WorldWideScience

Sample records for oxidation regression coefficient

  1. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  2. Standards for Standardized Logistic Regression Coefficients

    Science.gov (United States)

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  3. On the Occurrence of Standardized Regression Coefficients Greater than One.

    Science.gov (United States)

    Deegan, John, Jr.

    1978-01-01

    It is demonstrated here that standardized regression coefficients greater than one can legitimately occur. Furthermore, the relationship between the occurrence of such coefficients and the extent of multicollinearity present among the set of predictor variables in an equation is examined. Comments on the interpretation of these coefficients are…

  4. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  5. Overcoming multicollinearity in multiple regression using correlation coefficient

    Science.gov (United States)

    Zainodin, H. J.; Yap, S. J.

    2013-09-01

    Multicollinearity happens when there are high correlations among independent variables. In this case, it would be difficult to distinguish between the contributions of these independent variables to that of the dependent variable as they may compete to explain much of the similar variance. Besides, the problem of multicollinearity also violates the assumption of multiple regression: that there is no collinearity among the possible independent variables. Thus, an alternative approach is introduced in overcoming the multicollinearity problem in achieving a well represented model eventually. This approach is accomplished by removing the multicollinearity source variables on the basis of the correlation coefficient values based on full correlation matrix. Using the full correlation matrix can facilitate the implementation of Excel function in removing the multicollinearity source variables. It is found that this procedure is easier and time-saving especially when dealing with greater number of independent variables in a model and a large number of all possible models. Hence, in this paper detailed insight of the procedure is shown, compared and implemented.

  6. Interpreting Bivariate Regression Coefficients: Going beyond the Average

    Science.gov (United States)

    Halcoussis, Dennis; Phillips, G. Michael

    2010-01-01

    Statistics, econometrics, investment analysis, and data analysis classes often review the calculation of several types of averages, including the arithmetic mean, geometric mean, harmonic mean, and various weighted averages. This note shows how each of these can be computed using a basic regression framework. By recognizing when a regression model…

  7. Bias in regression coefficient estimates upon different treatments of ...

    African Journals Online (AJOL)

    MS and PW consistently overestimated the population parameter. EM and RI, on the other hand, tended to consistently underestimate the population parameter under non-monotonic pattern. Keywords: Missing data, bias, regression, percent missing, non-normality, missing pattern > East African Journal of Statistics Vol.

  8. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  9. Using the Ridge Regression Procedures to Estimate the Multiple Linear Regression Coefficients

    Science.gov (United States)

    Gorgees, HazimMansoor; Mahdi, FatimahAssim

    2018-05-01

    This article concerns with comparing the performance of different types of ordinary ridge regression estimators that have been already proposed to estimate the regression parameters when the near exact linear relationships among the explanatory variables is presented. For this situations we employ the data obtained from tagi gas filling company during the period (2008-2010). The main result we reached is that the method based on the condition number performs better than other methods since it has smaller mean square error (MSE) than the other stated methods.

  10. Estimating nonlinear selection gradients using quadratic regression coefficients: double or nothing?

    Science.gov (United States)

    Stinchcombe, John R; Agrawal, Aneil F; Hohenlohe, Paul A; Arnold, Stevan J; Blows, Mark W

    2008-09-01

    The use of regression analysis has been instrumental in allowing evolutionary biologists to estimate the strength and mode of natural selection. Although directional and correlational selection gradients are equal to their corresponding regression coefficients, quadratic regression coefficients must be doubled to estimate stabilizing/disruptive selection gradients. Based on a sample of 33 papers published in Evolution between 2002 and 2007, at least 78% of papers have not doubled quadratic regression coefficients, leading to an appreciable underestimate of the strength of stabilizing and disruptive selection. Proper treatment of quadratic regression coefficients is necessary for estimation of fitness surfaces and contour plots, canonical analysis of the gamma matrix, and modeling the evolution of populations on an adaptive landscape.

  11. Comparing Regression Coefficients between Nested Linear Models for Clustered Data with Generalized Estimating Equations

    Science.gov (United States)

    Yan, Jun; Aseltine, Robert H., Jr.; Harel, Ofer

    2013-01-01

    Comparing regression coefficients between models when one model is nested within another is of great practical interest when two explanations of a given phenomenon are specified as linear models. The statistical problem is whether the coefficients associated with a given set of covariates change significantly when other covariates are added into…

  12. Sintering equation: determination of its coefficients by experiments - using multiple regression

    International Nuclear Information System (INIS)

    Windelberg, D.

    1999-01-01

    Sintering is a method for volume-compression (or volume-contraction) of powdered or grained material applying high temperature (less than the melting point of the material). Maekipirtti tried to find an equation which describes the process of sintering by its main parameters sintering time, sintering temperature and volume contracting. Such equation is called a sintering equation. It also contains some coefficients which characterise the behaviour of the material during the process of sintering. These coefficients have to be determined by experiments. Here we show that some linear regressions will produce wrong coefficients, but multiple regression results in an useful sintering equation. (orig.)

  13. Meta-analytical synthesis of regression coefficients under different categorization scheme of continuous covariates.

    Science.gov (United States)

    Yoneoka, Daisuke; Henmi, Masayuki

    2017-11-30

    Recently, the number of clinical prediction models sharing the same regression task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these regression models have not been sufficiently studied, particularly in meta-analysis settings where only regression coefficients are available. One of the difficulties lies in the differences between the categorization schemes of continuous covariates across different studies. In general, categorization methods using cutoff values are study specific across available models, even if they focus on the same covariates of interest. Differences in the categorization of covariates could lead to serious bias in the estimated regression coefficients and thus in subsequent syntheses. To tackle this issue, we developed synthesis methods for linear regression models with different categorization schemes of covariates. A 2-step approach to aggregate the regression coefficient estimates is proposed. The first step is to estimate the joint distribution of covariates by introducing a latent sampling distribution, which uses one set of individual participant data to estimate the marginal distribution of covariates with categorization. The second step is to use a nonlinear mixed-effects model with correction terms for the bias due to categorization to estimate the overall regression coefficients. Especially in terms of precision, numerical simulations show that our approach outperforms conventional methods, which only use studies with common covariates or ignore the differences between categorization schemes. The method developed in this study is also applied to a series of WHO epidemiologic studies on white blood cell counts. Copyright © 2017 John Wiley & Sons, Ltd.

  14. SPSS and SAS programs for comparing Pearson correlations and OLS regression coefficients.

    Science.gov (United States)

    Weaver, Bruce; Wuensch, Karl L

    2013-09-01

    Several procedures that use summary data to test hypotheses about Pearson correlations and ordinary least squares regression coefficients have been described in various books and articles. To our knowledge, however, no single resource describes all of the most common tests. Furthermore, many of these tests have not yet been implemented in popular statistical software packages such as SPSS and SAS. In this article, we describe all of the most common tests and provide SPSS and SAS programs to perform them. When they are applicable, our code also computes 100 × (1 - α)% confidence intervals corresponding to the tests. For testing hypotheses about independent regression coefficients, we demonstrate one method that uses summary data and another that uses raw data (i.e., Potthoff analysis). When the raw data are available, the latter method is preferred, because use of summary data entails some loss of precision due to rounding.

  15. Synthesis of linear regression coefficients by recovering the within-study covariance matrix from summary statistics.

    Science.gov (United States)

    Yoneoka, Daisuke; Henmi, Masayuki

    2017-06-01

    Recently, the number of regression models has dramatically increased in several academic fields. However, within the context of meta-analysis, synthesis methods for such models have not been developed in a commensurate trend. One of the difficulties hindering the development is the disparity in sets of covariates among literature models. If the sets of covariates differ across models, interpretation of coefficients will differ, thereby making it difficult to synthesize them. Moreover, previous synthesis methods for regression models, such as multivariate meta-analysis, often have problems because covariance matrix of coefficients (i.e. within-study correlations) or individual patient data are not necessarily available. This study, therefore, proposes a brief explanation regarding a method to synthesize linear regression models under different covariate sets by using a generalized least squares method involving bias correction terms. Especially, we also propose an approach to recover (at most) threecorrelations of covariates, which is required for the calculation of the bias term without individual patient data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Modelling the change in the oxidation coefficient during the aerobic ...

    African Journals Online (AJOL)

    In this work the aerobic degradation of phenol by acclimated activated sludge was studied. Results demonstrate that while the phenol removal rate by acclimated activated sludge follows the Monod model, the oxygen uptake rate obeys a Haldane-type equation. The phenol oxidation coefficient obtained at different intial ...

  17. The performance of random coefficient regression in accounting for residual confounding.

    Science.gov (United States)

    Gustafson, Paul; Greenland, Sander

    2006-09-01

    Greenland (2000, Biometrics 56, 915-921) describes the use of random coefficient regression to adjust for residual confounding in a particular setting. We examine this setting further, giving theoretical and empirical results concerning the frequentist and Bayesian performance of random coefficient regression. Particularly, we compare estimators based on this adjustment for residual confounding to estimators based on the assumption of no residual confounding. This devolves to comparing an estimator from a nonidentified but more realistic model to an estimator from a less realistic but identified model. The approach described by Gustafson (2005, Statistical Science 20, 111-140) is used to quantify the performance of a Bayesian estimator arising from a nonidentified model. From both theoretical calculations and simulations we find support for the idea that superior performance can be obtained by replacing unrealistic identifying constraints with priors that allow modest departures from those constraints. In terms of point-estimator bias this superiority arises when the extent of residual confounding is substantial, but the advantage is much broader in terms of interval estimation. The benefit from modeling residual confounding is maintained when the prior distributions employed only roughly correspond to reality, for the standard identifying constraints are equivalent to priors that typically correspond much worse.

  18. MANCOVA for one way classification with homogeneity of regression coefficient vectors

    Science.gov (United States)

    Mokesh Rayalu, G.; Ravisankar, J.; Mythili, G. Y.

    2017-11-01

    The MANOVA and MANCOVA are the extensions of the univariate ANOVA and ANCOVA techniques to multidimensional or vector valued observations. The assumption of a Gaussian distribution has been replaced with the Multivariate Gaussian distribution for the vectors data and residual term variables in the statistical models of these techniques. The objective of MANCOVA is to determine if there are statistically reliable mean differences that can be demonstrated between groups later modifying the newly created variable. When randomization assignment of samples or subjects to groups is not possible, multivariate analysis of covariance (MANCOVA) provides statistical matching of groups by adjusting dependent variables as if all subjects scored the same on the covariates. In this research article, an extension has been made to the MANCOVA technique with more number of covariates and homogeneity of regression coefficient vectors is also tested.

  19. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    Science.gov (United States)

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  20. Partial F-tests with multiply imputed data in the linear regression framework via coefficient of determination.

    Science.gov (United States)

    Chaurasia, Ashok; Harel, Ofer

    2015-02-10

    Tests for regression coefficients such as global, local, and partial F-tests are common in applied research. In the framework of multiple imputation, there are several papers addressing tests for regression coefficients. However, for simultaneous hypothesis testing, the existing methods are computationally intensive because they involve calculation with vectors and (inversion of) matrices. In this paper, we propose a simple method based on the scalar entity, coefficient of determination, to perform (global, local, and partial) F-tests with multiply imputed data. The proposed method is evaluated using simulated data and applied to suicide prevention data. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Towards molecular design using 2D-molecular contour maps obtained from PLS regression coefficients

    Science.gov (United States)

    Borges, Cleber N.; Barigye, Stephen J.; Freitas, Matheus P.

    2017-12-01

    The multivariate image analysis descriptors used in quantitative structure-activity relationships are direct representations of chemical structures as they are simply numerical decodifications of pixels forming the 2D chemical images. These MDs have found great utility in the modeling of diverse properties of organic molecules. Given the multicollinearity and high dimensionality of the data matrices generated with the MIA-QSAR approach, modeling techniques that involve the projection of the data space onto orthogonal components e.g. Partial Least Squares (PLS) have been generally used. However, the chemical interpretation of the PLS-based MIA-QSAR models, in terms of the structural moieties affecting the modeled bioactivity has not been straightforward. This work describes the 2D-contour maps based on the PLS regression coefficients, as a means of assessing the relevance of single MIA predictors to the response variable, and thus allowing for the structural, electronic and physicochemical interpretation of the MIA-QSAR models. A sample study to demonstrate the utility of the 2D-contour maps to design novel drug-like molecules is performed using a dataset of some anti-HIV-1 2-amino-6-arylsulfonylbenzonitriles and derivatives, and the inferences obtained are consistent with other reports in the literature. In addition, the different schemes for encoding atomic properties in molecules are discussed and evaluated.

  2. Varying coefficient subdistribution regression for left-truncated semi-competing risks data.

    Science.gov (United States)

    Li, Ruosha; Peng, Limin

    2014-10-01

    Semi-competing risks data frequently arise in biomedical studies when time to a disease landmark event is subject to dependent censoring by death, the observation of which however is not precluded by the occurrence of the landmark event. In observational studies, the analysis of such data can be further complicated by left truncation. In this work, we study a varying co-efficient subdistribution regression model for left-truncated semi-competing risks data. Our method appropriately accounts for the specifical truncation and censoring features of the data, and moreover has the flexibility to accommodate potentially varying covariate effects. The proposed method can be easily implemented and the resulting estimators are shown to have nice asymptotic properties. We also present inference, such as Kolmogorov-Smirnov type and Cramér Von-Mises type hypothesis testing procedures for the covariate effects. Simulation studies and an application to the Denmark diabetes registry demonstrate good finite-sample performance and practical utility of the proposed method.

  3. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-09-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol% TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol% it is approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999% HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  4. Zero and low coefficient of thermal expansion polycrystalline oxides

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-01-01

    Polycrystalline oxide systems with zero to low coefficient of thermal expansion (CTE) investigated by the author include hafnia-titania and hafnia. The CTE for 30 to 40 mol percent TiO 2 in HfO 2 is less than or equal to 1 x 10 -6 / 0 C, while for other compositions in the range 25 to 60 mol percent approximately 4 x 10 -6 / 0 C. An investigation of the CTE of 99.999 percent HfO 2 yielded a value of 4.6 x 10 -6 / 0 C from room temperature to 1000 0 C. Correlation with data on HfO 2 by other investigators shows a definite relationship between the CTE and the amount of ZrO 2 present. Data are listed for comparison of the CTE of several other polycrystalline oxides investigated by Holcombe at Oak Ridge

  5. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    Science.gov (United States)

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  6. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression

    DEFF Research Database (Denmark)

    Bini, L. M.; Diniz-Filho, J. A. F.; Rangel, T. F. L. V. B.

    2009-01-01

    A major focus of geographical ecology and macroecology is to understand the causes of spatially structured ecological patterns. However, achieving this understanding can be complicated when using multiple regression, because the relative importance of explanatory variables, as measured by regress...

  7. THE DETERMINATION OF BETA COEFFICIENTS OF PUBLICLY-HELD COMPANIES BY A REGRESSION MODEL AND AN APPLICATION ON PRIVATE FIRMS

    Directory of Open Access Journals (Sweden)

    METİN KAMİL ERCAN

    2013-06-01

    Full Text Available It is possible to determine the value of private companies by means of suggestions and assumptions derived from their financial statements. However, there comes out a serious problem in the determination of equity costs of these private companies using Capital Assets Pricing Model (CAPM as beta coefficients are unknown or unavailable. In this study, firstly, a regression model that represents the relationship between the beta coefficients and financial statements’ Variables of publicly-held companies will be developed. Then, this model will be tested and applied on private companies.

  8. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  9. Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks

    International Nuclear Information System (INIS)

    Elliott Campbell, J.; Moen, Jeremie C.; Ney, Richard A.; Schnoor, Jerald L.

    2008-01-01

    Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. - Large differences in estimates of soil organic carbon stocks and annual changes in stocks for Wisconsin forestlands indicate a need for validation from forthcoming forest surveys

  10. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    Science.gov (United States)

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  11. Modelling the change in the oxidation coefficient during the aerobic ...

    African Journals Online (AJOL)

    2013-01-20

    Jan 20, 2013 ... activated sludge in batch reactors under different initial phenol concentrations. ... wet air oxidation, ozonation, non-catalytic, catalytic and ... design of aeration devices. ... using an open (flowing gas/static liquid) respirometer.

  12. Investigation of Pear Drying Performance by Different Methods and Regression of Convective Heat Transfer Coefficient with Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Mehmet Das

    2018-01-01

    Full Text Available In this study, an air heated solar collector (AHSC dryer was designed to determine the drying characteristics of the pear. Flat pear slices of 10 mm thickness were used in the experiments. The pears were dried both in the AHSC dryer and under the sun. Panel glass temperature, panel floor temperature, panel inlet temperature, panel outlet temperature, drying cabinet inlet temperature, drying cabinet outlet temperature, drying cabinet temperature, drying cabinet moisture, solar radiation, pear internal temperature, air velocity and mass loss of pear were measured at 30 min intervals. Experiments were carried out during the periods of June 2017 in Elazig, Turkey. The experiments started at 8:00 a.m. and continued till 18:00. The experiments were continued until the weight changes in the pear slices stopped. Wet basis moisture content (MCw, dry basis moisture content (MCd, adjustable moisture ratio (MR, drying rate (DR, and convective heat transfer coefficient (hc were calculated with both in the AHSC dryer and the open sun drying experiment data. It was found that the values of hc in both drying systems with a range 12.4 and 20.8 W/m2 °C. Three different kernel models were used in the support vector machine (SVM regression to construct the predictive model of the calculated hc values for both systems. The mean absolute error (MAE, root mean squared error (RMSE, relative absolute error (RAE and root relative absolute error (RRAE analysis were performed to indicate the predictive model’s accuracy. As a result, the rate of drying of the pear was examined for both systems and it was observed that the pear had dried earlier in the AHSC drying system. A predictive model was obtained using the SVM regression for the calculated hc values for the pear in the AHSC drying system. The normalized polynomial kernel was determined as the best kernel model in SVM for estimating the hc values.

  13. The Use of Alternative Regression Methods in Social Sciences and the Comparison of Least Squares and M Estimation Methods in Terms of the Determination of Coefficient

    Science.gov (United States)

    Coskuntuncel, Orkun

    2013-01-01

    The purpose of this study is two-fold; the first aim being to show the effect of outliers on the widely used least squares regression estimator in social sciences. The second aim is to compare the classical method of least squares with the robust M-estimator using the "determination of coefficient" (R[superscript 2]). For this purpose,…

  14. A SOCIOLOGICAL ANALYSIS OF THE CHILDBEARING COEFFICIENT IN THE ALTAI REGION BASED ON METHOD OF FUZZY LINEAR REGRESSION

    Directory of Open Access Journals (Sweden)

    Sergei Vladimirovich Varaksin

    2017-06-01

    Full Text Available Purpose. Construction of a mathematical model of the dynamics of childbearing change in the Altai region in 2000–2016, analysis of the dynamics of changes in birth rates for multiple age categories of women of childbearing age. Methodology. A auxiliary analysis element is the construction of linear mathematical models of the dynamics of childbearing by using fuzzy linear regression method based on fuzzy numbers. Fuzzy linear regression is considered as an alternative to standard statistical linear regression for short time series and unknown distribution law. The parameters of fuzzy linear and standard statistical regressions for childbearing time series were defined with using the built in language MatLab algorithm. Method of fuzzy linear regression is not used in sociological researches yet. Results. There are made the conclusions about the socio-demographic changes in society, the high efficiency of the demographic policy of the leadership of the region and the country, and the applicability of the method of fuzzy linear regression for sociological analysis.

  15. The temperature coefficient of the resonance integral for uranium metal and oxide

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, P; Hellstrand, E; Homer, S

    1960-06-15

    The temperature coefficient of the resonance integral in uranium metal and oxide has been measured over a wide temperature range for rods with three different diameters. The results for metal agree with most earlier results from activation measurements but differ as much as a factor of two from results obtained with reactivity methods. For oxide only one measurement has been reported recently. Our value is considerably lower than the result of that measurement. The experiments will continue in order to find the reason for the large discrepancy mentioned above.

  16. The temperature coefficient of the resonance integral for uranium metal and oxide

    International Nuclear Information System (INIS)

    Blomberg, P.; Hellstrand, E.; Homer, S.

    1960-06-01

    The temperature coefficient of the resonance integral in uranium metal and oxide has been measured over a wide temperature range for rods with three different diameters. The results for metal agree with most earlier results from activation measurements but differ as much as a factor of two from results obtained with reactivity methods. For oxide only one measurement has been reported recently. Our value is considerably lower than the result of that measurement. The experiments will continue in order to find the reason for the large discrepancy mentioned above

  17. Intelligent Design of Metal Oxide Gas Sensor Arrays Using Reciprocal Kernel Support Vector Regression

    Science.gov (United States)

    Dougherty, Andrew W.

    Metal oxides are a staple of the sensor industry. The combination of their sensitivity to a number of gases, and the electrical nature of their sensing mechanism, make the particularly attractive in solid state devices. The high temperature stability of the ceramic material also make them ideal for detecting combustion byproducts where exhaust temperatures can be high. However, problems do exist with metal oxide sensors. They are not very selective as they all tend to be sensitive to a number of reduction and oxidation reactions on the oxide's surface. This makes sensors with large numbers of sensors interesting to study as a method for introducing orthogonality to the system. Also, the sensors tend to suffer from long term drift for a number of reasons. In this thesis I will develop a system for intelligently modeling metal oxide sensors and determining their suitability for use in large arrays designed to analyze exhaust gas streams. It will introduce prior knowledge of the metal oxide sensors' response mechanisms in order to produce a response function for each sensor from sparse training data. The system will use the same technique to model and remove any long term drift from the sensor response. It will also provide an efficient means for determining the orthogonality of the sensor to determine whether they are useful in gas sensing arrays. The system is based on least squares support vector regression using the reciprocal kernel. The reciprocal kernel is introduced along with a method of optimizing the free parameters of the reciprocal kernel support vector machine. The reciprocal kernel is shown to be simpler and to perform better than an earlier kernel, the modified reciprocal kernel. Least squares support vector regression is chosen as it uses all of the training points and an emphasis was placed throughout this research for extracting the maximum information from very sparse data. The reciprocal kernel is shown to be effective in modeling the sensor

  18. Improved profile fitting and quantification of uncertainty in experimental measurements of impurity transport coefficients using Gaussian process regression

    International Nuclear Information System (INIS)

    Chilenski, M.A.; Greenwald, M.; Howard, N.T.; White, A.E.; Rice, J.E.; Walk, J.R.; Marzouk, Y.

    2015-01-01

    The need to fit smooth temperature and density profiles to discrete observations is ubiquitous in plasma physics, but the prevailing techniques for this have many shortcomings that cast doubt on the statistical validity of the results. This issue is amplified in the context of validation of gyrokinetic transport models (Holland et al 2009 Phys. Plasmas 16 052301), where the strong sensitivity of the code outputs to input gradients means that inadequacies in the profile fitting technique can easily lead to an incorrect assessment of the degree of agreement with experimental measurements. In order to rectify the shortcomings of standard approaches to profile fitting, we have applied Gaussian process regression (GPR), a powerful non-parametric regression technique, to analyse an Alcator C-Mod L-mode discharge used for past gyrokinetic validation work (Howard et al 2012 Nucl. Fusion 52 063002). We show that the GPR techniques can reproduce the previous results while delivering more statistically rigorous fits and uncertainty estimates for both the value and the gradient of plasma profiles with an improved level of automation. We also discuss how the use of GPR can allow for dramatic increases in the rate of convergence of uncertainty propagation for any code that takes experimental profiles as inputs. The new GPR techniques for profile fitting and uncertainty propagation are quite useful and general, and we describe the steps to implementation in detail in this paper. These techniques have the potential to substantially improve the quality of uncertainty estimates on profile fits and the rate of convergence of uncertainty propagation, making them of great interest for wider use in fusion experiments and modelling efforts. (paper)

  19. Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs.

    Science.gov (United States)

    Hohaus, Thorsten; Gensch, Iulia; Kimmel, Joel; Worsnop, Douglas R; Kiendler-Scharr, Astrid

    2015-06-14

    The composition of secondary organic aerosols (SOAs) formed by β-pinene ozonolysis was experimentally investigated in the Juelich aerosol chamber. Partitioning of oxidation products between gas and particles was measured through concurrent concentration measurements in both phases. Partitioning coefficients (Kp) of 2.23 × 10(-5) ± 3.20 × 10(-6) m(3) μg(-1) for nopinone, 4.86 × 10(-4) ± 1.80 × 10(-4) m(3) μg(-1) for apoverbenone, 6.84 × 10(-4) ± 1.52 × 10(-4) m(3) μg(-1) for oxonopinone and 2.00 × 10(-3) ± 1.13 × 10(-3) m(3) μg(-1) for hydroxynopinone were derived, showing higher values for more oxygenated species. The observed Kp values were compared with values predicted using two different semi-empirical approaches. Both methods led to an underestimation of the partitioning coefficients with systematic differences between the methods. Assuming that the deviation between the experiment and the model is due to non-ideality of the mixed solution in particles, activity coefficients of 4.82 × 10(-2) for nopinone, 2.17 × 10(-3) for apoverbenone, 3.09 × 10(-1) for oxonopinone and 7.74 × 10(-1) for hydroxynopinone would result using the vapour pressure estimation technique that leads to higher Kp. We discuss that such large non-ideality for nopinone could arise due to particle phase processes lowering the effective nopinone vapour pressure such as diol- or dimer formation. The observed high partitioning coefficients compared to modelled results imply an underestimation of SOA mass by applying equilibrium conditions.

  20. Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films

    Science.gov (United States)

    Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh

    2017-12-01

    Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.

  1. Modeling and Predicting the Electrical Conductivity of Composite Cathode for Solid Oxide Fuel Cell by Using Support Vector Regression

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.

  2. An R package to compute commonality coefficients in the multiple regression case: an introduction to the package and a practical example.

    Science.gov (United States)

    Nimon, Kim; Lewis, Mitzi; Kane, Richard; Haynes, R Michael

    2008-05-01

    Multiple regression is a widely used technique for data analysis in social and behavioral research. The complexity of interpreting such results increases when correlated predictor variables are involved. Commonality analysis provides a method of determining the variance accounted for by respective predictor variables and is especially useful in the presence of correlated predictors. However, computing commonality coefficients is laborious. To make commonality analysis accessible to more researchers, a program was developed to automate the calculation of unique and common elements in commonality analysis, using the statistical package R. The program is described, and a heuristic example using data from the Holzinger and Swineford (1939) study, readily available in the MBESS R package, is presented.

  3. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression

    International Nuclear Information System (INIS)

    Ghasemi, Jahanbakhsh; Saaidpour, Saadi

    2007-01-01

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structures of 150 drug organic compounds to their n-octanol-water partition coefficients (log P o/w ). Molecular descriptors derived solely from 3D structures of the molecular drugs. A genetic algorithm was also applied as a variable selection tool in QSPR analysis. The models were constructed using 110 molecules as training set, and predictive ability tested using 40 compounds. Modeling of log P o/w of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR). Four descriptors for these compounds molecular volume (MV) (geometrical), hydrophilic-lipophilic balance (HLB) (constitutional), hydrogen bond forming ability (HB) (electronic) and polar surface area (PSA) (electrostatic) are taken as inputs for the model. The use of descriptors calculated only from molecular structure eliminates the need for experimental determination of properties for use in the correlation and allows for the estimation of log P o/w for molecules not yet synthesized. Application of the developed model to a testing set of 40 drug organic compounds demonstrates that the model is reliable with good predictive accuracy and simple formulation. The prediction results are in good agreement with the experimental value. The root mean square error of prediction (RMSEP) and square correlation coefficient (R 2 ) for MLR model were 0.22 and 0.99 for the prediction set log P o/w

  4. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.

    Science.gov (United States)

    Golmohammadi, Hassan

    2009-11-30

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.

  5. Regression models to predict the behavior of the coefficient of friction of AISI 316L on UHMWPE under ISO 14243-3 conditions.

    Science.gov (United States)

    Garcia-Garcia, A L; Alvarez-Vera, M; Montoya-Santiyanes, L A; Dominguez-Lopez, I; Montes-Seguedo, J L; Sosa-Savedra, J C; Barceinas-Sanchez, J D O

    2018-06-01

    Friction is the natural response of all tribosystems. In a total knee replacement (TKR) prosthetic device, its measurement is hindered by the complex geometry of its integrating parts and that of the testing simulation rig operating under the ISO 14243-3:2014 standard. To develop prediction models of the coefficient of friction (COF) between AISI 316L steel and ultra-high molecular weight polyethylene (UHMWPE) lubricated with fetal bovine serum dilutions, the arthrokinematics and loading conditions prescribed by the ISO 142433: 2014 standard were translated to a simpler geometrical setup, via Hertz contact theory. Tribological testing proceeded by loading a stainless steel AISI 316L ball against the surface of a UHMWPE disk, with the test fluid at 37 °C. The method has been applied to study the behavior of the COF during a whole walking cycle. On the other hand, the role of protein aggregation phenomena as a lubrication mechanism has been extensively studied in hip joint replacements but little explored for the operating conditions of a TKR. Lubricant testing fluids were prepared with fetal bovine serum (FBS) dilutions having protein mass concentrations of 5, 10, 20 and 36 g/L. The results were contrasted against deionized, sterilized water. The results indicate that even at protein concentration as low as 5 g/L, protein aggregation phenomena play an important role in the lubrication of the metal-on-polymer tribopair. The regression models of the COF developed herein are available for numerical simulations of the tribological behavior of the aforementioned tribosystem. In this case, surface stress rather than film thickness should be considered. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Multivariate regression models for the simultaneous quantitative analysis of calcium and magnesium carbonates and magnesium oxide through drifts data

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2006-01-01

    Full Text Available In the present work multivariate regression models were developed for the quantitative analysis of ternary systems using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS to determine the concentration in weight of calcium carbonate, magnesium carbonate and magnesium oxide. Nineteen spectra of standard samples previously defined in ternary diagram by mixture design were prepared and mid-infrared diffuse reflectance spectra were recorded. The partial least squares (PLS regression method was applied to the model. The spectra set was preprocessed by either mean-centered and variance-scaled (model 2 or mean-centered only (model 1. The results based on the prediction performance of the external validation set expressed by RMSEP (root mean square error of prediction demonstrated that it is possible to develop good models to simultaneously determine calcium carbonate, magnesium carbonate and magnesium oxide content in powdered samples that can be used in the study of the thermal decomposition of dolomite rocks.

  7. Lorenz curve and Gini coefficient reveal hot spots and hot moments for nitrous oxide emissions

    Science.gov (United States)

    Identifying hot spots and hot moments of N2O emissions in the landscape is critical for monitoring and mitigating the emission of this powerful greenhouse gas. We propose a novel use of the Lorenz curve and Gini coefficient (G) to quantify the heterogeneous distribution of N2O emissions from a lands...

  8. Application of least squares support vector regression and linear multiple regression for modeling removal of methyl orange onto tin oxide nanoparticles loaded on activated carbon and activated carbon prepared from Pistacia atlantica wood.

    Science.gov (United States)

    Ghaedi, M; Rahimi, Mahmoud Reza; Ghaedi, A M; Tyagi, Inderjeet; Agarwal, Shilpi; Gupta, Vinod Kumar

    2016-01-01

    Two novel and eco friendly adsorbents namely tin oxide nanoparticles loaded on activated carbon (SnO2-NP-AC) and activated carbon prepared from wood tree Pistacia atlantica (AC-PAW) were used for the rapid removal and fast adsorption of methyl orange (MO) from the aqueous phase. The dependency of MO removal with various adsorption influential parameters was well modeled and optimized using multiple linear regressions (MLR) and least squares support vector regression (LSSVR). The optimal parameters for the LSSVR model were found based on γ value of 0.76 and σ(2) of 0.15. For testing the data set, the mean square error (MSE) values of 0.0010 and the coefficient of determination (R(2)) values of 0.976 were obtained for LSSVR model, and the MSE value of 0.0037 and the R(2) value of 0.897 were obtained for the MLR model. The adsorption equilibrium and kinetic data was found to be well fitted and in good agreement with Langmuir isotherm model and second-order equation and intra-particle diffusion models respectively. The small amount of the proposed SnO2-NP-AC and AC-PAW (0.015 g and 0.08 g) is applicable for successful rapid removal of methyl orange (>95%). The maximum adsorption capacity for SnO2-NP-AC and AC-PAW was 250 mg g(-1) and 125 mg g(-1) respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2014-10-01

    Full Text Available Much effort has been made to study the formation mechanisms of photocurrents in graphene and reduced graphene oxide films under visible and near-infrared light irradiation. A built-in field and photo-thermal electrons have been applied to explain the experiments. However, much less attention has been paid to clarifying the mid-infrared response of reduced graphene oxide films at room temperature. Thus, mid-infrared photoresponse and annealing temperature-dependent resistance experiments were carried out on reduced graphene oxide films. A maximum photocurrent of 75 μA was observed at room temperature, which was dominated by the bolometer effect, where the resistance of the films decreased as the temperature increased after they had absorbed light. The electrons localized in the defect states and the residual oxygen groups were thermally excited into the conduction band, forming a photocurrent. In addition, a temperature increase of 2 °C for the films after light irradiation for 2 minutes was observed using absorption power calculations. This work details a way to use reduced graphene oxide films that contain appropriate defects and residual oxygen groups as bolometer-sensitive materials in the mid-infrared range.

  10. Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion

    Science.gov (United States)

    Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...

  11. Correlation between thermal expansion and Seebeck coefficient in polycrystalline cobalt oxide (Co3O4)

    NARCIS (Netherlands)

    Broemme, A.D.D.

    1991-01-01

    Characteristics of the cobalt-oxide spinel Co3O4 are described. Spinel is the name for a certain crystal structure that is built up out of three sublattices; one sublattice contains, in this case, only oxygen ions, and the other two sublattices, tetrahedral and octahedral, contain the metal cobalt

  12. Mass Transfer Coefficients and Bubble Sizes in Oxidative Ladle Refining of Silicon

    OpenAIRE

    Bjørnstad, Erlend Lunnan

    2016-01-01

    The mass transfer of [Al] and [Ca] between three synthetic SiO_{2}-CaO-Al_{2}O_{3} slags, and 8N silicon, has been investigated to find the overall mass transfer coefficient k_{i,t} for the individual species. Samples were kept at 1873K for 5, 10, 20, 30 and 180min before quenching. The metal phase was later analyzed by ICP-MS to view how the concentrations of impurities change with respect to time. This work then compares these results to industrial data gathered from ladles used for oxidati...

  13. Development of a predictive model for distribution coefficient (Kd) of 13'7Cs and 60Co in marine sediments using multiple linear regression analysis

    International Nuclear Information System (INIS)

    Kumar, Ajay; Ravi, P.M.; Guneshwar, S.L.; Rout, Sabyasachi; Mishra, Manish K.; Pulhani, Vandana; Tripathi, R.M.

    2018-01-01

    Numerous common methods (batch laboratory, the column laboratory, field-batch method, field modeling and K 0c method) are used frequently for determination of K d values. Recently, multiple regression models are considered as new best estimates for predicting the K d of radionuclides in the environment. It is also well known fact that the K d value is highly influenced by physico-chemical properties of sediment. Due to the significant variability in influencing parameters, the measured K d values can range over several orders of magnitude under different environmental conditions. The aim of this study is to develop a predictive model for K d values of 137 Cs and 60 Co based on the sediment properties using multiple linear regression analysis

  14. Intraparticle diffusion coefficient of lithium on granulated adsorbent of manganese oxide in seawater

    International Nuclear Information System (INIS)

    Miyai, Yoshitaka; Kanoh, Hirofumi; Feng, Qi; Ooi, Kenta

    1995-01-01

    Five kinds of manganese-oxide adsorbent granulated with different particle sizes were prepared using polyvinyl chloride (PVC) as a binder. Rates of lithium adsorption on the adsorbents were measured in lithium-enriched seawater ([Li]=3.1 mg·dm -3 ) by a batch method. The intraparticle diffusivities (D p 's) of lithium were evaluated in terms of the model of pore diffusion with a Freundrich-type adsorption isotherm. The D p values were about 2 x 10 -6 cm·s -1 and slightly dependent on particle size. The D p values were also evaluated using column adsorption data. The calculated values (about 4 x 10 -6 cm·s -1 ) agreed comparatively well with those derived from the batch adsorption data. The agreement suggests that the intraparticle diffusion is a rate-determining step in column adsorption at space velocity above 200 h -1 . (author)

  15. Reduced Rank Regression

    DEFF Research Database (Denmark)

    Johansen, Søren

    2008-01-01

    The reduced rank regression model is a multivariate regression model with a coefficient matrix with reduced rank. The reduced rank regression algorithm is an estimation procedure, which estimates the reduced rank regression model. It is related to canonical correlations and involves calculating...

  16. Prediction of the thermal expansion coefficients of bio diesels from several sources through the application of linear regression; Predicao dos coeficientes de expansao termica de biodieseis de diversas origens atraves da aplicacao da regressa linear

    Energy Technology Data Exchange (ETDEWEB)

    Canciam, Cesar Augusto [Universidade Tecnologica Federal do Parana (UTFPR), Campus Ponta Grossa, PR (Brazil)], e-mail: canciam@utfpr.edu.br

    2012-07-01

    When evaluating the consumption of bio fuels, the knowledge of the density is of great importance for rectify the effect of temperature. The thermal expansion coefficient is a thermodynamic property that provides a measure of the density variation in response to temperature variation, keeping the pressure constant. This study aimed to predict the thermal expansion coefficients of ethyl bio diesels from castor beans, soybeans, sunflower seeds and Mabea fistulifera Mart. oils and of methyl bio diesels from soybeans, sunflower seeds, souari nut, cotton, coconut, castor beans and palm oils, from beef tallow, chicken fat and hydrogenated vegetable fat residual. For this purpose, there was a linear regression analysis of the density of each bio diesel a function of temperature. These data were obtained from other works. The thermal expansion coefficients for bio diesels are between 6.3729x{sup 10-4} and 1.0410x10{sup -3} degree C-1. In all the cases, the correlation coefficients were over 0.99. (author)

  17. Development of a predictive model for lead, cadmium and fluorine soil-water partition coefficients using sparse multiple linear regression analysis.

    Science.gov (United States)

    Nakamura, Kengo; Yasutaka, Tetsuo; Kuwatani, Tatsu; Komai, Takeshi

    2017-11-01

    In this study, we applied sparse multiple linear regression (SMLR) analysis to clarify the relationships between soil properties and adsorption characteristics for a range of soils across Japan and identify easily-obtained physical and chemical soil properties that could be used to predict K and n values of cadmium, lead and fluorine. A model was first constructed that can easily predict the K and n values from nine soil parameters (pH, cation exchange capacity, specific surface area, total carbon, soil organic matter from loss on ignition and water holding capacity, the ratio of sand, silt and clay). The K and n values of cadmium, lead and fluorine of 17 soil samples were used to verify the SMLR models by the root mean square error values obtained from 512 combinations of soil parameters. The SMLR analysis indicated that fluorine adsorption to soil may be associated with organic matter, whereas cadmium or lead adsorption to soil is more likely to be influenced by soil pH, IL. We found that an accurate K value can be predicted from more than three soil parameters for most soils. Approximately 65% of the predicted values were between 33 and 300% of their measured values for the K value; 76% of the predicted values were within ±30% of their measured values for the n value. Our findings suggest that adsorption properties of lead, cadmium and fluorine to soil can be predicted from the soil physical and chemical properties using the presented models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials

    International Nuclear Information System (INIS)

    Waly, El-Sayed A.; Fusco, Michael A.; Bourham, Mohamed A.

    2016-01-01

    The variation in dosimetric parameters such as mass attenuation coefficient, half value layer factor, exposure buildup factor, and the photon mean free path for different oxide glasses for the incident gamma energy range 0.015–15 MeV has been studied using MicroShield code. It has been inferred that the addition of PbO and Bi 2 O 3 improves the gamma ray shielding properties. Thus, the effect of chemical composition on these parameters is investigated in the form of six different glass compositions, which are compared with specialty concrete for nuclear radiation shielding. The composition termed ‘Glass 6’ in this paper has the highest mass attenuation and the smallest half value layer and may have potential applications in radiation shielding. An example dry storage cask utilizing an additional layer of Glass 6 as an intermediate shielding layer, simulated in MicroShield, is capable of reducing the exposure rate at the cask surface by over 20 orders of magnitude compared to the case without a glass layer. Based on this study, Glass 6 shows promise as a gamma-ray shielding material, particularly for dry cask storage.

  19. Analysis of Differences in Void Coefficient Predictions for Mixed-Oxide-Fueled Tight-Pitch Light Water Reactor Cells

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Kanda, Keiji; Cathalau, Stephane; Carre, Franck-Olivier; Aizawa, Otohiko; Takeda, Toshikazu

    2000-01-01

    Analysis of the benchmark problems on the void coefficient of mixed-oxide (MOX)-fueled tight-pitch cells has been performed using the Japanese SRAC code system with the JENDL-3.2 library and the French APOLLO-2 code with the CEA93 library based on JEF-2.2. The benchmark problems have been specified to investigate the physical phenomena occurring during the progressive voidage of MOX-fueled tight-pitch lattices, such as high conversion light water reactor lattices, and to evaluate the impact of nuclear data and calculational methods. Despite the most recently compiled nuclear data libraries and the sophisticated calculation schemes employed in both code systems, the k ∞ and void reactivity values obtained by the two code systems show considerable discrepancy especially in the highly voided state. The discrepancy of k ∞ values shows an obvious dependence on void fraction and also has been shown to be sensitive to the isotopic composition of plutonium. The observed discrepancies are analyzed by being decomposed into contributing isotopes and reactions and have been shown to be caused by a complicated balance of both negative and positive components, which are mainly attributable to differences in a limited number of isotopes including 239 Pu, 241 Pu, 16 O, and stainless steel

  20. Kendall-Theil Robust Line (KTRLine--version 1.0)-A Visual Basic Program for Calculating and Graphing Robust Nonparametric Estimates of Linear-Regression Coefficients Between Two Continuous Variables

    Science.gov (United States)

    Granato, Gregory E.

    2006-01-01

    The Kendall-Theil Robust Line software (KTRLine-version 1.0) is a Visual Basic program that may be used with the Microsoft Windows operating system to calculate parameters for robust, nonparametric estimates of linear-regression coefficients between two continuous variables. The KTRLine software was developed by the U.S. Geological Survey, in cooperation with the Federal Highway Administration, for use in stochastic data modeling with local, regional, and national hydrologic data sets to develop planning-level estimates of potential effects of highway runoff on the quality of receiving waters. The Kendall-Theil robust line was selected because this robust nonparametric method is resistant to the effects of outliers and nonnormality in residuals that commonly characterize hydrologic data sets. The slope of the line is calculated as the median of all possible pairwise slopes between points. The intercept is calculated so that the line will run through the median of input data. A single-line model or a multisegment model may be specified. The program was developed to provide regression equations with an error component for stochastic data generation because nonparametric multisegment regression tools are not available with the software that is commonly used to develop regression models. The Kendall-Theil robust line is a median line and, therefore, may underestimate total mass, volume, or loads unless the error component or a bias correction factor is incorporated into the estimate. Regression statistics such as the median error, the median absolute deviation, the prediction error sum of squares, the root mean square error, the confidence interval for the slope, and the bias correction factor for median estimates are calculated by use of nonparametric methods. These statistics, however, may be used to formulate estimates of mass, volume, or total loads. The program is used to read a two- or three-column tab-delimited input file with variable names in the first row and

  1. High-resolution Fourier transform measurements of air-induced broadening and shift coefficients in the 0002-0000 main isotopologue band of nitrous oxide

    Science.gov (United States)

    Werwein, Viktor; Li, Gang; Serdyukov, Anton; Brunzendorf, Jens; Werhahn, Olav; Ebert, Volker

    2018-06-01

    In the present study, we report highly accurate air-induced broadening and shift coefficients for the nitrous oxide (N2O) 0002-0000 band at 2.26 μm of the main isotopologue retrieved from high-resolution Fourier transform infrared (FTIR) measurements with metrologically determined pressure, temperature, absorption path length and chemical composition. Most of our retrieved air-broadening coefficients agree with previously generated datasets within the expanded (confidence interval of 95%) uncertainties. For the air-shift coefficients our results suggest a different rotational dependence compared to literature. The present study benefits from improved measurement conditions and a detailed metrological uncertainty description. Comparing to literature, the uncertainties of the previous broadening and shift coefficients are improved by a factor of up to 39 and up to 22, respectively.

  2. Multiple linear regression analysis

    Science.gov (United States)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  3. Determination of the apparent transfer coefficient for CO oxidation on Pt(poly), Pt(111), Pt(665) and Pt(332) using a potential modulation technique.

    Science.gov (United States)

    Wang, Han-Chun; Ernst, Siegfried; Baltruschat, Helmut

    2010-03-07

    The apparent transfer coefficient, which gives the magnitude of the potential dependence of the electrochemical reaction rates, is the key quantity for the elucidation of electrochemical reaction mechanisms. We introduce the application of an ac method to determine the apparent transfer coefficient alpha' for the oxidation of pre-adsorbed CO at polycrystalline and single-crystalline Pt electrodes in sulfuric acid. The method allows to record alpha' quasi continuously as a function of potential (and time) in cyclic voltammetry or at a fixed potential, with the reaction rate varying with time. At all surfaces (Pt(poly), Pt(111), Pt(665), and Pt(332)) we clearly observed a transition of the apparent transfer coefficient from values around 1.5 at low potentials to values around 0.5 at higher potentials. Changes of the apparent transfer coefficients for the CO oxidation with potential were observed previously, but only from around 0.7 to values as low as 0.2. In contrast, our experimental findings completely agree with the simulation by Koper et al., J. Chem. Phys., 1998, 109, 6051-6062. They can be understood in the framework of a Langmuir-Hinshelwood mechanism. The transition occurs when the sum of the rate constants for the forward reaction (first step: potential dependent OH adsorption, second step: potential dependent oxidation of CO(ad) with OH(ad)) exceeds the rate constant for the back-reaction of the first step. We expect that the ac method for the determination of the apparent transfer coefficient, which we used here, will be of great help also in many other cases, especially under steady conditions, where the major limitations of the method are avoided.

  4. Dual Regression

    OpenAIRE

    Spady, Richard; Stouli, Sami

    2012-01-01

    We propose dual regression as an alternative to the quantile regression process for the global estimation of conditional distribution functions under minimal assumptions. Dual regression provides all the interpretational power of the quantile regression process while avoiding the need for repairing the intersecting conditional quantile surfaces that quantile regression often produces in practice. Our approach introduces a mathematical programming characterization of conditional distribution f...

  5. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  6. Gamma-ray attenuation coefficients in some heavy metal oxide borate glasses at 662 keV

    International Nuclear Information System (INIS)

    Khanna, A.; Bhatti, S.S.; Singh, K.J.; Thind, K.S.

    1996-01-01

    The linear attenuation coefficient (μ) and mass attenuation coefficients (μ/ρ) of glasses in three systems: xPbO(1-x)B 2 O 3 , 0.25PbO.xCdO(0.75-x)B 2 O 3 and xBi 2 O 3 (1-x)B 2 O 3 were measured at 662 keV. Appreciable variations were noted in the attenuation coefficients due to changes in the chemical composition of glasses. In addition to this, absorption cross-sections per atom were also calculated. A comparison of shielding properties of these glasses with standar d shielding materials like lead, lead glass and concrete has proven that these glasses have a potential application as transparent radiation shielding. (orig.)

  7. Regression of L-NAME−Induced Hypertension: The Role of Nitric Oxide and Endothelium-Derived Constricting Factor

    Czech Academy of Sciences Publication Activity Database

    Paulis, Ĺudovít; Zicha, Josef; Kuneš, Jaroslav; Hojná, Silvie; Behuliak, M.; Celec, P.; Kojšová, S.; Pecháňová, O.; Šimko, F.

    2008-01-01

    Roč. 31, č. 4 (2008), s. 793-803 ISSN 0916-9636 R&D Projects: GA MŠk(CZ) 1M0510 Grant - others:VEGA(SK) 1/3429/06; VEGA(SK) 2/6148/26; APVT(SK) 51-027404 Institutional research plan: CEZ:AV0Z50110509 Keywords : nitric oxide * endothelial factors * cyclooxygenase Subject RIV: ED - Physiology Impact factor: 3.146, year: 2008

  8. End plate for e.g. solid oxide fuel cell stack, sets thermal expansion coefficient of material to predetermined value

    DEFF Research Database (Denmark)

    2011-01-01

    .05-0.3 mm. USE - End plate for solid oxide fuel cell stack (claimed). Can also be used in polymer electrolyte fuel cell stack and direct methanol fuel cell stack. ADVANTAGE - The robustness of the end plate is improved. The structure of the end plate is simplified. The risk of delamination of the stack...

  9. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  10. Variation of solubility, biokinetics and dose coefficient of industrial uranium oxides according to the specific surface area

    International Nuclear Information System (INIS)

    Chazel, V.; Houpert, P.; Ansorbolo, E.; Henge-Napoli, M.H.; Paquet, F.

    2000-01-01

    The in vitro solubility, absorption to blood, lung retention and dose coefficient of industrial UO 2 samples were studied as a function of the specific surface area (SSA) of the particles. An in vitro study has been carried out on two samples of industrial UO 4 to compare the results with those obtained with UO 2 . Ten UO 2 samples supplied by different fuel factories or research laboratories, presented specific surface areas from 1.00 to 4.45 m 2 .g -1 . The wide range of values of SSA was due to the different conditions of fabrication. Dissolution tests in cell culture medium made on these ten samples have shown that the solubility increased 2.5-fold when the SSA increased 1.7-fold. The same tendency has been found for UO 4 , a soluble compound, and for U 3 O 8 , a moderately soluble compound. Four in vivo experiments carried out on rats by intratracheal instillation of dust suspensions of UO 2 , have highlighted the decrease in lung retention and the increase of absorption to blood with the SSA. The experimental absorption parameters calculated from the in vivo data allowed specific dose coefficients to be obtained which decreased from 6.6 to 4.3 μSv.Bq -1 when the SSA increased from 1.60 to 3.08 m 2 .g -1 . Thus, the medical monitoring of workers at the workplace has to take into account any change in the fabrication process of the uranium compound which can affect the physiochemical properties and consequently the dose coefficient. (author)

  11. Oxygen exchange at gas/oxide interfaces: how the apparent activation energy of the surface exchange coefficient depends on the kinetic regime.

    Science.gov (United States)

    Fielitz, Peter; Borchardt, Günter

    2016-08-10

    In the dedicated literature the oxygen surface exchange coefficient KO and the equilibrium oxygen exchange rate [Fraktur R] are considered to be directly proportional to each other regardless of the experimental circumstances. Recent experimental observations, however, contradict the consequences of this assumption. Most surprising is the finding that the apparent activation energy of KO depends dramatically on the kinetic regime in which it has been determined, i.e. surface exchange controlled vs. mixed or diffusion controlled. This work demonstrates how the diffusion boundary condition at the gas/solid interface inevitably entails a correlation between the oxygen surface exchange coefficient KO and the oxygen self-diffusion coefficient DO in the bulk ("on top" of the correlation between KO and [Fraktur R] for the pure surface exchange regime). The model can thus quantitatively explain the range of apparent activation energies measured in the different regimes: in the surface exchange regime the apparent activation energy only contains the contribution of the equilibrium exchange rate, whereas in the mixed or in the diffusion controlled regime the contribution of the oxygen self-diffusivity has also to be taken into account, which may yield significantly higher apparent activation energies and simultaneously quantifies the correlation KO ∝ DO(1/2) observed for a large number of oxides in the mixed or diffusion controlled regime, respectively.

  12. Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films.

    Science.gov (United States)

    Kumar, Manjeet; Kumar, Akshay; Abhyankar, A C

    2015-02-18

    For the first time, a new facile approach based on simple and inexpensive chemical spray pyrolysis (CSP) technique is used to deposit Tungsten (W) doped nanocrystalline SnO2 thin films. The textural, optical, structural and sensing properties are investigated by GAXRD, UV spectroscopy, FESEM, AFM, and home-built sensing setup. The gas sensing results indicate that, as compared to pure SnO2, 1 wt % W-doping improves sensitivity along with better response (roughness values of 3.82 eV and 3.01 nm, respectively. Reduction in texture coefficient along highly dense (110) planes with concomitant increase along loosely packed (200) planes is found to have prominent effect on gas sensing properties of W-doped films.

  13. Regression Phalanxes

    OpenAIRE

    Zhang, Hongyang; Welch, William J.; Zamar, Ruben H.

    2017-01-01

    Tomal et al. (2015) introduced the notion of "phalanxes" in the context of rare-class detection in two-class classification problems. A phalanx is a subset of features that work well for classification tasks. In this paper, we propose a different class of phalanxes for application in regression settings. We define a "Regression Phalanx" - a subset of features that work well together for prediction. We propose a novel algorithm which automatically chooses Regression Phalanxes from high-dimensi...

  14. Determination of DPPH Radical Oxidation Caused by Methanolic Extracts of Some Microalgal Species by Linear Regression Analysis of Spectrophotometric Measurements

    Directory of Open Access Journals (Sweden)

    Ulf-Peter Hansen

    2007-10-01

    Full Text Available The demonstrated modified spectrophotometric method makes use of the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical and its specific absorbance properties. Theabsorbance decreases when the radical is reduced by antioxidants. In contrast to otherinvestigations, the absorbance was measured at a wavelength of 550 nm. This wavelengthenabled the measurements of the stable free DPPH radical without interference frommicroalgal pigments. This approach was applied to methanolic microalgae extracts for twodifferent DPPH concentrations. The changes in absorbance measured vs. the concentrationof the methanolic extract resulted in curves with a linear decrease ending in a saturationregion. Linear regression analysis of the linear part of DPPH reduction versus extractconcentration enabled the determination of the microalgae’s methanolic extractsantioxidative potentials which was independent to the employed DPPH concentrations. Theresulting slopes showed significant differences (6 - 34 μmol DPPH g-1 extractconcentration between the single different species of microalgae (Anabaena sp.,Isochrysis galbana, Phaeodactylum tricornutum, Porphyridium purpureum, Synechocystissp. PCC6803 in their ability to reduce the DPPH radical. The independency of the signal on the DPPH concentration is a valuable advantage over the determination of the EC50 value.

  15. Vector regression introduced

    Directory of Open Access Journals (Sweden)

    Mok Tik

    2014-06-01

    Full Text Available This study formulates regression of vector data that will enable statistical analysis of various geodetic phenomena such as, polar motion, ocean currents, typhoon/hurricane tracking, crustal deformations, and precursory earthquake signals. The observed vector variable of an event (dependent vector variable is expressed as a function of a number of hypothesized phenomena realized also as vector variables (independent vector variables and/or scalar variables that are likely to impact the dependent vector variable. The proposed representation has the unique property of solving the coefficients of independent vector variables (explanatory variables also as vectors, hence it supersedes multivariate multiple regression models, in which the unknown coefficients are scalar quantities. For the solution, complex numbers are used to rep- resent vector information, and the method of least squares is deployed to estimate the vector model parameters after transforming the complex vector regression model into a real vector regression model through isomorphism. Various operational statistics for testing the predictive significance of the estimated vector parameter coefficients are also derived. A simple numerical example demonstrates the use of the proposed vector regression analysis in modeling typhoon paths.

  16. Multicollinearity and Regression Analysis

    Science.gov (United States)

    Daoud, Jamal I.

    2017-12-01

    In regression analysis it is obvious to have a correlation between the response and predictor(s), but having correlation among predictors is something undesired. The number of predictors included in the regression model depends on many factors among which, historical data, experience, etc. At the end selection of most important predictors is something objective due to the researcher. Multicollinearity is a phenomena when two or more predictors are correlated, if this happens, the standard error of the coefficients will increase [8]. Increased standard errors means that the coefficients for some or all independent variables may be found to be significantly different from In other words, by overinflating the standard errors, multicollinearity makes some variables statistically insignificant when they should be significant. In this paper we focus on the multicollinearity, reasons and consequences on the reliability of the regression model.

  17. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    Science.gov (United States)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  18. Measurement of Activity Coefficients of Solvents in Poly ( ethylene oxide ) Using Gas-Chromatographic Method and Correlation by Polymer-ASOG; Poriechirenokishido chu no yobai katsuryo keisu no gasukuromatogurafu ho ni yoru sokutei to Polymer-ASOG ni yoru sokan

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kurita, S.; Ohashi, M. [Yuki Gosei Kogyo Co. LTd., (Japan); Kojima, K. [Nihon University, Tokyo (Japan). Department of Industrial Chemistry

    1997-09-01

    Infinite dilution activity coefficients (353.15-393.15 K) of six solvents (benzene, toluene, p-xylene, cyclohexane, acetone and methylethylketone) and activity coefficient at finite concentrations (353.15 K, 373.15 K) of these solvents in poly (ethylene oxide) are measured using gas-chromatographic method. The experimental data are then correlated by a polymer-ASOG model. 18 refs., 2 figs., 3 tabs.

  19. Autistic Regression

    Science.gov (United States)

    Matson, Johnny L.; Kozlowski, Alison M.

    2010-01-01

    Autistic regression is one of the many mysteries in the developmental course of autism and pervasive developmental disorders not otherwise specified (PDD-NOS). Various definitions of this phenomenon have been used, further clouding the study of the topic. Despite this problem, some efforts at establishing prevalence have been made. The purpose of…

  20. Boiling water reactors with uranium-plutonium mixed oxide fuel. Report 5: Analysis of the reactivity coefficients and the stability of a BWR loaded with MOx fuel

    Energy Technology Data Exchange (ETDEWEB)

    Demaziere, C. [CEA Centre d' Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires

    2000-01-01

    This report is a part of the project titled 'Boiling Water Reactors With Uranium-Plutonium Mixed Oxide (MOx) Fuel'. The aim of this study is to model the impact of a core loading pattern containing MOx bundles upon the main characteristics of a BWR (reactivity coefficients, stability, etc.). For this purpose, the Core Management System (CMS) codes of Studsvik Scandpower are used. This package is constituted by CASMO-4/TABLES-3/SIMULATE-3. It has been shown in previous reports that these codes are able to accurately represent and model MOx bundles. This report is thus devoted to the study of BWR cores loaded (partially or totally) with MOx bundles. The plutonium quality used is the Pu type 2016 (mostly Pu-239, 56 %, and Pu-240, 26 %), but a variation of the plutonium isotopic vector was also investigated, in case of a partial MOx loading. One notices that the reactivity coefficients do not present significant changes in comparison with a full UOx loading. Nevertheless, two main problems arise: the shutdown margin at BOC is lower than 1 % and the stability to in-phase oscillations is slightly decreased. (The SIMULATE-3 version used for this study does not contain the latest MOx enhancements described in literature, since these code developments have not been provided to the department. Nevertheless, as the nominal average enrichment of the MOx bundles is 5.41 % (total amount of plutonium), which can still be considered as a relatively low enrichment, the accuracy of the CMS codes is acceptable without the use of the MOx improvements for this level of Pu enrichment.

  1. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  2. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis.

    Science.gov (United States)

    Pillai, Indu M Sasidharan; Gupta, Ashok K

    2017-05-15

    A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L -1 ) at a flow rate of 500 mL h -1 (retention time of 6 h) and a current density of 1.15 mA cm -2 and the energy consumption for the degradation was 9.2 kWh (kg COD) -1 . The complete degradation of real textile wastewater (initial COD of 368 mg L -1 ) was obtained at a current density of 1.15 mA cm -2 , NaCl concentration of 1 g L -1 and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m -3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High-Temperature Oxidation-Resistant and Low Coefficient of Thermal Expansion NiAl-Base Bond Coat Developed for a Turbine Blade Application

    Science.gov (United States)

    2003-01-01

    Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat

  4. Regression modeling methods, theory, and computation with SAS

    CERN Document Server

    Panik, Michael

    2009-01-01

    Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least squares (OLS) approach before introducing many alternative regression methods. It covers nonparametric regression, logistic regression (including Poisson regression), Bayesian regression, robust regression, fuzzy regression, random coefficients regression,

  5. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100–1300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)

    2015-01-15

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  6. Interpretation of commonly used statistical regression models.

    Science.gov (United States)

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  7. Land use regression modeling of oxidative potential of fine particles, NO2, PM2.5 mass and association to type two diabetes mellitus

    Science.gov (United States)

    Hellack, Bryan; Sugiri, Dorothea; Schins, Roel P. F.; Schikowski, Tamara; Krämer, Ursula; Kuhlbusch, Thomas A. J.; Hoffmann, Barbara

    2017-12-01

    While land use regression models (LUR) are commonly used, e.g. for the prediction of spatially variable air pollutant mass concentrations, they are scarcely used for predicting the oxidative potential (OP), a suggested unifying predictor of health effects. Therefore a LUR model was developed to examine if long-term OP of fine particulate exposure can be reasonably predicted by LUR modeling and whether it is related to health effects in a study region comprised of urban and rural areas. Four 14-day sampling periods over 1 year at 40 sites in the western Ruhr Area and adjacent northern rural area, Germany, in 2002/2003 were conducted and annual Nitrogen Dioxide (NO2), fine particles (PM2.5), and OP were calculated. LUR models were developed to estimate spatially-resolved annual OP, NO2 and PM2.5 concentrations. The model performance was checked by leave-one-out cross validation (LOOCV) and cox regression was used to analyze the association of modeled residential OP and NO2 with incident type 2 diabetes mellitus (T2DM) in 1784 elderly women during a mean follow-up of 16 years (baseline 1985-1994). The measured OP and NO2 concentrations were moderately correlated (rSpearman 0.57). The LUR models explained 62% and 92% of the OP and NO2 variance (adjusted LOOCV R2 57% and 90%). PM10 emission from combustion in a 5000 m buffer was the most important predictor for OP and NO2. Modeled pollutants were highly correlated (rSpearman 0.87). Model quality for OP was sensitive to the inclusion of a single influential measurement site. For PM2.5 mass only an insufficient model with a low explained variance of 22% (adjusted R2) was developed so no health effects analyses were conducted with estimated PM2.5. Increases in OP and NO2 were associated with an increase in risk of T2DM by a hazard ratio of 1.38 (95% CI 1.06-1.80) and 1.39 (95% CI 1.07-1.81) per interquartile range of OP and NO2, respectively. We conclude that spatially-resolved OP can be predicted by LUR modeling, but

  8. Agreement of central site measurements and land use regression modeled oxidative potential of PM{sub 2.5} with personal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aileen, E-mail: Yang@uu.nl [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Hoek, Gerard; Montagne, Denise [Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Leseman, Daan L.A.C. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Hellack, Bryan [Air Quality & Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA), e.V., Blierheimer Str. 58-60, 47229 Duisburg (Germany); Kuhlbusch, Thomas A.J. [Air Quality & Sustainable Nanotechnology, Institute of Energy and Environmental Technology (IUTA), e.V., Blierheimer Str. 58-60, 47229 Duisburg (Germany); Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg (Germany); Cassee, Flemming R. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Brunekreef, Bert [Institute for Risk Assessment Sciences, Division Environmental Epidemiology, Utrecht University, P.O. Box 80.178, 3508TD Utrecht (Netherlands); Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht (Netherlands); Janssen, Nicole A.H. [National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720BA Bilthoven (Netherlands)

    2015-07-15

    Oxidative potential (OP) of ambient particulate matter (PM) has been suggested as a health-relevant exposure metric. In order to use OP for exposure assessment, information is needed about how well central site OP measurements and modeled average OP at the home address reflect temporal and spatial variation of personal OP. We collected 96-hour personal, home outdoor and indoor PM{sub 2.5} samples from 15 volunteers living either at traffic, urban or regional background locations in Utrecht, the Netherlands. OP was also measured at one central reference site to account for temporal variations. OP was assessed using electron spin resonance (OP{sup ESR}) and dithiothreitol (OP{sup DTT}). Spatial variation of average OP at the home address was modeled using land use regression (LUR) models. For both OP{sup ESR} and OP{sup DTT}, temporal correlations of central site measurements with home outdoor measurements were high (R>0.75), and moderate to high (R=0.49–0.70) with personal measurements. The LUR model predictions for OP correlated significantly with the home outdoor concentrations for OP{sup DTT} and OP{sup ESR} (R=0.65 and 0.62, respectively). LUR model predictions were moderately correlated with personal OP{sup DTT} measurements (R=0.50). Adjustment for indoor sources, such as vacuum cleaning and absence of fume-hood, improved the temporal and spatial agreement with measured personal exposure for OP{sup ESR}. OP{sup DTT} was not associated with any indoor sources. Our study results support the use of central site OP for exposure assessment of epidemiological studies focusing on short-term health effects. - Highlights: • Oxidative potential (OP) of PM was proposed as a health-relevant exposure metric. • We evaluated the relationship between measured and modeled outdoor and personal OP. • Temporal correlations of central site with personal OP are moderate to high. • Adjusting for indoor sources improved the agreement with personal OP. • Our results

  9. Linear regression in astronomy. I

    Science.gov (United States)

    Isobe, Takashi; Feigelson, Eric D.; Akritas, Michael G.; Babu, Gutti Jogesh

    1990-01-01

    Five methods for obtaining linear regression fits to bivariate data with unknown or insignificant measurement errors are discussed: ordinary least-squares (OLS) regression of Y on X, OLS regression of X on Y, the bisector of the two OLS lines, orthogonal regression, and 'reduced major-axis' regression. These methods have been used by various researchers in observational astronomy, most importantly in cosmic distance scale applications. Formulas for calculating the slope and intercept coefficients and their uncertainties are given for all the methods, including a new general form of the OLS variance estimates. The accuracy of the formulas was confirmed using numerical simulations. The applicability of the procedures is discussed with respect to their mathematical properties, the nature of the astronomical data under consideration, and the scientific purpose of the regression. It is found that, for problems needing symmetrical treatment of the variables, the OLS bisector performs significantly better than orthogonal or reduced major-axis regression.

  10. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    Science.gov (United States)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  11. Correlation and simple linear regression.

    Science.gov (United States)

    Zou, Kelly H; Tuncali, Kemal; Silverman, Stuart G

    2003-06-01

    In this tutorial article, the concepts of correlation and regression are reviewed and demonstrated. The authors review and compare two correlation coefficients, the Pearson correlation coefficient and the Spearman rho, for measuring linear and nonlinear relationships between two continuous variables. In the case of measuring the linear relationship between a predictor and an outcome variable, simple linear regression analysis is conducted. These statistical concepts are illustrated by using a data set from published literature to assess a computed tomography-guided interventional technique. These statistical methods are important for exploring the relationships between variables and can be applied to many radiologic studies.

  12. Retro-regression--another important multivariate regression improvement.

    Science.gov (United States)

    Randić, M

    2001-01-01

    We review the serious problem associated with instabilities of the coefficients of regression equations, referred to as the MRA (multivariate regression analysis) "nightmare of the first kind". This is manifested when in a stepwise regression a descriptor is included or excluded from a regression. The consequence is an unpredictable change of the coefficients of the descriptors that remain in the regression equation. We follow with consideration of an even more serious problem, referred to as the MRA "nightmare of the second kind", arising when optimal descriptors are selected from a large pool of descriptors. This process typically causes at different steps of the stepwise regression a replacement of several previously used descriptors by new ones. We describe a procedure that resolves these difficulties. The approach is illustrated on boiling points of nonanes which are considered (1) by using an ordered connectivity basis; (2) by using an ordering resulting from application of greedy algorithm; and (3) by using an ordering derived from an exhaustive search for optimal descriptors. A novel variant of multiple regression analysis, called retro-regression (RR), is outlined showing how it resolves the ambiguities associated with both "nightmares" of the first and the second kind of MRA.

  13. Interpreting Multiple Logistic Regression Coefficients in Prospective Observational Studies

    Science.gov (United States)

    1982-11-01

    prompted close examination of the issue at a workshop on hypertriglyceridemia where some of the cautions and perspectives given in this paper were...characteristics. If this is not the interest, then to isolate and-understand the effect of a characteris- tic on CHD when it could be one of several interacting...also easily extended to the case when several independent variables are modeled in a multiple logistic equation. In this instance, if xlx 2,..., x are

  14. Advanced statistics: linear regression, part II: multiple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  15. Differentiating regressed melanoma from regressed lichenoid keratosis.

    Science.gov (United States)

    Chan, Aegean H; Shulman, Kenneth J; Lee, Bonnie A

    2017-04-01

    Distinguishing regressed lichen planus-like keratosis (LPLK) from regressed melanoma can be difficult on histopathologic examination, potentially resulting in mismanagement of patients. We aimed to identify histopathologic features by which regressed melanoma can be differentiated from regressed LPLK. Twenty actively inflamed LPLK, 12 LPLK with regression and 15 melanomas with regression were compared and evaluated by hematoxylin and eosin staining as well as Melan-A, microphthalmia transcription factor (MiTF) and cytokeratin (AE1/AE3) immunostaining. (1) A total of 40% of regressed melanomas showed complete or near complete loss of melanocytes within the epidermis with Melan-A and MiTF immunostaining, while 8% of regressed LPLK exhibited this finding. (2) Necrotic keratinocytes were seen in the epidermis in 33% regressed melanomas as opposed to all of the regressed LPLK. (3) A dense infiltrate of melanophages in the papillary dermis was seen in 40% of regressed melanomas, a feature not seen in regressed LPLK. In summary, our findings suggest that a complete or near complete loss of melanocytes within the epidermis strongly favors a regressed melanoma over a regressed LPLK. In addition, necrotic epidermal keratinocytes and the presence of a dense band-like distribution of dermal melanophages can be helpful in differentiating these lesions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Regression: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    Regression, another mechanism studied by Sigmund Freud, has had much research, e.g., hypnotic regression, frustration regression, schizophrenic regression, and infra-human-animal regression (often directly related to fixation). Many investigators worked with hypnotic age regression, which has a long history, going back to Russian reflexologists.…

  17. Oxidation in fish-oil-enriched mayonnaise 2 : Assessment of the efficacy of different tocopherol antioxidant systems by discriminant partial least squares regression analysis

    DEFF Research Database (Denmark)

    Jacobsen, Charlotte; Hartvigsen, Karsten; Lund, Pia

    2000-01-01

    . The rheological and structural properties of the mayonnaise were also affected by the addition of extra emulsifier, but this did not influence the formation of fishy and rancid off-flavours. Addition of the A system caused the immediate formation of distinct fish; and rancid off-flavours in the fresh mayonnaises......Oxidative protection of mayonnaises with 16% fish oil was studied during cold storage (5 degrees C) after supplementation with different tocopherol systems: the ternary antioxidant system ascorbic acid, lecithin and tocopherol (A/L/T), and two commercial mixtures, an oil-soluble (Toco 70......) preparation and a water-soluble (Grindox 1032) preparation, The physical structure of the fish-oil-enriched mayonnaise was manipulated by adding extra emulsifier (Panodan TR) with the purpose of investigating whether or not this affected the antioxidative activity of the tocopherol mixtures. A number...

  18. Substituent effect on the oxidation peak potentials of phenol derivatives at ordered mesoporous carbons modified electrode and its application in determination of acidity coefficients (pKa)

    International Nuclear Information System (INIS)

    Zhang, Tingting; Lang, Qiaolin; Zeng, Lingxing; Li, Tie; Wei, Mingdeng; Liu, Aihua

    2014-01-01

    In this paper, the relationship between the electrochemical characteristics and the structure of a series of substituted phenol derivatives with electron-donating or electron-withdrawing groups were studied by voltammetry using ordered mesoporous carbons (OMCs) modified glassy carbon electrode (GCE) (OMCs/GCE). p-Nitrophenol (p-NP) and p-methylphenol were selected as models of electron-withdrawing and electron-donating groups, respectively, to illustrate the electrochemical behavior and reaction mechanism of substituted phenols. Voltammetric study showed that the oxidation peak potential (E pa ) of substituted phenols with an electron-withdrawing group was systematically higher than that of substituted phenols with an electron-donating group. That is, the direct electrochemical oxidation of substituted phenol with an electron-withdrawing group is more difficult than that of substituted phenol with an electron-donating group. The E pa value shifted negatively with the increase of pKa for both p-substituted phenols and o-substituted phenols with the equations of pKa = −6.986 E pa + 13.261 (for p-substituted phenols) and pKa = −7.929 E pa + 13.831 (for o-substituted phenols). Thus, a simple and novel method was proposed for the precise prediction of the pKa of substituted phenols by determining E pa values with voltammetry at OMCs/GCE, which matched fairly with the results calculated from Hammett's constants. Thus, the present work may provide additional strategy to determine pKa values and investigate possible mechanisms of some organic reactions. In addition, by making use of the substituent effect, different p-substituted phenols (or o-substituted phenols) can be well separated and identified at OMCs/GCE by voltametry, which may find possible applications in simultaneous detection of p-substituted phenols (or o-substituted phenols)

  19. Sparse Regression by Projection and Sparse Discriminant Analysis

    KAUST Repository

    Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu

    2015-01-01

    predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths

  20. AN APPLICATION OF FUNCTIONAL MULTIVARIATE REGRESSION MODEL TO MULTICLASS CLASSIFICATION

    OpenAIRE

    Krzyśko, Mirosław; Smaga, Łukasz

    2017-01-01

    In this paper, the scale response functional multivariate regression model is considered. By using the basis functions representation of functional predictors and regression coefficients, this model is rewritten as a multivariate regression model. This representation of the functional multivariate regression model is used for multiclass classification for multivariate functional data. Computational experiments performed on real labelled data sets demonstrate the effectiveness of the proposed ...

  1. [From clinical judgment to linear regression model.

    Science.gov (United States)

    Palacios-Cruz, Lino; Pérez, Marcela; Rivas-Ruiz, Rodolfo; Talavera, Juan O

    2013-01-01

    When we think about mathematical models, such as linear regression model, we think that these terms are only used by those engaged in research, a notion that is far from the truth. Legendre described the first mathematical model in 1805, and Galton introduced the formal term in 1886. Linear regression is one of the most commonly used regression models in clinical practice. It is useful to predict or show the relationship between two or more variables as long as the dependent variable is quantitative and has normal distribution. Stated in another way, the regression is used to predict a measure based on the knowledge of at least one other variable. Linear regression has as it's first objective to determine the slope or inclination of the regression line: Y = a + bx, where "a" is the intercept or regression constant and it is equivalent to "Y" value when "X" equals 0 and "b" (also called slope) indicates the increase or decrease that occurs when the variable "x" increases or decreases in one unit. In the regression line, "b" is called regression coefficient. The coefficient of determination (R 2 ) indicates the importance of independent variables in the outcome.

  2. Regression analysis by example

    CERN Document Server

    Chatterjee, Samprit

    2012-01-01

    Praise for the Fourth Edition: ""This book is . . . an excellent source of examples for regression analysis. It has been and still is readily readable and understandable."" -Journal of the American Statistical Association Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. Regression Analysis by Example, Fifth Edition has been expanded

  3. Quantile Regression Methods

    DEFF Research Database (Denmark)

    Fitzenberger, Bernd; Wilke, Ralf Andreas

    2015-01-01

    if the mean regression model does not. We provide a short informal introduction into the principle of quantile regression which includes an illustrative application from empirical labor market research. This is followed by briefly sketching the underlying statistical model for linear quantile regression based......Quantile regression is emerging as a popular statistical approach, which complements the estimation of conditional mean models. While the latter only focuses on one aspect of the conditional distribution of the dependent variable, the mean, quantile regression provides more detailed insights...... by modeling conditional quantiles. Quantile regression can therefore detect whether the partial effect of a regressor on the conditional quantiles is the same for all quantiles or differs across quantiles. Quantile regression can provide evidence for a statistical relationship between two variables even...

  4. Understanding logistic regression analysis

    OpenAIRE

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using ex...

  5. Introduction to regression graphics

    CERN Document Server

    Cook, R Dennis

    2009-01-01

    Covers the use of dynamic and interactive computer graphics in linear regression analysis, focusing on analytical graphics. Features new techniques like plot rotation. The authors have composed their own regression code, using Xlisp-Stat language called R-code, which is a nearly complete system for linear regression analysis and can be utilized as the main computer program in a linear regression course. The accompanying disks, for both Macintosh and Windows computers, contain the R-code and Xlisp-Stat. An Instructor's Manual presenting detailed solutions to all the problems in the book is ava

  6. Alternative Methods of Regression

    CERN Document Server

    Birkes, David

    2011-01-01

    Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data s

  7. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  8. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  9. Tracking time-varying coefficient-functions

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Joensen, Alfred K.

    2000-01-01

    is a combination of recursive least squares with exponential forgetting and local polynomial regression. It is argued, that it is appropriate to let the forgetting factor vary with the value of the external signal which is the argument of the coefficient functions. Some of the key properties of the modified method...... are studied by simulation...

  10. Understanding logistic regression analysis.

    Science.gov (United States)

    Sperandei, Sandro

    2014-01-01

    Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regression, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. In this article, we explain the logistic regression procedure using examples to make it as simple as possible. After definition of the technique, the basic interpretation of the results is highlighted and then some special issues are discussed.

  11. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  12. Applied logistic regression

    CERN Document Server

    Hosmer, David W; Sturdivant, Rodney X

    2013-01-01

     A new edition of the definitive guide to logistic regression modeling for health science and other applications This thoroughly expanded Third Edition provides an easily accessible introduction to the logistic regression (LR) model and highlights the power of this model by examining the relationship between a dichotomous outcome and a set of covariables. Applied Logistic Regression, Third Edition emphasizes applications in the health sciences and handpicks topics that best suit the use of modern statistical software. The book provides readers with state-of-

  13. Significance testing in ridge regression for genetic data

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2011-09-01

    Full Text Available Abstract Background Technological developments have increased the feasibility of large scale genetic association studies. Densely typed genetic markers are obtained using SNP arrays, next-generation sequencing technologies and imputation. However, SNPs typed using these methods can be highly correlated due to linkage disequilibrium among them, and standard multiple regression techniques fail with these data sets due to their high dimensionality and correlation structure. There has been increasing interest in using penalised regression in the analysis of high dimensional data. Ridge regression is one such penalised regression technique which does not perform variable selection, instead estimating a regression coefficient for each predictor variable. It is therefore desirable to obtain an estimate of the significance of each ridge regression coefficient. Results We develop and evaluate a test of significance for ridge regression coefficients. Using simulation studies, we demonstrate that the performance of the test is comparable to that of a permutation test, with the advantage of a much-reduced computational cost. We introduce the p-value trace, a plot of the negative logarithm of the p-values of ridge regression coefficients with increasing shrinkage parameter, which enables the visualisation of the change in p-value of the regression coefficients with increasing penalisation. We apply the proposed method to a lung cancer case-control data set from EPIC, the European Prospective Investigation into Cancer and Nutrition. Conclusions The proposed test is a useful alternative to a permutation test for the estimation of the significance of ridge regression coefficients, at a much-reduced computational cost. The p-value trace is an informative graphical tool for evaluating the results of a test of significance of ridge regression coefficients as the shrinkage parameter increases, and the proposed test makes its production computationally feasible.

  14. On Weighted Support Vector Regression

    DEFF Research Database (Denmark)

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2014-01-01

    We propose a new type of weighted support vector regression (SVR), motivated by modeling local dependencies in time and space in prediction of house prices. The classic weights of the weighted SVR are added to the slack variables in the objective function (OF‐weights). This procedure directly...... shrinks the coefficient of each observation in the estimated functions; thus, it is widely used for minimizing influence of outliers. We propose to additionally add weights to the slack variables in the constraints (CF‐weights) and call the combination of weights the doubly weighted SVR. We illustrate...... the differences and similarities of the two types of weights by demonstrating the connection between the Least Absolute Shrinkage and Selection Operator (LASSO) and the SVR. We show that an SVR problem can be transformed to a LASSO problem plus a linear constraint and a box constraint. We demonstrate...

  15. Understanding poisson regression.

    Science.gov (United States)

    Hayat, Matthew J; Higgins, Melinda

    2014-04-01

    Nurse investigators often collect study data in the form of counts. Traditional methods of data analysis have historically approached analysis of count data either as if the count data were continuous and normally distributed or with dichotomization of the counts into the categories of occurred or did not occur. These outdated methods for analyzing count data have been replaced with more appropriate statistical methods that make use of the Poisson probability distribution, which is useful for analyzing count data. The purpose of this article is to provide an overview of the Poisson distribution and its use in Poisson regression. Assumption violations for the standard Poisson regression model are addressed with alternative approaches, including addition of an overdispersion parameter or negative binomial regression. An illustrative example is presented with an application from the ENSPIRE study, and regression modeling of comorbidity data is included for illustrative purposes. Copyright 2014, SLACK Incorporated.

  16. Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients

    Directory of Open Access Journals (Sweden)

    Yuejun Chen

    2018-02-01

    Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.

  17. Neutrosophic Correlation and Simple Linear Regression

    Directory of Open Access Journals (Sweden)

    A. A. Salama

    2014-09-01

    Full Text Available Since the world is full of indeterminacy, the neutrosophics found their place into contemporary research. The fundamental concepts of neutrosophic set, introduced by Smarandache. Recently, Salama et al., introduced the concept of correlation coefficient of neutrosophic data. In this paper, we introduce and study the concepts of correlation and correlation coefficient of neutrosophic data in probability spaces and study some of their properties. Also, we introduce and study the neutrosophic simple linear regression model. Possible applications to data processing are touched upon.

  18. Minimax Regression Quantiles

    DEFF Research Database (Denmark)

    Bache, Stefan Holst

    A new and alternative quantile regression estimator is developed and it is shown that the estimator is root n-consistent and asymptotically normal. The estimator is based on a minimax ‘deviance function’ and has asymptotically equivalent properties to the usual quantile regression estimator. It is......, however, a different and therefore new estimator. It allows for both linear- and nonlinear model specifications. A simple algorithm for computing the estimates is proposed. It seems to work quite well in practice but whether it has theoretical justification is still an open question....

  19. riskRegression

    DEFF Research Database (Denmark)

    Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

    2017-01-01

    In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface...... for predicting the covariate specific absolute risks, their confidence intervals, and their confidence bands based on right censored time to event data. We provide explicit formulas for our implementation of the estimator of the (stratified) baseline hazard function in the presence of tied event times. As a by...... functionals. The software presented here is implemented in the riskRegression package....

  20. Bayesian logistic regression analysis

    NARCIS (Netherlands)

    Van Erp, H.R.N.; Van Gelder, P.H.A.J.M.

    2012-01-01

    In this paper we present a Bayesian logistic regression analysis. It is found that if one wishes to derive the posterior distribution of the probability of some event, then, together with the traditional Bayes Theorem and the integrating out of nuissance parameters, the Jacobian transformation is an

  1. Linear Regression Analysis

    CERN Document Server

    Seber, George A F

    2012-01-01

    Concise, mathematically clear, and comprehensive treatment of the subject.* Expanded coverage of diagnostics and methods of model fitting.* Requires no specialized knowledge beyond a good grasp of matrix algebra and some acquaintance with straight-line regression and simple analysis of variance models.* More than 200 problems throughout the book plus outline solutions for the exercises.* This revision has been extensively class-tested.

  2. Nonlinear Regression with R

    CERN Document Server

    Ritz, Christian; Parmigiani, Giovanni

    2009-01-01

    R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.

  3. Bayesian ARTMAP for regression.

    Science.gov (United States)

    Sasu, L M; Andonie, R

    2013-10-01

    Bayesian ARTMAP (BA) is a recently introduced neural architecture which uses a combination of Fuzzy ARTMAP competitive learning and Bayesian learning. Training is generally performed online, in a single-epoch. During training, BA creates input data clusters as Gaussian categories, and also infers the conditional probabilities between input patterns and categories, and between categories and classes. During prediction, BA uses Bayesian posterior probability estimation. So far, BA was used only for classification. The goal of this paper is to analyze the efficiency of BA for regression problems. Our contributions are: (i) we generalize the BA algorithm using the clustering functionality of both ART modules, and name it BA for Regression (BAR); (ii) we prove that BAR is a universal approximator with the best approximation property. In other words, BAR approximates arbitrarily well any continuous function (universal approximation) and, for every given continuous function, there is one in the set of BAR approximators situated at minimum distance (best approximation); (iii) we experimentally compare the online trained BAR with several neural models, on the following standard regression benchmarks: CPU Computer Hardware, Boston Housing, Wisconsin Breast Cancer, and Communities and Crime. Our results show that BAR is an appropriate tool for regression tasks, both for theoretical and practical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Bounded Gaussian process regression

    DEFF Research Database (Denmark)

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....

  5. and Multinomial Logistic Regression

    African Journals Online (AJOL)

    This work presented the results of an experimental comparison of two models: Multinomial Logistic Regression (MLR) and Artificial Neural Network (ANN) for classifying students based on their academic performance. The predictive accuracy for each model was measured by their average Classification Correct Rate (CCR).

  6. Mechanisms of neuroblastoma regression

    Science.gov (United States)

    Brodeur, Garrett M.; Bagatell, Rochelle

    2014-01-01

    Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

  7. Estimating temperature reactivity coefficients by experimental procedures combined with isothermal temperature coefficient measurements and dynamic identification

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi

    2006-01-01

    A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)

  8. Ridge Regression Signal Processing

    Science.gov (United States)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  9. Subset selection in regression

    CERN Document Server

    Miller, Alan

    2002-01-01

    Originally published in 1990, the first edition of Subset Selection in Regression filled a significant gap in the literature, and its critical and popular success has continued for more than a decade. Thoroughly revised to reflect progress in theory, methods, and computing power, the second edition promises to continue that tradition. The author has thoroughly updated each chapter, incorporated new material on recent developments, and included more examples and references. New in the Second Edition:A separate chapter on Bayesian methodsComplete revision of the chapter on estimationA major example from the field of near infrared spectroscopyMore emphasis on cross-validationGreater focus on bootstrappingStochastic algorithms for finding good subsets from large numbers of predictors when an exhaustive search is not feasible Software available on the Internet for implementing many of the algorithms presentedMore examplesSubset Selection in Regression, Second Edition remains dedicated to the techniques for fitting...

  10. Better Autologistic Regression

    Directory of Open Access Journals (Sweden)

    Mark A. Wolters

    2017-11-01

    Full Text Available Autologistic regression is an important probability model for dichotomous random variables observed along with covariate information. It has been used in various fields for analyzing binary data possessing spatial or network structure. The model can be viewed as an extension of the autologistic model (also known as the Ising model, quadratic exponential binary distribution, or Boltzmann machine to include covariates. It can also be viewed as an extension of logistic regression to handle responses that are not independent. Not all authors use exactly the same form of the autologistic regression model. Variations of the model differ in two respects. First, the variable coding—the two numbers used to represent the two possible states of the variables—might differ. Common coding choices are (zero, one and (minus one, plus one. Second, the model might appear in either of two algebraic forms: a standard form, or a recently proposed centered form. Little attention has been paid to the effect of these differences, and the literature shows ambiguity about their importance. It is shown here that changes to either coding or centering in fact produce distinct, non-nested probability models. Theoretical results, numerical studies, and analysis of an ecological data set all show that the differences among the models can be large and practically significant. Understanding the nature of the differences and making appropriate modeling choices can lead to significantly improved autologistic regression analyses. The results strongly suggest that the standard model with plus/minus coding, which we call the symmetric autologistic model, is the most natural choice among the autologistic variants.

  11. Regression in organizational leadership.

    Science.gov (United States)

    Kernberg, O F

    1979-02-01

    The choice of good leaders is a major task for all organizations. Inforamtion regarding the prospective administrator's personality should complement questions regarding his previous experience, his general conceptual skills, his technical knowledge, and the specific skills in the area for which he is being selected. The growing psychoanalytic knowledge about the crucial importance of internal, in contrast to external, object relations, and about the mutual relationships of regression in individuals and in groups, constitutes an important practical tool for the selection of leaders.

  12. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  13. Attenuation coefficients of soils

    International Nuclear Information System (INIS)

    Martini, E.; Naziry, M.J.

    1989-01-01

    As a prerequisite to the interpretation of gamma-spectrometric in situ measurements of activity concentrations of soil radionuclides the attenuation of 60 to 1332 keV gamma radiation by soil samples varying in water content and density has been investigated. A useful empirical equation could be set up to describe the dependence of the mass attenuation coefficient upon photon energy for soil with a mean water content of 10%, with the results comparing well with data in the literature. The mean density of soil in the GDR was estimated at 1.6 g/cm 3 . This value was used to derive the linear attenuation coefficients, their range of variation being 10%. 7 figs., 5 tabs. (author)

  14. Logistic regression models

    CERN Document Server

    Hilbe, Joseph M

    2009-01-01

    This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

  15. Testing the equality of nonparametric regression curves based on ...

    African Journals Online (AJOL)

    Abstract. In this work we propose a new methodology for the comparison of two regression functions f1 and f2 in the case of homoscedastic error structure and a fixed design. Our approach is based on the empirical Fourier coefficients of the regression functions f1 and f2 respectively. As our main results we obtain the ...

  16. Implicit collinearity effect in linear regression: Application to basal ...

    African Journals Online (AJOL)

    Collinearity of predictor variables is a severe problem in the least square regression analysis. It contributes to the instability of regression coefficients and leads to a wrong prediction accuracy. Despite these problems, studies are conducted with a large number of observed and derived variables linked with a response ...

  17. Changes in persistence, spurious regressions and the Fisher hypothesis

    DEFF Research Database (Denmark)

    Kruse, Robinson; Ventosa-Santaulària, Daniel; Noriega, Antonio E.

    Declining inflation persistence has been documented in numerous studies. When such series are analyzed in a regression framework in conjunction with other persistent time series, spurious regressions are likely to occur. We propose to use the coefficient of determination R2 as a test statistic to...

  18. Steganalysis using logistic regression

    Science.gov (United States)

    Lubenko, Ivans; Ker, Andrew D.

    2011-02-01

    We advocate Logistic Regression (LR) as an alternative to the Support Vector Machine (SVM) classifiers commonly used in steganalysis. LR offers more information than traditional SVM methods - it estimates class probabilities as well as providing a simple classification - and can be adapted more easily and efficiently for multiclass problems. Like SVM, LR can be kernelised for nonlinear classification, and it shows comparable classification accuracy to SVM methods. This work is a case study, comparing accuracy and speed of SVM and LR classifiers in detection of LSB Matching and other related spatial-domain image steganography, through the state-of-art 686-dimensional SPAM feature set, in three image sets.

  19. SEPARATION PHENOMENA LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Ikaro Daniel de Carvalho Barreto

    2014-03-01

    Full Text Available This paper proposes an application of concepts about the maximum likelihood estimation of the binomial logistic regression model to the separation phenomena. It generates bias in the estimation and provides different interpretations of the estimates on the different statistical tests (Wald, Likelihood Ratio and Score and provides different estimates on the different iterative methods (Newton-Raphson and Fisher Score. It also presents an example that demonstrates the direct implications for the validation of the model and validation of variables, the implications for estimates of odds ratios and confidence intervals, generated from the Wald statistics. Furthermore, we present, briefly, the Firth correction to circumvent the phenomena of separation.

  20. riskRegression

    DEFF Research Database (Denmark)

    Ozenne, Brice; Sørensen, Anne Lyngholm; Scheike, Thomas

    2017-01-01

    In the presence of competing risks a prediction of the time-dynamic absolute risk of an event can be based on cause-specific Cox regression models for the event and the competing risks (Benichou and Gail, 1990). We present computationally fast and memory optimized C++ functions with an R interface......-product we obtain fast access to the baseline hazards (compared to survival::basehaz()) and predictions of survival probabilities, their confidence intervals and confidence bands. Confidence intervals and confidence bands are based on point-wise asymptotic expansions of the corresponding statistical...

  1. Adaptive metric kernel regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    2000-01-01

    Kernel smoothing is a widely used non-parametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this contribution, we propose an algorithm that adapts the input metric used in multivariate...... regression by minimising a cross-validation estimate of the generalisation error. This allows to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms...

  2. Adaptive Metric Kernel Regression

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Kernel smoothing is a widely used nonparametric pattern recognition technique. By nature, it suffers from the curse of dimensionality and is usually difficult to apply to high input dimensions. In this paper, we propose an algorithm that adapts the input metric used in multivariate regression...... by minimising a cross-validation estimate of the generalisation error. This allows one to automatically adjust the importance of different dimensions. The improvement in terms of modelling performance is illustrated on a variable selection task where the adaptive metric kernel clearly outperforms the standard...

  3. The Truth About Ballistic Coefficients

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2007-01-01

    The ballistic coefficient of a bullet describes how it slows in flight due to air resistance. This article presents experimental determinations of ballistic coefficients showing that the majority of bullets tested have their previously published ballistic coefficients exaggerated from 5-25% by the bullet manufacturers. These exaggerated ballistic coefficients lead to inaccurate predictions of long range bullet drop, retained energy and wind drift.

  4. On Solving Lq-Penalized Regressions

    Directory of Open Access Journals (Sweden)

    Tracy Zhou Wu

    2007-01-01

    Full Text Available Lq-penalized regression arises in multidimensional statistical modelling where all or part of the regression coefficients are penalized to achieve both accuracy and parsimony of statistical models. There is often substantial computational difficulty except for the quadratic penalty case. The difficulty is partly due to the nonsmoothness of the objective function inherited from the use of the absolute value. We propose a new solution method for the general Lq-penalized regression problem based on space transformation and thus efficient optimization algorithms. The new method has immediate applications in statistics, notably in penalized spline smoothing problems. In particular, the LASSO problem is shown to be polynomial time solvable. Numerical studies show promise of our approach.

  5. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Doppler coefficient measurements in Zebra Core 5

    International Nuclear Information System (INIS)

    Baker, A.R.; Wheeler, R.C.

    1965-11-01

    Measurements using a central hot loop in Zebra Core 5 are described. Results are given for the Doppler coefficients found in a number of assemblies with PuO 2 and 16% PuO 2 /84% depleted UO 2 pins, loaded with different combinations of steel, sodium or void pins. The mixed oxide results are in general about 20% more negative than was calculated using the FD2 data set, but agreement is good if the plutonium contributions in the calculations are omitted. The small positive Doppler coefficient calculated for Pu239 was not observed, and two measurements indicated instead a small negative effect. The Doppler effect in the mixed oxide systems was found to vary approximately as 1/T. The results from the empty loop and non-fissile assemblies indicate either a small negative Doppler effect in steel or alternatively the presence of an unexplained expansion effect. (author)

  7. Aid and growth regressions

    DEFF Research Database (Denmark)

    Hansen, Henrik; Tarp, Finn

    2001-01-01

    This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy....... investment. We conclude by stressing the need for more theoretical work before this kind of cross-country regressions are used for policy purposes.......This paper examines the relationship between foreign aid and growth in real GDP per capita as it emerges from simple augmentations of popular cross country growth specifications. It is shown that aid in all likelihood increases the growth rate, and this result is not conditional on ‘good’ policy...

  8. The microcomputer scientific software series 2: general linear model--regression.

    Science.gov (United States)

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  9. Quantum Non-Markovian Langevin Equations and Transport Coefficients

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.

    2005-01-01

    Quantum diffusion equations featuring explicitly time-dependent transport coefficients are derived from generalized non-Markovian Langevin equations. Generalized fluctuation-dissipation relations and analytic expressions for calculating the friction and diffusion coefficients in nuclear processes are obtained. The asymptotic behavior of the transport coefficients and correlation functions for a damped harmonic oscillator that is linearly coupled in momentum to a heat bath is studied. The coupling to a heat bath in momentum is responsible for the appearance of the diffusion coefficient in coordinate. The problem of regression of correlations in quantum dissipative systems is analyzed

  10. Canonical variate regression.

    Science.gov (United States)

    Luo, Chongliang; Liu, Jin; Dey, Dipak K; Chen, Kun

    2016-07-01

    In many fields, multi-view datasets, measuring multiple distinct but interrelated sets of characteristics on the same set of subjects, together with data on certain outcomes or phenotypes, are routinely collected. The objective in such a problem is often two-fold: both to explore the association structures of multiple sets of measurements and to develop a parsimonious model for predicting the future outcomes. We study a unified canonical variate regression framework to tackle the two problems simultaneously. The proposed criterion integrates multiple canonical correlation analysis with predictive modeling, balancing between the association strength of the canonical variates and their joint predictive power on the outcomes. Moreover, the proposed criterion seeks multiple sets of canonical variates simultaneously to enable the examination of their joint effects on the outcomes, and is able to handle multivariate and non-Gaussian outcomes. An efficient algorithm based on variable splitting and Lagrangian multipliers is proposed. Simulation studies show the superior performance of the proposed approach. We demonstrate the effectiveness of the proposed approach in an [Formula: see text] intercross mice study and an alcohol dependence study. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. On the Kendall Correlation Coefficient

    OpenAIRE

    Stepanov, Alexei

    2015-01-01

    In the present paper, we first discuss the Kendall rank correlation coefficient. In continuous case, we define the Kendall rank correlation coefficient in terms of the concomitants of order statistics, find the expected value of the Kendall rank correlation coefficient and show that the later is free of n. We also prove that in continuous case the Kendall correlation coefficient converges in probability to its expected value. We then propose to consider the expected value of the Kendall rank ...

  12. Regression and regression analysis time series prediction modeling on climate data of quetta, pakistan

    International Nuclear Information System (INIS)

    Jafri, Y.Z.; Kamal, L.

    2007-01-01

    Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)

  13. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-01

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  14. Fixed kernel regression for voltammogram feature extraction

    International Nuclear Information System (INIS)

    Acevedo Rodriguez, F J; López-Sastre, R J; Gil-Jiménez, P; Maldonado Bascón, S; Ruiz-Reyes, N

    2009-01-01

    Cyclic voltammetry is an electroanalytical technique for obtaining information about substances under analysis without the need for complex flow systems. However, classifying the information in voltammograms obtained using this technique is difficult. In this paper, we propose the use of fixed kernel regression as a method for extracting features from these voltammograms, reducing the information to a few coefficients. The proposed approach has been applied to a wine classification problem with accuracy rates of over 98%. Although the method is described here for extracting voltammogram information, it can be used for other types of signals

  15. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-06

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  16. Polynomial regression analysis and significance test of the regression function

    International Nuclear Information System (INIS)

    Gao Zhengming; Zhao Juan; He Shengping

    2012-01-01

    In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)

  17. Assessing risk factors for periodontitis using regression

    Science.gov (United States)

    Lobo Pereira, J. A.; Ferreira, Maria Cristina; Oliveira, Teresa

    2013-10-01

    Multivariate statistical analysis is indispensable to assess the associations and interactions between different factors and the risk of periodontitis. Among others, regression analysis is a statistical technique widely used in healthcare to investigate and model the relationship between variables. In our work we study the impact of socio-demographic, medical and behavioral factors on periodontal health. Using regression, linear and logistic models, we can assess the relevance, as risk factors for periodontitis disease, of the following independent variables (IVs): Age, Gender, Diabetic Status, Education, Smoking status and Plaque Index. The multiple linear regression analysis model was built to evaluate the influence of IVs on mean Attachment Loss (AL). Thus, the regression coefficients along with respective p-values will be obtained as well as the respective p-values from the significance tests. The classification of a case (individual) adopted in the logistic model was the extent of the destruction of periodontal tissues defined by an Attachment Loss greater than or equal to 4 mm in 25% (AL≥4mm/≥25%) of sites surveyed. The association measures include the Odds Ratios together with the correspondent 95% confidence intervals.

  18. Combining Alphas via Bounded Regression

    Directory of Open Access Journals (Sweden)

    Zura Kakushadze

    2015-11-01

    Full Text Available We give an explicit algorithm and source code for combining alpha streams via bounded regression. In practical applications, typically, there is insufficient history to compute a sample covariance matrix (SCM for a large number of alphas. To compute alpha allocation weights, one then resorts to (weighted regression over SCM principal components. Regression often produces alpha weights with insufficient diversification and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds on alpha weights within the regression procedure. Bounded regression can also be applied to stock and other asset portfolio construction. We discuss illustrative examples.

  19. Regression in autistic spectrum disorders.

    Science.gov (United States)

    Stefanatos, Gerry A

    2008-12-01

    A significant proportion of children diagnosed with Autistic Spectrum Disorder experience a developmental regression characterized by a loss of previously-acquired skills. This may involve a loss of speech or social responsitivity, but often entails both. This paper critically reviews the phenomena of regression in autistic spectrum disorders, highlighting the characteristics of regression, age of onset, temporal course, and long-term outcome. Important considerations for diagnosis are discussed and multiple etiological factors currently hypothesized to underlie the phenomenon are reviewed. It is argued that regressive autistic spectrum disorders can be conceptualized on a spectrum with other regressive disorders that may share common pathophysiological features. The implications of this viewpoint are discussed.

  20. Advanced statistics: linear regression, part I: simple linear regression.

    Science.gov (United States)

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  1. Analysis of quantile regression as alternative to ordinary least squares

    OpenAIRE

    Ibrahim Abdullahi; Abubakar Yahaya

    2015-01-01

    In this article, an alternative to ordinary least squares (OLS) regression based on analytical solution in the Statgraphics software is considered, and this alternative is no other than quantile regression (QR) model. We also present goodness of fit statistic as well as approximate distributions of the associated test statistics for the parameters. Furthermore, we suggest a goodness of fit statistic called the least absolute deviation (LAD) coefficient of determination. The procedure is well ...

  2. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

  3. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    Science.gov (United States)

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  4. Coefficient estimates of negative powers and inverse coefficients for ...

    Indian Academy of Sciences (India)

    and the inequality is sharp for the inverse of the Koebe function k(z) = z/(1 − z)2. An alternative approach to the inverse coefficient problem for functions in the class S has been investigated by Schaeffer and Spencer [27] and FitzGerald [6]. Although, the inverse coefficient problem for the class S has been completely solved ...

  5. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  6. Estimation of octanol/water partition coefficients using LSER parameters

    Science.gov (United States)

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  7. Moderation analysis using a two-level regression model.

    Science.gov (United States)

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  8. Biostatistics Series Module 6: Correlation and Linear Regression.

    Science.gov (United States)

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.

  9. Linear regression in astronomy. II

    Science.gov (United States)

    Feigelson, Eric D.; Babu, Gutti J.

    1992-01-01

    A wide variety of least-squares linear regression procedures used in observational astronomy, particularly investigations of the cosmic distance scale, are presented and discussed. The classes of linear models considered are (1) unweighted regression lines, with bootstrap and jackknife resampling; (2) regression solutions when measurement error, in one or both variables, dominates the scatter; (3) methods to apply a calibration line to new data; (4) truncated regression models, which apply to flux-limited data sets; and (5) censored regression models, which apply when nondetections are present. For the calibration problem we develop two new procedures: a formula for the intercept offset between two parallel data sets, which propagates slope errors from one regression to the other; and a generalization of the Working-Hotelling confidence bands to nonstandard least-squares lines. They can provide improved error analysis for Faber-Jackson, Tully-Fisher, and similar cosmic distance scale relations.

  10. Time-adaptive quantile regression

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Nielsen, Henrik Aalborg; Madsen, Henrik

    2008-01-01

    and an updating procedure are combined into a new algorithm for time-adaptive quantile regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested algorithm is tested against a static quantile regression model on a data set with wind power......An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the simplex algorithm. The simplex method...... production, where the models combine splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the performance parameters considered....

  11. Quantile regression theory and applications

    CERN Document Server

    Davino, Cristina; Vistocco, Domenico

    2013-01-01

    A guide to the implementation and interpretation of Quantile Regression models This book explores the theory and numerous applications of quantile regression, offering empirical data analysis as well as the software tools to implement the methods. The main focus of this book is to provide the reader with a comprehensivedescription of the main issues concerning quantile regression; these include basic modeling, geometrical interpretation, estimation and inference for quantile regression, as well as issues on validity of the model, diagnostic tools. Each methodological aspect is explored and

  12. Linear regression and the normality assumption.

    Science.gov (United States)

    Schmidt, Amand F; Finan, Chris

    2017-12-16

    Researchers often perform arbitrary outcome transformations to fulfill the normality assumption of a linear regression model. This commentary explains and illustrates that in large data settings, such transformations are often unnecessary, and worse may bias model estimates. Linear regression assumptions are illustrated using simulated data and an empirical example on the relation between time since type 2 diabetes diagnosis and glycated hemoglobin levels. Simulation results were evaluated on coverage; i.e., the number of times the 95% confidence interval included the true slope coefficient. Although outcome transformations bias point estimates, violations of the normality assumption in linear regression analyses do not. The normality assumption is necessary to unbiasedly estimate standard errors, and hence confidence intervals and P-values. However, in large sample sizes (e.g., where the number of observations per variable is >10) violations of this normality assumption often do not noticeably impact results. Contrary to this, assumptions on, the parametric model, absence of extreme observations, homoscedasticity, and independency of the errors, remain influential even in large sample size settings. Given that modern healthcare research typically includes thousands of subjects focusing on the normality assumption is often unnecessary, does not guarantee valid results, and worse may bias estimates due to the practice of outcome transformations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  14. Geographically weighted regression model on poverty indicator

    Science.gov (United States)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  15. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  16. Varying coefficients model with measurement error.

    Science.gov (United States)

    Li, Liang; Greene, Tom

    2008-06-01

    We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.

  17. Application of random regression models to the genetic evaluation ...

    African Journals Online (AJOL)

    The model included fixed regression on AM (range from 30 to 138 mo) and the effect of herd-measurement date concatenation. Random parts of the model were RRM coefficients for additive and permanent environmental effects, while residual effects were modelled to account for heterogeneity of variance by AY. Estimates ...

  18. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin

    2017-01-19

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  19. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin; Zhou, Yuejin; Tong, Tiejun

    2017-01-01

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  20. Logistic Regression: Concept and Application

    Science.gov (United States)

    Cokluk, Omay

    2010-01-01

    The main focus of logistic regression analysis is classification of individuals in different groups. The aim of the present study is to explain basic concepts and processes of binary logistic regression analysis intended to determine the combination of independent variables which best explain the membership in certain groups called dichotomous…

  1. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  2. Background stratified Poisson regression analysis of cohort data.

    Science.gov (United States)

    Richardson, David B; Langholz, Bryan

    2012-03-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models.

  3. Background stratified Poisson regression analysis of cohort data

    International Nuclear Information System (INIS)

    Richardson, David B.; Langholz, Bryan

    2012-01-01

    Background stratified Poisson regression is an approach that has been used in the analysis of data derived from a variety of epidemiologically important studies of radiation-exposed populations, including uranium miners, nuclear industry workers, and atomic bomb survivors. We describe a novel approach to fit Poisson regression models that adjust for a set of covariates through background stratification while directly estimating the radiation-disease association of primary interest. The approach makes use of an expression for the Poisson likelihood that treats the coefficients for stratum-specific indicator variables as 'nuisance' variables and avoids the need to explicitly estimate the coefficients for these stratum-specific parameters. Log-linear models, as well as other general relative rate models, are accommodated. This approach is illustrated using data from the Life Span Study of Japanese atomic bomb survivors and data from a study of underground uranium miners. The point estimate and confidence interval obtained from this 'conditional' regression approach are identical to the values obtained using unconditional Poisson regression with model terms for each background stratum. Moreover, it is shown that the proposed approach allows estimation of background stratified Poisson regression models of non-standard form, such as models that parameterize latency effects, as well as regression models in which the number of strata is large, thereby overcoming the limitations of previously available statistical software for fitting background stratified Poisson regression models. (orig.)

  4. Fungible weights in logistic regression.

    Science.gov (United States)

    Jones, Jeff A; Waller, Niels G

    2016-06-01

    In this article we develop methods for assessing parameter sensitivity in logistic regression models. To set the stage for this work, we first review Waller's (2008) equations for computing fungible weights in linear regression. Next, we describe 2 methods for computing fungible weights in logistic regression. To demonstrate the utility of these methods, we compute fungible logistic regression weights using data from the Centers for Disease Control and Prevention's (2010) Youth Risk Behavior Surveillance Survey, and we illustrate how these alternate weights can be used to evaluate parameter sensitivity. To make our work accessible to the research community, we provide R code (R Core Team, 2015) that will generate both kinds of fungible logistic regression weights. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science

    International Nuclear Information System (INIS)

    Leng Ling; Zhang Tianyi; Kleinman, Lawrence; Zhu Wei

    2007-01-01

    Regression analysis, especially the ordinary least squares method which assumes that errors are confined to the dependent variable, has seen a fair share of its applications in aerosol science. The ordinary least squares approach, however, could be problematic due to the fact that atmospheric data often does not lend itself to calling one variable independent and the other dependent. Errors often exist for both measurements. In this work, we examine two regression approaches available to accommodate this situation. They are orthogonal regression and geometric mean regression. Comparisons are made theoretically as well as numerically through an aerosol study examining whether the ratio of organic aerosol to CO would change with age

  6. Tumor regression patterns in retinoblastoma

    International Nuclear Information System (INIS)

    Zafar, S.N.; Siddique, S.N.; Zaheer, N.

    2016-01-01

    To observe the types of tumor regression after treatment, and identify the common pattern of regression in our patients. Study Design: Descriptive study. Place and Duration of Study: Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Trust Eye Hospital, Rawalpindi, Pakistan, from October 2011 to October 2014. Methodology: Children with unilateral and bilateral retinoblastoma were included in the study. Patients were referred to Pakistan Institute of Medical Sciences, Islamabad, for chemotherapy. After every cycle of chemotherapy, dilated funds examination under anesthesia was performed to record response of the treatment. Regression patterns were recorded on RetCam II. Results: Seventy-four tumors were included in the study. Out of 74 tumors, 3 were ICRB group A tumors, 43 were ICRB group B tumors, 14 tumors belonged to ICRB group C, and remaining 14 were ICRB group D tumors. Type IV regression was seen in 39.1% (n=29) tumors, type II in 29.7% (n=22), type III in 25.6% (n=19), and type I in 5.4% (n=4). All group A tumors (100%) showed type IV regression. Seventeen (39.5%) group B tumors showed type IV regression. In group C, 5 tumors (35.7%) showed type II regression and 5 tumors (35.7%) showed type IV regression. In group D, 6 tumors (42.9%) regressed to type II non-calcified remnants. Conclusion: The response and success of the focal and systemic treatment, as judged by the appearance of different patterns of tumor regression, varies with the ICRB grouping of the tumor. (author)

  7. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation

    Science.gov (United States)

    Nishidate, Izumi; Wiswadarma, Aditya; Hase, Yota; Tanaka, Noriyuki; Maeda, Takaaki; Niizeki, Kyuichi; Aizu, Yoshihisa

    2011-08-01

    In order to visualize melanin and blood concentrations and oxygen saturation in human skin tissue, a simple imaging technique based on multispectral diffuse reflectance images acquired at six wavelengths (500, 520, 540, 560, 580 and 600nm) was developed. The technique utilizes multiple regression analysis aided by Monte Carlo simulation for diffuse reflectance spectra. Using the absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are deduced numerically in advance, while oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments with human skin of the human hand during upper limb occlusion and of the inner forearm exposed to UV irradiation demonstrated the ability of the method to evaluate physiological reactions of human skin tissue.

  8. Probabilistic optimization of safety coefficients

    International Nuclear Information System (INIS)

    Marques, M.; Devictor, N.; Magistris, F. de

    1999-01-01

    This article describes a reliability-based method for the optimization of safety coefficients defined and used in design codes. The purpose of the optimization is to determine the partial safety coefficients which minimize an objective function for sets of components and loading situations covered by a design rule. This objective function is a sum of distances between the reliability of the components designed using the safety coefficients and a target reliability. The advantage of this method is shown on the examples of the reactor vessel, a vapour pipe and the safety injection circuit. (authors)

  9. Recursive least squares method of regression coefficients estimation as a special case of Kalman filter

    Science.gov (United States)

    Borodachev, S. M.

    2016-06-01

    The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.

  10. Deriving proper uniform priors for regression coefficients, Parts I, II, and III

    NARCIS (Netherlands)

    van Erp, H.R.N.; Linger, R.O.; van Gelder, P.H.A.J.M.

    2017-01-01

    It is a relatively well-known fact that in problems of Bayesian model selection, improper priors should, in general, be avoided. In this paper we will derive and discuss a collection of four proper uniform priors which lie on an ascending scale of informativeness. It will turn out that these

  11. Regression to Causality : Regression-style presentation influences causal attribution

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... more likely. Our experiment drew on a sample of 235 university students from three different social science degree programs (political science, sociology and economics), all of whom had received substantial training in statistics. The subjects were asked to compare and evaluate the validity...

  12. Regression analysis with categorized regression calibrated exposure: some interesting findings

    Directory of Open Access Journals (Sweden)

    Hjartåker Anette

    2006-07-01

    Full Text Available Abstract Background Regression calibration as a method for handling measurement error is becoming increasingly well-known and used in epidemiologic research. However, the standard version of the method is not appropriate for exposure analyzed on a categorical (e.g. quintile scale, an approach commonly used in epidemiologic studies. A tempting solution could then be to use the predicted continuous exposure obtained through the regression calibration method and treat it as an approximation to the true exposure, that is, include the categorized calibrated exposure in the main regression analysis. Methods We use semi-analytical calculations and simulations to evaluate the performance of the proposed approach compared to the naive approach of not correcting for measurement error, in situations where analyses are performed on quintile scale and when incorporating the original scale into the categorical variables, respectively. We also present analyses of real data, containing measures of folate intake and depression, from the Norwegian Women and Cancer study (NOWAC. Results In cases where extra information is available through replicated measurements and not validation data, regression calibration does not maintain important qualities of the true exposure distribution, thus estimates of variance and percentiles can be severely biased. We show that the outlined approach maintains much, in some cases all, of the misclassification found in the observed exposure. For that reason, regression analysis with the corrected variable included on a categorical scale is still biased. In some cases the corrected estimates are analytically equal to those obtained by the naive approach. Regression calibration is however vastly superior to the naive method when applying the medians of each category in the analysis. Conclusion Regression calibration in its most well-known form is not appropriate for measurement error correction when the exposure is analyzed on a

  13. Photon mass attenuation coefficients, effective atomic numbers and ...

    Indian Academy of Sciences (India)

    of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon ..... This photon build-up is a function of thickness and atomic number of the sample and also the incident photon energy, which combine to ...

  14. On the misinterpretation of the correlation coefficient in pharmaceutical sciences

    DEFF Research Database (Denmark)

    Sonnergaard, Jørn

    2006-01-01

    The correlation coefficient is often used and more often misused as a universal parameter expressing the quality in linear regression analysis. The popularity of this dimensionless quantity is evident as it is easy to communicate and considered to be unproblematic to comprehend. However, illustra...

  15. Logic regression and its extensions.

    Science.gov (United States)

    Schwender, Holger; Ruczinski, Ingo

    2010-01-01

    Logic regression is an adaptive classification and regression procedure, initially developed to reveal interacting single nucleotide polymorphisms (SNPs) in genetic association studies. In general, this approach can be used in any setting with binary predictors, when the interaction of these covariates is of primary interest. Logic regression searches for Boolean (logic) combinations of binary variables that best explain the variability in the outcome variable, and thus, reveals variables and interactions that are associated with the response and/or have predictive capabilities. The logic expressions are embedded in a generalized linear regression framework, and thus, logic regression can handle a variety of outcome types, such as binary responses in case-control studies, numeric responses, and time-to-event data. In this chapter, we provide an introduction to the logic regression methodology, list some applications in public health and medicine, and summarize some of the direct extensions and modifications of logic regression that have been proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav; Petrova, Guergana

    2009-01-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node

  17. Diffusion coefficient for anomalous transport

    International Nuclear Information System (INIS)

    1986-01-01

    A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport

  18. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  19. Properties of Traffic Risk Coefficient

    Science.gov (United States)

    Tang, Tie-Qiao; Huang, Hai-Jun; Shang, Hua-Yan; Xue, Yu

    2009-10-01

    We use the model with the consideration of the traffic interruption probability (Physica A 387(2008)6845) to study the relationship between the traffic risk coefficient and the traffic interruption probability. The analytical and numerical results show that the traffic interruption probability will reduce the traffic risk coefficient and that the reduction is related to the density, which shows that this model can improve traffic security.

  20. BANK FAILURE PREDICTION WITH LOGISTIC REGRESSION

    Directory of Open Access Journals (Sweden)

    Taha Zaghdoudi

    2013-04-01

    Full Text Available In recent years the economic and financial world is shaken by a wave of financial crisis and resulted in violent bank fairly huge losses. Several authors have focused on the study of the crises in order to develop an early warning model. It is in the same path that our work takes its inspiration. Indeed, we have tried to develop a predictive model of Tunisian bank failures with the contribution of the binary logistic regression method. The specificity of our prediction model is that it takes into account microeconomic indicators of bank failures. The results obtained using our provisional model show that a bank's ability to repay its debt, the coefficient of banking operations, bank profitability per employee and leverage financial ratio has a negative impact on the probability of failure.

  1. Systematic Risk on Istanbul Stock Exchange: Traditional Beta Coefficient Versus Downside Beta Coefficient

    Directory of Open Access Journals (Sweden)

    Gülfen TUNA

    2013-03-01

    Full Text Available The aim of this study is to test the validity of Downside Capital Asset Pricing Model (D-CAPM on the ISE. At the same time, the explanatory power of CAPM's traditional beta and D-CAPM's downside beta on the changes in the average return values are examined comparatively. In this context, the monthly data for seventy three stocks that are continuously traded on the ISE for the period 1991-2009 is used. Regression analysis is applied in this study. The research results have shown that D-CAPM is valid on the ISE. In addition, it is obtained that the power of downside beta coefficient is higher than traditional beta coefficient on explaining the return changes. Therefore, it can be said that the downside beta is superior to traditional beta in the ISE for chosen period.

  2. Abstract Expression Grammar Symbolic Regression

    Science.gov (United States)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  3. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying; Carroll, Raymond J.

    2009-01-01

    . The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a

  4. From Rasch scores to regression

    DEFF Research Database (Denmark)

    Christensen, Karl Bang

    2006-01-01

    Rasch models provide a framework for measurement and modelling latent variables. Having measured a latent variable in a population a comparison of groups will often be of interest. For this purpose the use of observed raw scores will often be inadequate because these lack interval scale propertie....... This paper compares two approaches to group comparison: linear regression models using estimated person locations as outcome variables and latent regression models based on the distribution of the score....

  5. Testing Heteroscedasticity in Robust Regression

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2011-01-01

    Roč. 1, č. 4 (2011), s. 25-28 ISSN 2045-3345 Grant - others:GA ČR(CZ) GA402/09/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust regression * heteroscedasticity * regression quantiles * diagnostics Subject RIV: BB - Applied Statistics , Operational Research http://www.researchjournals.co.uk/documents/Vol4/06%20Kalina.pdf

  6. Regression methods for medical research

    CERN Document Server

    Tai, Bee Choo

    2013-01-01

    Regression Methods for Medical Research provides medical researchers with the skills they need to critically read and interpret research using more advanced statistical methods. The statistical requirements of interpreting and publishing in medical journals, together with rapid changes in science and technology, increasingly demands an understanding of more complex and sophisticated analytic procedures.The text explains the application of statistical models to a wide variety of practical medical investigative studies and clinical trials. Regression methods are used to appropriately answer the

  7. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  8. Clustering Coefficients for Correlation Networks.

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  9. Clustering Coefficients for Correlation Networks

    Directory of Open Access Journals (Sweden)

    Naoki Masuda

    2018-03-01

    Full Text Available Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients

  10. Clustering Coefficients for Correlation Networks

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  11. Redox Couples with Unequal Diffusion Coefficients: Effect on Redox Cycling

    NARCIS (Netherlands)

    Mampallil Augustine, Dileep; Mathwig, Klaus; Kang, Shuo; Lemay, Serge Joseph Guy

    2013-01-01

    Redox cycling between two electrodes separated by a narrow gap allows dramatic amplification of the faradaic current. Unlike conventional electrochemistry at a single electrode, however, the mass-transport-limited current is controlled by the diffusion coefficient of both the reduced and oxidized

  12. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  13. Regression analysis of sparse asynchronous longitudinal data.

    Science.gov (United States)

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

  14. Path coefficient analysis of zinc dynamics in varying soil environment

    International Nuclear Information System (INIS)

    Rattan, R.K.; Phung, C.V.; Singhal, S.K.; Deb, D.L.; Singh, A.K.

    1994-01-01

    Influence of soil properties on labile zinc, as measured by diethylene-triamine pentaacetic acid (DTPA) and zinc-65, and self-diffusion coefficients of zinc was assessed on 22 surface soil samples varying widely in their characteristics following linear regression and path coefficient analysis techniques. DTPA extractable zinc could be predicted from organic carbon status and pH of the soil with a highly significant coefficient of determination (R 2 =0.84 ** ). Ninety seven per cent variation in isotopically exchangeable zinc was explained by pH, clay content and cation exchange capacity (CEC) of soil. The self-diffusion coefficients (DaZn and DpZn) and buffer power of zinc exhibited exponential relationship with soil properties, pH being the most dominant one. Soil properties like organic matter, clay content etc. exhibited indirect effects on zinc diffusion rates via pH only. (author). 13 refs., 6 tabs

  15. Power coefficient anomaly in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H

    1980-12-15

    Operation of the JOYO experimental fast reactor with the MK-I core has been divided into two phases: (1) 50 MWt power ascension and operation; and (2) 75 MWt power ascension and operation. The 50 MWt power-up tests were conducted in August 1978. In these tests, the measured reactivity loss due to power increases from 15 MWt to 50 MWt was 0.28% ..delta.. K/K, and agreed well with the predicted value of 0.27% ..delta.. K/K. The 75 MWt power ascension tests were conducted in July-August 1979. In the process of the first power increase above 50 MWt to 65 MWt conducted on July 11, 1979, an anomalously large negative power coefficient was observed. The value was about twice the power coefficient values measured in the tests below 50 MW. In order to reproduce the anomaly, the reactor power was decreased and again increased up to the maximum power of 65 MWt. However, the large negative power coefficient was not observed at this time. In the succeeding power increase from 65 MWt to 75 MWt, a similar anomalous power coefficient was again observed. This anomaly disappeared in the subsequent power ascensions to 75 MWt, and the magnitude of the power coefficient gradually decreased with power cycles above the 50 MWt level.

  16. An improved multiple linear regression and data analysis computer program package

    Science.gov (United States)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  17. Logistic regression for dichotomized counts.

    Science.gov (United States)

    Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W

    2016-12-01

    Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.

  18. Semisupervised Clustering by Iterative Partition and Regression with Neuroscience Applications

    Directory of Open Access Journals (Sweden)

    Guoqi Qian

    2016-01-01

    Full Text Available Regression clustering is a mixture of unsupervised and supervised statistical learning and data mining method which is found in a wide range of applications including artificial intelligence and neuroscience. It performs unsupervised learning when it clusters the data according to their respective unobserved regression hyperplanes. The method also performs supervised learning when it fits regression hyperplanes to the corresponding data clusters. Applying regression clustering in practice requires means of determining the underlying number of clusters in the data, finding the cluster label of each data point, and estimating the regression coefficients of the model. In this paper, we review the estimation and selection issues in regression clustering with regard to the least squares and robust statistical methods. We also provide a model selection based technique to determine the number of regression clusters underlying the data. We further develop a computing procedure for regression clustering estimation and selection. Finally, simulation studies are presented for assessing the procedure, together with analyzing a real data set on RGB cell marking in neuroscience to illustrate and interpret the method.

  19. Analysis of internal conversion coefficients

    International Nuclear Information System (INIS)

    Coursol, N.; Gorozhankin, V.M.; Yakushev, E.A.; Briancon, C.; Vylov, Ts.

    2000-01-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z=30 to Z=103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10≤Z≤104, Special Report of Leningrad Nuclear Physics Institute; Roesel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac-Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations

  20. Algebraic polynomials with random coefficients

    Directory of Open Access Journals (Sweden)

    K. Farahmand

    2002-01-01

    Full Text Available This paper provides an asymptotic value for the mathematical expected number of points of inflections of a random polynomial of the form a0(ω+a1(ω(n11/2x+a2(ω(n21/2x2+…an(ω(nn1/2xn when n is large. The coefficients {aj(w}j=0n, w∈Ω are assumed to be a sequence of independent normally distributed random variables with means zero and variance one, each defined on a fixed probability space (A,Ω,Pr. A special case of dependent coefficients is also studied.

  1. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    members, this thesis investigates a growing political trend and ideological discourse in the Arab world that I have called The New Regressive Left. On the premise that a media outlet can function as a forum for ideology production, the thesis argues that an analysis of this material can help to trace...... the contexture of The New Regressive Left. If the first part of the thesis lays out the theoretical approach and draws the contextual framework, through an exploration of the surrounding Arab media-and ideoscapes, the second part is an analytical investigation of the discourse that permeates the programmes aired...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...

  2. Research and analyze of physical health using multiple regression analysis

    Directory of Open Access Journals (Sweden)

    T. S. Kyi

    2014-01-01

    Full Text Available This paper represents the research which is trying to create a mathematical model of the "healthy people" using the method of regression analysis. The factors are the physical parameters of the person (such as heart rate, lung capacity, blood pressure, breath holding, weight height coefficient, flexibility of the spine, muscles of the shoulder belt, abdominal muscles, squatting, etc.., and the response variable is an indicator of physical working capacity. After performing multiple regression analysis, obtained useful multiple regression models that can predict the physical performance of boys the aged of fourteen to seventeen years. This paper represents the development of regression model for the sixteen year old boys and analyzed results.

  3. A Matlab program for stepwise regression

    Directory of Open Access Journals (Sweden)

    Yanhong Qi

    2016-03-01

    Full Text Available The stepwise linear regression is a multi-variable regression for identifying statistically significant variables in the linear regression equation. In present study, we presented the Matlab program of stepwise regression.

  4. Regression filter for signal resolution

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-01-01

    The problem considered is that of resolving a measured pulse height spectrum of a material mixture, e.g. gamma ray spectrum, Raman spectrum, into a weighed sum of the spectra of the individual constituents. The model on which the analytical formulation is based is described. The problem reduces to that of a multiple linear regression. A stepwise linear regression procedure was constructed. The efficiency of this method was then tested by transforming the procedure in a computer programme which was used to unfold test spectra obtained by mixing some spectra, from a library of arbitrary chosen spectra, and adding a noise component. (U.K.)

  5. Nonparametric Mixture of Regression Models.

    Science.gov (United States)

    Huang, Mian; Li, Runze; Wang, Shaoli

    2013-07-01

    Motivated by an analysis of US house price index data, we propose nonparametric finite mixture of regression models. We study the identifiability issue of the proposed models, and develop an estimation procedure by employing kernel regression. We further systematically study the sampling properties of the proposed estimators, and establish their asymptotic normality. A modified EM algorithm is proposed to carry out the estimation procedure. We show that our algorithm preserves the ascent property of the EM algorithm in an asymptotic sense. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed estimation procedure. An empirical analysis of the US house price index data is illustrated for the proposed methodology.

  6. Parameter Selection Method for Support Vector Regression Based on Adaptive Fusion of the Mixed Kernel Function

    Directory of Open Access Journals (Sweden)

    Hailun Wang

    2017-01-01

    Full Text Available Support vector regression algorithm is widely used in fault diagnosis of rolling bearing. A new model parameter selection method for support vector regression based on adaptive fusion of the mixed kernel function is proposed in this paper. We choose the mixed kernel function as the kernel function of support vector regression. The mixed kernel function of the fusion coefficients, kernel function parameters, and regression parameters are combined together as the parameters of the state vector. Thus, the model selection problem is transformed into a nonlinear system state estimation problem. We use a 5th-degree cubature Kalman filter to estimate the parameters. In this way, we realize the adaptive selection of mixed kernel function weighted coefficients and the kernel parameters, the regression parameters. Compared with a single kernel function, unscented Kalman filter (UKF support vector regression algorithms, and genetic algorithms, the decision regression function obtained by the proposed method has better generalization ability and higher prediction accuracy.

  7. Irrational "Coefficients" in Renaissance Algebra.

    Science.gov (United States)

    Oaks, Jeffrey A

    2017-06-01

    Argument From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply by x, for instance, the result was expressed as the rhetorical equivalent of . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or "number," of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, "cossic" algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.

  8. Integer Solutions of Binomial Coefficients

    Science.gov (United States)

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  9. Cactus: An Introduction to Regression

    Science.gov (United States)

    Hyde, Hartley

    2008-01-01

    When the author first used "VisiCalc," the author thought it a very useful tool when he had the formulas. But how could he design a spreadsheet if there was no known formula for the quantities he was trying to predict? A few months later, the author relates he learned to use multiple linear regression software and suddenly it all clicked into…

  10. Regression Models for Repairable Systems

    Czech Academy of Sciences Publication Activity Database

    Novák, Petr

    2015-01-01

    Roč. 17, č. 4 (2015), s. 963-972 ISSN 1387-5841 Institutional support: RVO:67985556 Keywords : Reliability analysis * Repair models * Regression Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.782, year: 2015 http://library.utia.cas.cz/separaty/2015/SI/novak-0450902.pdf

  11. Survival analysis II: Cox regression

    NARCIS (Netherlands)

    Stel, Vianda S.; Dekker, Friedo W.; Tripepi, Giovanni; Zoccali, Carmine; Jager, Kitty J.

    2011-01-01

    In contrast to the Kaplan-Meier method, Cox proportional hazards regression can provide an effect estimate by quantifying the difference in survival between patient groups and can adjust for confounding effects of other variables. The purpose of this article is to explain the basic concepts of the

  12. Kernel regression with functional response

    OpenAIRE

    Ferraty, Frédéric; Laksaci, Ali; Tadj, Amel; Vieu, Philippe

    2011-01-01

    We consider kernel regression estimate when both the response variable and the explanatory one are functional. The rates of uniform almost complete convergence are stated as function of the small ball probability of the predictor and as function of the entropy of the set on which uniformity is obtained.

  13. Determining Sample Size for Accurate Estimation of the Squared Multiple Correlation Coefficient.

    Science.gov (United States)

    Algina, James; Olejnik, Stephen

    2000-01-01

    Discusses determining sample size for estimation of the squared multiple correlation coefficient and presents regression equations that permit determination of the sample size for estimating this parameter for up to 20 predictor variables. (SLD)

  14. Simple and multiple linear regression: sample size considerations.

    Science.gov (United States)

    Hanley, James A

    2016-11-01

    The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Assessment of deforestation using regression; Hodnotenie odlesnenia s vyuzitim regresie

    Energy Technology Data Exchange (ETDEWEB)

    Juristova, J. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra kartografie, geoinformatiky a DPZ, 84215 Bratislava (Slovakia)

    2013-04-16

    This work is devoted to the evaluation of deforestation using regression methods through software Idrisi Taiga. Deforestation is evaluated by the method of logistic regression. The dependent variable has discrete values '0' and '1', indicating that the deforestation occurred or not. Independent variables have continuous values, expressing the distance from the edge of the deforested areas of forests from urban areas, the river and the road network. The results were also used in predicting the probability of deforestation in subsequent periods. The result is a map showing the output probability of deforestation for the periods 1990/2000 and 200/2006 in accordance with predetermined coefficients (values of independent variables). (authors)

  16. A Predictive Logistic Regression Model of World Conflict Using Open Source Data

    Science.gov (United States)

    2015-03-26

    No correlation between the error terms and the independent variables 9. Absence of perfect multicollinearity (Menard, 2001) When assumptions are...some of the variables before initial model building. Multicollinearity , or near-linear dependence among the variables will cause problems in the...model. High multicollinearity tends to produce unreasonably high logistic regression coefficients and can result in coefficients that are not

  17. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  18. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  19. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  20. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  1. Multivariate and semiparametric kernel regression

    OpenAIRE

    Härdle, Wolfgang; Müller, Marlene

    1997-01-01

    The paper gives an introduction to theory and application of multivariate and semiparametric kernel smoothing. Multivariate nonparametric density estimation is an often used pilot tool for examining the structure of data. Regression smoothing helps in investigating the association between covariates and responses. We concentrate on kernel smoothing using local polynomial fitting which includes the Nadaraya-Watson estimator. Some theory on the asymptotic behavior and bandwidth selection is pro...

  2. Regression algorithm for emotion detection

    OpenAIRE

    Berthelon , Franck; Sander , Peter

    2013-01-01

    International audience; We present here two components of a computational system for emotion detection. PEMs (Personalized Emotion Maps) store links between bodily expressions and emotion values, and are individually calibrated to capture each person's emotion profile. They are an implementation based on aspects of Scherer's theoretical complex system model of emotion~\\cite{scherer00, scherer09}. We also present a regression algorithm that determines a person's emotional feeling from sensor m...

  3. Directional quantile regression in R

    Czech Academy of Sciences Publication Activity Database

    Boček, Pavel; Šiman, Miroslav

    2017-01-01

    Roč. 53, č. 3 (2017), s. 480-492 ISSN 0023-5954 R&D Projects: GA ČR GA14-07234S Institutional support: RVO:67985556 Keywords : multivariate quantile * regression quantile * halfspace depth * depth contour Subject RIV: BD - Theory of Information OBOR OECD: Applied mathematics Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/SI/bocek-0476587.pdf

  4. Correlation, Regression, and Cointegration of Nonstationary Economic Time Series

    DEFF Research Database (Denmark)

    Johansen, Søren

    ), and Phillips (1986) found the limit distributions. We propose to distinguish between empirical and population correlation coefficients and show in a bivariate autoregressive model for nonstationary variables that the empirical correlation and regression coefficients do not converge to the relevant population...... values, due to the trending nature of the data. We conclude by giving a simple cointegration analysis of two interests. The analysis illustrates that much more insight can be gained about the dynamic behavior of the nonstationary variables then simply by calculating a correlation coefficient......Yule (1926) introduced the concept of spurious or nonsense correlation, and showed by simulation that for some nonstationary processes, that the empirical correlations seem not to converge in probability even if the processes were independent. This was later discussed by Granger and Newbold (1974...

  5. Advanced colorectal neoplasia risk stratification by penalized logistic regression.

    Science.gov (United States)

    Lin, Yunzhi; Yu, Menggang; Wang, Sijian; Chappell, Richard; Imperiale, Thomas F

    2016-08-01

    Colorectal cancer is the second leading cause of death from cancer in the United States. To facilitate the efficiency of colorectal cancer screening, there is a need to stratify risk for colorectal cancer among the 90% of US residents who are considered "average risk." In this article, we investigate such risk stratification rules for advanced colorectal neoplasia (colorectal cancer and advanced, precancerous polyps). We use a recently completed large cohort study of subjects who underwent a first screening colonoscopy. Logistic regression models have been used in the literature to estimate the risk of advanced colorectal neoplasia based on quantifiable risk factors. However, logistic regression may be prone to overfitting and instability in variable selection. Since most of the risk factors in our study have several categories, it was tempting to collapse these categories into fewer risk groups. We propose a penalized logistic regression method that automatically and simultaneously selects variables, groups categories, and estimates their coefficients by penalizing the [Formula: see text]-norm of both the coefficients and their differences. Hence, it encourages sparsity in the categories, i.e. grouping of the categories, and sparsity in the variables, i.e. variable selection. We apply the penalized logistic regression method to our data. The important variables are selected, with close categories simultaneously grouped, by penalized regression models with and without the interactions terms. The models are validated with 10-fold cross-validation. The receiver operating characteristic curves of the penalized regression models dominate the receiver operating characteristic curve of naive logistic regressions, indicating a superior discriminative performance. © The Author(s) 2013.

  6. Polylinear regression analysis in radiochemistry

    International Nuclear Information System (INIS)

    Kopyrin, A.A.; Terent'eva, T.N.; Khramov, N.N.

    1995-01-01

    A number of radiochemical problems have been formulated in the framework of polylinear regression analysis, which permits the use of conventional mathematical methods for their solution. The authors have considered features of the use of polylinear regression analysis for estimating the contributions of various sources to the atmospheric pollution, for studying irradiated nuclear fuel, for estimating concentrations from spectral data, for measuring neutron fields of a nuclear reactor, for estimating crystal lattice parameters from X-ray diffraction patterns, for interpreting data of X-ray fluorescence analysis, for estimating complex formation constants, and for analyzing results of radiometric measurements. The problem of estimating the target parameters can be incorrect at certain properties of the system under study. The authors showed the possibility of regularization by adding a fictitious set of data open-quotes obtainedclose quotes from the orthogonal design. To estimate only a part of the parameters under consideration, the authors used incomplete rank models. In this case, it is necessary to take into account the possibility of confounding estimates. An algorithm for evaluating the degree of confounding is presented which is realized using standard software or regression analysis

  7. Earning on Response Coefficient in Automobile and Go Public Companies

    Directory of Open Access Journals (Sweden)

    Lisdawati Arifin

    2017-09-01

    Full Text Available This study aims to analyze factors that influence earnings response coefficients (ERC, simultaneously and partially, composed of leverage, the systematic risk (beta, growth opportunities (market to book value ratio, and the size of the firm (firm size, selection of the sample in this study the author take 12 automakers and components that meet the criteria of completeness of the data from the year 2008 to 2012, entirely based on consideration of the following criteria: (1 the company's automotive and components are listed on the stock exchange, (2 have the financial statements years 2008-2012 (3 has a return data (closing price the first day after the date of issuance of the financial statements. This study uses secondary data applying multiple linear regression models to analyze and test the effect of independent variables on the dependent variable partially (t-test, simultaneous (f-test, and the goodness of fit (R-square on a research model. The result shows that leverage, beta, growth opportunities (market to book value ratio and size along with (simultaneously the effect on the dependent variable (dependent variable earnings response coefficients. Partially leverage negatively affect earnings response coefficients, partially beta negatively correlated earnings response coefficients, partially growth opportunities (market to book value ratio significant effect on earnings response coefficients, partially sized companies (firm size significantly influence earnings response coefficients.

  8. Gaussian Process Regression Model in Spatial Logistic Regression

    Science.gov (United States)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  9. Far infrared extinction coefficients of minerals of interest for astronomical observations

    International Nuclear Information System (INIS)

    Hasegawa, H.

    1984-01-01

    Far infrared extinction coefficients of mineral grains of interest for astronomical observations have been measured. The measured mineral species are: amorphous carbon, high temperature magnesium silicates, hydrous silicates, iron oxides, and amorphous silicates. (author)

  10. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  11. Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection

    KAUST Repository

    Chen, Lisha; Huang, Jianhua Z.

    2012-01-01

    and hence improves predictive accuracy. We propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty. We apply a group-lasso type penalty that treats each row of the matrix of the regression coefficients as a group

  12. Supremum Norm Posterior Contraction and Credible Sets for Nonparametric Multivariate Regression

    NARCIS (Netherlands)

    Yoo, W.W.; Ghosal, S

    2016-01-01

    In the setting of nonparametric multivariate regression with unknown error variance, we study asymptotic properties of a Bayesian method for estimating a regression function f and its mixed partial derivatives. We use a random series of tensor product of B-splines with normal basis coefficients as a

  13. Easy methods for extracting individual regression slopes: Comparing SPSS, R, and Excel

    Directory of Open Access Journals (Sweden)

    Roland Pfister

    2013-10-01

    Full Text Available Three different methods for extracting coefficientsof linear regression analyses are presented. The focus is on automatic and easy-to-use approaches for common statistical packages: SPSS, R, and MS Excel / LibreOffice Calc. Hands-on examples are included for each analysis, followed by a brief description of how a subsequent regression coefficient analysis is performed.

  14. Modeling Group Differences in OLS and Orthogonal Regression: Implications for Differential Validity Studies

    Science.gov (United States)

    Kane, Michael T.; Mroch, Andrew A.

    2010-01-01

    In evaluating the relationship between two measures across different groups (i.e., in evaluating "differential validity") it is necessary to examine differences in correlation coefficients and in regression lines. Ordinary least squares (OLS) regression is the standard method for fitting lines to data, but its criterion for optimal fit…

  15. A new correlation for two-phase critical discharge coefficient

    International Nuclear Information System (INIS)

    Park, Jong Woon; Chun, Moon Hyun

    1989-01-01

    A new simple correlation for subcooled and two-phase critical flow discharge coefficient has been developed by stepwise regression technique. The new discharge coefficient has three independent variables and they are length to hydraulic diameter ratio, degree of subcooling, and stagnation temperature. The new discharge coefficient is applied as a multiplier to homogeneous equilibrium model and Abauf's single phase critical mass flux calculation equation. This method has been tested for its accuracy by comparing with experimental data. Results of the comparison show that the agreement between the predictions with new correlation and the experimental data is good for pipes and nozzles with vertical upward flow for subcooled upstream condition and nozzles with horizontal configuration for two-phase upstream condition

  16. Study of transport coefficients of nanodiamond nanofluids

    Science.gov (United States)

    Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.

    2017-09-01

    Experimental data on the thermal conductivity coefficient and viscosity coefficient of nanodiamond nanofluids are presented. Distilled water and ethylene glycol were used as the base fluid. Dependences of transport coefficients on concentration are obtained. It was shown that the thermal conductivity coefficient increases with increasing nanodiamonds concentration. It was shown that base fluids properties and nanodiamonds concentration affect on the rheology of nanofluids.

  17. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  18. Evaluation of Rock Joint Coefficients

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    A computer method for evaluation of rock joint coefficients is described and several applications are presented. The method is based on two absolute numerical indicators that are formed by means of the Fourier replicas of rock joint profiles. The first indicator quantifies the vertical depth of profiles and the second indicator classifies wavy character of profiles. The absolute indicators have replaced the formerly used relative indicators that showed some artificial behavior in some cases. This contribution is focused on practical computations testing the functionality of the newly introduced indicators.

  19. Variable selection and model choice in geoadditive regression models.

    Science.gov (United States)

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  20. Direction of Effects in Multiple Linear Regression Models.

    Science.gov (United States)

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

  1. Correlation coefficients in neutron β-decay

    International Nuclear Information System (INIS)

    Byrne, J.

    1978-01-01

    The various angular and polarisation coefficients in neutron decay are the principal sources of information on the β-interaction. Measurements of the electron-neutrino angular correlation coefficient (a), the neutron-spin-electron-momentum correlation coefficient (A), the neutron-spin-neutrino-momentum correlation coefficient (B), and the triple correlation coefficient D and time-reversal invariance are reviewed and the results discussed. (U.K.)

  2. Spontaneous regression of pulmonary bullae

    International Nuclear Information System (INIS)

    Satoh, H.; Ishikawa, H.; Ohtsuka, M.; Sekizawa, K.

    2002-01-01

    The natural history of pulmonary bullae is often characterized by gradual, progressive enlargement. Spontaneous regression of bullae is, however, very rare. We report a case in which complete resolution of pulmonary bullae in the left upper lung occurred spontaneously. The management of pulmonary bullae is occasionally made difficult because of gradual progressive enlargement associated with abnormal pulmonary function. Some patients have multiple bulla in both lungs and/or have a history of pulmonary emphysema. Others have a giant bulla without emphysematous change in the lungs. Our present case had treated lung cancer with no evidence of local recurrence. He had no emphysematous change in lung function test and had no complaints, although the high resolution CT scan shows evidence of underlying minimal changes of emphysema. Ortin and Gurney presented three cases of spontaneous reduction in size of bulla. Interestingly, one of them had a marked decrease in the size of a bulla in association with thickening of the wall of the bulla, which was observed in our patient. This case we describe is of interest, not only because of the rarity with which regression of pulmonary bulla has been reported in the literature, but also because of the spontaneous improvements in the radiological picture in the absence of overt infection or tumor. Copyright (2002) Blackwell Science Pty Ltd

  3. Quantum algorithm for linear regression

    Science.gov (United States)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  4. Sparse Regression by Projection and Sparse Discriminant Analysis

    KAUST Repository

    Qi, Xin

    2015-04-03

    © 2015, © American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high-dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross-validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares, and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared with the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplementary materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.

  5. Tools to support interpreting multiple regression in the face of multicollinearity.

    Science.gov (United States)

    Kraha, Amanda; Turner, Heather; Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K

    2012-01-01

    While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses.

  6. The number of subjects per variable required in linear regression analyses.

    Science.gov (United States)

    Austin, Peter C; Steyerberg, Ewout W

    2015-06-01

    To determine the number of independent variables that can be included in a linear regression model. We used a series of Monte Carlo simulations to examine the impact of the number of subjects per variable (SPV) on the accuracy of estimated regression coefficients and standard errors, on the empirical coverage of estimated confidence intervals, and on the accuracy of the estimated R(2) of the fitted model. A minimum of approximately two SPV tended to result in estimation of regression coefficients with relative bias of less than 10%. Furthermore, with this minimum number of SPV, the standard errors of the regression coefficients were accurately estimated and estimated confidence intervals had approximately the advertised coverage rates. A much higher number of SPV were necessary to minimize bias in estimating the model R(2), although adjusted R(2) estimates behaved well. The bias in estimating the model R(2) statistic was inversely proportional to the magnitude of the proportion of variation explained by the population regression model. Linear regression models require only two SPV for adequate estimation of regression coefficients, standard errors, and confidence intervals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Prediction, Regression and Critical Realism

    DEFF Research Database (Denmark)

    Næss, Petter

    2004-01-01

    This paper considers the possibility of prediction in land use planning, and the use of statistical research methods in analyses of relationships between urban form and travel behaviour. Influential writers within the tradition of critical realism reject the possibility of predicting social...... phenomena. This position is fundamentally problematic to public planning. Without at least some ability to predict the likely consequences of different proposals, the justification for public sector intervention into market mechanisms will be frail. Statistical methods like regression analyses are commonly...... seen as necessary in order to identify aggregate level effects of policy measures, but are questioned by many advocates of critical realist ontology. Using research into the relationship between urban structure and travel as an example, the paper discusses relevant research methods and the kinds...

  8. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  9. New Inference Procedures for Semiparametric Varying-Coefficient Partially Linear Cox Models

    Directory of Open Access Journals (Sweden)

    Yunbei Ma

    2014-01-01

    Full Text Available In biomedical research, one major objective is to identify risk factors and study their risk impacts, as this identification can help clinicians to both properly make a decision and increase efficiency of treatments and resource allocation. A two-step penalized-based procedure is proposed to select linear regression coefficients for linear components and to identify significant nonparametric varying-coefficient functions for semiparametric varying-coefficient partially linear Cox models. It is shown that the penalized-based resulting estimators of the linear regression coefficients are asymptotically normal and have oracle properties, and the resulting estimators of the varying-coefficient functions have optimal convergence rates. A simulation study and an empirical example are presented for illustration.

  10. Application of principal component regression and partial least squares regression in ultraviolet spectrum water quality detection

    Science.gov (United States)

    Li, Jiangtong; Luo, Yongdao; Dai, Honglin

    2018-01-01

    Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.

  11. Extinction Coefficient of Gold Nanostars.

    Science.gov (United States)

    de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-07-30

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

  12. Kerr scattering coefficients via isomonodromy

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Bruno Carneiro da [Departamento de Física, Universidade Federal de Pernambuco,50670-901, Recife, Pernambuco (Brazil); Novaes, Fábio [International Institute of Physics, Federal University of Rio Grande do Norte,Av. Odilon Gomes de Lima 1722, Capim Macio, Natal-RN 59078-400 (Brazil)

    2015-11-23

    We study the scattering of a massless scalar field in a generic Kerr background. Using a particular gauge choice based on the current conservation of the radial equation, we give a generic formula for the scattering coefficient in terms of the composite monodromy parameter σ between the inner and the outer horizons. Using the isomonodromy flow, we calculate σ exactly in terms of the Painlevé V τ-function. We also show that the eigenvalue problem for the angular equation (spheroidal harmonics) can be calculated using the same techniques. We use recent developments relating the Painlevé V τ-function to Liouville irregular conformal blocks to claim that this scattering problem is solved in the combinatorial sense, with known expressions for the τ-function near the critical points.

  13. Non-Markovian dynamics of quantum systems: formalism, transport coefficients

    International Nuclear Information System (INIS)

    Kanokov, Z.; Palchikov, Yu.V.; Antonenko, N.V.; Adamian, G.G.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2004-01-01

    Full text: The generalized Linbland equations with non-stationary transport coefficients are derived from the Langevin equations for the case of nonlinear non-Markovian noise [1]. The equations of motion for the collective coordinates are consistent with the generalized quantum fluctuation dissipation relations. The microscopic justification of the Linbland axiomatic approach is performed. Explicit expressions for the time-dependent transport coefficients are presented for the case of FC- and RWA-oscillators and a general linear coupling in coordinate and in momentum between the collective subsystem and heat bath. The explicit equations for the correlation functions show that the Onsanger's regression hypothesis does not hold exactly for the non-Markovian equations of motion. However, under some conditions the regression of fluctuations goes to zero in the same manner as the average values. In the low and high temperature regimes we found that the dissipation leads to long-time tails in correlation functions in the RWA-oscillator. In the case of the FC-oscillator a non-exponential power-like decay of the correlation function in coordinate is only obtained only at the low temperature limit. The calculated results depend rather weakly on the memory time in many applications. The found transient times for diffusion coefficients D pp (t), D qp (t) and D qq (t) are quite short. The value of classical diffusion coefficients in momentum underestimates the asymptotic value of quantum one D pp (t), but the asymptotic values of classical σ qq c and quantum σ qq second moments are close due to the negativity of quantum mixed diffusion coefficient D qp (t)

  14. Credit Scoring Problem Based on Regression Analysis

    OpenAIRE

    Khassawneh, Bashar Suhil Jad Allah

    2014-01-01

    ABSTRACT: This thesis provides an explanatory introduction to the regression models of data mining and contains basic definitions of key terms in the linear, multiple and logistic regression models. Meanwhile, the aim of this study is to illustrate fitting models for the credit scoring problem using simple linear, multiple linear and logistic regression models and also to analyze the found model functions by statistical tools. Keywords: Data mining, linear regression, logistic regression....

  15. Model-based Quantile Regression for Discrete Data

    KAUST Repository

    Padellini, Tullia

    2018-04-10

    Quantile regression is a class of methods voted to the modelling of conditional quantiles. In a Bayesian framework quantile regression has typically been carried out exploiting the Asymmetric Laplace Distribution as a working likelihood. Despite the fact that this leads to a proper posterior for the regression coefficients, the resulting posterior variance is however affected by an unidentifiable parameter, hence any inferential procedure beside point estimation is unreliable. We propose a model-based approach for quantile regression that considers quantiles of the generating distribution directly, and thus allows for a proper uncertainty quantification. We then create a link between quantile regression and generalised linear models by mapping the quantiles to the parameter of the response variable, and we exploit it to fit the model with R-INLA. We extend it also in the case of discrete responses, where there is no 1-to-1 relationship between quantiles and distribution\\'s parameter, by introducing continuous generalisations of the most common discrete variables (Poisson, Binomial and Negative Binomial) to be exploited in the fitting.

  16. Regularized Label Relaxation Linear Regression.

    Science.gov (United States)

    Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung; Fang, Bingwu

    2018-04-01

    Linear regression (LR) and some of its variants have been widely used for classification problems. Most of these methods assume that during the learning phase, the training samples can be exactly transformed into a strict binary label matrix, which has too little freedom to fit the labels adequately. To address this problem, in this paper, we propose a novel regularized label relaxation LR method, which has the following notable characteristics. First, the proposed method relaxes the strict binary label matrix into a slack variable matrix by introducing a nonnegative label relaxation matrix into LR, which provides more freedom to fit the labels and simultaneously enlarges the margins between different classes as much as possible. Second, the proposed method constructs the class compactness graph based on manifold learning and uses it as the regularization item to avoid the problem of overfitting. The class compactness graph is used to ensure that the samples sharing the same labels can be kept close after they are transformed. Two different algorithms, which are, respectively, based on -norm and -norm loss functions are devised. These two algorithms have compact closed-form solutions in each iteration so that they are easily implemented. Extensive experiments show that these two algorithms outperform the state-of-the-art algorithms in terms of the classification accuracy and running time.

  17. Factorization of Transport Coefficients in Macroporous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2000-01-01

    We prove the fundamental theorem about factorization of the phenomenological coefficients for transport in macroporous media. By factorization we mean the representation of the transport coefficients as products of geometric parameters of the porous medium and the parameters characteristic...

  18. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  19. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  20. Symmetry chains and adaptation coefficients

    International Nuclear Information System (INIS)

    Fritzer, H.P.; Gruber, B.

    1985-01-01

    Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains

  1. The scavenging of silver by manganese and iron oxides in stream sediments collected from two drainage areas of Colorado

    Science.gov (United States)

    Chao, T.T.; Anderson, B.J.

    1974-01-01

    Stream sediments of two well-weathered and aerated drainage areas of Colorado containing anomalous amounts of silver were allowed to react by shaking with nitric acid of different concentrations (1-10M). Silver, manganese, and iron simultaneously dissolved were determined by atomic absorption. The relationship between silver dissolution and the dissolution of manganese and/or iron was evaluated by linear and multiple regression analyses. The highly significant correlation coefficient (r = 0.913) between silver and manganese dissolution suggests that manganese oxides are the major control on the scavenging of silver in these stream sediments, whereas iron oxides only play a secondary role in this regard. ?? 1974.

  2. Principal component regression analysis with SPSS.

    Science.gov (United States)

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  3. The intermediate endpoint effect in logistic and probit regression

    Science.gov (United States)

    MacKinnon, DP; Lockwood, CM; Brown, CH; Wang, W; Hoffman, JM

    2010-01-01

    Background An intermediate endpoint is hypothesized to be in the middle of the causal sequence relating an independent variable to a dependent variable. The intermediate variable is also called a surrogate or mediating variable and the corresponding effect is called the mediated, surrogate endpoint, or intermediate endpoint effect. Clinical studies are often designed to change an intermediate or surrogate endpoint and through this intermediate change influence the ultimate endpoint. In many intermediate endpoint clinical studies the dependent variable is binary, and logistic or probit regression is used. Purpose The purpose of this study is to describe a limitation of a widely used approach to assessing intermediate endpoint effects and to propose an alternative method, based on products of coefficients, that yields more accurate results. Methods The intermediate endpoint model for a binary outcome is described for a true binary outcome and for a dichotomization of a latent continuous outcome. Plots of true values and a simulation study are used to evaluate the different methods. Results Distorted estimates of the intermediate endpoint effect and incorrect conclusions can result from the application of widely used methods to assess the intermediate endpoint effect. The same problem occurs for the proportion of an effect explained by an intermediate endpoint, which has been suggested as a useful measure for identifying intermediate endpoints. A solution to this problem is given based on the relationship between latent variable modeling and logistic or probit regression. Limitations More complicated intermediate variable models are not addressed in the study, although the methods described in the article can be extended to these more complicated models. Conclusions Researchers are encouraged to use an intermediate endpoint method based on the product of regression coefficients. A common method based on difference in coefficient methods can lead to distorted

  4. Energy coefficients for a propeller series

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup

    2004-01-01

    The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use...... of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method....

  5. PENGARUH PENGUNGKAPAN CORPORATE SOCIAL RESPONSIBILITY TERHADAP EARNING RESPONSE COEFFICIENT

    Directory of Open Access Journals (Sweden)

    MI Mitha Dwi Restuti

    2012-03-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui pengaruh negatif pengungkapan Corporate Sosial Responsibility (CSR disclosure terhadap Earning Response Coefficient (ERC. Alat analisis yang digunakan dalam penelitian ini menggunakan metode analisis regresi berganda.Sampel yang digunakan adalah sebanyak 150 perusahaan yang terdaftar pada Bursa Efek Indonesia pada tahun 2010. Berdasarkan hasil penelitian ditemukan bahwa pengungkapan Corporate Social Responsibility tidak berpengaruh terhadap Earning Response Coefficient (ERC. Hal ini dapat dikatakan bahwa investor belum memperhatikan informasi-informasi sosial yang diungkapkan dalam laporan tahunan perusahaan sebagai informasi yang dapat mempengaruhi investor dalam melakukan keputusan investasi. Investor masih mengganggap informasi laba lebih bermanfaat dalam menilai perusahaan dan dianggap lebih mampu memberikan informasi untuk mendapatkan return saham yang diharapkan oleh investor dibandingkan dengan informasi sosial yang diungkapkan oleh perusahaan.The purpose of this study is to determine the negative effect of Corporate Social Responsibility disclosure (CSR disclosure of Earnings Response Coefficient (ERC. Multiple regressions were used to analyze the data. The samples were 150 companies listed on the Indonesia Stock Exchange in 2010. Based on the research, the result was the disclosures of Corporate Social Responsibility did not influence Earning Response Coefficient (ECR. It can be said that investors did not pay attention to social information that was disclosed in the company’s annual report as information that could affect investors in making investment decisions. Investor did not consider sosial information; they only consider profit information to assess the company value and their investment return

  6. Methodology update for determination of the erosion coefficient(Z

    Directory of Open Access Journals (Sweden)

    Tošić Radislav

    2012-01-01

    Full Text Available The research and mapping the intensity of mechanical water erosion that have begun with the empirical methodology of S. Gavrilović during the mid-twentieth century last, by various intensity, until the present time. A many decades work on the research of these issues pointed to some shortcomings of the existing methodology, and thus the need for its innovation. In this sense, R. Lazarević made certain adjustments of the empirical methodology of S. Gavrilović by changing the tables for determination of the coefficients Φ, X and Y, that is, the tables for determining the mean erosion coefficient (Z. The main objective of this paper is to update the existing methodology for determining the erosion coefficient (Z with the empirical methodology of S. Gavrilović and amendments made by R. Lazarević (1985, but also with better adjustments to the information technologies and the needs of modern society. The proposed procedure, that is, the model to determine the erosion coefficient (Z in this paper is the result of ten years of scientific research and project work in mapping the intensity of mechanical water erosion and its modeling using various models of erosion in the Republic of Srpska and Serbia. By analyzing the correlation of results obtained by regression models and results obtained during the mapping of erosion on the territory of the Republic of Srpska, a high degree of correlation (R² = 0.9963 was established, which is essentially a good assessment of the proposed models.

  7. Marginal regression analysis of recurrent events with coarsened censoring times.

    Science.gov (United States)

    Hu, X Joan; Rosychuk, Rhonda J

    2016-12-01

    Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The study extracted administrative records of emergency department visits from provincial health administrative databases. The available information of each individual subject is limited to a subject-specific time window determined up to concealed data. To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93-111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine its performance by simulation. The PMHC study illustrates the proposed approach throughout the article. © 2016, The International Biometric Society.

  8. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  9. Bayesian median regression for temporal gene expression data

    Science.gov (United States)

    Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.

    2007-09-01

    Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.

  10. Two SPSS programs for interpreting multiple regression results.

    Science.gov (United States)

    Lorenzo-Seva, Urbano; Ferrando, Pere J; Chico, Eliseo

    2010-02-01

    When multiple regression is used in explanation-oriented designs, it is very important to determine both the usefulness of the predictor variables and their relative importance. Standardized regression coefficients are routinely provided by commercial programs. However, they generally function rather poorly as indicators of relative importance, especially in the presence of substantially correlated predictors. We provide two user-friendly SPSS programs that implement currently recommended techniques and recent developments for assessing the relevance of the predictors. The programs also allow the user to take into account the effects of measurement error. The first program, MIMR-Corr.sps, uses a correlation matrix as input, whereas the second program, MIMR-Raw.sps, uses the raw data and computes bootstrap confidence intervals of different statistics. The SPSS syntax, a short manual, and data files related to this article are available as supplemental materials from http://brm.psychonomic-journals.org/content/supplemental.

  11. Correlation of Cadmium Distribution Coefficients to Soil Characteristics

    DEFF Research Database (Denmark)

    Holm, Peter Engelund; Rootzen, Helle; Borggaard, Ole K.

    2003-01-01

    on whole soil samples have shown that pH is the main parameter controlling the distribution. To identify further the components that are important for Cd binding in soil we measured Cd distribution coefficients (K-d) at two fixed pH values and at low Cd loadings for 49 soils sampled in Denmark. The Kd...... values for Cd ranged from 5 to 3000 L kg(-1). The soils were described pedologically and characterized in detail (22 parameters) including determination of contents of the various minerals in the clay fraction. Correlating parameters were grouped and step-wise regression analysis revealed...... interlayered clay minerals [HIM], chlorite, quartz, microcline, plagioclase) were significant in explaining the Cd distribution coefficient....

  12. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...

  13. Semiparametric regression during 2003–2007

    KAUST Repository

    Ruppert, David; Wand, M.P.; Carroll, Raymond J.

    2009-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application.

  14. Gaussian process regression analysis for functional data

    CERN Document Server

    Shi, Jian Qing

    2011-01-01

    Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime

  15. Adjusting for Confounding in Early Postlaunch Settings: Going Beyond Logistic Regression Models.

    Science.gov (United States)

    Schmidt, Amand F; Klungel, Olaf H; Groenwold, Rolf H H

    2016-01-01

    Postlaunch data on medical treatments can be analyzed to explore adverse events or relative effectiveness in real-life settings. These analyses are often complicated by the number of potential confounders and the possibility of model misspecification. We conducted a simulation study to compare the performance of logistic regression, propensity score, disease risk score, and stabilized inverse probability weighting methods to adjust for confounding. Model misspecification was induced in the independent derivation dataset. We evaluated performance using relative bias confidence interval coverage of the true effect, among other metrics. At low events per coefficient (1.0 and 0.5), the logistic regression estimates had a large relative bias (greater than -100%). Bias of the disease risk score estimates was at most 13.48% and 18.83%. For the propensity score model, this was 8.74% and >100%, respectively. At events per coefficient of 1.0 and 0.5, inverse probability weighting frequently failed or reduced to a crude regression, resulting in biases of -8.49% and 24.55%. Coverage of logistic regression estimates became less than the nominal level at events per coefficient ≤5. For the disease risk score, inverse probability weighting, and propensity score, coverage became less than nominal at events per coefficient ≤2.5, ≤1.0, and ≤1.0, respectively. Bias of misspecified disease risk score models was 16.55%. In settings with low events/exposed subjects per coefficient, disease risk score methods can be useful alternatives to logistic regression models, especially when propensity score models cannot be used. Despite better performance of disease risk score methods than logistic regression and propensity score models in small events per coefficient settings, bias, and coverage still deviated from nominal.

  16. Regression Analysis by Example. 5th Edition

    Science.gov (United States)

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  17. A Seemingly Unrelated Poisson Regression Model

    OpenAIRE

    King, Gary

    1989-01-01

    This article introduces a new estimator for the analysis of two contemporaneously correlated endogenous event count variables. This seemingly unrelated Poisson regression model (SUPREME) estimator combines the efficiencies created by single equation Poisson regression model estimators and insights from "seemingly unrelated" linear regression models.

  18. Multiple Response Regression for Gaussian Mixture Models with Known Labels.

    Science.gov (United States)

    Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng

    2012-12-01

    Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes.

  19. Boosting structured additive quantile regression for longitudinal childhood obesity data.

    Science.gov (United States)

    Fenske, Nora; Fahrmeir, Ludwig; Hothorn, Torsten; Rzehak, Peter; Höhle, Michael

    2013-07-25

    Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.

  20. Geographically Weighted Logistic Regression Applied to Credit Scoring Models

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Melo Albuquerque

    Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.

  1. Intermediate and advanced topics in multilevel logistic regression analysis.

    Science.gov (United States)

    Austin, Peter C; Merlo, Juan

    2017-09-10

    Multilevel data occur frequently in health services, population and public health, and epidemiologic research. In such research, binary outcomes are common. Multilevel logistic regression models allow one to account for the clustering of subjects within clusters of higher-level units when estimating the effect of subject and cluster characteristics on subject outcomes. A search of the PubMed database demonstrated that the use of multilevel or hierarchical regression models is increasing rapidly. However, our impression is that many analysts simply use multilevel regression models to account for the nuisance of within-cluster homogeneity that is induced by clustering. In this article, we describe a suite of analyses that can complement the fitting of multilevel logistic regression models. These ancillary analyses permit analysts to estimate the marginal or population-average effect of covariates measured at the subject and cluster level, in contrast to the within-cluster or cluster-specific effects arising from the original multilevel logistic regression model. We describe the interval odds ratio and the proportion of opposed odds ratios, which are summary measures of effect for cluster-level covariates. We describe the variance partition coefficient and the median odds ratio which are measures of components of variance and heterogeneity in outcomes. These measures allow one to quantify the magnitude of the general contextual effect. We describe an R 2 measure that allows analysts to quantify the proportion of variation explained by different multilevel logistic regression models. We illustrate the application and interpretation of these measures by analyzing mortality in patients hospitalized with a diagnosis of acute myocardial infarction. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  2. Regression with Sparse Approximations of Data

    DEFF Research Database (Denmark)

    Noorzad, Pardis; Sturm, Bob L.

    2012-01-01

    We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...

  3. Spontaneous regression of a congenital melanocytic nevus

    Directory of Open Access Journals (Sweden)

    Amiya Kumar Nath

    2011-01-01

    Full Text Available Congenital melanocytic nevus (CMN may rarely regress which may also be associated with a halo or vitiligo. We describe a 10-year-old girl who presented with CMN on the left leg since birth, which recently started to regress spontaneously with associated depigmentation in the lesion and at a distant site. Dermoscopy performed at different sites of the regressing lesion demonstrated loss of epidermal pigments first followed by loss of dermal pigments. Histopathology and Masson-Fontana stain demonstrated lymphocytic infiltration and loss of pigment production in the regressing area. Immunohistochemistry staining (S100 and HMB-45, however, showed that nevus cells were present in the regressing areas.

  4. SPSS macros to compare any two fitted values from a regression model.

    Science.gov (United States)

    Weaver, Bruce; Dubois, Sacha

    2012-12-01

    In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.

  5. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    B. Bullard

    1999-05-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.

  6. FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA

    International Nuclear Information System (INIS)

    B. Bullard

    1999-01-01

    The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4

  7. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  8. Apparatus for measurement of coefficient of friction

    Science.gov (United States)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  9. New definition of the cell diffusion coefficient

    International Nuclear Information System (INIS)

    Koehler, P.

    1975-01-01

    As was shown in a recent work by Gelbard, the usually applied Benoist definition of the cell diffusion coefficient gives two different values if two different definitions of the cell are made. A new definition is proposed that preserves the neutron balance for the homogenized lattice and that is independent of the cell definition. The resulting diffusion coefficient is identical with the main term of Benoist's diffusion coefficient

  10. Sample size determination for logistic regression on a logit-normal distribution.

    Science.gov (United States)

    Kim, Seongho; Heath, Elisabeth; Heilbrun, Lance

    2017-06-01

    Although the sample size for simple logistic regression can be readily determined using currently available methods, the sample size calculation for multiple logistic regression requires some additional information, such as the coefficient of determination ([Formula: see text]) of a covariate of interest with other covariates, which is often unavailable in practice. The response variable of logistic regression follows a logit-normal distribution which can be generated from a logistic transformation of a normal distribution. Using this property of logistic regression, we propose new methods of determining the sample size for simple and multiple logistic regressions using a normal transformation of outcome measures. Simulation studies and a motivating example show several advantages of the proposed methods over the existing methods: (i) no need for [Formula: see text] for multiple logistic regression, (ii) available interim or group-sequential designs, and (iii) much smaller required sample size.

  11. Mean centering, multicollinearity, and moderators in multiple regression: The reconciliation redux.

    Science.gov (United States)

    Iacobucci, Dawn; Schneider, Matthew J; Popovich, Deidre L; Bakamitsos, Georgios A

    2017-02-01

    In this article, we attempt to clarify our statements regarding the effects of mean centering. In a multiple regression with predictors A, B, and A × B (where A × B serves as an interaction term), mean centering A and B prior to computing the product term can clarify the regression coefficients (which is good) and the overall model fit R 2 will remain undisturbed (which is also good).

  12. Transfer coefficients in ultracold strongly coupled plasma

    Science.gov (United States)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  13. Comparing linear probability model coefficients across groups

    DEFF Research Database (Denmark)

    Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt

    2015-01-01

    of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....

  14. Applied regression analysis a research tool

    CERN Document Server

    Pantula, Sastry; Dickey, David

    1998-01-01

    Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

  15. Resummed coefficient function for the shape function

    OpenAIRE

    Aglietti, U.

    2001-01-01

    We present a leading evaluation of the resummed coefficient function for the shape function. It is also shown that the coefficient function is short-distance-dominated. Our results allow relating the shape function computed on the lattice to the physical QCD distributions.

  16. Problems with Discontinuous Diffusion/Dispersion Coefficients

    Directory of Open Access Journals (Sweden)

    Stefano Ferraris

    2012-01-01

    accurate on smooth solutions and based on a special numerical treatment of the diffusion/dispersion coefficients that makes its application possible also when such coefficients are discontinuous. Numerical experiments confirm the convergence of the numerical approximation and show a good behavior on a set of benchmark problems in two space dimensions.

  17. Meta-Analysis of Coefficient Alpha

    Science.gov (United States)

    Rodriguez, Michael C.; Maeda, Yukiko

    2006-01-01

    The meta-analysis of coefficient alpha across many studies is becoming more common in psychology by a methodology labeled reliability generalization. Existing reliability generalization studies have not used the sampling distribution of coefficient alpha for precision weighting and other common meta-analytic procedures. A framework is provided for…

  18. Alternatives to Pearson's and Spearman's Correlation Coefficients

    OpenAIRE

    Smarandache, Florentin

    2008-01-01

    This article presents several alternatives to Pearson's correlation coefficient and many examples. In the samples where the rank in a discrete variable counts more than the variable values, the mixtures that we propose of Pearson's and Spearman's correlation coefficients give better results.

  19. Anomaly coefficients: Their calculation and congruences

    International Nuclear Information System (INIS)

    Braden, H.W.

    1988-01-01

    A new method for the calculation of anomaly coefficients is presented. For su(n) some explicit and general expressions are given for these. In particular, certain congruences are discovered and investigated among the leading anomaly coefficients. As an application of these congruences, the absence of global six-dimensional gauge anomalies is shown

  20. Prediction of friction coefficients for gases

    Science.gov (United States)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  1. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  2. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  3. Implications of NGA for NEHRP site coefficients

    Science.gov (United States)

    Borcherdt, Roger D.

    2012-01-01

    Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.

  4. Regression models of reactor diagnostic signals

    International Nuclear Information System (INIS)

    Vavrin, J.

    1989-01-01

    The application is described of an autoregression model as the simplest regression model of diagnostic signals in experimental analysis of diagnostic systems, in in-service monitoring of normal and anomalous conditions and their diagnostics. The method of diagnostics is described using a regression type diagnostic data base and regression spectral diagnostics. The diagnostics is described of neutron noise signals from anomalous modes in the experimental fuel assembly of a reactor. (author)

  5. PENGARUH ADOPSI PSAK NO.24 TERHADAP EARNINGS RESPONSE COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Ilha Refyal

    2012-05-01

    Full Text Available This study aims to analyze the influence of PSAK No.24(Revisi 2004 adoption on earningsresponse coefficient (ERC. This study focuses discussion on the differences of ERC between theperiod before to the period after the adoption, the influence of changes in the post-employmentbenefits account (due to revision to the ERC, and the influence of the difference in time ofadoption to the ERC. This study is divided into two tests, which are panel data regression testingand Multiple Cross-section Regression testing. ERC in the period after the adoption of the PSAK24 revision is greater than the period before the adoption of PSAK 24 revision. By usingmanufacturing companies during that adoped PSAK 24 during 2004 or 2005, the research findthat changes in post-employment benefits liability have a significant positive effect on ERC. Thecompanies that adopt the standard earlier (early adopter have a greater ERC compare to thecompanies that adopt at the end of the mandatory time (late adopter The study also supportsprevious research on factors affecting the ERC, which are the capital structure and size. Keywords:Earnings Response Coefficient, Revision PSAK 24, Post-employment Benefits Liability,Adoption Timing.

  6. Gini coefficient as a life table function

    Directory of Open Access Journals (Sweden)

    2003-06-01

    Full Text Available This paper presents a toolkit for measuring and analyzing inter-individual inequality in length of life by Gini coefficient. Gini coefficient and four other inequality measures are defined on the length-of-life distribution. Properties of these measures and their empirical testing on mortality data suggest a possibility for different judgements about the direction of changes in the degree of inequality by using different measures. A new computational procedure for the estimation of Gini coefficient from life tables is developed and tested on about four hundred real life tables. The estimates of Gini coefficient are precise enough even for abridged life tables with the final age group of 85+. New formulae have been developed for the decomposition of differences between Gini coefficients by age and cause of death. A new method for decomposition of age-components into effects of mortality and composition of population by group is developed. Temporal changes in the effects of elimination of causes of death on Gini coefficient are analyzed. Numerous empirical examples show: Lorenz curves for Sweden, Russia and Bangladesh in 1995, proportional changes in Gini coefficient and four other measures of inequality for the USA in 1950-1995 and for Russia in 1959-2000. Further shown are errors of estimates of Gini coefficient when computed from various types of mortality data of France, Japan, Sweden and the USA in 1900-95, decompositions of the USA-UK difference in life expectancies and Gini coefficients by age and cause of death in 1997. As well, effects of elimination of major causes of death in the UK in 1951-96 on Gini coefficient, age-specific effects of mortality and educational composition of the Russian population on changes in life expectancy and Gini coefficient between 1979 and 1989. Illustrated as well are variations in life expectancy and Gini coefficient across 32 countries in 1996-1999 and associated changes in life expectancy and Gini

  7. Normalization Ridge Regression in Practice I: Comparisons Between Ordinary Least Squares, Ridge Regression and Normalization Ridge Regression.

    Science.gov (United States)

    Bulcock, J. W.

    The problem of model estimation when the data are collinear was examined. Though the ridge regression (RR) outperforms ordinary least squares (OLS) regression in the presence of acute multicollinearity, it is not a problem free technique for reducing the variance of the estimates. It is a stochastic procedure when it should be nonstochastic and it…

  8. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...... of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches. The roughness length corresponding to the usual Monin-Obukhov stability functions decreases with increasing wind...

  9. Diffusion coefficients of paracetamol in aqueous solutions

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Barros, Marisa C.F.; Veríssimo, Luís M.P.; Santos, Cecilia I.A.V.; Cabral, Ana M.T.D.P.V.; Gaspar, Gualter D.; Esteso, Miguel A.

    2012-01-01

    Highlights: ► Mutual diffusion coefficients of paracetamol in aqueous dilute solutions. ► Influence of the thermodynamic factors on the variation of their mutual diffusion coefficients. ► Estimation of the mutual limiting diffusion coefficients of the molecular, D m 0 , and ionized forms, D ± 0 , of this drug. - Abstract: Binary mutual diffusion coefficients measured by the Taylor dispersion method, for aqueous solutions of paracetamol (PA) at concentrations from (0.001 to 0.050) mol·dm −3 at T = 298.15 K, are reported. From the Nernst–Hartley equation and our experimental results, the limiting diffusion coefficient of this drug and its thermodynamic factors are estimated, thereby contributing in this way to a better understanding of the structure of such systems and of their thermodynamic behaviour in aqueous solution at different concentrations.

  10. Estimation of the simple correlation coefficient.

    Science.gov (United States)

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  11. Multivariate Regression Analysis and Slaughter Livestock,

    Science.gov (United States)

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  12. Experimental Investigation of Discharge Coefficient in Mesh Panel Bottom Intakes

    Directory of Open Access Journals (Sweden)

    keivan bina

    2012-04-01

    Full Text Available Bottom racks is a hydraulic structure which is placed in the bed of stream through which, part of flow in the main channel is diverted. These structures have very wide application in industry, irrigation, drainage and etc. Of course much attention had been paid to the study of such structures, but characteristics of flow through bottom racks are complex. The present study was directed to estimate the discharge coefficient of a new kind of bottom racks including both transverse and longitudinal bars that named "mesh panel racks" without considering any solids in the fluid. This kind of bottom intake has advantages from structural point of view and has less deformation under static and dynamic loads. Laboratory setup with three mesh panel intakes was built and the effects of various parameters such as racks slope, porosity and geometry were explored. A dimensional analysis using Buckingham theory showed the effective hydraulic and geometric factors that affect the discharge coefficient (Cd of bottom racks. Then, a statistical approach to determine the discharge coefficient of a rack structure was developed with linear and nonlinear regression using SPSS software. The efficiency of the proposed technique is high enough that the associated error is limited to 10%. Finally, hydraulic performance of mesh panel intakes was compared with regular type of bottom intakes, which consist of longitudinal bars. For this purpose, diverted discharge through both type of intakes calculated in same situation

  13. Accurate reactivity void coefficient calculation for the fast spectrum reactor FBR-IME

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Fabiano P.C.; Vellozo, Sergio de O.; Velozo, Marta J., E-mail: fabianopetruceli@outlook.com, E-mail: vellozo@cbpf.br, E-mail: martajann@gmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Militar

    2017-07-01

    This paper aims to present an accurate calculation of the void reactivity coefficient for the FBR-IME, a fast spectrum reactor in development at the Engineering Military Institute (IME). The main design peculiarity lies in using mixed oxide [MOX - PuO{sub 2} + U(natural uranium)O{sub 2}] as fuel core. For this task, SCALE system was used to calculate the reactivity for several voids distributions generated by bubbles in the sodium beyond its boiling point. The results show that although the void reactivity coefficient is positive and location dependent, they are offset by other feedback effects, resulting in a negative overall coefficient. (author)

  14. Analysis of Satellite Drag Coefficient Based on Wavelet Transform

    Science.gov (United States)

    Liu, Wei; Wang, Ronglan; Liu, Siqing

    Abstract: Drag coefficient sequence was obtained by solving Tiangong1 continuous 55days GPS orbit data with different arc length. The same period solar flux f10.7 and geomagnetic index Ap ap series were high and low frequency multi-wavelet decomposition. Statistical analysis results of the layers sliding correlation between space environmental parameters and decomposition of Cd, showed that the satellite drag coefficient sequence after wavelet decomposition and the corresponding level of f10.7 Ap sequence with good lag correlation. It also verified that the Cd prediction is feasible. Prediction residuals of Cd with different regression models and different sample length were analysed. The results showed that the case was best when setting sample length 20 days and f10.7 regression model were used. It also showed that NRLMSIS-00 model's response in the region of 350km (Tiangong's altitude) and low-middle latitude (Tiangong's inclination) is excessive in ascent stage of geomagnetic activity Ap and is inadequate during fall off segment. Additionally, the low-frequency decomposition components NRLMSIS-00 model's response is appropriate in f10.7 rising segment. High frequency decomposition section, Showed NRLMSIS-00 model's response is small-scale inadequate during f10.7 ascent segment and is reverse in decline of f10.7. Finally, the potential use of a summary and outlook were listed; This method has an important reference value to improve the spacecraft orbit prediction accuracy. Key words: wavelet transform; drag coefficient; lag correlation; Tiangong1;space environment

  15. On macroeconomic values investigation using fuzzy linear regression analysis

    Directory of Open Access Journals (Sweden)

    Richard Pospíšil

    2017-06-01

    Full Text Available The theoretical background for abstract formalization of the vague phenomenon of complex systems is the fuzzy set theory. In the paper, vague data is defined as specialized fuzzy sets - fuzzy numbers and there is described a fuzzy linear regression model as a fuzzy function with fuzzy numbers as vague parameters. To identify the fuzzy coefficients of the model, the genetic algorithm is used. The linear approximation of the vague function together with its possibility area is analytically and graphically expressed. A suitable application is performed in the tasks of the time series fuzzy regression analysis. The time-trend and seasonal cycles including their possibility areas are calculated and expressed. The examples are presented from the economy field, namely the time-development of unemployment, agricultural production and construction respectively between 2009 and 2011 in the Czech Republic. The results are shown in the form of the fuzzy regression models of variables of time series. For the period 2009-2011, the analysis assumptions about seasonal behaviour of variables and the relationship between them were confirmed; in 2010, the system behaved fuzzier and the relationships between the variables were vaguer, that has a lot of causes, from the different elasticity of demand, through state interventions to globalization and transnational impacts.

  16. Application of support vector regression (SVR) for stream flow prediction on the Amazon basin

    CSIR Research Space (South Africa)

    Du Toit, Melise

    2016-10-01

    Full Text Available regression technique is used in this study to analyse historical stream flow occurrences and predict stream flow values for the Amazon basin. Up to twelve month predictions are made and the coefficient of determination and root-mean-square error are used...

  17. Analysis of interactive fixed effects dynamic linear panel regression with measurement error

    OpenAIRE

    Nayoung Lee; Hyungsik Roger Moon; Martin Weidner

    2011-01-01

    This paper studies a simple dynamic panel linear regression model with interactive fixed effects in which the variable of interest is measured with error. To estimate the dynamic coefficient, we consider the least-squares minimum distance (LS-MD) estimation method.

  18. Calculation of U, Ra, Th and K contents in uranium ore by multiple linear regression method

    International Nuclear Information System (INIS)

    Lin Chao; Chen Yingqiang; Zhang Qingwen; Tan Fuwen; Peng Guanghui

    1991-01-01

    A multiple linear regression method was used to compute γ spectra of uranium ore samples and to calculate contents of U, Ra, Th, and K. In comparison with the inverse matrix method, its advantage is that no standard samples of pure U, Ra, Th and K are needed for obtaining response coefficients

  19. A LATENT CLASS POISSON REGRESSION-MODEL FOR HETEROGENEOUS COUNT DATA

    NARCIS (Netherlands)

    WEDEL, M; DESARBO, WS; BULT, [No Value; RAMASWAMY, [No Value

    1993-01-01

    In this paper an approach is developed that accommodates heterogeneity in Poisson regression models for count data. The model developed assumes that heterogeneity arises from a distribution of both the intercept and the coefficients of the explanatory variables. We assume that the mixing

  20. Constrained statistical inference : sample-size tables for ANOVA and regression

    NARCIS (Netherlands)

    Vanbrabant, Leonard; Van De Schoot, Rens; Rosseel, Yves

    2015-01-01

    Researchers in the social and behavioral sciences often have clear expectations about the order/direction of the parameters in their statistical model. For example, a researcher might expect that regression coefficient β1 is larger than β2 and β3. The corresponding hypothesis is H: β1 > {β2, β3} and

  1. Development of database on the distribution coefficient. 1. Collection of the distribution coefficient data

    Energy Technology Data Exchange (ETDEWEB)

    Takebe, Shinichi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The distribution coefficient is very important parameter for environmental impact assessment on the disposal of radioactive waste arising from research institutes. The literature survey in the country was mainly carried out for the purpose of selecting the reasonable distribution coefficient value on the utilization of this value in the safety evaluation. This report was arranged much informations on the distribution coefficient for inputting to the database for each literature, and was summarized as a literature information data on the distribution coefficient. (author)

  2. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    Science.gov (United States)

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  3. A Simulation Investigation of Principal Component Regression.

    Science.gov (United States)

    Allen, David E.

    Regression analysis is one of the more common analytic tools used by researchers. However, multicollinearity between the predictor variables can cause problems in using the results of regression analyses. Problems associated with multicollinearity include entanglement of relative influences of variables due to reduced precision of estimation,…

  4. Hierarchical regression analysis in structural Equation Modeling

    NARCIS (Netherlands)

    de Jong, P.F.

    1999-01-01

    In a hierarchical or fixed-order regression analysis, the independent variables are entered into the regression equation in a prespecified order. Such an analysis is often performed when the extra amount of variance accounted for in a dependent variable by a specific independent variable is the main

  5. Categorical regression dose-response modeling

    Science.gov (United States)

    The goal of this training is to provide participants with training on the use of the U.S. EPA’s Categorical Regression soft¬ware (CatReg) and its application to risk assessment. Categorical regression fits mathematical models to toxicity data that have been assigned ord...

  6. Variable importance in latent variable regression models

    NARCIS (Netherlands)

    Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.

    2014-01-01

    The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable

  7. Stepwise versus Hierarchical Regression: Pros and Cons

    Science.gov (United States)

    Lewis, Mitzi

    2007-01-01

    Multiple regression is commonly used in social and behavioral data analysis. In multiple regression contexts, researchers are very often interested in determining the "best" predictors in the analysis. This focus may stem from a need to identify those predictors that are supportive of theory. Alternatively, the researcher may simply be interested…

  8. Suppression Situations in Multiple Linear Regression

    Science.gov (United States)

    Shieh, Gwowen

    2006-01-01

    This article proposes alternative expressions for the two most prevailing definitions of suppression without resorting to the standardized regression modeling. The formulation provides a simple basis for the examination of their relationship. For the two-predictor regression, the author demonstrates that the previous results in the literature are…

  9. Gibrat’s law and quantile regressions

    DEFF Research Database (Denmark)

    Distante, Roberta; Petrella, Ivan; Santoro, Emiliano

    2017-01-01

    The nexus between firm growth, size and age in U.S. manufacturing is examined through the lens of quantile regression models. This methodology allows us to overcome serious shortcomings entailed by linear regression models employed by much of the existing literature, unveiling a number of important...

  10. Regression Analysis and the Sociological Imagination

    Science.gov (United States)

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  11. Repeated Results Analysis for Middleware Regression Benchmarking

    Czech Academy of Sciences Publication Activity Database

    Bulej, Lubomír; Kalibera, T.; Tůma, P.

    2005-01-01

    Roč. 60, - (2005), s. 345-358 ISSN 0166-5316 R&D Projects: GA ČR GA102/03/0672 Institutional research plan: CEZ:AV0Z10300504 Keywords : middleware benchmarking * regression benchmarking * regression testing Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.756, year: 2005

  12. Principles of Quantile Regression and an Application

    Science.gov (United States)

    Chen, Fang; Chalhoub-Deville, Micheline

    2014-01-01

    Newer statistical procedures are typically introduced to help address the limitations of those already in practice or to deal with emerging research needs. Quantile regression (QR) is introduced in this paper as a relatively new methodology, which is intended to overcome some of the limitations of least squares mean regression (LMR). QR is more…

  13. ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES

    NARCIS (Netherlands)

    RUSCHENDORF, L; DEVALK, [No Value

    We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive

  14. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  15. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  16. Regression of environmental noise in LIGO data

    International Nuclear Information System (INIS)

    Tiwari, V; Klimenko, S; Mitselmakher, G; Necula, V; Drago, M; Prodi, G; Frolov, V; Yakushin, I; Re, V; Salemi, F; Vedovato, G

    2015-01-01

    We address the problem of noise regression in the output of gravitational-wave (GW) interferometers, using data from the physical environmental monitors (PEM). The objective of the regression analysis is to predict environmental noise in the GW channel from the PEM measurements. One of the most promising regression methods is based on the construction of Wiener–Kolmogorov (WK) filters. Using this method, the seismic noise cancellation from the LIGO GW channel has already been performed. In the presented approach the WK method has been extended, incorporating banks of Wiener filters in the time–frequency domain, multi-channel analysis and regulation schemes, which greatly enhance the versatility of the regression analysis. Also we present the first results on regression of the bi-coherent noise in the LIGO data. (paper)

  17. Pathological assessment of liver fibrosis regression

    Directory of Open Access Journals (Sweden)

    WANG Bingqiong

    2017-03-01

    Full Text Available Hepatic fibrosis is the common pathological outcome of chronic hepatic diseases. An accurate assessment of fibrosis degree provides an important reference for a definite diagnosis of diseases, treatment decision-making, treatment outcome monitoring, and prognostic evaluation. At present, many clinical studies have proven that regression of hepatic fibrosis and early-stage liver cirrhosis can be achieved by effective treatment, and a correct evaluation of fibrosis regression has become a hot topic in clinical research. Liver biopsy has long been regarded as the gold standard for the assessment of hepatic fibrosis, and thus it plays an important role in the evaluation of fibrosis regression. This article reviews the clinical application of current pathological staging systems in the evaluation of fibrosis regression from the perspectives of semi-quantitative scoring system, quantitative approach, and qualitative approach, in order to propose a better pathological evaluation system for the assessment of fibrosis regression.

  18. Should metacognition be measured by logistic regression?

    Science.gov (United States)

    Rausch, Manuel; Zehetleitner, Michael

    2017-03-01

    Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Transient simulation of regression rate on thrust regulation process in hybrid rocket motor

    Directory of Open Access Journals (Sweden)

    Tian Hui

    2014-12-01

    Full Text Available The main goal of this paper is to study the characteristics of regression rate of solid grain during thrust regulation process. For this purpose, an unsteady numerical model of regression rate is established. Gas–solid coupling is considered between the solid grain surface and combustion gas. Dynamic mesh is used to simulate the regression process of the solid fuel surface. Based on this model, numerical simulations on a H2O2/HTPB (hydroxyl-terminated polybutadiene hybrid motor have been performed in the flow control process. The simulation results show that under the step change of the oxidizer mass flow rate condition, the regression rate cannot reach a stable value instantly because the flow field requires a short time period to adjust. The regression rate increases with the linear gain of oxidizer mass flow rate, and has a higher slope than the relative inlet function of oxidizer flow rate. A shorter regulation time can cause a higher regression rate during regulation process. The results also show that transient calculation can better simulate the instantaneous regression rate in the operation process.

  20. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...... between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's....

  1. Virial Coefficients for the Liquid Argon

    Science.gov (United States)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  2. Soccer ball lift coefficients via trajectory analysis

    International Nuclear Information System (INIS)

    Goff, John Eric; Carre, Matt J

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  3. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  4. The Use of Structure Coefficients to Address Multicollinearity in Sport and Exercise Science

    Science.gov (United States)

    Yeatts, Paul E.; Barton, Mitch; Henson, Robin K.; Martin, Scott B.

    2017-01-01

    A common practice in general linear model (GLM) analyses is to interpret regression coefficients (e.g., standardized ß weights) as indicators of variable importance. However, focusing solely on standardized beta weights may provide limited or erroneous information. For example, ß weights become increasingly unreliable when predictor variables are…

  5. Time-varying coefficient estimation in SURE models. Application to portfolio management

    DEFF Research Database (Denmark)

    Casas, Isabel; Ferreira, Eva; Orbe, Susan

    This paper provides a detailed analysis of the asymptotic properties of a kernel estimator for a Seemingly Unrelated Regression Equations model with time-varying coefficients (tv-SURE) under very general conditions. Theoretical results together with a simulation study differentiates the cases...

  6. A Formula for the Coefficient of Thermal Expansion of Crude Oils ...

    African Journals Online (AJOL)

    A new formula for the calculation of the coefficient of world crude oils has been developed. The formula is semi theoretical. The empirical part was obtained by regression calculation of the Formation Volume Factor of the gas free crude oil at reservoir temperature. Comparison of the calculated values of the Formation ...

  7. Recurrence relations between transformation coefficients of hyperspherical harmonics and their application to Moshinsky coefficients

    International Nuclear Information System (INIS)

    Raynal, J.

    1976-01-01

    Closed formulae and recurrence relations for the transformation of a two-body harmonic oscillator wave function to the hyperspherical formalism are given. With them Moshinsky or Smirnov coefficients are obtained from the transformation coefficients of hyperspheric harmonics. For these coefficients the diagonalization method of Talman and Lande reduces to simple recurrence relations which can be used directly to compute them. New closed formulae for these coefficients are also derived: they are needed to compute the two simplest coefficients which determine the sign for the recurrence relation. (Auth.)

  8. REGRES: A FORTRAN-77 program to calculate nonparametric and ``structural'' parametric solutions to bivariate regression equations

    Science.gov (United States)

    Rock, N. M. S.; Duffy, T. R.

    REGRES allows a range of regression equations to be calculated for paired sets of data values in which both variables are subject to error (i.e. neither is the "independent" variable). Nonparametric regressions, based on medians of all possible pairwise slopes and intercepts, are treated in detail. Estimated slopes and intercepts are output, along with confidence limits, Spearman and Kendall rank correlation coefficients. Outliers can be rejected with user-determined stringency. Parametric regressions can be calculated for any value of λ (the ratio of the variances of the random errors for y and x)—including: (1) major axis ( λ = 1); (2) reduced major axis ( λ = variance of y/variance of x); (3) Y on Xλ = infinity; or (4) X on Y ( λ = 0) solutions. Pearson linear correlation coefficients also are output. REGRES provides an alternative to conventional isochron assessment techniques where bivariate normal errors cannot be assumed, or weighting methods are inappropriate.

  9. Friction coefficient dependence on electrostatic tribocharging

    Science.gov (United States)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  10. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  11. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  12. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  13. Roughness coefficients for stream channels in Arizona

    Science.gov (United States)

    Aldridge, B.N.; Garrett, J.M.

    1973-01-01

    When water flows in an open channel, energy is lost through friction along the banks and bed of the channel and through turbulence within the channel. The amount of energy lost is governed by channel roughness, which is expressed in terms of a roughness coefficient. An evaluation of the roughness coefficient is necessary in many hydraulic computations that involve flow in an open channel. Owing to the lack of satisfactory quantitative procedure, the ability of evaluate roughness coefficients can be developed only through experience; however, a basic knowledge of the methods used to assign the coefficients and the factors affecting them will be a great help. One of the most commonly used equations in open-channel hydraulics is that of Manning. The Manning equation is       1.486

  14. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  15. Form coefficient of helical toroidal solenoids

    International Nuclear Information System (INIS)

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  16. Explicit formulas for Clebsch-Gordan coefficients

    International Nuclear Information System (INIS)

    Rudnicki-Bujnowski, G.

    1975-01-01

    The problem is to obtain explicit algebraic formulas of Clebsch-Gordan coefficients for high values of angular momentum. The method of solution is an algebraic method based on the Racah formula using the FORMAC programming language. (Auth.)

  17. Diffusion Coefficients of Several Aqueous Alkanolamine Solutions

    NARCIS (Netherlands)

    Snijder, Erwin D.; Riele, Marcel J.M. te; Versteeg, Geert F.; Swaaij, W.P.M. van

    1993-01-01

    The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine

  18. Transport Coefficients from Large Deviation Functions

    Directory of Open Access Journals (Sweden)

    Chloe Ya Gao

    2017-10-01

    Full Text Available We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green–Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  19. Transport Coefficients from Large Deviation Functions

    Science.gov (United States)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  20. A new approach to estimate Angstrom coefficients

    International Nuclear Information System (INIS)

    Abdel Wahab, M.

    1991-09-01

    A simple quadratic equation to estimate global solar radiation with coefficients depending on some physical atmospheric parameters is presented. The importance of the second order and sensitivity to some climatic variations is discussed. (author). 8 refs, 4 figs, 2 tabs

  1. A new proposal for Lagrangian correlation coefficient

    International Nuclear Information System (INIS)

    Altinsoy, N.; Tugrul, A.B.

    2002-01-01

    The statistical description of dispersion in turbulent flow was first considered by Taylor (Proc. London Math. Soc. 20 (1921) 196) and the statistical properties of the field were determined by Lagrangian correlation coefficient R L (τ). Frenkiel (Adv. Appl. Mech. 3 (1953) 61) has proposed several simple forms for R L (τ). Some workers have investigated for a proper form of the Lagrangian correlation coefficient. In this work, a new proposal for the Lagrangian correlation coefficient is proposed and discussed. It can be written in general form with the one of the Frenkiel's (Adv. Appl. Mech. 3 (1953) 61) Lagrangian correlation coefficient. There is very satisfactory agreement between the new correlation and the experiment

  2. Modeling Ballasted Tracks for Runoff Coefficient C

    Science.gov (United States)

    2012-08-01

    In this study, the Regional Transportation District (RTD)s light rail tracks were modeled to determine the Rational Method : runoff coefficient, C, values corresponding to ballasted tracks. To accomplish this, a laboratory study utilizing a : rain...

  3. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  4. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  5. Torsion method for measuring piezooptic coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Skab, I.; Smaga, I.; Savaryn, V.; Vasylkiv, Yu.; Vlokh, R. [Institute of Physical Optics, Lviv (Ukraine)

    2011-01-15

    We develop and describe analytically a torsion method for measuring piezooptic coefficients associated with shear stresses. It is shown that the method enables to increase significantly the accuracy of determination of piezooptic coefficients. The method and the appropriate apparatus are verified experimentally on the example of LiNbO{sub 3} crystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Measuring Resource Inequality: The Gini Coefficient

    Directory of Open Access Journals (Sweden)

    Michael T. Catalano

    2009-07-01

    Full Text Available This paper stems from work done by the authors at the Mathematics for Social Justice Workshop held in June of 2007 at Middlebury College. We provide a description of the Gini coefficient and some discussion of how it can be used to promote quantitative literacy skills in mathematics courses. The Gini Coefficient was introduced in 1921 by Italian statistician Corrado Gini as a measure of inequality. It is defined as twice the area between two curves. One, the Lorenz curve for a given population with respect to a given resource, represents the cumulative percentage of the resource as a function of the cumulative percentage of the population that shares that percentage of the resource. The second curve is the line y = x which is the Lorenz curve for a population which shares the resource equally. The Gini coefficient can be interpreted as the percentage of inequality represented in the population with respect to the given resource. We propose that the Gini coefficient can be used to enhance students’ understanding of calculus concepts and provide practice for students in using both calculus and quantitative literacy skills. Our examples are based mainly on distribution of energy resources using publicly available data from the Energy Information Agency of the United States Government. For energy resources within the United States, we find that by household, the Gini coefficient is 0.346, while using the 51 data points represented by the states and Washington D.C., the Gini coefficient is 0.158. When we consider the countries of the world as a population of 210, the Gini coefficient is 0.670. We close with ideas for questions which can be posed to students and discussion of the experiences two other mathematics instructors have had incorporating the Gini coefficient into pre-calculus-level mathematics classes.

  7. The Binomial Coefficient for Negative Arguments

    OpenAIRE

    Kronenburg, M. J.

    2011-01-01

    The definition of the binomial coefficient in terms of gamma functions also allows non-integer arguments. For nonnegative integer arguments the gamma functions reduce to factorials, leading to the well-known Pascal triangle. Using a symmetry formula for the gamma function, this definition is extended to negative integer arguments, making the symmetry identity for binomial coefficients valid for all integer arguments. The agreement of this definition with some other identities and with the bin...

  8. Investigation of photon attenuation coefficients for marble

    International Nuclear Information System (INIS)

    Basyigit, C; Akkurt, I; Kilincarslan, S; Akkurt, A

    2005-01-01

    The total linear attenuation coefficients μ (cm -1 ) have been obtained using the XCOM program at photon energies of 1 keV to 1 GeV for six different natural marbles produced in different places in Turkey. The individual contribution of photon interaction processes to the total linear attenuation coefficients for marble has been investigated. The calculated results were also compared with the measurements. The results obtained for marble were also compared with concrete. (note)

  9. Analysis of flow coefficient in chair manufacture

    OpenAIRE

    Ivković Dragoljub; Živković Slaven

    2005-01-01

    The delivery on time is not possible without the good-quality planning of deadlines, i.e. planning of the manufacturing process duration. The study of flow coefficient enables the realistic forecasting of the manufacturing process duration. This paper points to the significance of the study of flow coefficient on scientific basis so as to determine the terms of the end of the manufacture of chairs made of sawn timber. Chairs are the products of complex construction, often almost completely ma...

  10. On computing Laplace's coefficients and their derivatives.

    Science.gov (United States)

    Gerasimov, I. A.; Vinnikov, E. L.

    The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.

  11. Drag Coefficient Estimation in Orbit Determination

    Science.gov (United States)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  12. Monitoring device for local power peaking coefficients

    International Nuclear Information System (INIS)

    Mihashi, Ishi

    1987-01-01

    Purpose: To determine and monitor the local power peaking coefficients by a method not depending on the combination of fuel types. Constitution: Representative values for the local power distribution can be obtained by determining corresponding burn-up degrees based on the burn-up degree of each of fuel assembly segments obtained in a power distribution monitor and by the interpolation and extrapolation of void coefficients. The typical values are multiplied with compensation coefficients for the control rod effect and coefficients for compensating the effect of adjacent fuel assemblies in a calculation device to obtain typical values for the present local power distribution compensated with all of the effects. Further, the calculation device compares them with typical values of the present local power distribution to obtain an aimed local power peaking coefficient as the maximum value thereof. According to the present invention, since the local power peaking coefficients can be determined not depending on the combination of the kind of fuels, if the combination of fuel assemblies is increased upon fuel change, the amount of operation therefor is not increased. (Kamimura, M.)

  13. Monitoring device for local power peaking coefficient

    International Nuclear Information System (INIS)

    Mitsuhashi, Ishi

    1987-01-01

    Purpose: To monitor the local power peaking coefficients obtained by the method not depending on the combination of fuel types. Method: A plurality of representative values for the local power distribution determined by the nuclear constant calculation for one fuel assembly are memorized regarding each of the burn-up degree and the void coefficient on every positions and fuel types in fuel rod assemblies. While on the other hand, the representative values for the local power distribution as described above are compensated by a compensation coefficient considering the effect of adjacent segments and a control rod compensation coefficient considering the effect due to the control rod insertion relative to the just-mentioned compensation coefficient. Then, the maximum value among them is selected to determine the local power peaking coefficient at each of the times and each of the segments, which is monitored. According to this system, the calculation and the working required for the fitting work depending on the combination of fuel types are no more required at all to facilitate the maintenance as well. (Horiuchi, T.)

  14. Variable and subset selection in PLS regression

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2001-01-01

    The purpose of this paper is to present some useful methods for introductory analysis of variables and subsets in relation to PLS regression. We present here methods that are efficient in finding the appropriate variables or subset to use in the PLS regression. The general conclusion...... is that variable selection is important for successful analysis of chemometric data. An important aspect of the results presented is that lack of variable selection can spoil the PLS regression, and that cross-validation measures using a test set can show larger variation, when we use different subsets of X, than...

  15. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  16. Estimating Frequency by Interpolation Using Least Squares Support Vector Regression

    Directory of Open Access Journals (Sweden)

    Changwei Ma

    2015-01-01

    Full Text Available Discrete Fourier transform- (DFT- based maximum likelihood (ML algorithm is an important part of single sinusoid frequency estimation. As signal to noise ratio (SNR increases and is above the threshold value, it will lie very close to Cramer-Rao lower bound (CRLB, which is dependent on the number of DFT points. However, its mean square error (MSE performance is directly proportional to its calculation cost. As a modified version of support vector regression (SVR, least squares SVR (LS-SVR can not only still keep excellent capabilities for generalizing and fitting but also exhibit lower computational complexity. In this paper, therefore, LS-SVR is employed to interpolate on Fourier coefficients of received signals and attain high frequency estimation accuracy. Our results show that the proposed algorithm can make a good compromise between calculation cost and MSE performance under the assumption that the sample size, number of DFT points, and resampling points are already known.

  17. Tridimensional Regression for Comparing and Mapping 3D Anatomical Structures

    Directory of Open Access Journals (Sweden)

    Kendra K. Schmid

    2012-01-01

    Full Text Available Shape analysis is useful for a wide variety of disciplines and has many applications. There are many approaches to shape analysis, one of which focuses on the analysis of shapes that are represented by the coordinates of predefined landmarks on the object. This paper discusses Tridimensional Regression, a technique that can be used for mapping images and shapes that are represented by sets of three-dimensional landmark coordinates, for comparing and mapping 3D anatomical structures. The degree of similarity between shapes can be quantified using the tridimensional coefficient of determination (2. An experiment was conducted to evaluate the effectiveness of this technique to correctly match the image of a face with another image of the same face. These results were compared to the 2 values obtained when only two dimensions are used and show that using three dimensions increases the ability to correctly match and discriminate between faces.

  18. The R Package threg to Implement Threshold Regression Models

    Directory of Open Access Journals (Sweden)

    Tao Xiao

    2015-08-01

    This new package includes four functions: threg, and the methods hr, predict and plot for threg objects returned by threg. The threg function is the model-fitting function which is used to calculate regression coefficient estimates, asymptotic standard errors and p values. The hr method for threg objects is the hazard-ratio calculation function which provides the estimates of hazard ratios at selected time points for specified scenarios (based on given categories or value settings of covariates. The predict method for threg objects is used for prediction. And the plot method for threg objects provides plots for curves of estimated hazard functions, survival functions and probability density functions of the first-hitting-time; function curves corresponding to different scenarios can be overlaid in the same plot for comparison to give additional research insights.

  19. RETROSPECTIVE RESEARCH ON REGRESSION PATTERN IN MALE SKELETAL EPIPHYSEAL FUSION

    Directory of Open Access Journals (Sweden)

    Ranga Rao

    2016-02-01

    Full Text Available In developing countries like India, because of illiteracy, ignorance regarding the importance of official records like birth and death, vast majority of population fail to give information of such vital events to the concerning authorities. This causes paucity in such information when needed in a medico-legal case or for research purpose. There is a wide confusion and controversy regarding the standard method to be used for estimating age in the Indian Sub-continent. The aim of the current study is to find the correlation among the various parameters of commonly examined ossification centres, through which a regression formula with positive correlation and maximum coefficient of determination can be, derived which can be attempted to be standardised for the estimation of age.

  20. Vectors, a tool in statistical regression theory

    NARCIS (Netherlands)

    Corsten, L.C.A.

    1958-01-01

    Using linear algebra this thesis developed linear regression analysis including analysis of variance, covariance analysis, special experimental designs, linear and fertility adjustments, analysis of experiments at different places and times. The determination of the orthogonal projection, yielding

  1. Genetics Home Reference: caudal regression syndrome

    Science.gov (United States)

    ... umbilical artery: Further support for a caudal regression-sirenomelia spectrum. Am J Med Genet A. 2007 Dec ... AK, Dickinson JE, Bower C. Caudal dysgenesis and sirenomelia-single centre experience suggests common pathogenic basis. Am ...

  2. Dynamic travel time estimation using regression trees.

    Science.gov (United States)

    2008-10-01

    This report presents a methodology for travel time estimation by using regression trees. The dissemination of travel time information has become crucial for effective traffic management, especially under congested road conditions. In the absence of c...

  3. Two Paradoxes in Linear Regression Analysis

    Science.gov (United States)

    FENG, Ge; PENG, Jing; TU, Dongke; ZHENG, Julia Z.; FENG, Changyong

    2016-01-01

    Summary Regression is one of the favorite tools in applied statistics. However, misuse and misinterpretation of results from regression analysis are common in biomedical research. In this paper we use statistical theory and simulation studies to clarify some paradoxes around this popular statistical method. In particular, we show that a widely used model selection procedure employed in many publications in top medical journals is wrong. Formal procedures based on solid statistical theory should be used in model selection. PMID:28638214

  4. Discriminative Elastic-Net Regularized Linear Regression.

    Science.gov (United States)

    Zhang, Zheng; Lai, Zhihui; Xu, Yong; Shao, Ling; Wu, Jian; Xie, Guo-Sen

    2017-03-01

    In this paper, we aim at learning compact and discriminative linear regression models. Linear regression has been widely used in different problems. However, most of the existing linear regression methods exploit the conventional zero-one matrix as the regression targets, which greatly narrows the flexibility of the regression model. Another major limitation of these methods is that the learned projection matrix fails to precisely project the image features to the target space due to their weak discriminative capability. To this end, we present an elastic-net regularized linear regression (ENLR) framework, and develop two robust linear regression models which possess the following special characteristics. First, our methods exploit two particular strategies to enlarge the margins of different classes by relaxing the strict binary targets into a more feasible variable matrix. Second, a robust elastic-net regularization of singular values is introduced to enhance the compactness and effectiveness of the learned projection matrix. Third, the resulting optimization problem of ENLR has a closed-form solution in each iteration, which can be solved efficiently. Finally, rather than directly exploiting the projection matrix for recognition, our methods employ the transformed features as the new discriminate representations to make final image classification. Compared with the traditional linear regression model and some of its variants, our method is much more accurate in image classification. Extensive experiments conducted on publicly available data sets well demonstrate that the proposed framework can outperform the state-of-the-art methods. The MATLAB codes of our methods can be available at http://www.yongxu.org/lunwen.html.

  5. Fuzzy multiple linear regression: A computational approach

    Science.gov (United States)

    Juang, C. H.; Huang, X. H.; Fleming, J. W.

    1992-01-01

    This paper presents a new computational approach for performing fuzzy regression. In contrast to Bardossy's approach, the new approach, while dealing with fuzzy variables, closely follows the conventional regression technique. In this approach, treatment of fuzzy input is more 'computational' than 'symbolic.' The following sections first outline the formulation of the new approach, then deal with the implementation and computational scheme, and this is followed by examples to illustrate the new procedure.

  6. Computing multiple-output regression quantile regions

    Czech Academy of Sciences Publication Activity Database

    Paindaveine, D.; Šiman, Miroslav

    2012-01-01

    Roč. 56, č. 4 (2012), s. 840-853 ISSN 0167-9473 R&D Projects: GA MŠk(CZ) 1M06047 Institutional research plan: CEZ:AV0Z10750506 Keywords : halfspace depth * multiple-output regression * parametric linear programming * quantile regression Subject RIV: BA - General Mathematics Impact factor: 1.304, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/siman-0376413.pdf

  7. There is No Quantum Regression Theorem

    International Nuclear Information System (INIS)

    Ford, G.W.; OConnell, R.F.

    1996-01-01

    The Onsager regression hypothesis states that the regression of fluctuations is governed by macroscopic equations describing the approach to equilibrium. It is here asserted that this hypothesis fails in the quantum case. This is shown first by explicit calculation for the example of quantum Brownian motion of an oscillator and then in general from the fluctuation-dissipation theorem. It is asserted that the correct generalization of the Onsager hypothesis is the fluctuation-dissipation theorem. copyright 1996 The American Physical Society

  8. Caudal regression syndrome : a case report

    International Nuclear Information System (INIS)

    Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun

    1998-01-01

    Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging

  9. Caudal regression syndrome : a case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Joo; Kim, Hi Hye; Kim, Hyung Sik; Park, So Young; Han, Hye Young; Lee, Kwang Hun [Chungang Gil Hospital, Incheon (Korea, Republic of)

    1998-07-01

    Caudal regression syndrome is a rare congenital anomaly, which results from a developmental failure of the caudal mesoderm during the fetal period. We present a case of caudal regression syndrome composed of a spectrum of anomalies including sirenomelia, dysplasia of the lower lumbar vertebrae, sacrum, coccyx and pelvic bones,genitourinary and anorectal anomalies, and dysplasia of the lung, as seen during infantography and MR imaging.

  10. Spontaneous regression of metastatic Merkel cell carcinoma.

    LENUS (Irish Health Repository)

    Hassan, S J

    2010-01-01

    Merkel cell carcinoma is a rare aggressive neuroendocrine carcinoma of the skin predominantly affecting elderly Caucasians. It has a high rate of local recurrence and regional lymph node metastases. It is associated with a poor prognosis. Complete spontaneous regression of Merkel cell carcinoma has been reported but is a poorly understood phenomenon. Here we present a case of complete spontaneous regression of metastatic Merkel cell carcinoma demonstrating a markedly different pattern of events from those previously published.

  11. Forecasting exchange rates: a robust regression approach

    OpenAIRE

    Preminger, Arie; Franck, Raphael

    2005-01-01

    The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach, based on the S-estimation method, to construct forecasting models that are less sensitive to data contamination by outliers. A robust linear autoregressive (RAR) and a robust neural network (RNN) models are estimated to study the predictabil...

  12. Marginal longitudinal semiparametric regression via penalized splines

    KAUST Repository

    Al Kadiri, M.

    2010-08-01

    We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.

  13. Marginal longitudinal semiparametric regression via penalized splines

    KAUST Repository

    Al Kadiri, M.; Carroll, R.J.; Wand, M.P.

    2010-01-01

    We study the marginal longitudinal nonparametric regression problem and some of its semiparametric extensions. We point out that, while several elaborate proposals for efficient estimation have been proposed, a relative simple and straightforward one, based on penalized splines, has not. After describing our approach, we then explain how Gibbs sampling and the BUGS software can be used to achieve quick and effective implementation. Illustrations are provided for nonparametric regression and additive models.

  14. Post-processing through linear regression

    Science.gov (United States)

    van Schaeybroeck, B.; Vannitsem, S.

    2011-03-01

    Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS) method, a new time-dependent Tikhonov regularization (TDTR) method, the total least-square method, a new geometric-mean regression (GM), a recently introduced error-in-variables (EVMOS) method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified. These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise). At long lead times the regression schemes (EVMOS, TDTR) which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.

  15. Post-processing through linear regression

    Directory of Open Access Journals (Sweden)

    B. Van Schaeybroeck

    2011-03-01

    Full Text Available Various post-processing techniques are compared for both deterministic and ensemble forecasts, all based on linear regression between forecast data and observations. In order to evaluate the quality of the regression methods, three criteria are proposed, related to the effective correction of forecast error, the optimal variability of the corrected forecast and multicollinearity. The regression schemes under consideration include the ordinary least-square (OLS method, a new time-dependent Tikhonov regularization (TDTR method, the total least-square method, a new geometric-mean regression (GM, a recently introduced error-in-variables (EVMOS method and, finally, a "best member" OLS method. The advantages and drawbacks of each method are clarified.

    These techniques are applied in the context of the 63 Lorenz system, whose model version is affected by both initial condition and model errors. For short forecast lead times, the number and choice of predictors plays an important role. Contrarily to the other techniques, GM degrades when the number of predictors increases. At intermediate lead times, linear regression is unable to provide corrections to the forecast and can sometimes degrade the performance (GM and the best member OLS with noise. At long lead times the regression schemes (EVMOS, TDTR which yield the correct variability and the largest correlation between ensemble error and spread, should be preferred.

  16. Unbalanced Regressions and the Predictive Equation

    DEFF Research Database (Denmark)

    Osterrieder, Daniela; Ventosa-Santaulària, Daniel; Vera-Valdés, J. Eduardo

    Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness in the theoreti......Predictive return regressions with persistent regressors are typically plagued by (asymptotically) biased/inconsistent estimates of the slope, non-standard or potentially even spurious statistical inference, and regression unbalancedness. We alleviate the problem of unbalancedness...... in the theoretical predictive equation by suggesting a data generating process, where returns are generated as linear functions of a lagged latent I(0) risk process. The observed predictor is a function of this latent I(0) process, but it is corrupted by a fractionally integrated noise. Such a process may arise due...... to aggregation or unexpected level shifts. In this setup, the practitioner estimates a misspecified, unbalanced, and endogenous predictive regression. We show that the OLS estimate of this regression is inconsistent, but standard inference is possible. To obtain a consistent slope estimate, we then suggest...

  17. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    Science.gov (United States)

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  18. Measurement of integrated coefficients of ultracold neutron reflection from solid surfaces

    International Nuclear Information System (INIS)

    Golikov, V.V.; Kulagin, E.N.; Nikitenko, Yu.V.

    1985-01-01

    The method of measurement of the integrated coefficients of ultracold neutrons (UCN) reflection from solid surfaces is reported. A simple formula is suggested which expresses the integrated coefficients of UCN reflection from a given sample through the measured counting rate of the detector with and without strong absorber (polyethelene). The parameters are determined describing anisotropic and inhomogeneity properties of UCN reflection from Al, Mg, Pb, Zn, Mo, stainless steel, T and V are measured. The thickness of oxide layers is determined within the 5-10A accuracy limits from the experimental coefficients of UCN reflection from metals having on their surfaces the oxides with boundary velocity larger than that for the metal. It has been determined that the density of 5000 A layer of heavy ice freezed on aluminium is 0.83 +- 0.05 from the crystal ice density

  19. Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection

    KAUST Repository

    Chen, Lisha

    2012-12-01

    The reduced-rank regression is an effective method in predicting multiple response variables from the same set of predictor variables. It reduces the number of model parameters and takes advantage of interrelations between the response variables and hence improves predictive accuracy. We propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty. We apply a group-lasso type penalty that treats each row of the matrix of the regression coefficients as a group and show that this penalty satisfies certain desirable invariance properties. We develop two numerical algorithms to solve the penalized regression problem and establish the asymptotic consistency of the proposed method. In particular, the manifold structure of the reduced-rank regression coefficient matrix is considered and studied in our theoretical analysis. In our simulation study and real data analysis, the new method is compared with several existing variable selection methods for multivariate regression and exhibits competitive performance in prediction and variable selection. © 2012 American Statistical Association.

  20. Linear regression metamodeling as a tool to summarize and present simulation model results.

    Science.gov (United States)

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  1. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    Science.gov (United States)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross

  2. Lattice cell diffusion coefficients. Definitions and comparisons

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1980-01-01

    Definitions of equivalent diffusion coefficients for regular lattices of heterogeneous cells have been given by several authors. The paper begins by reviewing these different definitions and the unification of their derivation. This unification makes clear how accurately each definition (together with appropriate cross-section definitions to preserve the eigenvalue) represents the individual reaction rates within the cell. The approach can be extended to include asymmetric cells and whereas before, the buckling describing the macroscopic flux shape was real, here it is found to be complex. A neutron ''drift'' coefficient as well as a diffusion coefficient is necessary to produce the macroscopic flux shape. The numerical calculation of the various different diffusion coefficients requires the solutions of equations similar to the ordinary transport equation for an infinite lattice. Traditional reactor physics codes are not sufficiently flexible to solve these equations in general. However, calculations in certain simple cases are presented and the theoretical results quantified. In difficult geometries, Monte Carlo techniques can be used to calculate an effective diffusion coefficient. These methods relate to those already described provided that correlation effects between different generations of neutrons are included. Again, these effects are quantified in certain simple cases. (author)

  3. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  4. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  5. Temporal correlation coefficient for directed networks.

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.

  6. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  7. Building a new predictor for multiple linear regression technique-based corrective maintenance turnaround time.

    Science.gov (United States)

    Cruz, Antonio M; Barr, Cameron; Puñales-Pozo, Elsa

    2008-01-01

    This research's main goals were to build a predictor for a turnaround time (TAT) indicator for estimating its values and use a numerical clustering technique for finding possible causes of undesirable TAT values. The following stages were used: domain understanding, data characterisation and sample reduction and insight characterisation. Building the TAT indicator multiple linear regression predictor and clustering techniques were used for improving corrective maintenance task efficiency in a clinical engineering department (CED). The indicator being studied was turnaround time (TAT). Multiple linear regression was used for building a predictive TAT value model. The variables contributing to such model were clinical engineering department response time (CE(rt), 0.415 positive coefficient), stock service response time (Stock(rt), 0.734 positive coefficient), priority level (0.21 positive coefficient) and service time (0.06 positive coefficient). The regression process showed heavy reliance on Stock(rt), CE(rt) and priority, in that order. Clustering techniques revealed the main causes of high TAT values. This examination has provided a means for analysing current technical service quality and effectiveness. In doing so, it has demonstrated a process for identifying areas and methods of improvement and a model against which to analyse these methods' effectiveness.

  8. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    Science.gov (United States)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  9. Computation of Clebsch-Gordan and Gaunt coefficients using binomial coefficients

    International Nuclear Information System (INIS)

    Guseinov, I.I.; Oezmen, A.; Atav, Ue

    1995-01-01

    Using binomial coefficients the Clebsch-Gordan and Gaunt coefficients were calculated for extremely large quantum numbers. The main advantage of this approach is directly calculating these coefficients, instead of using recursion relations. Accuracy of the results is quite high for quantum numbers l 1 , and l 2 up to 100. Despite direct calculation, the CPU times are found comparable with those given in the related literature. 11 refs., 1 fig., 2 tabs

  10. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  11. Estimating Runoff Coefficients Using Weather Radars

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2012-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage catchments based on a combination of high resolution weather radar data and insewer flow measurements. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients...... of separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678ha) located in the municipality of Aarhus, Denmark. The study has proven it is possible to use corresponding measurements of the relative rainfall distribution over the catchment and runoff...... measurements to identify the runoff coefficients at subcatchment level. The number of potential subcatchments is limited by the number of available rainfall events with a sufficient spatial variability....

  12. Experimental determination of fission gas adsorption coefficients

    International Nuclear Information System (INIS)

    Lovell, R.; Underhill, D.W.

    1979-01-01

    Large charcoal beds have been used for a number of years for the holdup and decay of radioactive isotopes of krypton and xenon. Reliable design of these beds depends on an accurate knowledge of the adsorption coefficient of krypton and xenon on the adsorbents used in these beds. It is somewhat surprising that there is no standard procedure of determining the adsorption coefficient for krypton and xenon. Fundamental information needed to establish a standardized reproducible test procedure is given emphasizing the breakthrough curves commonly used to analyze dynamic adsorption data can lead to serious systematic errors and the fact that the adsorption coefficient, if calculated from the arithmetic holding time, is independent of geometric factors such as the shape of the adsorption bed and the irregular shape of the adsorbent

  13. Ideal related K-theory with coefficients

    DEFF Research Database (Denmark)

    Eilers, Soren; Restorff, Gunnar; Ruiz, Efren

    2017-01-01

    In this paper, we define an invariant, which we believe should be the substitute for total K-theory in the case when there is one distinguished ideal. Moreover, some diagrams relating the new groups to the ordinary K-groups with coefficients are constructed. These diagrams will in most cases help...... to determine the new groups, and will in a companion paper be used to prove a universal multi-coefficient theorem for the one distinguished ideal case for a large class of algebras......In this paper, we define an invariant, which we believe should be the substitute for total K-theory in the case when there is one distinguished ideal. Moreover, some diagrams relating the new groups to the ordinary K-groups with coefficients are constructed. These diagrams will in most cases help...

  14. Nozzle geometry variations on the discharge coefficient

    Directory of Open Access Journals (Sweden)

    M.M.A. Alam

    2016-03-01

    Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.

  15. Size of oxide vacancies in fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Norby, Poul; Hendriksen, Peter Vang

    2015-01-01

    An analysis of the effective radii of vacancies and the stoichiometric expansion coefficient is performed on metal oxides with fluorite and perovskite structures. Using the hard sphere model with Shannon ion radii we find that the effective radius of the oxide vacancy in fluorites increases...... with increasing ion radius of the host cation and that it is significantly smaller than the radius of the oxide ion in all cases, from 37% smaller for HfO2 to 13 % smaller for ThO2. The perovskite structured LaGaO3 doped with Sr or Mg or both is analyzed in some detail. The results show that the effective radius...... of an oxide vacancy in doped LaGaO3 is only about 6 % smaller than the oxide ion. In spite of this the stoichiometric expansion coefficient (a kind of chemical expansion coefficient) of the similar perovskite, LaCrO3, is significantly smaller than the stoichiometric expansion coefficient of the fluorite...

  16. Brightness-normalized Partial Least Squares Regression for hyperspectral data

    International Nuclear Information System (INIS)

    Feilhauer, Hannes; Asner, Gregory P.; Martin, Roberta E.; Schmidtlein, Sebastian

    2010-01-01

    Developed in the field of chemometrics, Partial Least Squares Regression (PLSR) has become an established technique in vegetation remote sensing. PLSR was primarily designed for laboratory analysis of prepared material samples. Under field conditions in vegetation remote sensing, the performance of the technique may be negatively affected by differences in brightness due to amount and orientation of plant tissues in canopies or the observing conditions. To minimize these effects, we introduced brightness normalization to the PLSR approach and tested whether this modification improves the performance under changing canopy and observing conditions. This test was carried out using high-fidelity spectral data (400-2510 nm) to model observed leaf chemistry. The spectral data was combined with a canopy radiative transfer model to simulate effects of varying canopy structure and viewing geometry. Brightness normalization enhanced the performance of PLSR by dampening the effects of canopy shade, thus providing a significant improvement in predictions of leaf chemistry (up to 3.6% additional explained variance in validation) compared to conventional PLSR. Little improvement was made on effects due to variable leaf area index, while minor improvement (mostly not significant) was observed for effects of variable viewing geometry. In general, brightness normalization increased the stability of model fits and regression coefficients for all canopy scenarios. Brightness-normalized PLSR is thus a promising approach for application on airborne and space-based imaging spectrometer data.

  17. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  18. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  19. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE.

    Science.gov (United States)

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-10-01

    The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran's universities. This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran's public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran's libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries.

  20. Modeling of the Monthly Rainfall-Runoff Process Through Regressions

    Directory of Open Access Journals (Sweden)

    Campos-Aranda Daniel Francisco

    2014-10-01

    Full Text Available To solve the problems associated with the assessment of water resources of a river, the modeling of the rainfall-runoff process (RRP allows the deduction of runoff missing data and to extend its record, since generally the information available on precipitation is larger. It also enables the estimation of inputs to reservoirs, when their building led to the suppression of the gauging station. The simplest mathematical model that can be set for the RRP is the linear regression or curve on a monthly basis. Such a model is described in detail and is calibrated with the simultaneous record of monthly rainfall and runoff in Ballesmi hydrometric station, which covers 35 years. Since the runoff of this station has an important contribution from the spring discharge, the record is corrected first by removing that contribution. In order to do this a procedure was developed based either on the monthly average regional runoff coefficients or on nearby and similar watershed; in this case the Tancuilín gauging station was used. Both stations belong to the Partial Hydrologic Region No. 26 (Lower Rio Panuco and are located within the state of San Luis Potosi, México. The study performed indicates that the monthly regression model, due to its conceptual approach, faithfully reproduces monthly average runoff volumes and achieves an excellent approximation in relation to the dispersion, proved by calculation of the means and standard deviations.

  1. Bayesian semiparametric regression models to characterize molecular evolution

    Directory of Open Access Journals (Sweden)

    Datta Saheli

    2012-10-01

    Full Text Available Abstract Background Statistical models and methods that associate changes in the physicochemical properties of amino acids with natural selection at the molecular level typically do not take into account the correlations between such properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process prior on the distribution of the regression coefficients that describes the relationship between the changes in amino acid distances and natural selection in protein-coding DNA sequence alignments. Results The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm data. Our method identifies groups of properties which, for this particular dataset, have a similar effect on evolution. The model also provides nonparametric site-specific estimates for the strength of conservation of these properties. Conclusions The model described here is distinguished by its ability to handle a large number of amino acid properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering ability of the model allows for appealing interpretations of the results in terms of properties that are roughly equivalent from the standpoint of molecular evolution.

  2. Correlation and prediction of osmotic coefficient and water activity of aqueous electrolyte solutions by a two-ionic parameter model

    International Nuclear Information System (INIS)

    Pazuki, G.R.

    2005-01-01

    In this study, osmotic coefficients and water activities in aqueous solutions have been modeled using a new approach based on the Pitzer model. This model contains two physically significant ionic parameters regarding ionic solvation and the closest distance of approach between ions in a solution. The proposed model was evaluated by estimating the osmotic coefficients of nine electrolytes in aqueous solutions. The obtained results showed that the model is suitable for predicting the osmotic coefficients in aqueous electrolyte solutions. Using adjustable parameters, which have been calculated from regression between the experimental osmotic coefficient and the results of this model, the water activity coefficients of aqueous solutions were calculated. The average absolute relative deviations of the osmotic coefficients between the experimental data and the calculated results were in agreement

  3. Regression analysis using dependent Polya trees.

    Science.gov (United States)

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Is past life regression therapy ethical?

    Science.gov (United States)

    Andrade, Gabriel

    2017-01-01

    Past life regression therapy is used by some physicians in cases with some mental diseases. Anxiety disorders, mood disorders, and gender dysphoria have all been treated using life regression therapy by some doctors on the assumption that they reflect problems in past lives. Although it is not supported by psychiatric associations, few medical associations have actually condemned it as unethical. In this article, I argue that past life regression therapy is unethical for two basic reasons. First, it is not evidence-based. Past life regression is based on the reincarnation hypothesis, but this hypothesis is not supported by evidence, and in fact, it faces some insurmountable conceptual problems. If patients are not fully informed about these problems, they cannot provide an informed consent, and hence, the principle of autonomy is violated. Second, past life regression therapy has the great risk of implanting false memories in patients, and thus, causing significant harm. This is a violation of the principle of non-malfeasance, which is surely the most important principle in medical ethics.

  5. Criterions for fixing regulatory seismic acceleration coefficients

    International Nuclear Information System (INIS)

    Costes, D.

    1988-03-01

    Acceleration coeffficients to be taken into account in seismic areas for calculation of structures are defined in national seismic regulations. Joined to the described qualitative requirements, these coefficients represent a balance between precaution costs and avoided damages, both in terms of material repairing costs and damage to human life. Persons in charge of fixing these coefficients must be informed of corresponding quantitative aspects. Data on seismic motions occurrencies and consequences are gathered here and convoluted to mean damage evaluations. Indications on precaution costs are joined, which shows that currently recommended levels of seismic motions are high relatively to financial profitability, and represent in fact an aethical choice about human life value [fr

  6. Diffusion and transport coefficients in synthetic opals

    International Nuclear Information System (INIS)

    Sofo, J. O.; Mahan, G. D.

    2000-01-01

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society

  7. A Simple Measure of Price Adjustment Coefficients.

    OpenAIRE

    Damodaran, Aswath

    1993-01-01

    One measure of market efficiency is the speed with which prices adjust to new information. The author develops a simple approach to estimating these price adjustment coefficients by using the information in return processes. This approach is used to estimate t he price adjustment coefficients for firms listed on the NYSE and the A MEX as well as for over-the-counter stocks. The author finds evidence of a lagged adjustment to new information in shorter return intervals for firms in all market ...

  8. Absorption coefficient instrument for turbid natural waters

    Science.gov (United States)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  9. Transfer of risk coefficients across populations

    International Nuclear Information System (INIS)

    Rasmussen, L.R.

    1992-01-01

    The variation of lifetime risk projections for a Canadian population caused by the uncertainty in the choice of method for transferring excess relative risk coefficients between populations is assessed. Site-specific projections, varied by factors up to 3.5 when excess risk coefficients of the BEIR V relative risk models were transferred to the Canadian population using an additive and multiplicative method. When the risk from all cancers are combined, differences between transfer methods were no longer significant. The Canadian projections were consistent with the ICRP-60 nominal fatal cancer risk estimates. (author)

  10. Reaction rate calculations via transmission coefficients

    International Nuclear Information System (INIS)

    Feit, M.D.; Alder, B.J.

    1985-01-01

    The transmission coefficient of a wavepacket traversing a potential barrier can be determined by steady state calculations carried out in imaginary time instead of by real time dynamical calculations. The general argument is verified for the Eckart barrier potential by a comparison of transmission coefficients calculated from real and imaginary time solutions of the Schroedinger equation. The correspondence demonstrated here allows a formulation for the reaction rate that avoids difficulties due to both rare events and explicitly time dependent calculations. 5 refs., 2 figs

  11. Dependence of sputtering coefficient on ion dose

    International Nuclear Information System (INIS)

    Colligon, J.S.; Patel, M.H.

    1977-01-01

    The sputtering coefficient of polycrystalline gold bombarded by 10-40 keV Ar + ions had been measured as a function of total ion dose and shown to exhibit oscillations in magnitude between 30 and 100%. Possible experimental errors which would give rise to such an oscillation have been considered, but it is apparent that these factors are unable to explain the measurements. It is proposed that a change in the Sublimation Energy associated with either bulk damage or formation of surface topographical features arising during ion bombardment may be responsible for the observed variations in sputtering coefficient. (author)

  12. ANL results for LMFR reactivity coefficients benchmark

    International Nuclear Information System (INIS)

    Hill, Robert

    2000-01-01

    The fast reactor analysis methods developed at ANL were extensively tested in ZPR and ZPPR experiments, applied to EBR-2 and FFTF test reactors. The basic nuclear data library used was ENDF/B-V.2 with the ETOE-2 data processing code and the ENDF/B-VI. Multigroup constants were generated by Monte Carlo code MCNP 2 -2. Neutron flux calculation were done by DIF3D code applying neutron diffusion theory and finite difference method. The results obtained include basic parameters; fuel and structure regional Doppler coefficients; geometry expansion fuel coefficients; kinetics parameters. In general, agreement between phase 1 and 2 results were excellent

  13. The Impact of One Heat Treated Contact Element on the Coefficient of Static Friction

    Directory of Open Access Journals (Sweden)

    P. Todorović, , , , , ,

    2013-12-01

    Full Text Available The subject of the paper includes theoretical considerations, the conducting of experimental tests, and the analysis of exposed test results related to determination of the coefficient of static friction of previously heat-treated contact pairs. One contact element is previously, before the procedure of determining the coefficient of static friction, heated at temperatures in the range of ambient temperature to 280°C and then cooled down to ambient temperature. The results of experimental tests of five different materials show that depending on the heat treatment of one contact element, there is a significant decrease in the coefficient of static friction. The authors of the paper consider that the reasons for the decreasing coefficient of static friction are related to oxide formation and changes in the surface layer of the contact element which is previously heat-treated.

  14. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    Science.gov (United States)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  15. Octanol-air partition coefficients of polybrominated biphenyls.

    Science.gov (United States)

    Hongxia, Zhao; Jingwen, Chen; Xie, Quan; Baocheng, Qu; Xinmiao, Liang

    2009-03-01

    The octanol-air partition coefficients (K(OA)) for PBB15, PBB26, PBB31, PBB49, PBB103 and PBB153 were determined as a function of temperature using a gas chromatographic retention time technique with 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) as a reference substance. The internal energies of phase change from octanol to air (Delta(OA)U) were calculated for the six compounds and were in the range from 74 to 116 kJ mol(-1). Simple regression equations of log K(OA) versus relative retention times (RRTs) on gas chromatography (GC), and log K(OA) versus molecular connectivity indexes (MCI) were obtained, for which the correlation coefficients (r(2)) were greater than 0.985 at 283.15K and 298.15K. Thus the K(OA) values of the remaining PBBs can be predicted by using their RRTs and MCI according to these relationships.

  16. Measurement of particle transport coefficients on Alcator C-Mod

    International Nuclear Information System (INIS)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial (∼ 2 cm) and high temporal (≤ 1.0 ms) resolution. The system consists of 10 CO 2 (10.6 μm) and 4 HeNe (.6328 μm) chords that are used to measure the line integrated density to within 0.08 CO 2 degrees or 2.3 x 10 16 m -2 theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment

  17. Measurement of particle transport coefficients on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  18. Magnitude conversion to unified moment magnitude using orthogonal regression relation

    Science.gov (United States)

    Das, Ranjit; Wason, H. R.; Sharma, M. L.

    2012-05-01

    Homogenization of earthquake catalog being a pre-requisite for seismic hazard assessment requires region based magnitude conversion relationships. Linear Standard Regression (SR) relations fail when both the magnitudes have measurement errors. To accomplish homogenization, techniques like Orthogonal Standard Regression (OSR) are thus used. In this paper a technique is proposed for using such OSR for preparation of homogenized earthquake catalog in moment magnitude Mw. For derivation of orthogonal regression relation between mb and Mw, a data set consisting of 171 events with observed body wave magnitudes (mb,obs) and moment magnitude (Mw,obs) values has been taken from ISC and GCMT databases for Northeast India and adjoining region for the period 1978-2006. Firstly, an OSR relation given below has been developed using mb,obs and Mw,obs values corresponding to 150 events from this data set. M=1.3(±0.004)m-1.4(±0.130), where mb,proxy are body wave magnitude values of the points on the OSR line given by the orthogonality criterion, for observed (mb,obs, Mw,obs) points. A linear relation is then developed between these 150 mb,obs values and corresponding mb,proxy values given by the OSR line using orthogonality criterion. The relation obtained is m=0.878(±0.03)m+0.653(±0.15). The accuracy of the above procedure has been checked with the rest of the data i.e., 21 events values. The improvement in the correlation coefficient value between mb,obs and Mw estimated using the proposed procedure compared to the correlation coefficient value between mb,obs and Mw,obs shows the advantage of OSR relationship for homogenization. The OSR procedure developed in this study can be used to homogenize any catalog containing various magnitudes (e.g., ML, mb, MS) with measurement errors, by their conversion to unified moment magnitude Mw. The proposed procedure also remains valid in case the magnitudes have measurement errors of different orders, i.e. the error variance ratio is

  19. Light transmission coefficients by subwavelength aluminum gratings with dielectric layers

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L. M., E-mail: lev39blinov@gmail.com; Lazarev, V. V.; Yudin, S. G.; Artemov, V. V.; Palto, S. P.; Gorkunov, M. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Crystallography and Photonics Federal Research Center) (Russian Federation)

    2016-11-15

    Spectral positions of plasmon resonances related to boundaries between a thin aluminum layer and dielectrics (air, glass, VDF–TrFE 65/35 ferroelectric copolymer, and indium tin oxide (ITO)) have been determined in the transmission spectra of aluminum gratings of three types with 30 × 30 μm{sup 2} dimensions and 350-, 400-, and 450-nm line periods. Experimental results agree well with spectral positions of plasmon resonances calculated for the normal incidence of TM-polarized light. In addition, maximum values of transmission coefficients in the region of λ ≈ 900–950 nm have been determined for glass–Al–copolymer and glass–ITO–Al–copolymer structures. These values are close to 100%, which shows that the effective optical aperture is two times greater than the geometric areas of slits.

  20. Apparent distribution coefficients of transuranium elements in UK coastal waters

    International Nuclear Information System (INIS)

    Kershaw, P.J.; Pentreath, R.J.; Harvey, B.R.; Lovett, M.B.; Boggis, S.J.

    1986-01-01

    The authorized inputs of low-level radioactive waste into the Irish Sea from the British Nuclear Fuels plc reprocessing plant at Sellafield may be used to advantage to study the distribution and behaviour of artificial radionuclides in the marine environment. Apparent distribution coefficients (Ksub(d)) for the transuranium elements Np, Pu, Am and Cm have been determined by the analysis of environmental samples collected from UK coastal waters. The sampling methodology for obtaining suspended sediment-seawater Ksub(d)s by filtration is described and critically evaluated. Artefacts may be introduced in the sample collection stage. Ksub(d) values have also been determined for seabed sediment-interstitial waters and the precautions taken to preserve in-situ chemical conditions are described. Variations in Ksub(d) values are discussed in relation to distance from Sellafield, suspended load, redox conditions and oxidation state changes. (author)

  1. Refractive regression after laser in situ keratomileusis.

    Science.gov (United States)

    Yan, Mabel K; Chang, John Sm; Chan, Tommy Cy

    2018-04-26

    Uncorrected refractive errors are a leading cause of visual impairment across the world. In today's society, laser in situ keratomileusis (LASIK) has become the most commonly performed surgical procedure to correct refractive errors. However, regression of the initially achieved refractive correction has been a widely observed phenomenon following LASIK since its inception more than two decades ago. Despite technological advances in laser refractive surgery and various proposed management strategies, post-LASIK regression is still frequently observed and has significant implications for the long-term visual performance and quality of life of patients. This review explores the mechanism of refractive regression after both myopic and hyperopic LASIK, predisposing risk factors and its clinical course. In addition, current preventative strategies and therapies are also reviewed. © 2018 Royal Australian and New Zealand College of Ophthalmologists.

  2. Principal component regression for crop yield estimation

    CERN Document Server

    Suryanarayana, T M V

    2016-01-01

    This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...

  3. Regression Models for Market-Shares

    DEFF Research Database (Denmark)

    Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue

    2005-01-01

    On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....

  4. Multiple regression analysis of anthropometric measurements influencing the cephalic index of male Japanese university students.

    Science.gov (United States)

    Hossain, Md Golam; Saw, Aik; Alam, Rashidul; Ohtsuki, Fumio; Kamarul, Tunku

    2013-09-01

    Cephalic index (CI), the ratio of head breadth to head length, is widely used to categorise human populations. The aim of this study was to access the impact of anthropometric measurements on the CI of male Japanese university students. This study included 1,215 male university students from Tokyo and Kyoto, selected using convenient sampling. Multiple regression analysis was used to determine the effect of anthropometric measurements on CI. The variance inflation factor (VIF) showed no evidence of a multicollinearity problem among independent variables. The coefficients of the regression line demonstrated a significant positive relationship between CI and minimum frontal breadth (p regression analysis showed a greater likelihood for minimum frontal breadth (p regression analysis revealed bizygomatic breadth, head circumference, minimum frontal breadth, head height and morphological facial height to be the best predictor craniofacial measurements with respect to CI. The results suggest that most of the variables considered in this study appear to influence the CI of adult male Japanese students.

  5. Estimating Penetration Resistance in Agricultural Soils of Ardabil Plain Using Artificial Neural Network and Regression Methods

    Directory of Open Access Journals (Sweden)

    Gholam Reza Sheykhzadeh

    2017-02-01

    Full Text Available Introduction: Penetration resistance is one of the criteria for evaluating soil compaction. It correlates with several soil properties such as vehicle trafficability, resistance to root penetration, seedling emergence, and soil compaction by farm machinery. Direct measurement of penetration resistance is time consuming and difficult because of high temporal and spatial variability. Therefore, many different regressions and artificial neural network pedotransfer functions have been proposed to estimate penetration resistance from readily available soil variables such as particle size distribution, bulk density (Db and gravimetric water content (θm. The lands of Ardabil Province are one of the main production regions of potato in Iran, thus, obtaining the soil penetration resistance in these regions help with the management of potato production. The objective of this research was to derive pedotransfer functions by using regression and artificial neural network to predict penetration resistance from some soil variations in the agricultural soils of Ardabil plain and to compare the performance of artificial neural network with regression models. Materials and methods: Disturbed and undisturbed soil samples (n= 105 were systematically taken from 0-10 cm soil depth with nearly 3000 m distance in the agricultural lands of the Ardabil plain ((lat 38°15' to 38°40' N, long 48°16' to 48°61' E. The contents of sand, silt and clay (hydrometer method, CaCO3 (titration method, bulk density (cylinder method, particle density (Dp (pychnometer method, organic carbon (wet oxidation method, total porosity(calculating from Db and Dp, saturated (θs and field soil water (θf using the gravimetric method were measured in the laboratory. Mean geometric diameter (dg and standard deviation (σg of soil particles were computed using the percentages of sand, silt and clay. Penetration resistance was measured in situ using cone penetrometer (analog model at 10

  6. On directional multiple-output quantile regression

    Czech Academy of Sciences Publication Activity Database

    Paindaveine, D.; Šiman, Miroslav

    2011-01-01

    Roč. 102, č. 2 (2011), s. 193-212 ISSN 0047-259X R&D Projects: GA MŠk(CZ) 1M06047 Grant - others:Commision EC(BE) Fonds National de la Recherche Scientifique Institutional research plan: CEZ:AV0Z10750506 Keywords : multivariate quantile * quantile regression * multiple-output regression * halfspace depth * portfolio optimization * value-at risk Subject RIV: BA - General Mathematics Impact factor: 0.879, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/siman-0364128.pdf

  7. Removing Malmquist bias from linear regressions

    Science.gov (United States)

    Verter, Frances

    1993-01-01

    Malmquist bias is present in all astronomical surveys where sources are observed above an apparent brightness threshold. Those sources which can be detected at progressively larger distances are progressively more limited to the intrinsically luminous portion of the true distribution. This bias does not distort any of the measurements, but distorts the sample composition. We have developed the first treatment to correct for Malmquist bias in linear regressions of astronomical data. A demonstration of the corrected linear regression that is computed in four steps is presented.

  8. Robust median estimator in logisitc regression

    Czech Academy of Sciences Publication Activity Database

    Hobza, T.; Pardo, L.; Vajda, Igor

    2008-01-01

    Roč. 138, č. 12 (2008), s. 3822-3840 ISSN 0378-3758 R&D Projects: GA MŠk 1M0572 Grant - others:Instituto Nacional de Estadistica (ES) MPO FI - IM3/136; GA MŠk(CZ) MTM 2006-06872 Institutional research plan: CEZ:AV0Z10750506 Keywords : Logistic regression * Median * Robustness * Consistency and asymptotic normality * Morgenthaler * Bianco and Yohai * Croux and Hasellbroeck Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.679, year: 2008 http://library.utia.cas.cz/separaty/2008/SI/vajda-robust%20median%20estimator%20in%20logistic%20regression.pdf

  9. Friction Coefficient Determination by Electrical Resistance Measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-01-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…

  10. Bayesian Meta-Analysis of Coefficient Alpha

    Science.gov (United States)

    Brannick, Michael T.; Zhang, Nanhua

    2013-01-01

    The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…

  11. On finding algebraic expressions for genealogical coefficients

    International Nuclear Information System (INIS)

    Kanyauskas, J.M.; Shimonis, V.Ch.; Rudzikas, Z.B.

    1979-01-01

    It has been attempted to obtain analytical expressions for genealogical coefficients with one detached electron in the case of L-S coupling. A method of second quantization and tensorial properties of the quasi-spin operator are applied. It is restricted to the states for the classification of which the seigniority quantum number v is sufficient. Three ways of the acquirement of these expressions are discussed: 1. In the recurrent way wave functions of N and N-1 electrons are built, consequently expressing these functions in terms of the creation-annihilation operators. 2. Recurrent summation with the use of evident, simple genealogical coefficients. 3. Using the ratios, connecting the genealogical coefficients with the normalized multiplier. The data are presented in formulae and discussions. The generalization of the Redmond's formula is obtained and relatively simple algebraic expressions of the genealogical coefficients of the equivalent electron configurations, for the distinction of the recurrent terms of which introduction of the seigniority quantum number v is sufficient, are given

  12. Power coefficient anomaly in Joyo, (2)

    International Nuclear Information System (INIS)

    Ishikawa, Makoto; Yamashita, Yoshioki; Sasaki, Makoto; Nara, Yoshihiko.

    1981-12-01

    In this report, the presumption about the mechanism having caused the power coefficient anomaly in Joyo during the 75 MW power-raising test in 1979 is described. After the previous report, the new information about the results of the post-irradiation examination and the analysis of the power coefficient of Joyo were able to be obtained. From these information, the mechanism of causing the anomaly was presumed as follows. In 50 MW operation, the fuel burnup reached about 10,000 MWD/ton at the end of second cycle, and produced fission gas was almost retained in fuel pellets. When the power was raised from 50 MW to 75 MW for the first time, the fission gas began to be released when 50 MW was somewhat exceeded. The fission gas release caused the temperature rise and cracking of fuel pellets, and elongated fuel stack length abruptly. These phenomena induced to enlarge the fuel expansion reactivity effect and Doppler reactivity effect, and caused the anomalous behavior of power coefficient. After reaching 75 MW, the fuel stack length did not respond normally to reactor power change, and the magnitude of power coefficient became smaller. The reactivity was lost considerably from the core after the anomaly. (Kako, I.)

  13. Problems on Divisibility of Binomial Coefficients

    Science.gov (United States)

    Osler, Thomas J.; Smoak, James

    2004-01-01

    Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…

  14. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, M.M.; Fabricius, I.L.

    2012-01-01

    one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...... determined under uniaxial strain condition will be more relevant in reservoir studies. Copyright 2012 ARMA, American Rock Mechanics Association....

  15. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    Science.gov (United States)

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  16. Absorption coefficients of silicon: A theoretical treatment

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  17. Control in the coefficients with variational crimes

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Marhadi, Kun Saptohartyadi

    2012-01-01

    We study convergence of discontinuous Galerkin-type discretizations of the problems of control in the coefficients of uniformly elliptic partial differential equations (PDEs). As a model problem we use that of the optimal design of thin (Kirchhoff) plates, where the governing equations...

  18. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    Science.gov (United States)

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  19. Activity risk coefficients for living generations

    International Nuclear Information System (INIS)

    Raicevic, J.; Merkle, M.; Ninkovic, M. M.

    1993-01-01

    This paper deals with the new concept of the Activity risk coefficients, ARCs, which are in Probabilistic risk assessment PRA computer codes used for the calculation of the stochastic effects due to low dose exposures. As an example, ARC expressions for the Cloudshine is derived. (author)

  20. Rate coefficient for the reaction N + NO

    Science.gov (United States)

    Fox, J. L.

    1994-01-01

    Evidence has been advanced that the rate coefficient for the reaction N + NO right arrow N2 + O has a small positive temperature dependence at the high temperatures (900 to 1500 K) that prevail in the terrestrial middle and upper thermosphere by Siskind and Rusch (1992), and at the low temperatures (100 to 200 K) of the Martian lower thermosphere by Fox (1993). Assuming that the rate coefficient recommended by the Jet Propulsion Laboratory evaluation (DeMore et al., 1992) is accurate at 300 K, we derive here the low temperature value of the activation energy for this reaction and thus the rate coefficient that best fits the Viking 1 measured NO densities. We find that the fit is acceptable for a rate coefficient of about 1.3 x 10(exp -10)(T/300)(exp 0.5)exp(-400/T) and better for a value of about 2.5 x 10(exp -10)(T/300)(exp 0.5)exp(-600/T)cu cm/s.

  1. The Evolution of Pearson's Correlation Coefficient

    Science.gov (United States)

    Kader, Gary D.; Franklin, Christine A.

    2008-01-01

    This article describes an activity for developing the notion of association between two quantitative variables. By exploring a collection of scatter plots, the authors propose a nonstandard "intuitive" measure of association; and by examining properties of this measure, they develop the more standard measure, Pearson's Correlation Coefficient. The…

  2. Probability based calibration of pressure coefficients

    DEFF Research Database (Denmark)

    Hansen, Svend Ole; Pedersen, Marie Louise; Sørensen, John Dalsgaard

    2015-01-01

    Normally, a consistent basis for calculating partial factors focuses on a homogeneous reliability index neither depending on which material the structure is constructed of nor the ratio between the permanent and variable actions acting on the structure. Furthermore, the reliability index should n...... the characteristic shape coefficients are based on mean values as specified in background documents to the Eurocodes. Importance of hidden safeties judging the reliability is discussed for wind actions on low-rise structures....... not depend on the type of variable action. A probability based calibration of pressure coefficients have been carried out using pressure measurements on the standard CAARC building modelled on scale of 1:383. The extreme pressures measured on the CAARC building model in the wind tunnel have been fitted.......3, the Eurocode partial factor of 1.5 for variable actions agrees well with the inherent uncertainties of wind actions when the pressure coefficients are determined using wind tunnel test results. The increased bias and uncertainty when pressure coefficients mainly are based on structural codes lead to a larger...

  3. Correlation Coefficients: Appropriate Use and Interpretation.

    Science.gov (United States)

    Schober, Patrick; Boer, Christa; Schwarte, Lothar A

    2018-05-01

    Correlation in the broadest sense is a measure of an association between variables. In correlated data, the change in the magnitude of 1 variable is associated with a change in the magnitude of another variable, either in the same (positive correlation) or in the opposite (negative correlation) direction. Most often, the term correlation is used in the context of a linear relationship between 2 continuous variables and expressed as Pearson product-moment correlation. The Pearson correlation coefficient is typically used for jointly normally distributed data (data that follow a bivariate normal distribution). For nonnormally distributed continuous data, for ordinal data, or for data with relevant outliers, a Spearman rank correlation can be used as a measure of a monotonic association. Both correlation coefficients are scaled such that they range from -1 to +1, where 0 indicates that there is no linear or monotonic association, and the relationship gets stronger and ultimately approaches a straight line (Pearson correlation) or a constantly increasing or decreasing curve (Spearman correlation) as the coefficient approaches an absolute value of 1. Hypothesis tests and confidence intervals can be used to address the statistical significance of the results and to estimate the strength of the relationship in the population from which the data were sampled. The aim of this tutorial is to guide researchers and clinicians in the appropriate use and interpretation of correlation coefficients.

  4. Modelling of power-reactivity coefficient measurement

    International Nuclear Information System (INIS)

    Strmensky, C.; Petenyi, V.; Jagrik, J.; Minarcin, M.; Hascik, R.; Toth, L.

    2005-01-01

    Report describes results of modeling of power-reactivity coefficient analysis on power-level. In paper we calculate values of discrepancies arisen during transient process. These discrepancies can be arisen as result of experiment evaluation and can be caused by disregard of 3D effects on neutron distribution. The results are critically discussed (Authors)

  5. Regularity of the Interband Light Absorption Coefficient

    Indian Academy of Sciences (India)

    In this paper we consider the interband light absorption coefficient (ILAC), in a symmetric form, in the case of random operators on the -dimensional lattice. We show that the symmetrized version of ILAC is either continuous or has a component which has the same modulus of continuity as the density of states.

  6. Demonstration of a Fiber Optic Regression Probe

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for

  7. Discrimination of paediatric brain tumours using apparent diffusion coefficient histograms

    International Nuclear Information System (INIS)

    Bull, Jonathan G.; Clark, Christopher A.; Saunders, Dawn E.

    2012-01-01

    To determine if histograms of apparent diffusion coefficients (ADC) can be used to differentiate paediatric brain tumours. Imaging of histologically confirmed tumours with pre-operative ADC maps were reviewed (54 cases, 32 male, mean age 6.1 years; range 0.1-15.8 years) comprising 6 groups. Whole tumour ADC histograms were calculated; normalised for volume. Stepwise logistic regression analysis was used to differentiate tumour types using histogram metrics, initially for all groups and then for specific subsets. All 6 groups (5 dysembryoplastic neuroectodermal tumours, 22 primitive neuroectodermal tumours (PNET), 5 ependymomas, 7 choroid plexus papillomas, 4 atypical teratoid rhabdoid tumours (ATRT) and 9 juvenile pilocytic astrocytomas (JPA)) were compared. 74% (40/54) were correctly classified using logistic regression of ADC histogram parameters. In the analysis of posterior fossa tumours, 80% of ependymomas, 100% of astrocytomas and 94% of PNET-medulloblastoma were classified correctly. All PNETs were discriminated from ATRTs (22 PNET and 4 supratentorial ATRTs) (100%). ADC histograms are useful in differentiating paediatric brain tumours, in particular, the common posterior fossa tumours of childhood. PNETs were differentiated from supratentorial ATRTs, in all cases, which has important implications in terms of clinical management. (orig.)

  8. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    largely depending on the test room. Several conversion methods for porous absorbers from the Sabine absorption coefficient to the random incidence absorption coefficient were suggested by considering the finite size of a test specimen and non-uniformly incident energy onto the specimen, which turned out...... resistivity optimization outperforms the surface impedance optimization in terms of the reproducibility....

  9. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    Science.gov (United States)

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  10. Drag coefficient Variability and Thermospheric models

    Science.gov (United States)

    Moe, Kenneth

    Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag

  11. Comparison of Classical Linear Regression and Orthogonal Regression According to the Sum of Squares Perpendicular Distances

    OpenAIRE

    KELEŞ, Taliha; ALTUN, Murat

    2016-01-01

    Regression analysis is a statistical technique for investigating and modeling the relationship between variables. The purpose of this study was the trivial presentation of the equation for orthogonal regression (OR) and the comparison of classical linear regression (CLR) and OR techniques with respect to the sum of squared perpendicular distances. For that purpose, the analyses were shown by an example. It was found that the sum of squared perpendicular distances of OR is smaller. Thus, it wa...

  12. Method for nonlinear exponential regression analysis

    Science.gov (United States)

    Junkin, B. G.

    1972-01-01

    Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.

  13. Measurement Error in Education and Growth Regressions

    NARCIS (Netherlands)

    Portela, Miguel; Alessie, Rob; Teulings, Coen

    2010-01-01

    The use of the perpetual inventory method for the construction of education data per country leads to systematic measurement error. This paper analyzes its effect on growth regressions. We suggest a methodology for correcting this error. The standard attenuation bias suggests that using these

  14. The M Word: Multicollinearity in Multiple Regression.

    Science.gov (United States)

    Morrow-Howell, Nancy

    1994-01-01

    Notes that existence of substantial correlation between two or more independent variables creates problems of multicollinearity in multiple regression. Discusses multicollinearity problem in social work research in which independent variables are usually intercorrelated. Clarifies problems created by multicollinearity, explains detection of…

  15. Regression Discontinuity Designs Based on Population Thresholds

    DEFF Research Database (Denmark)

    Eggers, Andrew C.; Freier, Ronny; Grembi, Veronica

    In many countries, important features of municipal government (such as the electoral system, mayors' salaries, and the number of councillors) depend on whether the municipality is above or below arbitrary population thresholds. Several papers have used a regression discontinuity design (RDD...

  16. Deriving the Regression Line with Algebra

    Science.gov (United States)

    Quintanilla, John A.

    2017-01-01

    Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…

  17. Piecewise linear regression splines with hyperbolic covariates

    International Nuclear Information System (INIS)

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  18. Targeting: Logistic Regression, Special Cases and Extensions

    Directory of Open Access Journals (Sweden)

    Helmut Schaeben

    2014-12-01

    Full Text Available Logistic regression is a classical linear model for logit-transformed conditional probabilities of a binary target variable. It recovers the true conditional probabilities if the joint distribution of predictors and the target is of log-linear form. Weights-of-evidence is an ordinary logistic regression with parameters equal to the differences of the weights of evidence if all predictor variables are discrete and conditionally independent given the target variable. The hypothesis of conditional independence can be tested in terms of log-linear models. If the assumption of conditional independence is violated, the application of weights-of-evidence does not only corrupt the predicted conditional probabilities, but also their rank transform. Logistic regression models, including the interaction terms, can account for the lack of conditional independence, appropriate interaction terms compensate exactly for violations of conditional independence. Multilayer artificial neural nets may be seen as nested regression-like models, with some sigmoidal activation function. Most often, the logistic function is used as the activation function. If the net topology, i.e., its control, is sufficiently versatile to mimic interaction terms, artificial neural nets are able to account for violations of conditional independence and yield very similar results. Weights-of-evidence cannot reasonably include interaction terms; subsequent modifications of the weights, as often suggested, cannot emulate the effect of interaction terms.

  19. Functional data analysis of generalized regression quantiles

    KAUST Repository

    Guo, Mengmeng

    2013-11-05

    Generalized regression quantiles, including the conditional quantiles and expectiles as special cases, are useful alternatives to the conditional means for characterizing a conditional distribution, especially when the interest lies in the tails. We develop a functional data analysis approach to jointly estimate a family of generalized regression quantiles. Our approach assumes that the generalized regression quantiles share some common features that can be summarized by a small number of principal component functions. The principal component functions are modeled as splines and are estimated by minimizing a penalized asymmetric loss measure. An iterative least asymmetrically weighted squares algorithm is developed for computation. While separate estimation of individual generalized regression quantiles usually suffers from large variability due to lack of sufficient data, by borrowing strength across data sets, our joint estimation approach significantly improves the estimation efficiency, which is demonstrated in a simulation study. The proposed method is applied to data from 159 weather stations in China to obtain the generalized quantile curves of the volatility of the temperature at these stations. © 2013 Springer Science+Business Media New York.

  20. Regression testing Ajax applications : Coping with dynamism

    NARCIS (Netherlands)

    Roest, D.; Mesbah, A.; Van Deursen, A.

    2009-01-01

    Note: This paper is a pre-print of: Danny Roest, Ali Mesbah and Arie van Deursen. Regression Testing AJAX Applications: Coping with Dynamism. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST’10), Paris, France. IEEE Computer Society, 2010.