior of the oxidized electrode in vanadium (IV) acidic solutions.

  10. Synchronization scenario of two distant mutually coupled semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mirasso, Claudio; Heil, Tilmann

    2004-01-01

    We present numerical and experimental investigations of the synchronization of the coupling-induced instabilities in two distant mutually coupled semiconductor lasers. In our experiments, two similar Fabry-Perot lasers are coupled via their coherent optical fields. Our theoretical framework is ba...

  11. Full-scale HDR blowdown experiments as a tool for investigating dynamic fluid-structural coupling

    International Nuclear Information System (INIS)

    Krieg, R.; Schlechtendahl, E.G.; Scholl, K.-H.; Schumann, U.

    1977-01-01

    As an answer to rigorous safety requirements in reactor technology an experimental-theoretical program has been established to investigate safety-relevant mechanical aspects of LWR-blowdown accidents. Part of the program are several full-scale blowdown experiments which will be performed in the former HDR-reactor. As the conceptional study confirms, the primary goal is to find out, how big the safety margins of present LWR's in the case of a blowdown actually are, rather than simply to show that essential parts of the reactor will withstand such an accident. However, to determine the safety margins, the physical phenomena involved in the blowdown process must be understood and appropriate wave of description must be found. Therefore the experimental program is accompanied by the development of theoretical models and computer codes. A survey is given over existing methods for coupled fluid structural dynamics. The following approaches are used: - Specific finite difference-code for integrated treatment of both fluid and structure in 3D-geometry using the fast cyclic reduction scheme for solving Poisson's equation. - Modification of mass and stiffness matrices of FEM-models for shell dynamics by reducing the 3D incompressible fluid problem to 2D with the boundary integral equation method. This presently developed method has the capacity to deal with general problems in fluid-structural coupling. (Auth.)

  12. Zinc oxide: Connecting theory and experiment

    Directory of Open Access Journals (Sweden)

    Dejan Zagorac

    2013-09-01

    Full Text Available Zinc oxide (ZnO is a material with a great variety of industrial applications including high heat capacity, thermal conductivity and temperature stability. Clearly, it would be of great importance to find new stable and/or metastable modifications of zinc oxide, and investigate the influence of pressure and/or temperature on these structures, and try to connect theoretical results to experimental observations. In order to reach this goal, we performed several research studies, using modern theoretical methods. We have predicted possible crystal structures for ZnO using simulated annealing (SA, followed by investigations of the barrier structure using the threshold algorithm (TA. Finally, we have performed calculations using the prescribed path algorithm (PP, where connections between experimental structures on the energy landscape, and in particular transition states, were investigated in detail. The results were in good agreement with previous theoretical and experimental observations, where available, and we have found several additional (metastable modifications at standard, elevated and negative pressures. Furthermore, we were able to gain new insight into synthesis conditions for the various ZnO modifications and to connect our results to the actual synthesis and transformation routes.

  13. Lithium chemistry of lithium doped magnesium oxide catalysts used in the oxidative coupling of methane

    NARCIS (Netherlands)

    Korf, S.J.; Roos, J.A.; de Bruijn, N.A.; van Ommen, J.G.; Ross, J.R.H.

    1990-01-01

    Active sites are created on the surface of a Li/MgO catalyst used for the selective oxidation of methane by the gradual loss of carbon dioxide from surface carbonate species in the presence of oxygen. Decomposition of the carbonate species in the absence of oxygen is detrimental to the activity of

  14. Iron oxide reduction in methane-rich deep Baltic Sea sediments

    DEFF Research Database (Denmark)

    Egger, Matthias; Hagens, Mathilde; Sapart, Celia J.

    2017-01-01

    /L transition. Our results reveal a complex interplay between production, oxidation and transport of methane showing that besides organoclastic Fe reduction, oxidation of downward migrating methane with Fe oxides may also explain the elevated concentrations of dissolved ferrous Fe in deep Baltic Sea sediments...... profiles and numerical modeling, we propose that a potential coupling between Fe oxide reduction and methane oxidation likely affects deep Fe cycling and related biogeochemical processes, such as burial of phosphorus, in systems subject to changes in organic matter loading or bottom water salinity....

  15. Activation of Graphene Oxide with Hydrochloric Acid for Nitrate Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Abolghasem Alighardashi

    2017-11-01

    Full Text Available Long-term drinking of nitrate-contaminated water poses a serious risk to human health. The present study explores the possibility of enhancing the adsorption capacity of graphene oxide via activation with hydrochloric acid for nitrate removal from aqueous solutions. Experiments were performed in a batch reactor in which such major factors as pH, reaction time, and concentrations of both graphene oxide (GO and activated graphene oxide (AGO were used as variables. Nitrate removal efficiency was investigated using the One-Way ANOVA statistical test and SPSS-16 software. The chemical composition and solid structure of the synthesized AGO were analyzed using FE-SEM coupled with energy dispersive spectrometry (EDS. The micropore volumes of the samples were determined using the BET and BJH. The predominant composition (52% of the synthesized AGO was C and its mean pore diameter was 26.896 nm. The maximum adsorption capacity of AGO was estimated at 3333.33 mg/g. Based on the results, the AGO nano-structure may be recomended as a new means for nitrate removal from aqueous solutions.

  16. Comparison of direct and indirect plasma oxidation of NO combined with oxidation by catalyst

    DEFF Research Database (Denmark)

    Jogi, Indrek; Stamate, Eugen; Irimiea, Cornelia

    2015-01-01

    of the DBD reactor decreased the long-term efficiency of direct plasma oxidation. At the same time, the efficiency of indirect oxidation increased at elevated reactor temperatures. Additional experiments were carried out to investigate the improvement of indirect oxidation by the introduction of catalyst...

  17. Performance and stress analysis of oxide thermoelectric module architecture designed for maximum power output

    DEFF Research Database (Denmark)

    Wijesekara, Waruna; Rosendahl, Lasse; Wu, NingYu

    Oxide thermoelectric materials are promising candidates for energy harvesting from mid to high temperature heat sources. In this work, the oxide thermoelectric materials and the final design of the high temperature thermoelectric module were developed. Also, prototypes of oxide thermoelectric...... of real thermoelectric uni-couples, the three-dimensional governing equations for the coupled heat transfer and thermoelectric effects were developed. Finite element simulations of this system were done using the COMSOL Multiphysics solver. Prototypes of the models were developed and the analytical...... generator were built for high temperature applications. This paper specifically discusses the thermoelectric module design and the prototype validations of the design. Here p type calcium cobalt oxide and n type aluminum doped ZnO were developed as the oxide thermoelectric materials. Hot side and cold side...

  18. Surface properties of indium tin oxide treated by Cl2 inductively coupled plasma

    International Nuclear Information System (INIS)

    He, Kongduo; Yang, Xilu; Yan, Hang; Gong, Junyi; Zhong, Shaofeng; Ou, Qiongrong; Liang, Rongqing

    2014-01-01

    Graphical abstract: - Highlights: • The work function of chlorinated ITO increases initially by up to 1 eV. • The chlorinated ITO keeps an increment of work function of 0.3 eV after 100 days. • The WF decrease curves can be fitted with double exponential functions. • The desorption of unstable Cl in the surface leads to the rapid decrease of WF. • The core levels of In 3d5 and Sn 3d5 and O 1s shift toward higher binding energies. - Abstract: The effects of Cl 2 inductively coupled plasma (ICP) treatment on the time dependence of work function (WF) and surface properties of indium tin oxide (ITO) were investigated. Kelvin probe (KP) measurements show that the WF after Cl 2 ICP treatment is close to 5.9 eV. The WF decrease curve of Cl 2 plasma treated ITO is fitted with double exponential functions with an adjusted R-square of 0.99. The mechanism under the decrease process is discussed by X-ray photoelectron spectroscopy (XPS). The ITO WF decrease after Cl 2 ICP treatment performs much better than that after O 2 ICP treatment and the chlorinated ITO keeps a WF increment of 0.3 eV compared with that without plasma treatment after 100 days. Other properties of chlorinated ITO surface such as morphology and transmittance change slightly. The results are significant for the understanding of degradation of Cl 2 plasma treated ITO and the fabrication of organic semiconductor devices

  19. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level.

    Science.gov (United States)

    Javanaud, Cedric; Michotey, Valerie; Guasco, Sophie; Garcia, Nicole; Anschutz, Pierre; Canton, Mathieu; Bonin, Patricia

    2011-11-01

    Nitrite and (29)N(2) productions in slurry incubations of anaerobically sediment after (15)NO(3) or (15)NH(4) labelling in the presence of Mn-oxides suggested that anaerobic Mn-oxides mediated nitrification coupled with denitrification in muddy intertidal sediments of Arcachon Bay (SW Atlantic French coast). From this sediment, bacterial strains were isolated and physiologically characterized in terms of Mn-oxides and nitrate reduction as well as potential anaerobic nitrification. One of the isolated strain, identified as Marinobacter daepoensis strain M4AY14, was a denitrifier. Nitrous oxide production by this strain was demonstrated in the absence of nitrate and with Mn-oxides and NH(4) amendment, giving indirect proof of anaerobic nitrate or nitrite production. Anaerobic Mn-oxide-mediated nitrification was confirmed by (29)N(2) production in the presence of (15)NO(3) and (14)NH(4) under denitrifying conditions. Anaerobic nitrification by M4AY14 seemed to occur only in the absence of nitrate, or at nitrate levels lower than that of Mn-oxides. Most of the other isolates were affiliated with the Shewanella genus and were able to use both nitrate and Mn-oxides as electron acceptors. When both electron acceptors were present, whatever their concentrations, nitrate and Mn-oxide reduction co-occurred. These data indicate that bacterial Mn-oxide reduction could be an important process in marine sediments with low oxygen concentrations, and demonstrate for the first time the role of bacteria in anaerobic Mn-mediated nitrification. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Chemical interactions between as-received and pre-oxidized Zircaloy-4 and stainless steel at high temperatures

    International Nuclear Information System (INIS)

    Hofmann, P.

    1994-05-01

    The chemical reaction behavior between Zircaloy-4 and 1.4919 (AISI 316) stainless steel, which are used in absorber assemblies of Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR), has been studied in the temperature range 1000 - 1400 C. Zircaloy was used in the as-received, pre-oxidized and oxygen-containing condition. The maximum temperature was limited by the fast and complete liquefaction of the reaction couple as a result of eutectic chemical interactions. Liquefaction of the components occurs below their melting point. The effect of oxygen dissolved in Zircaloy plays an important role in the interaction; oxide layers on the Zircaloy surface delay the chemical interactions with stainless steel but cannot prevent them. Oxygen dissolved in Zircaloy reduces the reaction rates and shift the liquefaction temperature to slightly higher levels. The interaction experiments at the examined temperatures with or without pre-oxidized Zircaloy can be described by parabolic rate laws. The Arrhenius equations for the various conditions of interactions are given. (orig.) [de

  1. Energy coupling in the plasma focus

    International Nuclear Information System (INIS)

    Wainwright, T.E.; Pickles, W.L.; Sahlin, H.L.; Price, D.F.

    1979-01-01

    Experiments have been performed with a 125-kJ plasma focus to investigate mechanisms for rapid coupling of inductively-stored energy into plasmas. The coupling can take place through the formation of an electron or ion beam that deposits its energy in a target or directly by the penetration of the magnetic field into a resistive plasma. Some preliminary results from experiments of both types are described. The experiments use a replaceable conical anode tip that is intended to guide the focus to within a few millimeters of the axis, where it can suddenly deliver energy either to a small target or to particles that are accelerated. X-ray and fast-ion diagnostics have been used to study the effects

  2. All Shook Up: Sexuality of Mid- to Later Life Married Couples.

    Science.gov (United States)

    Lodge, Amy C; Umberson, Debra

    2012-06-01

    The authors integrate theoretical work on the performance of gender with a life course perspective to frame an analysis of in-depth interviews with 17 long-term married couples. The findings indicated that couples' sexual experiences are characterized by change over time, yet that change is shaped by the intersection of gender and age. Midlife couples (ages 50 - 69) were distressed by changes in their sex lives likely because they impede couples from performing gendered sexuality. The source of this distress stems from age-related physical changes; however, it manifests in different ways for husbands and wives. In contrast, later life couples (ages 70 - 86) were more likely to emphasize the importance of emotional intimacy over sex as they age. Marital sex is a source of conflict for many midlife couples because of husbands' and wives' incongruent experiences, but later life husbands and wives tend to have more congruent experiences of marital sex.

  3. Solar furnace experiments for thermophysical properties studies of rare-earth oxide MHD materials

    International Nuclear Information System (INIS)

    Coutures, J.P.

    1978-01-01

    Some high temperature work performed with solar furnaces on rare earth oxides is reviewed. Emphasis is on the thermophysical properties (refractoriness, vaporization behavior) and the nature of solid solution on materials which could be used as electrodes for the MHD process. As new sources of energy are being developed due to the world energy crisis, MHD conversion could be useful. The development of MHD systems requires new efforts to develop and optimize materials properties. These materials must have good mechanical and electrical properties (if possible, pure electronic conduction with good emission). Because of the high temperature in MHD generators, the materials for electrodes must have good refractoriness and also must resist vaporization and corrosion at high temperature (T approx. 2000 0 C). Rare-earth oxides are the basic components for most of the MHD electrode materials and it is important to know their thermophysical properties (solidification point phase transitions, heat of fusion and of phase transition, vapor pressure). Because of the high temperature range and the nature of the atmosphere in which these experiments must be performed, special equipment adapted to solar furnaces was developed

  4. Death from Nitrous Oxide.

    Science.gov (United States)

    Bäckström, Björn; Johansson, Bengt; Eriksson, Anders

    2015-11-01

    Nitrous oxide is an inflammable gas that gives no smell or taste. It has a history of abuse as long as its clinical use, and deaths, although rare, have been reported. We describe two cases of accidental deaths related to voluntary inhalation of nitrous oxide, both found dead with a gas mask covering the face. In an attempt to find an explanation to why the victims did not react properly to oncoming hypoxia, we performed experiments where a test person was allowed to breath in a closed system, with or without nitrous oxide added. Vital signs and gas concentrations as well as subjective symptoms were recorded. The experiments indicated that the explanation to the fact that neither of the descendents had reacted to oncoming hypoxia and hypercapnia was due to the inhalation of nitrous oxide. This study raises the question whether nitrous oxide really should be easily, commercially available. © 2015 American Academy of Forensic Sciences.

  5. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  6. Annealing experiments on and high-temperature behavior of the superconductor yttrium barium copper oxide (YBa2Cu3Ox)

    NARCIS (Netherlands)

    Brabers, V.A.M.; Jonge, de W.J.M.; Bosch, L.A.; Steen, van der C.; de Groote, A.M.W.; Verheyen, A.A.; Vennix, C.W.H.M.

    1988-01-01

    The high temperature behaviour (300–1100 K) of the superconductor YBa2Cu3Ox has been studied by annealing experiments, thermal dilatation, thermogravimetry and measurements of the electrical resistance and thermoelectric power. For the fast oxidation process of this compound, reaction enthalpies

  7. Generalized coupling in the Kuramoto model

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2007-01-01

    We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....

  8. IRPhE/RRR-SEG, Reactor Physics Experiments from Fast-Thermal Coupled Facility

    International Nuclear Information System (INIS)

    Weiss, Frank-Peter; Dietze, Klaus; Jacqmin, Robert; Ishikawa, Makoto

    2003-01-01

    1 - Description: The RRR-SEG-experiments have been performed to check neutron data of the most important reactor materials, especially of fission product nuclides, fuel isotopes and structural materials. The measured central reactivity worths (CRW) of small samples were compared with calculated values. These C/E-ratios have been used then for data corrections or in adjustment procedures. The reactor RRG-SEG (at RC Rossendorf / Germany) was a fast-thermal coupled facility of zero power. The annular thermal drivers were filled by fuel assemblies and moderated by water. The inner insertion lattices were loaded with pellets of fuel and other materials producing the fast neutron flux. The characteristics of the neutron and adjoint spectra were obtained by special arrangements of these pellets in unit cells. In this way, a hard or soft neutron spectrum or a special energy behavior of the adjoint function could be reached. The samples were moved by means of tubes to the central position (pile-oscillation technique). The original information about the facility and measurements is compiled in Note Technique SPRC/LEPh/93-230 (SEG) The SEG experiments are considered 'clean' integral experiments, simple and clear in geometry and well suited for calculation. In all SEG configurations only a few materials were used, most of these were standards. Due to the designed adjoint function (energy-independent or monotonously rising), the capture or scattering effect was dominant, convenient to check separately capture or scattering data. At first, analyses of the experiments have been performed in Rossendorf. Newer analyses were done later in Cadarache / CEA France using the European scheme for reactor calculation JEF-2.2 / ECCO / ERANOS (see Note Techniques and JEF/DOC-746). Furthermore, re-analyses were performed in O-arai / JNC Japan with the JNC standard route JENDL-3.2 / SLAROM / CITATION / PERKY. Results obtained with both code systems and different data evaluations (JEF-2.2 and

  9. Optimization of spring exchange coupled ferrites, studied by in situ neutron diffraction

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Christensen, Mogens; Granados-Miralles, Cecilia

    Strong permanent magnets with a high energy-product are vital for a great number of electronic devices, these can be found in transformers, loudspeakers, windmills etc. Normally the preferred type of magnets are Rare Earth Metals (REM) containing magnets. REM excels since the magnetic contributio...... with varying temperature (fixed flow) or varying flow (fixed temperature) has been performed. To optimize the exchange-coupling several experiments with fixed temperature and flow, have been performed where the conversion from spinel to metal has been varied....... reduced. These metal oxides are antiferromagnetically ordered an is therefore considered a parasitic phase. However by fine-tuning the reaction temperature and hydrogen flow rate the occurrence of the phase can be minimized. In order to distinguish between Co and Fe Neutrons are chosen. Since neutrons...

  10. Further development of the coupling model

    International Nuclear Information System (INIS)

    Kreuser, A.; Stiller, J.C.; Peschke, J.

    2006-01-01

    Uncertainties arising from different sources have to be considered for the quantification of common cause failures (CCFs). At GRS a CCF model (coupling model) has been developed for the estimation of CCF probabilities. An essential feature of the coupling model is the consideration of these uncertainties by using Bayesian estimation methods. Experiences from applying the coupling model to CCF event data over several years and analyzing the results in detail has led to improvements in the application of the model. In this paper the improved methodology of the coupling model is presented. Special emphasis is given to the description of the sources of uncertainties which are considered in the coupling model and the mathematical methodology, how these uncertainties are represented and propagated through the model. In closing topics of future improvements of the coupling models are discussed. (orig.)

  11. Electronic structure and electron-phonon coupling in layered copper oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Krakauer, H.

    1991-01-01

    Experimental data on the layered Cu-O superconductors seem more and more to reflect normal Fermi-liquid behavior and substantial correspondence with band structure predictions. Recent self-consistent, microscopic band theoretic calculations of the electronic structure, lattice instabilities, phonon frequencies, and electron-phonon coupling characteristics and strength for La 2 CuO 4 and YBa 2 Cu 3 O 7 are reviewed. A dominant feature of the coupling is a novel Madelung-like contribution which would be screened out in high density of states superconductors but survives in cuprates because of weak screening. Local density functional theory correctly predicts the instability of (La, Ba) 2 CuO 4 to both the low-temperature orthorhombic phase (below room temperature) and the lower-temperature tetragonal phase (below 50 K). (orig.)

  12. Pd(II/HPMoV-Catalyzed Direct Oxidative Coupling Reaction of Benzenes with Olefins

    Directory of Open Access Journals (Sweden)

    Yasutaka Ishii

    2010-03-01

    Full Text Available The direct aerobic coupling reaction of arenes with olefins was successfully achieved by the use of Pd(OAc2/molybdovanadophosphoric acid (HPMoV as a key catalyst under 1 atm of dioxygen. This catalytic system could be extended to the coupling reaction of various substituted benzenes with olefins such as acrylates, aclrolein, and ethylene through the direct aromatic C-H bond activation.

  13. Nitrous oxide emissions from European agriculture – an analysis of variability and drivers of emissions from field experiments

    Directory of Open Access Journals (Sweden)

    R. M. Rees

    2013-04-01

    Full Text Available Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logården in Sweden, Maulde in Belgium, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Gödöllö in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period varied between 0.04 and 21.21 kg N2O-N ha−1 yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important determinant of emissions, accounting for 15% of the variance (using linear regression in the data from the arable sites (p 2O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation.

  14. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    Science.gov (United States)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  15. Factors influencing the regioselectivity of the oxidation of asymmetric secondary amines with singlet oxygen.

    Science.gov (United States)

    Ushakov, Dmitry B; Plutschack, Matthew B; Gilmore, Kerry; Seeberger, Peter H

    2015-04-20

    Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet-oxygen-mediated oxidation of 1° and 2° amines is sensitive to the strength of the α-C-H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one-bond C-H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross-couplings to produce imines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of coupled UV-A and UV-C LEDs on both microbiological and chemical pollution of urban wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Chevremont, A.-C., E-mail: anne-celine.chevremont@imbe.fr [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France); Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Farnet, A.-M. [Aix-Marseille Universite - CNRS, FR ECCOREV, Institut Mediterraneen de Biodiversite et d' Ecologie marine et continentale (UMR7263), Equipe ' Vulnerabilite des Systemes Microbiens' , Avenue Escadrille Normandie-Niemen, Boite 452, 13397 Marseille Cedex 20 (France); Coulomb, B.; Boudenne, J.-L. [Aix-Marseille Universite - CNRS, FR ECCOREV, Laboratoire Chimie de l' Environnement (FRE3416), Equipe ' Developpements Metrologiques et Chimie des Milieux' , 3 place Victor Hugo, case 29, 13331 Marseille Cedex 3 (France)

    2012-06-01

    Wastewater reuse for irrigation is an interesting alternative for many Mediterranean countries suffering from water shortages. The development of new technologies for water recycling is a priority for these countries. In this study we test the efficiency of UV-LEDs (Ultraviolet-Light-Emitting Diodes) emitting UV-A or UV-C radiations, used alone or coupled, on bacterial and chemical indicators. We monitored the survival of fecal bioindicators found in urban wastewaters and the oxidation of creatinine and phenol which represent either conventional organic matter or the aromatic part of pollution respectively. It appears that coupling UV-A/UV-C i) achieves microbial reduction in wastewater more efficiently than when a UV-LED is used alone, and ii) oxidizes up to 37% of creatinine and phenol, a result comparable to that commonly obtained with photoreactants such as TiO{sub 2}. - Highlights: Black-Right-Pointing-Pointer We test UV-LEDs as an urban wastewater tertiary treatment. Black-Right-Pointing-Pointer UV-A and UV-C are coupled, combining germicidal and oxidative properties of UV. Black-Right-Pointing-Pointer Coupled wavelengths have the most efficient bactericidal effect. Black-Right-Pointing-Pointer Coupling UV-A and UV-C leads to photooxidation of creatinine and phenol.

  17. The magnetoelectric coupling effect in multiferroic composites based on PZT–ferrite

    International Nuclear Information System (INIS)

    Bartkowska, J.A.

    2015-01-01

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the values of magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the ferroelectric–ferromagnetic composite PZT–ferrite type, namely PSZTC–NiZn and PBZTN–NiZn. The main component of the ferroelectric–ferromagnetic composite was PZT type powder (with ferroelectric properties), which was synthesized using sintering of a mixture of simple oxides in solid phase. The second element of the ferroelectric–ferromagnetic composite was the ferrite powder (with ferromagnetic properties). Ferrite powder was synthesized using calcination. Next, the mixed components were synthesized using sintering of the mixture of simple oxides in a solid phase (compaction by a free sintering method). The temperature dependences of the dielectric permittivity (ε) for the different frequencies and for both multiferroic composites were investigated. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified. - Highlights: • The magnetoelectric effect at two different ferroelectric–ferromagnetic composites based on a PZT and nickel–zinc ferrite. • Multiferroics composite incorporate both ferroelectric and magnetic phases. • The mechanism of the magnetoelectric coupling between ferroelectric and magnetic properties, in multiferroic composites, is caused by the strain. • The determination of the magnetoelectric coupling coefficient based on a theoretical model and the measurements of dielectric permittivity

  18. The magnetoelectric coupling effect in multiferroic composites based on PZT–ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Bartkowska, J.A., E-mail: joanna.bartkowska@us.edu.pl

    2015-01-15

    In the multiferroic materials, the dielectric and magnetic properties are closely correlated through the coupling interaction between the ferroelectric and magnetic order. We attempted to determine the values of magnetoelectric coupling coefficient, from the temperature dependences of the dielectric permittivity for the ferroelectric–ferromagnetic composite PZT–ferrite type, namely PSZTC–NiZn and PBZTN–NiZn. The main component of the ferroelectric–ferromagnetic composite was PZT type powder (with ferroelectric properties), which was synthesized using sintering of a mixture of simple oxides in solid phase. The second element of the ferroelectric–ferromagnetic composite was the ferrite powder (with ferromagnetic properties). Ferrite powder was synthesized using calcination. Next, the mixed components were synthesized using sintering of the mixture of simple oxides in a solid phase (compaction by a free sintering method). The temperature dependences of the dielectric permittivity (ε) for the different frequencies and for both multiferroic composites were investigated. Based on dielectric measurements and theoretical considerations, the values of the magnetoelectric coupling coefficient were specified. - Highlights: • The magnetoelectric effect at two different ferroelectric–ferromagnetic composites based on a PZT and nickel–zinc ferrite. • Multiferroics composite incorporate both ferroelectric and magnetic phases. • The mechanism of the magnetoelectric coupling between ferroelectric and magnetic properties, in multiferroic composites, is caused by the strain. • The determination of the magnetoelectric coupling coefficient based on a theoretical model and the measurements of dielectric permittivity.

  19. RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL-OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle.

    Science.gov (United States)

    Sato, Shinya; Miyazono, Sadaharu; Tachibanaki, Shuji; Kawamura, Satoru

    2015-01-30

    Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Analysis of the SPERT III E-core experiment using the EUREKA-2 code

    International Nuclear Information System (INIS)

    Harami, Taikan; Uemura, Mutsumi; Ohnishi, Nobuaki

    1986-09-01

    EUREKA-2, a coupled nuclear thermal hydrodynamic kinetic code, was adapted for the testing of models and methods. Code evaluations were made with the reactivity addition experiments of the SPERT III E-Core, a slightly enriched oxide core. The code was tested for non damaging power excursions including a wide range of initial operating conditions, such as cold-startup, hot-startup, hot-standby and operating-power initial conditions. Comparisons resulted in a good agreement within the experimental errors between calculated and experimental power, energy, reactivity and clad surface temperature. (author)

  1. A novel tandem Betti/Ullmann oxidation reaction as an efficient route ...

    Indian Academy of Sciences (India)

    Betti reaction; cross-coupling reaction; oxidation; heterogeneous catalysis. Abstract. A novel tandem Betti/Ullmann/oxidation reaction was used for synthesis of new oxazepine derivatives containing kojic acid. This protocol ... This method provides a new and useful strategy for the construction of heterocycles. Also novel Betti ...

  2. Myoendothelial coupling in the mesenteric arterial bed; segmental differences and interplay between nitric oxide and endothelin-1

    Science.gov (United States)

    Hilgers, RHP; De Mey, JGR

    2009-01-01

    Background and purpose: We tested the hypothesis that activated arterial smooth muscle (ASM) stimulates endothelial vasomotor influences via gap junctions and that the significance of this myoendothelial coupling increases with decreasing arterial diameter. Experimental approach: From WKY rats, first-, second-, third-and fourth-order branches of the superior mesenteric artery (MA1, MA2, MA3 and MA4 respectively) were isolated and mounted in wire-myographs to record vasomotor responses to 0.16–20 µmol·L−1 phenylephrine. Key results: Removal of endothelium increased the sensitivity (pEC50) to phenylephrine in all arteries. The nitric oxide (NO) synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) (100 µmol·L−1) did not modify pEC50 to phenylephrine in all denuded arteries, and increased it in intact MA1, MA2 and MA3 to the same extent as denudation. However, in intact MA4, the effect of L-NAME was significantly larger (ΔpEC50 0.57 ± 0.02) than the effect of endothelium removal (ΔpEC50 0.20 ± 0.06). This endothelium-dependent effect of L-NAME in MA4 was inhibited by (i) steroidal and peptidergic uncouplers of gap junctions; (ii) a low concentration of the NO donor sodium nitroprusside; and (iii) by the endothelin-receptor antagonist bosentan. It was also observed during contractions induced by (i) calcium channel activation (BayK 8644, 0.001–1 µmol·L−1); (ii) depolarization (10–40 mmol·L−1 K+); and (iii) sympathetic nerve stimulation (0.25–32 Hz). Conclusions and implications: These pharmacological observations indicated feedback control by endothelium of ASM reactivity involving gap junctions and a balance between endothelium-derived NO and endothelin-1. This myoendothelial coupling was most prominent in distal resistance arteries. PMID:19302591

  3. Oxidation kinetics of corium pool

    International Nuclear Information System (INIS)

    Sulatsky, A.A.; Smirnov, S.A.; Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu.; Fischer, M.; Hellmann, S.; Tromm, W.; Miassoedov, A.; Bottomley, D.; Piluso, P.; Barrachin, M.

    2013-01-01

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations

  4. Oxidation kinetics of corium pool

    Energy Technology Data Exchange (ETDEWEB)

    Sulatsky, A.A., E-mail: andrei314@mail.ru [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Smirnov, S.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA), St. Petersburg (Russian Federation); Granovsky, V.S.; Khabensky, V.B.; Krushinov, E.V.; Vitol, S.A.; Kotova, S.Yu. [Alexandrov Research Institute of Technologies (NITI), Sosnovy Bor (Russian Federation); Fischer, M.; Hellmann, S. [AREVA NP GmbH, Erlangen (Germany); Tromm, W.; Miassoedov, A. [Forschungzentrum Karlsruhe (FZK), Karlsruhe (Germany); Bottomley, D. [EUROPÄISCHE KOMMISSION, Joint Research Centre Institut für Transurane (ITU), Karlsruhe (Germany); Piluso, P. [CEA Cadarache-DEN/DTN/STRI, St.Paul-lez-Durance (France); Barrachin, M. [Institut de Radioprotection et Sûreté Nucléaire, St.Paul-lez-Durance (France)

    2013-09-15

    Highlights: • The analysis of experimental data on molten corium oxidation was been carried out. • The analysis has revealed the main factors influencing the oxidation kinetics. • The analysis was used for developing a qualitative analytical model. • The numerical modeling has confirmed the results of experimental data analysis. -- Abstract: Experimental, theoretical and numerical studies of oxidation kinetics of an open surface corium pool have been reported. The experiments have been carried out within OECD MASCA program and ISTC METCOR, METCOR-P and EVAN projects. It has been shown that the melt oxidation is controlled by an oxidant supply to the melt free surface from the atmosphere, not by the reducer supply from the melt. The project experiments have not detected any input of the zirconium oxidation kinetics into the process chemistry. The completed analysis puts forward a simple analytical model, which gives an explanation of the main features of melt oxidation process. The numerical modeling results are in good agreement with experimental data and theoretical considerations.

  5. Use of oxidative and reducing vapor generation for reducing the detection limits of iodine in biological samples by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Vtorushina, Eh.A.; Saprykin, A.I.; Knapp, G.

    2009-01-01

    Procedures of microwave combustion in an oxygen flow and microwave acid decomposition of biological samples were optimized for the subsequent determination of iodine. A new method was proposed for the generation of molecular iodine from periodate iona using hydrogen peroxide as a reductant. Procedures were developed for determining iodine in biological samples by inductively coupled plasma atomic emission spectrometry (ICP-AES) using oxidative and reducing vapor generation; these allowed the detection limit for iodine to be lowered by 3-4 orders of magnitude. The developed procedures were used to analyze certified reference materials of milk (Skim Milk Powder BCR 150) and seaweed (Sea Lettuce BCR 279) and a Supradyn vitamin complex

  6. Synthesis, characterization and oxidative behaviour of dioxoruthenium(VI) complexes

    International Nuclear Information System (INIS)

    Agarwal, D.D.; Rastogi, Rachana

    1995-01-01

    Dioxoruthenium(VI) complexes are found to give low yield of epoxide but good yield of cyclohexanone. The complexes are electro active giving metal centered Ru VI /Ru V couple. Cis-stilbene gives trans epoxide and benzaldehyde. Norbornene gives exo epoxy norbornene. The selectivity for allylic oxidation is high. In the present note the synthesis of dioxoruthenium(VI) complexes and their oxidation behaviour is reported. The dioxoruthenium(VI) complexes have been stoichiometrically found to be good oxidants. (author). 21 refs., 1 tab

  7. A metallic metal oxide (Ti5O9)-metal oxide (TiO2) nanocomposite as the heterojunction to enhance visible-light photocatalytic activity.

    Science.gov (United States)

    Li, L H; Deng, Z X; Xiao, J X; Yang, G W

    2015-01-26

    Coupling titanium dioxide (TiO2) with other semiconductors is a popular method to extend the optical response range of TiO2 and improve its photon quantum efficiency, as coupled semiconductors can increase the separation rate of photoinduced charge carriers in photocatalysts. Differing from normal semiconductors, metallic oxides have no energy gap separating occupied and unoccupied levels, but they can excite electrons between bands to create a high carrier mobility to facilitate kinetic charge separation. Here, we propose the first metallic metal oxide-metal oxide (Ti5O9-TiO2) nanocomposite as a heterojunction for enhancing the visible-light photocatalytic activity of TiO2 nanoparticles and we demonstrate that this hybridized TiO2-Ti5O9 nanostructure possesses an excellent visible-light photocatalytic performance in the process of photodegrading dyes. The TiO2-Ti5O9 nanocomposites are synthesized in one step using laser ablation in liquid under ambient conditions. The as-synthesized nanocomposites show strong visible-light absorption in the range of 300-800 nm and high visible-light photocatalytic activity in the oxidation of rhodamine B. They also exhibit excellent cycling stability in the photodegrading process. A working mechanism for the metallic metal oxide-metal oxide nanocomposite in the visible-light photocatalytic process is proposed based on first-principle calculations of Ti5O9. This study suggests that metallic metal oxides can be regarded as partners for metal oxide photocatalysts in the construction of heterojunctions to improve photocatalytic activity.

  8. Environmental Factors Affecting Ammonium Oxidation Under Iron Reducing Conditions

    Science.gov (United States)

    Jaffe, P. R.; Huang, S.; Ruiz-Urigüen, M.

    2014-12-01

    Ammonium (NH4+) oxidation coupled to iron (Fe) reduction in the absence of oxygen and nitrate/nitrite (NO3-/NO2-) has been reported by several investigators and referred to as Feammox. Feammox is a biological reaction, where Fe(III) is the electron acceptor, which is reduced to Fe(II), and NH4+ is the electron donor, which is oxidized to NO2-. Through a 180-day anaerobic incubation experiment, and using PCR-DGGE, 454-pyosequecing and qPCR analysis, we have shown that an Acidimicrobiaceae bacterium A6, a previously unreported species in the Acidimicrobiaceae family, might be either responsible or plays a key role in the Feammox process, We have enriched these Feammox bacteria (65.8% in terms of cell numbers) in a membrane reactor, and isolated the pure Acidimicrobiaceae bacterium A6 strain in an autotrophic medium. In samples collected and then incubated from a series of local wetland-, upland-, as well as storm-water detention pond-sediments, Feammox activity was only detected in acidic soil environments that contain Fe oxides. Using primers we developed for this purpose, Acidimicrobiaceae bacterium A6 was detected in all incubations where Feammox was observed. Anaerobic incubations of Feammox enrichment cultures adjusted to different pH, revealed that the optimal pH for Feammox is 4 ~ 5, and the reaction does not proceed when pH > 7. Feammox was still proceeding at pH as low as 2. In Feammox culture amended with different Fe(III) sources, Feammox reaction proceeded only when Fe oxides (ferrihydrite or goethite ) were supplied, whereas samples incubated with ferric chloride or ferric citrate showed no measurable NH4+ oxidation. Furthermore, we have also determined from incubation experiments conducted with a temperature gradient (10 ~ 35℃), that the Feammox process was active when the temperature is above 15℃, and the optimal temperature is 20℃. Incubations of enrichment culture with 79% Feammox bacteria appeared to remove circa 8% more NH4+ at 20ºC than at

  9. Investigation of coupling scheme for neutronic and thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Wang Guoli; Yu Jianfeng; Pen Muzhang; Zhang Yuman.

    1988-01-01

    Recently, a number of coupled neutronics/thermal-hydraulics codes have been used in reaction design and safty analysis, which have been obtained by coupling previous neutronic and thermal-hydraulic codes. The different coupling schemes affect computer time and accuracy of calculation results. Numberical experiments of several different coupling schemes and some heuristic results are described

  10. The rupture and repair of the couple's communal body with prostate cancer.

    Science.gov (United States)

    Fergus, Karen D

    2011-06-01

    Intimate partners' ability to adopt a "we" outlook in relation to cancer has consistently been associated with optimal adaptation for couples. This investigation adds to the growing body of literature on dyadic coping and resiliency in couples through an in-depth examination of five well-adjusted couples' experiences with prostate cancer. Of specific interest were (1) how the experience of prostate cancer affected the couple's unique intersubjective identity, and how in turn (2) the couple's identity and relationship culture influenced their adjustment to cancer. An ethnographic mode of inquiry was adopted. Marital partners were interviewed together on two separate occasions with the intention of having them deepen their conjoint reflexive processing of their relationship. During the interviews, couples were asked to reflect upon and articulate their sense of themselves as a couple, their experience of "we-ness" and shared identity, and the interaction between the illness and we-ness. Interviews were transcribed verbatim and analyzed using the grounded theory method. The grounded theory analysis yielded three main themes portraying the couples' experience of prostate cancer: (1) riding the vortex, (2) holding the communal body intact, and (3) invincibility and its underbelly. A more broad understanding to arise from this investigation was the notion of a "communal body" and that couples participated in a shared corporeality, to which each partner's identity and sense of self was intricately tied. It is concluded that the intersubjective embodiment displayed by couples in this study was instrumental to the "repair" of the communal body ruptured by prostate cancer. ©2011 APA

  11. Off-center displacements of Ti ions in oxide ferroelectrics and a gigantic photo-induced dielectric constant of quantum paraelectric perovskite oxides in the electron-lattice theory

    International Nuclear Information System (INIS)

    Konsin, P; Sorkin, B

    2005-01-01

    In this work we investigate the coupling of the F 1u vibrations with the actual electronic states of BO 6 n- cluster in ABO 3 ferrorelectric-oxides. This coupling leads to the dynamical covalency hybridization of B(Ti,Ta,Nb) and oxygen electronic states. It is shown that at fulfilment of definite criteria the free energy at T = 0, the adiabatic potential of BO 6 n- cluster have the following configurations: (1) one maximum at x 0 = y 0 = z 0 = 0 (ferroelectric instability); (2) eight minima in the points vertical bar x 0 vertical bar = vertical bar y 0 vertical bar = vertical bar z 0 vertical bar = y 0 ; (3) twelve saddle points at vertical bar p vertical bar = vertical bar q vertical bar ≠ 0, r = 0 (p, q, r = x, y, z) with a maximum in the r cross-section and minima along p and q. We show that the photo-induced changes of local ferroelectric distortions can take place. A gigantic enhancement of the dielectric constant by UV-light illumination is calculated in the electron-lattice theory in quantum paraelectrics of perovskite oxides, such as SrTiO 3 and KTaO 3 , under a weak DC electric field. The temperature dependence of the gigantic real part of the dielectric constant ε UVDC of SrTi 16 O 3 under both UV-light and DC electric fields is calculated in satisfactory agreement with the experiment

  12. Simulation of atomistic processes during silicon oxidation

    OpenAIRE

    Bongiorno, Angelo

    2003-01-01

    Silicon dioxide (SiO2) films grown on silicon monocrystal (Si) substrates form the gate oxides in current Si-based microelectronics devices. The understanding at the atomic scale of both the silicon oxidation process and the properties of the Si(100)-SiO2 interface is of significant importance in state-of-the-art silicon microelectronics manufacturing. These two topics are intimately coupled and are both addressed in this theoretical investigation mainly through first-principles calculations....

  13. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines.

    Science.gov (United States)

    Lin, Jian-Ping; Zhang, Feng-Hua; Long, Ya-Qiu

    2014-06-06

    A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.

  14. Multiscale Transient and Steady-State Study of the Influence of Microstructure Degradation and Chromium Oxide Poisoning on Solid Oxide Fuel Cell Cathode Performance

    Science.gov (United States)

    Li, Guanchen; von Spakovsky, Michael R.; Shen, Fengyu; Lu, Kathy

    2018-01-01

    Oxygen reduction in a solid oxide fuel cell cathode involves a nonequilibrium process of coupled mass and heat diffusion and electrochemical and chemical reactions. These phenomena occur at multiple temporal and spatial scales, making the modeling, especially in the transient regime, very difficult. Nonetheless, multiscale models are needed to improve the understanding of oxygen reduction and guide cathode design. Of particular importance for long-term operation are microstructure degradation and chromium oxide poisoning both of which degrade cathode performance. Existing methods are phenomenological or empirical in nature and their application limited to the continuum realm with quantum effects not captured. In contrast, steepest-entropy-ascent quantum thermodynamics can be used to model nonequilibrium processes (even those far-from equilibrium) at all scales. The nonequilibrium relaxation is characterized by entropy generation, which can unify coupled phenomena into one framework to model transient and steady behavior. The results reveal the effects on performance of the different timescales of the varied phenomena involved and their coupling. Results are included here for the effects of chromium oxide concentrations on cathode output as is a parametric study of the effects of interconnect-three-phase-boundary length, oxygen mean free path, and adsorption site effectiveness. A qualitative comparison with experimental results is made.

  15. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  16. Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery.

    Science.gov (United States)

    Scherson, Yaniv D; Woo, Sung-Geun; Criddle, Craig S

    2014-05-20

    Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) is a new process for wastewater treatment that removes nitrogen from wastewater and recovers energy from the nitrogen in three steps: (1) NH4(+) oxidation to NO2(-); (2) NO2(-) reduction to N2O gas; and (3) N2O conversion to N2 with energy production. In this work, we optimize Steps 1 and 2 for anaerobic digester centrate, and we evaluate Step 3 for a full-scale biogas-fed internal combustion engine. Using a continuous stirred reactor coupled to a bench-scale sequencing batch reactor, we observed sustained partial oxidation of NH4(+) to NO2(-) and sustained (3 months) partial reduction of NO2(-) to N2O (75-80% conversion, mass basis), with >95% nitrogen removal (Step 2). Alternating pulses of acetate and NO2(-) selected for Comamonas (38%), Ciceribacter (16%), and Clostridium (11%). Some species stored polyhydroxybutyrate (PHB) and coupled oxidation of PHB to reduction of NO2(-) to N2O. Some species also stored phosphorus as polyphosphate granules. Injections of N2O into a biogas-fed engine at flow rates simulating a full-scale system increased power output by 5.7-7.3%. The results underscore the need for more detailed assessment of bioreactor community ecology and justify pilot- and full-scale testing.

  17. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  18. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    Science.gov (United States)

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  19. Degradation of amaranth dye in alkaline medium by ultrasonic cavitation coupled with electrochemical oxidation using a boron-doped diamond anode

    International Nuclear Information System (INIS)

    Barros, Willyam R.P.; Steter, Juliana R.; Lanza, Marcos R.V.; Motheo, Artur J.

    2014-01-01

    Amaranth dye is used widely in the processing of paper, textiles, foods, cosmetics, beverages and medicines, and effluents contaminated with this compound are discharged daily into the environment. Recent studies have shown that azo dyes, especially those such as amaranth dye that have been classified as endocrine disruptors, may cause adverse effects to animal and human health. This paper describes the application of electrochemical oxidation (with a boron-doped diamond BDD thin-film anode) coupled with ultrasound sonolysis (20 kHz and 523 W cm −2 ) to the removal of amaranth dye from dilute alkaline solution. The electrochemical and sonoelectrochemical processes (ECh and SECh, respectively) were carried out at constant current density (10 to 50 mA cm −2 ) in a single compartment cylindrical cell. Sonolysis was virtually less useful for the decolorization and degradation of amaranth dye, whilst ECh and SECh were more effective in degrading the dye with almost complete removal (90 - 95%) attained after 90 min of experiment at an applied current density of 50 mA cm −2 . Degradation of the dye followed pseudo first-order kinetics in both processes, but the rate of reaction was faster with the SECh treatment confirming a synergistic effect between the cavitation process and the electrochemical system. Additionally, at low applied current densities (10 and 25 mA cm −2 ), SECh was considerably more effective than ECh for the amaranth dye mineralization. Although at 35 and 50 mA cm −2 , the two processes showed the respective removal of total organic carbon values: (i) 85% for the ECh and 90% for the SECh at 35 mA cm −2 ; (ii) 96% for the ECh and 98% for the SECh at 50 mA cm −2 . It is concluded that SECh presented the most favorable results for the decontamination of wastewaters containing azo dye compounds

  20. Oxidative coupling of methane. Still a challenge for catalyst development and reaction engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schomaecker, R.; Arnd, S.; Beck, B. [Technical Univ. of Berlin (Germany). Dept. of Chemistry] [and others

    2013-11-01

    The oxidative coupling of methane to ethylene offers great industrial potential, because it would broaden the feedstock basis for chemical industry. Because methane is the most stable hydrocarbon, its activation requires high temperatures and it is a great scientific challenge to overcome the apparent yield limit of about 25%. This barrier has never been exceeded since the beginning of OCM research more than 20 years ago. Results and Discussion: This challenge is one of the key projects of the Cluster of Excellence UNICAT and requires joined efforts and contributions from many disciplines, because this reaction shows a combined surface/gas phase reaction mechanism which results in very unusual and complex dependencies on the reaction conditions. Although dozens of materials are known to catalyze the reaction, the selection of a catalyst suitable for an industrial process is difficult, due to severe stability problems of many materials. Li/MgO was chosen by the UNICAT-team as model catalyst, because of the extended literature about it. But it shows uncontrollable deactivation, no matter what precursor and method were used for its preparation. Nevertheless, it is a suitable catalyst for fundamental studies, due to its formal chemical simplicity. A key result of the joined research activities was the disproval of the Lunsford mechanism and the elucidation of the real function of lithium as a surface modifier creating a rough and defect-rich surface. For the development of an OCM process another catalyst, Na{sub 2}WO{sub 4}/Mn/SiO{sub 2}, was chosen from the rich literature on OCM. Although less is known about its structure and the reaction mechanism at this catalyst, its stability was the most important reason to select it for further engineering studies. Kinetic isotope measurements and studies in a TAP reactor demonstrate the similarity of the reaction mechanisms at both catalysts, despite the completely different materials. The selectivity is largely controlled by