WorldWideScience

Sample records for oxidative addition reactions

  1. Density functional theoretical study on the C-F and C-O oxidative addition reaction at an AI center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seong [Dept. of Science Education, Kyungnam University, Masan (Korea, Republic of); Cho, Hyun; Hwang, Sungu [Dept. of Nanomechatronics Engineering, Pusan National University, Miryang (Korea, Republic of)

    2017-02-15

    In this study, B3LYP/LACVP** level calculations were chosen because the level of theory was applied successfully to calculations of the thermodynamic and kinetic features of the oxidative addition reactions of alkyl and aryl halides to pincer-type complexes. This study examined the effects of the substituents on the phenyl rings of the Al(I) center. Isopropyl side chains in the phenyl rings attached to N atoms of the pincer ligand were replaced with a methyl (Me) (2) or tertiary butyl ( t Bu) group. The oxidative addition of C[BOND]F and C[BOND]O bonds to an Al (I) center was investigated computationally by DFT calculations. The geometries, thermodynamic, and kinetic features were in good agreement with the experimental data, as in previous studies on the transition metal complexes. The computational results showed that the DFT calculations could provide qualitative insight into the reactivity and thermodynamics of the oxidative addition reactions of C[BOND]F bonds.

  2. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the O2 addition reaction pathways.

    Science.gov (United States)

    Shiroudi, A; Deleuze, M S; Canneaux, S

    2015-05-28

    Atmospheric oxidation of the naphthalene-OH adduct [C10H8OH]˙ (R1) by molecular oxygen in its triplet electronic ground state has been studied using density functional theory along with the B3LYP, ωB97XD, UM05-2x and UM06-2x exchange-correlation functionals. From a thermodynamic viewpoint, the most favourable process is O2 addition at the C2 position in syn mode, followed by O2 addition at the C2 position in anti mode, O2 addition at the C4 position in syn mode, and O2 addition at the C4 position in anti mode, as the second, third and fourth most favourable processes. The syn modes of addition at these positions are thermodynamically favoured over the anti ones by the formation of an intramolecular hydrogen bond between the hydroxyl and peroxy substituents. Analysis of the computed structures, bond orders and free energy profiles demonstrate that the reaction steps involved in the oxidation of the naphthalene-OH adduct by O2 satisfy Hammond's principle. Kinetic rate constants and branching ratios under atmospheric pressure and in the fall-off regime have been supplied, using transition state and RRKM theories. By comparison with experiment, these data confirm the relevance of a two-step reaction mechanism. Whatever the addition mode, O2 addition in C4 position is kinetically favoured over O2 addition in C2 position, in contrast with the expectations drawn from thermodynamics and reaction energies. Under a kinetic control of the reaction, and in line with the computed reaction energy barriers, the most efficient process is O2 addition at the C4 position in syn mode, followed by O2 addition at the C2 position in syn mode, O2 addition at the C4 position in anti mode, and O2 addition at the C2 position in anti mode as the second, third and fourth most rapid processes. The computed branching ratios also indicate that the regioselectivity of the reaction decreases with increasing temperatures and decreasing pressures.

  3. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    Science.gov (United States)

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Diels-Alder reactions: The effects of catalyst on the addition reaction

    Science.gov (United States)

    Yilmaz, Özgür; Kus, Nermin Simsek; Tunç, Tuncay; Sahin, Ertan

    2015-10-01

    The reaction between 2,3-dimethyl-1,3-butadiene and dimethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate is efficiently achieved with small amounts of catalyst, i.e. phenol, AcOH, nafion, and β-cyclodextrin. Exo-diastereoselective cycloaddition reactions were observed both without catalyst and different catalysts for 48 days. As a result, different products (tricyclicmolecule 5, retro-Diels-Alder product 6, and oxidation product 7) were obtained with different catalysts. In addition, we synthesized Diels-Alders product 8 and tricyclocyclitol 10 via Diels-Alder reaction. The structures of these products were characterized by 1H NMR, 13C NMR, MS and IR spectroscopy.

  5. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  6. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    Science.gov (United States)

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  7. The chemical foundations of nitroalkene fatty acid signaling through addition reactions with thiols.

    Science.gov (United States)

    Turell, Lucía; Steglich, Martina; Alvarez, Beatriz

    2018-03-22

    Nitroalkene fatty acids can be formed in vivo and administered exogenously. They exert pleiotropic signaling actions with cytoprotective and antiinflammatory effects. The presence of the potent electron withdrawing nitro group confers electrophilicity to the adjacent β-carbon. Thiols (precisely, thiolates) are strong nucleophiles and can react with nitroalkene fatty acids through reversible Michael addition reactions. In addition, nitroalkene fatty acids can undergo several other processes including metabolic oxidation, reduction, esterification, nitric oxide release and partition into hydrophobic compartments. The signaling actions of nitroalkenes are mainly mediated by reactions with critical thiols in regulatory proteins. Thus, the thio-Michael addition reaction provides a framework for understanding the molecular basis of the biological effects of nitroalkene fatty acids at the crossroads of thiol signaling and electrophilic lipid signaling. In this review, we describe the reactions of nitroalkene fatty acids in biological contexts. We focus on the Michael addition-elimination reaction with thiols and its mechanism, and extrapolate kinetic and thermodynamic considerations to in vivo settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Reaction between vanadium trichloride oxide and hydrogen sulfide

    International Nuclear Information System (INIS)

    Yajima, Akimasa; Matsuzaki, Ryoko; Saeki, Yuzo

    1978-01-01

    The details of the reaction between vanadium trichloride oxide and hydrogen sulfide were examined at 20 and 60 0 C. The main products by the reaction were vanadium dichloride oxide, sulfur, and hydrogen chloride. In addition to these products, small amounts of vanadium trichloride, vanadium tetrachloride, disulfur dichloride, and sulfur dioxide were formed. The formations of the above-mentioned reaction products can be explained as follows: The first stage is the reaction between vanadium trichloride oxide and hydrogen sulfide, 2VOCl 3 (l) + H 2 S(g)→2VOCl 2 (s) + S(s) + 2HCl(g). Then the resulting sulfur reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + 2S(s)→2VOCl 2 (s) + S 2 Cl 2 (l). The resulting disulfur dichloride subsequently reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + S 2 Cl 2 (l)→2VCl 4 (l) + S(s) + SO 2 (g). The resulting vanadium tetrachloride reacts with the sulfur formed during the reaction, 2VCl 4 (l) + 2S(s)→2VCl 3 (s) + S 2 Cl 2 (l), and also reacts with hydrogen sulfide, 2VCl 4 (l) + H 2 S(g)→2VCl 3 (s) + S(s) + 2HCl(g). (auth.)

  9. Functional separation of oxidation–reduction reactions and electron transport in PtRu/ND and conductive additive hybrid electrocatalysts during methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Wang, Yanhui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Bian, Linyan [College of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000 (China); Lu, Rui [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zang, Jianbing, E-mail: jbzang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-02-28

    Graphical abstract: - Highlights: • Functional separation of reactions and electron transport in PtRu/ND + AB (or CNT). • A conductive network was formed after the addition of AB or CNT. • PtRu/ND + AB (or CNT) exhibited enhanced activity and stability than PtRu/ND. - Abstract: Undoped nanodiamond (ND) supported PtRu (PtRu/ND) electrocatalyst for methanol oxidation reactions (MOR) in direct methanol fuel cells was prepared by a microwave-assisted polyol reduction method. Sp{sup 3}-bonded ND possesses high electrochemical stability but low conductivity, while sp{sup 2}-bonded carbon nanomaterials with high conductivity are prone to oxidation. Therefore, the functions of the supporting material were separated in this study. ND (sp{sup 3}), as a support, and AB or CNTs (sp{sup 2}), as a conductive additive, were combined to form the hybrid electrocatalysts PtRu/ND + AB and PtRu/ND + CNT for MOR. The morphology of the electrocatalysts was characterized by scanning electron microscopy and electrochemical measurements were performed using an electrochemical workstation. The results indicated that the electrocatalytic activity of PtRu/ND for MOR was improved with the addition of AB or CNTs as a conductive additive. Moreover, adding CNTs to PtRu/ND as a conductive additive showed better electrocatalytic activities than adding AB, which can be ascribed to the better electron-transfer ability of CNTs.

  10. Evidence for Single Metal Two Electron Oxidative Addition and Reductive Elimination at Uranium

    OpenAIRE

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; Mcinnes, Eric; Tuna, Floriana; Wooles, Ashley; Maron, Laurent; Liddle, Stephen

    2017-01-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here, we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido compl...

  11. Uranium oxidation: characterization of oxides formed by reaction with water

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Smyrl, N.R.; Condon, J.B.; Eager, M.H.

    1983-01-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures

  12. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  13. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    Science.gov (United States)

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  14. Reaction of hydrogen peroxide with uranium zirconium oxide solid solution - Zirconium hinders oxidative uranium dissolution

    Science.gov (United States)

    Kumagai, Yuta; Takano, Masahide; Watanabe, Masayuki

    2017-12-01

    We studied oxidative dissolution of uranium and zirconium oxide [(U,Zr)O2] in aqueous H2O2 solution to estimate (U,Zr)O2 stability to interfacial reactions with H2O2. Studies on the interfacial reactions are essential for anticipating how a (U,Zr)O2-based molten fuel may chemically degrade after a severe accident. The fuel's high radioactivity induces water radiolysis and continuous H2O2 generation. Subsequent reaction of the fuel with H2O2 may oxidize the fuel surface and facilitate U dissolution. We conducted our experiments with (U,Zr)O2 powder (comprising Zr:U mole ratios of 25:75, 40:60, and 50:50) and quantitated the H2O2 reaction via dissolved U and H2O2 concentrations. Although (U,Zr)O2 reacted more quickly than UO2, the dissolution yield relative to H2O2 consumption was far less for (U,Zr)O2 compared to that of UO2. The reaction kinetics indicates that most of the H2O2 catalytically decomposed to O2 at the surface of (U,Zr)O2. We confirmed the H2O2 catalytic decomposition via O2 production (quantitative stoichiometric agreement). In addition, post-reaction Raman scattering spectra of the undissolved (U,Zr)O2 showed no additional peaks (indicating a lack of secondary phase formation). The (U,Zr)O2 matrix is much more stable than UO2 against H2O2-induced oxidative dissolution. Our findings will improve understanding on the molten fuels and provide an insight into decommissioning activities after a severe accident.

  15. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions

    International Nuclear Information System (INIS)

    Schaefer, K.; Asmus, K.D.

    1980-01-01

    Phosphite radicals HPO 3 - and PO 3 2 -, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO 3 - and PO 3 2 - are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO 2 ) 3 - are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO 3 2 -. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO 5 - . reversible PO 5 2- . + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed

  16. Heterogeneous Metal Catalysts for Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Md. Eaqub Ali

    2014-01-01

    Full Text Available Oxidation reactions may be considered as the heart of chemical synthesis. However, the indiscriminate uses of harsh and corrosive chemicals in this endeavor are threating to the ecosystems, public health, and terrestrial, aquatic, and aerial flora and fauna. Heterogeneous catalysts with various supports are brought to the spotlight because of their excellent capabilities to accelerate the rate of chemical reactions with low cost. They also minimize the use of chemicals in industries and thus are friendly and green to the environment. However, heterogeneous oxidation catalysis are not comprehensively presented in literature. In this short review, we clearly depicted the current state of catalytic oxidation reactions in chemical industries with specific emphasis on heterogeneous catalysts. We outlined here both the synthesis and applications of important oxidation catalysts. We believe it would serve as a reference guide for the selection of oxidation catalysts for both industries and academics.

  17. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    KAUST Repository

    Wang, Zhandong

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS). Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C8H14O4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C8H16O5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C8H16O5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O2 addition, intramolecular isomerization, and OH release; C8H14O4 species are proposed to result from subsequent reactions of C8H16O5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth\\'s troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. The results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances. © 2015 The Combustion Institute.

  18. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  19. Things fall apart: Fragmentation reactions in the oxidative aging of organic species

    Science.gov (United States)

    Kroll, J. H.; Isaacman-VanWertz, G. A.; Wilson, K. R.; Daumit, K. E.; Kessler, S. H.; Lim, C. Y.; Worsnop, D. R.

    2016-12-01

    The atmospheric oxidation of organic compounds involves a wide array of chemical transformations, including functionalization reactions (addition of polar functional groups to the carbon skeleton), fragmentation reactions (formation of lower carbon-number products via C-C bond scission), and accretion reactions (increases in molecular weight by the combination of two chemical species). Each of these reaction classes can lead to large changes in volatility, and hence can have major implications for atmospheric organic aerosol (OA). For example, the formation of OA is predominantly driven by functionalization and accretion reactions, which generally lead to decreases in volatility. Here we describe a series of laboratory studies of the subsequent organic "aging", the multiday oxidation processes that occur after the initial OA formation and growth. In these studies, the multigenerational oxidation of organic compounds in various phases (the gas phase, the condensed OA phase, and the aqueous phase) is carried out within either an environmental chamber or a flow reactor, and monitored using various high-resolution mass spectrometric techniques. In all cases it is found that fragmentation reactions play a major role in the observed aging chemistry, dominated by the formation of small, volatile oxidation products. These results suggest that multi-day oxidative aging processes do not lead to sustained aerosol growth, but rather may serve as a chemical sink for atmospheric OA.

  20. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  1. Third O2 addition reactions promote the low-temperature auto-ignition of n-alkanes

    KAUST Repository

    Wang, Zhandong

    2016-01-20

    Comprehensive low-temperature oxidation mechanisms are needed to accurately predict fuel auto-ignition properties. This paper studies the effects of a previously unconsidered third O2 addition reaction scheme on the simulated auto-ignition of n-alkanes. We demonstrate that this extended low-temperature oxidation scheme has a minor effect on the simulation of n-pentane ignition; however, its addition significantly improves the prediction of n-hexane auto-ignition under low-temperature rapid compression machine conditions. Additional simulations of n-hexane in a homogeneous charge compression ignition engine show that engine-operating parameters (e.g., intake temperature and combustion phasing) are significantly altered when the third O2 addition kinetic mechanism is considered. The advanced combustion phasing is initiated by the formation and destruction of additional radical chain-branching intermediates produced in the third O2 addition process, e.g. keto-dihydroperoxides and/or keto-hydroperoxy cyclic ethers. Our results indicate that third O2 addition reactions accelerate low-temperature radical chain branching at conditions of relevance to advance engine technologies, and therefore these chemical pathways should also be considered for n-alkanes with 6 or more carbon atoms. © 2015 The Combustion Institute.

  2. Methods for forming complex oxidation reaction products including superconducting articles

    International Nuclear Information System (INIS)

    Rapp, R.A.; Urquhart, A.W.; Nagelberg, A.S.; Newkirk, M.S.

    1992-01-01

    This patent describes a method for producing a superconducting complex oxidation reaction product of two or more metals in an oxidized state. It comprises positioning at least one parent metal source comprising one of the metals adjacent to a permeable mass comprising at least one metal-containing compound capable of reaction to form the complex oxidation reaction product in step below, the metal component of the at least one metal-containing compound comprising at least a second of the two or more metals, and orienting the parent metal source and the permeable mass relative to each other so that formation of the complex oxidation reaction product will occur in a direction towards and into the permeable mass; and heating the parent metal source in the presence of an oxidant to a temperature region above its melting point to form a body of molten parent metal to permit infiltration and reaction of the molten parent metal into the permeable mass and with the oxidant and the at least one metal-containing compound to form the complex oxidation reaction product, and progressively drawing the molten parent metal source through the complex oxidation reaction product towards the oxidant and towards and into the adjacent permeable mass so that fresh complex oxidation reaction product continues to form within the permeable mass; and recovering the resulting complex oxidation reaction product

  3. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  4. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S.; Chung, Suk-Ho

    2015-01-01

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  5. Isotopes in oxidation reactions

    International Nuclear Information System (INIS)

    Stewart, R.

    1976-01-01

    The use of isotopes in the study of organic oxidation mechanisms is discussed. The help provided by tracer studies to demonstrate the two-equivalent path - hydride transfer, is illustrated by the examples of carbonium oxidants and the Wacker reaction. The role of kinetic isotope effects in the study of the scission of carbon-hydrogen bonds is illustrated by hydride abstraction, hydrogen atom abstraction, proton abstraction and quantum mechanical tunnelling. Isotopic studies on the oxidation of alcohols, carbonyl compounds, amines and hydrocarbons are discussed. The role of isotopes in the study of biochemical oxidation is illustrated with a discussion on nicotinamide and flavin coenzymes. (B.R.H.)

  6. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet

    2012-11-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  7. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet; da Silva, Gabriel; Chung, Suk-Ho

    2012-01-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  8. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  9. Theoretical Evidence for Low-Ligated Palladium(0): [Pd-L] as the Active Species in Oxidative Addition Reactions

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fristrup, Peter; Tanner, David Ackland

    2006-01-01

    The oxidative addition of PhI to Pd0 has been studied by DFT with a continuum representation of the solvent. It is shown that the preferred number of ligands on palladium is lower than would be expected from “conventional wisdom” and the 18-electron rule. The most favored oxidative addition is ob...

  10. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Songchen [Ames Laboratory; Manna, Kuntal [Ames Laboratory; Ellern, Arkady [Ames Laboratory; Sadow, Aaron D [Ames Laboratory

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  11. Effect of Ca, Ce or K oxide addition on the activity of Ni/SiO{sub 2} catalysts for the methane decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Beatriz; Torres-Garcia, Enelio [Instituto Mexicano del Petroleo, Programa de Procesos y Reactores, Eje C. 152, Mexico, D.F., C.P. 07730 (Mexico); Valenzuela, Miguel A.; Palacios, Jorge [Instituto Politecnico Nacional-ESIQIE, Lab. Catalisis y Materiales, Zacatenco, Mexico, D.F., C.P. 07738 (Mexico)

    2010-11-15

    To increase the activity and stability of Ni/SiO{sub 2} catalysts, a series of Ni-Ca, Ni-K and Ni-Ce promoted catalysts were prepared by successive impregnations. The textural properties, reducibility and catalytic performance in the methane decomposition reaction were investigated. The catalyst containing 30 wt.% Ni and 30 wt.% cerium oxide greatly increased the conversion of methane (90% of equilibrium value) and improved the stability, whereas the Ni-K and Ni-Ca were less active and stable than the Ni/SiO{sub 2} catalyst. The results suggest that Ce addition prevents the sintering of nickel particles during reduction process maintaining a random distribution between the silica and cerium oxide improving the distribution and migration of deposited carbon. (author)

  12. Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Yu; Xiao-hui Fan; Min Gan; Xu-ling Chen

    2017-01-01

    As the emission control regulations get stricter, the NOx reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain. The NOx emissions from the sintering machine account for 48% of total amount from the iron and steel industry.Thus, it is essential to reduce NOx emissions from the sintering machine, for the achievement of clean production of sinter.Ca-Fe oxides, serving as the main binding phase in the sinter, are therefore used as additives into the sintering mixture to reduce NOx emissions.The results show that the NOx re-duction ratio achieves 27.76% with 8% Ca-Fe oxides additives since the Ca-Fe oxides can advance the ig-nition and inhibit the nitrogen oxidation compared with the conventional condition.Meanwhile, the exist-ence of Ca-Fe oxides was beneficial to the sinter quality since they were typical low melting point com-pounds.The optimal mass fraction of Ca-Fe oxides additives should be less than 8% since the permeability of sintering bed was significantly decreased with a further increase of the Ca-Fe oxides fines, inhibiting the mineralization reaction of sintering mixture.Additionally, the appropriate particle size can be obtained when mixing an equal amount of Ca-Fe oxides additives of -0.5 mm and 0.5-3.0 mm in size.

  13. Analysis of reaction products formed in the gas phase reaction of E,E-2,4-hexadienal with atmospheric oxidants: Reaction mechanisms and atmospheric implications

    Science.gov (United States)

    Colmenar, I.; Martin, P.; Cabañas, B.; Salgado, S.; Martinez, E.

    2018-03-01

    An analysis of reaction products for the reaction of E,E-2,4-hexadienal with chlorine atoms (Cl) and OH and NO3 radicals has been carried out at the first time with the aim of obtaining a better understanding of the tropospheric reactivity of α,β-unsaturated carbonyl compounds. Fourier Transform Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectrometry with a Time of Flight detector (GC-TOFMS) were used to carry out the qualitative and/or quantitative analyses. Reaction products in gas and particulate phase were observed from the reactions of E,E-2,4- hexadienal with all oxidants. E/Z-Butenedial and maleic anhydride were the main products identified in gas phase. E-butenedial calculated molar yield ranging from 4 to 10%. A significant amount of multifunctional compounds (chloro and hydroxy carbonyls) was identified. These compounds could be formed in particulate phase explaining the ∼90% of unaccounted carbon in gas phase. The reaction with Cl atoms in the presence of NOx with a long reaction time gave Peroxy Acetyl Nitrate (PAN) as an additional product, which is known for being an important specie in the generation of the photochemical smog. Nitrated compounds were the major organic products from the reaction with the NO3 radical. Based on the identified products, the reaction mechanisms have been proposed. In these mechanisms a double bond addition of the atmospheric oxidant at C4/C5 of E,E-2,4-hexadienal is the first step for tropospheric degradation.

  14. Oxidation reactions of bilirubin in aqueous solutions

    International Nuclear Information System (INIS)

    Mohan, Hari; Gopinathan, C.

    1990-01-01

    The radical cation of bilirubin (BR) has been tentatively identified as a transient intermediate in the reactions of BR with different oxidizing species such as Br 2 - , I 2 - and CH 3 I . OH. The rate constants for these reactions have been determined as 2.4 x 10 9 , l.0 x 10 9 and 2.7 x 10 9 dm 3 mol -1 s -1 , respectively. Biliverdin is likely to be among the stable products formed on oxidation of BR by these oxidizing species. (author)

  15. Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes

    KAUST Repository

    Baron, Marco

    2016-06-14

    Gold(I) dicarbene complexes [Au2(MeIm-Y-ImMe)2](PF6)2(Y=CH2(1), (CH2)2(2), (CH2)4(4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2-ImMe)2AuI2](PF6)2(1 aI) and the gold(III) complexes [Au2I4(MeIm-Y-ImMe)2](PF6)2(2 cIand 4 cI). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2Cl4(MeIm-CH2-ImMe)2](PF6)2(1 cCl) and [Au2Cl4(MeIm-(CH2)2-ImMe)2](Cl)2(2 cCl-Cl) (as main product); remarkably in the case of complex 2, the X-ray molecular structure of the crystals also shows the presence of I-Au-Cl mixed-sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2, Br2and I2to give the successive formation of the mixed-valence gold(I)/gold(III) n aXand gold(III) n cX(excluding compound 1 cI) complexes. However, complex 3 affords with Cl2and Br2the gold(II) complex 3 bX[Au2X2(MeIm-(CH2)3-ImMe)2](PF6)2(X=Cl, Br), which is the predominant species over compound 3 cXeven in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Heterogeneously Catalyzed Oxidation Reactions Using Molecular Oxygen

    DEFF Research Database (Denmark)

    Beier, Matthias Josef

    Heterogeneously catalyzed selective oxidation reactions have attracted a lot of attention in recent time. The first part of the present thesis provides an overview over heterogeneous copper and silver catalysts for selective oxidations in the liquid phase and compared the performance and catalytic...... that both copper and silver can function as complementary catalyst materials to gold showing different catalytic properties and being more suitable for hydrocarbon oxidation reactions. Potential opportunities for future research were outlined. In an experimental study, the potential of silver as a catalyst...... revealed that all catalysts were more active in combination with ceria nanoparticles and that under the tested reaction conditions silver was equally or even more efficient than the gold catalysts. Calcination at 900 °C of silver on silica prepared by impregnation afforded a catalyst which was used...

  17. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the OH-addition pathway.

    Science.gov (United States)

    Shiroudi, Abolfazl; Deleuze, Michael S; Canneaux, Sébastien

    2014-07-03

    The oxidation mechanisms of naphthalene by OH radicals under inert (He) conditions have been studied using density functional theory along with various exchange-correlation functionals. Comparison has been made with benchmark CBS-QB3 theoretical results. Kinetic rate constants were correspondingly estimated by means of transition state theory and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) theory. Comparison with experiment confirms that, on the OH-addition reaction pathway leading to 1-naphthol, the first bimolecular reaction step has an effective negative activation energy around -1.5 kcal mol(-1), whereas this step is characterized by an activation energy around 1 kcal mol(-1) on the OH-addition reaction pathway leading to 2-naphthol. Effective rate constants have been calculated according to a steady state analysis upon a two-step model reaction mechanism. In line with experiment, the correspondingly obtained branching ratios indicate that, at temperatures lower than 410 K, the most abundant product resulting from the oxidation of naphthalene by OH radicals must be 1-naphthol. The regioselectivity of the OH(•)-addition onto naphthalene decreases with increasing temperatures and decreasing pressures. Because of slightly positive or even negative activation energies, the RRKM calculations demonstrate that the transition state approximation breaks down at ambient pressure (1 bar) for the first bimolecular reaction steps. Overwhelmingly high pressures, larger than 10(5) bar, would be required for restoring to some extent (within ∼5% accuracy) the validity of this approximation for all the reaction channels that are involved in the OH-addition pathway. Analysis of the computed structures, bond orders, and free energy profiles demonstrate that all reaction steps involved in the oxidation of naphthalene by OH radicals satisfy Leffler-Hammond's principle. Nucleus independent chemical shift indices and natural bond orbital analysis also show that the computed

  18. Controlled nitric oxide production via O(1D) + N2O reactions for use in oxidation flow reactor studies

    Science.gov (United States)

    Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William

    2017-06-01

    Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  19. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.; Welz, Oliver; Huang, Haifeng; Antonov, Ivan O.; Savee, John D.; Osborn, David L.; Zádor, Judit; Taatjes, Craig A.; Sheps, Leonid

    2015-07-16

    We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled and informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi-scale informed

  20. New Insights into the Diels-Alder Reaction of Graphene Oxide.

    Science.gov (United States)

    Brisebois, Patrick P; Kuss, Christian; Schougaard, Steen B; Izquierdo, Ricardo; Siaj, Mohamed

    2016-04-18

    Graphene oxide is regarded as a major precursor for graphene-based materials. The development of graphene oxide based derivatives with new functionalities requires a thorough understanding of its chemical reactivity, especially for canonical synthetic methods such as the Diels-Alder cycloaddition. The Diels-Alder reaction has been successfully extended with graphene oxide as a source of diene by using maleic anhydride as a dienophile, thereby outlining the presence of the cis diene present in the graphene oxide framework. This reaction provides fundamental information for understanding the exact structure and chemical nature of graphene oxide. On the basis of high-resolution (13) C-SS NMR spectra, we show evidence for the formation of new sp(3) carbon centers covalently bonded to graphene oxide following hydrolysis of the reaction product. DFT calculations are also used to show that the presence of a cis dihydroxyl and C vacancy on the surface of graphene oxide are promoting the reaction with significant negative reaction enthalpies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.

    Science.gov (United States)

    Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S

    2009-11-04

    (PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.

  2. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    Science.gov (United States)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  3. Redox regulation of mitochondrial function with emphasis on cysteine oxidation reactions.

    Science.gov (United States)

    Mailloux, Ryan J; Jin, Xiaolei; Willmore, William G

    2014-01-01

    Mitochondria have a myriad of essential functions including metabolism and apoptosis. These chief functions are reliant on electron transfer reactions and the production of ATP and reactive oxygen species (ROS). The production of ATP and ROS are intimately linked to the electron transport chain (ETC). Electrons from nutrients are passed through the ETC via a series of acceptor and donor molecules to the terminal electron acceptor molecular oxygen (O2) which ultimately drives the synthesis of ATP. Electron transfer through the respiratory chain and nutrient oxidation also produces ROS. At high enough concentrations ROS can activate mitochondrial apoptotic machinery which ultimately leads to cell death. However, if maintained at low enough concentrations ROS can serve as important signaling molecules. Various regulatory mechanisms converge upon mitochondria to modulate ATP synthesis and ROS production. Given that mitochondrial function depends on redox reactions, it is important to consider how redox signals modulate mitochondrial processes. Here, we provide the first comprehensive review on how redox signals mediated through cysteine oxidation, namely S-oxidation (sulfenylation, sulfinylation), S-glutathionylation, and S-nitrosylation, regulate key mitochondrial functions including nutrient oxidation, oxidative phosphorylation, ROS production, mitochondrial permeability transition (MPT), apoptosis, and mitochondrial fission and fusion. We also consider the chemistry behind these reactions and how they are modulated in mitochondria. In addition, we also discuss emerging knowledge on disorders and disease states that are associated with deregulated redox signaling in mitochondria and how mitochondria-targeted medicines can be utilized to restore mitochondrial redox signaling.

  4. Insight into the Reaction Mechanism of Graphene Oxide with Oxidative Free Radical

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuejiao; XU Liangyou

    2017-01-01

    Graphene oxide(GO),as an important derivative of graphene,could be considered as a super aromatic molecule decorated with a range of reactive oxygen-containing groups on its surface,which endows graphene high reactivity with other molecules.In our previous work,we demonstrated that GO sheets were cut into small pieces(graphene quantum dots,GQDs) by oxidative free radicals(hydroxyl radical HO or oxygen radical [O]) under UV irradiation.It is notable that reactions involving free radicals are influenced by reaction conditions pronouncedly.However,researches on details about reactions of GO with free radicals have not been reported thus far.In this work,the effects of different factors on the photo-Fenton reaction of GO were studied.It is demonstrated that the reaction rate is closely related to the concentration of free radicals.It is speculated that through the optimization of reaction conditions,the reaction of graphene with free radicals could carry out efficiently for further applications.

  5. Comparative study of the addition compounds between lanthanides methane sulfonates (III) and aromatic amino-oxides as ligands

    International Nuclear Information System (INIS)

    Rosario Matos, J. do.

    1989-01-01

    The main goal of this thesis is to further develop the studies on the preparation and characterization of addition compounds obtained from the reaction of lanthanide methane sulfonates and aromatic amino oxides as ligands, pyridine-N-oxides as the picoline-N-oxides (2-pic NO, 3-pic NO and 4-picNO) in order to make a comparative study. (author)

  6. Bulk gold catalyzed oxidation reactions of amines and isocyanides and iron porphyrin catalyzed N-H and O-H bond insertion/cyclization reactions of diamines and aminoalcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klobukowski, Erik [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work involves two projects. The first project entails the study of bulk gold as a catalyst in oxidation reactions of isocyanides and amines. The main goal of this project was to study the activation and reactions of molecules at metal surfaces in order to assess how organometallic principles for homogeneous processes apply to heterogeneous catalysis. Since previous work had used oxygen as an oxidant in bulk gold catalyzed reactions, the generality of gold catalysis with other oxidants was examined. Amine N-oxides were chosen for study, due to their properties and use in the oxidation of carbonyl ligands in organometallic complexes. When amine N-oxides were used as an oxidant in the reaction of isocyanides with amines, the system was able to produce ureas from a variety of isocyanides, amines, and amine N-oxides. In addition, the rate was found to generally increase as the amine N-oxide concentration increased, and decrease with increased concentrations of the amine. Mechanistic studies revealed that the reaction likely involves transfer of an oxygen atom from the amine N-oxide to the adsorbed isocyanide to generate an isocyanate intermediate. Subsequent nucleophilic attack by the amine yields the urea. This is in contrast to the bulk gold-catalyzed reaction mechanism of isocyanides with amines and oxygen. Formation of urea in this case was proposed to proceed through a diaminocarbene intermediate. Moreover, formation of the proposed isocyanate intermediate is consistent with the reactions of metal carbonyl ligands, which are isoelectronic to isocyanides. Nucleophilic attack at coordinated CO by amine N-oxides produces CO{sub 2} and is analogous to the production of an isocyanate in this gold system. When the bulk gold-catalyzed oxidative dehydrogenation of amines was examined with amine N-oxides, the same products were afforded as when O{sub 2} was used as the oxidant. When the two types of oxidants were directly compared using the same reaction system and

  7. Borate electrolyte additives for high voltage lithium nickel manganese oxide electrode: A comparative study

    International Nuclear Information System (INIS)

    Chen, Zhiting; Wang, Cun; Xing, Lidan; Wang, Xianshu; Tu, Wenqiang; Zhu, Yunmin; Li, Weishan

    2017-01-01

    Highlights: •TMB and TEB effective improve the cyclic stability of LNMO at high voltage. •The performance of LNMO with TMB-containing electrolyte is superior to that of TEB. •LNMO shows catalytic effect on the oxidation reaction of TEB. •The film generated in TMB shows better ability on suppressing LNMO shedding than TEB. -- Abstract: Trimethyl borate (TMB) and triethyl borate (TEB) are used as film-forming electrolyte additives for high voltage Lithium nickel manganese oxide (LNMO) cathode. DFT calculation and initial charge curve of LNMO reveal that the oxidation activity of TEB is higher than that of TMB. Addition of 2% TMB and 2% TEB effectively improve the capacity retention of high voltage LNMO from 23.4% to 85.3% and 72.6% after 600 cycles, respectively. The film generated in TMB-containing electrolyte shows better ability on suppressing the LNMO shedding in comparison with that of TEB, resulting in higher capacity retention of LNMO in TMB-containing electrolyte at high voltage. The superior performance of LNMO with TMB-containing electrolyte should be ascribed to its less intense film-forming reaction which generates a denser protective surface film on LNMO surface. However, why LNMO shows catalyzation effect on TEB oxidation but not on TMB is unclear, which needs further intensive investigation.

  8. Computerized infrared spectroscopic study of surface reactions on selected lanthanide oxides

    International Nuclear Information System (INIS)

    Dellisante, G.N.

    1982-01-01

    The natures of adsorption sites on La 2 O 3 , Nd 2 O 3 , and selected praseodymium oxides were investigated by examining surface reactions of probe molecules using computerized transmission ir spectroscopy on unsupported samples. Additionally, the rehydration/dehydration behavior and crystallographic phase transitions of these oxides were examined in pretreatment temperature experiments involving rehydration of the sesquioxides to hydroxides by water exposure. Following rehydration of La 2 O 3 to La(OH) 3 , the effect of increasing vacuum pretreatment temperature (350 to 1000 0 C) is to gradually remove surface hydroxyl and carbonate entities (up to 650 0 C), and increase the degree of A-type crystallinity. Increasing crystallinity causes a concomitant decrease in surface oxide basicity. The removal of hydroxyl and carbonate species, as well as increases in oxide basicity, strongly correlated to increases in certain catalytic activities. The adsorption of NH 3 , CO 2 , mixtures of NH 3 and CO 2 , formic acid, acetic acid, acetaldehyde, and ethanol on the oxides was determined to weakly coordinate in Ln 3 + sites, and the surface reactions are discussed. Heating was found to desorb the adsorbed compounds and/or causes changes of the originally adsorbed form into other compounds. The effects of temperature on both adsorption and desorption are reported

  9. Controlled nitric oxide production via O(1D  + N2O reactions for use in oxidation flow reactor studies

    Directory of Open Access Journals (Sweden)

    A. Lambe

    2017-06-01

    Full Text Available Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3 is photolyzed at 254 nm to produce O(1D radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA formation pathways. Simple addition of nitric oxide (NO results in fast conversion of NOx (NO + NO2 to nitric acid (HNO3, making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2 radicals as a sink for organic peroxy (RO2 radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D + N2O  →  2NO, followed by the reaction NO + O3  →  NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS measurements with nitrate (NO3− reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.

  10. Allergic and immunologic reactions to food additives.

    Science.gov (United States)

    Gultekin, Fatih; Doguc, Duygu Kumbul

    2013-08-01

    For centuries, food additives have been used for flavouring, colouring and extension of the useful shelf life of food, as well as the promotion of food safety. During the last 20 years, the studies implicating the additives contained in foods and medicine as a causative factor of allergic reactions have been proliferated considerably. In this review, we aimed to overview all of the food additives which were approved to consume in EU and find out how common and serious allergic reactions come into existence following the consuming of food additives.

  11. Gas-Solid Reaction Route toward the Production of Intermetallics from Their Corresponding Oxide Mixtures

    Directory of Open Access Journals (Sweden)

    Hesham Ahmed

    2016-08-01

    Full Text Available Near-net shape forming of metallic components from metallic powders produced in situ from reduction of corresponding pure metal oxides has not been explored to a large extent. Such a process can be probably termed in short as the “Reduction-Sintering” process. This methodology can be especially effective in producing components containing refractory metals. Additionally, in situ production of metallic powder from complex oxides containing more than one metallic element may result in in situ alloying during reduction, possibly at lower temperatures. With this motivation, in situ reduction of complex oxides mixtures containing more than one metallic element has been investigated intensively over a period of years in the department of materials science, KTH, Sweden. This review highlights the most important features of that investigation. The investigation includes not only synthesis of intermetallics and refractory metals using the gas solid reaction route but also study the reaction kinetics and mechanism. Environmentally friendly gases like H2, CH4 and N2 were used for simultaneous reduction, carburization and nitridation, respectively. Different techniques have been utilized. A thermogravimetric analyzer was used to accurately control the process conditions and obtain reaction kinetics. The fluidized bed technique has been utilized to study the possibility of bulk production of intermetallics compared to milligrams in TGA. Carburization and nitridation of nascent formed intermetallics were successfully carried out. A novel method based on material thermal property was explored to track the reaction progress and estimate the reaction kinetics. This method implies the dynamic measure of thermal diffusivity using laser flash method. These efforts end up with a successful preparation of nanograined intermetallics like Fe-Mo and Ni-W. In addition, it ends up with simultaneous reduction and synthesis of Ni-WN and Ni-WC from their oxide mixtures

  12. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.

    Science.gov (United States)

    Cadet, Jean; Wagner, J Richard; Shafirovich, Vladimir; Geacintov, Nicholas E

    2014-06-01

    The aim of this survey is to critically review the available information on one-electron oxidation reactions of nucleobases in cellular DNA with emphasis on damage induced through the transient generation of purine and pyrimidine radical cations. Since the indirect effect of ionizing radiation mediated by hydroxyl radical is predominant in cells, efforts have been made to selectively ionize bases using suitable one-electron oxidants that consist among others of high intensity UVC laser pulses. Thus, the main oxidation product in cellular DNA was found to be 8-oxo-7,8-dihydroguanine as a result of direct bi-photonic ionization of guanine bases and indirect formation of guanine radical cations through hole transfer reactions from other base radical cations. The formation of 8-oxo-7,8-dihydroguanine and other purine and pyrimidine degradation products was rationalized in terms of the initial generation of related radical cations followed by either hydration or deprotonation reactions in agreement with mechanistic pathways inferred from detailed mechanistic studies. The guanine radical cation has been shown to be implicated in three other nucleophilic additions that give rise to DNA-protein and DNA-DNA cross-links in model systems. Evidence was recently provided for the occurrence of these three reactions in cellular DNA. There is growing evidence that one-electron oxidation reactions of nucleobases whose mechanisms have been characterized in model studies involving aqueous solutions take place in a similar way in cells. It may also be pointed out that the above cross-linked lesions are only produced from the guanine radical cation and may be considered as diagnostic products of the direct effect of ionizing radiation.

  13. Ion-molecule reactions in the binary mixture of ethylene oxide and trioxane, 1

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Sugiura, Toshio.

    1977-01-01

    The formation mechanism of protonated molecular ions by cross-reactions in ethylene oxide-trioxane mixtures has been studied with use of a modified time-of-flight mass spectrometer. The precursors of the product ions were determined by analysis of the fine structure of their ionization efficiency curves using deuterated ethylene oxide. Protonated ethylene oxide is formed by the hydrogen atom transfer reaction of ethylene oxide molecular ion with trioxane, and protonated trioxane by the proton transfer reaction of CHO + (from ethylene oxide) with trioxane. In the ion-molecule reactions of ethylene-d 4 oxide-trioxane mixtures, appreciable isotope effect was observed. The CHO + from ethylene oxide is an important reactant ion as compared with that from trioxane in the proton transfer reaction, and CHO + from ethylene oxide was suggested as a thermal reactive ion. The order of proton affinity could be estimated from the proton transfer reactions involving CHO + . It was found that the proton affinity of trioxane is smaller than that of ethylene oxide. (auth.)

  14. Gas phase reactions of nitrogen oxides with olefins

    Energy Technology Data Exchange (ETDEWEB)

    Altshuller, A P; Cohen, I

    1961-01-01

    The nature of the condensation products formed in the gas phase reactions of nitrogen dioxide and nitric oxide with pentene-1, 2-methylbutene-2, and 2-methylbutadiene-1,3 was investigated. The reactants were combined at partial pressures in the range of 0.1 to 2.5 mm with the total pressure at one atmosphere. The products were determined by infrared and ultraviolet spectroscopy and colorimetry. The condensates included primary and secondary nitro compounds and alkyl nitrates. Strong hydroxyl and single bond carbon to oxygen stretching vibrations indicate the presence of either nitroalcohols or simple aliphatic alcohols formed through oxidation reactions. Carbonyl stretching frequencies observable in some of the reactions support the conclusion that a portion of the reactants disappear by oxidation rather than by nitration processes. The available results do not indicate the presence of appreciable amounts of tert.-nitro compounds, conjugated nitro-olefins, or gem-dinitro-alkanes. The reactivities of the olefins with the nitrogen oxides are in the decreasing order: 2-methyl-butadiene-1,3, 2-methylbutene-2, pentene-1. 20 references.

  15. A novel tandem Betti/Ullmann oxidation reaction as an efficient route ...

    Indian Academy of Sciences (India)

    Betti reaction; cross-coupling reaction; oxidation; heterogeneous catalysis. Abstract. A novel tandem Betti/Ullmann/oxidation reaction was used for synthesis of new oxazepine derivatives containing kojic acid. This protocol ... This method provides a new and useful strategy for the construction of heterocycles. Also novel Betti ...

  16. Oxidation kinetic changes of UO2 by additive addition and irradiation

    International Nuclear Information System (INIS)

    You, Gil-Sung; Kim, Keon-Sik; Min, Duck-Kee; Ro, Seung-Gy

    2000-01-01

    The kinetic changes of air-oxidation of UO 2 by additive addition and irradiation were investigated. Several kinds of specimens, such as unirradiated-UO 2 , simulated-UO 2 for spent PWR fuel (SIMFUEL), unirradiated-Gd-doped UO 2 , irradiated-UO 2 and -Gd-doped UO 2 , were used for these experiments. The oxidation results represented that the kinetic patterns among those samples are remarkably different. It was also revealed that the oxidation kinetics of irradiated-UO 2 seems to be more similar to that of unirradiated-Gd-doped UO 2 than that of SIMFUEL

  17. Degradation of quinoline by wet oxidation - kinetic aspects and reaction mechanisms

    DEFF Research Database (Denmark)

    Thomsen, A.B.

    1998-01-01

    The high temperature, high pressure wet oxidation reaction of quinoline has been studied as a function of initial concentration, pH and temperature. At neutral to acidic pH, it is effective in the oxidation of quinoline at 240 degrees C and above, whereas under alkaline conditions the reaction...... is markedly slowed down. The results indicate that the reaction is an auto-catalysed, free radical chain reaction transforming 99% of quinoline to other substances. Of the quinoline. 30-50% was oxidised to CO2 and H2O depending on the initial concentration. Wet oxidation of deuterium-labelled quinoline...

  18. Research of lignite oxidation kinetic parameters modified by CuSO4 and NaNO3 initiation additives

    Directory of Open Access Journals (Sweden)

    Larionov Kirill

    2017-01-01

    Full Text Available An experimental study and subsequent analytical assessment of activation energy change in lignite oxidation process with addition of NaNO3 and CuSO4 mineral salts were conducted. The results showed that injection of catalytic additives leads to reduction of coal activation energy and reaction initial temperature.

  19. Solid-phase vibrational redox reactions in coordinated oxides

    International Nuclear Information System (INIS)

    Kostikova, G.P.; Korol'kov, D.V.; Kostikov, Yu.P.

    1996-01-01

    The properties of multicomponent oxides (YBa 2 Cu 3 O 7-x , etc.), incorporating different valency forms of each of two (or more) different elements have been compared with the properties of the known chemical systems, where vibrational (periodic) redox-reactions are realized a fortiori. The essence of the new theoretical concept suggested consists in the following: high-T c superconductivity of the complex oxides and similar compounds originates from vibrational redox reaction proceeding in solid phase and involving different valency atoms of every element

  20. Reactions of organic zinc- and cadmium elementoxides with ethylene oxide

    International Nuclear Information System (INIS)

    Dodonov, V.A.; Krasnov, Yu.N.

    1980-01-01

    Studied are reactions of triphenylmethoxy, -triphenylsiloxyethylzinc and -cadmium with ethylene oxide in ratio of 1:1. Reactions have been carried out in tolyene solutions in ampules sealed in argon atmosphere. It is found that interaction of triphenylsiloxy-, triphenylmethoxyethylcadmium and triphenylsiloxyethylzinc with ethylene oxide occurs at the metal-carbon bond with formation of implantation products. Triphenylmethoxyethylzinc reacts with ethylene oxide both at the metal-carbon and metal-oxygen bonds. Alkoxytriphenylsiloxyderivatives of zinc and cadmium are thermally instable and decompose under the conditions of reaction (130 deg C) with migration of phenyl group from silicon to zinc or cadmium, giving alkoxyphenylderivative and with bensene splitting out

  1. Synthesis of a Fluorescent Acridone Using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence

    Science.gov (United States)

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R.

    2015-01-01

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the…

  2. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  3. Pyrite oxidation in unsaturated aquifer sediments. Reaction stoichiometry and rate of oxidation

    DEFF Research Database (Denmark)

    Andersen, Martin Søgaard; Larsen, Flemming; Postma, Diederik Jan

    2001-01-01

    The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase in the inc......The oxidation of pyrite (FeS2) contained in unsaturated aquifer sediment was studied by sediment incubation in gas impermeable polymer laminate bags. Reaction progress was followed over a period of nearly 2 months by monitoring the gas composition within the laminate bag. The gas phase...... in the incubation bags became depleted in O2 and enriched in CO2 and N2 and was interpreted as due to pyrite oxidation in combination with calcite dissolution. Sediment incubation provides a new method to estimate low rates of pyrite oxidation in unsaturated zone aquifer sediments. Oxidation rates of up to 9.4â10......-10 mol FeS2/gâs are measured, and the rates are only weakly correlated with the sediment pyrite content. The reactivity of pyrite, including the inhibition by FeOOH layers formed on its surface, apparently has a major effect on the rate of oxidation. The code PHREEQC 2.0 was used to calculate...

  4. Reactions of calcium orthosilicate and barium zirconate with oxides and sulfates of various elements

    Science.gov (United States)

    Zaplatynsky, I.

    1979-01-01

    Calcium orthosilicate and barium zirconate were evaluated as the insulation layer of thermal barrier coatings for air cooled gas turbine components. Their reactions with various oxides and sulfates were studied at 1100 C and 1300 C for times ranging up to 400 and 200 hours, respectively. These oxides and sulfates represent potential impurities or additives in gas turbine fuels and in turbine combustion air, as well as elements of potential bond coat alloys. The phase compositions of the reaction products were determined by X-ray diffraction analysis. BaZrO3 and 2CaO-SiO2 both reacted with P2O5, V2O5, Cr2O3, Al2O3, and SiO2. In addition, 2CaO-SiO2 reacted with Na2O, BaO, MgO, and CoO and BaZrO3 reacted with Fe2O3.

  5. Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J; Kaplan, A F H [Department of Applied Physics and Mechanical Engineering, Luleaa University of Technology, SE-971 87 Luleaa (Sweden); Petring, D [Fraunhofer-Institute for Laser Technology (ILT), Steinbachstrasse 15, Aachen (Germany); Kumar, R V [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Al-Mashikhi, S O; Voisey, K T [Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)], E-mail: jpowell@laserexp.co.uk

    2009-01-07

    In a considerable proportion of the published work on the subject of laser-oxygen cutting of mild steel, the details of the oxidation reaction are overlooked or confused. For example, it is not uncommon for the oxidized material to be attributed with the physical characteristics of iron rather than iron oxide. Also, the fact that the oxidation reaction cannot take place above a certain temperature limit is usually overlooked. This paper presents, for the first time, an in-depth analysis of the Iron to FeO oxidation reaction in the context of laser-oxygen cutting of mild steel. The paper concludes by presenting a number of guidelines for future theoretical models.

  6. Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction

    International Nuclear Information System (INIS)

    Powell, J; Kaplan, A F H; Petring, D; Kumar, R V; Al-Mashikhi, S O; Voisey, K T

    2009-01-01

    In a considerable proportion of the published work on the subject of laser-oxygen cutting of mild steel, the details of the oxidation reaction are overlooked or confused. For example, it is not uncommon for the oxidized material to be attributed with the physical characteristics of iron rather than iron oxide. Also, the fact that the oxidation reaction cannot take place above a certain temperature limit is usually overlooked. This paper presents, for the first time, an in-depth analysis of the Iron to FeO oxidation reaction in the context of laser-oxygen cutting of mild steel. The paper concludes by presenting a number of guidelines for future theoretical models.

  7. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Kayo [EcoTopia Science Institute (Japan); Hirabayashi, Daisuke; Enokida, Youichi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan)

    2013-07-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U{sub 3}O{sub 8} without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  8. Reaction of Antimony-Uranium Composite Oxide in the Chlorination Treatment of Waste Catalyst - 13521

    International Nuclear Information System (INIS)

    Sawada, Kayo; Hirabayashi, Daisuke; Enokida, Youichi

    2013-01-01

    The effect of oxygen gas concentration on the chlorination treatment of antimony-uranium composite oxide catalyst waste was investigated by adding different concentrations of oxygen at 0-6 vol% to its chlorination agent of 0.6 or 6 vol% hydrogen chloride gas at 1173 K. The addition of oxygen tended to prevent the chlorination of antimony in the oxide. When 6 vol% hydrogen chloride gas was used, the addition of oxygen up to 0.1 vol% could convert the uranium contained in the catalyst to U 3 O 8 without any significant decrease in the reaction rate compared to that of the treatment without oxygen. (authors)

  9. Evaluation of the kinetic and thermodynamic parameters of oxidation reaction in biodiesel from a quaternary mixture of raw material

    Directory of Open Access Journals (Sweden)

    Karina Gomes Angilelli

    2017-05-01

    Full Text Available A mixture of vegetable oil and animal fat as raw materials was optimized by simplex-centroid mixture design to produce a type of biodiesel with good oxidative stability, flow properties and reaction yield. Further, kinetic and thermodynamic parameters of oxidation reaction were determined by the accelerated method at different temperatures. Biodiesel produced with sodium methoxide as catalyst presented 6.5°C of cloud point, 2.0°C of pour point, and oxidative stability at 110°C equal to 8.98h, with a reaction yield of 96.04%. Activation energy of the oxidation reaction was 81.03 kJ mol-1 for biodiesel produced with sodium hydroxide and 90.51 kJ mol-1 for sodium methoxide. The positive values for DH‡ and DG‡ indicate that the oxidation process is endothermic and endergonic. The less negative DS‡ for biodiesel produced with sodium methoxide (-28.87 JK-1 mol-1 showed that the process of degradation of this biofuel was slower than that produced with NaOH. The mixture of raw materials proposed, transesterified with the methoxide catalyst, resulted in a biofuel that resisted oxidation for longer periods, making unnecessary the addition of antioxidant

  10. Relationship between measurements of blood oxidative metabolites and skin reaction in irradiated rats

    International Nuclear Information System (INIS)

    Kaneko, Takashi; Goto, Jun; Nomiya, Takuma; Nemoto, Kenji

    2011-01-01

    Recently, oxidative metabolites have been able to be measured by simple small device. It has been reported that the value of oxidative metabolites increases under several conditions such as hypertension, smoking, diabetes mellitus, etc. Radiation used in radiotherapy also causes free radicals and oxidative metabolites, and irradiation causes dermatitis and sometimes causes skin ulcer in the irradiated site. We analyzed the relationships between the value of oxidative metabolites and skin reactions. A certain doses of radiation were irradiated to the right thigh of rats, and oxidative metabolites of rat's blood from caudal vein were measured by d-reactive oxygen metabolites (ROMs) test using an exclusive device. Skin reactions were evaluated according to a skin-reaction grading system from the day before irradiation to day 38 after irradiation. As a results, a significant correlation was shown between irradiation dose and skin grade. And a significant correlation was also shown between the value of oxidative metabolites and irradiation dose. The increase in oxidative metabolites was seen in the Day 16 after irradiation, and that corresponded with the appearance of skin reaction. It was suggested that the value of oxidative metabolites seems to be useful for estimating degree of skin reaction and time to appear skin reaction after irradiation. (author)

  11. The GC/AED studies on the reactions of sulfur mustard with oxidants

    International Nuclear Information System (INIS)

    Popiel, StanisIaw; Witkiewicz, Zygfryd; Szewczuk, Aleksander

    2005-01-01

    A gas chromatograph coupled with an atomic emission detector was used to identify and to determine the products formed on oxidation of sulfur mustard. The oxidation rate and the resulting oxidates were studied in relation to oxidant type and reaction medium parameters. Hydrogen peroxide, sodium hypochlorite, sodium perborate, potassium monopercarbonate, ammonium peroxydisulfate, potassium peroxymonosulfate (oxone), and tert-butyl peroxide were used as oxidants. Oxidations were run in aqueous media or in solvents of varying polarities. The oxidation rate was found to be strongly related to oxidant type: potassium peroxymonosulfate (oxone) and sodium hypochlorite were fast-acting oxidants; sodium perborate, hydrogen peroxide, ammonium peroxydisulfate, and sodium monopercarbonate were moderate oxidants; tert-butyl peroxide was the slowest-acting oxidant. In non-aqueous solvents, the oxidation rate was strongly related to solvent polarity. The higher the solvent polarity, the faster the oxidation rate. In the acid and neutral media, the mustard oxidation rates were comparable. In the alkaline medium, oxidation was evidently slower. A suitable choice of the initial oxidant-to-mustard concentration ratio allowed to control the type of the resulting mustard oxidates. As the pH of the reaction medium was increased, the reaction of elimination of hydrogen chloride from mustard oxidates becomes more and more intensive

  12. Catalyzed oxidation reactions. IV. Picolinic acid catalysis of chromic acid oxidations

    International Nuclear Information System (INIS)

    Rocek, J.; Peng, T.Y.

    1977-01-01

    Picolinic acid and several closely related acids are effective catalysts in the chromic acid oxidation of primary and secondary alcohols; the oxidation of other substrates is accelerated only moderately. The reaction is first order in chromium-(VI), alcohol, and picolinic acid; it is second order in hydrogen ions at low acidity and approaches acidity independence at high perchloric acid concentrations. A primary deuterium kinetic isotope effect is observed at high but not at low acidities. At low acidity the reaction has a considerably lower activation energy and more negative activation entropy than at higher acidities. The reactive intermediate in the proposed mechanism is a negatively charged termolecular complex formed from chromic acid, picolinic acid, and alcohol. The rate-limiting step of the reaction changes with the acidity of the solution. At higher acidities the intermediate termolecular complex is formed reversibly and the overall reaction rate is determined by the rate of its decomposition into reaction products; at low acidities the formation of the complex is irreversible and hence rate limiting. Picolinic acids with a substituent in the 6 position show a greatly reduced catalytic activity. This observation is interpreted as suggesting a square pyramidal or octahedral structure for the reactive chromium (VI) intermediate. The temperature dependence of the deuterium isotope effect has been determined and the significance of the observed large values for E/sub a//sup D/ - E/sub a//sup H/ and A/sup D//A/sup H/ is discussed

  13. Oxidative N-Heterocyclic Carbene-Catalyzed γ-Carbon Addition of Enals to Imines: Mechanistic Studies and Access to Antimicrobial Compounds.

    Science.gov (United States)

    Zheng, Peng-Cheng; Cheng, Jiajia; Su, Shihu; Jin, Zhichao; Wang, Yu-Huang; Yang, Song; Jin, Lin-Hong; Song, Bao-An; Chi, Yonggui Robin

    2015-07-06

    The reaction mechanism of the γ-carbon addition of enal to imine under oxidative N-heterocyclic carbene catalysis is studied experimentally. The oxidation, γ-carbon deprotonation, and nucleophilic addition of γ-carbon to imine were found to be facile steps. The results of our study also provide highly enantioselective access to tricyclic sulfonyl amides that exhibit interesting antimicrobial activities against X. oryzae, a bacterium that causes bacterial disease in rice growing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating...

  15. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  16. Ionic Conductivity and its Role in Oxidation Reactions

    Science.gov (United States)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the

  17. Kinetics of the gas-phase tritium oxidation reaction

    International Nuclear Information System (INIS)

    Failor, R.A.

    1989-01-01

    Homogeneous gas-phase kinetics of tritium oxidation (2T 2 + O 2 →2T 2 O) have been studied with a model that accounts explicitly for radiolysis of the major species and the kinetics of the subsequent reactions of ionic, excited-state, and neutral species. Results from model calculations are given for 10 -4 -1.0 mol% T 2 in O 2 (298 K, 1 atm). As the reaction evolves three different mechanisms control T 2 O production, each with a different overall rate expression and a different order with respect to the T 2 concentration. The effects of self-radiolysis of pure T 2 on the tritium oxidation reaction were calculated. Tritium atoms, the primary product of T 2 self-radiolysis, altered the oxidation mechanism only during the first few seconds following the initiation of the T 2 -O 2 reaction. Ozone, an important intermediate in T 2 oxidation, was monitored in-situ by U.V. absorption spectroscopy for 0.01-1.0 mol% T 2 an 1 atm O 2 . The shape of the experimental ozone time profile agreed with the model predictions. As predicted, the measured initial rate of ozone production varied linearly with initial T 2 concentration ([T 2 ] 0.6 o ), but at an initial rate one-third the predicted value. The steady-state ozone concentration ([O 3 ]ss) was predicted to be dependent on [T 2 ] 0.3 o , but the measured value was [T 2 ] 0.6 o , resulting in four times higher [O 3 ]ss than predicted for a 1.0% T 2 -O 2 mixture. Adding H 2 to the T 2 -O 2 mixture, to provide insight into the differences between the radiolytic and chemical behavior of the tritium, produced a greater decrease in [O 3 ]ss than predicted. Adjusting the reaction cell surface-to-volume ratio showed implications of minor surface removal of ozone

  18. Internal Displacement Reactions in Multicomponent Oxides: Part I. Line Compounds with Narrow Homogeneity Range

    OpenAIRE

    Reddy, SNS; Leonard, DN; Wiggins, LB; Jacob, KT

    2005-01-01

    As a model of an internal displacement reaction involving a ternary oxide line compound, the following reaction was studied at 1273 K as a function of time, t: $Fe+NiTiO_3 = Ni + FeTiO_3$ Both polycrystalline and single-crystal materials were used as the starting $NiTiO_3$ oxide. During the reaction, the Ni in the oxide compound is displaced by Fe and it precipitates as a \\gamma -(Ni-Fe) alloy. The reaction preserves the starting ilmenite structure. The product oxide has a consta...

  19. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    Science.gov (United States)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    2013-10-01

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  20. Density functional theory studies on electronic properties of thiophene s oxides as aromatic dienophiles for reactivity prediction in diels-alder reactions

    International Nuclear Information System (INIS)

    Banjo, S.

    2013-01-01

    The reactivity of thiophene S-oxides was discussed with special emphasis on the use of thiophene S-oxides as dienophiles in Diels-Alder type reactions. The omega values obtained for thiophene S-oxide (TO) with electron-donating group (-CH/sub 3/) increased the nucleophilicity power whereas substitution with electron-withdrawing groups (such as -NO/sub 2/ and -CO/sub 2/CH/sub 2/CH/sub 3/) increased the electrophilicity power, indicating an increase of reactivity towards a nucleophiles. The higher the value of delta omega the more favourable the D-A process, therefore apart from (4+2) addition reactions of these TO as diene with the typical dienophiles like 1,2-dicyanoethene and 1,2-dicyanoethene, it could be possible for TO with strong electron withdrawing substituents to serve as dienophile, e.g. heterocycles Ie and If. Also, from the value of delta omega heterocycle 1d could involve in (4+2) addition reactions with heterocyles 1e and If. (author)

  1. Oxidative Addition and Reductive Elimination at Main-Group Element Centers.

    Science.gov (United States)

    Chu, Terry; Nikonov, Georgii I

    2018-04-11

    Oxidative addition and reductive elimination are key steps in a wide variety of catalytic reactions mediated by transition-metal complexes. Historically, this reactivity has been considered to be the exclusive domain of d-block elements. However, this paradigm has changed in recent years with the demonstration of transition-metal-like reactivity by main-group compounds. This Review highlights the substantial progress achieved in the past decade for the activation of robust single bonds by main-group compounds and the more recently realized activation of multiple bonds by these elements. We also discuss the significant discovery of reversible activation of single bonds and distinct examples of reductive elimination at main-group element centers. The review consists of three major parts, starting with oxidative addition of single bonds, proceeding to cleavage of multiple bonds, and culminated by the discussion of reversible bond activation and reductive elimination. Within each subsection, the discussion is arranged according to the type of bond being cleaved or formed and considers elements from the left to the right of each period and down each group of the periodic table. The majority of results discussed in this Review come from the past decade; however, earlier reports are also included to ensure completeness.

  2. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  3. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    International Nuclear Information System (INIS)

    Nochaiya, Thanongsak; Sekine, Yoshika; Choopun, Supab; Chaipanich, Arnon

    2015-01-01

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes

  4. The Effect of Mg Addition and Manufacturing Conditions on the Interfacial Reactions between Al and CNT in Al-CNT Pellets

    International Nuclear Information System (INIS)

    Lim, Jung-Kyu; Choi, Soon-Yool; Choe, Kyong-Hwan; Cho, Gue-Serb; Kim, Sang-Sub

    2013-01-01

    In the present study, Al-CNT pellets were investigated to understand the effect of Mg addition and manufacturing conditions on the interfacial reactions between Al and CNTs in Al-CNT pellets. The pellets were heated and held at 700 °C and 800 °C for 2 hours under nitrogen (N_2) atmosphere. To confirm the reactions between Al and CNT in the pellets under different manufacturing conditions, the microstructures were observed by optical microscopy (OM) and field emission scanning electro microscopy (FESEM). And, the composition and reaction phases were analyzed by energy dispersive X-ray spectroscory (EDXS) and X-ray diffractometry (XRD). The presence of oxidation products and Mg on the surface of Al powder in the pellets appeared to prevent the formation of Al_4C_3. But, Al_4C_3 reaction products were increased due to the high temperature of 800 °C, which produced a high amount of reduced aluminium and increased the reaction areas between Al and CNT. The Al-CNT pellets compacted under air atmosphere prohibited the reaction between Al and CNT because of the high amount of oxidation products, such as MgO and MgAl_2O_4.

  5. Kinetics of transuranium element oxidation-reduction reactions in solution

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [fr

  6. Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.

    Science.gov (United States)

    Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean

    2017-01-18

    As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.

  7. Electrocatalysis of the hydrogen evolution reaction by rhenium oxides electrodeposited by pulsed-current

    International Nuclear Information System (INIS)

    Vargas-Uscategui, Alejandro; Mosquera, Edgar; Chornik, Boris; Cifuentes, Luis

    2015-01-01

    Highlights: • Rhenium oxides were produced by means of pulsed current electrodeposition over ITO. • The electrocatalytic behavior of rhenium oxides electrodeposited over ITO was studied. • Electrodeposited rhenium oxides showed electrocatalytic behavior increasing the rate of the hydrogen evolution reaction. • The electrocatalysis behavior was explained considering the relative abundance of Re species on the surface of the electrodeposited material. - Abstract: Rhenium oxides are materials of interest for applications in the catalysis of reactions such as those occurring in fuel cells and photoelectrochemical cells. This research work was devoted to the production of rhenium oxide by means of pulsed current electrodeposition for the electrocatalysis of the hydrogen evolution reaction (HER). Rhenium oxides were electrodeposited over a transparent conductive oxide substrate (Indium Tin-doped Oxide – ITO) in an alkaline aqueous electrolyte. The electrodeposition process allowed the production of rhenium oxides islands (200–600 nm) with the presence of three oxidized rhenium species: Re"I"V associated to ReO_2, Re"V"I associated to ReO_3 and Re"V"I"I associated to H(ReO_4)H_2O. Electrodeposited rhenium oxides showed electrocatalytic behavior over the HER and an increase of one order of magnitude of the exchange current density was observed compared to the reaction taking place on the bare substrate. The electrocatalytic behavior varied with the morphology and relative abundance of oxidized rhenium species in the electrodeposits. Finally, two mechanisms of electrocatalysis were proposed to explain experimental results.

  8. Microwave-Accelerated Iodination of Some Aromatic Amines, Using Urea-Hydrogen Peroxide Addition Compound (UHP as the Oxidant

    Directory of Open Access Journals (Sweden)

    Lech Skulski

    2002-12-01

    Full Text Available A fast and simple method for the oxidative iodination of some aromatic amines, under microwave irradiation, is reported, using diiodine and the the strongly Hbonded urea-hydrogen peroxide addition compound (H2NCONH2···H2O2, UHP as the oxidant. The reactions were carried out in boiling CHCl3 under a reflux condenser to afford, within 10 minutes, the purified monoiodinated products in 40-80% yields.

  9. Enhancing the electrochemical oxidation of acid-yellow 36 azo dye using boron-doped diamond electrodes by addition of ferrous ion

    International Nuclear Information System (INIS)

    Villanueva-Rodriguez, M.; Hernandez-Ramirez, A.; Peralta-Hernandez, J.M.; Bandala, Erick R.; Quiroz-Alfaro, Marco A.

    2009-01-01

    This work shows preliminary results on the electrochemical oxidation process (EOP) using boron-doped diamond (BDD) electrode for acidic yellow 36 oxidation, a common azo dye used in textile industry. The study is centred in the synergetic effect of ferrous ions and hydroxyl free radicals for improving discoloration of azo dye. The assays were carried out in a typical glass cell under potentiostatic conditions. On experimental conditions, the EOP was able to partially remove the dye from the reaction mixture. The reaction rate increased significantly by addition of Fe 2+ (1 mM as ferrous sulphate) to the system and by (assumed) generation of ferrate ion [Fe(VI)] over BDD electrode. Ferrate is considered as a highly oxidizing reagent capable of removing the colorant from the reaction mixture, in synergistic action with the hydroxyl radicals produced on the BDD surface. Further increases in the Fe 2+ concentration lead to depletion of the reaction rate probably due to the hydroxyl radical scavenging effect of Fe 2+ excess in the system.

  10. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  11. Synthesis and Reactions of Acenaphthenequinones-Part-2. The Reactions of Acenaphthenequinones

    Directory of Open Access Journals (Sweden)

    Mahmoud Shoukry

    2002-02-01

    Full Text Available The reactions of acenaphthenequinone and its derivatives with different nucleophiles, organic and inorganic reagents are reviewed. This survey also covers their oxidation and reduction reactions, in addition to many known reactions such as Friedel Crafts, Diels-Alder, bromination and thiolation.

  12. Factors responsible for activity of catalysts of different chemical types in the reaction of hydrogen oxidation

    International Nuclear Information System (INIS)

    Il'chenko, N.I.; Dolgikh, L.Yu.

    1985-01-01

    Reasons of differences in the kinetics and mechanism of the H 2 oxidation on optimum metallic (Pt), carbide (WC) and oxide (Co 3 O 4 ) catalysts are discussed. These differences lead to unequal specific activity. It is shown that the catalytic activity of the catalysts in question increases with respect to reactions of isotopic exchange and hydrogen oxidation with an increasing electron-donating ability of anat of the transition metal M on which H 2 is adsorbed. The possibility is considered of increasing the transition metal activity by introduction of additions to increase the electron-donating ability of M

  13. Activity of molybdenum-containing oxide catalysts in the reaction of ethane oxidation

    International Nuclear Information System (INIS)

    Konovalov, V.I.; Ehpova, T.I.; Shchukin, V.P.; Averbukh, A.Ya.

    1977-01-01

    Investigation results concerning the catalytic activity of molybdenum-containing catalysts in ethane oxidation reaction are presented. It has been found that the greatest activity in the temperature range from 450 to 600 deg C is exhibited by cobalt-molybdenum catalyst; at 600 deg C bismuth-molybdenum catalyst is the most active. Nickel-molybdenum catalyst is selective and active with respect to ethylene. Iron- and manganese-molybdenum catalysts do not show high ethane oxidation rates and their selectivity is insignificant

  14. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  15. Reaction kinetics of oxygen on single-phase alloys, oxidation of nickel and niobium alloys

    International Nuclear Information System (INIS)

    Lalauze, Rene

    1973-01-01

    This research thesis first addresses the reaction kinetics of oxygen on alloys. It presents some generalities on heterogeneous reactions (conventional theory, theory of jumps), discusses the core reaction (with the influence of pressure), discusses the influence of metal self-diffusion on metal oxidation kinetics (equilibrium conditions at the interface, hybrid diffusion regime), reports the application of the hybrid diffusion model to the study of selective oxidation of alloys (Wagner model, hybrid diffusion model) and the study of the oxidation kinetics of an alloy forming a solid solution of two oxides. The second part reports the investigation of the oxidation of single phase nickel and niobium alloys (phase α, β and γ)

  16. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  17. Kinetics and Mechanism of the Reaction of Coherently Synchronized Oxidation and Dehydrogenation of Cyclohexane by Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Aghamammadova S.

    2016-01-01

    Based on this experimental researches, the complex reaction, consisting of parallel-sequential oxidation and dehydrogenation reactions, which are coherently synchronized, proceeds during the process of cyclohexane oxidation with biomimetic catalyst. Depending on the reaction parameters it is possible to deliberately adjust the direction of oxidation reaction and reaction rate.

  18. Enhancement of nitrite on heme-induced oxidative reactions: A potential toxicological implication.

    Science.gov (United States)

    Lu, Naihao; Chen, Wei; Zhu, Jingjie; Peng, Yi-Yuan

    2012-02-01

    Evidence to support the role of heme as major inducers of oxidative damage is increasingly present. Nitrite (NO(2)(-)) is one of the major end products of NO metabolism. Although the biological significance of heme/NO(2)(-)-mediated protein tyrosine nitration is a subject of great interest, the important roles of NO(2)(-) on heme-dependent redox reaction have been greatly underestimated. In this study, we investigated the influence of NO(2)(-) on heme -dependent oxidative reactions. It was found that NO(2)(-) had the capacity to act as a reducing agent to remove high oxidation states of heme iron. In the reduction of ferryl heme to ferric heme, NO(2)(-) was oxidized to a nitrating agent NO(2), and subsequently, tyrosine residues in bovine serum albumin (BSA) were nitrated. However, the presence of NO(2)(-) surprisingly exerted pro-oxidant effect on heme-H(2)O(2)-induced formation of BSA carbonyls at lower concentrations and enhanced the loss of HepG2 cell viability dose-dependently, which was probably due to the ability of this inorganic compound to efficiently enhance the peroxidase activity and oxidative degradation of heme. These data provide novel evidence that the dietary intake and experimental use of NO(2)(-) in vivo and in vitro would possess the pro-oxidant activity through interfering in heme-dependent oxidative reactions. Besides the classic role in protein tyrosine nitration, the deleterious effects on heme redox reactions may provide new insights into the toxicological implications of NO(2)(-) with cellular heme proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Theoretical investigation of the reaction of Mn+ with ethylene oxide.

    Science.gov (United States)

    Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong

    2012-01-12

    The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.

  20. Mn(II) oxidation in Fenton and Fenton type systems : Identification of Reaction Efficiency and Reaction Products

    NARCIS (Netherlands)

    van Genuchten, C.M.; Peña, Jasquelin

    2017-01-01

    Efficient and low-cost methods of removing aqueous Mn(II) are required to improve the quality of impacted groundwater supplies. In this work, we show that Fe(0) electrocoagulation (EC) permits the oxidative removal of Mn(II) from solution by reaction with the reactive oxidant species produced

  1. Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Rocca, Jorge J; Bernstein, Elliot R; Wang, Zhe-Chen; Deng, Ke; He, Sheng-Gui

    2008-02-13

    Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.

  2. Hydrogen Oxidation Reaction at the Ni/YSZ Anode of Solid Oxide Fuel Cells from First Principles

    Science.gov (United States)

    Cucinotta, Clotilde S.; Bernasconi, Marco; Parrinello, Michele

    2011-11-01

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  3. Sulphation reactions of oxidic dust particles in waste heat boiler environment. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Ranki, T.

    1999-09-01

    Sulphation of metal oxides has an important role in many industrial processes. In different applications sulphation reactions have different aims and characteristics. In the flash smelting process sulphation of oxidic flue dust is a spontaneous and inevitable phenomena, which takes place in the waste heat boiler (WHB) when cooling down hot dust laden off-gases from sulphide smelters. Oxidic dust particles (size 0 - 50 {mu}m) react with O{sub 2} and SO{sub 2} or SO{sub 3} in a certain temperature range (500 - 800 deg C). Sulphation reactions are highly exothermic releasing large amount of heat, which affects the gas cooling and thermal performance of the boiler. Thermodynamics and kinetics of the system have to be known to improve the process and WHB operation. The rate of sulphation is affected by the prevailing conditions (temperature, gas composition) and particle size and microstructure (porosity, surface area). Some metal oxides (CuO) can react readily with SO{sub 2} and O{sub 2} and act as self-catalysts, but others (NiO) require the presence of an external catalyst to enhance the SO{sub 3} formation and sulphation to proceed. Some oxides (NiO) sulphate directly, some (CuO) may form first intermediate phases (basic sulphates) depending on the reaction conditions. Thus, the reaction mechanisms are very complex. The aim of this report was to search information about the factors affecting the dust sulphation reactions and suggested reaction mechanisms and kinetics. Many investigators have studied sulphation thermodynamics and reaction kinetics and mechanisms of macroscopical metal oxide pieces, but only few articles have been published about sulphation of microscopical particles, like dust. All the found microscale studies dealt with sulphation reactions of calcium oxide, which is not present in the flash smelting process, but used as an SO{sub 2} absorbent in the combustion processes. However, also these investigations may give some hints about the sulphation

  4. Effect of cerium oxide addition on electrical properties of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [National Research Center, Dokki, Giza (Egypt). Dept. of Ceramics; Mounir, M. [Dept. of Physics, Cairo Univ., Giza (Egypt); Mahgoub, A.S. [Cairo Univ., Giza (Egypt). Dept. of Chemistry; Turky, G. [Dept. of Physics, National Research Center, Dokki, Giza (Egypt); El-Desouky, O.A. [Cer. Cleopatra Co., Ramadan City (Egypt)

    2002-07-01

    Mixtures of ZnO and Ce{sub 6} O{sub 11} as additive were prepared by solid state reaction from the calcined oxides with the following proportions: 0.03, 0.08, 0.1, 0.2 and 0.4 mole. Disc specimens 1.2 cm 5 cm in diameter and 0.3 cm thickness were processed under a force of 70 kN and fired at 1150 C/ 30 minutes. XRD revealed the presence of limited solid solution of cerium in ZnO, as evident from the shift in the peaks [0.03-0.04 A ] up to 0.1 mole addition and remains constant. SEM revealed the presence of inter-granular phase. EDAX showed it to be a mixture of ZnO and Ce{sub 6}O{sub 11}. Also cerium was detected in the ZnO grains confirming the XRD results. RCL circuit was used to measure the capacitance and resistance at different frequencies at room temperature. The dielectric constant and conductivity were calculated. The change in resistivity with temperature was followed up to 523 K. The change in dielectric strength with temperature at spot frequency of 10 kHz is demonstrated. The electrical conductivity was found to increase with the proportion of cerium oxide up to 0.2 mole then decreased. (orig.)

  5. Measuring protection of aromatic wine thiols from oxidation by competitive reactions vs wine preservatives with ortho-quinones.

    Science.gov (United States)

    Nikolantonaki, Maria; Magiatis, Prokopios; Waterhouse, Andrew L

    2014-11-15

    Quinones are central intermediates in wine oxidation that can degrade the quality of wine by reactions with varietal thiols, such as 3-sulfanylhexanol, decreasing desirable aroma. Protection by wine preservatives (sulphur dioxide, glutathione, ascorbic acid and model tannin, phloroglucinol) was assessed by competitive sacrificial reactions with 4-methyl-1,2-benzoquinone, quantifying products and ratios by HPLC-UV-MS. Regioselectivity was assessed by product isolation and identification by NMR spectroscopy. Nucleophilic addition reactions compete with two electron reduction of quinones by sulphur dioxide or ascorbic acid, and both routes serve as effective quenching pathways, but minor secondary products from coupled redox reactions between the products and reactants are also observed. The wine preservatives were all highly reactive and thus all very protective against 3-sulfanylhexanol loss to the quinone, but showed only additive antioxidant effects. Confirmation of these reaction rates and pathways in wine is needed to assess the actual protective action of each tested preservative. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. An investigation of oxidation products and SOA yields from OH + pesticide reactions

    Science.gov (United States)

    Murschell, T.; Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    Pesticides are used globally in agricultural and residential areas. After application and/or volatilization from a surface, these compounds can be transported over long distances in the atmosphere. However, their chemical fate, including oxidation and gas-particle partitioning in the atmosphere, is not well understood. We present gas and particle measurements of oxidation products from pesticide + OH reactions using a dynamic solution injection system coupled to an Oxidative Flow Reactor. Products were detected with a High Resolution Time of Flight Iodide Chemical Mass Spectrometer (HR-ToF-CIMS) and a Size Mobility Particle Scanner (SMPS). The OFR allows pesticides to react with variable OH radical exposures, ranging from the equivalent of one day to a full week of atmospheric oxidative aging. In this work, we explore pesticide oxidation products from reaction with OH and ozone, and compare those products to photolysis reactions. Pesticides of similar chemical structures were explored, including acetochlor / metolachlor and permethrin / cypermethrin, to explore mechanistic differences. We present chemical parameters including average product oxidation state, average oxygen to carbon ratio, and potential secondary organic aerosol formation for each of these compounds.

  7. The oxidative burst reaction in mammalian cells depends on gravity.

    Science.gov (United States)

    Adrian, Astrid; Schoppmann, Kathrin; Sromicki, Juri; Brungs, Sonja; von der Wiesche, Melanie; Hock, Bertold; Kolanus, Waldemar; Hemmersbach, Ruth; Ullrich, Oliver

    2013-12-20

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to H2O2 by spontaneous and enzymatic dismutation. The phagozytosis-mediated oxidative burst under altered gravity conditions was studied in NR8383 rat alveolar macrophages by means of a luminol assay. Ground-based experiments in "functional weightlessness" were performed using a 2 D clinostat combined with a photomultiplier (PMT clinostat). The same technical set-up was used during the 13th DLR and 51st ESA parabolic flight campaign. Furthermore, hypergravity conditions were provided by using the Multi-Sample Incubation Centrifuge (MuSIC) and the Short Arm Human Centrifuge (SAHC). The results demonstrate that release of reactive oxygen species (ROS) during the oxidative burst reaction depends greatly on gravity conditions. ROS release is 1.) reduced in microgravity, 2.) enhanced in hypergravity and 3.) responds rapidly and reversible to altered gravity within seconds. We substantiated the effect of altered gravity on oxidative burst reaction in two independent experimental systems, parabolic flights and 2D clinostat / centrifuge experiments. Furthermore, the results obtained in simulated microgravity (2D clinorotation experiments) were proven by experiments in real microgravity as in both cases a pronounced reduction in ROS was observed. Our experiments indicate that gravity-sensitive steps are located both in the initial activation pathways and in the final oxidative burst reaction itself, which could be explained by the role of cytoskeletal dynamics in the assembly and function

  8. Iron(III Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions

    Directory of Open Access Journals (Sweden)

    Susana L. H. Rebelo

    2016-04-01

    Full Text Available Iron(III fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H2TPFPP and the corresponding iron complex [Fe(TPFPPCl], and the use of [Fe(TPFPPCl] as an oxidation catalyst in green conditions. The preparations of H2TPFPP and [Fe(TPFPPCl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(IIIporphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide and green solvent (ethanol. Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  9. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    Science.gov (United States)

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-04-12

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed.

  10. Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction.

    Science.gov (United States)

    Yan, Xiao-Yan; Tong, Xi-Li; Zhang, Yue-Fei; Han, Xiao-Dong; Wang, Ying-Yong; Jin, Guo-Qiang; Qin, Yong; Guo, Xiang-Yun

    2012-02-11

    Cuprous oxide (Cu(2)O) nanoparticles dispersed on reduced graphene oxide (RGO) were prepared by reducing copper acetate supported on graphite oxide using diethylene glycol as both solvent and reducing agent. The Cu(2)O/RGO composite exhibits excellent catalytic activity and remarkable tolerance to methanol and CO in the oxygen reduction reaction. This journal is © The Royal Society of Chemistry 2012

  11. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    Science.gov (United States)

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  12. Oxidation Numbers, Oxidants, and Redox Reactions: Variants of the Electrophilic Bromination of Alkenes and Variants of the Application of Oxone

    Science.gov (United States)

    Eissen, Marco; Strudthoff, Merle; Backhaus, Solveig; Eismann, Carolin; Oetken, Gesa; Kaling, Soren; Lenoir, Dieter

    2011-01-01

    Oxidation-state and donor-acceptor concepts are important areas in the chemical education. Student worksheets containing problems that emphasize oxidation numbers, redox reactions of organic compounds, and stoichiometric reaction equations are presented. All of the examples are incorporated under one unifying topic: the production of vicinal…

  13. Selection of Suitable Microorganism for Biocatalytic Oxidation Reaction of Racemic Propranolol

    Directory of Open Access Journals (Sweden)

    Rahime SONGÜR

    2017-12-01

    Full Text Available Propranolol is one of the β-blockers which are pharmaceutically important, especially used for treatment of cardiovasculer disease. In this study, the production of enantiomerically pure propranolol was aimed via biocatalytic deracemization including tandem oxidation-reduction reactions of racemic propranolol. Within this content, firstly suitable microorganism for the oxidation of racemic propranolol was investigated. Alcohol dehydrogenase (ADH enzyme for oxidation of propranolol and NADH oxidase enzyme for cofactor regeneration were necessary for the oxidation reactions. For this reason, ADH and NADH oxidase enzymes activities of different microorganisms were measured to select the microorganism for using as enzyme source. These microorganisms are Lactobacillus kefir NRRL B-1839, Rhodotorula glutunis DSM 70398, Rhizopus oryzae CBS 111718, Rhizopus arhizus. The highest ADH and NADH oxidase activities were obtained for L. kefir.

  14. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    Science.gov (United States)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  15. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  16. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments

  18. Kinetics of reactions of chromium, molybdenum and tungsten hexacarbonyls with hydroxylamine and trimethylamine oxide

    International Nuclear Information System (INIS)

    Maksakov, V.A.; Ershova, V.A.

    1994-01-01

    Mechanism of M(CO) 6 (M = Cr, Mo, W) reaction with hydroxylamine was studied. On the basis of kinetic data it was ascertained that as a result of the reaction CO oxidation to CO 2 and intramolecular transfer of amine formed to the central atom of metal occur. Mechanisms of M(CO) 6 reactions with hydroxylamine and trimethylamine oxide are compared

  19. Innocuous oil as an additive for reductive reactions involving zero valence iron

    International Nuclear Information System (INIS)

    Cary, J.W.; Cantrell, K.J.

    1994-11-01

    Reductive reactions involving zero valence iron appear to hold promise for in situ remediation of sites containing chlorinated hydrocarbon solvents and certain reducible metals and radionuclides. Treatment involves the injection of metallic iron and the creation of low levels of dissolved oxygen in the aqueous phase through oxidation of the metallic iron. The use of a biodegradable immiscible and innocuous organic liquid such as vegetable oil as an additive offers several intriguing possibilities. The oil phase creates a large oil-water interface that is immobile with respect to flow in the aqueous phase. This phase will act as a trap for chlorinated hydrocarbons and could potentially increase the reaction efficiency of reductive dehalogenation of chlorinated hydrocarbons by the metallic iron. When iron particles are suspended in the oil before injection they are preferentially held in the oil phase and tend to accumulate at the oil-water interface. Thus oil injection can serve as a mechanism for creating a stable porous curtain of metallic iron in the vadose to maintain a low oxygen environment which will minimize the consumption of the iron by molecular oxygen

  20. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-01-01

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO x /MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO x addition. • Bi-functional mechanism is facilitated in presence of CoO x . - Abstract: The electro-catalytic behavior of Pt-CoO x /MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH 4  as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO x , Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO ads on Pt active sites by the participation of CoO x . Compared to Pt/MWCNTs, Pt-CoO x /MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO x /MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups

  1. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  2. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    Science.gov (United States)

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  3. Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2010-11-01

    Full Text Available The heterogeneous reactions of carbonyl sulfide (OCS on the typical mineral oxides in the mineral dust particles were investigated using a Knudsen cell flow reactor and a diffuse reflectance UV-vis spectroscopy. The reaction pathway for OCS on mineral dust was identified based on the gaseous products and surface species. The hydrolysis of OCS and succeeding oxidation of intermediate products readily took place on α-Al2O3, MgO, and CaO. Reversible and irreversible adsorption of OCS were observed on α-Fe2O3 and ZnO, respectively, whereas no apparent uptake of OCS by SiO2 and TiO2 was observed. The reactivity of OCS on these oxides depends on both the basicity of oxides and the decomposition reactivity of oxides for H2S. Based on the individual uptake coefficients and chemical composition of authentic mineral dust, the uptake coefficient (γBET of mineral dust was estimated to be in the range of 3.84×10−7–2.86×10−8. The global flux of OCS due to heterogeneous reactions and adsorption on mineral dust was estimated at 0.13–0.29 Tg yr−1, which is comparable to the annual flux of OCS for its reaction with ·OH.

  4. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  5. Solvent-free microwave-mediated Michael addition reactions

    Indian Academy of Sciences (India)

    Unknown

    obviously difficult to scale up. In this context ... eco-friendly features such as, (i) no solvent is required to conduct the ... water soluble, addition of reaction mixture after com- ..... Yield: 855 mg (89%; viscous liquid). 3.4 Ethyl .... Jung M E 1993 Comprehensive organic synthesis ... Leshcheva I F and Bundel Y G 1997 Mendeleev.

  6. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    Directory of Open Access Journals (Sweden)

    Katherine M. Byrd

    2015-04-01

    Full Text Available The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  7. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    International Nuclear Information System (INIS)

    Bartling, Stephan; Meiwes-Broer, Karl-Heinz; Barke, Ingo; Pohl, Marga-Martina

    2015-01-01

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology

  8. Dehydrogenation of Surface-Oxidized Mixtures of 2LiBH4 + Al/Additives (TiF3 or CeO2

    Directory of Open Access Journals (Sweden)

    Juan Luis Carrillo-Bucio

    2017-11-01

    Full Text Available Research for suitable hydrogen storage materials is an important ongoing subject. LiBH4–Al mixtures could be attractive; however, several issues must be solved. Here, the dehydrogenation reactions of surface-oxidized 2LiBH4 + Al mixtures plus an additive (TiF3 or CeO2 at two different pressures are presented. The mixtures were produced by mechanical milling and handled under welding-grade argon. The dehydrogenation reactions were studied by means of temperature programmed desorption (TPD at 400 °C and at 3 or 5 bar initial hydrogen pressure. The milled and dehydrogenated materials were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, and Fourier transformed infrared spectroscopy (FT-IR The additives and the surface oxidation, promoted by the impurities in the welding-grade argon, induced a reduction in the dehydrogenation temperature and an increase in the reaction kinetics, as compared to pure (reported LiBH4. The dehydrogenation reactions were observed to take place in two main steps, with onsets at 100 °C and 200–300 °C. The maximum released hydrogen was 9.3 wt % in the 2LiBH4 + Al/TiF3 material, and 7.9 wt % in the 2LiBH4 + Al/CeO2 material. Formation of CeB6 after dehydrogenation of 2LiBH4 + Al/CeO2 was confirmed.

  9. Reaction of iodine oxidation by potassium permanganate in tributyl phosphate

    International Nuclear Information System (INIS)

    Khokhlov, M.L.; Legin, E.K.

    1990-01-01

    Stoichiometry was determined and kinetics of iodine oxidation by potassium permanganate in tributylphosphate was studied. Kinetic scheme, which agrees with stoichiometry and experimental kinetic equation of the reaction, is suggested. A mixture is the reaction product. It is ascertained that when the mixture is heated, thermal decomposition of iodate to iodide occurs without elementary iodine separation, which is catalyzed by polymanganate

  10. Double Michael Addition Reaction of Bischalcone under Ultrasound

    Institute of Scientific and Technical Information of China (English)

    LI,Ji-Tai; XU,Wen-Zhi; CHEN,Guo-Feng; LI,Tong-Shuang

    2004-01-01

    @@ The Michael addition of 1,5-diaryl-1,4-pentadien-3-ones with active methylene compounds has been the subjects of many investigations. Ultrasound has increasingly been used in organic synthesis in the last three decades. Compared with traditional methods, this method is more convenient and easily controlled. A large number of organic reactions can be carried out in higher yield, shorter reaction time or milder conditions under ultrasonic irradiation. KF/Al2O3 as a useful solid supported catalyst has received considerable attention because of their high level of chemoselectivity and environmental compatibility as well as simplicity of operation and their ready availability at low cost. Herein we report the double Michael addition of dibenzalacetone with active methlene compounds such as dimethyl malonate, diethyl malonate,methyl cyanoacetate and ethyl cyanoacetate catalyzed by KF/Al2O3 under ultrasound irradiation.

  11. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    Science.gov (United States)

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  12. Some reactions of oxidizing radicals with enzymes in aqueous solution

    International Nuclear Information System (INIS)

    Cundall, R.B.; Bisby, R.H.; Hoe, S.T.; Sims, H.E.; Anderson, R.F.

    1979-01-01

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  13. Photo-oxidation of 6-thioguanine by UVA: the formation of addition products with low molecular weight thiol compounds.

    Science.gov (United States)

    Ren, Xiaolin; Xu, Yao-Zhong; Karran, Peter

    2010-01-01

    The thiopurine, 6-thioguanine (6-TG) is present in the DNA of patients treated with the immunosuppressant and anticancer drugs azathioprine or mercaptopurine. The skin of these patients is selectively sensitive to UVA radiation-which comprises >90% of the UV light in incident sunlight-and they suffer high rates of skin cancer. UVA irradiation of DNA 6-TG produces DNA lesions that may contribute to the development of cancer. Antioxidants can protect 6-TG against UVA but 6-TG oxidation products may undergo further reactions. We characterize some of these reactions and show that addition products are formed between UVA-irradiated 6-TG and N-acetylcysteine and other low molecular weight thiol compounds including β-mercaptoethanol, cysteine and the cysteine-containing tripeptide glutathione (GSH). GSH is also adducted to 6-TG-containing oligodeoxynucleotides in an oxygen- and UVA-dependent nucleophilic displacement reaction that involves an intermediate oxidized 6-TG, guanine sulfonate (G(SO3) ). These photochemical reactions of 6-TG, particularly the formation of a covalent oligodeoxynucleotide-GSH complex, suggest that crosslinking of proteins or low molecular weight thiol compounds to DNA may be a previously unrecognized hazard in sunlight-exposed cells of thiopurine-treated patients. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  14. Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions

    Science.gov (United States)

    Oliveira, Jéssica A.; Nogueira, André E.; Gonçalves, Maria C. P.; Paris, Elaine C.; Ribeiro, Caue; Poirier, Gael Y.; Giraldi, Tania R.

    2018-03-01

    N-doped ZnO is a prospective material for photocatalytic reactions. However, only oxidative paths are well investigated in the literature. This paper describes a comparative study about ZnO and ZnO:N potential for oxidative and reductive reactions, probed by rhodamine B dye photodegradation and CO2 photoreduction. The materials were prepared by the polymeric precursor method, using urea as a nitrogen source, and different heat treatments were used to observe their effects on surface decontamination, crystallinity, particle sizes and shapes, and photocatalytic performance. ZnO and ZnO:N presented a wurtzite crystalline structure and nanometric-scale particles. Samples submitted to higher temperatures showed lower specific surface areas, but higher crystallinity and lower contents of species adsorbed on their surfaces. On the other hand, the photocatalysts annealed in shorter times presented smaller crystallite sizes and lower crystallinity. These factors influenced the photoactivity in both conditions, i.e., oxidation and reduction reactions, under the ultraviolet and visible light, indicating that structural factors influenced the adequate charge separation and consequent photocatalytic activity since the as-synthesized samples were versatile photocatalysts in both redox reactions.

  15. Electronic interactions decreasing the activation barrier for the hydrogen electro-oxidation reaction

    International Nuclear Information System (INIS)

    Santos, Elizabeth; Schmickler, Wolfgang

    2008-01-01

    A unified model for electrochemical electron transfer reactions which explicitly accounts for the electronic structure of the electrode recently proposed by us is applied to the hydrogen oxidation reaction at different metal electrocatalysts. We focus on the changes produced in the transition state (saddle point) as a consequence of the interactions with d-bands. We discuss different empirical correlations between properties of the metal and catalytic activity proposed in the past. We show which role is played by the band structure of the different metals and its interaction with the molecule for decreasing the activation barrier. Finally, we demonstrate why some metals are better electrocatalysts for the hydrogen electro-oxidation reaction than others

  16. Additive effects of acetic acid upon hydrothermal reaction of amylopectin

    International Nuclear Information System (INIS)

    Sugano, Motoyuki; Katoh, Harumi; Komatsu, Akihiro; Kobayashi, Hiroshi; Okado, Kohta; Kakuta, Yusuke; Hirano, Katsumi

    2012-01-01

    It is well known that over 0.8 kg kg −1 of starch is consisted of amylopectin (AP). In this study, production of glucose for raw material of ethanol by hydrothermal reaction of AP as one of the model compound of food is discussed. Further, additive effects of acetic acid upon hydrothermal reactions of AP are also investigated. During hydrothermal reaction of AP, production of glucose occurred above 453 K, and the glucose yield increased to 0.48 kg kg −1 at 473 K. Upon hydrothermal reaction of AP at 473 K, prolongation of the holding time was not effective for the increase of the glucose yield. Upon hydrothermal reaction of AP at 473 K for 0 s, the glucose yield increased significantly by addition between 0.26 mol L −1 and 0.52 mol L −1 of acetic acid. However, the glucose yield decreased and the yield of the other constituents increased with the increases of concentration of acetic acid from 0.65 mol L −1 to 3.33 mol L −1 . It was considered that hydrolysis of AP to yield glucose was enhanced due to the increase of the amount of proton derived from acetic acid during hydrothermal reaction with 0.52 mol L −1 of acetic acid. -- Highlights: ► Glucose production by hydrothermal reaction of amylopectin (AP) at 473 K. ► Glucose yield increased to 0.48 kg kg -1 at 473 K. ► Prolongation of holding time was not effective for glucose yield. ► Glucose yield increased significantly by acetic acid (0.26–0.52 mol L-1) addition. ► Hydrolysis of AP to glucose was enhanced due to increase of proton from acetic acid.

  17. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  18. Electrochemical oxidation of quaternary ammonium electrolytes : Unexpected side reactions in organic electrochemistry

    NARCIS (Netherlands)

    Nouri Nigjeh, Eslam; de Vries, Marcel; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    Quaternary ammonium salts are among the most widely used electrolytes in organic electrochemistry, but there is little known about their unwanted side oxidation reactions. We have, therefore, studied the constant potential oxidation products of quaternary ammonium electrolytes using mass

  19. The effect of interfaces on solid-state reactions between oxides

    International Nuclear Information System (INIS)

    Johnson, M.T.; Carter, C.B.

    1998-01-01

    A thin-film geometry has been used to study fundamental solid-state reaction processes occurring at interfaces in two spinel-forming oxide systems. In the first system, NiO/Al 2 O 3 , epitactic NiO films were deposited on various orientations of single-crystal α-Al 2 O 3 . In this case, the reaction kinetics were studied and correlated with the interfacial structure (or substrate orientation). In the second, In 2 O 3 /MgO, solid-state reactions were studied under the influence of an electric field. The electric field provides a driving force for mass transport that affects both the reaction process and the morphological stability of an interface

  20. A study of the accelerated zircaloy-4 oxidation reaction with H2O/H2 mixture gas

    International Nuclear Information System (INIS)

    Kim, Y. S.; Cho, I. J.

    2001-01-01

    A study of the Zircaloy-4 reaction with H 2 O/H 2 mixture gas is carried out by using TGA (Thermo Gravimetric Apparatus) to estimate the hydrogen embrittlement which can possibly cause catastrophic nuclear fuel rod failure. Reaction rates are measured as a function of H 2 /H 2 O. In the experiments reaction temperature is set at 500 .deg. C and total pressure of the mixture gas is maintained at 1 atm. Experimental results reveal that hydriding and oxidation reaction are competing. In early stage, hydriding kinetics is faster than oxidation, however, oxidant in H 2 O forms oxide on the surface as steam environment is maintained, thus, this growing oxide begins to protect the zirconium base metal against hydrogen permeation. In this second stage, the total kinetic rate follows enhanced oxidation kinetics. In the final stage, it is observed that the oxide is broken down and massive hydriding takes place through the mechanical defects in the oxide, whose kinetics is similar to pure hydriding kinetics. These results are confirmed by SEM and EDX analysis along with hydrogen concentration measurements

  1. Ion-molecule reactions in the binary mixture of ethylene oxide and trioxane, 2

    International Nuclear Information System (INIS)

    Kumakura, Minoru; Arakawa, Kazuo; Sugiura, Toshio.

    1978-01-01

    The ion-molecule reactions in the binary mixture of ethylene oxide and trioxane have been studied with use of a modified time-of-flight mass spectrometer. As cross-reaction product ions, C 3 H 5 O 2 + , C 3 H 6 O 2 +sup(, and C**3**H**7**O**2**)+sup( were observed under the conditions of long delay times and elevated pressure. It was found that these ions are formed by the dissociation of unstable intermediate-complex resulting from the reaction of ethylene oxide molecular ion with trioxane. It was proposed that the complex is of cyclic structure in which positive charge is delocalized. From the consideration of isotopic distribution of the product ions in ethylene-d**4** oxide-trioxane mixtures, the skeletal structures of the product ions were investigated. The rate constants of the formation reactions of C**3**H**5**O**2**)+sup(, C**3**H**6**O**2**)+sup(, and C**3**H**7**O**2**)+sup( in ethylene oxide-trioxane mixtures were found to be 2.20 x 10)-10sup(, 2.61 x 10)-10sup(, and 1.74 x 10)-10sup( cm)3sup( molecule)-1sup(s)-1 , respectively. (auth.)

  2. Investigation of lipid oxidation and non-enzymatic browning reactions in marine PL emulsions

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    Marine phospholipids (PL) have received much attention recently due to their numerous advantages. One of these advantages is their better resistance towards oxidation as compared to fish oil. In addition to the antioxidative properties of α-tocopherol and phospholipids, the better oxidative...... stability of marine PL might be attributed to antioxidative properties of pyrroles formed between oxidised lipids with amine groups from phosphatidylethanolamine (PE) or residues amino acids that are present in marine PL. The main objective of this study was to investigate if the presence of amine group...... of amino acids (leucine, methionine and lysine) from 2 authentic standards (PC and PE) and 2 purified marine PL (LC and MPL) through sonication method. Emulsions were incubated at 60 ºC for 0, 2, 4 and 6 days. Non-enzymatic browning reactions were investigated through measurement of i) Strecker aldehydes...

  3. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  4. Arenethiolatecopper(I) complexes as homogeneous catalysts for Michael addition reactions

    NARCIS (Netherlands)

    Koten, G. van; Klaveren, M. van; Lambert, F.; Eijkelkamp, D.J.F.M.; Grove, D.M.

    1994-01-01

    Arenethiolatocopper(I) complexes are shown to be efficient homogeneous catalysts in Michael addition reactions of several Grignard reagents to acyclic enones; the addition products are formed with excellent chemoselectivity (>99%) and good enantioselectivity (76% e.e.).

  5. Chemiluminescence from the reaction of Ba 3D with nitric oxide

    International Nuclear Information System (INIS)

    Johnson, S.A.; Solarz, R.W.; Dubrin, J.W.; Brotzmann, R.

    1977-01-01

    The reaction of laser excited Ba*( 3 D) states with nitric oxide is presented. BaO product is not detected, although the channel is thermodynamically open, and instead chemiluminescence is observed. Experiments which suggest that radiative recombination, Ba + NO → BaNO* → BaNO, is the observed reaction channel will also be presented

  6. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  7. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  8. Adverse reactions to food additives in children with atopic symptoms

    DEFF Research Database (Denmark)

    Fuglsang, G.; Madsen, Charlotte Bernhard; Halken, S.

    1994-01-01

    and 335 were subjected to open challenge. A total of 23 children developed positive reactions after the open challenge. Sixteen of these patients accepted the double-blind challenge, and six showed a positive reaction to preservatives (atopic dermatitis, asthma, rhinitis), coloring agents (atopic......, rhinitis, or urticaria. After a 2-week period on an additive-free diet, the children were challenged with the eliminated additives. The food additives investigated were coloring agents, preservatives, citric acid, and flavoring agents. Carbonated ''lemonade'' containing the dissolved additives was used...... for the open challenge. Two doses were used: a low dose and a 10-fold higher dose. Gelatin capsules were used for a double-blind challenge. The children were 4-15 years old, and they were attending an outpatient pediatric clinic for the first time. Of the 379 patients who entered the study, 44 were excluded...

  9. Pulse radiolysis study on oxidation reactions of gallic acid

    International Nuclear Information System (INIS)

    Dwibedy, P.; Dey, G.R.; Naik, D.B.; Kishore, Kamal

    1998-01-01

    Reactions of OH . /O - and other oxidising radicals viz. N 3 . , Br 2 .- , Cl 2 .- with gallic acid (GA) have been studied at various pHs. At pH 6.8, OH . radicals react with GA giving an adduct which in turn reacts with the parent GA to give a dimeric species. At pH 9.7, the initial OH adduct formed is able to oxidize GA to give a semi-oxidised species. At pH 12 and ∼ 13.6, OH . /O .- radicals directly bring about oxidation of GA. (author)

  10. Kinetic and reaction pathways of methanol oxidation on platinum

    International Nuclear Information System (INIS)

    McCabe, R.W.; McCready, D.F.

    1986-01-01

    Methanol oxidation kinetics were measured on Pt wires in a flow reactor at pressures between 30 and 130 Pa. The kinetics were measured as a function of oxygen-to-methanol equivalence ratio phi and wire temperature. In methanol-lean feeds (phi 2 CO, CO 2 , and H 2 O were the only products; in methanol-rich feeds (phi > 1), CO, H 2 , H 2 CO, CO 2 , and H 2 O were observed. Experiments with 18 O 2 showed that the principal methanol oxidation pathway does not involve C-O bond dissociation. However, the 18 O 2 experiments, together with other features of the methanol oxidation data, also provided evidence for a minor oxidation pathway (accounting for less than 1% of the product CO 2 ) which proceeds through a carbon intermediate. A mathematical model is presented which describes the principal CH 3 OH oxidation pathway as a series reaction involving adsorbed H 2 CO and CO intermediates. Consistent with experimental results, the model predicts that inhibition by adsorbed CO should be weaker for CH 3 OH and H 2 CO oxidation than for CO oxidation. 34 references, 10 figures, 2 tables

  11. Effects of additives on PVG dosifilm

    International Nuclear Information System (INIS)

    Chen Wenxiu; Liu, Aiguo

    1995-01-01

    Dosifilm PVG is a new radiochromic film dosimeter composed of matrix material polyvinyl butyral (PVB), leuco malachite green (LMG) and additive halogenated organic compound (RX), etc. The control of the dose range on PVG dosifilm was examined. The addition of halogenated compounds played an important role in the radiation reaction of LMG beyond the concentration of LMG. Bromide is more effective than chloride in this system, the oxidative species are X · and X 2 · - . PVB with N-bromosuccinimide (NBS) can induce the oxidation of LMG before irradiation. The reaction mechanism of PVG was discussed. Different linear ranges of radiation response on PVG dosifilm could be controlled by alternating the relative concentrations of halogenated compounds and LMG. (author)

  12. The retro Grignard addition reaction revisited: the reversible addition of benzyl reagents to ketones

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    transformation. The retro benzyl reaction was shown by the addition of benzylmagnesium chloride to di-tert-butyl ketone followed by exchange of both the benzyl and the ketone moiety with another substrate. Similar experiments were performed with phenylmagnesium bromide and tert-butylmagnesium chloride...

  13. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  14. Enhanced methanol electro-oxidation reaction on Pt-CoO{sub x}/MWCNTs hybrid electro-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nouralishahi, Amideddin, E-mail: Nouralishahi@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Caspian Faculty of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr (Iran, Islamic Republic of); Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rashidi, Ali Morad, E-mail: Rashidiam@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: Mortazav@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali, E-mail: Khodadad@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Choolaei, Mohammadmehdi, E-mail: Choolaeimm@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2015-04-30

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO{sub x}/MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO{sub x} addition. • Bi-functional mechanism is facilitated in presence of CoO{sub x}. - Abstract: The electro-catalytic behavior of Pt-CoO{sub x}/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH{sub 4} as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO{sub x}, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO{sub ads} on Pt active sites by the participation of CoO{sub x}. Compared to Pt/MWCNTs, Pt-CoO{sub x}/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO{sub x}/MWCNTs, at small overpotentials. However, at higher overpotentials, the

  15. Kinetics of irreversible thermal decomposition of dissociating nitrogen dioxide with nitrogen oxide or oxygen additions

    International Nuclear Information System (INIS)

    Gvozdev, A.A.

    1987-01-01

    The effect of NO or O 2 admixtures on kinetics of the irreversible thermal decomposition of nitrogen dioxide at temperatures 460-520 deg C and pressures 4-7 MPa has been studied. It follows from experimental data that the rate of N 2 O 4 formation reduces with the increase of partial pressure of oxygen or decrease of partial pressure of nitrogen oxide. The same regularity is seen for the rate of nitrogen formation. The rate constants of N 2 O formation in dissociating nitrogen tetroxide with oxygen or nitrogen oxide additions agree satisfactorily with previously published results, obtained in stoichiometric mixtures. The appreciable discrepancy at 520 deg C is bind with considerable degree of nitrogen oxide transformation which constitutes approximately 14%. It is determined that the kinetics of formation of the products of irreversible N 2 O and N 2 decomposition in stoichiometric and non-stoichiometric 2NO 2 ↔ 2NO+O 2 mixtures is described by identical 3NO → N 2 O+NO 2 and N 2 O+NO → N 2 +NO 2 reactions

  16. The Atmospheric Oxidation of Volatile Organic Compounds Through Hydrogen Shift Reactions

    DEFF Research Database (Denmark)

    Knap, Hasse Christian

    a radical is denoted as a H-shift reaction. Quantum chemical calculations were carried out to investigate the potential energy surface of the H-shift reactions and the subsequent decomposition pathways. The transition state theory including the Eckart quantum tunneling correction have been used to calculate...... the reaction rate constants of the H-shift reactions. The autoxidation of volatile organic compounds is an important oxidation mechanism that produces secondary organic aerosols (SOA) and recycles hydroxyl (OH) radicals. The autoxidation cycle produces a second generation peroxy radical (OOQOOH) through...... a series of H-shift reactions and O2 attachments. I have investigated the H-shift reactions in two OOQOOH radicals (hydroperoxy peroxy radicals and hydroperoxy acyl peroxy radicals). The H-shift reaction rate constants have been compared with the bimolecular reaction rate constants of the peroxy radicals...

  17. Determination of oxygen in ternary uranium oxides by a gravimetric alkaline earth addition method

    International Nuclear Information System (INIS)

    Fujino, T.; Tagawa, H.

    1979-01-01

    The applicability of a gravimetric method based on alkaline earth metal addition for the determination of oxygen in ternary uranium oxides of the tupe M-U-O (M=La, Ce and Th) is described. The oxide sample is mixed with MgO or Basub(2.8)UOsub(5.8) and heated in air under suitable conditions. Because uranium is completely oxidized to the hexavalent state during the reaction, oxygen can be determined from the weight change. Oxygen in Lasub(y)Usub(1-y)Osub(2+x) is determined up to y = 0.8 with a standard deviation for x of +- 0.006 with MgO. For Thsub(y)Usub(1-y)Osub(2+x) the value of x is determined with Basub(2.8)UOsub(5.8) with a standard deviation of +- 0.01 at y = 0.8. For Cesub(y)Usub(1-y)Osub(2+x), the method can be applied only for low cerium concentrations where y = 0-0.2; the value for x with Basub(2.8)UOsub(5.8) at y = 0.2 showed a standard deviation of +- 0.002. (Auth.)

  18. Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, S., E-mail: rajagopalan78@hotmail.com [Indira Gandhi Centre for Atomic Research, Materials Science Group (India); Asthalter, T., E-mail: t.asthalter@web.de [Universität Stuttgart, Institute of Physical Chemistry (Germany); Rabe, V.; Laschat, S. [Universität Stuttgart, Institute of Organic Chemistry (Germany)

    2016-12-15

    Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe{sub 3}(μ{sub 3}-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe{sub 3}(μ{sub 3}-O) in pyridine solution, Fe{sub 3}(μ{sub 3}-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe{sub 3}(μ{sub 3}-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe{sup (III)}(C{sub 5}H{sub 5}N){sub 2}(O{sub 2}CCH{sub 3}){sub 2}]{sup +} and Fe{sup (II)}(C{sub 5}H{sub 5}N){sub 4}(O{sub 2}CCH{sub 3}){sub 2}, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.

  19. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    Science.gov (United States)

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe2O4 complex oxide catalyst

    International Nuclear Information System (INIS)

    Pardeshi, Satish K.; Pawar, Ravindra Y.

    2010-01-01

    The CaFe 2 O 4 spinel-type catalyst was synthesized by citrate gel method and well characterized by thermogravimetric analysis, atomic absorption spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallization temperature of the spinel particle prepared by citrate gel method was 600 o C which was lower than that of ferrite prepared by other methods. CaFe 2 O 4 catalysts prepared by citrate gel method show better activity for styrene oxidation in the presence of dilute H 2 O 2 (30%) as an oxidizing agent. In this reaction the oxidative cleavage of carbon-carbon double bond of styrene takes place selectively with 38 ± 2 mol% conversion. The major product of the reaction is benzaldehyde up to 91 ± 2 mol% and minor product phenyl acetaldehyde up to 9 ± 2 mol%, respectively. The products obtained in the styrene oxidation reaction were analyzed by gas chromatography and mass spectroscopy. The influence of the catalyst, reaction time, temperature, amount of catalyst, styrene/H 2 O 2 molar ratio and solvents on the conversion and product distribution were studied.

  1. Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems.

    Science.gov (United States)

    Wang, Vincent C-C

    2016-08-10

    Finding fundamental and general mechanisms for electrochemical reactions, such as the oxygen evolution reaction (OER) from water and reduction of CO2, plays vital roles in developing the desired electrocatalysts for facilitating solar fuel production. Recently, density functional theory (DFT) calculations have shown that there is a universal scaling relation of adsorption energy between key intermediate species, HO(ad) and HOO(ad), on the surface of metal oxides as OER electrocatalysts. In this paper, a kinetic and thermodynamic model for the four-electron electrochemical reaction based on previous OER mechanisms proposed by DFT calculations is developed to further investigate the electrocatalytic properties over a wide range of metal oxides and photosystem II. The OER activity of metal oxides (i.e. electrocatalytic current) calculated from the DFT-calculated equilibrium potentials with kinetic properties, such as the rate constants for interfacial electron transfer and catalytic turnover, can lead to a volcano-shaped trend that agrees with the results observed in experiments. In addition, the kinetic aspects of the impact on the electrocatalysts are evaluated. Finally, comparing the results of metal oxides and photosystem II, and fitting experimental voltammograms give further insights into kinetic and thermodynamic roles. Here, the general guidelines for designing OER electrocatalysts with unified kinetic and thermodynamic properties are presented.

  2. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S. [Argonne National Lab., IL (United States); Parker, J.C.; Ali, M.N. [Nanophase Technologies Corp., Darien, IL (United States); Chen, Nan [Illinois Superconductor Corp., Evanston, IL (United States)

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  3. Dynamics of activity free radical oxidation reactions in students with cerebral palsy results over the course of the educational process

    Directory of Open Access Journals (Sweden)

    Makarova E.V.

    2012-12-01

    Full Text Available The dynamics of changes activity of reactions is studied freely radical oxidize for students with the consequences of child's cerebral paralysis. 20 students took part in an experiment. Found that the course of study they have more active free radical oxidation reactions and decreases the activity of antiradical protection. Given the use of additional physical activity in aerobic training indicators intracellular antioxidant defense system increased, decreased content of reaction products of lipid peroxidation. However, increased rates of maximum oxygen consumption and increased tolerance of students with cerebral palsy to the consequences of physical activity. It is set that the pathological changes of metabolism for students ground the necessity of application of the differentiated physical loadings. The optimum forms of physical rehabilitation of the aerobic training is the dosed walking, medical swimming, dosed after distance, sometimes and by the corner of getting up pedestrian ascents. Loading is increased due to a volume, but not intensity of exercises.

  4. Microbial Fe(II) oxidation at circumneutral pH: Reaction kinetics, mineral products, and distribution of neutrophilic iron oxidizers in wetland soils

    NARCIS (Netherlands)

    Vollrath, S.

    2012-01-01

    Multiple studies have shown that neutrophilic Fe(II) oxidizers can conserve energy from Fe(II) oxidation, however, it is still unclear how they can compete against the fast abiotic reaction at neutral pH, or to which extent these bacteria increase the overall Fe(II) oxidation rate. Similar to

  5. Reaction of CO2 with propylene oxide and styrene oxide catalyzed by a chromium(III) amine-bis(phenolate) complex.

    Science.gov (United States)

    Dean, Rebecca K; Devaine-Pressing, Katalin; Dawe, Louise N; Kozak, Christopher M

    2013-07-07

    A diamine-bis(phenolate) chromium(III) complex, {CrCl[O2NN'](BuBu)}2 catalyzes the copolymerization of propylene oxide with carbon dioxide. The synthesis of this metal complex is straightforward and it can be obtained in high yields. This catalyst incorporates a tripodal amine-bis(phenolate) ligand, which differs from the salen or salan ligands typically used with Cr and Co complexes that have been employed as catalysts for the synthesis of such polycarbonates. The catalyst reported herein yields low molecular weight polymers with narrow polydispersities when the reaction is performed at room temperature. Performing the reaction at elevated temperatures causes the selective synthesis of propylene carbonate. The copolymerization activity for propylene oxide and carbon dioxide, as well as the coupling of carbon dioxide and styrene oxide to give styrene carbonate are presented.

  6. Study of reactions between uranium-plutonium mixed oxide and uranium nitride and between uranium oxide and uranium nitride; Etude des reactions entre l`oxyde mixte d`uranium-plutonium et le nitrure d`uranium et entre l`oxyde d`uranium et le nitrure d`uranium

    Energy Technology Data Exchange (ETDEWEB)

    Lecraz, C

    1993-06-11

    A new type of combustible elements which is a mixture of uranium nitride and uranium-plutonium oxide could be used for Quick Neutrons Reactors. Three different studies have been made on the one hand on the reactions between uranium nitride (UN) and uranium-plutonium mixed oxide (U,Pu)O{sub 2}, on the other hand on these between UN and uranium oxide UO{sub 2}. They show a sizeable reaction between nitride and oxide for the studied temperatures range (1573 K to 1973 K). This reaction forms a oxynitride compound, MO{sub x} N{sub y} with M=U or M=(U,Pu), whose crystalline structure is similar to oxide`s. Solubility of nitride in both oxides is studied, as the reaction kinetics. (TEC). 32 refs., 48 figs., 22 tabs.

  7. IBX-mediated oxidation of unactivated cyclic amines: application in highly diastereoselective oxidative Ugi-type and aza-Friedel-Crafts reactions.

    Science.gov (United States)

    de Graaff, C; Bensch, L; van Lint, Matthijs J; Ruijter, E; Orru, R V A

    2015-10-28

    The first o-iodoxybenzoic acid (IBX) mediated oxidation of unactivated amines to imines is described. A range of meso-pyrrolidines were shown to be suitable substrates. The chemical space was further explored with one-pot oxidative Ugi-type and aza-Friedel-Crafts reactions, which proved to be highly diastereoselective.

  8. Effects of additives on PVG dosifilm

    Energy Technology Data Exchange (ETDEWEB)

    Wenxiu, Chen; Liu, Aiguo [Beijing Normal Univ., BJ (China). Dept. of Chemistry

    1995-03-01

    Dosifilm PVG is a new radiochromic film dosimeter composed of matrix material polyvinyl butyral (PVB), leuco malachite green (LMG) and additive halogenated organic compound (RX), etc. The control of the dose range on PVG dosifilm was examined. The addition of halogenated compounds played an important role in the radiation reaction of LMG beyond the concentration of LMG. Bromide is more effective than chloride in this system, the oxidative species are X {center_dot} and X{sub 2} {center_dot} {sup -}. PVB with N-bromosuccinimide (NBS) can induce the oxidation of LMG before irradiation. The reaction mechanism of PVG was discussed. Different linear ranges of radiation response on PVG dosifilm could be controlled by alternating the relative concentrations of halogenated compounds and LMG. (author).

  9. Iron(III) porphyrin-catalysed oxidation reactions by m-chloro ...

    Indian Academy of Sciences (India)

    Unknown

    The notable feature in this study is that none of the kinetic traces are expo- nential. A representative plot is given in figure 1 and the quantitative spectrum of TTBP• radical in dichloromethane is given in figure 2 (bold line). In this oxidation reaction under all the conditions, non-exponential kinetic traces were always obser-.

  10. Influence of rare earth additions on the oxidation resistance of chromia forming alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    1995-01-01

    The addition of rare earths to alloys, either in elemental form or as surface coatings reduces the oxidation rate of chromia forming alloys. The rare earths either act as nucleation sites for surface oxides or get incorporates into the surface oxide and diffuse to oxide grain boundaries. If the latter occurs, a change in the defect structure close to the grain boundaries, probably takes place. In this manner, the rare earths inhibits the movement of chromium ions to the oxide/gas interface. The influence of rare earth additions to AISI 316, AISI 316L and Ni-20 Cr on their oxidation behavior has been studied., AISI 316+Ce, AISI 316+Y, Ni-20 Cr and Ni-20 Cr-2 Al-1 Ce were prepared by melting and AISI 316L, AISI 316L+Ce O 2 and AISI 316L+Y 2 O 3 by powder compaction. The effect of superficial deposits of rare earth oxides was also studied. The alloys were coated with rare earth oxides by high temperature conversion of the respective rare earth nitrates. Isothermal oxidation tests were carried out at 900-1100 deg C and the cyclic oxidation tests consisted of 6 cycles of 2 hours each at 900 deg C, followed by cooling to room temperature. All the tests were carried out in air. Oxidation behavior was evaluated gravimetrically. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis and X-ray diffraction techniques were used to identify oxide constituents. Overall, it has been observed that with the addition of rare earths, oxidation resistance increases by decreasing oxidation rates and increasing oxide adhesion. Addition of rare earths to AISI 316 prepared by melting resulted in rapid formation of a chromium rich oxide layered near the metal/oxide interface which reduced overall oxidation rate. The addition of Ce O 2 to AISI 316L was found to improve oxidation behavior after 10 hours at 1100 deg C and also inhibit the formation of volatile Cr O 3 . The isothermal oxidation behavior of rare earth oxide covered Ni-20 Cr at 900 deg C

  11. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    Science.gov (United States)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  12. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  13. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction

    Science.gov (United States)

    Gac, Wojciech; Greluk, Magdalena; Słowik, Grzegorz; Turczyniak-Surdacka, Sylwia

    2018-05-01

    Surface and structural changes of unmodified manganese and cobalt-manganese oxide during activation and ethanol steam reforming reaction conditions (ESR) were studied by means of X-ray diffraction, X-ray photoelectron spectroscopy, temperature-programmed reduction/oxidation (TPR/TPO) and transmission electron microscopy. It was shown that synthesis of cobalt manganese oxide by the redox precipitation method led to the formation of strongly dispersed cobalt ionic species within cryptomelane-based manganese oxide structure. Development of large cube-like MnO nanoparticles with spherical cobalt metallic crystallites decorated by manganese oxide on the high oxidation state and potassium species was observed during reduction. Cobalt manganese catalyst showed high initial activity and selectivity to H2 and CO2 in ethanol stem reforming reaction in the range of 390-480 °C. The drop of ethanol conversion and changes of selectivity with the time-on-stream were observed. An increase of reaction temperature led to intensification of deactivation phenomena. TEM studies evidenced coexistence of Co and CoOx nanoparticles formed under ethanol steam reforming conditions, partially covered by filamentous and encapsulating carbonaceous deposits.

  14. Methanol oxidation in a flow reactor: Implications for the branching ratio of the CH3OH+OH reaction

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Wassard, K.H.; Dam-Johansen, Kim

    2008-01-01

    The oxidation of methanol in a flow reactor has been studied experimentally under diluted, fuel-lean conditions at 650-1350 K, over a wide range of O-2 concentrations (1%-16%), and with and without the presence of nitric oxide. The reaction is initiated above 900 K, with the oxidation rate...... decreasing slightly with the increasing O-2 concentration. Addition of NO results in a mutually promoted oxidation of CH3OH and NO in the 750-1100 K range. The experimental results are interpreted in terms of a revised chemical kinetic model. Owing to the high sensitivity of the mutual sensitization of CH3OH...... and NO oxidation to the partitioning of CH3O and CH2OH, the CH3OH + OH branching fraction could be estimated as alpha = 0.10 +/- 0.05 at 990 K. Combined with low-temperature measurements, this value implies a branching fraction that is largely independent of temperature. It is in good agreement with recent...

  15. Selective carbon monoxide oxidation over Ag-based composite oxides

    Energy Technology Data Exchange (ETDEWEB)

    Guldur, C. [Gazi University, Ankara (Turkey). Chemical Engineering Department; Balikci, F. [Gazi University, Ankara (Turkey). Institute of Science and Technology, Environmental Science Department

    2002-02-01

    We report our results of the synthesis of 1 : 1 molar ratio of the silver cobalt and silver manganese composite oxide catalysts to remove carbon monoxide from hydrogen-rich fuels by the catalytic oxidation reaction. Catalysts were synthesized by the co-precipitation method. XRD, BET, TGA, catalytic activity and catalyst deactivation studies were used to identify active catalysts. Both CO oxidation and selective CO oxidation were carried out in a microreactor using a reaction gas mixture of 1 vol% CO in air and another gas mixture was prepared by mixing 1 vol% CO, 2 vol% O{sub 2}, 84 vol% H{sub 2}, the balance being He. 15 vol% CO{sub 2} was added to the reactant gas mixture in order to determine the effect of CO{sub 2}, reaction gases were passed through the humidifier to determine the effect of the water vapor on the oxidation reaction. It was demonstrated that metal oxide base was decomposed to the metallic phase and surface areas of the catalysts were decreased when the calcination temperature increased from 200{sup o}C to 500{sup o}C. Ag/Co composite oxide catalyst calcined at 200{sup o}C gave good activity at low temperatures and 90% of CO conversion at 180{sup o}C was obtained for the selective CO oxidation reaction. The addition of the impurities (CO{sub 2} or H{sub 2}O) decreased the activity of catalyst for selective CO oxidation in order to get highly rich hydrogen fuels. (author)

  16. Redox reaction between graphene oxide and In powder to prepare In2O3/reduced graphene oxide hybrids for supercapacitors

    Science.gov (United States)

    Xu, Xiaoyang; Wu, Tao; Xia, Fengling; Li, Yi; Zhang, Congcong; Zhang, Lei; Chen, Mingxi; Li, Xichuan; Zhang, Li; Liu, Yu; Gao, Jianping

    2014-11-01

    A facile and quick route for the chemical reduction of graphene oxide (GO) using In powder as a reductant has been established. The reduction of GO by In powder is traced by UV-visible absorption spectroscopy, and the obtained reduced graphene oxide (rGO) is analyzed. The In3+ ions produced during the reaction between the GO and the In powder are chemically transformed to In2O3 and then form In2O3/rGO hybrids. The In2O3/rGO hybrids are used as electrode materials and their electrochemical performance are studied using cyclic voltammetry and galvanostatic charge/discharge. The In2O3/rGO hybrids demonstrate excellent electrochemical performance and their highest specific capacitance is 178.8 F g-1 which is much higher than that of either In2O3 or rGO. In addition, the In2O3/rGO hybrids are also very stable.

  17. Hexafluorobenzene: A powerful solvent for a noncovalent stereoselective organocatalytic Michael addition reaction

    KAUST Repository

    Lattanzi, Alessandra; De Fusco, Claudia; Russo, Alessio; Poater, Albert; Cavallo, Luigi

    2012-01-01

    A dramatic enhancement of the diastereo- and enantioselectivity in the nitro-Michael addition reaction organocatalysed by a commercially available α,α-l-diaryl prolinol was disclosed when performing the reaction in unconventional hexafluorobenzene

  18. Effect of additives on lithium doped magnesium oxide catalysts used in the oxidative coupling of methane

    NARCIS (Netherlands)

    Korf, S.J.; Roos, J.A.; Veltman, L.J.; van Ommen, J.G.; Ross, J.R.H.

    1989-01-01

    It has been found that it is possible to improve the activity and stability for the oxidative coupling of methane of a Li/MgO catalyst by the addition of small amounts of the oxides of various transition and rare earth metals. A number of these additives, e.g. SnO2, TiO2, Dy2O3 and Tb4O7, caused

  19. Concerted effects in the reaction of ·OH radicals with aromatics: radiolytic oxidation of salicylic acid

    International Nuclear Information System (INIS)

    Albarran, G.; Schuler, R.H.

    2003-01-01

    Liquid chromatographic and capillary electrophoretic studies have been used to resolve the products produced in the radiolytic oxidation of salicylic acid in aqueous solution. These studies have shown that, as in the case of phenol, · OH radicals preferentially add to the positions ortho and para to the OH substituent. However, in contrast to its reaction with phenol, addition at the ortho position is favored over addition at the para position. Because · OH radical is a strong electrophile this difference suggests that the electron population at the ortho position in the salicylate anion is enhanced as a result of the hydrogen bonding in salicylic acid

  20. The Nernst equation applied to oxidation-reduction reactions in myoglobin and hemoglobin. Evaluation of the parameters.

    Science.gov (United States)

    Saroff, Harry A

    Analyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed. Oxidation-reduction reactions of the heme group in myoglobin and hemoglobin involve the binding and dissociation of electrons. This reaction is described with the Nernst equation. The Nernst equation is applicable only to a monomeric species even if the number of electrons involved is greater than unity. To analyze the oxidation-reduction reaction in a molecule such as hemoglobin a model is required which incorporates extensions of the Nernst equation. This communication develops models employing the Nernst equation for oxidation-reduction reactions analogous to those employed for hemoglobin in the analysis of the oxygenation (binding of oxygen) reaction.

  1. The influence of oscillations on product selectivity during the palladium-catalysed phenylacetylene oxidative carbonylation reaction.

    Science.gov (United States)

    Novakovic, Katarina; Grosjean, Christophe; Scott, Stephen K; Whiting, Andrew; Willis, Mark J; Wright, Allen R

    2008-02-07

    This paper reports on the influence of oscillations on product selectivity as well as the dynamics of product formation during the palladium-catalysed phenylacetylene oxidative carbonylation reaction in a catalytic system (PdI2, KI, Air, NaOAc in methanol). The occurrence of the pH oscillations is related to PdI2 granularity and the initial pH drop after phenylacetylene addition. To achieve pH and reaction exotherm oscillations regulation of the amount of PdI2 is required, ensuring that the initial pH does not fall significantly below 1 after phenylacetylene addition. Experiments in both oscillatory and non-oscillatory pH regimes were performed in an HEL SIMULAR reaction calorimeter with the concentration-time profiles measured using a GC-MS. It is demonstrated that when operating in an oscillatory pH regime product formation may be suppressed until oscillations occur after which there is a steep increase in the formation of Z-2-phenyl-but-2-enedioic acid dimethyl ester. When operating in non-oscillatory pH mode the products are formed steadily over time with the main products being Z-2-phenyl-but-2-enedioic acid dimethyl ester, 2-phenyl-acrylic acid methyl ester and E-3-phenyl-acrylic acid methyl ester.

  2. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    Science.gov (United States)

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  3. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.

    Science.gov (United States)

    Daniel, Bastian; Konrad, Barbara; Toplak, Marina; Lahham, Majd; Messenlehner, Julia; Winkler, Andreas; Macheroux, Peter

    2017-10-15

    Biological oxidations form the basis of life on earth by utilizing organic compounds as electron donors to drive the generation of metabolic energy carriers, such as ATP. Oxidative reactions are also important for the biosynthesis of complex compounds, i.e. natural products such as alkaloids that provide vital benefits for organisms in all kingdoms of life. The vitamin B 2 -derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) enable an astonishingly diverse array of oxidative reactions that is based on the versatility of the redox-active isoalloxazine ring. The family of FAD-linked oxidases can be divided into subgroups depending on specific sequence features in an otherwise very similar structural context. The sub-family of berberine bridge enzyme (BBE)-like enzymes has recently attracted a lot of attention due to the challenging chemistry catalyzed by its members and the unique and unusual bi-covalent attachment of the FAD cofactor. This family is the focus of the present review highlighting recent advancements into the structural and functional aspects of members from bacteria, fungi and plants. In view of the unprecedented reaction catalyzed by the family's namesake, BBE from the California poppy, recent studies have provided further insights into nature's treasure chest of oxidative reactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea

    International Nuclear Information System (INIS)

    Xu, Xiao; Zhou, Yingke; Yuan, Tao; Li, Yawei

    2013-01-01

    A facile hydrothermal reaction of graphene oxide with urea was used to produce nitrogen doped graphene, and Pt nanoparticles were deposited on the obtained nitrogen doped graphene by the NaBH 4 reduction route. The morphology and microstructure of the synthesized catalysts were characterized by transmission electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy, while the functional groups on the surface of the catalysts were investigated by the Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectra. Cyclic voltammetry, chronoamperometry and electrochemical impedance techniques were carried out to evaluate the methanol electrocatalytic oxidation activity and durability of Pt catalysts supported on the nitrogen doped graphene. The results showed that nitrogen doping and reduction of GO were achieved simultaneously by the facile hydrothermal reaction, which had beneficial effects for the deposition process and electrocatalytic activity of Pt nanoparticles. The Pt catalysts supported on the nitrogen doped graphene substrate presented excellent activity and durability of methanol oxidation reaction, which might be promising for application in direct methanol fuel cells

  5. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    Science.gov (United States)

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  6. DNA-based catalytic enantioselective intermolecular oxa-Michael addition reactions

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2012-01-01

    Using the DNA-based catalysis concept, a novel Cu(II) catalyzed enantioselective oxa-Michael addition of alcohols to enones is reported. Enantioselectivities of up to 86% were obtained. The presence of water is important for the reactivity, possibly by reverting unwanted side reactions such as

  7. Carbon supported ultrafine gold phosphorus nanoparticles as highly efficient electrocatalyst for alkaline ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Li, Tongfei; Fu, Gengtao; Su, Jiahui; Wang, Yi; Lv, Yinjie; Zou, Xiuyong; Zhu, Xiaoshu; Xu, Lin; Sun, Dongmei; Tang, Yawen

    2017-01-01

    Graphical abstract: We develop a new kind of carbon supported gold-phosphorus (Au-P/C) electrocatalyst by a facile and novel phosphorus reduction method, and demonstrate the Au-P/C is a highly active and stable electrocatalyst for the ethanol oxidation reaction. - Highlights: • Au-P/C catalyst is synthesized by a facile and novel white-phosphorus reduce method. • AuP particles with ultrafine particle-size are uniformly dispersed on carbon support. • Au-P/C catalyst exhibits much higher content of P 0 than reported metal/P catalysts. • Au-P/C catalysts show excellent catalytic properties for ethanol oxidation reaction. - Abstract: Herein, we develop a new kind of carbon supported gold-phosphorus (Au-P/C) electrocatalyst for the alkaline ethanol oxidation reaction (EOR). The Au-P/C catalysts with different Au/P ratio (i.e., AuP/C, Au 3 P 2 /C and Au 4 P 3 /C) can be obtained by a facile and novel hot-reflux method with white phosphorus (P 4 ) as reductant and ethanol as solvent. The crystal structure, composition and particle-size of the Au-P/C catalysts are investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), etc. The results demonstrate that Au-P/C catalysts present an alloy phase with the high content of P, ultrafine particle-size and high dispersity on carbon support, which results in excellent electrocatalytic activity and stability towards the EOR compared with that of the free-phosphorus Au/C catalyst. In addition, among the various Au-P/C catalysts with different Au/P ratio, the AuP/C sample exhibits the best electrocatalytic performance in comparison with other Au 3 P 2 /C and Au 4 P 3 /C samples.

  8. Cu catalyzed oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran and 2,5-furandicarboxylic acid under benign reaction conditions

    DEFF Research Database (Denmark)

    Hansen, Thomas S.; Sádaba, Irantzu; Garcia, Eduardo

    2013-01-01

    containing promoters (NCPs) to obtain excellent yields. In acetonitrile a 95% DFF yield was obtained after 24h with ambient pressure of dioxygen at room temperature in the presence of different NCPs, which – to our knowledge – is the best result reported thus far for this reaction. The use of NCPs made...... it further possible to apply various traditional solvents, e.g. acetone, methanol and methyl isobutyl ketone for the reaction. The latter can be used as extraction solvent for HMF synthesis in aqueous media and thus integrate the two processes. Additionally, HMF was oxidized to 2,5-furandicarboxylic acid...

  9. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanxuan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); Wan, Jinquan, E-mail: ppjqwan@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, Yongwen [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China)

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO{sub 4}·{sup −}) and hydroxyl radical (·OH) were found to be primary oxidants at pH 3.0 and pH 7.0, respectively while ·OH was the major specie to oxidize DBP at pH 11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to ·OH, superoxide radical (O{sub 2}·{sup −}) was detected at pH 11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH 3.0 by GC–MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH 3.0. - Highlights: • Both SO{sub 4}{sup −}· and ·OH were found to be the major active species at pH 3.0 and pH 7.0. • ·OH and ·O2– were the primary oxidants pH 11.0. • The intermediate products were investigated as well as the degradation pathway. • Dealkylation, hydroxylation, decarboxylation, H-extraction were the major mechanisms.

  10. ON THE SYNTHESIS OF MOLYBDENUM CARBIDE WITH COBALT ADDITION VIA GAS-SOLID REACTIONS IN A CH4/H2 ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    C. P. B. Araujo

    Full Text Available Abstract Due to ever more severe environmental regulations regarding SOx, NOx and other pollutants' emissions, there has been an interest in developing new and improved catalysts for hydroprocessing reactions. Mo2C has been reported to display good selectivity and activity for those reactions, especially for HDS. Addition of another metal to the carbide structure may improve catalytic properties. Mo2C with low cobalt addition (2.5 and 5% was obtained via gas-solid reaction in a fixed bed reactor with CH4 (5%/H2 atmosphere. XRD and TG/DTA analysis of the precursors were carried out in order to understand its mass loss profile, doping metal presence and phase distributions. CoMoO4 as well as MoO3 were identified after calcining doped precursors at 600 °C/180min. SEM, XRD, XRF, TOC, BET and laser granulometric analysis of the reaction products were also performed. Compositions verified by XRF and theoretical values were compatible. At 700 °C both carbide (Mo2C and oxide (MoO2 phases are present, as identified in XRD analysis and observed by SEM. At 750 °C only single phase Mo2C was verified by XRD, indicating Co dispersion on the carbide matrix. Morphology at this temperature is compatible with pure Mo2C, though XRF indicates Co presence on the material.

  11. Diverse Reactions of Thiophenes, Selenophenes, and Tellurophenes with Strongly Oxidizing I(III) PhI(L)2 Reagents.

    Science.gov (United States)

    Egalahewa, Sathsara; Albayer, Mohammad; Aprile, Antonino; Dutton, Jason L

    2017-02-06

    We report the outcomes of the reactions of aromatic group 16 thiophene, selenophene, and tellurophene rings with the I(III) oxidants PhI(OAc)(OTf) and [PhI(Pyr) 2 ][OTf] 2 (Pyr = pyridine). In all reactions, oxidative processes take place, with generation of PhI as the reduction product. However, with the exception of tellurophene with PhI(OAc)(OTf), +4 oxidation state complexes are not observed, but rather a variety of other processes occur. In general, where a C-H unit is available on the 5-membered ring, an electrophilic aromatic substitution reaction of either -IPh or pyridine onto the ring occurs. When all positions are blocked, reactions with PhI(OAc)(OTf) give acetic and triflic anhydride as the identifiable oxidative byproducts, while [PhI(Pyr) 2 ][OTf] 2 gives pyridine electrophilic aromatic substitution onto the peripheral rings. Qualitative mechanistic studies indicate that the presence of the oxidizable heteroatom is required for pyridine to act as an electrophile in a substantial manner.

  12. Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3 + 2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal

    Directory of Open Access Journals (Sweden)

    Carlos Vila

    2014-05-01

    Full Text Available Pyrrolo[2,1-a]isoquinoline alkaloids have been prepared via a visible light photoredox catalyzed oxidation/[3 + 2] cycloaddition/oxidative aromatization cascade using Rose Bengal as an organo-photocatalyst. A variety of pyrroloisoquinolines have been obtained in good yields under mild and metal-free reaction conditions.

  13. Hydrogen oxidation mechanisms on Ni/yttria stabilized zirconia anodes: Separation of reaction pathways by geometry variation of pattern electrodes

    Science.gov (United States)

    Doppler, M. C.; Fleig, J.; Bram, M.; Opitz, A. K.

    2018-03-01

    Nickel/yttria stabilized zirconia (YSZ) electrodes are affecting the overall performance of solid oxide fuel cells (SOFCs) in general and strongly contribute to the cell resistance in case of novel metal supported SOFCs in particular. The electrochemical fuel conversion mechanisms in these electrodes are, however, still only partly understood. In this study, micro-structured Ni thin film electrodes on YSZ with 15 different geometries are utilized to investigate reaction pathways for the hydrogen electro-oxidation at Ni/YSZ anodes. From electrodes with constant area but varying triple phase boundary (TPB) length a contribution to the electro-catalytic activity is found that does not depend on the TPB length. This additional activity could clearly be attributed to a yet unknown reaction pathway scaling with the electrode area. It is shown that this area related pathway has significantly different electrochemical behavior compared to the TPB pathway regarding its thermal activation, sulfur poisoning behavior, and H2/H2O partial pressure dependence. Moreover, possible reaction mechanisms of this reaction pathway are discussed, identifying either a pathway based on hydrogen diffusion through Ni with water release at the TPB or a path with oxygen diffusion through Ni to be a very likely explanation for the experimental results.

  14. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler

    Directory of Open Access Journals (Sweden)

    Jun-Xia Zhang

    2016-03-01

    Full Text Available Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th November 2015; Revised: 14th January 2016; Accepted: 16th January 2016  How to Cite: Zhang, J.X., Zhang, J.F. (2016. Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 100-108. (doi:10.9767/bcrec.11.1.431.100-108 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.431.100-108

  15. Practical applications of the Fenton reaction to the removal of chlorinated aromatic pollutants. Oxidative degradation of 2,4-dichlorophenol.

    Science.gov (United States)

    Detomaso, Antonia; Lopez, Antonio; Lovecchio, Giangiuseppe; Mascolo, Giuseppe; Curci, Ruggero

    2003-01-01

    Chlorophenols (CPs) constitute a group of organic pollutants that are introduced into the environment as a result of several man-made activities, such as uncontrolled use of pesticides and herbicides, and as byproducts in the paper pulp bleaching. Promising removal technologies of chlorinated aromatics consist in the application of advanced oxidation processes (AOPs) that can provide an almost total degradation of a variety of contaminants. Among these, wide application find Fenton systems based on generation of reactive species having a high oxidizing power, such as hydroxyl radical HO*. Our objective was that of determining the overall degradation efficiency of the model compound 2,4-dichlorophenol (DCP) by thermal Fenton-type oxidation systems with a view toward defining in more details relevant process parameters, the effect of reaction temperature and of co-catalyst Cu2+. Reaction conditions were similar to those generally adopted as optimal in many practical applications, i.e. pollutant/Fe2+ (as FeSO4) ratio ca. 20, Fe2+/Cu2+ (co-catalyst) 2:1, pH adjusted and controlled at pH 3, and H2O2 in excess (up to four-fold over the stoichiometric amount required for complete mineralization). The results demonstrate that it is advantageous to carry out the reaction at a temperature markedly higher (70 degrees C) than ambient. The stepwise addition of H2O2 in aliquots yields an efficient transformation, while allowing a convenient control of the reaction exothermicity. Under these conditions, the essentially complete removal of the initial DCP is accomplished using just one equiv of H2O2 during 15 min; excess H2O2 (5 equivalents) yields extensive substrate mineralization. Also relevant, at 70 degrees C dechlorination of the initial DCP (and of derived reaction intermediates) is remarkably extensive (3-5% residual TOX), already with the addition of 1 equiv of H2O2. At the end of the reaction, IC and IC-MS analyses of the solution reveal that only low-molecular weight

  16. Kinetics and reaction mechanism for aminolysis of benzyl 4-pyridyl carbonate in H2O: Effect of modification of nucleofuge from 2-pyridyl oxide to 4-pyridyl oxide on reactivity and reaction mechanism

    International Nuclear Information System (INIS)

    Kang, Ji Sun; Um, Ikhwan

    2012-01-01

    Pseudo-first-order rate constants k amine have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in H 2 O at 25.0.deg.C. The plots of k amine vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate T ± and its deprotonated form T - . This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The k amine values for the reactions of 6 have been dissected into the second-order rate constant Kk 2 and the third order rate constant Kk 3 . The Brφnsted-type plots are linear with β nuc = 0.94 and 1.18 for Kk 2 and Kk 3 , respectively. The Kk 2 for the reaction of 6 is smaller than the second-order rate constant k N for the corresponding reaction of 5, although 4-pyridyl oxide in 6 is less basic and a better nucleofuge than 2-pyridyl oxide in 5

  17. Effects of gas flow on oxidation reaction in liquid induced by He/O{sub 2} plasma-jet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Atsushi; Uchida, Giichiro, E-mail: uchida@jwri.osaka-u.ac.jp; Takenaka, Kosuke; Setsuhara, Yuichi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Kawasaki, Toshiyuki [Department of Mechanical and Electrical Engineering, Nippon Bunri University, Oita, Oita 870-0397 (Japan); Koga, Kazunori; Sarinont, Thapanut; Amano, Takaaki; Shiratani, Masaharu [Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Fukuoka 819-0395 (Japan)

    2015-07-28

    We present here analysis of oxidation reaction in liquid by a plasma-jet irradiation under various gas flow patterns such as laminar and turbulence flows. To estimate the total amount of oxidation reaction induced by reactive oxygen species (ROS) in liquid, we employ a KI-starch solution system, where the absorbance of the KI-starch solution near 600 nm behaves linear to the total amount of oxidation reaction in liquid. The laminar flow with higher gas velocity induces an increase in the ROS distribution area on the liquid surface, which results in a large amount of oxidation reaction in liquid. However, a much faster gas flow conversely results in a reduction in the total amount of oxidation reaction in liquid under the following two conditions: first condition is that the turbulence flow is triggered in a gas flow channel at a high Reynolds number of gas flow, which leads to a marked change of the spatial distribution of the ROS concentration in gas phase. Second condition is that the dimpled liquid surface is formed by strong gas flow, which prevents the ROS from being transported in radial direction along the liquid surface.

  18. Mass transfer model for two-layer TBP oxidation reactions

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  19. Oxidation of D-glucose and D-fructose with oxygen in aqueous, alkaline solutions. Part I. An integral reaction scheme

    NARCIS (Netherlands)

    de Wilt, H.G.J.; Kuster, B.F.M.

    1971-01-01

    The homogeneous oxidn. of D-glucose and D-fructose with O in aq., alk. solns. is studied, and a reaction scheme proposed to account for the obsd. reaction products. Formation of enolate anions is followed by non-oxidative reactions (involving double-bond migration and cleavage) and by oxidative

  20. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  1. Kinetics of the addition reaction of methyl radicals with nitric oxide studied by pulse radiolysis combined with infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Jodkowski, J.T.; Ratajczak, E.; Sillesen, A.

    1993-01-01

    The reaction CH3 + NO (+ M) --> CH3NO ( + M) was initiated by pulse radiolysis of acetone/nitric oxide mixtures and the kinetics of methyl radicals was studied by time-resolved infrared absorption spectroscopy. The rate constant was found to be strongly pressure dependent in the range of p (M) = 6.......5-150 mbar at 298 K with M = acetone as the third body. The experimental results are represented in terms of a fall-off curve centered at 37 mbar with limiting high- and low-pressure rate constants of k(rec,infinity) = (6.6 +/- 0.9) x 10(9) x (T/300)0.6 M-1 s-1 and k(rec,0)/[M] = (4.4 +/- 0.4) x 10(12) x (T...

  2. Chemical reaction at ferromagnet/oxide interface and its influence on anomalous Hall effect

    International Nuclear Information System (INIS)

    Liu, Yi-Wei; Teng, Jiao; Zhang, Jing-Yan; Liu, Yang; Chen, Xi; Li, Xu-Jing; Feng, Chun; Wang, Hai-Cheng; Li, Ming-Hua; Yu, Guang-Hua; Wu, Zheng-Long

    2014-01-01

    Chemical reactions at the ferromagnet/oxide interface in [Pt/Fe] 3 /MgO and [Pt/Fe] 3 /SiO 2 multilayers before and after annealing were investigated by X-ray photoelectron spectroscopy. The results show that Fe atoms at the Fe/MgO interface were completely oxidized in the as-grown state and significantly deoxidized after vacuum annealing. However, only some of the Fe atoms at the Fe/SiO 2 interface were oxidized and rarely deoxidized after annealing. The anomalous Hall effect was modified by this interfacial chemical reaction. The saturation anomalous Hall resistance (R xy ) was greatly increased in the [Pt/Fe] 3 /MgO multilayers after annealing and was 350% higher than that in the as-deposited film, while R xy of the [Pt/Fe] 3 /SiO 2 multilayer only increased 10% after annealing.

  3. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures

    International Nuclear Information System (INIS)

    Samaane, Mikhail

    1966-01-01

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al 2 O 3 , NiAl 2 O 4 and NiO + NiAl 2 O 4 ) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al 2 O 3 catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O 2 and CO 2 on the 2NiO+Al 2 O 3 solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl 2 O 4 and NiO+NiAl 2 O 4 ) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O 2 and CO 2 on NiAl 2 O 4 , and the kinetic of the oxidation reaction are herein studied

  4. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    Science.gov (United States)

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  5. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    Science.gov (United States)

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  7. Effect of rare earth oxide additives on the performance of NiMH batteries

    International Nuclear Information System (INIS)

    Tanaka, Toshiki; Kuzuhara, Minoru; Watada, Masaharu; Oshitani, Masahiko

    2006-01-01

    To date, we have performed research on nickel-metal hydride (NiMH) batteries used in many applications and have found that addition of rare earth oxides to the nickel electrode and the hydrogen-storage alloy (MH) electrode improves battery performance significantly. Because heavy rare earth oxides of such as Er, Tm, Yb and Lu have remarkable properties that shift the oxygen evolution overpotentials of nickel electrodes to more noble potentials, it is possible to improve high-temperature charge efficiency of nickel-metal hydride secondary batteries by adding them to nickel electrodes. Furthermore, addition of heavy rare earth oxides to MH electrodes depresses an acceleration of the alloy corrosion and improves service life of the battery at high temperatures. Accordingly, addition of heavy rare earth oxides is effective for NiMH batteries used in high-temperature applications such as electric vehicles (EVs), hybrid vehicles (HEVs) and rapid charge devices. In this study, we discussed how the addition of heavy rare earth oxides affects NiMH battery characteristics

  8. Criegee Intermediates: What Direct Production and Detection Can Teach Us About Reactions of Carbonyl Oxides

    Science.gov (United States)

    Taatjes, Craig A.

    2017-05-01

    The carbonyl oxide intermediates in the ozonolysis of alkenes, often known as Criegee intermediates, are potentially important reactants in Earth's atmosphere. For decades, careful analysis of ozonolysis systems was employed to derive an understanding of the formation and reactions of these species. Recently it has proved possible to synthesize at least some of these intermediates separately from ozonolysis, and hence to measure their reaction kinetics directly. Direct measurements have allowed new or more detailed understanding of each type of gas-phase reaction that carbonyl oxides undergo, often acting as a complement to highly detailed ozonolysis experiments. Moreover, the use of direct characterization methods to validate increasingly accurate theoretical investigations can enhance their impact well beyond the set of specific reactions that have been measured. Reactions that initiate particles or fuel their growth could be a new frontier for direct measurements of Criegee intermediate chemistry.

  9. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Holan, Martin; Pohl, Radek; Císařová, I.; Klepetářová, Blanka; Jones, P. G.; Jahn, Ullrich

    2015-01-01

    Roč. 21, č. 27 (2015), s. 9877-9888 ISSN 0947-6539 R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : cyclization * domino reactions * electron transfer * Michael addition * radical reactions Subject RIV: CC - Organic Chemistry Impact factor: 5.771, year: 2015

  10. EFFECT OF PHYTOGENIC ADDITIVES ON OXIDATION STABILITY OF FROZEN CHICKEN MEAT

    Directory of Open Access Journals (Sweden)

    Marek Bobko

    2016-10-01

    Full Text Available In this study, oxidative stability of frozen chicken breast and thigh muscle after application of feed mixtures enriched by phytogenic additives was investigated. The 150 pieces one-day-old chicks of Cobb 500 hybrid combination were divided into three groups: C - control group, G1 – experimental group with addition 1000 mg kg-1 Biostrong 510 + FortiBac and G2 – experimental group with addition 1000 mg kg-1 Agolin Acid.  The broiler chickens were fed during 42 days by ad libitum. Samples of chicken breast and thigh muscle were analysed in the 1st day and after 1st, 2nd, 3rd, 4th, 5th and 6th month of frozen storage at -18 °C. During testing period we recorded positive influence of phytogenic additives on oxidative stability of chicken meat in experimental groups (G1, G2. After 6th month of frozen storage, we found higher malondialdehyde (MDA values and lower oxidative stability of breast muscle in control group (0.167 mg.kg-1 compared to experimental groups G1 (0.149 mg.kg-1 and G2 (0.145 mg.kg-1. Similar tendency of oxidative changes as in the breast muscle was recorded in the thigh muscle. At the end of frozen storage MDA average values of thigh muscle were higher in control group (0.181 mg.kg-1 compared to experimental groups (G1 - 0.163 mg.kg-1 and G2 - 0.160 mg.kg-1.  Based on the obtained results we can stated, that phytogenic additives applied in chicken nutrition had positive influence of, namely on oxidation stability of fatty substances.

  11. Methanol oxidation reaction on core-shell structured Ruthenium-Palladium nanoparticles: Relationship between structure and electrochemical behavior

    Science.gov (United States)

    Kübler, Markus; Jurzinsky, Tilman; Ziegenbalg, Dirk; Cremers, Carsten

    2018-01-01

    In this work the relationship between structural composition and electrochemical characteristics of Palladium(Pd)-Ruthenium(Ru) nanoparticles during alkaline methanol oxidation reaction is investigated. The comparative study of a standard alloyed and a precisely Ru-core-Pd-shell structured catalyst allows for a distinct investigation of the electronic effect and the bifunctional mechanism. Core-shell catalysts benefit from a strong electronic effect and an efficient Pd utilization. It is found that core-shell nanoparticles are highly active towards methanol oxidation reaction for potentials ≥0.6 V, whereas alloyed catalysts show higher current outputs in the lower potential range. However, differential electrochemical mass spectrometry (DEMS) experiments reveal that the methanol oxidation reaction on core-shell structured catalysts proceeds via the incomplete oxidation pathway yielding formaldehyde, formic acid or methyl formate. Contrary, the alloyed catalyst benefits from the Ru atoms at its surface. Those are found to be responsible for high methanol oxidation activity at lower potentials as well as for complete oxidation of CH3OH to CO2 via the bifunctional mechanism. Based on these findings a new Ru-core-Pd-shell-Ru-terrace catalyst was synthesized, which combines the advantages of the core-shell structure and the alloy. This novel catalyst shows high methanol electrooxidation activity as well as excellent selectivity for the complete oxidation pathway.

  12. A combinatorial chemistry approach to the investigation of cerium oxide and plutonium oxide reactions with small molecules

    Science.gov (United States)

    Brady, John T.; Warner, Benjamin P.; Bridgewater, Jon S.; Havrilla, George J.; Morris, David E.; Buscher, C. Thomas

    2000-07-01

    We are currently investigating the potential chemistry of the 3013 Standard waste storage containers. These containers are filled with waste that is a mixture of inorganic salts and plutonium oxide that has been calcined to remove water and other volatiles. There has been concern about possible pressure buildup due to the formation of hydrogen or other gases. We are utilizing a combinatorial chemistry approach to investigate a range of possible reactions that may occur in the containers with various concentrations of metal oxides and inorganic salts.

  13. Propan-1-ol Oxidation Reaction on Au/TiO2 Catalysts

    African Journals Online (AJOL)

    MBI

    2014-11-27

    Nov 27, 2014 ... a decomposition pathway, producing CO2 and H2O. However, the presence of gold ... complete oxidation reaction of propan-1-ol on the catalysts. Keywords: Gold Catalysis ... flowed at a rate of 30 mL min-1. Propan- o-l was.

  14. The effect of the textile industry dye bath additive EDTMPA on colour removal characteristics by ozone oxidation.

    Science.gov (United States)

    Olmez, T; Kabdaşli, I; Tünay, O

    2007-01-01

    In this study, the effects of the phosphonic acid based sequestering agent EDTMPA used in the textile dye baths on colour and organic matter removal by ozone oxidation was experimentally investigated. Procion Navy HEXL dyestuff that has been commonly used for the reactive dyeing of cellulose fibers was selected as the model component. The organic matter oxidation by ozone was determined to obey the pseudo-first order kinetics as they are treated singly or in combination. COD removal rates obtained from pseudo-first order reaction kinetics showed that oxidation of Navy HEXL alone (0.0947 L/min) was faster than that of EDTMPA (0.0171 L/min) and EDTMPA with dye (0.0155 L/min) at pH 3.0. It was also found that reaction rates of single EDTMPA removal and EDTMPA and dye mixture removal increased as the reaction pH was increased from 3.0 to 10.5.

  15. Emission of nitrous oxide during combustion of organic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Gol' dberg, A.S.

    1990-11-01

    Analyzes formation of nitrogen oxides during combustion of coal, natural gas and mazout: chemical reactions that lead to formation of nitrous oxide during coal combustion, reaction kinetics and reaction yields, factors that influence emission of nitrogen oxides from a furnace, factors that influence formation of nitrous oxide (temperature effects, air excess ratio, coal burnout degree, etc.), effects of fuel type and its chemical composition, effects of flue gas desulfurization and denitrification methods on nitrous oxide yield. Analyses show that yield of nitrous oxide is low and does not exceed 5 cm{sup 3}/m{sup 3} flue gas (0.0005%). However chemical reactions of nitrogen oxides, sulfur dioxide and water vapor in the atmosphere are said to form additional quantities of nitrous oxide which negatively influence the ozone layer. 4 refs.

  16. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto; Menendez Rodriguez, Gabriel; Bellachioma, Gianfranco; Zuccaccia, Cristiano; Poater, Albert; Cavallo, Luigi; Macchioni, Alceo

    2016-01-01

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  17. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  18. Effects of Mn- and K-addition on catalytic activity of calcium oxide for methane activation

    International Nuclear Information System (INIS)

    Park, Jong Sik; Kong, Jang Il; Lee, Sung Han; Jun, Jong Ho

    1998-01-01

    Pure CaO, Mn-doped CaO, Mn/CaO, and K/CaO catalysts were prepared and tested as catalysts for the oxidative coupling of methane in the temperature range of 600 to 800 .deg. C to investigate the effects of Mn- and K-addition on the catalytic activity of calcium oxide. To characterize the catalysts, X-ray powder diffraction (XRD), XPS, SEM, DSC, and TG analyses were performed. The catalytic reaction was carried out in a single-pass flow reactor using on-line gas chromatography system. Normalized reaction conditions were generally p(CH 4 )/p(O 2 )=250 Torr/50 Torr, total feed flow rate=30 mL/min, and 1 atm of total pressure with He being used as diluent gas. Among the catalysts tested, 6.3 mol% Mn-doped CaO catalyst showed the best C 2 yield of 8.0% with a selectivity of 43.2% at 775 .deg. C. The C 2 selectivity increased on lightly doped CaO catalysts, while decreased on heavily doped CaO((Mn)>6.3 mol%)catalysts. 6 wt.% Mn/CaO and 6 wt.% K/CaO catalysts showed the C 2 selectivities of 13.2% and 30.9%, respectively, for the reaction. Electrical conductivities of CaO and Mn-doped CaO were measured in the temperature range of 500 to 1000 .deg. C at Po2's of 10 -3 to 10 -1 atm. The electrical conductivity was decreased with Mn-doping and increased with increasing Po 2 in the range of 10 -3 to 10 -1 atm, indicating the specimens to be p-type semiconductors. It was suggested that the interstitial oxygen ions formed near the surface can activate methane and the formation of interstitial oxygen ions was discussed on the basis of solid-state chemistry

  19. Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels-Alder Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Mishra, Kanchan; Lee, Yong Rok; Joh, Young-Gull [Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-02-15

    Iron oxide nanoparticles were synthesized using Saururus chinensis (S. chinensis) leaf extract as a reducing and stabilizing agent via ultrasonication. The size, morphology, crystallinity, elemental composition, weight loss, surface chemical state, and magnetic properties of the synthesized nanoparticles were investigated. The synthe-sized nanoparticles were used as an efficient and recyclable catalyst for the synthesis of a variety of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives by the imino Diels-Alder reaction. After the reaction, the catalyst was recovered by an external magnetic field. The recovered catalyst was then reused in a subsequent reaction under identical conditions. The recycled iron oxide nanoparticles (IONPs) were reused five times with-out any significant loss of catalytic activity.

  20. Magnetically Separable Iron Oxide Nanoparticles: An Efficient and Reusable Catalyst for Imino Diels-Alder Reaction

    International Nuclear Information System (INIS)

    Basavegowda, Nagaraj; Mishra, Kanchan; Lee, Yong Rok; Joh, Young-Gull

    2016-01-01

    Iron oxide nanoparticles were synthesized using Saururus chinensis (S. chinensis) leaf extract as a reducing and stabilizing agent via ultrasonication. The size, morphology, crystallinity, elemental composition, weight loss, surface chemical state, and magnetic properties of the synthesized nanoparticles were investigated. The synthe-sized nanoparticles were used as an efficient and recyclable catalyst for the synthesis of a variety of 2-methyl-4-substituted-1,2,3,4-tetrahydroquinoline derivatives by the imino Diels-Alder reaction. After the reaction, the catalyst was recovered by an external magnetic field. The recovered catalyst was then reused in a subsequent reaction under identical conditions. The recycled iron oxide nanoparticles (IONPs) were reused five times with-out any significant loss of catalytic activity.

  1. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  2. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment

    Science.gov (United States)

    Wang, Xinghao; Huang, Qingguo; Lu, Junhe; Wang, Liansheng; Wang, Zunyao

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters. PMID:26430733

  3. A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube

    Science.gov (United States)

    Nematollahi, Parisa; Neyts, Erik C.

    2018-05-01

    In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G∗ computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O2 molecule: O2(g) + CO(g) → O2(ads) + CO(ads) → CO2(g) + O(ads) and O(ads) + CO(g) → CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT.

  4. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    Science.gov (United States)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  5. Tuning the two-dimensional electron liquid at oxide interfaces by buffer-layer-engineered redox reactions

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Green, Robert J.; Sutarto, Ronny

    2017-01-01

    Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both...... polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant x-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how...... these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer...

  6. F/Cl + C2H2 reactions: Are the addition and hydrogen abstraction direct processes?

    International Nuclear Information System (INIS)

    Li Jilai; Geng Caiyun; Huang Xuri; Zhan Jinhui; Sun Chiachung

    2006-01-01

    The reactions of atomic radical F and Cl with acetylene have been studied theoretically using ab initio quantum chemistry methods and transition state theory. The doublet potential energy surfaces were calculated at the CCSD(T)/aug-cc-pVDZ//CCSD/6-31G(d,p), CCSD(T)/aug-cc-pVDZ//UMP2/6-311++G(d,p) and compound method Gaussian-3 levels. Two reaction mechanisms including the addition-elimination and the hydrogen abstraction reaction mechanisms are considered. In the addition-elimination reactions, the halogen atoms approach C 2 H 2 , perpendicular to the C≡C triple bond, forming the pre-reactive complex C1 at the reaction entrance. C1 transforms to intermediate isomer I1 via transition state TSC1/1 with a negative/small barrier for C 2 H 2 F/C 2 H 2 Cl system, which can proceed by further eliminating H atom endothermally. While the hydrogen abstraction reactions also involve C1 for the fluorine atom abstraction of hydrogen, yet the hydrogen abstraction by chlorine atom first forms a collinear hydrogen-bonded complex C2. The other reaction pathways on the doublet PES are less competitive due to thermodynamical or kinetic factors. According to our results, the presence of pre-reactive complexes indicates that the simple hydrogen abstraction and addition in the halogen atoms reaction with unsaturated hydrocarbon should be more complex. Furthermore, based on the analysis of the kinetics of all channels through which the addition and abstraction reactions proceed, we expect that the actual feasibility of the reaction channels may depend on the reaction conditions in the experiment. The present study may be helpful for probing the mechanisms of the title reactions and understanding the halogen chemistry

  7. Influence of additives on phase stabilization of scandia-doped zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Muccillo, Eliana Navarro dos Santos; Grosso, Robson Lopes; Reis, Shirley Leite dos; Muccillo, Reginaldo, E-mail: enavarro@usp.br, E-mail: roblopeg@usp.br, E-mail: shirley.reis@usp.br, E-mail: muccillo@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-04-15

    The effects of small additions of tin, zinc, calcium and boron oxides on phase composition and electrical conductivity of zirconia-10 mol% scandia were investigated. Compounds containing 1 mol% zinc, tin and calcium oxides and 1, 3 and 5 wt.% boron oxide were prepared by solid state reaction and characterized by X-ray diffraction, density measurements, scanning electron microscopy and impedance spectroscopy. Full stabilization of the cubic structure at room temperature was obtained with additions of 1 mol% calcium oxide and 2 wt.% boron oxide. Partially stabilized compounds exhibit herringbone structure, characteristic of the β- rhombohedric phase. Specimens with calcium as additive show total conductivity of 23.8 mS.cm{sup -1} at 750 deg C with activation energy of 1.13 eV. Liquid phase sintering by boron oxide addition is effective to enhance the densification of the solid electrolyte. (author)

  8. THE EFFECT OF GROUP IIIA TO VIA ELEMENTS AND THEIR OXIDES ON GRAPHITE OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Rakszawski, J F; Parker, W E

    1963-06-15

    The effect of group IIIA to VIA elements and oxides on graphite oxidation was determined. Additives were molded with spectroscopically pure graphite powder. The concentration was maintained constant at 0.1 mole percent based on the element. The rate of reaction with 1 atm of air was measured at 700 and 800 deg C. Air flow rate from 2000 to 3000 cc/min had no effect on the oxidation rate of the pure graphite at 700, 750, and 800 deg C indicating that reaction was not occurring in Zone III. The calculated Ea of 54 kcal/mole suggested reaction in Zone I. Visual inspection of the rods after reaction substantiated this conclusion. The reaction was first order with respect to oxygen partial pressure at 700 and 800 deg C. B, B/sub 2/O/sub 5/, P, and P/sub 2/ O/sub 6/ inhibited the oxid ation of graphite at 700 and 800 deg C while the other elements and oxides catalyzed the reaction to various degrees. The reaction remained kinetically of the first order when inhibited. A systematic variation in reaction rates appears to follow the diagonals of the periodic relationship of the element from the upper left to the lower right. These variations can be correlated with average ionization energy or electron affinity. (auth)

  9. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Amir-Rusli

    1996-01-01

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  10. Effect of ternary additions on the oxidation resistance of Ti5Si3

    International Nuclear Information System (INIS)

    Thom, A.J.; Akinc, M.; Iowa State Univ., Ames, IA

    1995-01-01

    Refractory intermetallic silicides are receiving increasing consideration for use as high temperature structural materials. Ti 5 Si 3 -based compositions are attractive due to their ability to incorporate a variety of interstitial ternary additions. These ternary additions present a unique opportunity to potentially tailor physical properties. Previous experimental work has shown that these additions significantly increase the otherwise poor oxidation resistance of undoped Ti 5 Si 3 above 700 C. Recent experimental work by the authors on the oxidation of small atom doped Ti 5 Si 3 is discussed. Interstitial additions of boron, carbon, and oxygen substantially improve the isothermal oxidation resistance of Ti 5 Si 3 at 1,000 C. In contrast, added nitrogen does not provide significant improvement. Even up to 1,306 C, interstitial oxygen imparts excellent oxidation resistance with a mass gain of 1.1 mg/cm 2 after 240 hours

  11. The analysis of magnesium oxide hydration in three-phase reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  12. Strategies for catalyst development: possibilities of the ``rational approach`` illustrated with partial oxidation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W.; Schedel-Niedrig, T.; Schloegl, R. [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany). Abt. Oberflaechenphysik

    1998-12-31

    The paper discusses two petrochemical selective oxidation reactions namely the practised formation of styrene (STY) and the desired oxidative functionalisation of propane. The present knowledge about the mode of operation of oxide catalysts is critically considered. The dehydrogenation of ethylbenzene (EB) should be described by an oxidehydration with water acting as oxidant. The potential role of the coke formed during catalytic reaction as co-catalyst will be discussed. Selective oxidation is connected with the participation of lattice oxygen mechanism which transforms unselective gas phase oxygen into selective oxygen. The atomistic description of this process is still quite unclear as well as the electron structural properties of the activated oxygen atom. The Role of solid state acidity as compared to the role of lattice oxygen is much less well investigated modern multiphase-multielement oxide (MMO) catalysts. The rationale is that the significant efforts made to improve current MMO systems by chemical modifications can be very much more fruitful when in a first step the mode of action of a catalyst is clarified on the basis of suitable experiments. Such time-consuming experiments at the beginning of a campaign for catalyst improvement pay back their investment in later stages of the project when strategies of chemical development can be derived on grounds of understanding. (orig.)

  13. QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with photochemically produced oxidants.

    Science.gov (United States)

    Arnold, William A; Oueis, Yan; O'Connor, Meghan; Rinaman, Johanna E; Taggart, Miranda G; McCarthy, Rachel E; Foster, Kimberley A; Latch, Douglas E

    2017-03-22

    Quantitative structure-activity relationships (QSARs) for prediction of the reaction rate constants of phenols and phenolates with three photochemically produced oxidants, singlet oxygen, carbonate radical, and triplet excited state sensitizers/organic matter, are developed. The predictive variable is the one-electron oxidation potential (E 1 ), which is calculated for each species using density functional theory. The reaction rate constants are obtained from the literature, and for singlet oxygen, are augmented with new experimental data. Calculated E 1 values have a mean unsigned error compared to literature values of 0.04-0.06 V. For singlet oxygen, a single linear QSAR that includes both phenols and phenolates is developed that predicts experimental rate constants, on average, to within a factor of three. Predictions for only 6 out of 87 compounds are off by more than a factor of 10. A more limited data set for carbonate radical reactions with phenols and phenolates also gives a single linear QSAR with prediction of rate constant being accurate to within a factor of three. The data for the reactions of phenols with triplet state sensitizers demonstrate that two sensitizers, 2-acetonaphthone and methylene blue, most closely predict the reactivity trend of triplet excited state organic matter with phenols. Using sensitizers with stronger reduction potentials could lead to overestimation of rate constants and thus underestimation of phenolic pollutant persistence.

  14. Formation pathways of DMSO(2) in the addition channel of the OH-initiated DMS oxidation: A theoretical study.

    Science.gov (United States)

    Ramírez-Anguita, Juan M; González-Lafont, Angels; Lluch, José M

    2009-07-15

    The production of dimethyl sulfoxide (DMSO) and dimethyl sulfone (DMSO(2)) in the dimethyl sulfide (DMS) degradation scheme initiated by the hydroxyl (OH) radical has been shown to be very sensitive to nitrogen oxides (NO(x)) levels. In the present work we have explored the potential energy surfaces corresponding to several reaction pathways which yield DMSO(2) from the CH(3)S(O)(OH)CH(3) adduct [including the formation of CH(3)S(O)(OH)CH(3) from the reaction of DMSO with OH] and the reaction channels that yield DMSO or/and DMSO(2) from the CH(3)S(O(2))(OH)CH(3) adduct are also studied. The formation of the CH(3)S(O(2))(OH)CH(3) adduct from CH(3)S(OH)CH(3) (DMS-OH) and O(2) was analyzed in our previous work. All these pathways due to the presence of NO(x) (NO and NO(2)) and also due to the reactions with O(2), OH and HO(2) are compared with the objective of inferring their kinetic relevance in the laboratory experiments that measure DMSO(2) (and DMSO) formation yields. In particular, our theoretical results clearly show the existence of NO(x)-dependent pathways leading to the formation of DMSO(2), which could explain some of these experimental results in comparison with experimental measurements carried out in NO(x)-free conditions. Our results indicate that the relative importance of the addition channel in the DMS oxidation process can be dependent on the NO(x) content of chamber experiments and of atmospheric conditions. (c) 2008 Wiley Periodicals, Inc.

  15. Hot-pressed silicon nitride with various lanthanide oxides as sintering additives

    Science.gov (United States)

    Ueno, K.; Toibana, Y.

    1984-01-01

    The effects of addition of various lanthanide oxides and their mixture with Y2O3 on the sintering of Si3N4 were investigated. The addition of simple and mixed lanthanide oxides promoted the densification of Si3N4 in hot-pressing at 1800 C under 300-400kg/ centimeters squared for 60 min. The crystallization of yttrium and lanthanide-silicon oxynitrides which was observed inn the sintered body containing yttrium-lanthanide mixed oxides as additives led to the formation of a highly refractory Si3N4 ceramic having a bending strength of 82 and 84 kg/millimeters squared at room temperature and 1300 C respectively. In a Y2O3+La2O3 system, a higher molar ratio of La2O3 to Y2O3 gave a higher hardness and strength at high temperatures. It was found that 90 min was an optimum sintering time for the highest strength.

  16. Concentrated Aqueous Sodium Tosylate as Green Medium for Alkene Oxidation and Nucleophilic Substitution Reactions.

    Science.gov (United States)

    Sela, Tal; Lin, Xiaoxi; Vigalok, Arkadi

    2017-11-03

    A hydrotropic solution of highly concentrated sodium tosylate (NaOTs) can be used as a recyclable medium for the environmentally benign oxidation of conjugated alkenes with H 2 O 2 . Both uncatalyzed and metal-catalyzed reactions provided the corresponding oxidation products in higher yields than in pure water or many common organic solvents.

  17. Actinic radiation-curable formulations from the reaction product of organic isocyanate, poly(alkylene oxide) polyol and an unsaturated addition-polymerizable monomeric compound having a single isocyanate-reactive hydrogen group

    International Nuclear Information System (INIS)

    Howard, D.D.

    1979-01-01

    Energy-curable compositions which can be cured in the presence of air by exposure to actinic radiation contain at least one unsaturated urethane oligomer. The oligomer comprises the reaction product of at least one poly(alkylene oxide) polyol, at least one polyisocyanate, and at least one unsaturated active hydrogen-containing compound

  18. Development of a redox-free Mitsunobu reaction exploiting phosphine oxides as precursors to dioxyphosphoranes.

    Science.gov (United States)

    Tang, Xiaoping; Chapman, Charlotte; Whiting, Matthew; Denton, Ross

    2014-07-14

    The development of the first redox-free protocol for the Mitsunobu reaction is described. This has been achieved by exploiting triphenylphosphine oxide--the unwanted by-product in the conventional Mitsunobu reaction--as the precursor to the active P(V) coupling reagent. Multinuclear NMR studies are consistent with hydroxyl activation via an alkoxyphosphonium salt.

  19. Changes in oxidative potential of soil and fly ash after reaction with gaseous nitric acid

    Science.gov (United States)

    Zhan, Ying; Ginder-Vogel, Matthew; Shafer, Martin M.; Rudich, Yinon; Pardo, Michal; Katra, Itzhak; Katoshevski, David; Schauer, James J.

    2018-01-01

    The goal of this study was to examine the impact of simulated atmospheric aging on the oxidative potential of inorganic aerosols comprised primarily of crustal materials. Four soil samples and one coal fly ash sample were artificially aged in the laboratory through exposure to the vapor from 15.8 M nitric acid solution for 24 h at room temperature. Native and acid-aged samples were analyzed with a cellular macrophage and acellular dithionthreitol assays to determine oxidative potential. Additionally, the samples were analyzed to determine the concentration of 50 elements, both total and the water-soluble fraction of these elements by Sector Field Inductively Coupled Plasma Mass Spectrometry (SF-ICMS) and crystalline mineral composition using X-ray Diffraction (XRD). The results show that reactions with gaseous nitric acid increase the water-soluble fraction of many elements, including calcium, iron, magnesium, zinc, and lead. The mineral composition analysis documented that calcium-rich minerals present in the soils (e.g., calcite) are converted into different chemical forms, such as calcium nitrate (Ca(NO3)2). The nitric acid aging process, which can occur in the atmosphere, leads to a 200-600% increase in oxidative potential, as measured by cellular and acellular assays. This laboratory study demonstrates that the toxic effects of aged versus freshly emitted atmospheric dust may be quite different. In addition, the results suggest that mineralogical analysis of atmospheric dust may be useful in understanding its degree of aging.

  20. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    International Nuclear Information System (INIS)

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-01-01

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  1. Ethanol Oxidation Reaction Using PtSn/C+Ce/C Electrocatalysts: Aspects of Ceria Contribution

    International Nuclear Information System (INIS)

    De Souza, R.F.B.; Silva, J.C.M.; Assumpção, M.H.M.T.; Neto, A.O.; Santos, M.C.

    2014-01-01

    The ethanol oxidation reaction (EOR) was investigated using PtSn/C + Ce/C electrocatalysts in different mass ratios (58:42, 53:47, and 42:58) prepared using the polymeric precursor method. Transmission electron microscopy (TEM) experiments showed particles sizes in the range of 3 to 7 nm. Changes in the net parameters observed for Pt suggest the incorporation of Sn into the Pt crystalline network with the formation of an alloy mixture with the SnO 2 phase. Among the PtSn/C + Ce/C catalysts investigated, the 53:47 composition showed the highest activity towards the EOR. In this case, the j versus t curves obtained in the presence of ethanol in acidic media exhibited a current density 90% higher than that observed with the commercial PtSn/C (ETEK). Correspondingly, during the experiments performed on single direct ethanol fuel cells, the maximum power density obtained using PtSn/C + Ce/C (53:47) as the anode was approximately 60% higher than that obtained using the commercial catalyst. FTIR data showed that the observed behavior for ethanol oxidation may be explained in terms of a synergic effect of bifunctional mechanism with electronic effects, in addition to a chemical effect of ceria that provides oxygen-containing species to oxidize acetaldehyde to acetic acid

  2. Reaction path of the oxidative coupling of methane over a lithium-doped magnesium oxide catalyst : Factors affecting the Rate of Total Oxidation of Ethane and Ethylene

    NARCIS (Netherlands)

    Roos, J.A.; Korf, S.J.; Veehof, R.H.J.; van Ommen, J.G.; Ross, J.R.H.

    1989-01-01

    Experiments using gas mixtures of O2, C2H6 or C2H4 and CH4 or He have been carried out with a Li/MgO catalyst using a well-mixed reaction system which show that the total oxidation products, CO and CO2, are formed predominantly from ethylene, formed in the oxidative coupling of methane. It is

  3. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  4. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  5. Coherent diffractive imaging of solid state reactions in zinc oxide crystals

    Science.gov (United States)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.

    2011-11-01

    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  6. Hexafluorobenzene: A powerful solvent for a noncovalent stereoselective organocatalytic Michael addition reaction

    KAUST Repository

    Lattanzi, Alessandra

    2012-01-01

    A dramatic enhancement of the diastereo- and enantioselectivity in the nitro-Michael addition reaction organocatalysed by a commercially available α,α-l-diaryl prolinol was disclosed when performing the reaction in unconventional hexafluorobenzene as a medium. DFT calculations were performed to clarify the origin of stereoselectivity and the role of C 6F 6. © The Royal Society of Chemistry 2012.

  7. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Science.gov (United States)

    Pemartin-Biernath, Kelly; Vela-González, Andrea V.; Moreno-Trejo, Maira B.; Leyva-Porras, César; Castañeda-Reyna, Iván E.; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita

    2016-01-01

    Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications. PMID:28773602

  8. Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Kelly Pemartin-Biernath

    2016-06-01

    Full Text Available Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD, below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM. Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.

  9. A short synthesis-stuttgart of (S)-pyrrolam A via domino oxidation-witting reaction

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Shet, J.; Tilve, S.G.; Parameswaran, P.S.

    A short synthesis of (S)-pyrrolam A starting from readily available N-(benzyloxycarbonyl)-L prolinol is described that makes use of a domino primary alcohol oxidation-Witting reaction as the key step...

  10. Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions.

    Science.gov (United States)

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-09-15

    Soups based on cauliflower soup powders, prepared by dry mixing of ingredients and rapeseed oil, showed a decrease in quality, as evaluated by a sensory panel, during the storage of the soup powder in the dark for up to 12weeks under mildly accelerated conditions of 40°C and 75% relative humidity. Antioxidant, shown to be effective in protecting the rapeseed bulk oil, used for the powder preparation, had no effect on storage stability of the soup powder. The freshly prepared soup powder had a relatively high concentration of free radicals, as measured by electron spin resonance spectroscopy, which decreased during storage, and most remarkably during the first two weeks of storage, with only marginal increase in lipid hydroperoxides as primary lipid oxidation products, and without any increase in secondary lipid oxidation products. Analyses of volatiles by SPME-GC-MS revealed a significant increase in concentrations of 2-methyl- and 3-methyl butanals, related to Maillard reactions, together with an increase in 2-acetylpyrrole concentration. The soup powders became more brown during storage, as indicated by a decreasing Hunter L-value, in accord with non-enzymatic browning reactions. A significant increase in the concentrations of dimethyl disulfide in soup powder headspace indicated free radical-initiated protein oxidation. Protein degradation, including Maillard reactions and protein oxidation, is concluded to be more important than lipid oxidation in determining the shelf-life of dry cauliflower soup powder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    International Nuclear Information System (INIS)

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl 4 ) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO 2 ) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl 4 -UO 2 shows a reaction to form uranium oxychloride (UOCl 2 ) that has a good solubility in molten UCl 4 . This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl 4 , ZrCl 4 , SiCl 4 , ThCl 4 ) by reaction of oxides with chlorine (Cl 2 ) and carbon has application to the preparation of UCl 4

  12. Interfacial reactions between indium tin oxide and triphenylamine tetramer layers induced by photoirradiation

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Yamamoto, Ichiro; Murasaki, Takanori; Kato, Yoshifumi

    2008-01-01

    The effects of photoirradiation on the interfacial chemical reactions between indium tin oxide (ITO) films and layers of triphenylamine tetramer (TPTE) were investigated by using in situ x-ray photoelectron spectroscopy (XPS). Thin TPTE layers deposited onto sputter-deposited ITO films were irradiated with violet light-emitting diodes (peak wavelength: 380 nm). Shifts in the peak positions of spectral components that originated in the organic layer toward the higher binding-energy side were observed in the XPS profiles during the early stages of irradiation. No further peak shifts were observed after additional irradiation. An increase in the ratio of the organic component in the O 1s spectra was also observed during the photoirradiation. The ratio of the organic component increased in proportion to the cube root of the irradiation time. These results suggest that photoirradiation induces an increase in the height of the carrier injection barrier at the interface between TPTE and ITO in the early stages of the irradiation, possibly due to the rapid diffusion controlled formation and growth of an oxidized TPTE layer, which is considered to act as a high resistance layer

  13. Hantzsch Reaction Starting Directly from Alcohols through a Tandem Oxidation Process

    Directory of Open Access Journals (Sweden)

    Xiaobing Liu

    2017-01-01

    Full Text Available A Brønsted acidic ionic liquid, 3-(N,N-dimethyldodecylammonium propanesulfonic acid hydrogen sulphate ([DDPA][HSO4], has been successfully applied to catalyze sequential oxidation of aromatic alcohols with NaNO3 followed by their condensation with dicarbonyl compound and ammonium acetate. The corresponding pyridine analogues of Hantzsch 1,4-dihydropyridines could be obtained as a major product with high yields by the multicomponent reaction. The present work utilizing alcohols instead of aldehyde in Hantzsch reaction is a valid and green alternative to the classical synthesis of the corresponding pyridine analogues of Hantzsch 1,4-dihydropyridines.

  14. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  15. Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles.

    Science.gov (United States)

    Yang, Bin; Ying, Guang-Guo; Zhang, Li-Juan; Zhou, Li-Jun; Liu, Shan; Fang, Yi-Xiang

    2011-03-01

    Benzotriazoles (BTs) are high production volume chemicals with broad application in various industrial processes and in households, and have been found to be omnipresent in aquatic environments. We investigated oxidation of five benzotriazoles (BT: 1H-benzotriazole; 5MBT: 5-methyl-1H-benzotriazole; DMBT: 5,6-dimethyl-1H-benzotriazole hydrate; 5CBT: 5-chloro-1H-benzotriazole; HBT: 1-hydroxybenzotriazole) by aqueous ferrate (Fe(VI)) to determine reaction kinetics as a function of pH (6.0-10.0), and interpreted the reaction mechanism of Fe(VI) with BTs by using a linear free-energy relationship. The pK(a) values of BT and DMBT were also determined using UV-Visible spectroscopic method in order to calculate the species-specific rate constants, and they were 8.37 ± 0.0 and 8.98 ± 0.08 respectively. Each of BTs reacted moderately with Fe(VI) with the k(app) ranged from 7.2 to 103.8 M(-1)s(-1) at pH 7.0 and 24 ± 1 °C. When the molar ratio of Fe(VI) and BTs increased up to 30:1, the removal rate of BTs reached about >95% in buffered milli-Q water or secondary wastewater effluent. The electrophilic oxidation mechanism of the above reaction was illustrated by using a linear free-energy relationship between pH-dependence of species-specific rate constants and substituent effects (σ(p)). Fe(VI) reacts initially with BTs by electrophilic attack at the 1,2,3-triazole moiety of BT, 5MBT, DMBT and 5CBT, and at the N-OH bond of HBT. Moreover, for BT, 5MBT, DMBT and 5CBT, the reactions with the species HFeO(4)(-) predominantly controled the reaction rates. For HBT, the species H(2)FeO(4) with dissociated HBT played a major role in the reaction. The results showed that Fe(VI) has the ability to degrade benzotriazoles in water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  17. Synthesis and characterization of cobalt-nichel oxides for the oxygen formation reaction

    International Nuclear Information System (INIS)

    Morales G, P.

    2001-01-01

    In this work the compounds of cobalt and nickel oxides and the mixtures of cobalt-nickel were prepared which were characterized and evaluated as electrocatalysts in the oxygen release reaction in alkaline media. The compounds were synthesised by the sol-gel method: heated at 400 and 500 Centigrade. The compounds characterization was realized by thermogravimetry, X-ray diffraction and Scanning electron microscopy. As the Co 3 O 4 and the Ni O as the mixtures Ni O/Co 3 O 4 were obtained as a porous material with a small particle size, characteristics which are presented by cause of the low temperature of synthesis. The electrocatalytic evaluation for the synthesised compounds for the oxygen release reaction was realized by cyclic volt amperometry in a 0.5M KOH solution. The oxides mixtures presented a well electrocatalytic activity to be used in the electrochemical release of oxygen. The current density and the electrochemically active area, in all the cases of mixtures is very higher to the Co 3 O 4 and Ni O ones. Observing with greater clearness the synergic effects, in the obtained mixture at 400 C. The oxides mixtures heated at 400 C were stables for the oxygen formation reaction. Therefore it is be able to say that the Ni O/Co 3 O 4 mixture counts on a great reactive area: electrocatalytic characteristic desirable to be a material used as anode in the electrolysis of water, which increases the oxygen release in the anode and so the hydrogen release in the cathode. (Author)

  18. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    Science.gov (United States)

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-04

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.

  19. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    Science.gov (United States)

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  20. Caryophyllene driven diversity in an one-pot rearrangement of oxidation and transanular reactions

    Science.gov (United States)

    Tang, Hao-Yu; Quan, Lu-Lu; Yu, Jie; Zhang, Qiang; Gao, Jin-Ming

    2018-03-01

    Diversity oriented synthesis starting from natural products is a newly coming strategy to build diverse skeletons to meet the demands of high throughput screening in drug development. Caryophyllene was being considered as an ideal starting point to build divers natural-like sesquiterpenes due to its rich sources and build-in reactivity. In this paper, six new natural-like products (2-7) were synthesized form the natural cryophyllene oxide via cascade oxidation and transannular reactions in a one-pot procedure. Their structures were elucidated by exhaustive spectra method including 2D NMR and X-ray diffraction. Of the products, compounds 6 and 7 possess very similar skeleton to natural products. Our findings demonstrated that one-pot cascade reactions on macrocyclic natural products is a concise strategy to create diverse natural-like skeletons.

  1. Controlling photo-oxidation processes of a polyfluorene derivative: The effect of additives and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, G.R. [Laboratory of Polymers and Electronic Properties of Materials – UFOP, Ouro Preto, MG (Brazil); Nowacki, B. [Paulo Scarpa Polymer Laboratory – UFPR, Curitiba, PR (Brazil); Magalhães, A. [Instituto de Química, Universidade Estadual de Campinas – UNICAMP, Campinas, SP (Brazil); Azevedo, E.R. de [Instituto de Física de São Carlos, Universidade de São Paulo – USP, São Carlos, SP (Brazil); Sá, E.L. de [Chemistry Department, Federal University of Parana, Curitiba, PR (Brazil); Akcelrud, L.C. [Paulo Scarpa Polymer Laboratory – UFPR, Curitiba, PR (Brazil); Bianchi, R.F., E-mail: bianchi@iceb.ufop.br [Laboratory of Polymers and Electronic Properties of Materials – UFOP, Ouro Preto, MG (Brazil)

    2014-08-01

    The control of the photo degradation of a fluorene–vinylene–phenylene based-polymer, poly(9,9-di-hexylfluorenediylvinylene-alt-1,4-phenylenevinylene) (LaPPS16) was achieved by addition of a radical scavenger (RS) (enhancing photo resistance) or a radical initiator (RI) (reducing photo resistance). Photoluminescence, UV–Vis absorption, {sup 1}H NMR spectroscopies and gel permeation chromatography (GPC) revealed that the incorporating small amounts of RS or RI is an efficient way to control the rates of the photo-oxidation reactions, and thus to obtain the conjugated polymer with foreseeable degradation rates for applications in blue-light sensitive detectors for neonatal phototherapy. - Highlights: • Photo degradation control of a fluorene–vinylene–phenylene based polymer was achieved. • A radical scavenger enhanced photo resistance and radical initiator decreased it. • Color change rate with irradiation dose provided a basis for dosimeter construction.

  2. The pentadehydro-Diels-Alder reaction.

    Science.gov (United States)

    Wang, Teng; Naredla, Rajasekhar Reddy; Thompson, Severin K; Hoye, Thomas R

    2016-04-28

    In the classic Diels-Alder [4 + 2] cycloaddition reaction, the overall degree of unsaturation (or oxidation state) of the 4π (diene) and 2π (dienophile) pairs of reactants dictates the oxidation state of the newly formed six-membered carbocycle. For example, in the classic Diels-Alder reaction, butadiene and ethylene combine to produce cyclohexene. More recent developments include variants in which the number of hydrogen atoms in the reactant pair and in the resulting product is reduced by, for example, four in the tetradehydro-Diels-Alder (TDDA) and by six in the hexadehydro-Diels-Alder (HDDA) reactions. Any oxidation state higher than tetradehydro (that is, lacking more than four hydrogens) leads to the production of a reactive intermediate that is more highly oxidized than benzene. This increases the power of the overall process substantially, because trapping of the reactive intermediate can be used to increase the structural complexity of the final product in a controllable and versatile manner. Here we report an unprecedented overall 4π + 2π cycloaddition reaction that generates a different, highly reactive intermediate known as an α,3-dehydrotoluene. This species is in the same oxidation state as a benzyne. Like benzynes, α,3-dehydrotoluenes can be captured by various trapping agents to produce structurally diverse products that are complementary to those arising from the HDDA process. We call this new cycloisomerization process a pentadehydro-Diels-Alder (PDDA) reaction-a nomenclature chosen for chemical taxonomic reasons rather than mechanistic ones. In addition to alkynes, nitriles (RC≡N), although non-participants in aza-HDDA reactions, readily function as the 2π component in PDDA cyclizations to produce, via trapping of the α,3-(5-aza)dehydrotoluene intermediates, pyridine-containing products.

  3. Mineral dielectric constants and the oxide additivity rule

    International Nuclear Information System (INIS)

    Shannon, R.D.; Subramanian, M.A.; Mariano, A.N.; Rossman, G.R.

    1989-01-01

    The 1 MHz dielectric constants of a variety of synthetic aluminate garnets: Y 3 Al 5 O 12 , Ho 3 Al 5 O 12 , Y 2.93 Nd .07 Sc 2 Al 3 O 12 and Gd 2.95 Nd .05 Sc 1.98 Cr .02 Al 3 O 12 and several silicates: CaB 2 Si 2 O 8 (danburite), Ca 3 Al 2 Si 3 O 12 (grossular) and Mg 2 Al 4 Si 5 O 18 (cordierite) were determined using the two-terminal method with edge corrections. These data and polarizabilities derived from the published single crystal dielectric constants of simple oxides were used to compare compound polarizabilities obtained from the Clausius-Mosotti equation and the oxide additivity rule

  4. Kinetic Studies of Oxidative Coupling of Methane Reaction on Model Catalysts

    KAUST Repository

    Khan, Abdulaziz M.

    2016-04-26

    With the increasing production of natural gas as a result of the advancement in the technology, methane conversion to more valuable products has become a must. One of the most attractive processes which allow the utilization of the world’s most abundant hydrocarbon is the oxidative coupling. The main advantage of this process is the ability of converting methane into higher paraffins and olefins (primarily C2) in a direct way using a single reactor. Nevertheless, low C2+ yields have prevented the process to be commercialized despite the fact that great number of attempts to prepare catalysts were conducted so that it can be economically viable. Due to these limitations, understanding the mechanism and kinetics of the reaction can be utilized in improving the catalysts’ performance. The reaction involves the formation of methyl radicals that undergo gas-phase radical reactions. CH4 activation is believed to be done the surface oxygen species. However, recent studies showed that, in addition to the surface oxygen mediated pathway, an OH radical mediated pathway have a large contribution on the CH4 activation. The experiments of Li/MgO, Sr/La2O3 and NaWO4/SiO2 catalysts revealed variation of behavior in activity and selectivity. In addition, water effect analysis showed that Li/MgO deactivate at the presence of water due to sintering phenomena and the loss of active sites. On the other hand, negative effect on the C2 yield and CH4 conversion rate was observed with Sr/La2O3 with increasing the water partial pressure. Na2WO4/SiO2 showed a positive behavior with water in terms of CH4 conversion and C2 yield. In addition, the increment in CH4 conversion rate was found to be proportional with PO2 ¼ PH2O ½ which is consistent with the formation of OH radicals and the OH-mediated pathway. Experiments of using ring-dye laser, which is used to detect OH in combustion experiments, were tried in order to detect OH radicals in the gas-phase of the catalyst. Nevertheless

  5. Improving Asphalt Mixtures Performance by Mitigating Oxidation Using Anti-Oxidants Additives

    Science.gov (United States)

    Dessouky, Samer; Diaz, Manuel

    Polymer modified additives are typically used to improve rheological properties of asphalt binder as well as mechanical properties of asphalt concrete mix. In this study, polymer-modified binder PG70-22 is mixing with two co-polymers enhanced with anti-oxidant agents namely; Solution Styrene-Butadiene Rubber (SSBR) and Solution Ethylene-Butylene/Styrene (SEBS). The objective of this study is to characterize the effect of those additives into the rheological properties of the asphalt binder using temperature sweep test and mechanical properties of asphalt mixes. The aging index is determined to evaluate the role of additives to reduce brittleness after aging of the binder. The performance of asphalt mixes were characterized by Hamburg Wheel Tracking Test for moisture damage, Beam Fatigue Test for fatigue properties and Flow Number Test for rutting performance. It is found that the asphalt mixes with enhanced binders are improving its rutting and moisture resistance but decreased its fatigue life compared to the control mix.

  6. Kinetics of Np(4) oxidation reaction by persulphate in nitric acid solution in the presence of ferric ions as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Koltunov, V S; Marchenko, V I

    1976-01-01

    The kinetics of the reaction Np(IV) + Fe(III) = Np(V) + Fe(II)was investigated by a spectrophotometric method according to observation of the consumption of Np(IV) at 720 nm in a solution of HNO/sub 3/ + NaNO/sub 3/ in the concentration range; (F(III))equal (5.12-102.4).10/sup -3/ M, (H+) equal 0.14-1 M, (NO/sub 3//sup -/) = 0.5-2 M at an ionic strength of the solution ..mu.. = 0.2-2 and temperatures of 25-46/sup 0/C. To exclude the reverse reaction, (3-6).10/sup -2/ M (NH/sub 4/)/sub 2/S/sub 2/O/sub 8/, which rapidly oxidizes Fe(II), was added to the solution. The possible oxidation of Np(V) to Np(VI) was prevented by the addition of small quantities of N/sub 2/H/sub 4/. It was shown that the reaction rate is described by the equation -d(Np(IV))/dt=k(Np(IV))(Fe(III))/(H/sup +/)/sup 3/. where k = 0.490 +- 0.026 M/sup 2/.min/sup -1/ at 25/sup 0/ and ..mu.. = 1. The No/sub 3//sup -/ ions inhibit the reaction in the interval (NO/sub 3//sup -/) = 0-1 M and do not influence it at (NO/sub 3//sup -/) > 1 M. On the basis of an investigation of the dependence of k on the temperature, the energy (E = 32.5 kcal/mole), free energy (..delta..F* = 20.3 kcal/mole), and entropy (..delta..S* = 39 entropy units) of activation of the reaction were calculated. The reaction mechanism is discussed.

  7. Optimization of reaction parameters for the electrochemical oxidation of lidocaine with a Design of Experiments approach

    NARCIS (Netherlands)

    Gul, Turan; Bischoff, Rainer; Permentier, Hjalmar

    2015-01-01

    Identification of potentially toxic oxidative drug metabolites is a crucial step in the development of new drugs. Electrochemical methods are useful to study oxidative drug metabolism, but are not widely used to synthesize metabolites for follow-up studies. Careful optimization of reaction

  8. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions and novel technologies

    Directory of Open Access Journals (Sweden)

    Frank eSchreiber

    2012-10-01

    Full Text Available Nitrous oxide (N2O is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH or the reduction of nitrite (NO2- to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO2- to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria. In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO2-, NH2OH and nitroxyl (HNO. Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser based absorption spectroscopy. In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.

  9. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

    Science.gov (United States)

    Schreiber, Frank; Wunderlin, Pascal; Udert, Kai M.; Wells, George F.

    2012-01-01

    Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build

  10. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Bruheim, I.; Haugsgjerd, B.O.

    2014-01-01

    was assessed by peroxide value and anisidine value, measurement of lipid derived volatiles, lipid classes and antioxidants. The non-enzymatic browning reactions were assessed through the measurement of pyrroles, free amino acids content and Strecker-derived volatiles. The increase of incubation temperature......The main objective of this study was to investigate the effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Krill oil was incubated at two different temperatures (20 and 40°C) for 28 or 42 days. The oxidative stability of krill oil...

  11. Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.

    1992-02-01

    The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

  12. The adsorption and reaction of halogenated volatile organic compounds (VOC's) on metal oxides. 1998 annual progress report

    International Nuclear Information System (INIS)

    Goodman, D.W.; Haw, J.F.; Lunsford, J.

    1998-01-01

    'The goal of the research is to elucidate the properties of the materials responsible for the activation of halocarbons and the nature of the intermediates formed in the dissociative adsorption of this class of compounds. This information is essential for interpreting and predicting stoichiometric and catalytic pathways for the safe destruction of halocarbon pollutants. The specific objectives are: (1) to study the adsorption and reactivity of chloromethanes and chloroethanes on metal oxides; (2) to identify the reaction intermediates using spectroscopic methods; and (3) to develop kinetic models for the reaction of these halocarbons with oxide surfaces. This report summarizes work after 20 months of a 36-month project. Emphasis has been placed understanding the surfaces phases, as well as the bulk phases that are present during the reactions of chlorinated hydrocarbons with strongly basic metal oxides. Most of the research has been carried out with carbon tetrachloride.'

  13. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Chandran, Kartik; Villas-Boas, Silas G; Singhal, Naresh

    2016-05-01

    Over the coming decades nitrous oxide (N2O) is expected to become a dominant greenhouse gas and atmospheric ozone depleting substance. In wastewater treatment systems, N2O is majorly produced by nitrifying microbes through biochemical reduction of nitrite (NO2(-)) and nitric oxide (NO). However it is unknown if the amount of N2O formed is affected by alternative NO redox reactions catalyzed by oxidative nitrite oxidoreductase (NirK), cytochromes (i.e., P460 [CytP460] and 554 [Cyt554 ]) and flavohemoglobins (Hmp) in ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively). In this study, a mathematical model is developed to assess how N2O formation is affected by such alternative nitrogen redox transformations. The developed multispecies metabolic network model captures the nitrogen respiratory pathways inferred from genomes of eight AOB and NOB species. The performance of model variants, obtained as different combinations of active NO redox reactions, was assessed against nine experimental datasets for nitrifying cultures producing N2O at different concentration of electron donor and acceptor. Model predicted metabolic fluxes show that only variants that included NO oxidation to NO2(-) by CytP460 and Hmp in AOB gave statistically similar estimates to observed production rates of N2O, NO, NO2(-) and nitrate (NO3(-)), together with fractions of AOB and NOB species in biomass. Simulations showed that NO oxidation to NO2(-) decreased N2O formation by 60% without changing culture's NO2(-) production rate. Model variants including NO reduction to N2O by Cyt554 and cNor in NOB did not improve the accuracy of experimental datasets estimates, suggesting null N2O production by NOB during nitrification. Finally, the analysis shows that in nitrifying cultures transitioning from dissolved oxygen levels above 3.8 ± 0.38 to <1.5 ± 0.8 mg/L, NOB cells can oxidize the NO produced by AOB through reactions catalyzed by oxidative NirK. © 2015 Wiley Periodicals, Inc.

  14. The kinetics of free radical metathetical and addition reactions in silane solutions

    International Nuclear Information System (INIS)

    Aloni, R.

    1976-12-01

    In this work radiolytic technique was employed for the initiation of free radical chainreactions in silane solution. The kinetic analysis of the chain mechanism in various solutions enabled the determination of the Arrhenius parameters for metathesis, addition and unimolecular decomposition reactions which make up the chainpropagation sequence in the systems studied. The following radical reactions were investigated: chlorine atom abstraction from chloromethanes by SiCl 3 and Et 3 Si radicals, and chlorine atom abstraction from chloroethanes by Et 3 Si radicals; unimolecular decomposition reactions and hydrogen atom abstraction, *from the solvent, of chloroethyl radicals in triethylsilane solutions; addition and abstraction reactions of Et 3 Si radicals with chloroolefins. Arrhenius parameters were determined for abstraction of chlorine atom from CH 3 Cl, CH 2 Cl 2 , CHCl 3 and CCl 4 , by SiCl 3 radicals and from CCl 4 , CHCl 3 , CH 2 Cl 2 , CCl 3 CN, C 2 Cl 5 H, sym-C 2 Cl 4 H 2 , asym-C 2 Cl 4 H 2 , 1.1.1-C 2 Cl 3 H 3 , 1.1.1-C 2 Dl 3 F 3 and 1.1-C 2 Cl 2 H 4 by Et 3 Si radicals. (author)

  15. Kinetics of transuranium element oxidation-reduction reactions in solution; Cinetique des reactions d'oxydo-reduction des elements transuraniens en solution

    Energy Technology Data Exchange (ETDEWEB)

    Gourisse, D [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [French] Une revue systematique de la cinetique des reactions d'oxydo-reduction des elements U, Np, Pu, Am, en solution perchlorique est proposee. Des considerations relatives aux grandeurs thermodynamiques d'activation associees aux actes elementaires (effet de compensation, entropie standard des complexes actives, rapidite des reactions) sont developpees. L'influence de l'acidite, de la force ionique, de l'eau lourde et de la polarite des solvants mixtes sur la vitesse des reactions est decrite. Enfin l'influence des differents anions sur la vitesse des reactions est expliquee par les variations de l'enthalpie libre standard de la reaction et de l'enthalpie libre d'activation (travail des forces electrostatiques) resultant de la complexation des especes dissoutes dans la solution. (auteur)

  16. Maillard reaction versus other nonenzymatic modifications in neurodegenerative processes.

    Science.gov (United States)

    Pamplona, Reinald; Ilieva, Ekaterina; Ayala, Victoria; Bellmunt, Maria Josep; Cacabelos, Daniel; Dalfo, Esther; Ferrer, Isidre; Portero-Otin, Manuel

    2008-04-01

    Nonenzymatic protein modifications are generated from direct oxidation of amino acid side chains and from reaction of the nucleophilic side chains of specific amino acids with reactive carbonyl species. These reactions give rise to specific markers that have been analyzed in different neurodegenerative diseases sharing protein aggregation, such as Alzheimer's disease, Pick's disease, Parkinson's disease, dementia with Lewy bodies, Creutzfeldt-Jakob disease, and amyotrophic lateral sclerosis. Collectively, available data demonstrate that oxidative stress homeostasis, mitochondrial function, and energy metabolism are key factors in determining the disease-specific pattern of protein molecular damage. In addition, these findings suggest the lack of a "gold marker of oxidative stress," and, consequently, they strengthen the need for a molecular dissection of the nonenzymatic reactions underlying neurodegenerative processes.

  17. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J., E-mail: tbandosz@ccny.cuny.edu

    2016-12-30

    Highlights: • Microporous zirconium-cerium (hydr) oxides were synthetized. • Ce presence narrowed the band gap of the materials. • The samples showed a high efficiency for removal of CEES vapors. • 1,2-Bis (ethyl thio) ethane and ethyl vinyl sulfide were the main reaction products. • 5% (Ce/Zr mol) addition of cerium oxide results in the best performing material. - Abstract: Highly porous cerium oxide modified Zr(OH){sub 4} samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO{sub 2}) and hydroxide (Zr(OH){sub 4}) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  18. Positive patch test reactions to oxidized limonene: exposure and relevance.

    Science.gov (United States)

    Bråred Christensson, Johanna; Andersen, Klaus E; Bruze, Magnus; Johansen, Jeanne D; Garcia-Bravo, Begoña; Gimenez Arnau, Ana; Goh, Chee-Leok; Nixon, Rosemary; White, Ian R

    2014-11-01

    R-Limonene is a common fragrance terpene found in domestic and industrial products. R-Limonene autoxidizes on air exposure, and the oxidation products can cause contact allergy. In a recent multicentre study, 5.2% (range 2.3-12.1%) of 2900 patients showed a positive patch test reaction to oxidized R-limonene. To study the exposure to limonene among consecutive dermatitis patients reacting to oxidized R-limonene in an international setting, and to assess the relevance of the exposure for the patients' dermatitis. Oxidized R-limonene 3.0% (containing limonene hydroperoxides at 0.33%) in petrolatum was tested in 2900 consecutive dermatitis patients in Australia, Denmark, the United Kingdom, Singapore, Spain, and Sweden. A questionnaire assessing exposure to limonene-containing products was completed. Overall, exposure to products containing limonene was found and assessed as being probably relevant for the patients' dermatitis in 36% of the limonene-allergic patients. In Barcelona and Copenhagen, > 70% of the patients were judged to have had an exposure to limonene assessed as relevant. Oxidized R-limonene is a common fragrance allergen, and limonene was frequently found in the labelling on the patients' products, and assessed as relevant for the patients' dermatitis. A large number of domestic and occupational sources for contact with R-limonene were identified. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Investigation on the Effect of Addition of Fe3+ Ion into the Colloidal AgNPs in PVA Solution and Understanding Its Reaction Mechanism

    Directory of Open Access Journals (Sweden)

    Roto Roto

    2017-11-01

    Full Text Available Analysis of Fe3+ ion present in aqueous solutions is always of interests. Recently, this ion has been analyzed by colorimetric methods using colloid of silver nanoparticles (AgNPs in capping agents of polymers. The reaction mechanism between AgNPs and Fe3+ is still subject to the further investigation. In this work, 1,10-phenanthroline was used to probe the reaction mechanism between AgNPs and Fe3+ ion in the solution. The colloids of AgNPs were prepared in the polyvinyl alcohol (PVA solution and reacted with Fe3+. The colloid surface plasmon absorbance decreases linearly along with the increase in Fe3+ concentration. The addition of 1,10-phenanthroline to mixture changes the solution to red, indicating that the reaction produces Fe2+. This suggests that the reduction of the AgNPs absorbance is the result of oxidation of the Ag nanoparticles along with the reduction of Fe3+.

  20. Mechanizm of propylene oxidation on modified cobalt-molybdenum catalysts

    International Nuclear Information System (INIS)

    Kutyrev, M.Yu.; Rozentuller, B.V.; Isaev, O.V.; Margolis, L.Ya.; Krylov, O.V.

    1977-01-01

    Effect is studied of additions of iron, copper, nickel, and vanadium oxides, introduced into cobalt, molybdate, on oxidation reactions of propylene to acrolein and acrylicacid. The principal parameters determining the activity and selectivity of oxidation of propylene and acrolein on modified cobalt molibdate are the structure, the type of Mo-O bond, and the nature of the electron transitions in the solid under the effect of adsorption of the reaction components

  1. Titanium oxide nanoparticles as additives in engine oil

    Directory of Open Access Journals (Sweden)

    Meena Laad

    2018-04-01

    Full Text Available This research study investigates the tribological behaviour of titanium oxide (TiO2 nanoparticles as additives in mineral based multi-grade engine oil. All tests were performed under variable load and varying concentrations of nanoparticles in lubricating oil. The friction and wear experiments were performed using pin-on-disc tribotester. This study shows that mixing of TiO2 nanoparticles in engine oil significantly reduces the friction and wear rate and hence improves the lubricating properties of engine oil. The dispersion analysis of TiO2 nanoparticles in lubricating oil using UV spectrometer confirms that TiO2 nanoparticles possess good stability and solubility in the lubricant and improve the lubricating properties of the engine oil. Keywords: Titanium oxide, Nanoparticles, UV spectrometer, Tribotester, Engine oil

  2. Hydrogen incorporation and radiation induced dynamics in metal-oxide-silicon structures. A study using nuclear reaction analysis

    International Nuclear Information System (INIS)

    Briere, M.A.

    1993-07-01

    Resonant nuclear reaction analysis, using the 1 H( 15 N, αγ) 12 C reaction at 6.4 MeV, has been successfully applied to the investigation of hydrogen incorporation and radiation induced migration in metal-oxide-silicon structures. A preliminary study of the influence of processing parameters on the H content of thermal oxides, with and without gate material present, has been performed. It is found that the dominant source of hydrogen in Al gate devices and dry oxides is often contamination, likely in the form of adsorbed water vapor, formed upon exposure to room air after removal from the oxidation furnace. Concentrations of hydrogen in the bulk oxide as high as 3 10 20 cm -3 (Al gate), and as low as 1 10 18 cm -3 (poly Si-gate) have been observed. Hydrogen accumulation at the Si-SiO 2 interface has been reproducibly demonstrated for as-oxidized samples, as well as for oxides exposed to H 2 containing atmospheres during subsequent thermal processing. The migration of hydrogen, from the bulk oxide to the silicon-oxide interface during NRA, has been observed and intensively investigated. A direct correlation between the hydrogen content of the bulk oxide and the radiation generated oxide charges and interface states is presented. These data provide strong support for the important role of hydrogen in determining the radiation sensitivity of electronic devices. (orig.)

  3. Reduction Behaviors of Carbon Composite Iron Oxide Briquette Under Oxidation Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Woo; Kim, Kang-Min; Kwon, Jae-Hong; Han, Jeong-Whan [Inha University, Incheon (Korea, Republic of); Son, Sang-Han [POSCO, Pohang (Korea, Republic of)

    2017-01-15

    The carbon composite iron oxide briquette (CCB) is considered a potential solution to the upcoming use of low grade iron resources in the ironmaking process. CCB is able to reduce raw material cost by enabling the use of low grade powdered iron ores and coal. Additionally, the fast reduction of iron oxides by direct contact with coal can be utilized. In this study, the reduction behaviors of CCB were investigated in the temperature range of 200-1200 ℃ under oxidizing atmosphere. Briquettes were prepared by mixing iron ore and coal in a weight ratio of 8:2. Then reduction experiments were carried out in a mixed gas atmosphere of N{sub 2}, O{sub 2}, and CO{sub 2}. Compressive strength tests and quantitative analysis were performed by taking samples at each target temperature. In addition, the reduction degree depending on the reaction time was evaluated by off-gas analysis during the reduction test. It was found that the compressive strength and the metallization degree of the reduced briquettes increased with increases in the reaction temperature and holding time. However, it tended to decrease when the re-oxidation phenomenon was caused by injected oxygen. The degree of reduction reached a maximum value in 26 minutes. Therefore, the re-oxidation phenomenon becomes dominant after 26 minutes.

  4. Improved reaction sintered silicon nitride. [protective coatings to improve oxidation resistance

    Science.gov (United States)

    Baumgartner, H. R.

    1978-01-01

    Processing treatments were applied to as-nitrided reaction sintered silicon nitride (RSSN) with the purposes of improving strength after processing to above 350 MN/m2 and improving strength after oxidation exposure. The experimental approaches are divided into three broad classifications: sintering of surface-applied powders; impregnation of solution followed by further thermal processing; and infiltration of molten silicon and subsequent carburization or nitridation of the silicon. The impregnation of RSSN with solutions of aluminum nitrate and zirconyl chloride, followed by heating at 1400-1500 C in a nitrogen atmosphere containing silicon monoxide, improved RSSN strength and oxidation resistance. The room temperature bend strength of RSSN was increased nearly fifty percent above the untreated strength with mean absolute strengths up to 420 MN/m2. Strengths of treated samples that were measured after a 12 hour oxidation exposure in air were up to 90 percent of the original as-nitrided strength, as compared to retained strengths in the range of 35 to 60 percent for untreated RSSN after the same oxidation exposure.

  5. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  6. “Covalent Hydration” Reactions in Model Monomeric Ru 2,2'-Bipyridine Complexes: Thermodynamic Favorability as a Function of Metal Oxidation and Overall Spin States

    Energy Technology Data Exchange (ETDEWEB)

    Ozkanlar, Abdullah; Cape, Jonathan L.; Hurst, James K.; Clark, Aurora E.

    2011-09-05

    Density functional theory (DFT) has been used to investigate the plausibility of water addition to the simple mononuclear ruthenium complexes, [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 2+}/{sup 3+} and [(NH{sub 3}){sub 3}(bpy)RuOH]{sup 3+}, in which the OH fragment adds to the 2,2{prime}-bipyridine (bpy) ligand. Activation of bpy toward water addition has frequently been postulated within the literature, although there exists little definitive experimental evidence for this type of 'covalent hydration'. In this study, we examine the energetic dependence of the reaction upon metal oxidation state, overall spin state of the complex, as well as selectivity for various positions on the bipyridine ring. The thermodynamic favorability is found to be highly dependent upon all three parameters, with free energies of reaction that span favorable and unfavorable regimes. Aqueous addition to [(NH{sub 3}){sub 3}(bpy)Ru=O]{sup 3+} was found to be highly favorable for the S = 1/2 state, while reduction of the formal oxidation state on the metal center makes the reaction highly unfavorable. Examination of both facial and meridional isomers reveals that when bipyridine occupies the position trans to the ruthenyl oxo atom, reactivity toward OH addition decreases and the site preferences are altered. The electronic structure and spectroscopic signatures (EPR parameters and simulated spectra) have been determined to aid in recognition of 'covalent hydration' in experimental systems. EPR parameters are found to uniquely characterize the position of the OH addition to the bpy as well as the overall spin state of the system.

  7. Influence of some additions on zircon synthesis and its properties

    International Nuclear Information System (INIS)

    Goryacheva, Z.E.; Poplevina, O.G.; Suvorov, S.A.; Toropov, A.N.

    1978-01-01

    Kinetics of zircon synthesis from pure ZrO 2 and SiO 2 is studied in the presence of additions of magnesium, calcium and rare earth oxides. The addition introduction accelerates zircon formation, its yield reaching 97% at 1600 deg C. Constants of zircon formation reaction rate are determined in the presence of additions of various oxides. It is shown that synthetic zircon surpasses the natural one in tensile and density properties at similar thermostability. It is stable to the effect of molten alkaline borosilicate glass and does not polute it

  8. Micro-coulometric study of bioelectrochemical reaction coupled with TCA cycle.

    Science.gov (United States)

    Tsujimura, Seiya; Fukuda, Jun; Shirai, Osamu; Kano, Kenji; Sakai, Hideki; Tokita, Yuichi; Hatazawa, Tsuyonobu

    2012-04-15

    The mediated electro-enzymatic electrolysis systems based on the tricarboxylic acid (TCA) cycle reaction were examined on a micro-bulk electrolytic system. A series of the enzyme-catalyzed reactions in the TCA cycle was coupled with electrode reaction. Electrochemical oxidation of NADH was catalyzed by diaphorase with an aid of a redox mediator with a formal potential of -0.15 V vs. Ag|AgCl. The mediator was also able to shuttle electrons between succinate dehydrogenase and electrode. The charge during the electrolysis increased on each addition of dehydrogenase reaction in a cascade of the TCA cycle. However, the electrolysis efficiencies were close to or less than 90% because of the product inhibition. Lactate oxidation to acetyl-CoA catalyzed by two NAD-dependent dehydrogenases was coupled with the bioelectrochemical TCA cycle reaction to achieve the 12-electron oxidation of lactate to CO(2). The charge passed in the bioelectrocatalytic oxidation of 5 nmol of lactate was 4 mC, which corresponds to 70% of the electrolysis efficiency. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Metal-deactivating additives for liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Boneva, M.I. [Institute of Organic Chemistry, Sofia (Bulgaria); Ivanov, S.K.; Kalitchin, Z.D. [SciBulCom, Ltd., Sofia (Bulgaria); Tanielyan, S.K. [Seton Hall Univ., South Orange, NJ (United States); Terebenina, A.; Todorova, O.I. [Institute of Inorganic Chemistry, Sofia (Bulgaria)

    1995-05-01

    The metal-deactivating and the antioxidant properties of 1-phenyl-3-methylpyrazolone-5 derivatives have been investigated both in the model reaction of low temperature oxidation of ethylbenzene and in gasoline oxidation. The study of the ability of these derivatives to reduce the catalytic effect of copper naphthenate demonstrates that they are promising as metal deactivating additives for light fuels. Some of the pyrazolone compounds appear to be of special interest for the long-term storage of liquid fuels due to their action as multifunctional inhibitors.

  10. Exploration of the Singlet O2 Oxidation of 8-Oxoguanine by Guided-Ion Beam Scattering and Density Functional Theory: Changes of Reaction Intermediates, Energetics, and Kinetics upon Protonation/Deprotonation and Hydration.

    Science.gov (United States)

    Sun, Yan; Lu, Wenchao; Liu, Jianbo

    2017-02-09

    8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is one of the most common DNA lesions resulting from reactive oxygen species and ionizing radiation, and is involved in mutagenesis, carcinogenesis, and cell death. Notably, 8-oxodGuo is more reactive toward singlet (a 1 Δ g ) O 2 than the undamaged guanosine, and the lesions arising from the secondary oxidation of 8-oxodGuo are more mutagenic. Herein the 1 O 2 oxidation of free base 8-oxoguanine (8-oxoG) was investigated at different initial conditions including protonated [8-oxoG + H] + , deprotonated [8-oxoG - H] - , and their monohydrates. Experiment was carried out on a guided-ion beam scattering tandem mass spectrometer. Measurements include the effects of collision energy (E col ) on reaction cross sections over a center-of-mass E col range from 0.1 to 0.5 eV. The aim of this study is to quantitatively probe the sensitivity of the early stage of 8-oxoG oxidation to ionization and hydration. Density functional theory and Rice-Ramsperger-Kassel-Marcus calculations were performed to identify the intermediates and the products along reaction pathways and locate accessible reaction potential energy surfaces, and to rationalize reaction outcomes from energetic and kinetic points of view. No product was observed for the reaction of [8-oxoG + H] + ·W 0,1 (W = H 2 O) because insurmountable barriers block the addition of 1 O 2 to reactant ions. Neither was [8-oxoG - H] - reactive with 1 O 2 , in this case due to the rapid decay of transient intermediates to starting reactants. However, the nonreactivity of [8-oxoG - H] - was inverted by hydration; as a result, 4,5-dioxetane of [8-oxoG - H] - was captured as the main oxidation product. Reaction cross section for [8-oxoG - H] - ·W + 1 O 2 decreases with increasing E col and becomes negligible above 0.3 eV, indicating that the reaction is exothermic and has no barriers above reactants. The contrasting oxidation behaviors of [8-oxoG + H] + ·W 0,1 and [8-oxoG - H] - ·W 0

  11. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  12. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  13. An oxidative cross-coupling reaction of 4-hydroxydithiocoumarin and amines/thiols using a combination of I2 and TBHP: access to lead molecules for biomedical applications.

    Science.gov (United States)

    Mahato, Karuna; Arora, Neha; Ray Bagdi, Prasanta; Gattu, Radhakrishna; Ghosh, Siddhartha Sankar; Khan, Abu T

    2018-02-06

    A metal-free I 2 /TBHP induced highly atom economic and operationally simple oxidative cross-coupling reaction has been developed for the direct synthesis of sulfenamides/sulfanes/disulfides from the reaction of 4-hydroxydithiocoumarin and amines/thiols. The novelties of the present protocol are unprecedented S-C bond formation in addition to S-N and S-S bonds, shorter reaction time, mild and environmentally benign reaction conditions, functional group tolerance and moderate to excellent yields. Moreover, the four newly synthesized compounds namely 4q, 6d, 6e and 7a exhibit anti-proliferative activity against the breast cancer cell line MCF7, and may be lead molecules for future drug development.

  14. Kinetic isotope effects in reaction of ferment oxidation of tritium-labelled D-galactosamine

    International Nuclear Information System (INIS)

    Akulov, G.P.; Korsakova, N.A.

    1992-01-01

    Primary, secondary and intramolecular kinetic isotopic effects in reaction of ferment oxidation of D-galactosamine labelled by tritium in position 6, were measured. When comparing values of the effects with previously obtained results for similar reaction D-[6- 3 H]galactose, it was ascertained that the presence of aminogroup in galactopyranosyl mainly affects kinetics of substrate-ferment complex formation stage. The possibility to use kinetic isotope effects for increase in molar activity of D-galactosamine, labelled by tritium in position 6, is shown

  15. Preparation of Cu@Cu₂O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol.

    Science.gov (United States)

    Jang, Seongwan; Yoon, Chohye; Lee, Jae Myung; Park, Sungkyun; Park, Kang Hyun

    2016-11-02

    HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe₃O₄@HKUST-1 by layer-by layer assembly strategy and Cu@Cu₂O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu₂O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di- tert -butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.

  16. Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: Kinetics, reaction pathways, and formation of brominated by-products

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yuefei [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Kong, Deyang [Nanjing Institute of Environmental Science, Ministry of Environmental Protection of PRC, Nanjing 210042 (China); Lu, Junhe, E-mail: jhlu@njau.edu.cn [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Jin, Hao; Kang, Fuxing; Yin, Xiaoming; Zhou, Quansuo [Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-08-05

    Highlights: • Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A. • Phenolic moiety was the reactive site for sulfate radical attack. • Pathways include β-scission, oxidation, debromination and coupling reactions. • Brominated disinfection by-products were found during TBBPA degradation. • Humic acid inhibited TBBPA degradation but promoted DBPs formation. - Abstract: Degradation of tetrabromobisphenol A (TBBPA), a flame retardant widely spread in the environment, in Co(II) catalyzed peroxymonosulfate (PMS) oxidation process was systematically explored. The second-order-rate constant for reaction of sulfate radical (SO{sub 4}{sup ·−}) with TBBPA was determined to be 5.27 × 10{sup 10} M{sup −1} s{sup −1}. Apparently, degradation of TBBPA showed first-order kinetics to the concentrations of both Co(II) and PMS. The presence of humic acid (HA) and bicarbonate inhibited TBBPA degradation, most likely due to their competition for SO{sub 4}{sup ·−}. Degradation of TBBPA was initiated by an electron abstraction from one of the phenolic rings. Detailed transformation pathways were proposed, including β-scission of isopropyl bridge, phenolic ring oxidation, debromination and coupling reactions. Further oxidative degradation of intermediates in Co(II)/PMS process yielded brominated disinfection by-products (Br-DBPs) such as bromoform and brominated acetic acids. Evolution profile of Br-DBPs showed an initially increasing and then decreasing pattern with maximum concentrations occurring around 6–10 h. The presence of HA enhanced the formation of Br-DBPs significantly. These findings reveal potentially important, but previously unrecognized, formation of Br-DBPs during sulfate radical-based oxidation of bromide-containing organic compounds that may pose toxicological risks to human health.

  17. The oxidative burst reaction in mammalian cells depends on gravity

    OpenAIRE

    Adrian, A; Schoppmann, K; Sromicki, J; Brungs, S; von der Wiesche, M; Hock, B; Kolanus, W; Hemmersbach, R; Ullrich, O

    2013-01-01

    Gravity has been a constant force throughout the Earth's evolutionary history. Thus, one of the fundamental biological questions is if and how complex cellular and molecular functions of life on Earth require gravity. In this study, we investigated the influence of gravity on the oxidative burst reaction in macrophages, one of the key elements in innate immune response and cellular signaling. An important step is the production of superoxide by the NADPH oxidase, which is rapidly converted to...

  18. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  19. Comparative study of radical oxidation of DNA and its nucleosides by hydroxyl radicals and ferryl ions generated by the Fenton reaction

    International Nuclear Information System (INIS)

    Mouret, J.F.; Berger, M.; Anselmino, C.; Polverelli, M.; Cadet, J.

    1991-01-01

    A comparative study of the reaction of hydroxyl radicals and Fenton type oxidative species with DNA and 2'-deoxyribonucleosides was investigated. This study was based on the characterization of the diamagnetic products resulting from the chemical transformation of the transient radicals. Emphasis was placed on the radical oxidative reactions of the purine nucleosides. It is interesting to note that oxidative purine radicals can be reduced by reagents such as ascorbic acid or N,N,N',N'-tetramethyl-1, 4-p-phenylenediamine. The observed differences in the nature of the decomposition products resulting from the Fenton reaction are not consistent with the nature of the oxidative species (hydroxyl radicals or ferryl ions) involved, but due to the presence of ferrous sulfate [fr

  20. Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver

    International Nuclear Information System (INIS)

    Souza, M.C.P; Lenzi, G.G.; Jorge, L.M.M.; Santos, O.A.A.; Colpini, L.M.S.

    2011-01-01

    This work reports the use of cerium-titania-alumina-based systems modified with Ag and Fe by the wetness impregnation method for the discoloration of blue 5G dye. The techniques employed to characterize the photocatalysts were: temperature-programmed reduction (TPR), X-ray diffraction (XRD), specific surface area, average pore volume, and average pore diameter. The characterization results indicated that the photocatalysts had different crystalline structures and textural properties. Discoloration with the mixed oxide photocatalyst CeO 2 -TiO 2 -Al 2 O 3 gave a result similar to that of TiO 2 . On the other hand, the addition of Ag and Fe to the mixed oxide increased the discoloration and reaction rates of reactive blue 5G dyes. (author)

  1. Photocatalytic discoloration of reactive blue 5g dye in the presence of mixed oxides and with the addition of iron and silver

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.C.P; Lenzi, G.G.; Jorge, L.M.M.; Santos, O.A.A. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Engenharia Quimica; Colpini, L.M.S. [Universidade Federal do Parana (UFPR), Palotina, PR (Brazil). Curso Superior de Tecnologia em Biocombustiveis

    2011-07-15

    This work reports the use of cerium-titania-alumina-based systems modified with Ag and Fe by the wetness impregnation method for the discoloration of blue 5G dye. The techniques employed to characterize the photocatalysts were: temperature-programmed reduction (TPR), X-ray diffraction (XRD), specific surface area, average pore volume, and average pore diameter. The characterization results indicated that the photocatalysts had different crystalline structures and textural properties. Discoloration with the mixed oxide photocatalyst CeO{sub 2}-TiO{sub 2}-Al{sub 2}O{sub 3} gave a result similar to that of TiO{sub 2}. On the other hand, the addition of Ag and Fe to the mixed oxide increased the discoloration and reaction rates of reactive blue 5G dyes. (author)

  2. Addition of Fish Oil to Cream Cheese Affects Lipid Oxidation, Sensory Stability and Microstructure

    Directory of Open Access Journals (Sweden)

    Andy Horsewell

    2012-11-01

    Full Text Available The objective of this study was to investigate the differences in the oxidative stability during storage of fish oil enriched cream cheeses when fish oil was added either as neat oil or pre-emulsified oil with sodium caseinate, whey protein isolate, or a combination of milk proteins and phospholipids as emulsifier. Results showed that the addition of fish oil decreased the oxidative stability of cream cheeses regardless of the addition method, especially when the cheese was stored longer than five weeks. The oxidative stability of fish oil enriched cream cheeses was highest when fish oil was added as neat oil or in a delivery emulsion prepared with a combination of milk proteins and phospholipids. Adding the fish oil in a delivery emulsion prepared with whey protein or caseinate resulted in a less oxidative stable product. It was furthermore shown that the microstructure of the cream cheeses was affected by fish oil addition, and it was suggested that the change in microstructure was partly responsible for the oxidative stability of the cream cheeses.

  3. Hydrothermal synthesis of Fe_2O_3/polypyrrole/graphene oxide composites as highly efficient electrocatalysts for oxygen reduction reaction in alkaline electrolyte

    International Nuclear Information System (INIS)

    Ren, Suzhen; Ma, Shaobo; Yang, Ying; Mao, Qing; Hao, Ce

    2015-01-01

    Graphical abstract: Fe_2O_3/polypyrrole/graphene oxide electrocatalysts for oxygen reduction reaction (ORR) are successfully prepared through one simple polypyrrole-assisted hydrothermal method and possess very high ORR activity and are able to selectively reduce O_2 to water through the four-electron transfer reaction mechanism in alkaline electrolyte. - Abstract: Advantages in low cost, and excellent catalytic activity of Fe-based nanomaterials dispersed on nitrogen-doped graphene supports render them to be good electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. Here, Fe_2O_3/polypyrrole/graphene oxide (Fe_2O_3/Ppy/GO) composites with the Fe_2O_3 embedded in the Ppy modified GO are synthesized using hydrothermal method. With an optimal iron atom content ratio of 1.6% in graphene oxide and heat treatment at 800 °C, the Fe_2O_3/Ppy/GO exhibited enhanced catalytic performance for ORR with the onset potential of −0.1 V (vs SCE), cathodic potential of −0.24 V (vs SCE), an approximate 4e"− transfer process in O_2-saturated 0.1 M KOH, and superior stability that only reduced 5% catalytic activity after 5000 cycles. The decisive factors in improving the electrocatalytic and durable performance are the intimate and large contact interfaces between nanocrystallines of Fe_2O_3 and Ppy/GO, in addition to the high electron withdrawing/storing ability and the high conductivity of GO doped with nitrogen from Ppy during the hydrothermal reaction. The Fe_2O_3/Ppy/GO showed significantly improved ORR properties and confirmed that Fe-N-C-based electrocatalysts played a key role in fuel cells.

  4. RuO4-mediated oxidation of secondary amines 2. imines as main reaction intermediates

    Directory of Open Access Journals (Sweden)

    Florea Cristina A.

    2017-01-01

    Full Text Available Oxidation by RuO4 (generated in situ from RuO2 and NaIO4 of secondary amines such as Bn–NH–CH2R (1; R=H, Me gave complex reaction mixtures, but mainly amides. In the presence of cyanide, the leading products were α-aminonitriles. Comparison of the oxidation products of 1 with those from the corresponding imines PhCH=N–CH2R and Bn–N=CH–R showed that formation of the indicated imines is the first main step in the oxidation of 1. A detailed mechanism is proposed.

  5. Oxidation performance of a Fe-13Cr alloy with additions of rare earth elements

    International Nuclear Information System (INIS)

    Martinez-Villafane, A.; Chacon-Nava, J.G.; Gaona-Tiburcio, C.; Almeraya-Calderon, F.; Dominguez-Patino, G.; Gonzalez-Rodriguez, J.G.

    2003-01-01

    The influence of rare earth elements (REE's) i.e. Neodymium (Nd) and Praseodymium (Pr) on the oxidation behavior of a Fe-13Cr alloy has been studied, and its role on the oxidation rate and oxide morphology and formation is discussed. Specimens were isothermally oxidized in oxygen at 800 deg. C for 24 h. It was found that a small addition (≤0.03 wt.%) of either Nd or Pr, reduced the oxidation rate of the Fe-13Cr base alloy. Moreover, the simultaneous addition of both elements to the alloy produced a dramatic reduction in the oxidation kinetics. Analysis by scanning electronic microscope (SEM) revealed that the morphology of oxides formed on Fe-13Cr specimens with and without REE's specimens was very different. In fact, a fine-grained oxide morphology was observed for alloys with REE's addition. For these alloys only, chromium enrichment at the metal/scale interface was observed. From transmission electronic microscope (TEM) analysis, it was found the following: at the early stages of oxide formation, after 0.25 h, Cr 2 O 3 , Fe 3 O 4 , α-Fe 2 O 3 and γ-Fe 2 O 3 were formed; at 6 h, Cr 2 O 3 , FeCr 2 O 4 and α-Fe 2 O 3 were identified and, for exposure times greater than 6 h, Cr 2 O 3 , α-Fe 2 O 3 and a spinel which was presumably transformed into a solid solution (Fe 2 O 3 ·Cr 2 O 3 ) were found

  6. A gravimetric method for the determination of oxygen in uranium oxides and ternary uranium oxides by addition of alkaline earth compounds

    International Nuclear Information System (INIS)

    Fujino, Takeo; Tagawa, Hiroaki; Adachi, Takeo; Hashitani, Hiroshi

    1978-01-01

    A simple gravimetric determination of oxygen in uranium oxides and ternary uranium oxides is described. In alkaline earth uranates which are formed by heating in air at 800-1100 0 C, uranium is in the hexavalent state over certain continuous ranges of alkaline earth-to-uranium ratios. Thus, if an alkaline earth uranate or a compound containing an alkaline earth element, e.g. MgO, is mixed with the oxide sample and heated in air under suitable conditions, oxygen can be determined from the weight change before and after the reaction. The standard deviation of the O:U ratio for a UOsub(2+x) test sample is +-0.0008-0.001, if a correction is applied for atmospheric moisture absorbed during mixing. (Auth.)

  7. On synergism in inhibition of liquidphase oxidation of styrene and tetralin by organic phosphites and transition eleement acetylacetonates

    International Nuclear Information System (INIS)

    Pobedimskij, D.G.; Nasobullin, Sh.A.; Kadyrova, V.Kh.; Kirpichnikov, P.A.

    1976-01-01

    Synergism has been observed during inhibiting initiated oxidation of styrene or tetralin by organic phosphites in the presence of complex compounds of some transition metals. The results are given of non-additive intensification of antioxidative activity of triphenylphosphite (TPP) and tri-(4-methyl-6-tert.-- butyl)-phenyl-phosphite (TMBP) in the process of initiated oxidation of styrene or tetralin with addition of acetylacetonates of cobalt and vanadyl. During styrene oxidation, inhibition of the reaction with chelate complex of vanadyl is weakened considerably when phosphite is added into the reaction system. During tetralin oxidation, postcatalytic (or branched) oxidation is observed only for large concentration of vanadyl complex. Addition of TPP to above complex sharply increases the induction period. When the induction period is completed, oxidation of tetralin follows the mechanism of usual, i.e. initiated, reaction

  8. Enhanced photocatalytic degradation of methylene blue by ZnO-reduced graphene oxide composite synthesized via microwave-assisted reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lv Tian [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Pan Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China); Liu Xinjuan; Lu Ting; Zhu Guang; Sun Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai, 200062 (China)

    2011-10-13

    Highlights: > ZnO-reduced graphene oxide composite is synthesized via microwave assisted reaction. > The method allows a facile, safe and rapid reaction in aqueous media. > A high dye degradation efficiency is achieved under UV light irradiation. - Abstract: A quick and facile microwave-assisted reaction is used to synthesize ZnO-reduced graphene oxide (RGO) hybrid composites by reducing graphite oxide dispersion with zinc nitrate using a microwave synthesis system. Their photocatalytic performance in degradation of methylene blue is investigated and the results show that the RGO plays an important role in the enhancement of photocatalytic performance and the ZnO-RGO composite with 1.1 wt. % RGO achieves a maximum degradation efficiency of 88% in a neutral solution under UV light irradiation for 260 min as compared with pure ZnO (68%) due to the increased light absorption, the reduced charge recombination with the introduction of RGO.

  9. Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol.

    Science.gov (United States)

    Liu, Chang; Ma, Qingxin; Liu, Yongchun; Ma, Jinzhu; He, Hong

    2012-02-07

    Sulfate is one of the most important aerosols in the atmosphere. A new sulfate formation pathway via synergistic reactions between SO(2) and NO(2) on mineral oxides was proposed. The heterogeneous reactions of SO(2) and NO(2) on CaO, α-Fe(2)O(3), ZnO, MgO, α-Al(2)O(3), TiO(2), and SiO(2) were investigated by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) at ambient temperature. Formation of sulfate from adsorbed SO(2) was promoted by the coexisting NO(2), while surface N(2)O(4) was observed as the crucial oxidant for the oxidation of surface sulfite. This process was significantly promoted by the presence of O(2). The synergistic effect between SO(2) and NO(2) was not observed on other mineral particles (such as CaCO(3) and CaSO(4)) probably due to the lack of the surface reactive oxygen sites. The synergistic reaction between SO(2) and NO(2) on mineral oxides resulted in the formation of internal mixtures of sulfate, nitrate, and mineral oxides. The change of mixture state will affect the physicochemical properties of atmospheric particles and therefore further influence their environmental and climate effects.

  10. Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.

    Science.gov (United States)

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua

    2017-03-09

    Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.

  11. Effect of different phytogenic additives on oxidation stability of chicken meat

    Directory of Open Access Journals (Sweden)

    Marek Bobko

    2016-05-01

    Full Text Available The aim of the study was to evaluate the oxidative stability (TBARS method of breast and thigh muscle after application of feed mixtures enriched by phytogenic additives. The experiment started with 150 pieces one-day-old chicks of Cobb 500 hybrid combination. They were divided into one control (C and two experimental groups (1st EG and 2nd EG. Each group included 50 chicks. In experimental groups, feed additives were applied as followed: 100 mg.kg-1 Agolin Poultry (in the 1st EG and 500 mg.kg-1 Agolin Tannin Plus (in the 2nd EG. Experimental broiler chickens were fed during 42 days by ad libitum. Chicken meat samples of breast and thigh muscle were analysed in the 1st day, 1st, 2nd, 3rd, 4th, 5th and 6th month of storage in frozen storage at -18 °C. We recorded positive influence on chicken meat oxidative stability in all experimental groups with application of phytogenic feed additives. Obtained results showed that applied phytogenic additives had positive influence on oxidative stability of breast and thigh muscles. At the end of frozen storage (in 6th month, we found higher malondialdehyde (MDA values and lower oxidative stability (p <0.05 of breast muscle in control group (0.167 mg.kg-1 compared to experimental groups (from 0.150 mg.kg-1 in 1. EG to 0.155 mg.kg-1 in 2. EG. In the thigh muscle, we found similar tendency of oxidative changes as in the breast muscle. At the end of frozen storage (in the 6th month, MDA average values of thigh muscle were higher (p <0.05 in control group (0.181 mg.kg-1 compared to experimental groups (1. EG 0.164 mg.kg-1 and 2. EG 0.169 mg.kg-1. Significant differences (p <0.05 between the control and experimental groups were found from the 5th month of storage in thigh and breast muscle. Obtained results indicate positive influence of phytogenic additives applied in chicken nutrition, namely on stabilization of fatty substance to degradation processes. Normal 0 21 false false false SK X-NONE X-NONE Normal 0

  12. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi

    2018-05-01

    A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Lina; Wang Wenjin; Hong Feng [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Shengchun, E-mail: ysch1209@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); You Hongjun, E-mail: hjyou@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Fang Jixiang; Ding Bingjun [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  14. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  15. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    Science.gov (United States)

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  16. REACTION PRODUCTS AND CORROSION OF MOLYBDENUM ELECTRODE IN GLASS MELT CONTAINING ANTIMONY OXIDES AND SODIUM SULFATE

    Directory of Open Access Journals (Sweden)

    JIŘÍ MATĚJ

    2012-09-01

    Full Text Available The products on the interface of a molybdenum electrode and glass melt were investigated primarily at 1400°C in three model glass melts without ingredients, with 1 % Sb2O3 and with 1 % Sb2O3 and 0.5 % SO3 (wt. %, both under and without load by alternating current. Corrosion of the molybdenum electrode in glass melt without AC load is higher by one order of magnitude if antimony oxides are present. The corrosion continues to increase if sulfate is present in addition to antimony oxides. Isolated antimony droplets largely occur on the electrode-glass melt interface, and numerous droplets are also dissipated in the surrounding glass if only antimony oxides are present in the glass melt. A comparatively continuous layer of antimony occurs on the interface if SO3 is also present, antimony being always in contact with molybdenum sulfide. Almost no antimony droplets are dissipated in the glass melt. The total amount of precipitated antimony also increases. The presence of sulfide on the interface likely facilitates antimony precipitation. The reaction of molybdenum with antimony oxides is inhibited in sites covered by an antimony layer. The composition of sulfide layers formed at 1400°C approximates that of Mo2S3. At 1100°C, the sulfide composition approximates that of MoS4. Corrosion multiplies in the glass melt without additions through the effect of AC current, most molybdenum being separated in the form of metallic particles. Corrosion also increases in the glass melt containing antimony oxides. This is due to increased corrosion in the neighborhood of the separated antimony droplets. This mechanism also results in the loosening of molybdenum particles. The amount of precipitated antimony also increases through the effect of the AC current. AC exerts no appreciable effect on either corrosion, the character of the electrode-glass interface, or antimony precipitation in the glass melt containing SO3.

  17. Combined gas-phase oxidation of methane and ethylene

    International Nuclear Information System (INIS)

    Pogosyan, N.M.; Pogosyan, M.D.

    2009-01-01

    It is established that depending on the reaction conditions combined oxidation of methane and ethylene may result in ethylene and propylene oxides with high selectivity with respect to the process, where in the initial reaction mixture methane is replaced by the same quantity of nitrogen. The formed additional methyl radicals increase the yield of all reaction products except CO. At low temperatures methyl radicals react with oxygen resulting in methyl peroxide radicals, which in turn, reacting with ethylene provide its epoxidation and formation of other oxygen-containing products. At high temperatures as a result of addition reaction between methyl radicals and ethylene, propyl radicals are formed that, in turn yield propylene. Alongside with positive influence on the yield of reaction products, methane exerts negative influence upon the conversion, that is it decreases the rate of ethylene and oxygen conversion, simultaneously decreasing significantly the yield of CO

  18. Effect of strain on bond-specific reaction kinetics during the oxidation of H-terminated (111) Si

    International Nuclear Information System (INIS)

    Gokce, Bilal; Aspnes, David E.; Gundogdu, Kenan

    2011-01-01

    Although strain is used in semiconductor technology for manipulating optical, electronic, and chemical properties of semiconductors, the understanding of the microscopic phenomena that are affected or influenced by strain is still incomplete. Second-harmonic generation data obtained during the air oxidation of H-terminated (111) Si reveal the effect of compressive strain on this chemical reaction. Even small amounts of strain manipulate the reaction kinetics of surface bonds significantly, with tensile strain enhancing oxidation and compressive strain retarding it. This dramatic change suggests a strain-driven charge transfer mechanism between Si-H up bonds and Si-Si back bonds in the outer layer of Si atoms.

  19. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Wei; Zhang, Xianfeng, E-mail: lynx@mail.njust.edu.cn; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-11-05

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior.

  20. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    International Nuclear Information System (INIS)

    Xiong, Wei; Zhang, Xianfeng; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-01-01

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior

  1. Oxidation of β-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation.

    Science.gov (United States)

    Zhang, Kejia; Zhou, Xinyan; Du, Penghui; Zhang, Tuqiao; Cai, Meiquan; Sun, Peizhe; Huang, Ching-Hua

    2017-10-15

    Peracetic acid (PAA) is a disinfection oxidant used in many industries including wastewater treatment. β-Lactams, a group of widely prescribed antibiotics, are frequently detected in wastewater effluents and surface waters. The reaction kinetics and transformation of seven β-lactams (cefalexin (CFX), cefadroxil (CFR), cefapirin (CFP), cephalothin (CFT), ampicillin (AMP), amoxicillin (AMX) and penicillin G (PG)) toward PAA were investigated to elucidate the behavior of β-lactams during PAA oxidation processes. The reaction follows second-order kinetics and is much faster at pH 5 and 7 than at pH 9 due to speciation of PAA. Reactivity to PAA follows the order of CFR ∼ CFX > AMP ∼ AMX > CFT ∼ CFP ∼ PG and is related to β-lactam's nucleophilicity. The thioether sulfur of β-lactams is attacked by PAA to generate sulfoxide products. Presence of the phenylglycinyl amino group on β-lactams can significantly influence electron distribution and the highest occupied molecular orbital (HOMO) location and energy in ways that enhance the reactivity to PAA. Reaction rate constants obtained in clean water matrix can be used to accurately model the decay of β-lactams by PAA in surface water matrix and only slightly overestimate the decay in wastewater matrix. Results of this study indicate that the oxidative transformation of β-lactams by PAA can be expected under appropriate wastewater treatment conditions. Copyright © 2017. Published by Elsevier Ltd.

  2. Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition

    International Nuclear Information System (INIS)

    Chen, Li; Yang, Bing; Xu, Yuxiang; Pei, Fei; Zhou, Liangcai; Du, Yong

    2014-01-01

    Addition of Si is very effective in upgrading the machining performance and thermal properties of Al–Ti–N coating. Here, we concentrate on the thermal stability and oxidation resistance of Al–Ti–Si–N coating. Alloying with Si favors the growth of wurtzite phase, and thereby causes a drop in hardness from ∼ 34.5 to 28.7 GPa. However, Si-containing coating retards the formation of w-AlN during thermal annealing, and thereby behaves a high hardness value of ∼ 31.3 GPa after annealing at T a = 1100 °C. After 10 h exposure in air at 850 °C, Al–Ti–N coating is fully oxidized. Incorporation of Si significantly improves the oxidation resistance of Al–Ti–N due to the combined effects with the promoted formation of Al-oxide rich top-scale and retarded transformation of anatase (a-) TiO 2 into rutile (r-) TiO 2 , where only ∼ 1.43 μm oxide scale is shown after oxidation at 1100 °C for 15 h. Noticeable is that the worst oxidation resistance of Al–Ti–Si–N coating in the temperature range from 800 to 1100 °C is obtained at 950 °C with oxide scale of ∼ 1.76 μm due to the fast formation of r-TiO 2 . Additionally, a pre-oxidation at 1000 °C has a positive effect on the oxidation resistance of Al–Ti–Si–N coating, which is attributed to the formation of Al-oxide rich top-scale, and thus inhibits the outward diffusion of metal atoms and inward diffusion of O. - Highlights: • Si as a substitutional solid solution and via the formation of a-Si 3 N 4 coexists. • Si addition favors the growth of wurtzite phase and causes a decreased hardness. • Alloying with Si improves the oxidation resistance of AlTiN. • AlTiSiN behaves the worst oxidation resistance at 950 °C from 800 to 1100 °C. • A pre-oxidation at 1000 °C improves the oxidation resistance of AlTiSiN coating

  3. Benzene destruction in claus process by sulfur dioxide: A reaction kinetics study

    KAUST Repository

    Sinha, Sourab

    2014-07-02

    Benzene, toluene and xylene (BTX) are present as contaminants in the H 2S gas stream entering a Claus furnace. The exhaust gases from the furnace enter catalytic units, where BTX form soot particles. These particles clog and deactivate the catalysts. A solution to this problem is BTX oxidation before the gases enter catalyst beds. This work presents a theoretical investigation on benzene oxidation by SO2. Density functional theory is used to develop a detailed mechanism for phenyl radical -SO2 interactions. The mechanism begins with SO2 addition to phenyl radical after overcoming an energy barrier of 6.4 kJ/mol. This addition reaction is highly exothermic, where a reaction energy of 182 kJ/mol is released. The most favorable pathway involves O-S bond breakage, leading to the release of SO. A remarkable similarity between the pathways for phenyl radical oxidation by O2 and its oxidation by SO2 is observed. The reaction rate constants are also evaluated to facilitate process simulations. © 2014 American Chemical Society.

  4. Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants.

    Science.gov (United States)

    Jeong, Myung-Joon; Dupont, Anne-Laurence; de la Rie, E René

    2014-01-30

    To better understand the degradation of cellulose upon the formation of a tideline at the wet-dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micromoles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hemoglobin redox reactions and red blood cell aging.

    Science.gov (United States)

    Rifkind, Joseph M; Nagababu, Enika

    2013-06-10

    The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.

  6. Process for the reduction of competitive oxidant consuming reactions in the solution mining of a mineral

    International Nuclear Information System (INIS)

    Stover, D.E.

    1980-01-01

    The present invention relates to an improved method for the solution mining of a mineral from a subterranean formation. More specifically, the invention relates to an improved method which enhances significantly the recovery of the mineral from a subterranean formation via solution mining by reducing the oxidant consuming reactions which compete with the mineral for the oxidant injected therein

  7. Using chiral ionic liquid additives to enhance asymmetric induction in a Diels-Alder reaction.

    Science.gov (United States)

    Goodrich, P; Nimal Gunaratne, H Q; Hall, L; Wang, Y; Jin, L; Muldoon, M J; Ribeiro, A P C; Pombeiro, A J L; Pârvulescu, V I; Davey, P; Hardacre, C

    2017-01-31

    A bis-oxazoline ligand has been complexed using Cu(ii) and Zn(ii) trifluoromethanesulfonate and a range of chiral ionic liquid (CIL) additives based on natural products were used as a co-catalyst for a Diels-Alder reaction. The catalytic performance of these systems was compared for the asymmetric Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene with and without the presence of a CIL additive. In the absence of the CIL, both catalysts resulted in low enantioselectivities in conventional solvents and ionic liquids. However, whilst only a minor effect of the CIL was observed for the Cu based catalyst, in the case of the Zn based catalyst, significant enhancements in endo enantioselectivity of up to 50% were found on the addition of a CIL.

  8. Oxidative removal of quinclorac by permanganate through a rate-limiting [3 + 2] cycloaddition reaction.

    Science.gov (United States)

    Song, Dean; Cheng, Hanyang; Jiang, Xiaohua; Sun, Huiqing; Kong, Fanyu; Liang, Rongning; Qiang, Zhimin; Liu, Huijuan; Qu, Jiuhui

    2018-04-05

    Quinclorac, a widely used herbicide in agriculture, has been recognized as an emerging environmental pollutant owing to its long persistence and potential risk to humans. However, no related information is available on the degradation of quinclorac by employing oxidants. Herein, the reactivity of quinclorac with permanganate was systematically investigated in water by combining experimental and computational approaches. The reaction followed overall second-order kinetics pointing to a bimolecular rate-limiting step. The second-order rate constant was found to be 3.47 × 10-3 M-1 s-1 at 25 °C, which was independent of pH over the range from 5 to 9 and was dependent on temperature over the range from 19 to 35 °C. The initial product was identified by UPLC-Q-TOF-MS to be mono-hydroxylated quinclorac, which was more susceptible to further oxidation. The result could be supported by the complete simulation of the reaction process in DFT calculations, indicating the [3 + 2] cycloaddition oxidation of the benzene ring in the rate-limiting step. The plausible mechanism was then proposed, accompanied by the analysis of the HOMO indicating the hydroxylation position and of the ESP suggesting a more electron-rich moiety. Considering the high effectiveness and low toxicity, permanganate oxidation was considered to be a very promising technique for removing quinclorac from aquatic environments.

  9. Surface oxidization-reduction reactions in Columbia Plateau basalts

    International Nuclear Information System (INIS)

    White, A.F.; Yee, A.

    1984-01-01

    Results are presented which define principal oxidation-reduction reactions expected between ground water and iron in the Umtanum and Cohassett basalt flows of south central Washington. Data include kinetics of aqueous iron speciation, rates of O 2 uptake and nature of oxyhydroxide precipitates. Such data are important in predicting behavior of radionuclides in basalt aquifers including determination of valence states, speciation, solubility, sorption, and coprecipitation on iron oxyhydroxide substrates and colloids. Analyses of the basalt by XPS indicates that ferrous iron is oxidized to ferric iron on the surface and that the total iron decreases as a function of pH during experimental weathering. Iron oxyhydroxide phases did not form surface coating on basalt surfaces but rather nucleated as separate plases in solution. No significant increases in Cs or Sr sorption were observed with increased weathering of the basalt. Concurrent increases in Fe(II) and decreases in Fe(III) in slightly to moderately acid solutions indicated continued oxidization of ferrous iron in the basalt. At neutral to basic pH, Fe(II) was strongly sorbed onto the basalt surface (Kd = 6.5 x 10 -3 1 x m 2 ) resulting in low dissolved concentrations even under anoxic conditions. The rate of O 2 uptake increased with decreasing pH. Diffusion rates (-- 10 -14 cm 2 x s -1 ), calculated using a one-dimensional analytical model, indicate grain boundary diffusion. Comparisons of Eh values calculated by Pt electrode, dissolved O 2 and Fe(II)/Fe(III) measurements showed considerable divergence, with the ferric-ferrous couple being the preferred method of estimating Eh

  10. Interactions between iron oxides and copper oxides under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G B; Owen, D G

    1995-08-01

    Under hydrothermal conditions, magnetite and hematite have been shown to undergo interconversion reactions, the extent of which is controlled in part by the presence of copper oxides. In oxygenated water, the degree to which magnetite was oxidized to hematite was found to be dependent on the presence of CuO or Cu{sub 2}O. When these materials were absent, the oxidation of magnetite was limited by the dissolved oxygen in the aqueous system. Participation of the copper oxides in the oxidation process was confirmed by more complete conversion of magnetite was also influenced by the presence of the copper oxides. In addition to driving the reduction to completion, the presence of the copper oxides also exerted a strong influence over the morphology of the magnetite that formed. (author). 13 refs., 1 tab., 3 figs.

  11. Kinetics of transuranium element oxidation-reduction reactions in solution; Cinetique des reactions d'oxydo-reduction des elements transuraniens en solution

    Energy Technology Data Exchange (ETDEWEB)

    Gourisse, D. [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-09-01

    A review of the kinetics of U, Np, Pu, Am oxidation-reduction reactions is proposed. The relations between the different activation thermodynamic functions (compensatory effect, formal entropy of the activated complex, magnitude of reactions velocities) are considered. The effects of acidity, ionic strength deuterium and mixed solvents polarity on reactions rates are described. The effect of different anions on reactions rates are explained by variations of the reaction standard free energy and variations of the activation free energy (coulombic interactions) resulting from the complexation of dissolved species by these anions. (author) [French] Une revue systematique de la cinetique des reactions d'oxydo-reduction des elements U, Np, Pu, Am, en solution perchlorique est proposee. Des considerations relatives aux grandeurs thermodynamiques d'activation associees aux actes elementaires (effet de compensation, entropie standard des complexes actives, rapidite des reactions) sont developpees. L'influence de l'acidite, de la force ionique, de l'eau lourde et de la polarite des solvants mixtes sur la vitesse des reactions est decrite. Enfin l'influence des differents anions sur la vitesse des reactions est expliquee par les variations de l'enthalpie libre standard de la reaction et de l'enthalpie libre d'activation (travail des forces electrostatiques) resultant de la complexation des especes dissoutes dans la solution. (auteur)

  12. Microwave-irradiation polyol synthesis of PVP-protected Pt–Ni electrocatalysts for methanol oxidation reaction

    CSIR Research Space (South Africa)

    Mathe, Ntombizodwa R

    2017-01-01

    Full Text Available ://doi.org/10.1007/s12678-017-0441-3 Microwave-Irradiation Polyol Synthesis of PVP-Protected Pt–Ni Electrocatalysts for Methanol Oxidation Reaction Ntombizodwa R. Mathe Manfred R. Scriba Rirhandzu S. Rikhotso Neil J. Coville ABSTRACT: Bimetallic Pt...

  13. Thermoemission properties of tungsten with additions of rare earth oxides

    International Nuclear Information System (INIS)

    Gural'nik, N.I.; Evstifeev, V.V.; Imangulova, N.G.

    1988-01-01

    Thermoemission properties of tungsten with addition of rare earth oxides are studied in the superhigh vacuum set with oil-free pumping system. Electronic work function eφ is determined by the method of total saturation current. Temperature dependences are obtained of the work function for three types of cathodes: W+La 2 O 3 ; W+φ 2 O 3 and W+Dy 2 O 3 . It is stated, that the first two types eφ decreases approximately from 4.2 to 3.3 eV and from 4.5 to 3.8 eV, respectively, after activation at proper temperatures. These cathodes are the most effective ones at the temperature of 1700 (W+La 2 O 3 ) and 1900-2100 K (W+ φ 4 O 3 ). The work function of cathodes with addition of dysprosium oxide did not practically vary (4.55-4.3 eV) within the whole studied temperature interval (1500-2100 K)

  14. Radiolytic oxidation of propane: computer modeling of the reaction scheme

    International Nuclear Information System (INIS)

    Gupta, A.K.; Hanrahan, R.J.

    1991-01-01

    The oxidation of gaseous propane under gamma radiolysis was studied at 100 torr pressure and 25 o C, at oxygen pressures from 1 to 15 torr. Major oxygen-containing products and their G-values with 10% added oxygen are as follows: acetone, 0.98; i-propyl alcohol, 0.86; propionaldehyde, 0.43; n-propyl alcohol, 0.11; acrolein, 0.14; and allyl alcohol, 0.038. The formation of major oxygen-containing products was explained on the basis that the alkyl radicals combine with molecular oxygen to give peroxyl radicals; the peroxyl radicals react with one another to give alkoxyl radicals, which in turn react with one another to form carbonyl compounds and alcohols. The reaction scheme for the formation of major products was examined using computer modeling based on a mechanism involving 28 reactions. Yields could be brought into agreement with the data within experimental error in nearly all cases. (author)

  15. A catalyst-free addition reaction of zinc amide enolates to N-sulfonyle imines

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Seong Ryu; Im, Pyeong Won; Kim, Jong Sung; Kim, Seung Hoi [Dept. of Chemistry, Dankook University, Cheonan (Korea, Republic of); Park Soo Youl [Interface Chemistry and Engineering Research Team, Korea Research Institute of Chemical Technology, Daejon (Korea, Republic of)

    2016-12-15

    Despite the remarkable expansion of the imino-Reformatsky reaction, one interesting aspect is that, to the best of our knowledge, zinc enolates derived solely from α-halo esters have been mainly used in the recent progress. In contrast, a few limited examples have been reported concerning the application of zinc enolates derived from α-halo amide to the imino-Reformatsky reaction. In recent years, Rodriguez-Solla and co-workers reported the addition reaction of samarium enolates derived from both α-halo esters and amides to imines, resulting in the synthe- sis of β-amino esters or amides. In conclusion, we established a potential synthetic proto- col for the preparation of β-amino amides. This work was accomplished by the direct addition of zinc amide enolates to N-sulfonyl imines in the absence of any metal-catalyst under mild conditions. Due to the operational simplicity of the proposed method, it can be further utilized in synthetic organic chemistry. Further studies to elucidate the scope of this approach are currently underway in our laboratory.

  16. A catalyst-free addition reaction of zinc amide enolates to N-sulfonyle imines

    International Nuclear Information System (INIS)

    Joo, Seong Ryu; Im, Pyeong Won; Kim, Jong Sung; Kim, Seung Hoi; Park Soo Youl

    2016-01-01

    Despite the remarkable expansion of the imino-Reformatsky reaction, one interesting aspect is that, to the best of our knowledge, zinc enolates derived solely from α-halo esters have been mainly used in the recent progress. In contrast, a few limited examples have been reported concerning the application of zinc enolates derived from α-halo amide to the imino-Reformatsky reaction. In recent years, Rodriguez-Solla and co-workers reported the addition reaction of samarium enolates derived from both α-halo esters and amides to imines, resulting in the synthe- sis of β-amino esters or amides. In conclusion, we established a potential synthetic proto- col for the preparation of β-amino amides. This work was accomplished by the direct addition of zinc amide enolates to N-sulfonyl imines in the absence of any metal-catalyst under mild conditions. Due to the operational simplicity of the proposed method, it can be further utilized in synthetic organic chemistry. Further studies to elucidate the scope of this approach are currently underway in our laboratory

  17. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.; Krier, James M.; Alayoglu, Selim; Shin, Jae-Yoon; An, Kwangjin; Komvopoulos, Kyriakos; Liu, Zhi; Somorjai, Gabor A.

    2014-01-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn

  18. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  19. Improvement of the oxidation resistance of Tribaloy T-800 alloy by the additions of yttrium and aluminium

    International Nuclear Information System (INIS)

    Zhang, Y.-D.; Zhang, C.; Lan, H.; Hou, P.Y.; Yang, Z.-G.

    2011-01-01

    Research highlights: → The additions of yttrium (Y) reduced the oxidation rate of Tribaloy T-800 alloy. → Y promoted selective oxidation of Cr due to refinement of alloy phase size. → The oxidation rate was further reduced by Y plus Al with a protective Al 2 O 3 scale. → The positive effect of Y and Al being more pronounced at the higher temperature. - Abstract: The microstructures and oxidation behaviour of the modified Tribaloy T-800 alloys by additions of yttrium and yttrium plus aluminium have been studied. At the presence of yttrium alone, the oxidation rate decreased, and the selective oxidation of chromium was promoted, which was related to the refinement of alloy phase size. The addition of yttrium plus aluminium further reduced the oxidation rate. The selective oxidation of chromium and aluminium were both promoted significantly. The benefits were especially pronounced at 1000 o C, with the formation of protective alumina external layer and no internal oxides, which may be detrimental to the alloy mechanical property.

  20. Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Vojvodic, Aleksandra

    2015-01-01

    We study the interface between adsorbed water and stoichiometric, defect-free (110) rutile oxide surfaces of TiO2, RuO2, and IrO2 in order to understand how water influences the stabilities of the intermediates of the oxygen evolution reaction (OER). In our model the water is treated as explicitly...... molecules binding to bridging oxygens. The third chain interacts weakly and predominantly with the H2O molecules of the second layer, resembling bulk water. We find that the stability of the water layer close to the oxide surface is almost the same as the one found on flat metal surfaces, such as the Pt(111...... of RuO2 and IrO2, while it is increased by similar to 0.4 eV for TiO2....

  1. EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions

    Science.gov (United States)

    Xiang, Longkuan; Kalaitzis, John A.; Moore, Bradley S.

    2004-01-01

    The bacteriostatic natural product enterocin from the marine microbe “Streptomyces maritimus” has an unprecedented carbon skeleton that is derived from an aromatic polyketide biosynthetic pathway. Its caged tricyclic, nonaromatic core is derived from a linear poly-β-ketide precursor that formally undergoes a Favorskii-like oxidative rearrangement. In vivo characterization of the gene encM through mutagenesis and heterologous biosynthesis demonstrated that its protein product not only is solely responsible for the oxidative C—C rearrangement, but also facilitates two aldol condensations plus two heterocycle forming reactions. In total, at least five chiral centers and four rings are generated by this multifaceted flavoprotein. Heterologous expression of the enterocin biosynthesis genes encABCDLMN in Streptomyces lividans resulted in the formation of the rearranged metabolite desmethyl-5-deoxyenterocin and the shunt products wailupemycins D-G. Addition of the methyltransferase gene encK, which was previously proposed through mutagenesis to additionally assist EncM in the Favorskii rearrangement, shifted the production to the O-methyl derivative 5-deoxyenterocin. The O-methyltransferase EncK seems to be specific for the pyrone ring of enterocin, because bicyclic polyketides bearing pyrone rings are not methylated in vivo. Expression of encM with different combinations of homologous actinorhodin biosynthesis genes did not result in the production of oxidatively rearranged enterocin-actinorhodin hybrid compounds as anticipated, suggesting that wild-type EncM may be specific for its endogenous type II polyketide synthase or for benzoyl-primed polyketide precursors. PMID:15505225

  2. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    Science.gov (United States)

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments. Published by Elsevier Ltd.

  3. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition

    International Nuclear Information System (INIS)

    Wang, Jinlong; Chen, Minghui; Yang, Lanlan; Liu, Li; Zhu, Shenglong; Wang, Fuhui; Meng, Guozhe

    2016-01-01

    Graphical abstract: - Highlights: • Effect of Y addition on oxidation of nanocrystalline coating is studied. • Y addition delays transformation of q-Al_2O_3 to a-Al_2O_3 during oxidation. • Y addition prevents scale rumpling. • Y segregates at grain boundaries of the nanocrystalline coating. • Y retards the transportation of Ta thus reduces its oxidation. - Abstract: The effect of yttrium addition on isothermal oxidation at 1050 °C of a sputtered nanocrystalline coating with moderate amount of tantalum in composition was investigated. Results indicate that yttrium addition delays transformation of metastable θ-Al_2O_3 to equilibrium α-Al_2O_3 grown on the nanocrystalline coatings. It prevents scale rumpling and promotes the formation of oxide pegs at interface between the oxide scale and the underlying coating. Besides, yttrium prefers to segregate at grain boundaries of the nanocrystalline coating and retards the outward transportation of tantalum from coating to oxide scale, thus reducing the excessive oxidation of tantalum.

  4. Zirconium metal-water oxidation kinetics. III. Oxygen diffusion in oxide and alpha Zircaloy phases

    International Nuclear Information System (INIS)

    Pawel, R.E.

    1976-10-01

    The reaction of Zircaloy in steam at elevated temperature involves the growth of discrete layers of oxide and oxygen-rich alpha Zircaloy from the parent beta phase. The multiphase, moving boundary diffusion problem involved is encountered in a number of important reaction schemes in addition to that of Zircaloy-oxygen and can be completely (albeitly ideally) characterized through an appropriate model in terms of oxygen diffusion coefficients and equilibrium concentrations for the various phases. Conversely, kinetic data for phase growth and total oxygen consumption rates can be used to compute diffusion coefficients. Equations are developed that express the oxygen diffusion coefficients in the oxide and alpha phases in terms of the reaction rate constants and equilibrium solubility values. These equations were applied to recent experimental kinetic data on the steam oxidation of Zircaloy-4 to determine the effective oxygen diffusion coefficients in these phases over the temperature range 1000--1500 0 C

  5. Neuroprotective properties of nitric oxide and S-nitrosoglutathione

    International Nuclear Information System (INIS)

    Rauhala, Pekka; Andoh, Tsugunobu; Chiueh, C.C.

    2005-01-01

    Oxidative stress and apoptosis may play an important role in the neurodegeneration. The present paper outlines antioxidative and antiapototic mechanisms of nitric oxide and S-nitrosothiols, which could mediate neuroprotection. Nitric oxide generated by nitric oxide synthase or released from an endogenous S-nitrosothiol, S-nitrosoglutathione may up-regulate antioxidative thioredoxin system and antiapototic Bcl-2 protein through a cGMP-dependent mechanism. Moreover, nitric oxide radicals have been shown to have direct antioxidant effect through their reaction with free radicals and iron-oxygen complexes. In addition to serving as a stabilizer and carrier of nitric oxide, S-nitrosoglutathione may have protective effect through transnitrosylation reactions. Based on these new findings, a hypothesis arises that the homeostasis of nitric oxide, S-nitrosothiols, glutathione, and thioredoxin systems is important for protection against oxidative stress, apoptosis, and related neurodegenerative disorders

  6. A DFT study on the enthalpies of thermite reactions and enthalpies of formation of metal composite oxide

    Science.gov (United States)

    Zhang, Yu-ying; Wang, Meng-jie; Chang, Chun-ran; Xu, Kang-zhen; Ma, Hai-xia; Zhao, Feng-qi

    2018-05-01

    The standard thermite reaction enthalpies (ΔrHmθ) for seven metal oxides were theoretically analyzed using density functional theory (DFT) under five different functional levels, and the results were compared with experimental values. Through the comparison of the linear fitting constants, mean error and root mean square error, the Perdew-Wang functional within the framework of local density approximation (LDA-PWC) and Perdew-Burke-Ernzerhof exchange-correlation functional within the framework of generalized gradient approximation (GGA-PBE) were selected to further calculate the thermite reaction enthalpies for metal composite oxides (MCOs). According to the Kirchhoff formula, the standard molar reaction enthalpies for these MCOs were obtained and their standard molar enthalpies of formation (ΔfHmθ) were finally calculated. The results indicated that GGA-PBE is the most suitable one out of the total five methods to calculate these oxides. Tungstate crystals present the maximum deviation of the enthalpies of thermite reactions for MCOs and these of their physical metal oxide mixtures, but ferrite crystals are the minimum. The correlation coefficients are all above 0.95, meaning linear fitting results are very precise. And the molar enthalpies of formation for NiMoO4, CuMoO4, PbZrO3 (Pm/3m), PbZrO3 (PBA2), PbZrO3 (PBam), MgZrO3, CdZrO3, MnZrO3, CuWO4 and Fe2WO6 were first obtained as -1078.75, -1058.45, -1343.87, -1266.54, -1342.29, -1333.03, -1210.43, -1388.05, -1131.07 and - 1860.11 kJ·mol-1, respectively.

  7. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  8. Solvent-Free Selective Oxidation of Toluene with O2 Catalyzed by Metal Cation Modified LDHs and Mixed Oxides

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-01-01

    Full Text Available A series of metal cation modified layered-double hydroxides (LDHs and mixed oxides were prepared and used to be the selective oxidation of toluene with O2. The results revealed that the modified LDHs exhibited much higher catalytic performance than their parent LDH and the modified mixed oxides. Moreover, the metal cations were also found to play important roles in the catalytic performance and stabilities of modified catalysts. Under the optimal reaction conditions, the highest toluene conversion reached 8.7% with 97.5% of the selectivity to benzyldehyde; moreover, the catalytic performance remained after nine catalytic runs. In addition, the reaction probably involved a free-radical mechanism.

  9. Reductive and oxidative reactions with inorganic colloids in aqueous solution initiated by ultrasound

    International Nuclear Information System (INIS)

    Mulvaney, P.C.; Sostaric, J.Z.; Ashokkumar, M.; Grieser, F.

    1998-01-01

    Full text: The absorption of ultrasound in an aqueous solution can lead to the formation of H and OH radicals which can act as redox species or react with solutes to produce secondary radicals which themselves may participate in electron transfer reactions. The radical formation occurs through the growth then rapid collapse of microbubbles a process that produces localised hot spots with an internal temperature of the order of 5000 K. We have examined two colloidal systems one involving the reductive dissolution of MnO 2 colloids and the other the oxidative dissolution of CdS colloids. In the case of MnO 2 dissolution we found that the reduction of the colloidal metal oxide was considerably enhanced in the presence of aliphatic alcohols in solution and the longer the alkyl chain length on the alcohol the greater its effect. The dissolution of CdS colloids which we ascribe to the reaction of H 2 O 2 and O 2 - with the metal sulfide lo yield Cd 2+ and S could be significantly retarded by the presence of excess S 2- in solution. The mechanisms involved in these two dissolution processes will he presented. Our results clearly show that sonochemical reactions are quite efficient in colloidal solutions and this fact needs to be considered when using sonication to disperse colloidal material in solution, a common practice among colloid chemists

  10. Preparation of Cu@Cu2O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol

    Directory of Open Access Journals (Sweden)

    Seongwan Jang

    2016-11-01

    Full Text Available HKUST-1, a copper-based metal organic framework (MOF, has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe3O4@HKUST-1 by layer-by layer assembly strategy and Cu@Cu2O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu2O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di-tert-butylcatechol. Through this method, MOF can maintain the original core-shell structure and be used in various other reactions with enhanced catalytic activity.

  11. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    Science.gov (United States)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  12. Ozonization, Amination and Photoreduction of Graphene Oxide for Triiodide Reduction Reaction: An Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Jing, Hongyu; Ren, Suzhen; Shi, Yantao; Song, Xuedan; Yang, Ying; Guo, Yanan; An, Yonglin; Hao, Ce

    2017-01-01

    This work proposes a mild and environmentally-friendly approach to prepare a highly efficient functional graphene (termed as AGO-hv) using methods of ozone oxidation, solvothermal synthesis, and photoreduction. The use of ozone oxidation in the first step can effectively increase the interlaminar distance between graphite oxide sheets, and create active sites for nucleophilic attack on the epoxy carbon from ammonia. The amino groups were successfully grafted on the surface of graphene as evidenced by the amidation reaction, with a maximum nitrogen content of 10.46 wt% and a C/N molar ratio of 8.46. After further photoreduction of the aminated graphite oxide (AGO), the residual oxygen functionalities, such as C-OH, were effectively removed and the conductivity of the graphene sheet was further recovered. The dye-sensitized solar cell (DSC) exhibited a power conversion efficiency (PCE) of 7.51% based on AGO-hv counter electrode (CE), close to that of Pt counterpart (7.79%). The experimental results indicated that the amidation and photoreduction processes were significantly facilitated by the initial ozonization of graphene oxide, and this process significantly improved the electrochemical activity and the conductivity of graphene oxide. Density functional theory (DFT) calculations revealed that AGO-hv had the lowest ionization energy (a better electron-donating ability) and also suitable binding energy with I atoms as well. The combination of ozonization, amination and photoreduction is an efficient route to obtain electrocatalysts with desired compositional distributions and performance for triiodide reduction reaction in DSCs.

  13. Reaction mechanism of CO oxidation on Cu2O(111): A density functional study

    Science.gov (United States)

    Sun, Bao-Zhen; Chen, Wen-Kai; Xu, Yi-Jun

    2010-10-01

    The possible reaction mechanisms for CO oxidation on the perfect Cu2O(111) surface have been investigated by performing periodic density functional theoretical calculations. We find that Cu2O(111) is able to facilitate the CO oxidation with different mechanisms. Four possible mechanisms are explored (denoted as MER1, MER2, MLH1, and MLH2, respectively): MER1 is CO(gas)+O2(ads)-->CO2(gas) MER2 is CO(gas)+O2(ads)-->CO3(ads)-->O(ads)+CO2(gas) MLH1 refers to CO(ads)+O2(ads)-->O(ads)+CO2(ads) and MLH2 refers to CO(ads)+O2(ads)-->OOCO(ads)-->O(ads)+CO2(ads). Our transition state calculations clearly reveal that MER1 and MLH2 are both viable; but MER1 mechanism preferentially operates, in which only a moderate energy barrier (60.22 kJ/mol) needs to be overcome. When CO oxidation takes place along MER2 path, it is facile for CO3 formation, but is difficult for its decomposition, thereby CO3 species can stably exist on Cu2O(111). Of course, the reaction of CO with lattice O of Cu2O(111) is also considered. However, the calculated barrier is 600.00 kJ/mol, which is too large to make the path feasible. So, we believe that on Cu2O(111), CO reacts with adsorbed O, rather than lattice O, to form CO2. This is different from the usual Mars-van Krevene mechanism. The present results enrich our understanding of the catalytic oxidation of CO by copper-based and metal-oxide catalysts.

  14. Influence of promoters and oxidants on propane dehydrogenation over chromium-oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Agafonov, Yu.A.; Shaporeva, N.Yu.; Trushin, D.V.; Gaidai, N.A.; Nekrasov, N.V. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry

    2010-12-30

    Possibilities for increasing the efficiency of supported on SiO{sub 2} chromium-oxide catalysts in propane oxidative dehydrogenation in CO{sub 2} presence are investigated: the introduction of Li, Na, K, Ca in catalysts and the addition of O{sub 2} in the reaction mixture. It was been found that the positive role of K - the increase of the selectivity to propene and stability of catalysts at long-duration tests - appeared at the relation of Cr:K=20. It was shown that the presence of little amount of O{sub 2} (2%) in the reaction mixtures of propane and carbon dioxide resulted in the increase of propene yield and catalyst stability. (orig.)

  15. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants

    DEFF Research Database (Denmark)

    Carroll, L.; Davies, Michael J.; Pattison, D. I.

    2015-01-01

    Selenium is an essential trace element in mammals, with the majority specifically encoded as seleno-L-cysteine into a range of selenoproteins. Many of these proteins play a key role in modulating oxidative stress, via either direct detoxification of biological oxidants, or repair of oxidised...... the chemistry of low-molecular-mass organoselenium compounds (e.g. selenoethers, diselenides and selenols) with inflammatory oxidants, with a particular focus on the reaction kinetics and product studies, with the differences in reactivity between selenium and sulphur analogues described in the selected...... examples. These data provide insight into the therapeutic potential of low-molecular-mass selenium-containing compounds to modulate the activity of both radical and molecular oxidants and provide protection against inflammation-induced damage. Progress in their therapeutic development (including modulation...

  16. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  17. Partial oxidation of jet fuels over Rh/Al_2O_3. Design and reaction kinetics of sulfur-containing surrogates

    International Nuclear Information System (INIS)

    Baer, Julian Nicolaas

    2016-01-01

    The conversion of logistic fuels via catalytic partial oxidation (CPOX) on Rh/Al_2O_3 at short contact times is an efficient method for generating hydrogen-rich synthesis gas. Depending on the inlet conditions, fuel, and catalyst, high syngas yields, low by-product formation, and rates of high fuel conversion can be achieved. CPOX is relevant for mobile hydrogen generation, e.g., on board of airplanes in order to increase the fuel efficiency via fuel cell-based auxiliary power units. Jet fuels contain hundreds of different hydrocarbons and a significant amount of sulfur. The hydrocarbon composition and sulfur content of a jet fuel vary depending on distributor, origin, and refinement of the crude oil. Little is known about the influence of the various compounds on the synthesis-gas yield and the impact of sulfur on the product yield. In this work, the influence of three main chemical compounds of a jet fuel (aromatics, alkanes, and sulfur compounds) on syngas selectivity, the catalyst deactivation process, and reaction sequence is unraveled. As representative components of alkanes and aromatics, n-dodecane and 1,2,4-trimethylbenzene were chosen for ex-situ and in-situ investigations on the CPOX over Rh/Al_2O_3, respectively. Additionally, for a fixed paraffin-to-aromatics ratio, benzothiophene or dibenzothiophene were added as a sulfur component in three different concentrations. The knowledge gained about the catalytic partial oxidation of jet fuels and their surrogates is used to identify requirements for jet fuels in mobile applications based on CPOX and to optimize the overall system efficiency. The results show an influence of the surrogate composition on syngas selectivity. The tendency for syngas formation increases with higher paraffin contents. A growing tendency for by-product formation can be observed with increasing aromatics contents in the fuel. The impact of sulfur on the reaction system shows an immediate change in the product distribution. An

  18. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  19. OXIDATIVE STABILITY OF CHICKEN MEAT AFTER APPLICATION PHYTOGENIC ADDITIVES IN THEIR DIET

    Directory of Open Access Journals (Sweden)

    Marek Bobko

    2015-02-01

    Full Text Available The aim of the study was to evaluate the oxidative stability (TBARS method of breast and thigh muscle after application of feed mixtures enriched by phytogenic additives. The experiment started with 250 pieces one-day-old chicks of Cobb 500 hybrid combination. They were divided into one control (C and four experimental groups (1st EG, 2nd EG, 3rd EG, 4th EG. Each group included 50 chicks. In experimental groups, feed additives were applied as followed: 100 mg kg-1 Agolin Poultry (in the 1st EG, 500 mg kg-1 Agolin Tannin Plus (in the 2nd EG, 1000 mg kg-1 Biostrong 510 + FortiBac (in the 3rd EG and 1000 mg kg-1 Agolin Acid (in the 4th EG. We recorded positive influence on chicken meat oxidative stability in all experimental groups with application of plant feed additives. Experimental broiler chickens were fed during 42 days by ad libitum. Chicken meat samples of breast and thigh muscle were analyzed in the 1st, 3rd, 5th and 7th day of storage in cold conditions at 4 °C. Obtained results showed that applied phytogenic additives had positive influence on oxidative stability of breast and thigh muscles. At the end of cold store (in 7th day, we found higher malondialdehyde (MDA values and lower oxidative stability (P<0.05 of breast muscle in control group (0.157 mg kg-1 compared to experimental groups (from 0.124 mg kg-1 in the 3rd EG to 0.133 mg kg-1 in the 1st EG. In the thigh muscle, we found similar tendency of oxidative changes as in the breast muscle. At the end of cold store (in the 7th day, MDA average values of thigh muscle were higher (P<0.05 in control group (0.179 mg kg-1 compared to experimental groups (from 0.136 mg kg-1 in the 4th EG to 0.141 mg kg-1 in the 1st EG. Significant differences (P<0.05 between the control and experimental groups were found from the 5th day of storage in thigh muscle in contrast to breast muscle. Obtained results indicate positive influence of phytogenic additives applied in chicken nutrition, namely on

  20. Oxidative coupling of methane. Still a challenge for catalyst development and reaction engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schomaecker, R.; Arnd, S.; Beck, B. [Technical Univ. of Berlin (Germany). Dept. of Chemistry] [and others

    2013-11-01

    The oxidative coupling of methane to ethylene offers great industrial potential, because it would broaden the feedstock basis for chemical industry. Because methane is the most stable hydrocarbon, its activation requires high temperatures and it is a great scientific challenge to overcome the apparent yield limit of about 25%. This barrier has never been exceeded since the beginning of OCM research more than 20 years ago. Results and Discussion: This challenge is one of the key projects of the Cluster of Excellence UNICAT and requires joined efforts and contributions from many disciplines, because this reaction shows a combined surface/gas phase reaction mechanism which results in very unusual and complex dependencies on the reaction conditions. Although dozens of materials are known to catalyze the reaction, the selection of a catalyst suitable for an industrial process is difficult, due to severe stability problems of many materials. Li/MgO was chosen by the UNICAT-team as model catalyst, because of the extended literature about it. But it shows uncontrollable deactivation, no matter what precursor and method were used for its preparation. Nevertheless, it is a suitable catalyst for fundamental studies, due to its formal chemical simplicity. A key result of the joined research activities was the disproval of the Lunsford mechanism and the elucidation of the real function of lithium as a surface modifier creating a rough and defect-rich surface. For the development of an OCM process another catalyst, Na{sub 2}WO{sub 4}/Mn/SiO{sub 2}, was chosen from the rich literature on OCM. Although less is known about its structure and the reaction mechanism at this catalyst, its stability was the most important reason to select it for further engineering studies. Kinetic isotope measurements and studies in a TAP reactor demonstrate the similarity of the reaction mechanisms at both catalysts, despite the completely different materials. The selectivity is largely controlled by

  1. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  2. Graphite Oxidation Thermodynamics/Reactions

    International Nuclear Information System (INIS)

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  3. Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

    Directory of Open Access Journals (Sweden)

    J. Dharmaraja

    2008-01-01

    Full Text Available The kinetics of oxidation of benzyl alcohol (BzOH by benzimidazolium fluorochromate (BIFC has been studied in 50% aqueous acetic acid medium at 308 K. The reaction is first order with respect to [oxidant] and [benzyl alcohol]. The reaction is catalysed by hydrogen ions. The decrease in dielectric constant of the medium increases the rate of the reaction. Addition of sodium perchlorate increases the rate of the reaction appreciably. No polymerization with acrylonitrile. The reaction has been conducted at four different temperature and the activation parameters were calculated. From the observed kinetic results a suitable mechanism was proposed.

  4. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland)

    1996-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  5. Modelling of chalcopyrite oxidation reactions in the Outokumpu flash smelting process

    Energy Technology Data Exchange (ETDEWEB)

    Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland)

    1997-12-31

    A mathematical model for simulating oxidation reactions of chalcopyrite particles together with momentum, heat and mass transfer between particle and gas phase in a flash smelting furnace reaction shaft is presented. In simulation, the equations governing the gas flow are solved numerically with a commercial fluid flow package, Phoenics. The particle phase is introduced into the gas flow by a Particle Source In Cell (PSIC) - technique, where a number of discrete particles is tracked in a gas flow and the relevant source terms for momentum, mass, and heat transfer are added to the gas phase equations. The gas phase equations used are elliptic in nature and the fluid turbulence is described by the (k-{epsilon}) -model. Thermal gas phase radiation is simulated with a six-flux radiation model. The chemical reactions of concentrate particles are assumed to happen at two sharp interfaces, and a shrinking core model is applied to describe the mass transfer of chemical species through the reaction product layer. In a molten state, the oxygen consumption is controlled by a film penetration concept. The reacting concentrate particles are a mixture of chalcopyrite and silica. Also a certain amount of pure inert silica is fed to the process as flux. In the simulations the calculation domain includes the concentrate burner and a cylindrical reaction shaft of an industrial scale flash smelting furnace. Some examples about the simulations carried out by the combustion model are presented. (author)

  6. Solvent 1H/2H isotopic effects in the reaction of the L-Tyrosine oxidation catalyzed by Tyrosinase

    International Nuclear Information System (INIS)

    Kozlowska, M.; Kanska, M.

    2006-01-01

    Tyrosinase is well known catalyst in the oxidation of L-Tyrosine to L-DOPA and following oxidation of L-DOPA to dopachinone. The aim of communication is to present the results of studies on the solvent isotopic effects (SIE) in the above reactions for the 1 H/ 2 H in the 3',5' and 2',6' substituted tyrosine. Obtained dependence of the reaction rate on the substrate concentration were applied for optimization of the kinetic parameters, k cat and k cat /K m , in the Michaelis-Menten equation. As a result - better understanding of the L-DOPA creation can be achieved

  7. Evaluation of the strength and radiopacity of Portland cement with varying additions of bismuth oxide.

    Science.gov (United States)

    Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J

    2009-04-01

    To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.

  8. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  9. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  10. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    Science.gov (United States)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  11. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    International Nuclear Information System (INIS)

    Park, Yu-Seon; An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary; Zhuo, Kai; Yoo, Tae Kyong; Chung, Chan-Hwa

    2016-01-01

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu_2O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  12. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Seon [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Zhuo, Kai [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); Yoo, Tae Kyong [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Chung, Chan-Hwa, E-mail: chchung@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of)

    2016-12-15

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu{sub 2}O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  13. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    Science.gov (United States)

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  14. New insights into the low-temperature oxidation of 2-methylhexane

    KAUST Repository

    Wang, Zhandong

    2016-09-24

    In this work, we studied the low-temperature oxidation of a stoichiometric 2-methylhexane/O2/Ar mixture in a jet-stirred reactor coupled with synchrotron vacuum ultraviolet photoionization molecular-beam mass spectrometry. The initial gas mixture was composed of 2% 2-methyhexane, 22% O2 and 76% Ar and the pressure of the reactor was kept at 780Torr. Low-temperature oxidation intermediates with two to five oxygen atoms were observed. The detection of C7H14O5 and C7H12O4 species suggests that a third O2 addition process occurs in 2-methylhexane low-temperature oxidation. A detailed kinetic model was developed that describes the third O2 addition and subsequent reactions leading to C7H14O5 (keto-dihydroperoxide and dihydroperoxy cyclic ether) and C7H12O4 (diketo-hydroperoxide and keto-hydroperoxy cyclic ether) species. The kinetics of the third O2 addition reactions are discussed and model calculations were performed that reveal that third O2 addition reactions promote 2-methylhexane auto-ignition at low temperatures. © 2016 The Combustion Institute.

  15. Addition and spin exchange rate constants by longitudinal field μSR: the Mu + NO reaction

    International Nuclear Information System (INIS)

    Senba, Masayoshi; Gonzalez, A.C.; Kempton, J.R.; Arseneau, D.J.; Pan, J.J.; Tempelmann, A.; Fleming, D.G.

    1991-01-01

    The addition reaction Mu + NO + M → MuNO + M and the spin exchange reaction Mu(↑) + NO(↓)→Mu(↓)+NO(↑) have been measured by longitudinal field μSR at room temperature in the presence of up to 58 atm of N 2 as inert collider. The pressure dependence of the longitudinal relaxation rate due to the addition reaction (λ c ) demonstrates that the system is still in the low pressure regime in this pressure range. The corresponding termolecular rate constant has been determined as k 0.Mu =(1.10±0.25)x10 -32 cm 6 molecules -2 s -1 , almost 4 times smaller than the corresponding H atom reaction k 0,H =3.90x10 -32 cm 6 molecules -2 s -1 . The average value of the spin exchange rate constants in the 2.5-58 atm pressure range, k SE = (3.16±0.06)x10 -10 cm 3 molecule -1 s -1 , is in good agreement with previous values obtained by transverse field μSR. (orig.)

  16. Yttrium implantation and addition element effects on the oxidation behaviour of reference steels at 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H.; Cueff, R.; Issartel, C.; El Messki, S.; Perrier, S.; Riffard, F. [Lab. Vellave d' Elaboration et d' Etude des Materiaux, Univ. Blaise Pascal Clermont-Fd 2, Le Puy en Velay (France)

    2004-07-01

    Yttrium implantation effects on reference steels (extra low carbon and low manganese steel) were studied by rutherford backscattering spectrometry (RBS), reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD) and glancing angle X-ray diffraction (GAXRD). Thermogravimetry and in situ X-ray diffraction at 700 C and P{sub O2}=0.04 Pa for 24h were used to determine the yttrium implantation and addition element effects on sample oxidation resistance at high temperatures. This study clearly shows that yttrium implantation and subsequent high temperature oxidation induced the formation of several yttrium mixed oxides which closely depend on the reference steel addition elements. Moreover, these yttrium mixed oxides seem to be responsible for the improved reference steel oxidation resistance at high temperatures. (orig.)

  17. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Kou, Ronghui [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Ren, Yang [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Sun, Cheng-Jun [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Zhao, Hu [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Zhang, Ming-Jian [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Li, Yan [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Huq, Ashifia [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Ko, J. Y. Peter [The Cornell High Energy Synchrotron Source, Cornell University, Ithaca NY 14853 USA; Pan, Feng [School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Sun, Yang-Kook [Department of Energy Engineering, Hanyang University, Seoul 133-791 South Korea; Yang, Yong [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Bai, Jianming [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Wang, Feng [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)(x)O-2 (1-x >= 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs.

  18. Food additives reducing volatility of antioxidants at frying temperature

    Science.gov (United States)

    At frying temperature, antioxidants are lost not only by reaction with radicals formed by oil oxidation, but also by decomposition and evaporation before they are able to exert antioxidant activity. In this study it was hypothesized that an additive that can bind or interact with an antioxidant coul...

  19. Some current problems in oxidation kinetics

    Science.gov (United States)

    Benson, S. W.

    1972-01-01

    Experimental data in low temperature and high temperature oxidations are examined from the point of view of reported quantitative inconsistencies. Activation energies for tBuO2 metathesis reactions with alkanes appear to be 7 kcal/mole higher than for comparable reactions of HO2. Related isomerization reactions are examined in the light of these differences without reaching any simple conclusions. The Russell mechanism for a 6-membered, cyclic, transition state for termination of primary and secondary alkyl peroxy radicals is shown to be either inconsistent with thermochemical data, or else unique to solution reactions. Addition reactions of O3 with olefins and acetylenes are shown thermochemically to have the possibility of following concerted and biradical pathways, respectively. Recent data showing strong inhibition by PbO coated surfaces of both oxidation and pyrolysis of i-C4H10 are examined in terms of mechanism.

  20. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.

    Science.gov (United States)

    Kim, Jiwhan; Kim, Hee-Eun; Lee, Hyunjoo

    2018-01-10

    Single-atom catalysts (SACs), in which metal atoms are dispersed on the support without forming nanoparticles, have been used for various heterogeneous reactions and most recently for electrochemical reactions. In this Minireview, recent examples of single-atom electrocatalysts used for the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), hydrogen evolution reaction (HER), formic acid oxidation reaction (FAOR), and methanol oxidation reaction (MOR) are introduced. Many density functional theory (DFT) simulations have predicted that SACs may be effective for CO 2 reduction to methane or methanol production while suppressing H 2 evolution, and those cases are introduced here as well. Single atoms, mainly Pt single atoms, have been deposited on TiN or TiC nanoparticles, defective graphene nanosheets, N-doped covalent triazine frameworks, graphitic carbon nitride, S-doped zeolite-templated carbon, and Sb-doped SnO 2 surfaces. Scanning transmission electron microscopy, extended X-ray absorption fine structure measurement, and in situ infrared spectroscopy have been used to detect the single-atom structure and confirm the absence of nanoparticles. SACs have shown high mass activity, minimizing the use of precious metal, and unique selectivity distinct from nanoparticle catalysts owing to the absence of ensemble sites. Additional features that SACs should possess for effective electrochemical applications were also suggested. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Oxidative stability of marine phospholipids

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline Pascale

    Many studies have shown that marine phospholipids (MPL) provide more advantages than fish oil. They have better bioavailability, better resistance towards oxidation and higher content of eicosapentaenoic acids (EPA) and docosahexaenoic acids (DHA) than oily triglycerides (fish oil). The objective...... of this study is to investigate the oxidative and hydrolytic stability of MPL. In addition, this study also investigates the effect of chemical composition of MPL and Maillard reaction (interaction between lipids oxidation products with the residue of amino acids) on MPL emulsions’ stability. Firstly, MPL were...... was further investigated through measurement of secondary volatile compounds by Solid Phase Microextraction at several time intervals. On the other hand, the Maillard reaction was investigated through the measurement of color changes and pyrrole content before and after 32 days storage. Preliminary result...

  2. Microwave-Assisted Synthesis of Reduced Graphene Oxide/SnO2 Nanocomposite for Oxygen Reduction Reaction in Microbial Fuel Cells.

    Science.gov (United States)

    Garino, Nadia; Sacco, Adriano; Castellino, Micaela; Muñoz-Tabares, José Alejandro; Chiodoni, Angelica; Agostino, Valeria; Margaria, Valentina; Gerosa, Matteo; Massaglia, Giulia; Quaglio, Marzia

    2016-02-01

    We report on an easy, fast, eco-friendly, and reliable method for the synthesis of reduced graphene oxide/SnO2 nanocomposite as cathode material for application in microbial fuel cells (MFCs). The material was prepared starting from graphene oxide that has been reduced to graphene during the hydrothermal synthesis of the nanocomposite, carried out in a microwave system. Structural and morphological characterizations evidenced the formation of nanocomposite sheets, with SnO2 crystals of few nanometers integrated in the graphene matrix. Physico-chemical analysis revealed the formation of SnO2 nanoparticles, as well as the functionalization of the graphene by the presence of nitrogen atoms. Electrochemical characterizations put in evidence the ability of such composite to exploit a cocatalysis mechanism for the oxygen reduction reaction, provided by the presence of both SnO2 and nitrogen. In addition, the novel composite catalyst was successfully employed as cathode in seawater-based MFCs, giving electrical performances comparable to those of reference devices employing Pt as catalyst.

  3. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  4. Reaction of oxygen with γ, δ-ethylenic phenylhydrazones. Model reaction of end-group behavior in phenylhydrazine-accelerated oxidation of natural rubber

    International Nuclear Information System (INIS)

    El Hamdaoui, A.; Reyx, D.; Campistron, I.

    1995-01-01

    An accurate definition of terminal groups of chains in the liquid polymers obtained by the phenylhydrazine-accelerated oxidation of natural rubber is needed. The object of the work was to use model molecules to explore the behavior of γ,δ-ethylenic methylketone phenylhydrazone end-groups in oxidation conditions. We have investigated the synthesis and characterization of models of these hypothetical end-groups, methylketones and phenones 1, their phenylhydrazones 2, the α-(phenyldiazenyl)hydroperoxides 3 resulting from reaction of 2 with oxygen, and the α-(phenyldiazenyl)alcohols 4 as characteristic derivatives of 3 or as models of possible reduced structures in oxidized liquid natural rubber. Three original syntheses of γ,δ-ethylenic ketones were carried out. In the case of γ,δ-ethylenic phenylhydrazones, the oxidation led to the expected α-(phenyldiazenyl)hydroperoxides and to epoxide derivatives of α-(phenyldiazenyl)alcohols 5 and ketones 6. An intramolecular mechanism is proposed. The results are used to predict the possibilities of identification of the corresponding end-groups in liquid rubbers produced in this way. (authors). 16 refs., 12 figs., 3 tabs

  5. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  6. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, Doddahalli H.; Krishna Pai, Ranjith

    2015-01-01

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic

  7. Partial equilibrium in induced redox reactions of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skii, B P; Posvol' skii, M V; Krylov, L I; Morozova, Z P

    1975-01-01

    A study was made of oxidation-reduction reactions of Pu in buffer solutions containing bichromate and a reducing agent which reacted with hexavalent chromium at pH=3.5. In most cases sodium nitrite was used. A rather slow reduction of Pu (6) with NaNO/sub 2/ in the course of which tetravalent plutonium was formed via disproportionation reaction of plutonium (5), became very rapid upon the addition of bichromate to the solution. The yield of tetravalent plutonium increased with an increase in the concentration of NaNO/sub 2/ and the bichromate but never reached 100%. This was due to a simultaneous occurrenc of the induced oxidation reaction of Pu(4), leading to a partial equilibrium between the valence forms of plutonium in the nitrite-bichromate system which on the whole was in a nonequilibrium state. It was shown that in the series of reactions leading to the reduction of plutonium the presence of bivalent chromium was a necessary link.

  8. Study of Ni/Si(1 0 0) solid-state reaction with Al addition

    International Nuclear Information System (INIS)

    Huang Yifei; Jiang Yulong; Ru Guoping; Li Bingzong

    2008-01-01

    The characteristics of Ni/Si(1 0 0) solid-state reaction with Al addition (Ni/Al/Si(1 0 0), Ni/Al/Ni/Si(1 0 0) and Al/Ni/Si(1 0 0)) is studied. Ni and Al films were deposited on Si(1 0 0) substrate by ion beam sputtering. The solid-state reaction between metal films and Si was performed by rapid thermal annealing. The sheet resistance of the formed silicide film was measured by four-point probe method. The X-ray diffraction (XRD) was employed to detect the phases in the silicide film. The Auger electron spectroscopy was applied to reveal the element profiles in depth. The influence of Al addition on the Schottky barrier heights of the formed silicide/Si diodes was investigated by current-voltage measurements. The experimental results show that NiSi forms even with the addition of Al, although the formation temperature correspondingly changes. It is revealed that Ni silicidation is accompanied with Al diffusion in Ni film toward the film top surface and Al is the dominant diffusion species in Ni/Al system. However, no Ni x Al y phase is detected in the films and no significant Schottky barrier height modulation by the addition of Al is observed

  9. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    Science.gov (United States)

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Gas phase formation of extremely oxidized pinene reaction products in chamber and ambient air

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2012-06-01

    Full Text Available High molecular weight (300–650 Da naturally charged negative ions have previously been observed at a boreal forest site in Hyytiälä, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiälä. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16 oxidation at low-OH conditions in the Jülich Plant Atmosphere Chamber (JPAC. The ions were identified as clusters of the nitrate ion (NO3 and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4 (Hyytiälä and C3F5O2 (JPAC. The most abundant products in the ion spectra were identified as C10H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiälä, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~10

  11. pH-Controlled Oxidation of an Aromatic Ketone: Structural Elucidation of the Products of Two Green Chemical Reactions

    Science.gov (United States)

    Ballard, C. Eric

    2010-01-01

    A laboratory experiment emphasizing the structural elucidation of organic compounds has been developed as a discovery exercise. The "unknown" compounds are the products of the pH-controlled oxidation of 4'-methoxyacetophenone with bleach. The chemoselectivity of this reaction is highly dependent on the pH of the reaction media: under basic…

  12. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  13. Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation

    Science.gov (United States)

    Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock

    2000-01-01

    Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...

  14. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  15. Improvement in electrical characteristics of eco-friendly indium zinc oxide thin-film transistors by photocatalytic reaction.

    Science.gov (United States)

    Kang, Jun Ki; Park, Sung Pyo; Na, Jae Won; Lee, Jin Hyeok; Kim, Dongwoo; Kim, Hyun Jae

    2018-05-11

    Eco-friendly solution-processed oxide thin-film transistors (TFTs) were fabricated through photocatalytic reaction of titanium dioxide (PRT). The titanium dioxide (TiO 2 ) surface reacts with H 2 O under ultraviolet (UV) light irradiation and generates hydroxyl radicals (OH∙). These hydroxyl radicals accelerate the decomposition of large organic compounds such as 2-methoxyethanol (2ME; one of the representative solvents for solution-processed metal oxides), creating smaller organic molecular structures compared with 2ME. The decomposed small organic materials have low molar masses and low boiling points, which help improving electrical properties via diminishing defect sites in oxide channel layers and fabricating low temperature solution-processed oxide TFTs. As a result, the field-effect mobility improved from 4.29 to 10.24 cm 2 /V·s for IGZO TFTs and from 2.78 to 7.82 cm 2 /V·s for IZO TFTs, and the V th shift caused by positive bias stress (PBS) and negative bias illumination stress (NBIS) over 1,000 s under 5,700 lux decreased from 6.2 to 2.9 V and from 15.3 to 2.8 V, respectively. In theory, TiO 2 has a permanent photocatalytic reaction; as such, hydroxyl radicals are generated continuously under UV irradiation, improving the electrical characteristics of solution-processed IZO TFTs even after four iterations of TiO 2 recycling in this study. Thus, the PRT method provides an eco-friendly approach for high-performance solution-processed oxide TFTs.

  16. Heterogeneous Reaction of SO2 on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity.

    Science.gov (United States)

    Yang, Weiwei; Zhang, Jianghao; Ma, Qingxin; Zhao, Yan; Liu, Yongchun; He, Hong

    2017-07-03

    Manganese oxides from anthropogenic sources can promote the formation of sulfate through catalytic oxidation of SO 2 . In this study, the kinetics of SO 2 reactions on MnO 2 with different morphologies (α, β, γ and δ) was investigated using flow tube reactor and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Under dry conditions, the reactivity towards SO 2 uptake was highest on δ-MnO 2 but lowest on β-MnO 2 , with a geometric uptake coefficient (γ obs ) of (2.42 ± 0.13) ×10 -2 and a corrected uptake coefficient (γ c ) of (1.48 ± 0.21) ×10 -6 for the former while γ obs of (3.35 ± 0.43) ×10 -3 and γ c of (7.46 ± 2.97) ×10 -7 for the latter. Under wet conditions, the presence of water altered the chemical form of sulfate and was in favor for the heterogeneous oxidation of SO 2 . The maximum sulfate formation rate was reached at 25% RH and 45% for δ-MnO 2 and γ-MnO 2 , respectively, possibly due to their different crystal structures. The results suggest that morphologies and RH are important factors influencing the heterogeneous reaction of SO 2 on mineral aerosols, and that aqueous oxidation process involving transition metals of Mn might be a potential important pathway for SO 2 oxidation in the atmosphere.

  17. Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 3. Kinetics and mechanism of the OH initiated oxidation of dimethyl, dipropyl, and dibutyl sulfides: reactivity trends in the alkyl sulfides and development of a predictive expression for the reaction of OH with DMS.

    Science.gov (United States)

    Williams, M B; Campuzano-Jost, P; Hynes, A J; Pounds, A J

    2009-06-18

    A pulsed laser photolysis-pulsed laser-induced fluorescence technique has been employed to measure rate coefficients for the OH-initiated oxidation of dimethyl sulfide (DMS), its deuterated analog (DMS-d(6)), dipropyl sulfide (DPS), and dibutyl sulfide (DBS). Effective rate coefficients have been measured as a function of the partial pressure of O(2) over the temperature range of 240-295 K and at 200 and 600 Torr total pressure. We report the first observations of an O(2) enhancement in the effective rate coefficients for the reactions of OH with DPS and DBS. All observations are consistent with oxidation proceeding via a two-channel oxidation mechanism involving abstraction and addition channels. Structures and thermochemistry of the DPSOH and DBSOH adducts were calculated. Calculated bond strengths of adducts increase with alkyl substitution but are comparable to that of the DMSOH adduct and are consistent with experimental observations. Reactivity trends across the series of alkyl sulfide (C(2)-C(8)) reactions are analyzed. All reactions proceed via a two-channel mechanism involving either an H-atom abstraction or the formation of an OH adduct that can then react with O(2). Measurements presented in this work, in conjunction with previous measurements, have been used to develop a predictive expression for the OH-initiated oxidation of DMS. This expression is based on the elementary rate coefficients in the two-channel mechanism. The expression can calculate the effective rate coefficient for the reaction of OH with DMS over the range of 200-300 K, 0-760 Torr, and 0-100% partial pressure of O(2). This expression expands on previously published work but is applicable to DMS oxidation throughout the troposphere.

  18. Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals

    International Nuclear Information System (INIS)

    Feng Xionghan; Zhai Limei; Tan Wenfeng; Liu Fan; He Jizheng

    2007-01-01

    Several Mn oxide minerals commonly occurring in soils were synthesized by modified or optimized methods. The morphologies, structures, compositions and surface properties of the synthesized Mn oxide minerals were characterized. Adsorption and redox reactions of heavy metals on these minerals in relation to the mineral structures and surface properties were also investigated. The synthesized birnessite, todorokite, cryptomelane, and hausmannite were single-phased minerals and had the typical morphologies from analyses of XRD and TEM/ED. The PZCs of the synthesized birnessite, todorokite and cryptomelane were 1.75, 3.50 and 2.10, respectively. The magnitude order of their surface variable negative charge was: birnessite ≥ cryptomelane > todorokite. The hausmannite had a much higher PZC than others with the least surface variable negative charge. Birnessite exhibited the largest adsorption capacity on heavy metals Pb 2+ , Cu 2+ , Co 2+ , Cd 2+ and Zn 2+ , while hausmannite the smallest one. Birnessite, cryptomelane and todorokite showed the greatest adsorption capacity on Pb 2+ among the tested heavy metals. Hydration tendency (pK 1 ) of the heavy metals and the surface variable charge of the Mn minerals had significant impacts on the adsorption. The ability in Cr(III) oxidation and concomitant release of Mn 2+ varied greatly depending on the structure, composition, surface properties and crystallinity of the minerals. The maximum amounts of Cr(III) oxidized by the Mn oxide minerals in order were (mmol/kg): birnessite (1330.0) > cryptomelane (422.6) > todorokite (59.7) > hausmannite (36.6). - The characteristics of heavy metal adsorption and Cr(III) oxidation on Mn oxide minerals are determined by their structure, composition, surface property and crystallinity

  19. Effect of Ca and Y additions on oxidation behavior of magnesium alloys at high temperatures

    Institute of Scientific and Technical Information of China (English)

    FAN Jianfeng; YANG Changlin; XU Bingshe

    2012-01-01

    Oxidation and ignition of magnesium alloys at elevated temperature were successfully retarded by additions of Y and Ca.which could be melted at 1173 K in air without any protection.Thermogravimetric measurements in dry air revealed that the oxidation dynamics curves of Mg-2.5Ca alloy and Mg-3.5Y-0.79Ca alloy at high temperatures followed the parabolic-line law or the ubic-line law.X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis indicated that the oxide film on the surface of Mg-3.5Y-0.79Ca and Mg-2.5Ca alloys exhibited a duplex structure.which agreed with the results of thermodynamic analysis.By comparison,the ignition-proof effect of the combination addition of Y and Ca was better than that of the single addition of Ca.

  20. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction

    Science.gov (United States)

    Yang, Xiaoyun; Mo, Qijie; Guo, Yulin; Chen, Nana; Gao, Qingsheng

    2018-03-01

    Controlled N-doping is feasible to engineer the surface stoichiometry and the electronic configuration of metal-oxide electrocatalysts toward efficient oxygen reduction reactions (ORR). Taking reduced graphene oxide supported tantalum-oxides (TaOx/RGO) for example, this work illustrated the controlled N-doping in both metal-oxides and carbon supports, and the contribution to the improved ORR activity. The active N-doped TaOx/RGO electrocatalysts were fabricated via SiO2-assisted pyrolysis, in which the amount and kind of N-doping were tailored toward efficient electrocatalysis. The optimal nanocomposites showed a quite positive half-wave potential (0.80 V vs. RHE), the excellent long-term stability, and the outstanding tolerance to methanol crossing. The improvement in ORR was reasonably attributed to the synergy between N-doped TaOx and N-doped RGO. Elucidating the importance of controlled N-doping for electrocatalysis, this work will open up new opportunities to explore noble-metal-free materials for renewable energy applications.

  1. OXIDATIVE-REFORMING OF METHANE AND PARTIAL OXIDATION OF METHANE REACTIONS OVER NiO/PrO2/ZrO2 CATALYSTS: EFFECT OF NICKEL CONTENT

    Directory of Open Access Journals (Sweden)

    Y. J. O. Asencios

    Full Text Available Abstract In this work the behavior of NiO-PrO2-ZrO2 catalysts containing various nickel loadings was evaluated in the partial oxidation of methane and oxidative-reforming reactions of methane. The catalysts were characterized by X-Ray Diffraction Analysis (in situ-XRD, Temperature Programmed Reduction (H2-TPR, Scanning Electron Microscopy (SEM/EDX and Adsorption-Desorption of nitrogen (BET area. The reactions were carried out at 750 °C and 1 atm for 5 hours. The catalysts were studied with different nickel content: 0, 5, 10 and 15% (related to total weight of catalyst, wt%. In both reactions, the catalyst containing the mixture of the three oxides (NiO/PrO2/ZrO2 with 15% nickel (15NiPrZr catalyst showed the best activity for the conversion of the reactants into Syngas and showed high selectivity for H2 and CO. The results suggest that the promoter PrO2 and the Niº centers are in a good proportion in the catalyst with 15% Ni. Our results showed that low nickel concentrations in the catalyst led to high metallic dispersion; however, very low nickel concentrations did not favor the methane transformation into Syngas. The catalyst containing only NiO/ZrO2 in the mixture was not sufficient for the catalysis. The presence of the promoter PrO2 was very important for the catalysis of the POM.

  2. Partial oxidation process

    International Nuclear Information System (INIS)

    Najjar, M.S.

    1987-01-01

    A process is described for the production of gaseous mixtures comprising H/sub 2/+CO by the partial oxidation of a fuel feedstock comprising a heavy liquid hydrocarbonaceous fuel having a nickel, iron, and vanadium-containing ash or petroleum coke having a nickel, iron, and vanadium-containing ash, or mixtures thereof. The feedstock includes a minimum of 0.5 wt. % of sulfur and the ash includes a minimum of 5.0 wt. % vanadium, a minimum of 0.5 ppm nickel, and a minimum of 0.5 ppm iron. The process comprises: (1) mixing together a copper-containing additive with the fuel feedstock; wherein the weight ratio of copper-containing additive to ash in the fuel feedstock is in the range of about 1.0-10.0, and there is at least 10 parts by weight of copper for each part by weight of vanadium; (2) reacting the mixture from (1) at a temperature in the range of 2200 0 F to 2900 0 F and a pressure in the range of about 5 to 250 atmospheres in a free-flow refactory lined partial oxidation reaction zone with a free-oxygen containing gas in the presence of a temperature moderator and in a reducing atmosphere to produce a hot raw effluent gas stream comprising H/sub 2/+CO and entrained molten slag; and where in the reaction zone and the copper-containing additive combines with at least a portion of the nickel and iron constituents and sulfur found in the feedstock to produce a liquid phase washing agent that collects and transports at least a portion of the vanadium-containing oxide laths and spinels and other ash components and refractory out of the reaction zone; and (3) separating nongaseous materials from the hot raw effluent gas stream

  3. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    Science.gov (United States)

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. © 2012 American Chemical Society

  4. Modification of the performance of WO3-ZrO2 catalysts by metal addition in hydrocarbon reactions

    Directory of Open Access Journals (Sweden)

    Gerardo Carlos Torres

    2012-01-01

    Full Text Available A study of the different hydrocarbon reactions over Ni doped WO3-ZrO2 catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition.

  5. Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions

    OpenAIRE

    Jeena, Vineet; Robinson, Ross S

    2009-01-01

    Summary The application of titanium dioxide as an oxidant in tandem oxidation type processes is described. Under microwave irradiation, quinoxalines have been synthesized in good yields from the corresponding ?-hydroxyketones.

  6. Nickel-catalyzed reactions of enone with ethylene

    International Nuclear Information System (INIS)

    Nishimura, A; Haba, T; Ohashi, M; Ogoshi, S

    2010-01-01

    The reaction of (E)-1-phenylbut-2-en-1-one with ethylene in the presence of a catalytic amount of Ni(cod) 2 and PCy 3 at room temperature gave two kinds of three-component addition products; one is 1,6-enone composed of an enone and two ethylene molecules, and the other is 1,5-diketone composed of two enones and an ethylene. The reactions might proceed via oxidative cyclization of an enone and an ethylene with nickel(0).

  7. Enhanced reversibility and durability of a solid oxide Fe-air redox battery by carbothermic reaction derived energy storage materials.

    Science.gov (United States)

    Zhao, Xuan; Li, Xue; Gong, Yunhui; Huang, Kevin

    2014-01-18

    The recently developed solid oxide metal-air redox battery is a new technology capable of high-rate chemistry. Here we report that the performance, reversibility and stability of a solid oxide iron-air redox battery can be significantly improved by nanostructuring energy storage materials from a carbothermic reaction.

  8. Citric acid-modified Fenton's reaction for the oxidation of chlorinated ethylenes in soil solution systems.

    Science.gov (United States)

    Seol, Yongkoo; Javandel, Iraj

    2008-06-01

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  9. 1H NMR and SPME-GC/MS study of hydrolysis, oxidation and other reactions occurring during in vitro digestion of non-oxidized and oxidized sunflower oil. Formation of hydroxy-octadecadienoates.

    Science.gov (United States)

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2017-01-01

    Both fresh and slightly oxidized sunflower oils, as models of omega-6 rich lipids, were submitted to in vitro gastrointestinal digestion and studied by 1 H NMR and SPME-GC/MS. Changes in lipolysis degree, lipid composition and oxidative level were studied by 1 H NMR. Three quantitative approaches were used and several equations were newly developed. In oxidized oil digestates slightly lower hydrolysis and a higher advance of oxidation took place during digestion. This latter was evidenced by a greater decrease of lipid unsaturation degree and enhanced generation of oxidation products (cis,trans-hydroperoxy-octadecadienoates, cis,trans- and trans,trans-hydroxy-octadecadienoates). For the first time, the generation of hydroxy-octadecadienoates during in vitro digestion is reported. Furthermore, SPME-GC/MS study of non-digested and digested samples headspaces confirmed that lipid oxidation occurred: abundances of volatile markers increased (including potentially toxic alpha,beta-unsaturated aldehydes), especially in oxidized oils digestates. Markers of Maillard-type and esterification reactions were also detected in the digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Reaction of the oximes of aliphatic aldehydes and ketones with alkoxyethenes

    International Nuclear Information System (INIS)

    Voronkov, M.G.; Keiko, N.A.; Shuvashev, Yu.A.; Kalikhman, I.D.; Keiko, V.V.

    1987-01-01

    In the reaction of acetone oxime with alkyl vinyl ethers in the presence of zinc chloride variable amounts of acetone 0,0'-(2-propylidene)dioxime, acetaldehyde dialkyl acetal, acetaldehyde 0-(1-alkoxyethyl)oxide, and acetone 0-(1-alkoxy-1-methylethyl)oxime, depending on the reaction conditions, are formed in addition to acetone 0-(1-alkoxyethyl)oxime (the initial addition product). In the reaction of acetaldehyde oxime with alkyl vinyl ethers in the presence of zinc chloride acetaldehyde oxime with alkyl vinyl ethers in the presence of zinc chloride acetaldehyde dialkyl acetal was isolated in addition to acetaldehyde 0-(1-alkoxyethyl)oxime. A mechanism for the formation of the obtained compounds is proposed

  11. Additive for vanadium and sulfur oxide capture in catalytic cracking

    International Nuclear Information System (INIS)

    Chin, A.A.; Sapre, A.V.; Sarli, M.S.

    1991-01-01

    This patent describes a fluid catalytic cracking process in which a hydrocarbon feedstock. It comprises: a vanadium contaminant in an amount of a least 2 ppmw is cracked under fluid catalytic cracking conditions with a solid, particulate cracking catalyst to produce cracking products of lower molecular weight while depositing carbonaceous material on the particles of cracking catalyst, separating the particles of cracking catalyst from the cracking products in the disengaging zone and oxidatively regenerating the cracking catalyst by burning off the deposited carbonaceous material in a regeneration zone, the improvement comprising reducing the make-up rate of the cracking catalyst by contacting the cracking feed with a particulate additive composition for passivating the vanadium content of the feed, comprising an alkaline earth metal oxide and an alkaline earth metal spinel

  12. 14C-carbaril metabolism in soils modified by organic matter oxidation and addition of glucose

    International Nuclear Information System (INIS)

    Hirata, R.; Ruegg, E.F.

    1984-01-01

    Carbaril behaviour is studied in samples of Brunizen and Dark Red Latosol soils from Parana, using radiometric techniques, with the objective of determining the role of oxidation fo its organic components, and enrichment with glucose, in the metabolism of the insecticide. Lots of autoclaved soils, oxidized and with no previous treatment, with and without glucose addition, are incubated with 14 C-carbaril and analysed during eight weeks. Its was noted that, as a result of oxidation both soils showed a marked improvement in the metabolism of the agrochemical while addition of glucose exerted litlle influence on the degrading processes. Three metabolites were detected with R sub(f) 0.23, 0.40 and 0.70. (Author) [pt

  13. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide

    Directory of Open Access Journals (Sweden)

    M.S. Fal Desai

    2015-03-01

    Full Text Available The catalytic activity of PdO/MnO2 and Rh2O3/MnO2 is investigated for NO-CO redox reaction. Supported catalysts are prepared by wet impregnation method. Among the tested catalysts, PdO/MnO2 shows higher activity for this reaction. Active metal dispersion on MnO2 enhances the selectivity for N2 over N2O in this reaction. The XRD substantiate the formation of MnO2 monophasic phase. SEM images show the formation of elongated particles. TEM images indicate nano-size rod-like morphologies. An increase in the catalytic activity is observed on supported Pd and Rh oxides on MnO2. Temperature programed desorption studies with NO and CO are undertaken to investigate the catalytic surface studies. © 2015 BCREC UNDIP. All rights reservedReceived: 22nd November 2014; Revised: 31st December 2014; Accepted: 2nd January 2015How to Cite: Fal Desai, M.S., Kunkalekar, R.K., Salker, A.V. (2015. Preparation, Characterization and NO-CO Redox Reaction Studies over Palladium and Rhodium Oxides Supported on Manganese Dioxide. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (1: 98-103. (doi:10.9767/bcrec.10.1.7802.98-103Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.1.7802.98-103 

  14. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.

    Science.gov (United States)

    Qi, Wei; Yan, Pengqiang; Su, Dang Sheng

    2018-03-20

    Sustainable and environmentally benign catalytic processes are vital for the future to supply the world population with clean energy and industrial products. The replacement of conventional metal or metal oxide catalysts with earth abundant and renewable nonmetallic materials has attracted considerable research interests in the field of catalysis and material science. The stable and efficient catalytic performance of nanocarbon materials was discovered at the end of last century, and these materials are considered as potential alternatives for conventional metal-based catalysts. With its rapid development in the past 20 years, the research field of carbon catalysis has been experiencing a smooth transition from the discovery of novel nanocarbon materials or related new reaction systems to the atomistic-level mechanistic understanding on the catalytic process and the subsequent rational design of the practical catalytic reaction systems. In this Account, we summarize the recent progress in the kinetic and mechanistic studies on nanocarbon catalyzed alkane oxidative dehydrogenation (ODH) reactions. The paper attempts to extract general concepts and basic regularities for carbon catalytic process directing us on the way for rational design of novel efficient metal-free catalysts. The nature of the active sites for ODH reactions has been revealed through microcalorimetric analysis, ambient pressure X-ray photoelectron spectroscopy (XPS) measurement, and in situ chemical titration strategies. The detailed kinetic analysis and in situ catalyst structure characterization suggests that carbon catalyzed ODH reactions involve the redox cycles of the ketonic carbonyl-hydroxyl pairs, and the key physicochemical parameters (activation energy, reaction order, and rate/equilibrium constants, etc.) of the carbon catalytic systems are proposed and compared with conventional transition metal oxide catalysts. The proposal of the intrinsic catalytic activity (TOF) provides the

  15. Influence of phosphorous addition on Bi3Mo2Fe1 oxide catalysts for the oxidative dehydrogenation of 1-butene

    KAUST Repository

    Park, Jung-Hyun

    2016-01-22

    Bi3Mo2Fe1Px oxide catalysts were prepared by a co-precipitation method and the influence of phosphorous content on the catalytic performance in the oxidative dehydrogenation of 1-butene was investigated. The addition of phosphorous up to 0.4mole ratio to Bi3Mo2Fe1 oxide catalyst led to an increase in the catalytic performance; however, a higher phosphorous content (above P=0.4) led to a decrease of conversion. Of the tested catalysts, Bi3Mo2Fe1P0.4 oxide catalyst exhibited the highest catalytic performance. Characterization results showed that the catalytic performance was related to the quantity of a π-allylic intermediate, facile desorption behavior of adsorbed intermediates and ability for re-oxidation of catalysts. © 2015 Korean Institute of Chemical Engineers, Seoul, Korea

  16. Influence of phosphorous addition on Bi3Mo2Fe1 oxide catalysts for the oxidative dehydrogenation of 1-butene

    KAUST Repository

    Park, Jung-Hyun; Shin, Chae-Ho

    2016-01-01

    Bi3Mo2Fe1Px oxide catalysts were prepared by a co-precipitation method and the influence of phosphorous content on the catalytic performance in the oxidative dehydrogenation of 1-butene was investigated. The addition of phosphorous up to 0.4mole ratio to Bi3Mo2Fe1 oxide catalyst led to an increase in the catalytic performance; however, a higher phosphorous content (above P=0.4) led to a decrease of conversion. Of the tested catalysts, Bi3Mo2Fe1P0.4 oxide catalyst exhibited the highest catalytic performance. Characterization results showed that the catalytic performance was related to the quantity of a π-allylic intermediate, facile desorption behavior of adsorbed intermediates and ability for re-oxidation of catalysts. © 2015 Korean Institute of Chemical Engineers, Seoul, Korea

  17. Redox regulation and pro-oxidant reactions in the physiology of circadian systems.

    Science.gov (United States)

    Méndez, Isabel; Vázquez-Martínez, Olivia; Hernández-Muñoz, Rolando; Valente-Godínez, Héctor; Díaz-Muñoz, Mauricio

    2016-05-01

    Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. The reaction of 1-tetralones with thallium trinitrate supported on clay: ring contraction vs a-oxidation

    Directory of Open Access Journals (Sweden)

    Ferraz Helena M. C.

    2001-01-01

    Full Text Available The reaction of a series of 1-tetralones with thallium trinitrate supported on Montmorillonite K-10 clay led to products of ring contraction (methyl indan-1-carboxylates and/or alpha-oxidation (2-methoxy-1-tetralones, in variable yields.

  19. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  20. Oxidative demethylation of monomethylmercury in sediments

    International Nuclear Information System (INIS)

    Oremland, R.S.

    1991-01-01

    Previous studies suggested that demethylation of monomethylmercury proceeds in nature by a simple organo-mercury lyase reaction resulting in the production of CH 4 and Hg 2+ , which is further reduced to Hg 0 . Addition of 14 CH 3 HgI to sediments resulted in the production of mainly 14 CO 2 and some 14 CH 4 . In the case of estuarine sediments, production of both these gases was only observed under anaerobiosis, and was totally inhibited by MoO 4 2- , which indicated the involvement of sulfate-reducing bacteria. In the case of anaerobic freshwater sediments, results with inhibitors indicated that both methanogens and sulfate reducers were involved in this oxidative demethylation. Aerobic incubation of estuarine sediments resulted in the production of only 14 CH 4 , indicating the importance of the organo-mercurial lyase reaction under this condition. However, in freshwater sediments, this reaction was not observed, and the oxidative demethylation reaction was predominant either under aerobic or anaerobic conditions. A methylotrophic methanogen (GS-16) was able to form traces of 14 CH 4 and 14 CO 2 from 14 CH 3 HgI, and some strains of sulfate-reducers formed traces of 14 CH 4 . Addition of methanol to anaerobic freshwater sediments partially inhibited production of 14 CH 4 and 14 CO 2 , but not CH 4 . These results suggest that oxidative demethylation proceeds by an established pathway for C-1 metabolism

  1. 1,3-Dipolar cycloaddition reactions of nitrile oxides in the synthesis of natural compounds and their analogues

    International Nuclear Information System (INIS)

    Kotyatkina, Anna I; Zhabinsky, Vladimir N; Khripach, Vladimir A

    2001-01-01

    The published data on the use of 1,3-dipolar cycloaddition reactions of nitrile oxides in the synthesis of natural compounds and their analogues are systematised and reviewed. The bibliography includes 145 references.

  2. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  3. Oxidation-reduction reactions. Overview and implications for repository studies

    International Nuclear Information System (INIS)

    Apted, Michael J.; Arthur, Randolph C.; Sasamoto, Hiroshi; Yui, Mikazu; Iwatsuki, Teruki

    2001-02-01

    The purpose of this report is to provide a survey and review on oxidation-reduction ('redox') reactions, with particular emphasis on implications for disposal of high-level waste (HLW) in deep geological formations. As an overview, the focus is on basic principles, problems, and proposed research related specifically to the assessment of redox for a HLW repository in Japan. For a more comprehensive treatment of redox and the myriad associated issues, the reader is directed to the cited textbooks used as primary references in this report. Low redox conditions in deep geological formations is a key assumption in the 'Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan' (hereafter called H12'). The release behavior of multi-valent radioelements (e.g., Tc, Se, U, Pu, Np), as well as daughter radioelements of these radioelements, from a deep geological repository are sensitively related to redox conditions. Furthermore, the performance of certain barrier materials, such as overpack and buffer, may be impacted by redox conditions. Given this importance, this report summarizes some key topics for future technical studies supporting site characterization and repository performance as follows: To fully test the conceptual models for system Eh, it will be necessary to measure and evaluate trace element and isotopic information of both coexisting groundwater and reactive minerals of candidate rocks. Because of importance of volatile species (e.g., O 2 , H 2 etc.) in redox reactions, and given the high total pressure of a repository located 500 to 1000 meter deep, laboratory investigations of redox will necessarily require use of pressurized test devices that can fully simulate repository conditions. The stability (redox capacity) of the repository system with respect to potential changes in redox boundary condition induced by oxidizing waters intrusion should be established experimentally. An overall conceptual model that unifies

  4. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    Science.gov (United States)

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  5. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    International Nuclear Information System (INIS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-01-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y 2 O 3 ), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y 2 O 3 ), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y 2 Hf 2 O 7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  6. Selective oxidations in microstructured catalytic reactions - A review and an overview of own work on fuel processing for fuel cells

    NARCIS (Netherlands)

    Hessel, V.; Kolb, G.A.; Cominos, V.; Loewe, H.; Nikolaidis, G.; Zapf, R.; Ziogas, A.; Schouten, J.C.; Delsman, E.R.; Croon, de M.H.J.M.; Santamaria, J.; Iglesia, de la O.; Mallada, R.

    2006-01-01

    This review is concerned about catalytic gas-phase oxidation reactions in microreactors, typically being performed in wall-coated microchannels. Not included are liquid and gas-liquid oxidations which are typically done in reactor designs different from the ones considered here. The first part of

  7. N,2,3,4-Tetrasubstituted Pyrrolidines through Tandem Lithium Amide Conjugate Addition/Radical Cyclization/Oxygenation Reactions

    Czech Academy of Sciences Publication Activity Database

    Kafka, František; Pohl, Radek; Císařová, I.; Mackman, R.; Bahador, G.; Jahn, Ullrich

    2016-01-01

    Roč. 2016, č. 22 (2016), s. 3862-3871 ISSN 1434-193X R&D Projects: GA ČR GA13-40188S Grant - others:COST(XE) CM1201 Institutional support: RVO:61388963 Keywords : tandem reactions * nitrogen heterocycles * Michael addition * radical reactions * cyclization * enolates Subject RIV: CC - Organic Chemistry Impact factor: 2.834, year: 2016

  8. The OH-initiated atmospheric chemical reactions of polyfluorinated dibenzofurans and polychlorinated dibenzofurans: A comparative theoretical study.

    Science.gov (United States)

    Zeng, Xiaolan; Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2017-02-01

    The atmospheric chemical reactions of some polyfluorinated dibenzofurans (PFDFs) and polychlorinated dibenzofurans (PCDFs), initiated by OH radical, were investigated by performing theoretical calculations using density functional theory (DFT) and B3LYP/6-311++G(2df,p) method. The obtained results indicate that OH addition reactions of PFDFs and PCDFs occurring at C 1∼4 and C A sites are thermodynamic spontaneous changes and the branching ratio of the PF(C)DF-OH adducts is decided primarily by kinetic factor. The OH addition reactions of PFDFs taking place at fluorinated C 1∼4 positions are kinetically comparable with those occurring at nonfluorinated C 1∼4 positions, while OH addition reactions of PCDFs occurring at chlorinated C 1∼4 sites are negligible. The total rate constants of the addition reactions of PFDFs or PCDFs become smaller with consecutive fluorination or chlorination, and substituting at C 1 position has more adverse effects than substitution at other sites. The succedent O 2 addition reactions of PF(C)DF-OH adducts are thermodynamic nonspontaneous processes under the atmospheric conditions, and have high Gibbs free energies of activation (Δ r G ≠ ). The substituted dibenzofuranols are the primary oxidation products for PCDFs under the atmospheric conditions. However, other oxidative products may also be available for PFDFs besides substituted dibenzofuranols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  10. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes

    DEFF Research Database (Denmark)

    Clarke, Celia; Fox, David J; Pedersen, Daniel Sejer

    2009-01-01

    Phosphine oxides are lithiated much faster than phosphine sulfides and phosphine boranes. Phosphine sulfides are in turn lithiated much more readily than phosphine boranes. It was possible to trap a phosphine sulfide THF in one case which upon treatment with t-BuOK gave cyclopropane, showing...... that phosphine sulfides readily undergo both phosphinoyl transfer and cyclopropane ring closure just like their phosphine oxide counterparts. The obtained data show that phosphine oxides are easily lithiated and undergo phosphoryl transfer much more readily and faster than phosphine sulfides and phosphine...... boranes. The observations suggest that it would be possible to perform reactions involving phosphine oxides in the presence of phosphine boranes or phosphine sulfides, potentially allowing regioselective alkylation of phosphine oxides in the presence of phosphine boranes or phosphine sulfides....

  11. Partial oxidation of jet fuels over Rh/Al{sub 2}O{sub 3}. Design and reaction kinetics of sulfur-containing surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Julian Nicolaas

    2016-07-01

    The conversion of logistic fuels via catalytic partial oxidation (CPOX) on Rh/Al{sub 2}O{sub 3} at short contact times is an efficient method for generating hydrogen-rich synthesis gas. Depending on the inlet conditions, fuel, and catalyst, high syngas yields, low by-product formation, and rates of high fuel conversion can be achieved. CPOX is relevant for mobile hydrogen generation, e.g., on board of airplanes in order to increase the fuel efficiency via fuel cell-based auxiliary power units. Jet fuels contain hundreds of different hydrocarbons and a significant amount of sulfur. The hydrocarbon composition and sulfur content of a jet fuel vary depending on distributor, origin, and refinement of the crude oil. Little is known about the influence of the various compounds on the synthesis-gas yield and the impact of sulfur on the product yield. In this work, the influence of three main chemical compounds of a jet fuel (aromatics, alkanes, and sulfur compounds) on syngas selectivity, the catalyst deactivation process, and reaction sequence is unraveled. As representative components of alkanes and aromatics, n-dodecane and 1,2,4-trimethylbenzene were chosen for ex-situ and in-situ investigations on the CPOX over Rh/Al{sub 2}O{sub 3}, respectively. Additionally, for a fixed paraffin-to-aromatics ratio, benzothiophene or dibenzothiophene were added as a sulfur component in three different concentrations. The knowledge gained about the catalytic partial oxidation of jet fuels and their surrogates is used to identify requirements for jet fuels in mobile applications based on CPOX and to optimize the overall system efficiency. The results show an influence of the surrogate composition on syngas selectivity. The tendency for syngas formation increases with higher paraffin contents. A growing tendency for by-product formation can be observed with increasing aromatics contents in the fuel. The impact of sulfur on the reaction system shows an immediate change in the product

  12. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    Science.gov (United States)

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    cyclization reaction leading to either polymerization of the radical cation, elimination of a proton from or solvent trapping of that intermediate, or solvent trapping of the radical cation can be identified in the proton NMR spectrum of the crude reaction material. Such an NMR spectrum shows retention of the trapping group. The problems can be addressed by tuning the radical cation, altering the trapping group, or channeling the reactive intermediate down a radical pathway. Specific examples each are shown in this Account. Problems with the second oxidation step can be identified by poor current efficiency or general decomposition in spite of cyclic voltammetry evidence for a rapid cyclization. Solutions involve improving the oxidation conditions for the radical after cyclization by either the addition of a properly placed electron-donating group in the substrate or an increase in the concentration of electrolyte in the reaction (a change that stabilizes the cation generated from the second oxidation step). Problems with the final cation typically lead to overoxidation. Solutions to this problem require an approach that either slows down elimination side reactions or changes the reaction conditions so that the cation can be quickly trapped in an irreversible fashion. Again, this Account highlights these strategies along with the specific experimental protocols utilized.

  13. Performance of the periodic pulse technique--4. Periodic pulse reaction kinetics of oxidative dehydrogenation of isobutyraldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, T.; Ii, M.; Murakami, Y.

    1980-07-01

    The periodic pulse method was used to study the reaction mechanism and kinetics of the oxidative dehydrogenation of isobutyraldehyde (IBA) by following the formation rates of methacrolein (MA), carbon monoxide and dioxide (CO/sub x/), and other products (P) as a function of pulse widths and reactant partial pressures at 350/sup 0/C over a 2:3 antimony oxide/molybdenum trioxide catalyst. The results were consistent with a mechanism according to which IBA reacts with oxygen retained by the catalyst to form MA, causing reduction of the catalyst. The IBA also adsorbed on the surface as an oxygenated species which either reacted with gas-phase oxygen to form CO/sub x/ or desorbed as an oxygenated P. The reduced catalyst surface was reoxidized by oxygen adsorption. Implications of catalyst tailoring for increased MA yields by improving the redox mechanism and inhibiting the surface reactions, are discussed.

  14. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  15. Contribution to the study of the oxidation reaction of the carbon oxide in contact with catalysts issued from the decomposition of nickel hydro-aluminates at various temperatures; Contribution a l'etude de la reaction d'oxydation de l'oxyde de carbone au contact des catalyseurs issus de la decomposition a diverses temperatures des hydroaluminates de nickel

    Energy Technology Data Exchange (ETDEWEB)

    Samaane, Mikhail

    1966-09-26

    Addressing the study of the oxidation reaction of carbon oxide which produces carbon dioxide, this research thesis reports the study of this reaction in presence of catalysts (2NiO + Al{sub 2}O{sub 3}, NiAl{sub 2}O{sub 4} and NiO + NiAl{sub 2}O{sub 4}) issued from the decomposition of nickel hydro-aluminates at different temperatures. The first part describes experimental techniques and the nature of materials used in this study. The second part reports the study of the catalytic activity of the 2NiO+Al{sub 2}O{sub 3} catalyst during the oxidation of CO. Preliminary studies are also reported: structure and texture of nickel hydro-aluminate which is the raw material used to produce catalysts, activation of this compound to develop the catalytic activity in CO oxidation, chemisorption of CO, O{sub 2} and CO{sub 2} on the 2NiO+Al{sub 2}O{sub 3} solid, interaction of adsorbed gases at the solid surface, and kinetic study of the oxidation reaction. The third part reports the study of the catalytic activity in the oxidation reaction of CO of spinel catalysts (NiAl{sub 2}O{sub 4} and NiO+NiAl{sub 2}O{sub 4}) obtained by calcination of nickel hydro-aluminates at high temperature. The formation of the spinel phase, the chemisorption of CO, O{sub 2} and CO{sub 2} on NiAl{sub 2}O{sub 4}, and the kinetic of the oxidation reaction are herein studied.

  16. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  17. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  18. Tandem Oxidative Derivatization of Nitrene Insertion Products for the Highly Diastereoselective Synthesis of 1,3-aminoalcohols.

    Science.gov (United States)

    Alderson, Juliet M; Schomaker, Jennifer M

    2017-06-27

    Transition-metal-catalyzed nitrene insertion into tertiary C-H bonds located at stereogenic carbons often results in mixtures of diastereomeric products, especially if the reaction proceeds through a concerted pathway. In this communication, we report a solution to this problem that invokes a one-pot, silver-catalyzed C-H nitrene transfer reaction. Nitrene insertion is followed by facile oxidation of the amine to an imine and nucleophilic addition to furnish α-tertiary amine 1,3-aminoalcohol products in high diastereoselectivities. The silver catalyst, PhIO oxidant, and TEMPO additive are crucial to success in this unusual oxidation, which is proposed to occur via hydrogen-atom abstraction from pre-activation of the initial nitrene insertion product by additional oxidant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    Science.gov (United States)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  20. Nitric oxide formation from the reaction of nitrite with carp and rabbit hemoglobin at intermediate oxygen saturations

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2008-01-01

    The nitrite reductase activity of deoxyhemoglobin has received much recent interest because the nitric oxide produced in this reaction may participate in blood flow regulation during hypoxia. The present study used spectral deconvolution to characterize the reaction of nitrite with carp and rabbit...... hemoglobin at different constant oxygen tensions that generate the full range of physiological relevant oxygen saturations. Carp is a hypoxia-tolerant species with very high hemoglobin oxygen affinity, and the high R-state character and low redox potential of the hemoglobin is hypothesized to promote...... NO generation from nitrite. The reaction of nitrite with deoxyhemoglobin leads to a 1 : 1 formation of nitrosylhemoglobin and methemoglobin in both species. At intermediate oxygen saturations, the reaction with deoxyhemoglobin is clearly favored over that with oxyhemoglobin, and the oxyhemoglobin reaction...

  1. Effect of Reaction Temperature on Structure, Appearance and Bonding Type of Functionalized Graphene Oxide Modified P-Phenylene Diamine

    Directory of Open Access Journals (Sweden)

    Hong-Juan Sun

    2018-04-01

    Full Text Available In this study, graphene oxides with different functionalization degrees were prepared by a facile one-step hydrothermal reflux method at various reaction temperatures using graphene oxide (GO as starting material and p-phenylenediamine (PPD as the modifier. The effects of reaction temperature on structure, appearance and bonding type of the obtained materials were investigated by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM. The results showed that when the reaction temperature was 10–70 °C, the GO reacted with PPD through non-covalent ionic bonds (–COO−H3+N–R and hydrogen bonds (C–OH…H2N–X. When the reaction temperature reached 90 °C, the GO was functionalized with PPD through covalent bonds of C–N. The crystal structure of products became more ordered and regular, and the interlayer spacing (d value and surface roughness increased as the temperature increased. Furthermore, the results suggested that PPD was grafted on the surface of GO through covalent bonding by first attacking the carboxyl groups and then the epoxy groups of GO.

  2. ¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction.

    Science.gov (United States)

    Bruemmer, Kevin J; Merrikhihaghi, Sara; Lollar, Christina T; Morris, Siti Nur Sarah; Bauer, Johannes H; Lippert, Alexander R

    2014-10-21

    We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO(-)) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO(-) using (19)F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO(-) formation in living lung epithelial cells stimulated with interferon-γ (IFN-γ).

  3. Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles

    Science.gov (United States)

    Nakagawa, Nobuyoshi; Ito, Yudai; Tsujiguchi, Takuya; Ishitobi, Hirokazu

    2014-02-01

    The electro-oxidation of ethanol by the catalyst of PtRu nanoparticles supported on a TiO2-embedded carbon nanofiber (PtRu/TECNF), which has recently been proposed by the authors as a highly active catalyst for methanol oxidation, is investigated by cyclic voltammetry using a glassy carbon electrode and by operating a direct ethanol fuel cell (DEFC) with the catalyst. The mass activity obtained from the cyclic voltammogram for the ethanol oxidation is compared to that for the methanol oxidation reported in our recent paper. The mass activity for the ethanol oxidation is comparable or slightly higher than that for the methanol oxidation, and the relationship between the TECNF composition, i.e., the Ti/C mass ratio, and the activity are also similar to that for the methanol oxidation. A DEFC fabricated with the PtRu/TECNF shows a higher power output compared to that with the commercial PtRu/C catalyst. An analysis of the reaction products by a simple two-step reaction model reveals that the PtRu/TECNF increases the rate constant for the reaction steps from ethanol to acetaldehyde and subsequently to CO2, but decreases that from acetaldehyde to acetic acid. This means that the PtRu/TECNF improves not only the kinetics, but also the selectivity to acetaldehyde.

  4. No evidence found for Diels-Alder reaction products in soybean oil oxidized at the frying temperature by NMR study

    Science.gov (United States)

    It has been generally accepted that the Diels-Alder reaction mechanism is one of the major reaction mechanisms to produce dimers and polymers during heating process of vegetable oil. Soybean oil oxidized at 180 °C for 24 hrs with 1.45 surface area-to-volume ratio showed 36.1% polymer peak area in g...

  5. Effects of Al addition and minor elements on oxidation behaviour of FeCr alloys

    International Nuclear Information System (INIS)

    Herbelin, J.M.; Mantel, M.

    1995-01-01

    It is shown that the addition of aluminium is very effective for the high temperature oxidation resistance of FeCr alloys. 1% aluminium produces a continuous protective Al 2 O 3 oxide for FeCr alloy that contains more than 13% of chromium. However this aluminium content is not enough for the high temperature resistance of thin foils and a 5% aluminium content is needed since the substrate plays the role of an aluminium reserve susceptible to oxidation. Impurity elements such as sulphur are detrimental and give rise to scaling of the oxide layer. Active elements such as Y, Ce, La, Zr are therefore necessary to tie up sulphur and increase the life of the alloys. (orig.)

  6. The dipteran parasitoid Exorista bombycis induces pro- and anti-oxidative reactions in the silkworm Bombyx mori: Enzymatic and genetic analysis.

    Science.gov (United States)

    Makwana, Pooja; Pradeep, Appukuttan Nair R; Hungund, Shambhavi P; Ponnuvel, Kangayam M; Trivedy, Kanika

    2017-02-01

    Hymenopteran parasitoids inject various factors including polydnaviruses along with their eggs into their host insects that suppress host immunity reactions to the eggs and larvae. Less is known about the mechanisms evolved in dipteran parasitoids that suppress host immunity. Here we report that the dipteran, Exorista bombycis, parasitization leads to pro-oxidative reactions and activation of anti-oxidative enzymes in the silkworm Bombyx mori larva. We recorded increased activity of oxidase, superoxide dismutase, thioredoxin peroxidase, catalase, glutathione-S-transferase (GST), and peroxidases in the hemolymph plasma, hemocytes, and fat body collected from B. mori after E. bombycis parasitization. Microarray and qPCR showed differential expression of genes encoding pro- and anti-oxidant enzymes in the hemocytes. The significance of this work lies in increased understanding of dipteran parasitoid biology. © 2017 Wiley Periodicals, Inc.

  7. An unprecedented chemospecific and stereoselective tandem nucleophilic addition/cycloaddition reaction of nucleophilic carbenes with ketenimines.

    Science.gov (United States)

    Cheng, Ying; Ma, Yang-Guang; Wang, Xiao-Rong; Mo, Jun-Ming

    2009-01-16

    The first study of the reaction between nucleophilic carbenes and ketenimines is reported. The interaction of thiazole and benzothiazole carbenes with ketenimines proceeded in a chemospecific and stereoselective manner to produce thiazole- and benzothiazole-spiro-pyrrole derivatives generally in good yields. The reaction was proposed to proceed via a tandem nucleophilic addition of carbene to the C=N bond of ketenimine followed by a stepwise [3+2] cycloaddition of the 1,3-dipolar intermediate with the C=C bond of ketenimine. This reaction provides a powerful protocol for the construction of novel polyfunctional thiazole-spiro-pyrrole or benzothiazole-spiro-pyrrole compounds that are not readily accessible by other methods.

  8. Oxidized limonene and oxidized linalool - concomitant contact allergy to common fragrance terpenes.

    Science.gov (United States)

    Bråred Christensson, Johanna; Karlberg, Ann-Therese; Andersen, Klaus E; Bruze, Magnus; Johansen, Jeanne D; Garcia-Bravo, Begoña; Giménez Arnau, Ana; Goh, Chee-Leok; Nixon, Rosemary; White, Ian R

    2016-05-01

    Limonene and linalool are common fragrance terpenes. Both oxidized R-limonene and oxidized linalool have recently been patch tested in an international setting, showing contact allergy in 5.2% and 6.9% of dermatitis patients, respectively. To investigate concomitant reactions between oxidized R-limonene and oxidized linalool in consecutive dermatitis patients. Oxidized R-limonene 3.0% (containing limonene hydroperoxides 0.33%) and oxidized linalool 6% (linalool hydroperoxides 1%) in petrolatum were tested in 2900 consecutive dermatitis patients in Australia, Denmark, Singapore, Spain, Sweden, and the United Kingdom. A total of 281 patients reacted to either oxidized R-limonene or oxidized linalool. Of these, 25% had concomitant reactions to both compounds, whereas 29% reacted only to oxidized R-limonene and 46% only to oxidized linalool. Of the 152 patients reacting to oxidized R-limonene, 46% reacted to oxidized linalool, whereas 35% of the 200 patients reacting to oxidized linalool also reacted to oxidized R-limonene. The majority of the patients (75%) reacted to only one of the oxidation mixtures, thus supporting the specificity of the reactions. The concomitant reactions to the two fragrance allergens suggest multiple sensitizations, which most likely reflect the exposure to the different fragrance materials in various types of consumer products. This is in accordance with what is generally seen for patch test reactions to fragrance materials. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Study of reactions between fuel (mixed oxide (UPu)Osub(2-x)) and cladding (stainless-steel) in reactors: influence of iodine compounds

    International Nuclear Information System (INIS)

    Aubert, Michel.

    1976-03-01

    The influence of iodine compounds on the development of the oxide-cladding reaction was examined. The action of iodine, cesium and cesium iodide on type 316 stainless was determined in the presence or absence of uranium oxide or mixed uranium-plutonium oxide type fuel in a closed system, isothermal or with a temperature gradient. The study of the stainless steel iodine reactions was developed in particular. These experiments showed that cesium combines with uranium oxide to give cesium uranate Cs 2 U 2 O 7 ; it is not unreasonable to suppose that cesium urano-plutonate Cs 2 (U,Pu) 2 O 7 could be formed inside the pile. It was then shown that cesium iodide in the presence of sufficiently non-stoichiometric mixed oxide could contribute towards the degradation of the stainless steel cladding. Under these conditions the reaction is accompained by a transport of manganese, chromium and iron into the hot parts of the fuel by a Van-Arkel type mechanism. This might explain the presence of metallic precipitates in the fuel, but the role assigned to molybdenum iodide in the same phenomenon is considered unlikely. Finally it is proposed to deposit a thin layer of manganese metal on the inner surface of the cladding in order to minimize the action of fission products (CsI, Te) [fr

  10. The Influence of oxide additives on Ni/Al2O3 catalysts in low temperature methane steam reforming

    International Nuclear Information System (INIS)

    Lazar, Mihaela; Dan, Monica; Mihet, Maria; Almasan, Valer

    2009-01-01

    Hydrogen is industrially produced by methane steam reforming. The process is catalytic and the usual catalyst is based on Ni as the active element. The main problem of this process is its inefficiency. It requires high temperatures at which Ni also favors the formation of graphite, which deactivates the catalysts. Ni has the advantage of being much cheaper than noble metal catalysts, so many researches are done in order to improve the properties of supported Ni catalysts and to decrease the temperature at which the process is energetically efficient. In order to obtain catalysts with high activity and stability, it is essential to maintain the dispersion of the active phase (Ni particles) and the stability of the support. Both properties can be improved by addition of a second oxide to the support. In this paper we present the results obtained in preparation and characterization of Ni/Al 2 O 3 catalysts modified by addition of CeO 2 and La 2 O 3 to alumina support. The following catalysts were prepared by impregnation method: Ni/Al 2 O 3 , Ni/CeO 2 -Al 2 O 3 and Ni/La 2 O 3 -Al 2 O 3 (10 wt.% Ni and 6 wt.% additional oxide). The catalytic surface was characterized by N 2 adsorption - desorption isotherms. The hydrogen - surface bond was characterized by Thermo-Programmed-Desorption (TPD) method. All catalysts were tested in steam reforming reaction of methane in the range of 600 - 700 deg. C, at atmospheric pressure working with CH 4 :H 2 O ratio of 1:3. The modified catalysts showed a better catalytic activity and selectivity for H 2 and CO 2 formation, at lower temperatures than the simple Ni/Al 2 O 3 catalyst. (authors)

  11. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.

    Science.gov (United States)

    dos Santos, Michel D; Martins, Patrícia R; dos Santos, Pierre A; Bortocan, Renato; Iamamoto, Y; Lopes, Norberto P

    2005-09-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimic the various reactions of cytochrome P450 enzymes systems in the oxidation and oxygenation of various drugs and biologically active compounds. This paper reports an HPLC-MS-MS investigation of chlorogenic acid (CGA) oxidation by iodosylbenzene using iron(III) tetraphenylporphyrin chloride as catalyst. The oxidation products have been detected by sequential MS analyses. In addition, CGA was submitted to an in vitro metabolism assay employing isolated rat liver mitochondria. The single oxidized product obtained from mitochondrial metabolism corresponds to the major product formed by the metalloporphyrin-catalyzed reaction. These results indicate that biomimetic oxidation reactions, in addition to in vitro metabolism assays employing isolated organs/organelles, could replace some in vivo metabolism studies, thus minimizing the problems related to the use of a large number of living animals in experimental research.

  12. Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction

    CSIR Research Space (South Africa)

    Zheng, Y

    2017-09-01

    Full Text Available measurements. The results confirm the core-shell structure of the prepared TiN@Pt/CNTs catalyst. More importantly, the catalyst exhibits superb mass activity and durability for the methanol oxidation reaction (MOR) than that of the commercial JM Pt/C catalyst...

  13. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    Science.gov (United States)

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  14. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  15. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  16. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  17. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  18. Unusual reactions of diazocarbonyl compounds with α,β-unsaturated δ-amino esters: Rh(II-catalyzed Wolff rearrangement and oxidative cleavage of N–H-insertion products

    Directory of Open Access Journals (Sweden)

    Valerij A. Nikolaev

    2016-08-01

    Full Text Available Rh(II-сatalyzed reactions of aroyldiazomethanes, diazoketoesters and diazodiketones with α,β-unsaturated δ-aminoesters, in contrast to reactions of diazomalonates and other diazoesters, give rise to the Wolff rearrangement and/or oxidative cleavage of the initially formed N–H-insertion products. These oxidation processes are mediated by Rh(II catalysts possessing perfluorinated ligands. The formation of pyrrolidine structures, characteristic for catalytic reactions of diazoesters, was not observed in these processes at all.

  19. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Peng, E-mail: doup@tsinghua.edu.cn [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko, E-mail: kimura@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Okuda, Takanari, E-mail: okuda.takanari@kki.kobelco.com [Kobelco Research Institute, 1-5-5 Takatsukadai, Nishi-ku, Kobe, Hyogo 651-2271 (Japan); Inoue, Masaki, E-mail: inoue.masaki@jaea.go.jp [Advanced Nuclear System R& D Directorate, Japan Atomic Energy Agency, 4002 Narita, O-arai, Ibaraki 311-1393 (Japan); Ukai, Shigeharu, E-mail: s-ukai@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Ohnuki, Somei, E-mail: ohnuki@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628 (Japan); Fujisawa, Toshiharu, E-mail: fujisawa@esi.nagoya-u.ac.jp [EcoTopia Science Institute, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8603 (Japan); Abe, Fujio, E-mail: ABE.Fujio@nims.go.jp [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Jiang, Shan, E-mail: js93518@gmail.com [School of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Yang, Zhigang, E-mail: zgyang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-03-15

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y{sub 2}O{sub 3}), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y{sub 2}O{sub 3}), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y{sub 2}Hf{sub 2}O{sub 7} oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  20. Electrochemical Deposition of Platinum and Palladium on Gold Nanoparticles Loaded Carbon Nanotube Support for Oxidation Reactions in Fuel Cell

    Directory of Open Access Journals (Sweden)

    Surin Saipanya

    2014-01-01

    Full Text Available Pt and Pd sequentially electrodeposited Au nanoparticles loaded carbon nanotube (Au-CNT was prepared for the electrocatalytic study of methanol, ethanol, and formic acid oxidations. All electrochemical measurements were carried out in a three-electrode cell. A platinum wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. Suspension of the Au-CNT, phosphate buffer, isopropanol, and Nafion was mixed and dropped on glassy carbon as a working electrode. By sequential deposition method, PdPtPt/Au-CNT, PtPdPd/Au-CNT, and PtPdPt/Au-CNT catalysts were prepared. Cyclic voltammograms (CVs of those catalysts in 1 M H2SO4 solution showed hydrogen adsorption and hydrogen desorption reactions. CV responses for those three catalysts in methanol, ethanol, and formic acid electrooxidations studied in 2 M CH3OH, CH3CH2OH, and HCOOH in 1 M H2SO4 show characteristic oxidation peaks. The oxidation peaks at anodic scan contribute to those organic substance oxidations while the peaks at cathodic scan are related with the reoxidation of the adsorbed carbonaceous species. Comparing all those three catalysts, it can be found that the PdPtPt/Au-CNT catalyst is good at methanol oxidation; the PtPdPt/Au-CNT effectively enhances ethanol oxidation while the PtPdPd/Au-CNT exceptionally catalyzes formic acid oxidation. Therefore, a different stoichiometry affects the electrochemical active surface area of the catalysts to achieve the catalytic oxidation reactions.

  1. Oxidative degradation of triclosan by potassium permanganate: Kinetics, degradation products, reaction mechanism, and toxicity evaluation.

    Science.gov (United States)

    Chen, Jing; Qu, Ruijuan; Pan, Xiaoxue; Wang, Zunyao

    2016-10-15

    In this study, we systematically investigated the potential applicability of potassium permanganate for removal of triclosan (TCS) in water treatment. A series of kinetic experiments were carried out to study the influence of various factors, including the pH, oxidant doses, temperature, and presence of typical anions (Cl(-), SO4(2-), NO3(-)), humic acid (HA), and fulvic acid (FA) on triclosan removal. The optimal reaction conditions were: pH = 8.0, [TCS]0:[KMnO4]0 = 1:2.5, and T = 25 °C, where 20 mg/L of TCS could be completely degraded in 120 s. However, the rate of TCS (20 μg/L) oxidation by KMnO4 ([TCS]0:[KMnO4]0 = 1:2.5) was 1.64 × 10(-3) mg L(-1)·h(-1), lower than that at an initial concentration of 20 mg/L (2.24 × 10(3) mg L(-1)·h(-1)). A total of eleven products were detected by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) analysis, including phenol and its derivatives, benzoquinone, an organic acid, and aldehyde. Two main reaction pathways involving CO bond cleavage (-C(8)O(7)-) and benzene ring opening (in the less chlorinated benzene ring) were proposed, and were further confirmed based on frontier electron density calculations and point charges. Furthermore, the changes in the toxicity of the reaction solution during TCS oxidation by KMnO4 were evaluated by using both the luminescent bacteria Photobacterium phosphoreum and the water flea Daphnia magna. The toxicity of 20 mg/L triclosan to D. magna and P. phosphoreum after 60 min was reduced by 95.2% and 43.0%, respectively. Phenol and 1,4-benzoquinone, the two representative degradation products formed during permanganate oxidation, would yield low concentrations of DBPs (STHMFP, 20.99-278.97 μg/mg; SHAAFP, 7.86 × 10(-4)-45.77 μg/mg) after chlorination and chloramination. Overall, KMnO4 can be used as an effective oxidizing agent for TCS removal in water and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts--Electrophilic aromatic substitution and oxidation.

    Science.gov (United States)

    Criquet, Justine; Rodriguez, Eva M; Allard, Sebastien; Wellauer, Sven; Salhi, Elisabeth; Joll, Cynthia A; von Gunten, Urs

    2015-11-15

    Phenolic compounds are known structural moieties of natural organic matter (NOM), and their reactivity is a key parameter for understanding the reactivity of NOM and the disinfection by-product formation during oxidative water treatment. In this study, species-specific and/or apparent second order rate constants and mechanisms for the reactions of bromine and chlorine have been determined for various phenolic compounds (phenol, resorcinol, catechol, hydroquinone, phloroglucinol, bisphenol A, p-hydroxybenzoic acid, gallic acid, hesperetin and tannic acid) and flavone. The reactivity of bromine with phenolic compounds is very high, with apparent second order rate constants at pH 7 in the range of 10(4) to 10(7) M(-1) s(-1). The highest value was recorded for the reaction between HOBr and the fully deprotonated resorcinol (k = 2.1 × 10(9) M(-1) s(-1)). The reactivity of phenolic compounds is enhanced by the activating character of the phenolic substituents, e.g. further hydroxyl groups. With the data set from this study, the ratio between the species-specific rate constants for the reactions of chlorine versus bromine with phenolic compounds was confirmed to be about 3000. Phenolic compounds react with bromine or chlorine either by oxidation (electron transfer, ET) or electrophilic aromatic substitution (EAS) processes. The dominant process mainly depends on the relative position of the hydroxyl substituents and the possibility of quinone formation. While phenol, p-hydroxybenzoic acid and bisphenol A undergo EAS, hydroquinone, catechol, gallic acid and tannic acid, with hydroxyl substituents in ortho or para positions, react with bromine by ET leading to quantitative formation of the corresponding quinones. Some compounds (e.g. phloroglucinol) show both partial oxidation and partial electrophilic aromatic substitution and the ratio observed for the pathways depends on the pH. For the reaction of six NOM extracts with bromine, electrophilic aromatic substitution

  3. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  4. Hydrogen poisoning of the CO oxidation reaction on Pt and Pd under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Strozier, J.A.

    1977-01-01

    The poisoning by hydrogen of the catalyzed oxidation of CO on Pt and Pd under ultrahigh vacuum conditions was investigated. ac pulsing techniques are used in which the pressure of the reactant CO in the reaction chamber is modulated periodically by means of a fast piezoelectric ultrahigh vacuum valve, and the ac component of the product CO 2 is recorded mass spectroscopically by phase-sensitive techniques. The ac CO 2 production rate is measured as a function of hydrogen pressure (1 - 10 x 10 -9 toor) at constant CO and O 2 pressures (approximately equal to 5 x 10 -8 torr), and constant temperature (approximately equal to 700 K). Exact theoretical calculations of CO 2 production rates were carried out employing several models, i.e., oxygen burn-off by hydrogen, incorporating both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. From a comparison with the experimental results, the probable reaction is of the Langmuir-Hinshelwood type and the relevant rate constant is also determined. These results are compared with other results in the literature on hydrogen oxidation on the surface of Pt

  5. Kinetics of Oxidation of 3-Benzoylpropionic Acid by N-Bromoacetamide in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    N. A. Mohamed Farook

    2011-01-01

    Full Text Available The kinetics of oxidation of 3-benzoylpropionic acid (KA with N-bromoacetamide (NBA have been studied potentiometrically in 50:50 (v/v aqueous acetic acid medium at 298 K The reaction was first order each with respect to [KA], [NBA] and [H+]. The main product of the oxidation is the corresponding carboxylic acid. The rate decreases with the addition of acetamide, one of the products of the reaction. Variation in ionic strength of the reaction medium has no significant effect on the rate of oxidation. But the rate of the reaction is enhanced by lowering the dielectric constant of the reaction medium. A mechanism consistent with observed results have been proposed and the related rate law was deduced.

  6. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  7. Study of cyclic oxidation for stainless steels AISI 309 T 253 M A, with low additions of cerium

    International Nuclear Information System (INIS)

    Velazquez F, G.L.; Martinez, M.; Ruiz, A.

    1998-01-01

    It has been detected that the addition of small amounts (<1%) of the so called 'reactive elements' such as Cerium to Fe-Cr alloys that was utilized in oxidating environment at high temperatures improving its resistance to oxidation under isothermal and cyclic conditions. In this work, it was evaluated the behavior under cyclic oxidation conditions for an austenitic stainless steel at chromium-nickel (253MA) with cerium addition, and comparing it with the AISI 310S austenitic stainless steel. The cyclic oxidation essays consist of five cycles by 24 hours each one, following of a cooling in air until ambient temperature from the temperatures of 850, 900 and 950 Centigrade, registering the gain mass of the specimen at end of each cycle. In order to this were prepared samples with dimensions of 20 mm. x 10 mm. x 1 mm. Later to the oxidation essays was evaluated the morphology of the corrosion products layer by scanning electron microscopy. The present phases were identified by X-ray diffraction and by chemical microanalysis by Dispersive energy (EDAX). The results obtained show that the steel with cerium addition, presents a higher adherence and resistance to the spalling noting that the cerium promotes the casting anchor of the oxides layer to matrix and by reducing the grain size of the layer improving its plasticity. Additionally the cerium promotes the preferential oxidation of the forming elements of protective layers like the chromium. (Author)

  8. The Effect of Temperature on Selectivity in the Oscillatory Mode of the Phenylacetylene Oxidative Carbonylation Reaction.

    Science.gov (United States)

    Parker, Julie; Novakovic, Katarina

    2017-08-05

    Reaction temperature plays a major role in product selectivity in the oscillatory mode of the palladium-catalyzed phenylacetylene oxidative carbonylation reaction. At 40 °C, dimethyl (2Z)-2-phenyl-2-butenedioate is the major product whereas at 0 °C the major product is 5,5-dimethoxy-3-phenyl-2(5H)-furanone. The occurrence of oscillations in pH coincides with an increase in the rate of phenylacetylene consumption and associated product formation. Experiments were performed isothermally in a reaction calorimeter to correlate reactant consumption and product formation with the occurrence of pH oscillations and the heat released by the reaction. An increase in the size of the pH drop in a single oscillation correlates with an increase in energy, indicating that this section of a single oscillation relates to reactant consumption. Based on these observations, a reaction pathway responsible for product formation is provided. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Study of the reaction between Uranium(III) and Lanthanide oxide by using the UV-VIS spectrophotometer

    International Nuclear Information System (INIS)

    Kim, Tack-Jin; Cho, Young-Hwan; Choi, In-Kyu; Choi, Kwang-Soon; Jee, Kwang-Yong

    2006-01-01

    Recently, ionic melts have become attractive reaction media in many fields. Molten salt based electrochemical processes have been proposed as a promising method for future nuclear programs and more specifically for spent fuel processing. Molten alkaline chloride based melts are considered as a promising reaction media. For this, it is interesting to understand the chemical nature of the actinides and lanthanides in high-temperature melt. Some spectroscopy provides essential information on the exact nature of f-block elements LiCl-KCl melt system. The knowledge on the basic chemical properties of these lanthanide oxides and U(III) in molten salt media is essential for developing suitable processes. However, few studies have been reported until now on the interaction between U metal and lanthanide oxides in LiCl-KCl melt. So, we studied the interaction between U(III) and Ln(III) by using the UV-VIS spectra. UV-vis spectrometry is a strong analytical technique for characterizing chemical species and their behavior in molten salt

  10. Rapid Synthesis of Lead Oxide Nanorods by One-step Solid-state Chemical Reaction at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    CAO, Ya-Li(曹亚丽); JIA, Dian-Zeng(贾殿赠); LIU, Lang(刘浪); LUO, Jian-Min(骆建敏)

    2004-01-01

    A simple and facile method was reported to synthesize lead oxide nanorods. Nanorods of lead oxide were obtained directly from grinding solid metal salt and sodium hydroxide in agate mortar with the assistance of a suitable nonionic surfactant in only one step, which is different from the result of hydroxide in solution. The product has been characterized by XRD, TEM and SEM. The formation mechanism of rod-like morphology is discussed and the surfactant plays an important soft-template role in modifying the interface of solid-state reaction and according process of rod-formation.

  11. Reaction-transport simulations of non-oxidative methane conversion with continuous hydrogen removal: Homogeneous-heterogeneous methane reaction pathways

    International Nuclear Information System (INIS)

    Li, Lin; Borry, Richard W.; Iglesia, Enrique

    2000-01-01

    Detailed kinetic-transport models were used to explore thermodynamic and kinetic barriers in the non-oxidative conversion of CH4 via homogeneous and homogeneous-heterogeneous pathways and the effects of continuous hydrogen removal and of catalytic sites on attainable yields of useful C2-C10 products. The homogeneous kinetic model combines separately developed models for low-conversion pyrolysis and for chain growth to form large aromatics and carbon. The H2 formed in the reaction decreases CH4 pyrolysis rates and equilibrium conversions and it favors the formation of lighter products. The removal of H2 along tubular reactors with permeable walls increases reaction rates and equilibrium CH4 conversions. C2-C10 yields reach values greater than 90 percent at intermediate values of dimensionless transport rates (delta=1-10), defined as the ratio hydrogen transport and methane conversion rates. Homogeneous reactions require impractical residence times, even with H2 removal, because of slow initiation and chain transfer rates. The introduction of heterogeneous chain initiation pathways using surface sites that form methyl radicals eliminates the induction period without influencing the homogeneous product distribution. Methane conversion, however, occurs predominately in the chain transfer regime, within which individual transfer steps and the formation of C2 intermediates become limited by thermodynamic constraints. Catalytic sites alone cannot overcome these constraints. Catalytic membrane reactors with continuous H2 removal remove these thermodynamic obstacles and decrease the required residence time. Reaction rates become limited by homogeneous reactions of C2 products to form C6+ aromatics. Higher delta values lead to subsequent conversion of the desired C2-C10 products to larger polynuclear aromatics. We conclude that catalytic methane pyrolysis at the low temperatures required for restricted chain growth and the elimination of thermodynamics constraints via

  12. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways.

    Science.gov (United States)

    Xu, Xinxin; Chen, Jing; Qu, Ruijuan; Wang, Zunyao

    2017-10-01

    The feasibility of UV-activated peroxymonosulfate (PMS) technology for the degradation of Tris (2-chloroethyl) phosphate (TCEP) in an aqueous solution was investigated in this study. The conditions of [PMS] 0 : [TCEP] 0  = 20:1, T = 25 ± 2 °C and pH = 5.5 ± 0.5 cause a 94.6% removal of TCEP (1 mg L -1 ) after 30 min of Hg lamp irradiation. The effects of operating parameters (the oxidant doses, pH and presence of typical cations (Fe 3+ , Cu 2+ , Ni 2+ , NH 4 + ), anions (Cl - , HCO 3 - , NO 3 - , HPO 4 2- ) and humic acid (HA)) were evaluated. It was found that an increase of the PMS dose and the presence of Fe 3+ could accelerate the reaction, while the anions and HA inhibited the reaction. Meanwhile, TCEP removal in various water matrices was compared, and the order for TCEP removal was as follows: ultrapure water > tap water > synthetic water > secondary clarifier effluent > Jiuxiang river water. Twenty-two oxidation products were identified using an electrospray time-of-flight mass spectrometer, and the degradation pathways mainly involved radicals' addition and CO bond cleavage. Furthermore, ECOSAR analysis revealed that the intermediate products during the TCEP oxidation process were generally not harmful to three typical aquatic species. Hence, UV/PMS can be used as an efficient technology to treat TCEP-containing water and wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    Science.gov (United States)

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  14. The direct oxidative diene cyclization and related reactions in natural product synthesis

    Directory of Open Access Journals (Sweden)

    Juliane Adrian

    2016-09-01

    Full Text Available The direct oxidative cyclization of 1,5-dienes is a valuable synthetic method for the (diastereoselective preparation of substituted tetrahydrofurans. Closely related reactions start from 5,6-dihydroxy or 5-hydroxyalkenes to generate similar products in a mechanistically analogous manner. After a brief overview on the history of this group of transformations and a survey on mechanistic and stereochemical aspects, this review article provides a summary on applications in natural product synthesis. Moreover, current limitations and future directions in this area of chemistry are discussed.

  15. Kinetics of Several Oxygen-Containing Carbon-Centered Free Radical Reactions with Nitric Oxide.

    Science.gov (United States)

    Rissanen, Matti P; Ihlenborg, Marvin; Pekkanen, Timo T; Timonen, Raimo S

    2015-07-16

    Kinetics of four carbon-centered, oxygen-containing free radical reactions with nitric oxide (NO) were investigated as a function of temperature at a few Torr pressure of helium, employing flow tube reactors coupled to a laser-photolysis/resonance-gas-discharge-lamp photoionization mass spectrometer (LP-RPIMS). Rate coefficients were directly determined from radical (R) decay signals under pseudo-first-order conditions ([R]0 ≪ [NO]). The obtained rate coefficients showed negative temperature dependences, typical for a radical-radical association process, and can be represented by the following parametrizations (all in units of cm(3) molecule(-1) s(-1)): k(CH2OH + NO) = (4.76 × 10(-21)) × (T/300 K)(15.92) × exp[50700/(RT)] (T = 266-363 K, p = 0.79-3.44 Torr); k(CH3CHOH + NO) = (1.27 × 10(-16)) × (T/300 K)(6.81) × exp[28700/(RT)] (T = 241-363 K, p = 0.52-3.43 Torr); k(CH3OCH2 + NO) = (3.58 ± 0.12) × 10(-12) × (T/300 K)(-3.17±0.14) (T = 221-363 K, p = 0.50-0.80 Torr); k(T)3 = 9.62 × 10(-11) × (T/300 K)(-5.99) × exp[-7100/(RT)] (T = 221-473 K, p = 1.41-2.95 Torr), with the uncertainties given as standard errors of the fits and the overall uncertainties estimated as ±20%. The rate of CH3OCH2 + NO reaction was measured in two density ranges due to its observed considerable pressure dependence, which was not found in the studied hydroxyalkyl reactions. In addition, the CH3CO + NO rate coefficient was determined at two temperatures resulting in k298K(CH3CO + NO) = (5.6 ± 2.8) × 10(-13) cm(3) molecule(-1) s(-1). No products were found during these experiments, reasons for which are briefly discussed.

  16. Plant cells oxidize hydroxylamines to NO

    Science.gov (United States)

    Rümer, Stefan; Gupta, Kapuganti Jagadis; Kaiser, Werner M.

    2009-01-01

    Plants are known to produce NO via the reduction of nitrite. Oxidative NO production in plants has been considered only with respect to a nitric oxide synthase (NOS). Here it is shown that tobacco cell suspensions emitted NO when hydroxylamine (HA) or salicylhydroxamate (SHAM), a frequently used AOX inhibitor, was added. NG-hydroxy-L-arginine, a putative intermediate in the NOS-reaction, gave no NO emission. Only a minor fraction (≤1%) of the added HA or SHAM was emitted as NO. Production of NO was decreased by anoxia or by the addition of catalase, but was increased by conditions inducing reactive oxygen (ROS) or by the addition of hydrogen peroxide. Cell-free enzyme solutions generating superoxide or hydrogen peroxide also led to the formation of NO from HA or (with lower rates) from SHAM, and nitrite was also an oxidation product. Unexpectedly, the addition of superoxide dismutase (SOD) to cell suspensions stimulated NO formation from hydroxylamines, and SOD alone (without cells) also catalysed the production of NO from HA or SHAM. NO production by SOD plus HA was higher in nitrogen than in air, but from SOD plus SHAM it was lower in nitrogen. Thus, SOD-catalysed NO formation from SHAM and from HA may involve different mechanisms. While our data open a new possibility for oxidative NO formation in plants, the existence and role of these reactions under physiological conditions is not yet clear. PMID:19357430

  17. Effects of grain boundaries at the electrolyte/cathode interfaces on oxygen reduction reaction kinetics of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Gi; Koo, Ja Yang; Ahn, Min Woo; Lee, Won Young [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-04-15

    We systematically investigated the effects of grain boundaries (GBs) at the electrolyte/cathode interface of two conventional electrolyte materials, i.e., yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC). We deposited additional layers by pulsed laser deposition to control the GB density on top of the polycrystalline substrates, obtaining significant improvements in peak power density (two-fold for YSZ and three-fold for GDC). The enhanced performance at high GB density in the additional layer could be ascribed to the accumulation of oxygen vacancies, which are known to be more active sites for oxygen reduction reactions (ORR) than grain cores. GDC exhibited a higher enhancement than YSZ, due to the easier formation, and thus higher concentration, of oxygen vacancies for ORR. The strong relation between the concentration of oxygen vacancies and the surface exchange characteristics substantiated the role of GBs at electrolyte/cathode interfaces on ORR kinetics, providing new design parameters for highly performing solid oxide fuel cells.

  18. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules-An Experimental Study on Tribopolymerization of α-Pinene on Metal, Metal Oxide, and Carbon Surfaces.

    Science.gov (United States)

    He, Xin; Kim, Seong H

    2018-02-20

    Mechanochemical reactions between adsorbate molecules sheared at tribological interfaces can induce association of adsorbed molecules, forming oligomeric and polymeric products often called tribopolymers). This study revealed the role or effect of surface chemistry of the solid substrate in mechanochemical polymerization reactions. As a model reactant, α-pinene was chosen because it was known to readily form tribopolymers at the sliding interface of stainless steel under vapor-phase lubrication conditions. Eight different substrate materials were tested-palladium, nickel, copper, stainless steel, gold, silicon oxide, aluminum oxide, and diamond-like carbon (DLC). All metal substrates and DLC were initially covered with surface oxide species formed naturally in air or during the oxidative sample cleaning. It was found that the tribopolymerization yield of α-pinene is much higher on the substrates that can chemisorb α-pinene, compared to the ones on which only physisorption occurs. From the load dependence of the tribopolymerization yield, it was found that the surfaces capable of chemisorption give a smaller critical activation volume for the mechanochemical reaction, compared to the ones capable of physisorption only. On the basis of these observations and infrared spectroscopy analyses of the adsorbed molecules and the produced polymers, it was concluded that the mechanochemical reaction mechanisms might be different between chemically reactive and inert surfaces and that the chemical reactivity of the substrate surface greatly influences the tribochemical polymerization reactions of adsorbed molecules.

  19. Aromatic-radical oxidation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glassman, I.; Brezinsky, K. [Princeton Univ., NJ (United States)

    1993-12-01

    The research effort has focussed on discovering an explanation for the anomalously high CO{sub 2} concentrations observed early in the reaction sequence of the oxidation of cyclopentadiene. To explain this observation, a number of plausible mechanisms have been developed which now await experimental verification. One experimental technique for verifying mechanisms is to probe the reacting system by perturbing the radical concentrations. Two forms of chemical perturbation of the oxidation of cyclopentadiene were begun during this past year--the addition of NO{sub 2} and CO to the reacting mixture.

  20. Graphene Oxide: An All-in-One Processing Additive for 3D Printing.

    Science.gov (United States)

    García-Tuñón, Esther; Feilden, Ezra; Zheng, Han; D'Elia, Eleonora; Leong, Alan; Saiz, Eduardo

    2017-09-27

    Many 3D printing technologies are based on the development of inks and pastes to build objects through droplet or filament deposition (the latter also known as continuous extrusion, robocasting, or direct ink writing). Controlling and tuning rheological behavior is key for successful manufacturing using these techniques. Different formulations have been proposed, but the search continues for approaches that are clean, flexible, robust and that can be adapted to a wide range of materials. Here, we show how graphene oxide (GO) enables the formulation of water-based pastes to print a wide variety of materials (polymers, ceramics, and steel) using robocasting. This work combines flow and oscillatory rheology to provide further insights into the rheological behavior of suspensions combining GO with other materials. Graphene oxide can be used to manipulate the viscoelastic response, enabling the formulation of pastes with excellent printing behavior that combine shear thinning flow and a fast recovery of their elastic properties. These inks do not contain other additives, only GO and the material of interest. As a proof of concept, we demonstrate the 3D printing of additive-free graphene oxide structures as well as polymers, ceramics, and steel. Due to its amphiphilic nature and 2D structure, graphene oxide plays multiple roles, behaving as a dispersant, viscosifier, and binder. It stabilizes suspensions of different powders, modifies the flow and viscoelasticity of materials with different chemistries, particle sizes and shapes, and binds the particles together, providing green strength for manual handling. This approach enables printing complex 3D ceramic structures using robocasting with similar properties to alternative formulations, thus demonstrating the potential of using 2D colloids in materials manufacturing.

  1. DNA-Accelerated Copper Catalysis of Friedel-Crafts Conjugate Addition/Enantioselective Protonation Reactions in Water

    NARCIS (Netherlands)

    García-Fernández, Almudena; Megens, Rik P.; Villarino, Lara; Roelfes, Gerard

    2016-01-01

    DNA-induced rate acceleration has been identified as one of the key elements for the success of the DNA-based catalysis concept. Here we report on a novel DNA-based catalytic Friedel-Crafts conjugate addition/enantioselective protonation reaction in water, which represents the first example of a

  2. Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

    International Nuclear Information System (INIS)

    Kim, Cheolwoong; Seo, Seung Woo; Lee, Yona; Kim, Sunggon

    2014-01-01

    We have developed the synthetic methodology of enantioenriched benzindoloquinolizidines based on the organocatalytic enantioselective conjugate addition-cyclization cascade reaction of o-N-(3-indoleacetyl)amino-cinnamaldehydes with malonates followed by an acid-catalyzed intramolecular Pictet-Spengler type cyclization. The asymmetric reaction using diphenylprolinol TMS ether as an organocatalyst produces the desired products with good to excellent yields and high enantioselectivities (up to 98% ee). The evaluation of the applications of this synthetic methodology for generating enantioenriched benzindolo-quinolizidines and studies on the biological activity of these compounds against human prostate cancer in particular are now in progress. Results of these studies will be presented in due course. Many new types of chemical reactions have been developed to facilitate easier synthesis of complex compounds. Among the strategies, domino reactions, which have been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process, are widely used due to their high synthetic efficiency by reducing both the number of synthetic operation required and the quantities of chemicals and solvents used

  3. Selective propene oxidation on mixed metal oxide catalysts

    International Nuclear Information System (INIS)

    James, David William

    2002-01-01

    Selective catalytic oxidation processes represent a large segment of the modern chemical industry and a major application of these is the selective partial oxidation of propene to produce acrolein. Mixed metal oxide catalysts are particularly effective in promoting this reaction, and the two primary candidates for the industrial process are based on iron antimonate and bismuth molybdate. Some debate exists in the literature regarding the operation of these materials and the roles of their catalytic components. In particular, iron antimonate catalysts containing excess antimony are known to be highly selective towards acrolein, and a variety of proposals for the enhanced selectivity of such materials have been given. The aim of this work was to provide a direct comparison between the behaviour of bismuth molybdate and iron antimonate catalysts, with additional emphasis being placed on the component single oxide phases of the latter. Studies were also extended to other antimonate-based catalysts, including cobalt antimonate and vanadium antimonate. Reactivity measurements were made using a continuous flow microreactor, which was used in conjunction with a variety of characterisation techniques to determine relationships between the catalytic behaviour and the properties of the materials. The ratio of Fe/Sb in the iron antimonate catalyst affects the reactivity of the system under steady state conditions, with additional iron beyond the stoichiometric value being detrimental to the acrolein selectivity, while extra antimony provides a means of enhancing the selectivity by decreasing acrolein combustion. Studies on the single antimony oxides of iron antimonate have shown a similarity between the reactivity of 'Sb 2 O 5 ' and FeSbO 4 , and a significant difference between these and the Sb 2 O 3 and Sb 2 O 4 phases, implying that the mixed oxide catalyst has a surface mainly comprised of Sb 5+ . The lack of reactivity of Sb 2 O 4 implies a similarity of the surface with

  4. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study

    Science.gov (United States)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik

    2010-03-01

    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  5. On the nature of organic and inorganic centers that bifurcate electrons, coupling exergonic and endergonic oxidation-reduction reactions.

    Science.gov (United States)

    Peters, John W; Beratan, David N; Schut, Gerrit J; Adams, Michael W W

    2018-04-19

    Bifurcating electrons to couple endergonic and exergonic electron-transfer reactions has been shown to have a key role in energy conserving redox enzymes. Bifurcating enzymes require a redox center that is capable of directing electron transport along two spatially separate pathways. Research into the nature of electron bifurcating sites indicates that one of the keys is the formation of a low potential oxidation state to satisfy the energetics required of the endergonic half reaction, indicating that any redox center (organic or inorganic) that can exist in multiple oxidation states with sufficiently separated redox potentials should be capable of electron bifurcation. In this Feature Article, we explore a paradigm for bifurcating electrons down independent high and low potential pathways, and describe redox cofactors that have been demonstrated or implicated in driving this unique biochemistry.

  6. Production of superconducting ceramic oxides by coprecipitation

    International Nuclear Information System (INIS)

    Bizaio, L.R.; Lima, M.A.F. de; Figueiredo Jardim, R.de; Pinheiro, E.A.; Galembeck, F.

    1988-01-01

    An alternative method for production of ceramic oxides is described. The method consist in the coprecipitation reaction of metallic ions with oxalic acid. The obtainment samples present additional phases characterized by X-rays and optical microscopy. (C.G.C.) [pt

  7. Transition-metal-free synthesis of N-(1-alkenyl)imidazoles by potassium phosphate-promoted addition reaction of alkynes to imidazoles.

    Science.gov (United States)

    Lu, Linhua; Yan, Hong; Liu, Defu; Rong, Guangwei; Mao, Jincheng

    2014-01-01

    The addition reaction of alkynes to N-heterocycles by simply heating in DMSO with potassium phosphate is reported. Good yields with high stereoselectivity could be achieved for a range of substrates. The scope is quite general for both amines and phenylacetylenes. In addition, internal alkynes and α-bromostyrene were also examined in this reaction. This process is efficient and useful for the synthesis of (Z)-N-(1-alkenyl)imidazoles and related Z products. Thus, the reaction is useful because of the importance of the imidazole scaffold. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  9. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    Full Text Available This paper presents an overview of heterogeneous partial (ammoxidation and oxidative dehydrogenation (ODH of hydrocarbons. The review has been voluntarily restricted to metal oxide-type catalysts, as the partial oxidation field is very broad and the number of catalysts is quite high. The main factors of solid catalysts for such reactions, designated by Grasselli as the “seven pillars”, and playing a determining role in catalytic properties, are considered to be, namely: isolation of active sites (known to be composed of ensembles of atoms, Me–O bond strength, crystalline structure, redox features, phase cooperation, multi-functionality and the nature of the surface oxygen species. Other important features and physical and chemical properties of solid catalysts, more or less related to the seven pillars, are also emphasized, including reaction sensitivity to metal oxide structure, epitaxial contact between an active phase and a second phase or its support, synergy effect between several phases, acid-base aspects, electron transfer ability, catalyst preparation and activation and reaction atmospheres, etc. Some examples are presented to illustrate the importance of these key factors. They include light alkanes (C1–C4 oxidation, ethane oxidation to ethylene and acetic acid on MoVTe(SbNb-O and Nb doped NiO, propene oxidation to acrolein on BiMoCoFe-O systems, propane (ammoxidation to (acrylonitrile acrylic acid on MoVTe(SbNb-O mixed oxides, butane oxidation to maleic anhydride on VPO: (VO2P2O7-based catalyst, and isobutyric acid ODH to methacrylic acid on Fe hydroxyl phosphates. It is shown that active sites are composed of ensembles of atoms whose size and chemical composition depend on the reactants to be transformed (their chemical and size features and the reaction mechanism, often of Mars and van Krevelen type. An important aspect is the fact that surface composition and surface crystalline structure vary with reaction on stream until

  10. On surface reactions of iron tungstate with ethane

    International Nuclear Information System (INIS)

    Obrubov, V.A.; Shchukin, V.P.; Averbukh, A.Ya.

    1980-01-01

    Results of investigation of ethane oxidation reaction upon iron tungstate are presented. It is shown that catalytic oxidation of ethane is accompanied by the surface reaction of the catalyst reduction. Maximum reduction of surface depends upon temperature and considerably affects the direction of ethane oxidation process. Activation energies of ethane oxidation reactions and surface reaction of iron tungstate reduction depend on the surface actual state and at its reduction up to 5% from monolayer change in the limits 36.0-46.0 and 53.0-66.0 kcal/mol respectively

  11. The coupling of ω-transaminase and Oppenauer oxidation reactions via intra-membrane multicomponent diffusion – A process model for the synthesis of chiral amines

    DEFF Research Database (Denmark)

    Esparza-Isunza, T.; González-Brambila, M.; Gani, Rafiqul

    2015-01-01

    amine product. Using 2-propylamine as the amine donor of the ω-transaminase reaction, gives acetone as a by-product, which in turn allows the coupling of the ω-transaminase reaction with the Oppenauer oxidation. The Oppenauer reaction converts secondary alcohols into ketones, and these can subsequently......In this study we consider the theoretical coupling of an otherwise thermodynamically limited ω-transaminase reaction to an Oppenauer oxidation, in order to shift the equilibria of both reactions, with the aim of achieving a significant (and important) increase in the yield of the desired chiral...... of this paper is to report the development of a mathematical model as a tool for the simulation and potential design of such a process for the production of a range of chiral amines. The mathematical model developed considers that each reaction is performed in a single ideally mixed isothermal reactor operating...

  12. The oxidation resistance and ignition temperature of AZ31 magnesium alloy with additions of La2O3 and La

    International Nuclear Information System (INIS)

    Zhao, Shizhe; Zhou, Hong; Zhou, Ti; Zhang, Zhihui; Lin, Pengyu; Ren, Luquan

    2013-01-01

    Highlights: ► Using lanthanum and lanthanum oxide (La 2 O 3 ) can improve oxidation resistance of magnesium alloy. ► La 2 O 3 is as effective as La in affecting both alloy microstructure and oxidation resistance. ► The optimum La concentration in alloy is ∼0.7 wt.%. ► We analyzed the oxidation kinetics of AZ31 alloy with both additions. - Abstract: We investigate the oxidation resistance of AZ31 magnesium alloy with additions of La and La oxide (La 2 O 3 ). The contributor is the practical La content in alloy. Both La and La 2 O 3 are effective in improving the oxidation resistance of Mg alloys. The samples with La content of ∼ 0.7 wt.% possess the best resistance to oxidation of all. Oxide scale, ignition temperature and oxidation kinetics are analyzed. However, higher La content is detrimental to the oxidation resistance.

  13. Unexpected catalytic reactions of silyl-protected enol diazoacetates with nitrile oxides that form 5-arylaminofuran-2(3H)-one-4-carboxylates.

    Science.gov (United States)

    Xu, Xinfang; Shabashov, Dmitry; Zavalij, Peter Y; Doyle, Michael P

    2012-02-03

    Silyl-protected enol diazoacetates undergo dirhodium(II)-catalyzed reactions with nitrile oxides to form acid-labile ketenimines via dipolar cycloaddition of nitrile oxides to a donor/acceptor cyclopropene and Lossen rearrangement of the dipolar adduct; acid catalysis converts the ketenimine to the furan product. © 2012 American Chemical Society

  14. Theoretical Kinetics Analysis for Ḣ Atom Addition to 1,3-Butadiene and Related Reactions on the Ċ4H7 Potential Energy Surface.

    Science.gov (United States)

    Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J

    2017-10-12

    The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of Ḣ-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ 4 H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (Ċ 4 H 7 1-3) and 3-buten-1-yl (Ċ 4 H 7 1-4) radicals and C 2 H 4 + Ċ 2 H 3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal Ḣ-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4 H 6 + Ḣ → products and C 2 H 4 + Ċ 2 H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by Ḣ atoms have also been calculated, and it is

  15. Preparation of Cu@Cu2O Nanocatalysts by Reduction of HKUST-1 for Oxidation Reaction of Catechol

    OpenAIRE

    Seongwan Jang; Chohye Yoon; Jae Myung Lee; Sungkyun Park; Kang Hyun Park

    2016-01-01

    HKUST-1, a copper-based metal organic framework (MOF), has been investigated as a catalyst in various reactions. However, the HKUST-1 shows low catalytic activity in the oxidation of catechol. Therefore, we synthesized Fe3O4@HKUST-1 by layer-by layer assembly strategy and Cu@Cu2O by reduction of HKUST-1 for enhancement of catalytic activity. Cu@Cu2O nanoparticles exhibited highly effective catalytic activity in oxidation of 3,5-di-tert-butylcatechol. Through this method, MOF can maintain the ...

  16. Quantifying atom addition reactions on amorphous solid water: a review of recent laboratory advances

    Science.gov (United States)

    He, Jiao; Vidali, Gianfranco

    2018-06-01

    Complex organic molecules found in space are mostly formed on and in the ice mantle covering interstellar dust grains. In clouds where ionizing irradiation is insignificant, chemical reactions on the ice mantle are dominated by thermal processes. Modeling of grain surface chemistry requires detailed information from the laboratory, including sticking coefficients, binding energies, diffusion energy barriers, mechanism of reaction, and chemical desorption rates. In this talk, recent laboratory advances in obtaining these information would be reviewed. Specifically, this talk will focus on the efforts in our group in: 1) Determining the mechanism of atomic hydrogen addition reactions on amorphous solid water (ASW); 2) Measuring the chemical desorption coefficient of H+O3-->O2+OH using the time-resolved scattering technique; and 3) Measuring the diffusion energy barrier of volatile molecules on ASW. Further laboratory studies will be suggested.This research was supported by NSF Astronomy & Astrophysics Research Grant #1615897.

  17. CATALYTIC PERFORMANCES OF Fe2O3/TS-1 CATALYST IN PHENOL HYDROXYLATION REACTION

    Directory of Open Access Journals (Sweden)

    Didik Prasetyoko

    2010-07-01

    Full Text Available Hydroxylation reaction of phenol into diphenol, such as hydroquinone and catechol, has a great role in many industrial applications. Phenol hydroxylation reaction can be carried out using Titanium Silicalite-1 (TS-1 as catalyst and H2O2 as an oxidant. TS-1 catalyst shows high activity and selectivity for phenol hydroxylation reaction. However, its hydrophobic sites lead to slow H2O2 adsorption toward the active site of TS-1. Consequently, the reaction rate of phenol hydroxylation reaction is tends to be low. Addition of metal oxide Fe2O3 enhanced hydrophilicity of TS-1 catalyst. Liquid phase catalytic phenol hydroxylation using hydrogen peroxide as oxidant was carried out over iron (III oxide-modified TS-1 catalyst (Fe2O3/TS-1, that were prepared by impregnation method using iron (III nitrate as precursor and characterized by X-ray diffraction, infrared spectroscopy, nitrogen adsorption, pyridine adsorption, and hydrophilicity techniques. Catalysts 1Fe2O3/TS-1 showed maximum catalytic activity of hydroquinone product. In this research, the increase of hydroquinone formation rate is due to the higher hydrophilicity of Fe2O3/TS-1 catalysts compare to the parent catalyst, TS-1.   Keywords: Fe2O3/TS-1, hydrophilic site, phenol hydroxylation

  18. The Effect of Temperature and Ionic Strength on the Oxidation of Iodide by Iron(III): A Clock Reaction Kinetic Study

    Science.gov (United States)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2012-01-01

    A laboratory exercise has recently been reported in which the students use the initial rates method based on the clock reaction approach to deduce the rate law and propose a reaction mechanism for the oxidation of iodide by iron(III) ions. The same approach is used in the exercise proposed herein; the students determine the dependence of the…

  19. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes

    NARCIS (Netherlands)

    Barman, Prasenjit; Faponle, Abayomi S; Vardhaman, Anil Kumar; Angelone, Davide; Löhr, Anna-Maria; Browne, Wesley R; Comba, Peter; Sastri, Chivukula V; de Visser, Sam P

    2016-01-01

    Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes,

  20. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Forsey, S.P.; Thomson, N.R.; Barker, J.F. [University of Waterloo, Waterloo, ON (Canada). Dept. of Civil & Environmental Engineering

    2010-04-15

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene < phenanthrene < pyrene. The rate of side chain reactivity is controlled by the C-H bond strength. For the alkyl substituted benzenes an excellent correlation was observed between the reaction rate coefficients and bond dissociation energies, but for the substituted PAHs the relationship was poor. A trend was found between the reaction rate coefficients and the calculated heats of complexation indicating that significant ring oxidation occurred in addition to side chain oxidation. Clar's aromatic sextet theory was used to predict the relative stability of arenes towards ring oxidation by permanganate.