WorldWideScience

Sample records for oxidation mechanisms governing

  1. A primary reduced TCA flux governs substrate oxidation in T2D skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    Our current knowledge on substrate oxidation in skeletal muscle in relation to insulin resistance and type 2 diabetes (T2D) originate mainly from in vivo studies. The oxidative capacity of skeletal muscle is highly influenced by physical activity, ageing, hormonal status, and fiber type composition...... further regulatory mechanism to our understanding of substrate oxidation in human skeletal muscle during normo- an pathophysiological conditions, focusing especially on the governing influence of a primary reduced TCA flux for the diabetic phenotype in skeletal muscle....

  2. Effective Information Technology Governance Mechanisms: An Australian Study

    Directory of Open Access Journals (Sweden)

    Syaiful Ali

    2006-01-01

    Full Text Available Growing importance of information technology (IT, as a strategic factor for organizations in achieving their objectives, have raised the concern of organizations in establishing and implementing effective IT governance. This study seeks to empirically examine the individual IT governance mechanisms that influence the overall effectiveness of IT governance. The data were obtained by using web based survey from 176 members of ISACA (Information Systems and Audit Control Association Australia. This study examines the influences of six proposed IT governance mechanisms on the overall effectiveness of IT governance. Using Factor Analysis and Multiple Regression techniques, the current study finds significant positive relationships between the overall level of effective IT governance and the following four IT governance mechanisms: the existence of ethics/ culture of compliance in IT, corporate communication systems, an IT strategy committee, and the involvement of senior management in IT.

  3. Reduction of Asymmetric Information through Corporate Governance Mechanisms

    DEFF Research Database (Denmark)

    Holm, Claus; Schøler, Finn

    Research Question/Issue: Is the reduction of asymmetric information through Corporate Governance mechanisms more important for some listed companies than for others? The purpose of this study is to examine how differences in "ownership dispersion" and "international orientation" affect the partic......Research Question/Issue: Is the reduction of asymmetric information through Corporate Governance mechanisms more important for some listed companies than for others? The purpose of this study is to examine how differences in "ownership dispersion" and "international orientation" affect...... the particular use of the Corporate Governance mechanisms "transparency" and "board independence" in listed companies. Research Findings/Insights: Our findings are based on a Danish dataset which includes 100 listed companies. We find that transparency is a more important Corporate Governance mechanism...

  4. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    Directory of Open Access Journals (Sweden)

    Johan Øvrevik

    2015-07-01

    Full Text Available Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.

  5. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    Science.gov (United States)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  6. Global Governance Mechanisms to Address Antimicrobial Resistance.

    Science.gov (United States)

    Padiyara, Ponnu; Inoue, Hajime; Sprenger, Marc

    2018-01-01

    Since their discovery, antibiotics, and more broadly, antimicrobials, have been a cornerstone of modern medicine. But the overuse and misuse of these drugs have led to rising rates of antimicrobial resistance, which occurs when bacteria adapt in ways that render antibiotics ineffective. A world without effective antibiotics can have drastic impacts on population health, global development, and the global economy. As a global common good, antibiotic effectiveness is vulnerable to the tragedy of the commons, where a shared limited resource is overused by a community when each individual exploits the finite resource for their own benefit. A borderless threat like antimicrobial resistance requires global governance mechanisms to mitigate its emergence and spread, and it is the responsibility of all countries and relevant multilateral organizations. These mechanisms can be in the form of legally binding global governance mechanisms such as treaties and regulatory standards or nonbinding mechanisms such as political declarations, resolutions, or guidelines. In this article, we argue that while both are effective methods, the strong, swift, and coordinated action needed to address rising rates of antimicrobial resistance will be better served through legally binding governance mechanisms.

  7. Reduction of Asymmetric Information through Corporate Governance Mechanisms

    DEFF Research Database (Denmark)

    Holm, Claus; Schøler, Finn

    2010-01-01

    Research Question/Issue: The purpose of this study is to examine how differences in "ownership dispersion" and "exposure toward the international capital market" affect the particular use of the corporate governance mechanisms "transparency" and "board independence" in listed companies. Research...... Findings/Insights: Our findings are based on a Danish dataset which includes 100 listed companies. We find that transparency is a more important corporate governance mechanism for companies with an exposure toward the international capital market, while differences in ownership dispersion do not affect...... the use of the transparency mechanism. In contrast, we find that board independence in the context of a two-tier board member system is an important corporate governance mechanism for companies with widely dispersed ownership and not for companies with an exposure toward the international capital market...

  8. Governance systems in family SMEs: the substitution effects between family councils and corporate governance mechanisms

    OpenAIRE

    L. Gnan; D. Montemerlo; M. Huse

    2015-01-01

    The main objective of this paper is to explore the role of family councils vis-à-vis corporate governance mechanisms. Particularly, the paper explores whether family councils perform only their distinctive family governance role or if they also substitute for the roles performed by corporate governance control mechanisms. Based on a sample of 243 Italian family SMEs, our research findings show that the family council partially substitutes the shareholders' meeting and the board of directors i...

  9. CORPORATE GOVERNANCE MECHANISMS AND EARNINGS MANAGEMENT: A STATE OF THE ART

    Directory of Open Access Journals (Sweden)

    Vladu Alina Beattrice

    2015-07-01

    Full Text Available Extant research have for long identified that corporate governance has the potential to affect both financial performance and the opportunistic behavior of managers. Studies on the influence of corporate governance mechanisms on firm performance do not often assess the possibility that reported earnings can be misrepresented by managers with the scope of achieving various objectives. This paper examines the relationship between corporate governance mechanisms and earnings management practices. According to prior empirical studies in the field, corporate governance can reduce the extent of manipulative practices and increase the quality of financial reporting. As stated above, this study examined prior research investigating different corporate governance mechanisms that can have negative impact on earnings management practices. In this regard the legal system and the effects of takeover were examined as external mechanisms of corporate governance on manipulative behavior of managers. Internal mechanisms of corporate governance were also assessed. Board independence was found to enhance certain monitoring behaviors of managers while an audit committee can oversee the internal control for financial reporting and the quality of financial information. This paper contributes to corporate governance literature by providing detailed reviews of different corporate governance mechanisms on the most documented practice of creative accounting: earnings management. Limits of the current research are explored as well as the scope for future research.

  10. Oxidation mechanisms occurring in wines

    OpenAIRE

    Oliveira, Carla Maria; Ferreira, António César Silva; Freitas, Victor De; Silva, Artur M. S.

    2011-01-01

    The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and paracoumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, al...

  11. Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.

    Science.gov (United States)

    Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick

    2014-03-26

    The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.

  12. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage

    Science.gov (United States)

    Redgrove, Kate A.; McLaughlin, Eileen A.

    2017-01-01

    In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte. PMID:29312475

  13. Governance Mechanisms in Information Technology Outsourcing

    Science.gov (United States)

    Ravindran, Kiron

    2010-01-01

    While the dominance of Information Technology Outsourcing (ITO) as a sourcing strategy would seem to indicate successful and well-informed practice, frequent examples of unraveled engagements highlight the associated risks. Successful instances of outsourcing suggest that governance mechanisms effectively manage the related risks. This…

  14. Design of governance in virtual communities: definition, mechanisms, and variation patterns

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Salomo, Søren

    2013-01-01

    A fast-growing stream of literature has shown tremendous interests in the ‘wisdom of crowds’, embedded in various forms of Virtual Communities (VCs). However, it difficult to design an appropriate governance structure for VCs because: (1) it is not clear what governance exactly is in VCs; (2) our...... to underpin the theoretical and practical implications of our research endeavour....... knowledge on how key governance mechanisms differ among various types of VCs is limited to date; (3) the variation patterns of governance mechanisms are far from fully explored to guide the design of governance in VCs. Therefore, this paper seeks to propose a working definition for governance in VCs...

  15. Governance Mechanisms for the Promotion of Social Capital for Knowledge Transfer in Multinational Corporations

    DEFF Research Database (Denmark)

    Gooderham, Paul; Minbaeva, Dana; Pedersen, Torben

    2011-01-01

    are combined with theory on the determinants of social capital. Three governance mechanisms are identified: market-based mechanisms, hierarchical mechanisms, and social mechanisms. The findings, based on data from two Danish MNCs, indicate that although the use of social governance mechanisms promotes positive......The aim of this paper is to extend social capital approaches to knowledge transfer by identifying governance mechanisms that managers can deploy to promote the development of social capital. In order to achieve this objective, insights from the micro-level, knowledge governance approach...... assessment of social capital, hierarchical governance mechanisms constrain its development. The application of market-based governance mechanisms has no significant effect. In addition, the findings provide evidence that social capital has a positive impact on knowledge transfer...

  16. The Origin of Hierarchical Structure in Self-Assembled Graphene Oxide Papers and the Effect on Mechanical Properties

    Science.gov (United States)

    Nandy, Krishanu

    were found to play a key role in yielding tough papers with high failure stress. Finally, efforts to investigate the microstructural mechanisms that govern the mechanical properties of graphene oxide papers by 3D printing of a tensile tester are detailed. It is intended to release the design of the tensile tester to the community in an effort to reduce cost and improve availability of lab equipment.

  17. IT Governance Mechanisms and Administration/IT Alignment in the Public Sector

    DEFF Research Database (Denmark)

    Winkler, Till

    2013-01-01

    The mechanisms of information technology (IT) governance have been widely recognized as practices to sustain alignment of business and IT units. However, the IT governance literature so far has drawn little attention to the possible idiosyncrasies of governance arrangements in the public sector....... In this paper we propose a conceptual model to investigate the relationship between IT governance mechanisms and according performance outcomes specifically for public sector organizations. A survey instrument is developed and validated based on in-depth interviews with IT representatives from three different...

  18. Inclusive mechanisms of governance and justice targeting youth to ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Inclusive mechanisms of governance and justice targeting youth to counter violent extremism in the IGAD region ... and generate evidence to influence the existing and emerging processes and mechanisms related to CVE to ... Innovation.

  19. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  20. Reassessing the atmospheric oxidation mechanism of toluene

    OpenAIRE

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie

    2017-01-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmo...

  1. Oxidation of coals in the course of mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Proidakov; G.A. Kalabin [Irkutsk State University, Irkutsk (Russian Federation)

    2009-04-15

    The results of a study of coal oxidation under stationary conditions and during mechanical treatment are presented. A considerable increase in the reaction rate constants of coal oxidation during mechanical treatment because of oxidative mechanical degradation was found.

  2. BASELINE MECHANISMS FOR IT GOVERNANCE AT UNIVERSITIES

    NARCIS (Netherlands)

    Bianchi, Isaias; Sousa, Rui; Pereira, Ruben; van Hillegersberg, Jos

    The pervasive use of technology has created a critical dependency on Information Technology (IT) that requires IT Governance (ITG). ITG calls for the definition and implementation of formal mechanisms at the highest level in the organization taking into account structures, processes and relational

  3. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  4. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  5. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid.

    Science.gov (United States)

    Laloo, Andrew E; Wei, Justin; Wang, Dongbo; Narayanasamy, Shaman; Vanwonterghem, Inka; Waite, David; Steen, Jason; Kaysen, Anne; Heintz-Buschart, Anna; Wang, Qilin; Schulz, Benjamin; Nouwens, Amanda; Wilmes, Paul; Hugenholtz, Philip; Yuan, Zhiguo; Bond, Philip L

    2018-05-01

    Free nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB and NOB using an integrated metagenomics and label-free quantitative sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) metaproteomic approach. The Nitrosomonas genus of AOB, on exposure to FNA, maintains internal homeostasis by upregulating a number of known oxidative stress enzymes, such as pteridine reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on exposure to FNA, suggesting the detoxification of nitrite to nitric oxide. Interestingly, proteins involved in stress response mechanisms, such as DNA and protein repair enzymes, phage prevention proteins, and iron transport proteins, were upregulated on exposure to FNA. In addition enzymes involved in energy generation were also upregulated on exposure to FNA. The total proteins specifically derived from the NOB genus Nitrobacter was low and, as such, did not allow for the elucidation of the response mechanism to FNA exposure. These findings give us an understanding of the adaptive mechanisms of tolerance within the AOB Nitrosomonas to the biocidal agent FNA.

  6. EXTERNAL CORPORATE GOVERNANCE MECHANISMS: MERGERS AND ACQUISITIONS ON THE BRAZILIAN MARKET

    Directory of Open Access Journals (Sweden)

    Mario Augusto Parente Monteiro

    2014-08-01

    Full Text Available The research aims to answer the following question: What is the effectiveness of mergers and acquisitions in the Brazilian market as external corporate governance mechanism? The main objective of the study is to verify if mergers and acquisitions operations in Brazilian market may act as an external mechanism of corporate governance, replacing managers and, as a consequence of changes in management, improving financial performance. The study is exploratory, qualitative in its approach, supported by documentary research on secondary data concerning an intentional sample of Brazilian companies aiming to identify the effect of M&A operations on the corporate governance structure of the acquired firm and on its financial results. Data obtained on the website of the Brazilian Securities and Exchange Commission (CVM, related to Brazilian M&A operations in the period 2005-2010, were analyzed. Although M&A operations in Brazil were found to have disciplinary nature in our sample of firms in the studied period, our results are inconclusive regarding the effectiveness of these transactions and external governance mechanisms.

  7. The Value Generating Mechanisms of Open Government Data

    DEFF Research Database (Denmark)

    Jetzek, Thorhildur

    2013-01-01

    social progress, to an interconnected, networked world of shared resources and co-creation. One of the trends driving this change is open government data. This paper presents a framework of four value generating mechanisms from use of OGD. The framework makes it easier to compare and communicate......Recent trends towards openness and technical connectivity have offered the ability to drive massive social and economic change; however they demand a redefinition of relationships. We have observed a move from a polarized world where companies operate in economic markets while governments drive...

  8. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  9. Contribution to and Use of Online Knowledge Repositories: The Role of Governance Mechanisms

    Science.gov (United States)

    Kayhan, Varol O.

    2010-01-01

    Drawing upon the concept of governance, this dissertation refers to the two most commonly employed mechanisms that ensure high quality knowledge in electronic repositories as expert-governance and community-governance. In three related but distinct essays, the dissertation examines the governance concept, and investigates contributing knowledge to…

  10. A novel mechanism of oxidative genotoxicity

    Indian Academy of Sciences (India)

    The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant ...

  11. Control mechanisms in corporate governance

    Directory of Open Access Journals (Sweden)

    Jovanović-Zattila Milena

    2016-01-01

    Full Text Available The structure of corporate governance is determined by the distribution of rights and responsibilities among different actors in the company structure. Organizationally complex structure of corporate entities, established as a reflection of composite forms of business corporations, give rise to the conflict of interest between the owners, the board of directors and managers, which is generally known as the principal-agency problem. Given the fact that operations of modern companies include interaction with a large number of stakeholders, matters of ethics and accountability to the owners, employees, creditors and the state are the basic postulates which have been subject to re-examination lately. The reasons for reassessing these issues are to be sought in numerous abuses by companies, which are on the other hand highly active in their effors to protect themselves from similar abuses (mainy cyber crime. In order to respond to new challenges and requirements, which include providing for the interests of both shareholders and stakeholders, corporate management is required to establish an adequate system of internal control covering all company activities. Contemporary trends in the development of internal audit, as a mechanism of good corporate governance, are reflected in providing advice in respect of anticipated future risks and risk management.

  12. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro; La Mantia, Fabio; Cui, Yi

    2010-01-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  13. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro

    2010-08-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  14. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    Baxter, R.A.

    1987-08-01

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  15. Oxidation mechanism of flavanone taxifolin. Electrochemical and spectroelectrochemical investigation

    International Nuclear Information System (INIS)

    Kocábová, Jana; Fiedler, Jan; Degano, Ilaria; Sokolová, Romana

    2016-01-01

    Highlights: • The oxidation mechanism of flavanone taxifolin was proposed. • The oxidation is specific and differs from oxidation of flavonol quercetin. • A benzofuranon common for quercetin is NOT the taxifolin oxidation product. • The absence of C2–C3 double bond is crucial in taxifolin oxidation. - Abstract: The oxidation of taxifolin on glassy carbon electrode in acetonitrile was studied by cyclic voltammetry, UV–vis and IR spectroelectrochemistry. The oxidation products were identified using HPLC-ESI-MS/MS. The two-electron oxidation mechanism differs from that of flavonols (e.g. quercetin) due to the absence of the double bond between atoms C-2 and C-3. As confirmed by IR spectroelectrochemistry, quinone at ring B is formed as low stable intermediate. The oxidation pathway leads to the formation of hydroxylated derivative of taxifolin 2′,3,3′,4′,5,7-hexahydroxyflavone accompanied by the 2,3-desaturation.

  16. On atomic mechanisms governing the oxidation of Bi2Te3

    Science.gov (United States)

    Music, Denis; Chang, Keke; Schmidt, Paul; Braun, Felix N.; Heller, Martin; Hermsen, Steffen; Pöllmann, Peter J.; Schulzendorff, Till; Wagner, Cedric

    2017-12-01

    Oxidation of Bi2Te3 (space group R \\overline{3} m) has been investigated using experimental and theoretical means. Based on calorimetry, x-ray photoelectron spectroscopy and thermodynamic modelling, Bi2Te3 is at equilibrium with Bi2O3 and TeO2, whereby the most stable compound is Bi2Te3, followed by Bi2O3. The reactivity of Bi towards oxygen is expected to be higher than that of Te. This notion is supported by density functional theory. The strongest bond is formed between Bi and Te, followed by Bi-O. This gives rise to unanticipated atomic processes. Dissociatively adsorbed oxygen diffuses through Bi and Te basal planes of Bi2Te3(0 0 0 1) and preferably interacts with Bi. The Te termination considerably retards this process. These findings may clarify conflicting literature data. Any basal plane off-cut or Bi terminations trigger oxidation, but a perfect basal cleavage, where only Te terminations are exposed to air, may be stable for a longer period of time. These results are of relevance for applications in which surfaces are of key importance, such as nanostructured Bi2Te3 thermoelectric devices.

  17. Corporate Governance in Banks and its Impact on Risk and Performance: Review of Literature on the Selected Governance Mechanisms

    Directory of Open Access Journals (Sweden)

    Himaj Shkendije

    2014-09-01

    Full Text Available Corporate governance is viewed as an important, essential, and most significant factor for well-functioning of firms. Recent academic work and policy analyses have given insight into the governance problems in banks exposed to the financial crisis and suggest possible solutions. This paper begins by explaining the importance of corporate governance and its impact on risk taking and bank performance based on the theoretical background relevant to the corporate governance of banks. I combine the literature that looks at three areas of governance: ownership structure; board structure; and risk management, with the literature on risk-taking and performance effects in order to better assess the weight of the impact that these governance mechanisms have on both performance and risk. The paper concludes by highlighting the areas where further research is needed.

  18. Novel exchange mechanisms in the surface diffusion of oxides

    International Nuclear Information System (INIS)

    Harris, Duncan J; Lavrentiev, Mikhail Yu; Harding, John H; Allan, Neil L; Purton, John A

    2004-01-01

    We use temperature-accelerated dynamics to show the importance of exchange mechanisms in surface diffusion and growth of simple oxides. Such mechanisms can dominate transport processes both on terraces and steps for both homoepitaxial and heteroepitaxial growth. We suggest that the mixing inevitable when an exchange mechanism is present must be considered when attempts are made to grow sharp interfaces in oxide nanostructures. (letter to the editor)

  19. Transport Physics Mechanisms in Thin-Film Oxides.

    Science.gov (United States)

    Tierney, Brian D.; Hjalmarson, Harold P.; Jacobs-Gedrim, Robin B.; James, Conrad D.; Marinella, Matthew M.

    A physics-based model of electron transport mechanisms in metal-insulating oxide-metal (M-I-M) systems is presented focusing on transport through the metal-oxide interfaces and in the bulk of the oxide. Interface tunneling, such as electron tunneling between the metal and the conduction band, or to oxide defect states, is accounted for via a WKB model. The effects of thermionic emission are also included. In the bulk of the oxide, defect-site hopping is dominant. Corresponding continuum calculations are performed for Ta2O5 M-I-M systems utilizing two different metal electrodes, e.g., platinum and tantalum. Such an asymmetrical M-I-M structure, applicable to resistive memory applications or oxide-based capacitors, reveals that the current can be either bulk or interface limited depending on the bias polarity and concentration of oxygen vacancy defects. Also, the dominance of some transport mechanisms over others is shown to be due to a complex interdependence between the vacancy concentration and bias polarity. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  1. Mechanism of 1, 1-d2 propene oxidation over oxide catalysts

    International Nuclear Information System (INIS)

    Portefaix, J.L.; Figueras, F.; Forissier, M.

    1980-01-01

    CD 2 CHCH 3 was oxidized over bismuth molybdate, tin-antimony mixed oxides and supported molybdenum and vanadium oxide catalysts. The deuterium retention is high ( > 90%) in the recovered propene. Percentage retentions of deuterium in the acrolein agree with literature data when bismuth molybdate is used as catalyst. On Sb-Sn-O and supported Mo and V oxides, no isotope effect is noticed for the abstraction of the second hydrogen from the olefin. The slow step of the reaction may therefore be different for the oxidation of propene on Bi-Mo-O and Sb-Sn-O. The ethanal produced by oxidation of CD 2 CHCH 3 contains only minor amounts of deuterium, whatever the catalyst used. It is suggested that partial oxidation of propene to acrolein and C-C bond rupture are parallel reactions which involve different intermediates. Possible mechanisms adapted from organic chemistry are presented to explain these findings. 4 tables

  2. Kinetics and mechanism of oxidation of chloramphenicol by 1 ...

    Indian Academy of Sciences (India)

    Unknown

    the kinetics and mechanism of oxidation of CAP by. CBT in HClO4 medium at 323 K for elucidating the mechanism of oxidation of this drug. 2. Experimental. Chloramphenicol (Sigma, USA) was purified before use. CBT was prepared and purified as reported ear- lier.10 AnalaR grade chemicals and double distilled.

  3. Mechanical properties of phosphorene nanoribbons and oxides

    International Nuclear Information System (INIS)

    Hao, Feng; Chen, Xi

    2015-01-01

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion

  4. Mechanical properties of phosphorene nanoribbons and oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Feng [Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States); Chen, Xi, E-mail: xichen@columbia.edu [International Center for Applied Mechanics, SV Laboratory, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States)

    2015-12-21

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion.

  5. Reassessing the atmospheric oxidation mechanism of toluene

    Science.gov (United States)

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Zhang, Annie L.; Shibuya, Kazuhiko; Molina, Mario J.; Zhang, Renyi

    2017-08-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmospheric models. Our experimental work indicates a larger-than-expected branching ratio for cresols, but a negligible formation of ring-opening products (e.g., methylglyoxal). Quantum chemical calculations also demonstrate that cresols are much more stable than their corresponding peroxy radicals, and, for the most favorable OH (ortho) addition, the pathway of H extraction by O2 to form the cresol proceeds with a smaller barrier than O2 addition to form the peroxy radical. Our results reveal that phenolic (rather than peroxy radical) formation represents the dominant pathway for toluene oxidation, highlighting the necessity to reassess its role in ozone and SOA formation in the atmosphere.

  6. Linking governance mechanisms to health outcomes: a review of the literature in low- and middle-income countries.

    Science.gov (United States)

    Ciccone, Dana Karen; Vian, Taryn; Maurer, Lydia; Bradley, Elizabeth H

    2014-09-01

    We conducted a synthesis of peer-reviewed literature to shed light on links between governance mechanisms and health outcomes in low- and middle-income countries. Our review yielded 30 studies, highlighting four key governance mechanisms by which governance may influence health outcomes in these settings: Health system decentralization that enables responsiveness to local needs and values; health policymaking that aligns and empowers diverse stakeholders; enhanced community engagement; and strengthened social capital. Most, but not all, studies found a positive association between governance and health. Additionally, the nature of the association between governance mechanisms and health differed across studies. In some studies (N = 9), the governance effect was direct and positive, while in others (N = 5), the effect was indirect or modified by contextual factors. In still other studies (N = 4), governance was found to have a moderating effect, indicating that governance mechanisms influenced other system processes or structures that improved health. The remaining studies reported mixed findings about the association between governance and health (N = 6), no association between governance and health (N = 4), or had inconclusive results (N = 2). Further exploration is needed to fully understand the relationship between governance and health and to inform the design and delivery of evidence-based, effective governance interventions around the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The oxidation mechanism of the antioxidant quercetin in nonaqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Romana, E-mail: romana.sokolova@jh-inst.cas.cz [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic); Degano, Ilaria [Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56100 Pisa (Italy); Ramesova, Sarka; Bulickova, Jana; Hromadova, Magdalena; Gal, Miroslav; Fiedler, Jan [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic); Valasek, Michal [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic)

    2011-08-30

    The knowledge of the degradation pathways of natural dyes used in medieval textiles is necessary for the restoration of their original color. Quercetin, one of such colorants, reportedly yields the wide spectrum of oxidation products in different types of media. This study deals with electrochemical oxidation mechanism of quercetin in nonaqueous solution, which has not been yet attempted. The final oxidation product at the first oxidation wave was identified by HPLC-DAD and GC-MS techniques as 2-(3',4'-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The apparent two-electron process at the potential of the first oxidation wave yields current-voltage shapes with one-electron characteristics. The in situ spectroelectrochemistry measurements proved the oxidation mechanism leading through a short-lived anion radical. Two possibilities of the oxidation mechanism are discussed: two one-electron transfers, which do not have identical but similar redox potentials, or the presence of a disproportionation chemical reaction following the first one electron transfer. The quinone formed in either case is stable only on the time scale of a fast spectroelectrochemistry and undergoes fast hydroxylation reaction, where 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3-one is formed. This compound is oxidized at the potential of the second oxidation wave of quercetin.

  8. The oxidation mechanism of the antioxidant quercetin in nonaqueous media

    International Nuclear Information System (INIS)

    Sokolova, Romana; Degano, Ilaria; Ramesova, Sarka; Bulickova, Jana; Hromadova, Magdalena; Gal, Miroslav; Fiedler, Jan; Valasek, Michal

    2011-01-01

    The knowledge of the degradation pathways of natural dyes used in medieval textiles is necessary for the restoration of their original color. Quercetin, one of such colorants, reportedly yields the wide spectrum of oxidation products in different types of media. This study deals with electrochemical oxidation mechanism of quercetin in nonaqueous solution, which has not been yet attempted. The final oxidation product at the first oxidation wave was identified by HPLC-DAD and GC-MS techniques as 2-(3',4'-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The apparent two-electron process at the potential of the first oxidation wave yields current-voltage shapes with one-electron characteristics. The in situ spectroelectrochemistry measurements proved the oxidation mechanism leading through a short-lived anion radical. Two possibilities of the oxidation mechanism are discussed: two one-electron transfers, which do not have identical but similar redox potentials, or the presence of a disproportionation chemical reaction following the first one electron transfer. The quinone formed in either case is stable only on the time scale of a fast spectroelectrochemistry and undergoes fast hydroxylation reaction, where 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3-one is formed. This compound is oxidized at the potential of the second oxidation wave of quercetin.

  9. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  10. Sublethal RNA Oxidation as a Mechanism for Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Mark A. Smith

    2008-05-01

    Full Text Available Although cellular RNA is subjected to the same oxidative insults as DNA and other cellular macromolecules, oxidative damage to RNA has not been a major focus in investigations of the biological consequences of free radical damage. In fact, because it is largely single-stranded and its bases lack the protection of hydrogen bonding and binding by specific proteins, RNA may be more susceptible to oxidative insults than is DNA. Oxidative damage to protein-coding RNA or non-coding RNA will, in turn, potentially cause errors in proteins and/or dysregulation of gene expression. While less lethal than mutations in the genome, such sublethal insults to cells might be associated with underlying mechanisms of several chronic diseases, including neurodegenerative disease. Recently, oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and prion diseases. Of particular interest, oxidative RNA damage can be demonstrated in vulnerable neurons early in disease, suggesting that RNA oxidation may actively contribute to the onset of the disease. An increasing body of evidence suggests that, mechanistically speaking, the detrimental effects of oxidative RNA damage to protein synthesis are attenuated, at least in part, by the existence of protective mechanisms that prevent the incorporation of the damaged ribonucleotides into the translational machinery. Further investigations aimed at understanding the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative and other degenerative diseases and lead to better therapeutic strategies.

  11. Cold pressure welding - the mechanisms governing bonding

    DEFF Research Database (Denmark)

    Bay, Niels

    1979-01-01

    Investigations of the bonding surface in scanning electron microscope after fracture confirm the mechanisms of bond formation in cold pressure welding to be: fracture of work-hardened surface layer, surface expansion increasing the area of virgin surface, extrusion of virgin material through cracks...... of the original surface layer, and establishment of real contact and bonding between virgin material. This implies that normal pressure as well as surface expansion are basic parameters governing the bond strength. Experimental investigations of pressure welding Al-Al under plane strain compression in a specially...

  12. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  13. Uncovering governance mechanisms surrounding harbour porpoise conservation in the Danish Skagerrak Sea

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kirk; Kindt-Larsen, Lotte

    2016-01-01

    mainly by the economy and the varying perceptions of the bycatch issue, with great differences between government, NGO's and fishers. Interviews with fishers and fishing effort data reveal intra-sectoral conflicts pertaining to the incompatibility of active trawling and passive gillnetting in the areas......The harbour porpoise (Phocoena phocoena) is the focus of a range of conservation efforts and policies, including the Habitats Directive, aimed at reducing the bycatch of non-target species in gillnet fisheries. This paper describes the governance process and analyses the governance mechanisms...

  14. Mekanisme Corporate Governance dan Kecurangan Laporan Keuangan [Mechanisms of Corporate Governance and Financial Statement Fraud

    Directory of Open Access Journals (Sweden)

    Fitri Ismiyanti

    2015-09-01

    Full Text Available The purpose of this research is to examine factors that may affect fraud on financial statements that could encourage the emergence of corruption by management. This research uses banks as an industry sample because the banking industry is highly regulated and should report their financial statement to a central bank. Meanwhile, banks still frequently have fraudulent financial statements. Good corporate governance mechanisms indicated that banks have the capability to detect fraud in financial statements. This research focuses on testing factors that may affect the financial statements fraud which lead to the corruption of management. The data used in this research is financial statement data. Corporate governance mechanisms tested in this study are the number of commissioners, percentage of independent directors, number of commissioners meeting, percentage of largest share ownership, managerial ownership, long tenure of commissioners, and type of auditor. This research found that the number of commissioners and managerial ownership affects management's fraud, while the number of independent directors, the number of commissioners meeting, a long tenure managing director, large share ownership, and the type of auditor has no effect on fraud.

  15. Interaction effects between internal governance mechanisms on the components of initial returns during the IPO

    Directory of Open Access Journals (Sweden)

    Mediha Mezhoud

    2012-12-01

    Full Text Available Our work provides an analysis of the interaction effects between internal governance mechanisms on the components of initial returns during the listing period. The application of multivariate regressions on a sample of 110 IPO French companies during 2005-2010, has allowed us to conclude that the different interactions between these mechanisms significantly influence the level of under / overpricing. Indeed, the positive relationship between internal governance mechanisms and overpricing reflects a substitutability relationship. In contrast, the complementarity effect comes from the negative relationship characterizing the combination of governance mechanisms and the underpricing. Thus, the interactions effects between institutional ownership, board structure and under / overpricing are not conforming to the existence of a complementarity or substitutability relationship between these variables given the absence of a significant combination between these variables

  16. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    Science.gov (United States)

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  17. Sorption mechanisms of metals to graphene oxide

    International Nuclear Information System (INIS)

    Showalter, Allison R; Bunker, Bruce A; Duster, Thomas A; Szymanowski, Jennifer E S; Na, Chongzheng; Fein, Jeremy B

    2016-01-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is an electrostatic attraction between the hydrated Cd +2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems. (paper)

  18. Corrosion mechanisms of zirconium alloys - study of the initial oxidation kinetics and of the mechanical behaviour of the metal/oxide system

    International Nuclear Information System (INIS)

    Parise, M.

    1996-12-01

    Nuclear fuel claddings are made of zirconium alloys. The conditions of use lead the cladding oxidize outside. The so-formed layers behaves like a thermal barrier and prevents from using oxidized claddings with an oxide thickness larger than 100 μm. The oxidation kinetic is approximately cubic for oxide thicknesses smaller than about 2μm, linear beyond. A kinetic model has been proposed which estimates the post-transition growth rate from the kinetic parameters of the pre-transition state and morphological features of post-transition layers. This work aims at providing the necessary elements to validate this model and studying the layers around the kinetic transition, in order to determine whether the oxidation mechanisms before and after the transition are similar. Thicknesses of the 50 - 500 nm range of the oxide layers are measured by an optical method; pre-transition kinetics are thus precisely determined. The effect of the composition, the thermal treatment and the presence of oxygen in solid solution is studied. The morphological and crystallographic study of the layers show that they exhibit a lot of similarities before and after the kinetic transition. The results concerning the kinetic aspects and the morphology of the post-transition layers point out that the proposed model leads to realistic post-transition growth rates. Furthermore, the kinetic transition corresponds to the appearance of cracks in the oxide layer. The mechanical behaviour of the metal/oxide system has been modelled at different scales. When the specific behaviours of the metal and the oxide are taken into account together with the interface geometry, radial stresses appear, which are high enough to locally open cracks. The appearance and localization of cracks depend on both the interface geometry and the stress distribution in the metal/oxide system. (author)

  19. Kinetics that govern the release of tritium from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1986-01-01

    The Lithium Blanket Module (LBM) program being conducted at the Princeton Plasma Physics Laboratory requires that tritium concentrations as low as 0.1 nCi/g, bred in both LBM lithium oxide pellets and gram-size lithium samples, be measured with an uncertainty not exceeding +/-6%. This thesis reports two satisfactory methods of assaying LBM pellets and one satisfactory method of assaying lithium samples. Results of a fundamental kinetic investigation are also reported. The thermally driven release of tritium from neutron-irradiated lithium oxide pellets is studied between the temperatures of 300 and 400 0 C. The observed release clearly obeys first-order kinetics, and the governing activation energy appears to be 28.4 kcal/mole. Finally, a model is presented that may explain the thermally driven release of tritium from a lithium oxide crystal and assemblies thereof. It predicts that under most circumstances the release is controlled by either the diffusion of a tritiated species through the crystal, or by the desorption of tritiated water from it

  20. Family controlled firm, governance mechanisms and corporate performance: Evidence from Indonesia

    Directory of Open Access Journals (Sweden)

    Eko Suyono

    2016-07-01

    Full Text Available This study investigates, firstly, the influence of family-controlled firm on corporate performance, and secondly, the influences of corporate governance mechanisms including control variable on corporate performance in the companies listed on the Indonesian Stock Exchange. By using five years (2009-2013 company data, this study used Ordinary Least Square (OLS regression to test the hypotheses. The results based on OLS, indicate that family controlled firms tend to have better performance than non Family controlled firms. Moreover, in regard to the link between governance variables and corporate performance, only managerial ownership exhibits a positive relation with corporate performance, for both proxies, i.e. Tobins Q and ROA. Yet, the rests of governance variables (i.e. institutional ownership, audit committee, board of directors and independent board of commissioners do not confirm the relationship with corporate performance. These findings have significant policy implications for the government, regulatory bodies, companies and other stakeholders including the investors in Indonesia to shape and implement an optimal governance system that can improve corporate performance.

  1. Governance mechanisms for healthcare apps

    DEFF Research Database (Denmark)

    Manikas, Konstantinos; Hansen, Klaus Marius; Kyng, Morten

    2014-01-01

    The introduction of the `app store' concept has challenged the way software is distributed and marketed: developers have easier access to customers, while customers have easy access to innovative applications. Apps today are increasingly focusing on more "mission-critical" areas like healthcare...... with the Apple AppStore counting more than 40,000 apps under the category "health & fitness". This rapid development of healthcare apps increases the necessity of governance as, currently, healthcare apps are not thoroughly governed. The U.S. Food and Drug Administration and the European Commission only have...... policies for apps that are medical devices.In this paper, we approach the problem of how to govern healthcare and medical apps by addressing the risks the use of these apps pose, while at the same time inviting for development of new apps. To do so we (i) analyze four cases of healthcare app governance...

  2. Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation

    Science.gov (United States)

    Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.

    2013-09-01

    Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.

  3. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  4. Project governance: selected South African government experiments

    Directory of Open Access Journals (Sweden)

    G. van der Walt

    2008-07-01

    Full Text Available Some form of accountability and power structure binds all organisations. Such structures are typically referred to as the “governance” structure of the organisation. In organisations that have relatively mature project applications and methodologies in place, governance mechanisms are established on more permanent bases. With its focus on performance, results and outcomes, project governance establishes decision-making structures, as well as accountability and responsibility mechanisms in public institutions to oversee projects. As government institutions increasingly place emphasis on project applications for policy implementation and service delivery initiatives, mechanisms or structures should be established to facilitate clear interfaces between the permanent organisation and the temporary project organisation. Such mechanisms or structures should enhance the governance of projects, that is, the strategic alignment of projects, the decentralisation of decision- making powers, rapid resource allocation, and the participation of external stakeholders. The purpose of this article is to explore the concept “project governance”, and to highlight examples of project governance as applied in selected government departments in provincial and national spheres. This would enable the establishment of best practice examples and assist to develop benchmarks for effective project applications for service delivery improvement.

  5. Corporate governance, accountability and mechanisms of accountability : an overview

    OpenAIRE

    Brennan, Niamh; Solomon, J. (Jill)

    2008-01-01

    Purpose – This paper reviews traditional corporate governance and accountability research, to suggest opportunities for future research in this field. The first part adopts an analytical frame of reference based on theory, accountability mechanisms, methodology, business sector/context, globalisation and time horizon. The second part of the paper locates the seven papers in the special issue in a framework of analysis showing how each one contributes to the field. The paper presents a frame o...

  6. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  7. Mechanism of the oxidation of diphenylamine compounds

    International Nuclear Information System (INIS)

    Pankratov, A.N.; Shmakov, S.L.; Mushtakova, S.P.; Gribov, L.A.

    1986-01-01

    A spectrophotometric, radiospectroscopic, and quantum chemical study of the oxidation of compounds of the diphenylamine series in acid medium has made it possible to establish a common reaction scheme for amines with different types of substituents and to determine certain details of the reaction mechanism: the participation of protonated amine molecules in the interaction with the oxidizing agent; intermediate formation of radical cations of the type of diphenylamine and N,N'-diarylbenzidine; the concrete directions of the dimerization of radical cations of diarylamines with the participation of the para-carbon atoms of the aromatic rings

  8. Governance mechanisms, investment opportunity set and SMEs cash holdings

    OpenAIRE

    Belghitar, Yacine; Khan, James

    2013-01-01

    This study analyses the effect of firm characteristics and governance mechanisms on cash holdings for a sample of UK SMEs. The results show that UK SMEs with greater cash flow volatility and institutional investors hold more cash; whereas levered and dividend paying SMEs with non-executive ownership hold less cash. We also find that ownership structure is significant only in explaining the cash holdings for firms with high growth investment opportunities, and leverage is only significant in e...

  9. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  10. Oxidative stress and mechanisms of ochronosis in alkaptonuria.

    Science.gov (United States)

    Braconi, Daniela; Millucci, Lia; Bernardini, Giulia; Santucci, Annalisa

    2015-11-01

    Alkaptonuria (AKU) is a rare metabolic disease due to a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD), involved in Phe and Tyr catabolism. Due to such a deficiency, AKU patients undergo accumulation of the metabolite homogentisic acid (HGA), which is prone to oxidation/polymerization reactions causing the production of a melanin-like pigment. Once the pigment is deposited onto connective tissues (mainly in joints, spine, and cardiac valves), a classical bluish-brown discoloration is imparted, leading to a phenomenon known as "ochronosis", the hallmark of AKU. A clarification of the molecular mechanisms for the production and deposition of the ochronotic pigment in AKU started only recently with a range of in vitro and ex vivo human models used for the study of HGA-induced effects. Thanks to redox-proteomic analyses, it was found that HGA could induce significant oxidation of a number of serum and chondrocyte proteins. Further investigations allowed highlighting how HGA-induced proteome alteration, lipid peroxidation, thiol depletion, and amyloid production could contribute to oxidative stress generation and protein oxidation in AKU. This review briefly summarizes the most recent findings on HGA-induced oxidative stress in AKU, helping in the clarification of the molecular mechanisms of ochronosis and potentially providing the basis for its pharmacological treatment. Future work should be undertaken in order to validate in vivo the results so far obtained in in vitro AKU models. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-01-01

    Full Text Available Diabetic retinopathy (DR is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.

  12. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Science.gov (United States)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  13. The Influence of Corporate Governance Mechanism on the Relationship between Related Party Transactions and Earnings Management

    Directory of Open Access Journals (Sweden)

    Aria Farah Mita

    2014-04-01

    Full Text Available The objective of this study is to investigate the relationship between related party transactions (RPT and earnings management. This study argues there is a different influence between RPT a priori likely to result in expropriation and RPT a priori not likely to result in expropriation. RPT a priori likely to result in expropriation creates an incentive to management or controlling shareholder to overstate income to cover or mask their expropriation. This study uses non-absolute discretionary accruals based on Kazsnik model to proxy earnings management. Corporate governance mechanism should reduce the incentive to overstate income in a company that involves in RPT a priori likely to result in expropriation. The results of this study show that the earnings management (income increasing is affected by the existence of RPT a priori likely to result in expropriation and corporate governance mechanism, but it is not affected by the size/value of the transactions. As expected, companies involving in RPT a priori likely to result in expropriation with weak corporate governance mechanism, tend to manage earnings that increase income. We find that strong corporate governance mechanism decreases the discretionary accruals in companies which have RPT a priori likely to result in expropriation.

  14. Revised mechanism of Boyland-Sims oxidation.

    Science.gov (United States)

    Marjanović, Budimir; Juranić, Ivan; Cirić-Marjanović, Gordana

    2011-04-21

    New computational insights into the mechanism of the Boyland-Sims oxidation of arylamines with peroxydisulfate (S(2)O(8)(2-)) in an alkaline aqueous solution are presented. The key role of arylnitrenium cations, in the case of primary and secondary arylamines, and arylamine dications and immonium cations, in the case of tertiary arylamines, in the formation of corresponding o-aminoaryl sulfates, as prevalent soluble products, and oligoarylamines, as prevalent insoluble products, is proposed on the basis of the AM1 and RM1 computational study of the Boyland-Sims oxidation of aniline, ring-substituted (2-methylaniline, 3-methylaniline, 4-methylaniline, 2,6-dimethylaniline, anthranilic acid, 4-aminobenzoic acid, sulfanilic acid, sulfanilamide, 4-phenylaniline, 4-bromoaniline, 3-chloroaniline, and 2-nitroaniline) and N-substituted anilines (N-methylaniline, diphenylamine, and N,N-dimethylaniline). Arylnitrenium cations and sulfate anions (SO(4)(2-)) are generated by rate-determining two-electron oxidation of primary and secondary arylamines with S(2)O(8)(2-), while arylamine dications/immonium cations and SO(4)(2-) are initially formed by two-electron oxidation of tertiary arylamines with S(2)O(8)(2-). The subsequent regioselectivity-determining reaction of arylnitrenium cations/arylamine dications/immonium cations and SO(4)(2-), within the solvent cage, is computationally found to lead to the prevalent formation of o-aminoaryl sulfates. The formation of insoluble precipitates during the Boyland-Sims oxidation of arylamines was also computationally studied.

  15. Effects of oxidation in the mechanical behavior of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos.

    1981-07-01

    The kinetics of oxidation of zircaloy-4 is isothermally studied utilizing discontinous gravimetric method under two different oxidizing conditions, using gaseous oxigen and steam. The total weight gain during oxidation occurs in two different way: formation of oxide and solid solution. A mechanical test for studying the effect of embrittlement due to the absorption of oxygen in small zircalloy tubes have been developed. (Author) [pt

  16. Mechanism of UO2 selfdisintegration by oxidation

    International Nuclear Information System (INIS)

    Ohai, D.; Furtuna, I.; Dumitrescu, I.

    2008-01-01

    Full text: The paper present the results of the study of UO 2 sintered pellets oxidation, part of FIPRED (Fission Product Release from Debris Bed) Project. The FIPRED Project is dedicated to the study the fission products release from irradiated pellets existing in debris bed. The product release is produced by oxidative self disintegration of sintered pellets at air ingress and it depends on temperature. The experimental program covered experiments of 300-1000 deg. C in air diluted with nitrogen at different oxygen concentrations. The experiments were performed using the SETARAM thermo gravimetric equipment and the FIPRED EQ equipment designed and manufactured especially for this type of experiment. The powders (fragments), resulted from UO 2 pellets self disintegration, were characterized by sieving and SEM. The self disintegration mechanism was demonstrated using the experimental results obtained and thermodynamical data of uranium oxides. (authors)

  17. Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers on morphological, optical, and mechanical properties of nanostructured unsaturated polyester.

    Science.gov (United States)

    Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka

    2014-01-22

    Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.

  18. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie

    2009-12-10

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  19. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie; Piccolo, Laurent; Morfin, Franck; Avenier, Priscilla; Diehl, Fabrice; Caps, Valerie; Rousset, Jean Luc

    2009-01-01

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  20. CARDIOVASCULAR DISEASES, SUSCEPTIBILITY TO OXIDATIVE INJURY AND COMPENSATORY MECHANISMS: INSIGHTS FROM RODENT MODELS

    Science.gov (United States)

    Cardiovascular diseases (CVD) are the number one cause for human mortality and nearly 25% of the population develops chronic CVD at an age of 65 years or older. Environmental and genetic interactions govern pathogenesis. Increased oxidative stress and compromised antioxidant stat...

  1. 'Good Governance' dan 'Governability'

    Directory of Open Access Journals (Sweden)

    - Pratikno

    2005-03-01

    Full Text Available The article endeavors to trace the outset of governance concept, its dominant meanings and discourse, and its implication towards governability. The central role of government in the governing processes has predominantly been adopted. The concept of governance was emerged precisely in the context of the failure of government as key player in regulation, economic redistribution and political participation. Governance is therefore aimed to emphasize pattern of governing which are based both on democratic mechanism and sound development management. However, practices of such good governance concept –which are mainly adopted and promoted by donor states and agencies– tend to degrade state and/or government authority and legitimacy. Traditional function of the state as sole facilitator of equal societal, political and legal membership among citizens has been diminished. The logic of fair competition has been substituted almost completely by the logic of free competition in nearly all sectors of public life. The concept and practices of good governance have resulted in decayed state authority and failed state which in turn created a condition for "ungovernability". By promoting democratic and humane governance, the article accordingly encourages discourse to reinstall and bring the idea of accountable state back in.

  2. Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites.

    Science.gov (United States)

    Xie, Wanting; Tadepalli, Sirimuvva; Park, Sang Hyun; Kazemi-Moridani, Amir; Jiang, Qisheng; Singamaneni, Srikanth; Lee, Jae-Hwang

    2018-02-14

    Biological materials have the ability to withstand extreme mechanical forces due to their unique multilevel hierarchical structure. Here, we fabricated a nacre-mimetic nanocomposite comprised of silk fibroin and graphene oxide that exhibits hybridized dynamic responses arising from alternating high-contrast mechanical properties of the components at the nanoscale. Dynamic mechanical behavior of these nanocomposites is assessed through a microscale ballistic characterization using a 7.6 μm diameter silica sphere moving at a speed of approximately 400 m/s. The volume fraction of graphene oxide in these composites is systematically varied from 0 to 32 vol % to quantify the dynamic effects correlating with the structural morphologies of the graphene oxide flakes. Specific penetration energy of the films rapidly increases as the distribution of graphene oxide flakes evolves from noninteracting, isolated sheets to a partially overlapping continuous sheet. The specific penetration energy of the nanocomposite at the highest graphene oxide content tested here is found to be significantly higher than that of Kevlar fabrics and close to that of pure multilayer graphene. This study evidently demonstrates that the morphologies of nanoscale constituents and their interactions are critical to realize scalable high-performance nanocomposites using typical nanomaterial constituents having finite dimensions.

  3. Mechanism-Based Design of Green Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rybak-Akimova, Elena [Tufts Univ., Medford, MA (United States)

    2015-03-16

    situation. Growing families of synthetic iron complexes that resemble active sites of metalloenzymes produce metal-based intermediates (rather than hydroxyl radicals) in reactions with oxygen donors. These complexes are very promising for selective oxygen and peroxide activation. In order to understand the mechanisms of metal-based small molecule activation, kinetically competent metal-oxygen intermediates must be identified. One of the grand challenges identified by the Department of Energy workshop "Catalysis for Energy" is understanding mechanisms and dynamics of catalyzed reactions. The research summarized herein focuses on detailed characterization of the formation and reactivity of various iron-peroxo- and iron-oxo intermediates that are involved in catalysis. Rates of rapid reactions were studied at low temperatures by a specialized technique termed cryogenic stopped-flow spectrophotometry. These measurements identified reaction conditions which favor the formation of catalytically competent oxidants. Chemical structures of reactive complexes was determined, and new, efficient catalysts for hydrocarbon oxidation were synthesized. Importantly, these catalysts are selective, they promote oxidation of hydrocarbons at a specific site. The catalysts are also efficient and robust, hundreds of cycles of substrate oxidation occur within minutes at room temperature. Furthermore, they enable utilization of environmentally friendly oxidants, such as hydrogen peroxide, which produces water as the only byproduct. Mechanistic insights uncovered the role of various acid-containing additives in catalytic oxidations. Proton delivery to the active catalytic sites facilitated oxidations, similarly to the catalytic pathways in metal-containing enzymes. Under certain conditions, two metals in one complex can act in concert, modeling the reactivity of a bacterial enzyme which converts methane into methanol. In related studies, a family of nickel complexes that react with carbon dioxide at

  4. Stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts GaSb/sub 19/O/sub x/, GaSb/sub 3/Ni/sub 1.5/0/sub x/, and GaSb/sub 2.5/Ni/sub 1.5/PW/sub 0//sub 0.25/O/sub x/ was studied at 450/sup 0/ and 550/sup 0/C by introducing alternating pulses of 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/helium (to reduce the steady-state catalytic surface) and 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/1.86Vertical Bar3< oxygen/helium mixtures into a fluidized-bed catalytic reactor. Over all the catalysts studied, the rates of acrylonitrile formation during the two types of pulses were very similar, but carbon dioxide was formed much faster during the reducing pulses, particularly at 450/sup 0/C. These findings suggested that acrylonitrile is formed by a stepwise redox mechanism involving consecutive interaction of propane and ammonia with the surface oxygen of the catalysts and oxidation of the reduced catalyst surface by gas-phase oxygen. The formation of carbon dioxide proceeds by both stepwise and associative mechanisms, the latter being more important at higher temperatures. The results are similar to published results for ammoxidation of propylene and olefins.

  5. The study of the oxidation of the natural flavonol fisetin confirmed quercetin oxidation mechanism

    International Nuclear Information System (INIS)

    Ramešová, Šárka; Sokolová, Romana; Degano, Ilaria

    2015-01-01

    Highlights: • The oxidation mechanisms of fisetin and quercetin were compared. • The oxidation product of fisetin was identified even if it was not stable. • A benzofuranon derivative is the common oxidation product of flavonols. • Fisetin decomposes in solution during minutes handled in the presence of air. - Abstract: Oxidation of the bioactive flavonoid fisetin was studied under inert atmosphere and under ambient conditions. The presence of fast subsequent chemical reactions following the electron transfer was supported by in situ spectroelectrochemistry and identification of products by HPLC-DAD and HPLC–ESI-MS/MS. In the absence of oxygen, 2,6-dihydroxy-2-(3′,4′-dihydroxybenzoyl)-benzofuran-3(2H)-one was identified as the only oxidation product of fisetin. This product was found also as the main oxidation product in the presence of oxygen. The oxidation pathway leading to formation of a benzofuranone derivative can be considered as common for flavonols containing C2-C3 double bond, C3-OH group and dihydroxy-substituted phenyl moiety in its structure. This product was not stable and decomposed further even in contact with oxygen coming from eluents during chromatography. Two oxidation pathways occur under ambient conditions. DFT calculations support the result.

  6. Gaps in governance: protective mechanisms used by nurse leaders when policy and practice are misaligned.

    Science.gov (United States)

    Knight, Kaye M; Kenny, Amanda; Endacott, Ruth

    2015-04-09

    Due to large geographical distances, the telephone is central to enabling rural Australian communities to access care from their local health service. While there is a history of rural nurses providing care via the telephone, it has been a highly controversial practice that is not routinely documented and little is known about how the practice is governed. The lack of knowledge regarding governance extends to the role of Directors of Nursing as clinical leaders charged with the responsibility of ensuring practice safety, quality, regulation and risk management. The purpose of this study was to identify clinical governance processes related to managing telephone presentations, and to explore Directors of Nursing perceptions of processes and clinical practices related to the management of telephone presentations to health services in rural Victoria, Australia. Qualitative documentary analysis and semi structured interviews were used in the study to examine the content of health service policies and explore the perceptions of Directors of Nursing in eight rural health services regarding policy content and enactment when people telephone rural health services for care. Participants were purposively selected for their knowledge and leadership role in governance processes and clinical practice. Data from the interviews were analysed using framework analysis. The process of analysis resulted in the identification of five themes. The majority of policies reviewed provided little guidance for managing telephone presentations. The Directors of Nursing perceived policy content and enactment to be largely inadequate. When organisational structures failed to provide appropriate governance for the context, the Directors of Nursing engaged in protective mechanisms to support rural nurses who manage telephone presentations. Rural Directors of Nursing employed intuitive behaviours to protect rural nurses practicing within a clinical governance context that is inadequate for the

  7. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  8. Energy Efficiency Governance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The purpose of this report is to help EE practitioners, government officials and stakeholders to establish the most effective EE governance structures, given their specific country context. It also aims to provide readers with relevant and accessible information to support the development of comprehensive and effective governance mechanisms. The International Energy Agency (IEA) conducted a global review of many elements of EE governance,including legal frameworks, institutional frameworks, funding mechanisms, co-ordination mechanisms and accountability arrangements, such as evaluation and oversight. The research tools included a survey of over 500 EE experts in 110 countries, follow-up interviews of over 120 experts in 27 countries and extensive desk study and literature searches on good EE governance.

  9. Atmospheric oxidation mechanism of toluene.

    Science.gov (United States)

    Wu, Runrun; Pan, Shanshan; Li, Yun; Wang, Liming

    2014-06-26

    The atmospheric oxidation mechanism of toluene initiated by OH radical addition is investigated by quantum chemistry calculations at M06-2X, G3MP2-RAD, and ROCBS-QB3 levels and by kinetics calculation by using transition state theory and unimolecular reaction theory coupled with master equation (RRKM-ME). The predicted branching ratios are 0.15, 0.59, 0.05, and 0.14 for OH additions to ipso, ortho, meta, and para positions (forming R1-R4 adducts), respectively. The fate of R2, R4, and R1 is investigated in detail. In the atmosphere, R2 reacts with O2 either by irreversible H-abstraction to form o-cresol (36%), or by reversible recombination to R2-1OO-syn and R2-3OO-syn, which subsequently cyclize to bicyclic radical R2-13OO-syn (64%). Similarly, R4 reacts with O2 with branching ratios of 61% for p-cresol and 39% for R4-35OO-syn, while reaction of R1 and O2 leads to R1-26OO-syn. RRKM-ME calculations show that the reactions of R2/R4 with O2 have reached their high-pressure limits at 760 Torr and the formation of R2-16O-3O-s is only important at low pressure, i.e., 5.4% at 100 Torr. The bicyclic radicals (R2-13OO-syn, R4-35OO-syn, and R1-26OO-syn) will recombine with O2 to produce bicyclic alkoxy radicals after reacting with NO. The bicyclic alkoxy radicals would break the ring to form products methylglyoxal/glyoxal (MGLY/GLY) and their corresponding coproducts butenedial/methyl-substituted butenedial as proposed in earlier studies. However, a new reaction pathway is found for the bicyclic alkoxy radicals, leading to products MGLY/GLY and 2,3-epoxybutandial/2-methyl-2,3-epoxybutandial. A new mechanism is proposed for the atmospheric oxidation mechanism of toluene based on current theoretical and previous theoretical and experimental results. The new mechanism predicts much lower yield of GLY and much higher yield of butenedial than other atmospheric models and recent experimental measurements. The new mechanism calls for detection of proposed products 2

  10. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Laboratory, Richland, WA (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1999-12-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress-corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary-side IG attack or IGSCC is commonly attributed to the presence of strong, caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work conducted in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  11. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Lab., Richland, Washington (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1998-07-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  12. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Gendron, T.S.; Scott, P.M.; Bruemmer, S.M.; Thomas, L.E.

    1998-01-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  13. Quantum chemical investigation of mechanisms of silane oxidation

    DEFF Research Database (Denmark)

    Mader, Mary M.; Norrby, Per-Ola

    2001-01-01

    Several mechanisms for the peroxide oxidation of organosilanes to alcohols are compared by quantum chemical calculations, including solvation with the PCM method. Without doubt, the reaction proceeds via anionic, pentacoordinate silicate species, but a profound difference is found between in vacuo...

  14. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  15. Oxidized Metal Powders for Mechanical Shock and Crush Safety Enhancers; TOPICAL

    International Nuclear Information System (INIS)

    GARINO, TERRY J.

    2002-01-01

    The use of oxidized metal powders in mechanical shock or crush safety enhancers in nuclear weapons has been investigated. The functioning of these devices is based on the remarkable electrical behavior of compacts of certain oxidized metal powders when subjected to compressive stress. For example, the low voltage resistivity of a compact of oxidized tantalum powder was found to decrease by over six orders of magnitude during compaction between 1 MPa, where the thin, insulating oxide coatings on the particles are intact, to 10 MPa, where the oxide coatings have broken down along a chain of particles spanning the electrodes. In this work, the behavior of tantalum and aluminum powders was investigated. The low voltage resistivity during compaction of powders oxidized under various conditions was measured and compared. In addition, the resistivity at higher voltages and the dielectric breakdown strength during compaction were also measured. A key finding was that significant changes in the electrical properties persist after the removal of the stress so that a mechanical shock enhancer is feasible. This was verified by preliminary shock experiments. Finally, conceptual designs for both types of enhancers are presented

  16. Research progress in formation mechanism of anodizing aluminum oxide

    Science.gov (United States)

    Lv, Yudong

    2017-12-01

    The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.

  17. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453 (Russian Federation); Kapralov, Alexandr A. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Michael, Zachary P.; Burkert, Seth C. [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shurin, Michael R. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Star, Alexander [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shvedova, Anna A., E-mail: ats@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-05-15

    Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells – myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase – to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and ‘unmasking’ of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. - Highlights: • Nanoparticles can be degraded by

  18. Corporate Governance at the Nacional Telecommunications Agency (ANATEL as a mechanism to improve the Agency’s Management

    Directory of Open Access Journals (Sweden)

    Fábio de Paula e Souza

    2016-04-01

    Full Text Available In the current scenario facing the country's government crisis of confidence, transparency and relationship with society, corporate governance is an important tool to monitor and improve the management, governance and corporate social responsibility in public organizations. The application of this mechanism in the National Telecommunications Agency (ANATEL has great impact to the economy and technological development of the country, capturing investments in the telecommunications sector, generating confidence to investors and stimulating competition between companies, which can offer products with best quality and services at affordable prices for consumers in Brazil. This paper investigates and analyzes by the theory of regulation, guides and reports, corporate governance as a mechanism to improve the management in ANATEL, using references, legislation and other documents in order to examine the transparency, fairness, accountability (providing accounts and corporate social responsibility in the Agency.

  19. Governance mechanisms in transnational business relationships

    OpenAIRE

    Homburg, Christian; Kiedaisch, Ingo; Cannon, Joseph P.

    1999-01-01

    Empirical research on buyer-supplier relationships has almost exclusively examined domestic (both firms from the same country) exchange. The growing importance of international marketing and global sourcing suggest a need to understand relationships across national boundaries -- transnational business relationships. Drawing on theories of governance, the authors hypothesize differences in governance between domestic and transnational business relationships. They examine the use...

  20. [Isolation and identification of Mn oxidizing bacterium Aminobacter sp. H1 and its oxidation mechanism].

    Science.gov (United States)

    Yan, Ping; Jiang, Li-Ying; Chen, Jian-Meng; He, Zhi-Min; Xiao, Shao-Dan; Jiang, Yi-Feng

    2014-04-01

    A bacterium with high manganese oxidizing activity was isolated from a biological manganese removal filter and named as H1. Based on its characteristics and the analysis of 16S rDNA sequence, the strain H1 belonged to the genus Aminobacter sp. and its manganese oxidizing ability had never been reported. In this paper, the microbiologic properties of the strain H1, the manganese oxidation mechanisms and characteristics of biogenic manganese oxides were investigated. The results showed that the maximal tolerant Mn concentration of strain H1 was 50 mmol x L(-1), and Mn(II) could be completely removed by strain H1 when the concentration was lower than 10 mmol x L(-1). Strain H1 could oxidize Mn2+ by both the production of manganese oxidizing activity factor and alkaline metabolites during growth, which were synthesized in the cell and then secreted into extracellular culture medium. During the oxidation process, the intermediate of soluble Mn(III) was detected. SEM showed that the biogenic manganese oxides were amorphous and poorly-crystalline, and it closely combined with bacteria. The components of the biogenic manganese oxides produced by strain H1 were identified as MnCO3, MnOOH, Mn3O4 and MnO2 by XRD, XPS and SEM-EDX.

  1. Mechanisms of e-government activity in the Republic of Moldova compared to the decision-making framework of EU internationalization

    Directory of Open Access Journals (Sweden)

    Victoria GOREA

    2016-06-01

    Full Text Available The performances of the macrosystem e-Government denotes the macro and microenvironments of decision moving through the implementation and application of a variety of mechanisms and tools, which being diversified contribute to fortifying the common public opinion. The cyber administration develops the most important mechanisms to reinforce the uniformity of the microenvironment e-Government. The Republic of Moldova is a component and participative part of the evolutionary decisional microsystem of e-Government similar to the directives of the macrosystem vectors.

  2. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    International Nuclear Information System (INIS)

    Kim, Sang Woo

    2016-01-01

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions

  3. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Dept. of Mechanical Engineering, Institute of Machine Convergence Technology, Hankyong National University, Anseong (Korea, Republic of)

    2016-10-15

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions.

  4. Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry.

    Science.gov (United States)

    Matsuo, Yosuke

    2017-01-01

    In recent years, plant polyphenols have attracted great attention due to their wide range of biological activities. Certain kinds of polyphenols have complex structures; therefore, it is difficult to elucidate their total structure, including stereochemistry. In this study, we reinvestigated the stereostructures of two major C-glycosidic ellagitannins contained in Quercus plants, vescalagin and castalagin, and revised their stereostructures based on theoretical calculations of spectroscopic data. We also determined the structures of quercusnins A and B, isolated from the sapwood of Quercus crispula, based on theoretical calculations of NMR data. The oxidation mechanism of polyphenols has not been entirely elucidated. Therefore, we have also studied the oxidation mechanism of tea catechins during black tea production. Our investigation of the oxidation mechanism of black tea pigment theaflavins revealed that the difference in the position of the galloyl ester affords different oxidation products of theaflavins. In addition, oxidation products of pyrogallol-type catechins could be classified into three types-dehydrotheasinensins, theacitrins, and proepitheaflagallins; their detailed production and degradation mechanisms were also examined.

  5. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics

    International Nuclear Information System (INIS)

    Li Liang; Liu Yan

    2009-01-01

    This paper investigated the mechanism and pseudo-kinetics for removal of ammonia by electrochemical oxidation with RuO 2 /Ti anode using batch tests. The results show that the ammonia oxidation rates resulted from direct oxidation at electrode-liquid interfaces of the anode by stepwise dehydrogenation, and from indirect oxidation by hydroxyl radicals were so slow that their contribution to ammonia removal was negligible under the condition with Cl - . The oxidation rates of ammonia ranged from 1.0 to 12.3 mg N L -1 h -1 and efficiency reached nearly 100%, primarily due to the indirect oxidation of HOCl, and followed pseudo zero-order kinetics in electrochemical oxidation with Cl - . About 88% ammonia was removed from the solution. The removed one was subsequently found in the form of N 2 in the produced gas. The rate at which Cl - lost electrons at the anode was a major factor in the overall ammonia oxidation. Current density and Cl - concentration affected the constant of the pseudo zero-order kinetics, expressed by k = 0.0024[Cl - ] x j. The ammonia was reduced to less than 0.5 mg N L -1 after 2 h of electrochemical oxidation for the effluent from aerobic or anaerobic reactors which treated municipal wastewater. This result was in line with the strict discharge requirements

  6. Investigating the Relationship between Governance Mechanisms and the Disclosure of IT Control Weaknesses

    Science.gov (United States)

    Hamdan, Basil

    2012-01-01

    The current research is concerned with exploring the quality of information technology (IT) control over financial reporting systems as reported under Section 404 of the Sarbanes-Oxley Act of 2002. More specifically, this dissertation examines the association between organizational governance mechanisms and the occurrence and subsequent disclosure…

  7. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    Halbert, B.B.; Scharer, J.M.; Knapp, R.A.

    1984-07-01

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  8. Patching security governance : an empirical view of emergent governance mechanisms for cybersecurity

    NARCIS (Netherlands)

    van Eeten, M.J.G.

    2017-01-01

    Purpose: The issue of cybersecurity has been cast as the focal point of a fight between two conflicting governance models: the nation-state model of national security and the global governance model of multi-stakeholder collaboration, as seen in forums like IGF, IETF, ICANN, etc. There is a

  9. Mechanism of calcium oxide excitation by atom hydrogen

    International Nuclear Information System (INIS)

    Kharlamov, V.F.

    1991-01-01

    Heterogeneous recombination of hydrogen atoms on the surface of calcium oxide proceeds according to the Langmuir-Hinshelwood mechanism with participation of atoms in two different states, belonging to adsorption centres of the same type. CaO excitation is broughty about by vibration-electron transitions during associative desorption of H 2 molecules

  10. Internal corporate governance mechanisms and audit report lag: A study of Malaysian listed companies

    Directory of Open Access Journals (Sweden)

    Ummi Junaidda Binti Hashim

    2012-11-01

    Full Text Available This study attempts to investigate the link between corporate governance mechanisms and audit report lag for companies listed on Bursa Malaysia from 2007 to 2009. The 288 companies listed on Bursa Malaysia have been randomly selected. The corporate governance mechanisms examined include the board of directors and audit committee. It shows that there are significant negative relationships between board diligence, audit committee independence and expertise. The higher the number of meetings being held indicates that the board is discharging their role towards the company. The results show that audit committee independence and audit committee expertise could assist in reducing audit report lag among companies in Malaysia. Its provide some evidence supporting the resource based theory, whereby characteristics of the audit committee, such as the resources and capabilities, could improve companies’ performance as well as corporate reporting.However, it could not provide any evidence concerning the link between board independence, board expertise, CEO duality and audit committee diligence on audit report lag. This study provides comprehensive examination of ARL on Malaysian listed companies for three years period. It is consider the initial study to provide a thorough examination of the association between corporate governance characteristics and ARL.

  11. Relationship between Marketing Strategies and Governance Mechanisms: A Study in Exploration Chain Beef Cattle

    Directory of Open Access Journals (Sweden)

    Filipe Quevedo-Silva

    2015-09-01

    Full Text Available The relationship between actors has been unspoilt by marketing through the bias of Transaction Costs Economics. Some authors suggest that a marketing strategy can directly impact the transactional characteristics and hence the governance mechanisms chosen to coordinate transactions. Studies suggest that future work in the field of marketing include, among other factors, aspects related to the relationship between the actors. In this context, this article aims to analyze how marketing strategies can affect the choice of governance mechanisms. The study object is the chain of beef, view their representation to the national economy. To this end, we conducted a qualitative study using semi-structured interviews with various actors in the chain. It was possible to verify the existence of the relationship between marketing strategy and governance structure. In one of the cases, product differentiation, translated into more specific assets, led the producer to perform a relational contract with the fridge and to distribute your product, make an integration with retailers, through the opening of a boutique of meat. Factor that was not observed in transactions involving producers on products without distinction, for which the transactions via spot market are prevalent.  

  12. The Generative Mechanisms of Open Government Data

    DEFF Research Database (Denmark)

    Jetzek, Thorhildur; Avital, Michel; Bjørn-Andersen, Niels

    2013-01-01

    The exponentially growing production of data enables global connectivity as well as increased openness and sharing, which turn into a powerful force that is changing the global economy and society. Governments around the world have become active participants in this evolution by opening up...... their data for access and re-use by public and private agents alike. The recent phenomenon of Open Government Data (OGD) has spread around the world, driven by the proposition that opening government data has the ability to generate both economic and social value. However, a review of the academic research...

  13. Oxidative Damage and Its Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2016-06-01

    Full Text Available Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNAdamage, then to investigate the possible mechanism.Methods: The protective effect was evaluated based on the content of malondialdehyde(MDA. The possible mechanism was analyzed using various antioxidant methods in vitro,including •OH scavenging (deoxyribose degradation, •O2- scavenging (pyrogallolautoxidation, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays.Results: Fisetin increased dose-dependently its protective percentages against •OH-inducedDNA damage (IC50 value =1535.00±29.60 μM. It also increased its radical-scavengingpercentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in•OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 μM, 34.05±0.87 μM, 9.69±0.53 μM, 2.43±0.14μM, and 1.49±0.16 μM, respectively.Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damagepossibly via reactive oxygen species (ROS scavenging approach, which is assumed to behydrogen atom (H• and/or single electron (e donation (HAT/SET pathways. In the HATpathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an importantrole, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  14. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    Energy Technology Data Exchange (ETDEWEB)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H2 generation and evolution of CO2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C3–C6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonyl group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.

  15. Differential effects of plural ownership and governance mechanisms in limiting shirkers and free riders

    OpenAIRE

    Silkoset, Ragnhild; Nygaard, Arne; Kidwell, Roland E.

    2016-01-01

    Using evidence from paired franchisor-franchisee dyads, this study identifies how plural formed ownership mechanisms curb the risk of shirking and free riding in franchise systems. These risks have damaging effects on the invested capital of franchisee entrepreneurs. Although shirking and free riding produce a major source of uncertainty for the franchisee entrepreneur it can be limited by plural formed governance dimensions. These mechanisms have different effects based on unit status,...

  16. Interfaces and nanostructures of oxide octahedral frameworks

    Directory of Open Access Journals (Sweden)

    Felip eSandiumenge

    2014-08-01

    Full Text Available In the past decade, the rich physics exhibited by solid interfaces combining octahedral framework structures of transition metal oxides has fascinated the materials science community. However, the behavior of these materials still elude the current understanding of classical semiconductor and metal epitaxy. The reason for that is rooted in the surprising versatility of linked coordination units to adapt to a dissimilar substrate and the strong sensitivity of correlated oxides to external perturbations. The confluence of atomic control in oxide thin film epitaxy, state of the art high spatial resolution characterization techniques, and electronic structure computations, has allowed in recent years to obtain first insights on the underlying microscopic mechanisms governing the epitaxy of these fascinating materials. Here, we shortly review these mechanisms and highlight their potential in the design of novel nanostructures with enhanced functionalities.

  17. Engineering design on main mechanism of a high throughput vol-oxidizer for decladding and vol-oxidation of rod-cuts

    International Nuclear Information System (INIS)

    Kim, Y. H.; Park, B. S.; Jung, J. H.; Yoon, J. S.; Kim, H. D.; Hwang, J. S.; Yoon, K. H.

    2008-01-01

    In this paper, we designed the main mechanisms for a high throughput device for the rod-cuts of a spent fuel. To design the main mechanisms, we evaluated the current mechanical (slitting, ball mill, roller straightening) and chemical methods (muffle furnace, rotary kiln). As a result, the methods for a ball drop and a rotary drum as concepts were selected at the analysis step. For an enhancement of the oxidation rate, we devised blades for the reactor as a mesh type. Also, for an enhancement of the decladding rate, we designed the ball size and the rotation of the reactor as a mesh type and devised a vacuum system for the fission products. We also designed the main mechanisms devices and tested the capacity of these devices. Mechanisms for the oxidation and recovery can simultaneously handle the rod-cuts of a spent fuel and provide an independent recovery. The results of the mechanisms designs can be used for a scale-up of a high throughput device

  18. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  19. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    Science.gov (United States)

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  20. Microstructure And Mechanical Properties Of Lead Oxide- Thermoplastic Elas Tomer Composite

    International Nuclear Information System (INIS)

    Sudirman; Handayani, Ari; Darwinto, Tri; Teguh, Yulius S.P.P.; Sunarni, Anik; Marlijanti, Isni

    2000-01-01

    Research on microstructure and mechanical properties of lead oxide-thermoplastic elastomer composite with Pb 3 O 4 as lead oxide. Thermoplastic elastomer synthesized from natural rubber as the elastomer and methyl metacrilate as the thermoplastic and irradiated simultaneously with optimum gamma ray. Thermoplastic elastomer (NR-PMMA) grind in a laboplastomill and Pb 3 O 4 was added in varied amount of 10%. 30%. 40% and 50%wt.The results showed that mechanical properties (tensile strength and elongation break) decreased as the Pb 3 O 4 composition increased. Microstructure from SEM observation showed that Pb 3 O 4 distributed evenly and having function as filler in composite

  1. Mechanism and kinetics of the oxidation of synthetic alpha-NiS

    Directory of Open Access Journals (Sweden)

    BOYAN BOYANOV

    2008-02-01

    Full Text Available The results of an investigation of the mechanism and kinetics of the oxidation process of synthetic a-NiS are presented in this paper. The mechanism of a-NiS oxidation was investigated based on the comparative analysis of DTA–TG–DTG and XRD results, as well as the constructed phase stability diagrams (PSD for the Ni–S–O system. The kinetic investigations of the oxidation process were performed under isothermal conditions (temperature range 823–1073 K. The obtained degrees of desulfurization were used in the calculation process according to the Sharp model and the kinetic parameters, including the activation energies and the rate constants of the characteristic reactions, for the oxidation of a-NiS were determined. These results enabled the formulation of a kinetic equation for the desulfurization process: ‑ln(1−a = k1t = 27.89 exp(–9860/Tt, with an activation energy of 82±4 kJ mol-1, for the first stage of the process and –ln (1 − a = k2t = 1.177 exp(–4810/Tt, with an activation energy of 40±2 kJ mol-1, for the second stage.

  2. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2013-01-01

    satisfactorily oxidation of OCS over a wide range of stoichiometric air–fuel ratios (0.5 ≤λ≤7.3), temperatures (450–1700 K), and pressures (0.02–3.0 atm) under dry conditions. The governing reaction mechanisms are outlined based on calculations with the kinetic model. The oxidation rate of OCS is controlled...... by the competition between chain‐branching and ‐propagating steps; modeling predictions are particularly sensitive to the branching fraction for the OCS + O reaction to form CO + SO or CO2 + S....

  3. Decomposition mechanism of melamine borate in pyrolytic and thermo-oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hoffendahl, Carmen; Duquesne, Sophie; Fontaine, Gaëlle; Bourbigot, Serge, E-mail: serge.bourbigot@ensc-lille.fr

    2014-08-20

    Highlights: • Decomposition of melamine borate in pyrolytic and thermo-oxidative conditions was investigated. • With increasing temperature, orthoboric acid forms boron oxide releasing water. • Melamine decomposes evolving melamine, ammonia and other fragments. • Boron oxide is transformed into boron nitride and boron nitride-oxide structures through presence of ammonia. - Abstract: Decomposition mechanism of melamine borate (MB) in pyrolytic and thermo-oxidative conditions is investigated in the condensed and gas phases using solid state NMR ({sup 13}C and {sup 11}B), X-ray photoelectron spectroscopy (XPS), pyrolysis-gas chromatography–mass spectrometry (py-GCMS) and thermogravimetric analysis coupled with a Fourier transform infrared spectrometer (TGA–FTIR). It is evidenced that orthoboric acid dehydrates to metaboric and then to boron oxide. The melamine is partially sublimated. At the same time, melamine condensates, i.e., melem and melon are formed. Melon is only formed in thermo-oxidative conditions. At higher temperature, melem and melon decompose releasing ammonia which reacts with the boron oxide to form boron nitride (BN) and BNO structures.

  4. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    Science.gov (United States)

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  5. Mechanisms of damage to the oxide layer of cladding of fuel rods under accident conditions like RI

    International Nuclear Information System (INIS)

    Busser, Vincent

    2009-01-01

    During reactivity initiated accident, the importance of cladding tube oxidation on its thermomechanical behavior has been investigated. After RIA tests in experimental reactors oxide damage including radial cracking and spallation of the outer oxide layer has been evidenced. This work aims at better understanding the key mechanisms controlling these phenomena. Laboratory air-oxidation of Zircaloy-4 cladding tubes has been performed at 470 C. SEM micrographs show that radial cracks are initiated from the outer surface of the oxide layer and propagated radially towards the oxide-metal interface. A model predicting the stress evolution within the oxide and the depth of crack has been developed and validated on literature tests and tests of this study. Ring compression tests were used for the experimental study of the oxide degradation under mechanical loading. Experimental data revealed three mechanisms: densification of the radial crack network, propagation of these radial cracks, branching and spallation of oxide fragments. The influence of the circumferential cracks, periodically distributed in the oxide layer, on the stress distribution in oxide fragments has been analysed using finite element modelling. The determining influence of these cracks on the maximum stress oxide fragments has been demonstrated. (author)

  6. Protein kinase A governs oxidative phosphorylation kinetics and oxidant emitting potential at complex I

    Directory of Open Access Journals (Sweden)

    Daniel Stephen Lark

    2015-11-01

    Full Text Available The mitochondrial electron transport system (ETS is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC/cyclic AMP (cAMP/Protein kinase A (PKA axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduces complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowers both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS.

  7. Oxidation mechanism of porous Zr_2Fe used as a hydrogen getter

    International Nuclear Information System (INIS)

    Cohen, Dror; Nahmani, Moshe; Rafailov, Genadi; Attia, Smadar; Shamish, Zorik; Landau, Miron; Merchuk, Jose; Zeiri, Yehuda

    2016-01-01

    We determined the oxidation mechanism of porous ST-198, which mainly comprises Zr_2Fe. Oxidation kinetics depended on temperature, oxygen partial pressure, and oxidation extent. The passivation role of oxidation in hydrogen scavenging is probably due to the development of a surface oxide, independent of oxygen concentration. Zr_2Fe would be a superior hydrogen getter in oxygen-contaminated environments at high temperatures, as most oxygen will be consumed at the outer shell by mass transfer limitations, protecting the bulk of the getter for hydrogen scavenging. - Highlights: • Porous Zr_2Fe–O_2 interactions are characterized in detail. • Gettering efficiency at low temperature is hampered by oxide layer formation. • Gettering is better at high temperatures as outer shell consumes maximum oxygen.

  8. Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites

    Directory of Open Access Journals (Sweden)

    Cristina Monteserín

    2017-09-01

    Full Text Available Composites based on epoxy/graphene oxide (GO and epoxy/reduced graphene oxide (rGO were investigated for thermal-mechanical performance focusing on the effects of the chemical groups present on nanoadditive-enhanced surfaces. GO and rGO obtained in the present study have been characterized by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and X-ray powder diffraction (XRD demonstrating that materials with different oxidation degrees have been obtained. Thereafter, GO/epoxy and rGO/epoxy nanocomposites were successfully prepared and thoroughly characterized by dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. A significant increase in the glass transition temperature was found in comparison with the neat epoxy. The presence of functional groups on the graphene surface leads to chemical interactions between these functional groups on GO and rGO surfaces with the epoxy, contributing to the possible formation of covalent bonds between GO and rGO with the matrix. The presence of oxidation groups on GO also contributes to an improved exfoliation, intercalation, and distribution of the GO sheets in the composites with respect to the rGO based composites.

  9. Growth mechanisms of oxide scales on ODS alloys in the temperature range 1000-1100deg C

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1990-01-01

    After a short overview of the production, microstructure and mechanical properties of nickel- and iron-based oxide dispersion strengthened (ODS) alloys, the oxidation properties of this class of materials is extensively discussed. The excellent oxidation resistance of ODS alloys is illustrated by comparing their behaviour with conventional chromia and alumina forming wrought alloys of the same base composition. ODS alloys exhibit improved scale adherence, decreased oxide growth rates, enhanced selective oxidation and decreased oxide grain size compared to corresponding non-ODS alloys. It is shown, that these experimental observations can be explained by a change in oxide growth mechanism. The presence of the oxide dispersion reduces cation diffusion in the scale, causing the oxides on the ODS alloys to grow mainly by oxygen grain boundary transport. As oxide grain size increases with time, the oxide growth kinetics obey a sub-parabolic time dependence especially in the case of the alumina forming iron-based ODS alloy. (orig.) [de

  10. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.; Kutbee, Arwa T.; Ghodsi Nasseri, Seyed Faizelldin; Bersuker, G.; Hussain, Muhammad Mustafa

    2014-01-01

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect

  11. Testing the effectiveness of network governance mechanisms to foster ambidexterity of agricultural innovation networks in East and Central Africa

    NARCIS (Netherlands)

    Pérez Perdomo, Silvia Andrea; Farrow, Andrew; Trienekens, Jacques H.; Omta, Onno S.W.F.; Velde, van der Gerben

    2017-01-01

    We tested three innovation network governance mechanisms for exploring and exploiting innovation opportunities. We analysed household-level panel data from agricultural innovation networks in Uganda, the Democratic Republic of the Congo and Rwanda. We found that first-order governed networks

  12. Kinetics and mechanism of methane oxidation in supercritical water

    International Nuclear Information System (INIS)

    Rofer, C.K.; Streit, G.E.

    1988-10-01

    This project, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to achieve an understanding of the technology for use in scaling up and applying oxidation in supercritical water as a viable process for treating a variety of Department of Energy Defense Programs (DOE-DP) waste streams. This report presents experimental results for the kinetics of the oxidation of methane and methanol in supercritical water and computer modeling results for the oxidation of carbonmonoxide and methane in supercritical water. The experimental and modeling results obtained to date on these one-carbon model compounds indicate that the mechanism of oxidation in supercritical water can be represented by free-radical reactions with appropriate modifications for high pressure and the high water concentration. If these current trends are sustained, a large body of existing literature data on the kinetics of elementary reactions can be utilized to predict the behavior of other compounds and their mixtures. 7 refs., 4 figs., 3 tabs

  13. Study mechanism of growth and spallation of oxide scales formed after T91 steel oxidation in water vapor at 550 C

    International Nuclear Information System (INIS)

    Demizieux, Marie-Christine

    2015-01-01

    In the framework of the development of Generation IV reactors and specifically in the new Sodium Fast Reactor (SFR) project, Fe-9Cr ferritic-martensitic steels are candidates as structural materials for steam generators. Indeed, Fe-9Cr steels are already widely used in high temperature steam environments - like boilers and steam turbines- for their combination of creep strength and high thermal properties. Many studies have been focused on Fe-9Cr steels oxidation behavior between 550 C-700 C.Depending on the oxidizing environment, formation of a triplex (Fe-Cr spinel/magnetite/hematite) or duplex (Fe-Cr spinel/magnetite) oxide scales are reported.. Besides, for long time exposure in steam, the exfoliation of oxide scales can cause serious problems such as tube obstruction and steam turbine erosion. Consequently, this work has been dedicated to study, on the one hand the oxidation kinetics of T91 steel in water vapor environments, and on the other hand, the mechanisms leading to the spallation of the oxide scale. Oxidation tests have been carried out at 550 C in pure water vapor and in Ar/D_2O/H_2 environments with different hydrogen contents. Based on an analytical resolution, a quantitative modeling has shown that the 'available space model' proposed in the literature for duplex oxide scale formation well reproduces both scales growth kinetics and spinel oxide stoichiometry. Then, oxidized samples have been precisely characterized and it turns out that buckling then spalling of the oxide scale is always located in the magnetite layer. Voids observed in the magnetite layer are major initiation sites of de-cohesion of the outer oxide scale. A mechanism of formation of these voids has been proposed, in accordance with the mechanism of duplex scale formation. The derived model based on the assumption that vacancies accumulate where the iron vacancies flux divergence is maximal gives a good estimation of the location of pores inside the magnetite layer. Then, in order

  14. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Yuzhen Zhao

    2016-11-01

    Full Text Available Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  15. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    Science.gov (United States)

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    Science.gov (United States)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  17. Mechanisms of realization of THz-waves of nitrogen oxide occurrence physiological effects

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available In this review, there is generalized material of many experimental researches in interaction of THz-waves molecular emission and absorption spectrum (MEAS of nitrogen oxide occurrence with bioobjects. Thrombocytes and experimental animals were used as bioobjects. The experiments let indicate changes caused by THz-waves: at the cellular, tissular, system, organismic levels. There are all data of changes in physiological mechanisms of reglations at all levels: autocrine, paracrine, endocrine and nervous. There is a complex overview of experimental material firstly performed in the article. There had been shown that the effect of THz-waves of the given occurrence is realized by the changed activity of nitroxidergic system. It had been proved that THz-waves of nitrogen oxide occurrence can stimulate nitrogen oxide producing in organs and tissues in condition of its low concentration. Possible mechanisms of antiaggregative effect of the given waves had been described. There had been shown the possibility of regulating of vascular tone and system hemodynamics with the help of the studying these frequencies. The represented data of lipid peroxidation and enzymatic and nonenzymatic components of organism system under the influence of THz-waves of nitrogen oxide occurrence in stress conditions. Besides, there were shown changes of stress-regulating system activity and in concentration of important mediators - catecholamines and glucocorticosteroids. These data let characterize mechanism of realization of THz-waves basic effects. The research had shown the possibility of THz-waves of nitrogen oxide occurrence usage as a method of natural physiological noninvasive regulation of significant organism functions.

  18. Oxidation mechanism and passive behaviour of nickel in molten carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, J.P.T. (ECN Fossil Fuels, Petten (Netherlands)); Ament, P.C.H.; De Wit, J.H.W. (Div. of Corrosion, Lab. for Maaterials Sceince, Delft Univ. of Technology, Delft (Netherlands))

    1994-07-01

    The oxidation and passivation mechanism and the passive behaviour of nickel in molten carbonate have been investigated with impedance measurements. The oxidation of nickel proceeds according to a dissolution and reprecipitation process. The slowest steps in the reaction sequence are the dissociation reaction of the carbonate and the diffusion of the formed NiO to the metal surface. In the passive range, dissolution of Ni[sup 2+] proceeds after diffusion of Ni[sup 2+] through the oxide layer. The Ni[sup 2+] is formed at the metal/oxide interface. The slowest process is the diffusion of bivalent nickel ions through the passive scale. The formation of trivalent nickel ions probably takes place at the oxide/melt interface. This reaction is accompanied by the incorporation of an oxygen ion and a nickel vacancy in the NiO lattice. The trivalent nickel ions and the nickel vacancy diffuse to the bulk of the oxide scale. The slowest step in this sequence is the dissociation of the carbonate ions and the incorporation of the oxygen ion in the NiO lattice. 9 figs., 2 tabs., 11 refs.

  19. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    International Nuclear Information System (INIS)

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A.

    2005-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  20. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The

  1. Mechanical tearing of graphene on an oxidizing metal surface

    International Nuclear Information System (INIS)

    George, Lijin; Gupta, Aparna; Shaina, P R; Jaiswal, Manu; Gupta, Nandita Das

    2015-01-01

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3–0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp"3-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm. (paper)

  2. Mechanical tearing of graphene on an oxidizing metal surface.

    Science.gov (United States)

    George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-11

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  3. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    Science.gov (United States)

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  4. THE EFFECT OF CORPORATE GOVERNANCE MECHANISM, OWNERSHIP STRUCTURE, AND EXTERNAL AUDITOR TOWARD CORPORATE SOCIAL RESPONSIBILITY DISCLOSURE WITH EARNING MANAGEMENT AS MODERATING VARIABLE

    Directory of Open Access Journals (Sweden)

    Suwana M.A.J.

    2017-08-01

    Full Text Available The purpose of this study is to examine the moderating effect of earning management on corporate governance mechanism, ownership structure, and external auditor toward corporate social responsibility disclosure. This study finds that the increase of ownership structure (foreign ownership and institutional ownership will increase corporate social responsibility disclosure. However corporate governance mechanism and external auditor is not affecting corporate social responsibility disclosure. Furthermore, this study provides additional empirical evidence for agency theory especially agency cost, that corporate governance mechanism, ownership structure, and Big Four audit firm do not have an effective role as agency cost to prevent or decrease earning management practice.

  5. Making partner relationship management systems work: The role of partnership governance mechanisms

    OpenAIRE

    Storey, C.; Kocabasoglu-Hillmer, C.

    2013-01-01

    While the adoption of Partner Relationship Management (PRM) systems by suppliers to manage and monitor its network of partners (i.e. resellers) has been on the rise, the performance improvements have not been consistently realized. Governance theory suggests this may be due to how the PRM system builds on the mechanisms employed by the supplier to oversee their partners. This study investigates how the two capabilities of PRM systems (relationship and fulfillment capabilities) and two partner...

  6. The Neurotoxicity of Nitrous Oxide: The Facts and “Putative” Mechanisms

    Science.gov (United States)

    Savage, Sinead; Ma, Daqing

    2014-01-01

    Nitrous oxide is a widely used analgesic agent, used also in combination with anaesthetics during surgery. Recent research has raised concerns about possible neurotoxicity of nitrous oxide, particularly in the developing brain. Nitrous oxide is an N-methyl-d-aspartate (NMDA)-antagonist drug, similar in nature to ketamine, another anaesthetic agent. It has been linked to post-operative cardiovascular problems in clinical studies. It is also widely known that exposure to nitrous oxide during surgery results in elevated homocysteine levels in many patients, but very little work has investigated the long term effect of these increased homocysteine levels. Now research in rodent models has found that homocysteine can be linked to neuronal death and possibly even cognitive deficits. This review aims to examine the current knowledge of mechanisms of action of nitrous oxide, and to describe some pathways by which it may have neurotoxic effects. PMID:24961701

  7. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  8. Oxidation mechanism of Fe–16Cr alloy as SOFC interconnect in dry/wet air

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Wang, Li-Jun; Li, Fu-Shen; Chou, Kuo-Chih

    2013-01-01

    Highlights: •A special thermodynamic description corresponding to the kinetics was applied. •We reported the relationships of degradation time with temperature and moisture. •”Turning time” in the Fe–16Cr alloy oxidation kinetic model was given. •The oxidation mechanism of Fe–16Cr alloy in the wet air was discussed. -- Abstract: Experimental study on the oxidation corrosions of Fe–16Cr alloy was carried out at 800–1100 °C under dry/wet air conditions. Faster oxidation rate was observed at higher temperature and water vapor content. The degradation time t d between two stages in oxidation process showed an exponential relationship with elevating corrosion temperature in dry air, and a linear relationship with the water content in the case of water vapor introduced to the system. The mechanism of oxidation corrosions of Fe–16Cr alloy was suggested by the Real Physical Picture (RPP) model. It was found that the break-away oxidation in stage II was controlled by diffusion at initial both in dry and wet air, then became linear with the exposure time, which implied that the oxidation rate was then controlled by chemical reaction of the interface between the metal and the oxidized scale. Moreover, the effect of water in the oxidation process is not only to supply more oxygen into system, but also to modify the structures of oxide scale due to the existence of hydrogen atom, which results in the accelerated corrosions

  9. Reaction mechanism of CO oxidation on Cu2O(111): A density functional study

    Science.gov (United States)

    Sun, Bao-Zhen; Chen, Wen-Kai; Xu, Yi-Jun

    2010-10-01

    The possible reaction mechanisms for CO oxidation on the perfect Cu2O(111) surface have been investigated by performing periodic density functional theoretical calculations. We find that Cu2O(111) is able to facilitate the CO oxidation with different mechanisms. Four possible mechanisms are explored (denoted as MER1, MER2, MLH1, and MLH2, respectively): MER1 is CO(gas)+O2(ads)-->CO2(gas) MER2 is CO(gas)+O2(ads)-->CO3(ads)-->O(ads)+CO2(gas) MLH1 refers to CO(ads)+O2(ads)-->O(ads)+CO2(ads) and MLH2 refers to CO(ads)+O2(ads)-->OOCO(ads)-->O(ads)+CO2(ads). Our transition state calculations clearly reveal that MER1 and MLH2 are both viable; but MER1 mechanism preferentially operates, in which only a moderate energy barrier (60.22 kJ/mol) needs to be overcome. When CO oxidation takes place along MER2 path, it is facile for CO3 formation, but is difficult for its decomposition, thereby CO3 species can stably exist on Cu2O(111). Of course, the reaction of CO with lattice O of Cu2O(111) is also considered. However, the calculated barrier is 600.00 kJ/mol, which is too large to make the path feasible. So, we believe that on Cu2O(111), CO reacts with adsorbed O, rather than lattice O, to form CO2. This is different from the usual Mars-van Krevene mechanism. The present results enrich our understanding of the catalytic oxidation of CO by copper-based and metal-oxide catalysts.

  10. Kinetics and mechanism of oxidation of aliphatic primary alcohols by ...

    Indian Academy of Sciences (India)

    Unknown

    Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate. SONU SARASWAT, VINITA SHARMA and K K BANERJI*. Department of Chemistry, JNV University, Jodhpur 342 005, India e-mail: banerjikk@rediffmail.com. MS received 4 December 2001; revised 2 November 2002.

  11. Optical and mechanical anisotropy of oxide glass fibers

    DEFF Research Database (Denmark)

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    products [1], whereas stretching (frozen-in strain) results in optical and mechanical anisotropy of glass fibers, which is quantified inter alia by the specific birefringence [2]. The paper will stress the later effects by combining previous results on the structural origins of birefringence...... and anisotropic shrinkage in silica and phosphate fibers with recent studies on relaxation of optical anisotropy in E-glass fibers [3,4].......Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass...

  12. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-06-09

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.

  13. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  14. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  15. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  16. Effect of corporate governance mechanisms on the relationship between legal origins and cost of debt

    DEFF Research Database (Denmark)

    Farooq, Omar; Derrabi, Mohamed

    2012-01-01

    How do differences in country-level governance and enforcement mechanisms affect firms? Using a large dataset from the MENA region, we document that differences in legal traditions translate into differences in cost of debt. Our results show that firms headquartered in the common law countries ha...

  17. Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation.

    Science.gov (United States)

    Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo

    2014-12-21

    Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.

  18. Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue ...

    African Journals Online (AJOL)

    NICOLAAS

    Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue-R dye by Hypochlorite and Role of Acid there in. Srinivasu Nadupalli, Venkata D.B.C. Dasireddy, Neil A. Koorbanally and Sreekantha B. Jonnalagadda*. School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private.

  19. Nonbinding Legal Instruments in Governance for Global Health: Lessons from the Global AIDS Reporting Mechanism.

    Science.gov (United States)

    Taylor, Allyn; Alfvén, Tobias; Hougendobler, Daniel; Buse, Kent

    2014-01-01

    Recent debate over World Health Organization reform has included unprecedented attention to international lawmaking as a future priority function of the Organization. However, the debate is largely focused on the codification of new binding legal instruments. Drawing upon lessons from the success of the Global AIDS Reporting Mechanism, established pursuant to the United Nations' Declaration of Commitment on HIV/AIDS, we argue that effective global health governance requires consideration of a broad range of instruments, both binding and nonbinding. A detailed examination of the Global AIDS Reporting Mechanism reveals that the choice of the nonbinding format makes an important contribution to its effectiveness. For instance, the flexibility and adaptability of the nonbinding format have allowed the global community to: (1) undertake commitments in a timely manner; (2) adapt and experiment in the face of a dynamic pandemic; and (3) grant civil society an unparalleled role in monitoring and reporting on state implementation of global commitments. UNAIDS' institutional support has also played a vital role in ensuring the continuing effectiveness of the Global AIDS Reporting Mechanism. Overall, the experience of the Global AIDS Reporting Mechanism evidences that, at times, nimbler nonbinding instruments can offer benefits over slower, more rigid binding legal approaches to governance, but depend critically, like all instruments, on the perceived legitimacy thereof. © 2014 American Society of Law, Medicine & Ethics, Inc.

  20. Coloration and bleaching mechanism of niobium oxide electrochromic thin films; Sanka niobu electromic usumaku no chakushoshoku mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, K; Miki, T; Tazawa, M; Jin, P; Igarashi, K; Tanemura, S [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    1997-11-25

    In order to search for the coloration and bleaching mechanism of niobium oxide, considerations were given on optical properties and electron conditions in niobium oxide thin films (glass plates as substrates coated with ITO) prepared by using the reactive DC magnetron sputtering process. The films were so grown that their thickness will all be 100 nm to facilitate data comparison. Coloration and bleaching of the grown test films were conducted by cyclic voltammetry. Electron spectra were measured by using XPS, and electron energy was analyzed. Coloration of niobium oxide occurs as a result of change in valency electron state from an Nb {sup 5+} state to an Nb {sup 4+} state, while change in the XPS spectra also corresponds with the above change. However, the XPS spectra differ greatly between crystalline samples and amorphous samples. The coloration and bleaching mechanism of the crystallized Nb2O5 film can be explained by a reaction formula similar to that for WO3. However, with regard to the amorphous Nb2O5 film, an independent reaction involving water in the film seems to occur together with the same reaction as in the crystallized film. 9 refs., 5 figs.

  1. Development of a detailed chemical mechanism (MCMv3.1 for the atmospheric oxidation of aromatic hydrocarbons

    Directory of Open Access Journals (Sweden)

    C. Bloss

    2005-01-01

    Full Text Available The Master Chemical Mechanism has been updated from MCMv3 to MCMv3.1 in order to take into account recent improvements in the understanding of aromatic photo-oxidation. Newly available kinetic and product data from the literature have been incorporated into the mechanism. In particular, the degradation mechanisms for hydroxyarenes have been revised following the observation of high yields of ring-retained products, and product studies of aromatic oxidation under relatively low NOx conditions have provided new information on the branching ratios to first generation products. Experiments have been carried out at the European Photoreactor (EUPHORE to investigate key subsets of the toluene system. These results have been used to test our understanding of toluene oxidation, and, where possible, refine the degradation mechanisms. The evaluation of MCMv3 and MCMv3.1 using data on benzene, toluene, p-xylene and 1,3,5-trimethylbenzene photosmog systems is described in a companion paper, and significant model shortcomings are identified. Ideas for additional modifications to the mechanisms, and for future experiments to further our knowledge of the details of aromatic photo-oxidation are discussed.

  2. The use of meta-governance mechanisms to fight social segregation in Copenhagen

    DEFF Research Database (Denmark)

    Engberg, Lars A.

    In 2011 Copenhagen City Council adopted a citywide Policy for Disadvantaged Areas in Copenhagen to combat geographically specific vicious circles of social deprivation and physical deterioration in the city. The policy was a result of an inter-departmental learning process, designed to come up wi...... study five years after adaptation of PDAC. The paper investigates how practices of joint leadership and meta-governance across city departments and between city officials and local stakeholders have been institutionalized as coordination mechanisms as a result of the new policy....

  3. Oxidative stress-induced telomeric erosion as a mechanism underlying airborne particulate matter-related cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Grahame Thomas J

    2012-06-01

    Full Text Available Abstract Particulate matter (PM pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD. While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer

  4. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films

    Science.gov (United States)

    Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.

    2017-11-01

    Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.

  5. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  6. Oxidation and Metal-Insertion in Molybdenite Surfaces: Evaluation of Charge-Transfer Mechanisms and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Becker, U.; Shutthanandan, V.; Julien, C. M.

    2008-06-05

    Molybdenum sulfide (MoS2), an important representative member of the layered transition-metal dichalcogenides, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and industrial science and technology. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. On the other hand understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is quite important to utilize these minerals in technological applications. Furthermore, such a detailed investigation of thermal oxidation behavior and intercalation process will provide a basis to further explore and model the mechanism of adsorption of metal ions on to geomedia. Therefore, the present work was performed to understand the oxidation and intercalation processes of molybdenite surfaces. The results obtained, using a wide variety of analytical techniques, are presented and discussed in this paper.

  7. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  8. Corporate Governance in Publicly Traded Canadian Companies

    OpenAIRE

    Hu, Jie; Wang, Chong

    2011-01-01

    We investigate the effectiveness of corporate governance practices in this paper, focusing on the corporate governance practices implemented by TSX listed companies in Canada. We analyze the determinants of the effectiveness of corporate governance practices and test whether corporate governance mechanisms relate to quality of accounting earnings and company performance. We obtain mixed results from regression analyses indicating that corporate governance mechanisms are not significantly rela...

  9. Influence of Structure and Charge State on the Mechanism of CO Oxidation on Gold Clusters

    Science.gov (United States)

    Johnson, Grant; Burgel, Christian; Reilly, Nelly; Mitric, Roland; Kimble, Michele; Tyo, Eric; Castleman, A. W.; Bonacic-Koutecky, Vlasta

    2008-05-01

    Gas-phase reactivity experiments and high level theoretical calculations have been employed to study the interaction of both positively and negatively charged gold oxide clusters with carbon monoxide (CO). We demonstrate that for negatively charged clusters CO is oxidized to CO2 by an Eley-Ridel-like (ER-) mechanism involving the attack of CO on oxygen rather than gold. In contrast, for positively charged clusters, the oxidation reaction may also occur by a Langmuir-Hinshelwood-like (LH-) mechanism involving the initial binding of CO to a gold atom followed by subsequent migration to an oxygen site. The LH mechanism is made possible through the large energy gain associated with the adsorption of two CO molecules onto cationic gold clusters. Structure-reactivity relationships are also established which demonstrate that terminally bound oxygen atoms are the most active sites for CO oxidation. Bridge bonded oxygen atoms and molecularly bound O2 units are shown to be inert. We also establish an inverse relationship between the binding energy of CO to gold clusters and the energy of the clusters lowest unoccupied molecular orbital (LUMO).

  10. Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials.

    Science.gov (United States)

    Gorgin Karaji, Zahra; Hedayati, Reza; Pouran, Behdad; Apachitei, Iulian; Zadpoor, Amir A

    2017-07-01

    Metallic porous biomaterials are recently attracting more attention thanks to the additive manufacturing techniques which help produce more complex structures as compared to conventional techniques. On the other hand, bio-functional surfaces on metallic biomaterials such as titanium and its alloys are necessary to enhance the biological interactions with the host tissue. This study discusses the effect of plasma electrolytic oxidation (PEO), as a surface modification technique to produce bio-functional layers, on the mechanical properties of additively manufactured Ti6Al4V scaffolds based on the cubic unit cell. For this purpose, the PEO process with two different oxidation times was applied on scaffolds with four different values of relative density. The effects of the PEO process were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), optical microscopy as well as static and dynamic (fatigue) mechanical testing under compression. SEM results indicated pore formation on the surface of the scaffolds after oxidation with a thickness of 4.85±0.36μm of the oxide layer after 2min and 9.04±2.27μm after 5min oxidation (based on optical images). The static test results showed the high effect of relative density of porous structure on its mechanical properties. However, oxidation did not influence most of the mechanical properties such as maximum stress, yield stress, plateau stress, and energy absorption, although its effect on the elastic modulus was considerable. Under fatigue loading, none of the scaffolds failed even after 10 6 loading cycles at 70% of their yield stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Water, Resilience and the Law: From General Concepts and Governance Design Principles to Actionable Mechanisms

    Science.gov (United States)

    Hill Clarvis, M.; Allan, A.; Hannah, D. M.

    2013-12-01

    Climate change has significant ramifications for water law and governance, yet, there is strong evidence that legal regulations have often failed to protect environments or promote sustainable development. Scholars have increasingly suggested that the preservation and restoration paradigms of legislation and regulation are no longer adequate for climate change related challenges in complex and cross-scale social-ecological systems. This is namely due to past assumptions of stationarity, uniformitarianism and the perception of ecosystem change as predictable and reversible. This paper reviews the literature on law and resilience and then presents and discusses a set of practical examples of legal mechanisms from the water resources management sector, identified according to a set of guiding principles from the literature on adaptive capacity, adaptive governance as well as adaptive and integrated water resources management. It then assesses the aptness of these different measures according to scientific evidence of increased uncertainty and changing ecological baselines. A review of the best practice examples demonstrates that there are a number of best practice examples attempting to integrate adaptive elements of flexibility, iterativity, connectivity and subsidiarity into a variety of legislative mechanisms, suggesting that there is not as significant a tension between resilience and the law as many scholars have suggested. However, while many of the mechanisms may indeed be suitable for addressing challenges relating to current levels of change and uncertainty, analysis across a broader range of uncertainty highlights challenges relating to more irreversible changes associated with greater levels of warming. Furthermore the paper identifies a set of pre-requisites that are fundamental to the successful implementation of such mechanisms, namely monitoring and data sharing, financial and technical capacity, particularly in nations that are most at risk with the

  12. Circuit Mechanisms Governing Local vs. Global Motion Processing in Mouse Visual Cortex

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Yonehara, Keisuke

    2017-01-01

    components represented by component direction-selective (CDS) cells. However, how PDS and CDS cells develop their distinct response properties is still unresolved. The visual cortex of the mouse is an attractive model for experimentally solving this issue due to the large molecular and genetic toolbox...... literature on global motion processing based on works in primates and mice. Lastly, we propose what types of experiments could illuminate what circuit mechanisms are governing cortical global visual motion processing. We propose that PDS cells in mouse visual cortex appear as the perfect arena...

  13. Inverse spinel transition metal oxides for lithium-ion storage with different discharge/charge conversion mechanisms

    International Nuclear Information System (INIS)

    Wang, Jiawei; Ren, Yurong; Huang, Xiaobing; Ding, Jianning

    2016-01-01

    Highlights: • Inverse spinel structure relieves the irreversible phase transition of electrodes. • Anodes with the same structure show different discharge/charge conversion mechanisms. • High reversible capacity confirms the potential feasibility of composites. - Abstract: Inverse spinel transition metal oxides (Fe 3 O 4 , MnFe 2 O 4 , Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide) are prepared by a facile ethylene-glycol-assisted hydrothermal method. The stability of inverse spinel structure and the high specific surface area of nanoscale provide transition metal oxides with high specific capacity. And the surface modification with reduced graphene oxide improves the poor conductivity of pristine transition metal oxides. Pristine Fe 3 O 4 and MnFe 2 O 4 deliver the high initial discharge capacity of 1137.1 and 1088.9 mAh g −1 , respectively. Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide get the reversible capacity of 645.8 and 720 mAh g −1 , respectively, even after 55 cycles. The different discharge/charge conversion mechanisms make them different capacity stability. The great electrochemical performances of composites offer electrodes with suitable characteristics for high-performance energy storage application.

  14. The liquid phase oxidation of n-butane: a search for plausible mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, C.C. [Celanese Ltd., TX (United States). Corpus Christi Technical Center

    1998-12-31

    This articles deals with an approach that has given some key information about the mechanisms of the liquid phase oxidation of butane to acetic acid. This procedure has been developed over the last 34 years; however, much of what will be discussed represents a synthesis of previous insights. Many of the observations are relatively recent and have not been previously published. In principle, this approach should be applicable to many oxidation processes. (orig.)

  15. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  16. Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees

    Science.gov (United States)

    Xue, Xiaodong; Yin, Qing; Jia, Hongbing; Zhang, Xuming; Wen, Yanwei; Ji, Qingmin; Xu, Zhaodong

    2017-11-01

    Graphene oxide (GO) with various oxidation degrees were prepared through a modified Hummer's method by varying the dosage of oxidizing agent. Styrene-butadiene rubber (SBR)/carboxylated acrylonitrile butadiene rubber (XNBR)/GO nanocomposites were fabricated by aqueous-phase mixing of GO colloidal dispersion with SBR latex and a small loading of XNBR latex, followed by co-coagulation. Effects of GO oxidation degree on the morphology, structure, mechanical and thermal properties of nanocomposites were thoroughly investigated. The results showed that the mechanical strength of nanocomposites were enhanced with the increase of oxidation degree of GO. Especially, when the weight ratio of KMnO4 to graphite was 15/5, the tensile strength, tear strength and thermal conductivity of SBR/XNBR/GO filled with 3 phr (parts per hundred rubber) GO increased by 255.3%, 141.5% and 22.8%, respectively, compared to those of neat SBR/XNBR blend. In addition, the thermal stability and the solvent resistance of the nanocomposites were also improved significantly. This work suggested that GO with higher oxidation degree could effectively improve the properties of SBR/XNBR blend.

  17. Synthesis mechanism of heterovalent Sn2O3 nanosheets in oxidation annealing process

    International Nuclear Information System (INIS)

    Zhao Jun-Hua; Wu Guo-Qiang; Yang Xu-Feng; Tan Rui-Qin; Yang Ye; Xu Wei; Li Jia; Shen Wen-Feng; Song Wei-Jie

    2015-01-01

    Heterovalent Sn 2 O 3 nanosheets were fabricated via an oxidation annealing process and the formation mechanism was investigated. The temperature required to complete the phase transformation from Sn 3 O 4 to Sn 2 O 3 was considered. Two contrasting experiments showed that both oxygen and heating were not necessary conditions for the phase transition. Sn 2 O 3 was formed under an argon protective atmosphere by annealing and could also be obtained at room temperature by exposing Sn 3 O 4 in atmosphere or dispersing in ethanol. The synthesis mechanism was proposed and discussed. This fundamental research is important for the technological applications of intermediate tin oxide materials. (paper)

  18. Study of the mechanisms controlling the oxide growth under irradiation: characterization of irradiated zircaloy-4 and Zr-1 Nb-O oxide scales

    International Nuclear Information System (INIS)

    Bossis, Ph.; Thomazet, J.; Lefebvre, F.

    2002-01-01

    In PWRs, the Zr-1Nb-O alloy shows a marked enhancement in corrosion resistance in comparison with Zircaloy-4. The aim of this work is to analyze the reasons for these different behaviors and to determine the respective nature of the oxide growth controlling mechanisms under irradiation. Samples taken from Zircaloy-4 irradiated 1, 2, and 4 cycles and Zr-1Nb-O irradiated 1 and 3 cycles have been systematically characterized by optical microscopy, SEM coupled with image analysis, hydride distribution, and XRD. Specific TEM characterizations have been performed on the Zr-1Nb-O samples. A XPS analysis of a nonirradiated sample is also reported. It has been shown that under irradiation the slow oxidation kinetics of the Zr-1Nb-O alloy is associated with very regular metal-oxide interface and oxide layer. On the contrary, the accelerated oxidation kinetics of Zircaloy-4 is associated with highly perturbed metal-oxide interface and oxide layer. On both irradiated alloys, cracks are observed to initiate preferentially above the delayed parts of the oxidation front. Hydrogen intake during water oxidation in PWR environment is found to be much lower on the Zr-1Nb-O alloy than on Zircaloy-4. More β-ZrO 2 is found on the oxide layer formed on Zircaloy-4 than on Zr-1NbO after oxidation in PWR. Classical irradiation-induced microstructural evolution is observed in the Zr-1Nb-O metallic alloy after 3 cycles, i.e., a fine β-Nb precipitation. β-Nb precipitates are observed to undergo a delayed oxidation associated with a crystalline to amorphous transformation. After water oxidation in autoclave, a pronounced Nb segregation is detected on the oxide surface of a Zr-1Nb-O sample. These results suggest that the oxidation kinetics of Zircaloy-4 is controlled essentially by oxygen diffusion through the inner barrier layer, which is significantly accelerated under irradiation. The oxidation kinetics of Zr-1Nb-O is controlled by both oxygen diffusion through the inner barrier and by

  19. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  20. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem II.

    Science.gov (United States)

    Nakamura, Shin; Noguchi, Takumi

    2016-10-11

    During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO 2 , in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn 4 CaO 5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S 1 to S 2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III) 2 Mn(IV) 2 , satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

  1. The importance and role of the corporate governance mechanism in increasing the level of management efficiency

    Directory of Open Access Journals (Sweden)

    Đorđević Slaviša

    2012-01-01

    Full Text Available There is inherent conflict of interests between owners and managers. They try to solve it in different ways. In this paper we have tried to briefly introduce the most important internal mechanisms of corporate governance (monitoring by the board of directors, incentive system for managers, internal audit and the importance of institutional investors. The financial scandals that included the world-famous corporations as well as current world economic crisis suggests that the protection of owners should continue to work to improve existing or new solutions that will improve the level of corporate governance.

  2. Mechanical and oxidation properties of some B2 rare earth–magnesium intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Stumphy, Brad [Iowa State Univ., Ames, IA (United States)

    2006-12-15

    The remainder of Chapter 1 provides background information on three main topics. First is a discussion about the basic structure and composition of binary B2 intermetallic compounds. Second, the mechanical properties of intermetallics are examined, starting with the cause for the typically inherent brittleness observed in B2 intermetallics. A number of B2 compounds have been found to possess an abnormal level of ductility compared to other intermetallics in this class, including a handful of other rare earth–non-rare earth (RM) B2 line compounds, and these findings are also discussed. Finally, oxidation studies of rare earth metals, focusing on yttrium and cerium, as well as magnesium and some B2 materials are discussed. Chapter 2 is an in-depth look into certain aspects of the laboratory work done during this study. The many challenges and difficulties encountered required that a variety of laboratory techniques be attempted in the making, processing, and testing of these two intermetallic materials. The results and ensuing discussion for the mechanical testing that was performed are found in Chapter 3. Tensile and compression testing results for YMg are shown first, followed by those for CeMg. Some samples were made using electrical discharge machining (EDM) while others were polished into the desired shape. A scanning electron microscope (SEM) was utilized to inspect surfaces of the tensile and compression samples. Hardness values and attempts to determine fracture toughness are also recorded before beginning the discussion. Chapter 4 follows the same basic format for the oxidation study portion of the research. Oxidation curves for CeMg are followed by a qualitative chemical analysis using energy dispersive spectroscopy (EDS). The YMg oxidation curves are shown next followed by an x-ray diffraction (XRD) analysis of the oxidation process for this material and a discussion of the results. Chapter 5 is a summary of the research performed in the mechanical and

  3. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  4. Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals.

    Science.gov (United States)

    Zhao, Xiaocan; Wang, Liming

    2017-05-04

    Furfural is emitted into the atmosphere because of its potential applications as an intermediate to alkane fuels from biomass, industrial usages, and biomass burning. The kinetic and mechanistic information on the furfural chemistry is necessary to assess the fate of furfural in the atmosphere and its impact on the air quality. Here we studied the atmospheric oxidation mechanisms of furfural initiated by the OH radicals using quantum chemistry and kinetic calculations. The reaction of OH and furfural was initiated mainly by OH additions to C 2 and C 5 positions, forming R2 and R5 adducts, which could undergo rapid ring-breakage to form R2B and R5B, respectively. Our calculations showed that these intermediate radicals reacted rather slowly with O 2 under the atmospheric conditions because the additions of O 2 to these radicals are only slightly exothermic and highly reversible. Alternatively, these radicals would react directly with O 3 , NO 2 , HO 2 /RO 2 , etc. Namely, the atmospheric oxidation of furfural would unlikely result in ozone formation. Under typical atmospheric conditions, the main products in OH-initiated furfural oxidation include 2-oxo-3-pentene-1,5-dialdehyde, 5-hydroxy-2(5H)-furanone, 4-oxo-2- butenoic acid, and 2,5-furandione. These compounds will likely stay in the gas phase and are subject to further photo-oxidation.

  5. Influence of heat treatment on the high temperature oxidation mechanisms of an Fe-TiCN cermet

    OpenAIRE

    Alvaredo Olmos, Paula; Abajo Clemente, Carolina; Tsipas, Sophia Alexandra; Gordo Odériz, Elena

    2014-01-01

    In this study, the oxidation behaviour of an iron matrix cermet containing 50 % vol. Ti(C,N) was investigated before and after heat treatment by oxidation tests performed in static air at temperatures between 500 °C and 1000 °C. The oxidation mechanism for this type of composite materials was established and it was found that the heat treated material presents lower mass gain than the as-sintered material at the early stages of the oxidation, due to the volatilization of oxides. The oxidation...

  6. An Analysis of Change Mechanisms in Government Budgets on Science and Technology

    Science.gov (United States)

    Jung, C.

    2012-12-01

    Recent studies on policy changes have shown that there are limitations of incrementalism and that there no longer exists a general theory that can explain policy change. A number of studies have been conducted to examine policy changes in terms of drastic changes in budgets or policy agenda. According to the Punctuated Equilibrium Theory (PET), policy change is punctuated by long periods of stability, and large, but rare, changes due to shifts in society or the government. Although the reasons for these drastic changes are interpreted mainly from external events, the exact mechanisms of these changes are still not known. In this study, we assume that the punctuated budget changes are a result of not only external events but also the bureaucratic power of government departments. We attempt to identify the regularity of budget change pattern due to these internal characteristics (bureaucratic power). In order to understand budget changes caused by external events, especially for science and technology, the ARIMA-Intervention analysis was implemented. The results showed that the ARIMA-Intervention analysis explained the abrupt change in budget well. This means that a change in budget cannot be explained as incrementalism. Also, we analyzed the budget change kurtosis of government department along with various policy and organization types. Normally, a high kurtosis means there is a high probability of a punctuated equilibrium. The results show that science and technology agency as well as productive, delivery, and transfer agencies have a relatively high kurtosis.;

  7. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters

    KAUST Repository

    Allian, Ayman Daoud; Takanabe, Kazuhiro; Fujdala, Kyle L.; Hao, Xianghong; Truex., Timothy J.; Cai, Juan; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-01-01

    Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis

  8. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte

    International Nuclear Information System (INIS)

    Moreno, Mabel; Quijada, Raúl; Santa Ana, María A.; Benavente, Eglantina; Gomez-Romero, Pedro; González, Guillermo

    2011-01-01

    Highlights: ► Poly(ethylene oxide)/intercalated clay nanocomposite as filler in solid poly(ethylene oxide) electrolytes. ► Nanocomposite filler improves mechanical properties, transparency, and conductivity of poly(ethylene oxide) electrolyte films. ► Nanocomposite is more effective than unmodified clay in improving polymer electrolyte properties. ► Low Li/polymer ratio avoids crystalline Li complexes, so effects mainly arise from the polymer. ► High nanocomposite/poly(ethylene oxide)-matrix affinity enhances microhomogeneity in the polyelectrolyte. - Abstract: Solvent-free solid polymer electrolytes (SPEs) based on two different poly(ethylene oxide), PEO Mw 600,000 and 4,000,000 and intercalated clays are reported. The inorganic additives used were lithiated bentonite and the nanocomposite PEO-bentonite with the same polymer used as matrix. SPE films, obtained in the scale of grams by mixing the components in a Brabender-type batch mixer and molding at 130 °C, were characterized by X-ray diffraction analysis, UV–vis spectroscopy, and thermal analysis. During the preparation of the films, the unmodified clay got intercalated in situ. Comparative analysis of ionic conductivity and mechanical properties of the films show that the conductivity increases with the inclusion of fillers, especially for the polymer with low molecular weight. This effect is more pronounced when using PEO-bentonite as additive. Under selected work conditions, avoiding the presence of crystalline lithium complexes, observed effects are mainly centered on the polymer. An explanation, considering the higher affinity between the modified clay and PEO matrix which leads to differences in the micro homogeneity degree between both types of polymer electrolytes is proposed.

  9. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils.

    Science.gov (United States)

    Hemingway, Jordon D; Hilton, Robert G; Hovius, Niels; Eglinton, Timothy I; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V

    2018-04-13

    Lithospheric organic carbon ("petrogenic"; OC petro ) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO 2 ) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OC petro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO 2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OC petro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO 2 emission fluxes that increase with erosion rate, thereby counteracting CO 2 drawdown by silicate weathering and biospheric OC burial. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes: OC Oxidation Processes Across Vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B. [Pacific Northwest National Laboratory, Richland WA USA; Tfaily, Malak M. [Environmental Molecular Sciences Laboratory, Richland WA USA; Crump, Alex R. [Pacific Northwest National Laboratory, Richland WA USA; Goldman, Amy E. [Pacific Northwest National Laboratory, Richland WA USA; Bramer, Lisa M. [Pacific Northwest National Laboratory, Richland WA USA; Arntzen, Evan [Pacific Northwest National Laboratory, Richland WA USA; Romero, Elvira [Pacific Northwest National Laboratory, Richland WA USA; Resch, C. Tom [Pacific Northwest National Laboratory, Richland WA USA; Kennedy, David W. [Pacific Northwest National Laboratory, Richland WA USA; Stegen, James C. [Pacific Northwest National Laboratory, Richland WA USA

    2017-12-01

    In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here, we investigate biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically-bound (i.e., mineral and microbial) OC at terrestrial-aquatic interfaces. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the concept of ‘priming’—that inputs of water-soluble and thermodynamically-favorable terrestrial OC protects bound-OC from oxidation. Based on our results, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

  11. Phase Transformation Behavior of Oxide Particles Formed in Mechanically Alloyed Fe-5Y{sub 2}O{sub 3} Powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ga Eon; Choi, Jung-Sun; Noh, Sanghoon; Kang, Suk Hoon; Choi, Byoung Kwon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Deajeon (Korea, Republic of); Kim, Young Do [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    The phase transformation behavior of the oxides formed in mechanically alloyed Fe-5Y{sub 2}O{sub 3} powder is investigated. Non-stoichiometric Y-rich and Fe-rich oxides with sizes of less than 300 nm are observed in the mechanically alloyed powder. The diffusion and redistribution reactions of the elements in these oxides during heating of the powder above 800 ℃ were observed, and these reactions result in the formation of a Y{sub 3}Fe{sub 5}O{sub 12} phase after heating at 1050 ℃. Thus, it is considered that the Y{sub 2}O{sub 3} powder and some Fe powder are formed from the non-stoichiometric Y-rich and Fe-rich oxides after the mechanical alloying process, and a considerable energy accumulated during the mechanical alloying process leads to a phase transformation of the Y-rich and Fe-rich oxides to Y{sub α}Fe{sub β}O{sub γ}-type phase during heating.

  12. The Role of Corporate Governance in Firm Performance

    OpenAIRE

    Naimah Zahroh; Hamidah

    2017-01-01

    The objective of this study is to examine the role of corporate governance to increase firm performance. The measure of corporate governance are corporate governance mechanism and Corporate Governance Perception Index (CGPI). Samples are companies that followed CGPI award at 2005-2014. The examination of the relationship of corporate governance and firm performance is conducted by regression of corporate governance mechanism variables and control variables to profitability. Corporate governan...

  13. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound.

    Science.gov (United States)

    Bhasarkar, Jaykumar B; Chakma, Sankar; Moholkar, Vijayanand S

    2015-05-01

    This paper attempts to discern the physical mechanism of the oxidative desulfurization process simultaneously assisted by ultrasound and phase transfer agent (PTA). With different experimental protocols, an attempt is made to deduce individual beneficial effects of PTA and ultrasound on the oxidative desulfurization system, and also the synergy between the effects of PTA and ultrasound. Effect of PTA is more marked for mechanically stirred system due to mass transfer limitations, while intense emulsification due to ultrasound helps overcome the mass transfer limitations and reduces the extent of enhancement of oxidation by PTA. Despite application of PTA and ultrasound, the intrinsic factors and properties of the reactants such as polarity (and hence partition coefficient) and diffusivity have a crucial effect on the extent of oxidation. The intrinsic reactivity of the oxidant also plays a vital role, as seen from the extent of oxidation achieved with performic acid and peracetic acid. The interfacial transport of oxidant in the form of oxidant-PTA complex reduces the undesired consumption of oxidant by the reducing species formed during transient cavitation in organic medium, which helps effective utilization of oxidant towards desulfurization. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mechanical test of E110 cladding material oxidized in hydrogen rich steam atmosphere

    International Nuclear Information System (INIS)

    Windberg, P.; Perez-Fero, E.

    2005-01-01

    The behavior of the fuel cladding under accidental conditions has been studied at the AEKI for more than a decade. Earlier, the effect of oxygen and hydrogen content on the mechanical properties was studied separately. The present experiments can help to understand what kind of processes took place in the cleaning tank at Paks NPP (2003). The purpose of our experiments was to investigate high temperature oxidation of E110 cladding in steam + hydrogen mixture. A high temperature tube furnace was used for oxidation of the samples. The oxidation was carried out at three different temperatures (900 0 C, 1000 0 C, 1100 0 C). The hydrogen content in the steam was varied between 19-36 vol%. The oxygen content of the sample was defined as oxidation ratio. Two sizes (length: 2 and 8 mm) of cladding rings and 100 mm long E110 cladding tubes were oxidized. After the oxidation we made compression and tensile tests for rings, and ballooning experiments for 100 mm long tube. The most important conclusions were the following. Oxidation in H-rich steam atmosphere need longer time to get the same oxidation ratio compared to the steam oxidation without hydrogen. The shorter oxidation time results in a more compact oxide layer. The longer oxidation time leads to a cracked oxide layer. (author)

  15. The mechanisms of corporate governance in the United States: an assessment

    Directory of Open Access Journals (Sweden)

    Aldrighi Dante Mendes

    2003-01-01

    Full Text Available This paper aims at evaluating the mechanisms of corporate governance currently at work in the United States. Section 1 turns its focus to the reasons accounting for the still relative scarceness of large shareholders in American publicly held companies. The analysis thereafter concentrates on assessing the efficacy of each of the pillars purportedly buttressing the American system of corporate control. The paper argues that the evidence provided by the existing corporate governance literature supports the following propositions: 1 the legal and regulatory framework actually restrains the scope for expropriating minority shareholders, though at the cost of inhibiting institutional investor activism; 2 as a rule, the board of directors do not comply with their mandatory duty of overseeing management, although some progress has recently been made, with directors in several companies becoming less submissive to chief executive officers; 3 the market for corporate control encounters a great number of difficulties (ranging from legal hurdles to high transaction costs and to serious free-riding problems, which are sufficient to cast a cloud on its reliability as a means of repressing managerial inefficiencies and rent-seeking; 4 competition in the product and capital markets is likely to produce effects only in the long-run.

  16. On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy

    NARCIS (Netherlands)

    Bronneberg, A. C.; Smets, A. H. M.; Creatore, M.; M. C. M. van de Sanden,

    2011-01-01

    Insight into the oxidation mechanism of microcrystalline silicon thin films has been obtained by means of Fourier transform infrared spectroscopy. The films were deposited by using the expanding thermal plasma and their oxidation upon air exposure was followed in time. Transmission spectra were

  17. Properties of protective oxide scales containing cerium on Incoloy 800H in oxidizing and sulfidizing environments. I. Constant-extension-rate study of mechanical properties

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Fransen, T.; Geerdink, Bert; Gellings, P.J.

    1988-01-01

    The mechanical properties of ceramic coatings containing cerium oxide, prepared by the sol-gel method and used to protect Incoloy 800H against aggressive environments, are reported. Deformation and cracking behavior in oxidizing and sulfidizing environments has been investigated by

  18. Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

    Directory of Open Access Journals (Sweden)

    J. Dharmaraja

    2008-01-01

    Full Text Available The kinetics of oxidation of benzyl alcohol (BzOH by benzimidazolium fluorochromate (BIFC has been studied in 50% aqueous acetic acid medium at 308 K. The reaction is first order with respect to [oxidant] and [benzyl alcohol]. The reaction is catalysed by hydrogen ions. The decrease in dielectric constant of the medium increases the rate of the reaction. Addition of sodium perchlorate increases the rate of the reaction appreciably. No polymerization with acrylonitrile. The reaction has been conducted at four different temperature and the activation parameters were calculated. From the observed kinetic results a suitable mechanism was proposed.

  19. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  20. Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene.

    Science.gov (United States)

    Birdsall, Adam W; Andreoni, John F; Elrod, Matthew J

    2010-10-07

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique under different oxygen, NO, and initial OH radical concentrations as well as a range of total pressures. The bicyclic peroxy radical intermediate, a key proposed intermediate species in the Master Chemical Mechanism (MCM) for the atmospheric oxidation of toluene, was detected for the first time. The toluene oxidation mechanism was shown to have a strong oxygen concentration dependence, presumably due to the central role of the bicyclic peroxy radical in determining the stable product distribution at atmospheric oxygen concentrations. The results also suggest a potential role for bicyclic peroxy radical + HO(2) reactions at high HO(2)/NO ratios. These reactions are postulated to be a source of the inconsistencies between environmental chamber results and predictions from the MCM.

  1. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Kong, Deli; Xin, Tianjiao; Shu, Xinyu; Zheng, Kun; Xiao, Lirong; Sha, Xuechao; Lu, Yan; Han, Xiaodong, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Ze [Department of Materials Science, Zhejiang University, Hangzhou 310008 (China); Zou, Jin, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2016-04-11

    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.

  2. Primary atmospheric oxidation mechanism for toluene.

    Science.gov (United States)

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-08

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere.

  3. Kinetics and mechanism of oxidation of tellurium (IV) by periodate in alkaline medium

    International Nuclear Information System (INIS)

    Srinivas, K.; Vani, P.; Dikshitulu, L.S.A.

    1995-01-01

    Detailed kinetic study of the oxidation of tellurium (IV) by periodate in alkaline medium has been carried out to compare the mechanisms of oxidation in the acid and alkaline media. It is interesting to note that the rate step involves a two-electron transfer from tellurium (IV) to periodate in alkaline medium although the kinetic pattern is somewhat different from that in the acid medium. 7 refs., 1 tab

  4. Initial stages of oxidation of near-stoichiometric titanium carbide at low oxygen pressures

    International Nuclear Information System (INIS)

    Shabalin, I.L.; Vishnyakov, V.M.; Bull, D.J.; Keens, S.G.; Yamshchikov, L.F.; Shabalin, L.I.

    2009-01-01

    A novel approach to the oxidation mechanism of near-stoichiometric TiC is presented. It is confirmed by consideration of solid-state chemical kinetics model and electron microscopy observations in parallel. At low oxygen pressures and moderate temperatures the initial step of the process is connected with the dissolution of oxygen and subsequent decomposition of oxygen-oversaturated oxycarbide, which ultimately results in the nucleation of oxide phase, in particular anatase, belike stabilised by residual carbon. An anatase-rutile transformation is concurrent with deeper carbon burn-off in the oxide scale, which sinters at higher temperatures. This mechanism shifts the process to a gas diffusion regime, governed by the scale permeability, but determined by solid-state diffusion that is reflected in the kinetics, as further temperature increase is accompanied by a decrease of the oxidation rate, so in general the process is characterised by the negative value of apparent activation energy

  5. Mechanism of mechanochemical synthesis of complex oxides and the peculiarities of their nano-structurization determining sintering

    Directory of Open Access Journals (Sweden)

    Zyryanov V.V.

    2005-01-01

    Full Text Available A mechanism of superfast mechanosynthesis reaction for oxide systems is proposed on the base of a dynamics study. The threshold effect and linear dependence of the chemical response on the effective temperature of the reaction zone are established. Major factors are determined: molecular mass of reagents, enthalpy and difference of reagents in Mohs’s hardness, which also influence the composition of the primary product. Primary acts are characterized by a superfast roller mechanism of mass transfer with the formation of a transient dynamic state (D*. Secondary acts slowly approximate the composition of the product to the composition of the starting mixture by diffusion mass transfer in a deformation mixing regime with a contribution of a rotation (roller mechanism. The list of structure types for complex oxides derived by mechanosynthesis includes perovskites, fluorites, pyrochlors, sheelites, and some other ones. Powders of crystal products display multilevel structurization. In all studied complex oxides strong disordering of the “anti-glass” type was observed. The mechanism of sintering was studied in BaTiO3 powders of different origin and in metastable complex oxides derived by mechanosynthesis. The major contribution in shrinkage belongs to rearrangements of crystalline particles as a whole. Structure transformations accompany, as a rule, sintering of inhomogeneous powders derived by mechanosynthesis.

  6. The influence of initial defects on mechanical stress and deformation distribution in oxidized silicon

    Directory of Open Access Journals (Sweden)

    Kulinich O. A.

    2008-10-01

    Full Text Available The near-surface silicon layers in silicon – dioxide silicon systems with modern methods of research are investigated. It is shown that these layers have compound structure and their parameters depend on oxidation and initial silicon parameters. It is shown the influence of initial defects on mechanical stress and deformation distribution in oxidized silicon.

  7. Corporate governance and liquidity

    DEFF Research Database (Denmark)

    Farooq, Omar; Derrabi, Mohamed; Naciri, Monir

    2012-01-01

    This paper examines the impact of corporate governance mechanisms on liquidity in the MENA region, i.e. Morocco, Egypt, Saudi Arabia, United Arab Emirates, Jordan, Kuwait, and Bahrain. Using turnover as a proxy for liquidity, we document significant difference in liquidity between the pre......- and the post-crisis periods in the MENA region. In addition, our results show that bulk of this reduction in turnover can be explained due to weaknesses of corporate governance mechanisms. For example, that dividend payout ratio and choice of auditors – proxies for agency problems – can explain the entire...... difference in liquidity between the two periods. Furthermore, our results indicate that more than 50% of this difference between the two periods can be explained by operational and informational complexity of a firm – proxy for transparency. We argue that poor corporate governance mechanisms increase...

  8. The effect of adding magnesium oxide on the mechanical properties of the tricalcium phosphate-zirconia composites

    Energy Technology Data Exchange (ETDEWEB)

    Sallemi, Imen, E-mail: imen.sallemi@hotmail.com; Bouaziz, Jamel; Ben Ayed, Foued

    2015-02-01

    The effect of magnesium oxide on the mechanical properties of the tricalcium phosphate – 50 wt.% zirconia composites was investigated during a sintering process between 1300 °C and 1400 °C. The characteristics of the samples before and after the sintering process were realized by using the differential thermal analysis, dilatometry, X-ray diffraction, the {sup 31}P magic angle scanning nuclear magnetic resonance, the scanning electron microscope and by considering such mechanical properties as the rupture strength and Vickers hardness. The mechanical performances of the tricalcium phosphate-50 wt.% zirconia composites increased with both the percentage of magnesium oxide and the sintering temperature. At 1400 °C, the mechanical properties of the composites sintered with 10 wt.% magnesium oxide reached their maximum value. Thus, Vickers hardness increased from 554 to 6350 MPa and the rupture strength of the corresponding composites varied from 5.2 to 25 MPa. The increase of the mechanical properties of the samples is due to the formation of both the tetragonal zirconia phase and the liquid phase which helps to fill the pores. The microstructure of needle form is most probably phosphate precipitates which are formed from this liquid phase. Furthermore, the presence of magnesium oxide in the composites prevented the inverse allotropic transformation of zirconia. - Highlights: • We measure the rupture strength and Vickers hardness of bioceramics. • We characterize the effect of MgO on the mechanical properties of the tricalcium phosphate – 50 wt% zirconia composites. • MgO increase the mechanical properties of the composites.

  9. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    Science.gov (United States)

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  10. Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel

    International Nuclear Information System (INIS)

    Yu, Xianglong; Jiang, Zhengyi; Zhao, Jingwei; Wei, Dongbin; Zhou, Cunlong; Huang, Qingxue

    2015-01-01

    Highlights: • Microtexture development of deformed oxide layers is investigated. • Magnetite shares the {0 0 1} fibre texture with wustite. • Hematite develops the {0 0 0 1} basal fibre parallel to the oxide growth. • Stress relief and ion vacancy diffusion mechanism for magnetite seam. - Abstract: Electron backscatter diffraction (EBSD) analysis has been presented to investigate the microstructure and microtexture evolutions of deformed oxide scale formed on a microalloyed steel during hot rolling and accelerated cooling. Magnetite and wustite in oxide layers share a strong {0 0 1} and a weak {1 1 0} fibres texture parallel to the oxide growth. Trigonal hematite develops the {0 0 0 1} basal fibre parallel to the crystallographic plane {1 1 1} in magnetite. Taylor factor estimates have been conducted to elucidate the microtexture evolution. The fine-grained magnetite seam adjacent to the substrate is governed by stress relief and ions vacancy diffusion mechanism

  11. Director remuneration, corporate governance and performance: A comparison between government linked companies vs non government linked companies

    Directory of Open Access Journals (Sweden)

    Nazrul Hisyam Ab Razak

    2014-07-01

    Full Text Available This study has examined the relationship between director’s remuneration, corporate governance structure and performance of a sample of 150 companies listed on the Bursa Malaysia from year 2008 until 2013. The sample was selected to provide matched-pair of government linked companies (GLCs and non-government linked companies (non-GLCs, as it was anticipated that these group would have different governance structure, the key difference being government ownership. The result holds even when we control for company specific characteristic such as corporate governance, company size, leverage, director’s remuneration, board size and auditors. This study uses panel based regression model to examine the impact of government control mechanism on company performance using two important measurers. These are accounting based measure proxies by ROA and non-accounting based measures by Tobin’s Q. Statistically significant relationships were found across the groupings and for different performance measures. Findings appear to suggest that there is a significant impact of government ownership on company performance after controlling for company specific characteristics.

  12. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome “Tor Vergata”, Rome (Italy); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, University of Rome “Tor Vergata”, Rome (Italy); Pietroiusti, Antonio [Department of Biopathology, University of Rome “Tor Vergata”, Rome (Italy); Fadeel, Bengt [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States); Kagan, Valerian E. [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States)

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  13. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    International Nuclear Information System (INIS)

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  14. The Role of Corporate Governance in Firm Performance

    Directory of Open Access Journals (Sweden)

    Naimah Zahroh

    2017-01-01

    Full Text Available The objective of this study is to examine the role of corporate governance to increase firm performance. The measure of corporate governance are corporate governance mechanism and Corporate Governance Perception Index (CGPI. Samples are companies that followed CGPI award at 2005-2014. The examination of the relationship of corporate governance and firm performance is conducted by regression of corporate governance mechanism variables and control variables to profitability. Corporate governance mechanisms are board size, board independence, outside directors, audit committee size, audit committee meeting, audit quality, and CGPI. Control variables are leverage and firm size. The results of this study indicate that board independence negatively influence profitability, audit committee meeting positively influence profitability, audit quality positively influence profitability, CGPI positively influence profitability, leverage negatively influence profitability, and firm size negatively influence profitability.

  15. Electrochemical and Electron Paramagnetic Resonance Study of the Mechanism of Oxidation of Phenazine-di-N-oxide in the Presence of Isopropyl alcohol at Glassy Carbon and Single-Walled Carbon Nanotube Electrodes

    International Nuclear Information System (INIS)

    Kulakovskaya, S.I.; Kulikov, A.V.; Sviridova, L.N.; Stenina, E.V.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied. • The results are explained in terms of the E 1 C 1 E 2 C 2 mechanism of the two-stage electrode process. • The total two-electron catalytic oxidation of i-PrOH in the complex with the phenazine-di-N-oxide radical cation was assumed to occur. - Abstract: The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied by cyclic voltammetry at glassy carbon (GC) and single-walled carbon nanotubes (SWCNT) electrodes in 0.1 M LiClO 4 solutions in acetonitrile. The adsorption of phenazine-di-N-oxide at SWCNT electrode in 0.1 M LiClO 4 solution in acetonitrile was investigated by measurement of the dependence of the differential double layer capacitance of the electrode C on potential E. The effect of isopropyl alcohol on the shape of cyclic voltammograms (CVs) of phenazine-di-N-oxide and the intensity of Electron Paramagnetic Resonance (EPR) signal of its radical cation was investigated. The catalytic currents were recorded at the oxidation of phenazine-di-N-oxide at SWCNT and GC electrodes in the presence of isopropyl alcohol. The results were explained in terms of the E 1 C 1 E 2 C 2 mechanism of two-stage electrode process characterized by catalytic current recorded at the second electrode stage. The overall two-electron catalytic oxidation of isopropyl alcohol in complex with the phenazine-di-N-oxide radical cation was assumed to occur. It was shown that SWCNT electrodes can be used in the electrocatalytic oxidation of organic compounds in the presence of electrochemically generated phenazine-di-N-oxide radical cation

  16. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  17. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States)

    2010-01-31

    An engineering code to model the irradiation behavior of UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  18. Security and Peace Mechanisms for Good Governance in Nigeria ...

    African Journals Online (AJOL)

    In Nigeria, governments at all levels have intensified efforts to address issues bordering on insecurity with a view to building security and peace for good governance. It is however, disheartening that despite various security measures put in place to tackle the problem, Nigeria is yet to be free from recurrent cases of armed ...

  19. NEW INSIGTHS ON THE KINETICS AND MECHANISM OF THE ELECTROCHEMICAL OXIDATION OF DICLOFENAC IN NEUTRAL AQUEOUS MEDIUM

    International Nuclear Information System (INIS)

    Cid-Cerón, M.M.; Guzmán-Hernández, D.S.; Ramírez-Silva, M.T.; Galano, A.; Romero-Romo, M.; Palomar-Pardavé, M.

    2016-01-01

    Highlights: • DCF electrochemical oxidation was studied from aqueous solution with a CPE. • Both stagnant and forced convection conditions were considered. • We found DCF electrochemical oxidation is a mass transfer-controlled process. • An EC mechanism was found where the electrodic is quasi-reversible. • C reaction provokes the breaking up the DCF through the nitrogen atom. • DCF diffusion coefficient was experimental and theoretically calculated. - Abstract: The diclofenac (DCF) electrochemical oxidation mechanism was studied through: linear voltammetry (LV), chronoamperometry (CA) sampled-current voltammetry (SCV), potentiostatic coulometry (PC) cyclic voltammetry (CV) under stagnant conditions and linear voltammetry under forced convection conditions (FCLV) over a carbon paste electrode (CPE) from an aqueous medium containing 0.1 M phosphate buffer at pH 7. It was found that the DCF electrochemical oxidation involves an EC mechanism, where the electrochemical reaction is carried out through a one electron-exchange while the chemical reaction involves breaking up the DCF through the nitrogen atom, thereby generating the fragments 2,6 dichloroaniline and 2-(2hydroxyprop-2-enyl)phenol. Reverting the potential scan in the cathodic direction at different scan rates and regardless of its rate, after the oxidation peak, it was found that it was possible to reduce only 38% of the DCF oxidized. The spectrophotometric study carried out during different macro-electrolysis periods allowed observing that the current decrease of the oxidation peak coupled to the DCF absorption (at 270 nm), together with the development of a new spectrophotometric absorption maximum (450 nm), all confirm the EC mechanism proposed. With the use of several experimental techniques (CA, LV and FCLV) and theoretical ones using the Stokes–Einstein approach, the DCF diffusion coefficient was determined, this being in average 8.1 × 10"−"6 cm"2 s"−"1.

  20. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  1. An Investigation of the Impact of Corporate Governance Mechanisms on Level of Corporate Risk Disclosure: Evidence from Kuwait

    Directory of Open Access Journals (Sweden)

    Bader Al-Shammari

    2014-06-01

    Full Text Available This study investigated the association between corporate governance mechanisms and corporate risk disclosure (CRD in the annual reports for a sample of 109 Kuwaiti listed non-financial companies in 2012. The study used a manual content analysis to measure risk disclosure by counting the number of risk-related sentences in annual reports. A multiple regression analysis was used to test the impact of board size, non-executive directors, percentage of family members on board, role duality, and audit committee on CRD. The quantity of risk disclosures in the Kuwaiti companies' annual reports was very limited. The results showed that the larger board size has a positive impact on CRD. However, the findings also indicated the existence of role duality lead to lower risk disclosure. Other corporate governance mechanisms did not explain variation in CRD.

  2. Pengaruh Corporate Governance terhadap Efektifitas Mekanisme Pengurang Masalah Agensi

    Directory of Open Access Journals (Sweden)

    Zaenal Arifin

    2009-03-01

    Full Text Available The main objective of this research is to investigate whether there are a significant influence between corporate governance and effectiveness of agency-problem-reducing mechanism. The corporate governance is concern on all stakeholder interest while the agency variables are concern only on one of the most important stakeholders’ that is the stockholders. In theory, there should be a significant relationship between the corporate governance and the effectiveness of agency-problem-reducing mechanism. Using all manufacturing companies listed in Jakarta Stock Exchange during 2001 - 2004, this research found that corporate governance influence the effectiveness of debt mechanism in reducing agency problem. The other mechanism, dividend and independent board of director, do not effective to reduce agency problem and the corporate governance does not influence the effectiveness of these two mechanisms. Key words: agency problem, corporate governance, dividend, debt, independent Board of director

  3. Mechanism of oxidation of L-methionine by iron(III)-1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics and mechanism of oxidation of L-methionine by iron(III)–1,10- phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species ...

  4. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments.

    Science.gov (United States)

    Dong, Conglin; Yuan, Chengqing; Bai, Xiuqin; Li, Jian; Qin, Honglin; Yan, Xinping

    2017-05-24

    Stainless steel is widely used in strongly oxidizing hydrogen peroxide (H 2 O 2 ) environments. It is crucial to study its wear behaviour and failure mode. The tribological properties and oxidation of 304 stainless steel were investigated using a MMW-1 tribo-tester with a three-electrode setup in H 2 O 2 solutions with different concentrations. Corrosion current densities (CCDs), coefficients of frictions (COFs), wear mass losses, wear surface topographies, and metal oxide films were analysed and compared. The results show that the wear process and oxidation process interacted significantly with each other. Increasing the concentration of H 2 O 2 or the oxidation time was useful to form a layer of integrated, homogeneous, compact and thick metal oxide film. The dense metal oxide films with higher mechanical strengths improved the wear process and also reduced the oxidation reaction. The wear process removed the metal oxide films to increase the oxidation reaction. Theoretical data is provided for the rational design and application of friction pairs in oxidation corrosion conditions.

  5. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10473535 The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbio.... (.png) (.svg) (.html) (.csml) Show The oxidation of lipoproteins by monocytes-macrophages. Biochemical and...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathca

  6. Manganese mediated oxidation of progesterone in alkaline medium: Mechanism study and quantitative determination

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Pashabadi, Afshin; Taherpour, Avat; Bahrami, Kiumars; Sharghi, Hashem

    2017-01-01

    Highlights: • This is first report on oxidation of progesterone in alkaline medium using a new manganese (III) Schiff base complex. • Utilizing QM and MM, we modelled and interpreted the observed electrochemical behavior of complex on carbon and gold materials as platform. • The long term stability of proposed sensor is improved relative to previously reported immunosensors for P4. • A detailed mechanism was developed for the oxidation of P4. • The proposed sensor was applied to quantify P4 in cow’s milk. - Abstract: We report here a non-immunosensing approach for the electrocatalytic oxidation of progesterone (P4) in alkaline medium using a salen-type manganese Schiff base complex (Mn(III)-SB) as a suitable electrocatalyst. We explored the role of carbon surface at glassy carbon electrode (GCE) and gold surface at glassy carbon/gold nanoparticles modified electrode (GCE/AuNPs) on immobilization of the Mn(III)-SB complex using cyclic voltammetry (CV) and density functional theory (DFT) calculations. The GCE/Mn(III)-SB displayed a pair of small redox peaks attributed to Mn(II) ⇄ Mn(III) with a small peak-to-peak separation (ΔE p ), while GCE/AuNP/Mn(III)-SB displayed redox peaks with larger densities, but with a wider ΔE p . A combined molecular mechanics (MM) and quantum mechanics (QM) study were carried out to investigate the variation of surface configuration and energy barrier, when the Mn(III)-SB immobilization was modeled on GCE and GCE/Au surface. Cyclic voltammetry and hydrodynamic amperometry were used for the quantitative determination of P4. A limit of detection (LOD) of 11.4 nM was obtained using amperometry. The sensor retained 91% of its original response after 3 months, which is improved compared to previously reported P4 immunosensors. For the first time, a detailed mechanism for oxidation of P4 in alkaline medium was suggested. The proposed sensor was utilized to determine progesterone in milk samples.

  7. On the mechanical effects of a nanocrystallisation treatment for ZrO2 oxide films growing on a zirconium alloy

    International Nuclear Information System (INIS)

    Panicaud, B.; Grosseau-Poussard, J.-L.; Retraint, D.; Guérain, M.; Li, L.

    2013-01-01

    Highlights: ► Raman spectroscopy is performed to determine the stress evolution in a Zr/ZrO 2 system. ► Analytical relations are used to determine material characteristics. ► A specific modelling of the mechanical fields within the oxide is done. ► Relaxation and growth parameters are identified from an inverse method. - Abstract: In the present work, mechanical features are investigated in the case of ZrO 2 thermal oxide films growing on a Zr alloy at the temperature of 550 °C. The effects of a nanocrystallisation treatment on high temperature oxidation of a zirconium alloy are specifically studied. High temperature oxidation is performed in order to show benefits of such a nanocrystallisation on corrosion resistance and its influence on the mechanical fields. Experimental results obtained by Raman spectroscopy give the growth stress evolution in ZrO 2 films. Using a modelling of the system, both asymptotic forms and an optimization procedure are developed to determine the mechanical characteristic parameters of the system.

  8. Mechanical Properties of Oxide Films on Electrolytic In-process Dressing (ELID) Copper-based Grinding Wheel

    Science.gov (United States)

    Kuai, J. C.; Wang, J. W.; Jiang, C. R.; Zhang, H. L.; Yang, Z. B.

    2018-05-01

    The mechanical properties of oxide films on copper based grinding wheel were studied by nanoindentation technique. The analysis of load displacement shows that the creep phenomenon occurs during the loading stage. Results show that the oxide film and the matrix have different characteristics, and the rigidity of the copper based grinding wheel is 0.6-1.3mN/nm, which is weaker than that of the matrix; the hardness of the oxide film is 2000-2300MPa, which is higher than the matrix; and the elastic modulus of the oxide film is 100-120GPa, also higher than the matrix.

  9. Governing Forest Ecosystem Services for Sustainable Environmental Governance: A Review

    Directory of Open Access Journals (Sweden)

    Shankar Adhikari

    2018-05-01

    Full Text Available Governing forest ecosystem services as a forest socio-ecological system is an evolving concept in the face of different environmental and social challenges. Therefore, different modes of ecosystem governance such as hierarchical, scientific–technical, and adaptive–collaborative governance have been developed. Although each form of governance offers important features, no one form on its own is sufficient to attain sustainable environmental governance (SEG. Thus, the blending of important features of each mode of governance could contribute to SEG, through a combination of both hierarchical and collaborative governance systems supported by scientifically and technically aided knowledge. This should be further reinforced by the broad engagement of stakeholders to ensure the improved well-being of both ecosystems and humans. Some form of governance and forest management measures, including sustainable forest management, forest certification, and payment for ecosystem services mechanisms, are also contributing to that end. While issues around commodification and putting a price on nature are still contested due to the complex relationship between different services, if these limitations are taken into account, the governance of forest ecosystem services will serve as a means of effective environmental governance and the sustainable management of forest resources. Therefore, forest ecosystem services governance has a promising future for SEG, provided limitations are tackled with due care in future governance endeavors.

  10. Quinolinic Acid, an Endogenous Molecule Combining Excitotoxicity, Oxidative Stress and Other Toxic Mechanisms

    Directory of Open Access Journals (Sweden)

    Verónica Pérez-De La Cruz

    2012-01-01

    Full Text Available Quinolinic acid (QUIN, an endogenous metabolite of the kynurenine pathway, is involved in several neurological disorders, including Huntington's disease, Alzheimer's disease, schizophrenia, HIV associated dementia (HAD etc. QUIN toxicity involves several mechanisms which trigger various metabolic pathways and transcription factors. The primary mechanism exerted by this excitotoxin in the central nervous system (CNS has been largely related with the overactivation of N-methyl-D-aspartate receptors and increased cytosolic Ca 2+ concentrations, followed by mitochondrial dysfunction, cytochrome c release, ATP exhaustion, free radical formation and oxidative damage. As a result, this toxic pattern is responsible for selective loss of middle size striatal spiny GABAergic neurons and motor alterations in lesioned animals. This toxin has recently gained attention in biomedical research as, in addition to its proven excitotoxic profile, a considerable amount of evidence suggests that oxidative stress and energetic disturbances are major constituents of its toxic pattern in the CNS. Hence, this profile has changed our perception of how QUIN-related disorders combine different toxic mechanisms resulting in brain damage. This review will focus on the description and integration of recent evidence supporting old and suggesting new mechanisms to explain QUIN toxicity.

  11. Mechanisms of electrochemical reduction and oxidation of nitric oxide

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Beltramo, G.L.; Riet, van B.; Veen, van J.A.R.; Koper, M.T.M.

    2004-01-01

    A summary is given of recent work on the reactivity of nitric oxide on various metal electrodes. The significant differences between the reactivity of adsorbed NO and NO in solution are pointed out, both for the reduction and the oxidation reaction(s). Whereas adsorbed NO can be reduced only to

  12. Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Seubsai, Anusorn; Chanlek, Narong; Kidkhunthod, Pinit; Sangthong, Winyoo; Maensiri, Santi; Yimnirun, Rattikorn; Nilmoung, Sukanya; Pannopard, Panvika; Ittisanronnachai, Somlak; Kongpatpanich, Kanokwan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-01-01

    Although manganese oxide- and graphene-based supercapacitors have been widely studied, their charge storage mechanisms are not yet fully investigated. In this work, we have studied the charge storage mechanisms of K-birnassite MnO2 nanosheets and N-doped reduced graphene oxide aerogel (N-rGOae) using an in situ X-ray absorption spectroscopy (XAS) and an electrochemical quart crystal microbalance (EQCM). The oxidation number of Mn at the MnO2 electrode is +3.01 at 0 V vs. SCE for the charging process and gets oxidized to +3.12 at +0.8 V vs. SCE and then reduced back to +3.01 at 0 V vs. SCE for the discharging process. The mass change of solvated ions, inserted to the layers of MnO2 during the charging process is 7.4 μg cm−2. Whilst, the mass change of the solvated ions at the N-rGOae electrode is 8.4 μg cm−2. An asymmetric supercapacitor of MnO2//N-rGOae (CR2016) provides a maximum specific capacitance of ca. 467 F g−1 at 1 A g−1, a maximum specific power of 39 kW kg−1 and a specific energy of 40 Wh kg−1 with a wide working potential of 1.6 V and 93.2% capacity retention after 7,500 cycles. The MnO2//N-rGOae supercapacitor may be practically used in high power and energy applications. PMID:27857225

  13. Charge storage mechanisms of manganese oxide nanosheets and N-doped reduced graphene oxide aerogel for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Seubsai, Anusorn; Chanlek, Narong; Kidkhunthod, Pinit; Sangthong, Winyoo; Maensiri, Santi; Yimnirun, Rattikorn; Nilmoung, Sukanya; Pannopard, Panvika; Ittisanronnachai, Somlak; Kongpatpanich, Kanokwan; Limtrakul, Jumras; Sawangphruk, Montree

    2016-11-01

    Although manganese oxide- and graphene-based supercapacitors have been widely studied, their charge storage mechanisms are not yet fully investigated. In this work, we have studied the charge storage mechanisms of K-birnassite MnO2 nanosheets and N-doped reduced graphene oxide aerogel (N-rGOae) using an in situ X-ray absorption spectroscopy (XAS) and an electrochemical quart crystal microbalance (EQCM). The oxidation number of Mn at the MnO2 electrode is +3.01 at 0 V vs. SCE for the charging process and gets oxidized to +3.12 at +0.8 V vs. SCE and then reduced back to +3.01 at 0 V vs. SCE for the discharging process. The mass change of solvated ions, inserted to the layers of MnO2 during the charging process is 7.4 μg cm-2. Whilst, the mass change of the solvated ions at the N-rGOae electrode is 8.4 μg cm-2. An asymmetric supercapacitor of MnO2//N-rGOae (CR2016) provides a maximum specific capacitance of ca. 467 F g-1 at 1 A g-1, a maximum specific power of 39 kW kg-1 and a specific energy of 40 Wh kg-1 with a wide working potential of 1.6 V and 93.2% capacity retention after 7,500 cycles. The MnO2//N-rGOae supercapacitor may be practically used in high power and energy applications.

  14. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Directory of Open Access Journals (Sweden)

    Shutthanandan V

    2008-06-01

    Full Text Available Abstract Molybdenum disulfide (MoS2, a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Rutherford backscattering spectrometry (RBS, and nuclear reaction analysis (NRA. Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and

  15. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics.

    Science.gov (United States)

    Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M

    2008-06-05

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant

  16. High temperature oxidation of metals: vacancy injection and consequences on the mechanical properties

    International Nuclear Information System (INIS)

    Perusin, S.

    2004-11-01

    The aim of this work is to account for the effects of the high temperature oxidation of metals on their microstructure and their mechanical properties. 'Model' materials like pure nickel, pure iron and the Ni-20Cr alloy are studied. Nickel foils have been oxidised at 1000 C on one side only in laboratory air, the other side being protected from oxidation by a reducing atmosphere. After the oxidation treatment, the unoxidized face was carefully examined by using an Atomic Force Microscope (AFM). Grain boundaries grooves were characterised and their depth were compared to the ones obtained on the same sample heat treated in the reducing atmosphere during the same time. They are found to be much deeper in the case of the single side oxidised samples. It is shown that this additional grooving is directly linked to the growth of the oxide scale on the opposite side and that it can be explained by the diffusion of the vacancies produced at the oxide scale - metal interface, across the entire sample through grain boundaries. Moreover, the comparison between single side oxidised samples and samples oxidised on both sides points out that voids in grain boundaries are only observed in this latter case proving the vacancies condensation in the metal when the two faces are oxidised. The role of the carbon content and the sample's geometry on this phenomenon is examined in detail. The diffusion of vacancies is coupled with the transport of oxygen so that a mechanism of oxygen transport by vacancies is suggested. The tensile tests realised at room temperature on nickel foils (bamboo microstructure) show that the oxide scale can constitute a barrier to the emergence of dislocations at the metal surface. Finally, the Ni-20Cr alloy is tested in tensile and creep tests between 25 and 825 C in oxidising or reducing atmospheres. (author)

  17. Quantum mechanical/molecular mechanical calculated reactivity networks reveal how cytochrome P450cam and Its T252A mutant select their oxidation pathways.

    Science.gov (United States)

    Wang, Binju; Li, Chunsen; Dubey, Kshatresh Dutta; Shaik, Sason

    2015-06-17

    Quantum mechanical/molecular mechanical calculations address the longstanding-question of a "second oxidant" in P450 enzymes wherein the proton-shuttle, which leads to formation of the "primary-oxidant" Compound I (Cpd I), was severed by mutating the crucial residue (in P450cam: Threonine-252-to-Alanine, hence T252A). Investigating the oxidant candidates Cpd I, ferric hydroperoxide, and ferric hydrogen peroxide (Fe(III)(O2H2)), and their reactions, generates reactivity networks which enable us to rule out a "second oxidant" and at the same time identify an additional coupling pathway that is responsible for the epoxidation of 5-methylenylcamphor by the T252A mutant. In this "second-coupling pathway", the reaction starts with the Fe(III)(O2H2) intermediate, which transforms to Cpd I via a O-O homolysis/H-abstraction mechanism. The persistence of Fe(III)(O2H2) and its oxidative reactivity are shown to be determined by interplay of substrate and protein. The substrate 5-methylenylcamphor prevents H2O2 release, while the protein controls the Fe(III)(O2H2) conversion to Cpd I by nailing-through hydrogen-bonding interactions-the conformation of the HO(•) radical produced during O-O homolysis. This conformation prevents HO(•) attack on the porphyrin's meso position, as in heme oxygenase, and prefers H-abstraction from Fe(IV)OH thereby generating H2O + Cpd I. Cpd I then performs substrate oxidations. Camphor cannot prevent H2O2 release and hence the T252A mutant does not oxidize camphor. This "second pathway" transpires also during H2O2 shunting of the cycle of wild-type P450cam, where the additional hydrogen-bonding with Thr252 prevents H2O2 release, and contributes to a successful Cpd I formation. The present results lead to a revised catalytic cycle of Cytochrome P450cam.

  18. Forms of global governence

    Directory of Open Access Journals (Sweden)

    Maxim V. Kharkevich

    2014-01-01

    Full Text Available Global governance as a concept defines the meaning of contemporary world politics both as a discipline and as reality. Interdependent and globalized world requires governance, and a global government has not been formed yet. The theoretical possibility of global governance without global government is proved and justified. The purpose of this article is to analytically identify possible forms of global governance. Three such forms of global governance are identified: hierarchical, market and network. In a hierarchy the governance is due to the asymmetry of power between the parties. Market control happens via anonymous pricing mechanism. Network, in contrast to the market is characterized by a closer value link between the actors, but unlike the hierarchical relationship actors are free to leave the network. Global governance takes three forms and is being implemented by different actors. To determine the most efficient form of global governance is impossible. Efficiency depends on the match between a form and an object of government. It should be noted that meta governance is likely to remain a monopoly of institutionally strong states in global governance.

  19. Kinetics and mechanism of oxidation of acetanilide by quinquevalent vanadium in acid medium

    International Nuclear Information System (INIS)

    Gupta, R.

    1990-01-01

    The kinetics of the oxidation of acetanilide with vanadium(V) in sulphuric acid medium at constant ionic strength has been studied. The reaction is first order with oxidant. The order of reaction in acetanilide varies from one to zero. The reaction follows an acid catalyzed independent path, exhibiting square dependence in H + . A Bunnett plot indicates that the water acts as a nucleophile. The thermodynamic parameters have been computed. A probable reaction mechanism and rate law consistent with these data are given. (Author)

  20. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction

    OpenAIRE

    Kumar, Santosh; Kim, Young-Rae; Vikram, Ajit; Naqvi, Asma; Li, Qiuxia; Kassan, Modar; Kumar, Vikas; Bachschmid, Markus M.; Jacobs, Julia S.; Kumar, Ajay; Irani, Kaikobad

    2017-01-01

    Many oxidative stimuli engage the 66-kDa Src homology 2 domain-containing protein (p66Shc) to induce reactive oxygen species (ROS). ROS regulated by p66Shc promotes aging and contributes to cancer, diabetes, obesity, cardiomyopathy, and atherosclerosis. Here we identify a fundamental mechanism that controls p66Shc and p66Shc-regulated ROS. We show that p66Shc is lysine acetylated when cells are faced with an oxidative stimulus (diabetes), and lysine acetylation of p66Shc is obligatory for p66...

  1. How Do Corporate Governance Mechanisms Affect A Firm’s Potential For Bankruptcy?

    Directory of Open Access Journals (Sweden)

    Rhesa Theodorus Hanani

    2015-03-01

    Full Text Available The purpose of this thesis is to understand the effects of corporate governance mechanisms on the potential for bankruptcy. This study is done by utilizing the linear regression fixed effect vector decomposition model on 30 listed firms from the consumer goods sector of Indonesia Stock Exchange during the 2010-2012 periods. The results of the study indicate that: the board of commissioners’ independence and size of the commissioners’ board pose a significant positive effect on the potential for bankruptcy; the presence of an audit committee and the presence of a nomination and remuneration committee pose a significant negative effect and institutional ownership and managerial ownership do not significantly affect the potential for bankruptcy.

  2. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report; FINAL

    International Nuclear Information System (INIS)

    Brown, G. E. Jr.; Chambers, S. A.

    1999-01-01

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals

  3. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  4. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  5. Carbon Inputs From Riparian Vegetation Limit Oxidation of Physically Bound Organic Carbon Via Biochemical and Thermodynamic Processes

    Science.gov (United States)

    Graham, Emily B.; Tfaily, Malak M.; Crump, Alex R.; Goldman, Amy E.; Bramer, Lisa M.; Arntzen, Evan; Romero, Elvira; Resch, C. Tom; Kennedy, David W.; Stegen, James C.

    2017-12-01

    In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here we investigate the biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor using ultrahigh-resolution C characterization. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically bound OC. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the "priming" concept—that inputs of water-soluble and thermodynamically favorable terrestrial OC protect bound-OC from oxidation. In both environments, the most thermodynamically favorable compounds appear to be preferentially oxidized regardless of which OC pool microbiomes metabolize. In turn, we suggest that the extent of riparian vegetation causes sediment microbiomes to locally adapt to oxidize a particular pool of OC but that common thermodynamic principles govern the oxidation of each pool (i.e., water-soluble or physically bound). Finally, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.

  6. THE MANAGEMENT SUBSIDIARIES: CORPORATE GOVERNANCE MECHANISMS IN GROUP OF COMPANIES

    Directory of Open Access Journals (Sweden)

    A. K. Tatulyan

    2016-01-01

    control of subsidiaries, and the effectiveness of corporate governance mechanisms in group of companies.

  7. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Science.gov (United States)

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The governance of clean energy in India: The clean development mechanism (CDM) and domestic energy politics

    International Nuclear Information System (INIS)

    Phillips, Jon; Newell, Peter

    2013-01-01

    This paper explores the ways in which clean energy is being governed in India. It does so in order to improve our understanding of the potential and limitations of carbon finance in supporting lower carbon energy transitions, and to strengthen our appreciation of the role of politics in enabling or frustrating such endeavors. In particular we emphasize the importance of politics and the nature of India's political economy in understanding the development of energy sources and technologies defined as ‘clean’ both by the United Nations Clean Development Mechanism (CDM) and leading international actors. By considering the broad range of institutions that exert formal and informal political influence over how the benefits and costs of the CDM are distributed, the paper highlights shortcomings in the narrow way in which CDM governance has been conceptualized to date. This approach goes beyond analysis of technocratic aspects of governance – often reduced to a set of institutional design issues – in order to appreciate the political nature of the trade-offs that characterize debates about India's energy future and the relations of power which will determine how, and on whose terms, they are resolved. - Highlights: • Clean energy governance in practice is shaped by political power and influence. • Governance of clean energy requires strong institutions from local to global levels. • Un-governed areas of energy policy are often as revealing of the exercise of power as areas where there explicit policy is in place. • Climate and carbon finance interventions need to better understand the landscape of political power which characterises India’s energy sector

  9. The mental health care model in Brazil: analyses of the funding, governance processes, and mechanisms of assessment

    Directory of Open Access Journals (Sweden)

    Thiago Lavras Trapé

    Full Text Available ABSTRACT OBJECTIVE This study aims to analyze the current status of the mental health care model of the Brazilian Unified Health System, according to its funding, governance processes, and mechanisms of assessment. METHODS We have carried out a documentary analysis of the ordinances, technical reports, conference reports, normative resolutions, and decrees from 2009 to 2014. RESULTS This is a time of consolidation of the psychosocial model, with expansion of the health care network and inversion of the funding for community services with a strong emphasis on the area of crack cocaine and other drugs. Mental health is an underfunded area within the chronically underfunded Brazilian Unified Health System. The governance model constrains the progress of essential services, which creates the need for the incorporation of a process of regionalization of the management. The mechanisms of assessment are not incorporated into the health policy in the bureaucratic field. CONCLUSIONS There is a need to expand the global funding of the area of health, specifically mental health, which has been shown to be a successful policy. The current focus of the policy seems to be archaic in relation to the precepts of the psychosocial model. Mechanisms of assessment need to be expanded.

  10. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    Science.gov (United States)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  11. Oxidation mechanism studies of T-111 alloy by 238Pu dioxide

    International Nuclear Information System (INIS)

    Teaney, P.E.; Selle, J.E.

    1975-01-01

    A simple set of experiments was conducted in order to determine the actual mechanism by which oxygen is transported to a T-lll alloy liner in a heat source capsule. Two mechanisms are possible: (1) transport through the vapor phase; or (2) solid state diffusion across the fuel-liner interface. Two T-lll alloy capsules were fabricated containing six-watt plutonia pellets. The pellet in one capsule was wrapped several times with iridium wire to provide a stand-off to prevent contact between the fuel and liner. The pellet in the second capsule was placed in direct contact with the liner. After fabrication, the specimens were tested for 60 days at 900 0 C. Metallographic examination, microhardness measurements, and oxygen and nitrogen analyses of the cross sectioned specimen were utilized to determine the oxidation mechanism. Although the vapor phase mechanism contributed to the total oxygen uptake, solid state diffusion across the fuel-liner interface was the primary mechanism. 6 fig, 1 table

  12. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Science.gov (United States)

    Tarabanko, Valery E.; Tarabanko, Nikolay

    2017-01-01

    This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301

  13. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study.

    Science.gov (United States)

    Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C

    2013-05-02

    Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.

  14. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanxuan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); Wan, Jinquan, E-mail: ppjqwan@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, Yongwen [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China)

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO{sub 4}·{sup −}) and hydroxyl radical (·OH) were found to be primary oxidants at pH 3.0 and pH 7.0, respectively while ·OH was the major specie to oxidize DBP at pH 11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to ·OH, superoxide radical (O{sub 2}·{sup −}) was detected at pH 11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH 3.0 by GC–MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH 3.0. - Highlights: • Both SO{sub 4}{sup −}· and ·OH were found to be the major active species at pH 3.0 and pH 7.0. • ·OH and ·O2– were the primary oxidants pH 11.0. • The intermediate products were investigated as well as the degradation pathway. • Dealkylation, hydroxylation, decarboxylation, H-extraction were the major mechanisms.

  15. Defect Chemistry of Oxides for Energy Applications.

    Science.gov (United States)

    Schweke, Danielle; Mordehovitz, Yuval; Halabi, Mahdi; Shelly, Lee; Hayun, Shmuel

    2018-05-31

    Oxides are widely used for energy applications, as solid electrolytes in various solid oxide fuel cell devices or as catalysts (often associated with noble metal particles) for numerous reactions involving oxidation or reduction. Defects are the major factors governing the efficiency of a given oxide for the above applications. In this paper, the common defects in oxide systems and external factors influencing the defect concentration and distribution are presented, with special emphasis on ceria (CeO 2 ) based materials. It is shown that the behavior of a variety of oxide systems with respect to properties relevant for energy applications (conductivity and catalytic activity) can be rationalized by general considerations about the type and concentration of defects in the specific system. A new method based on transmission electron microscopy (TEM), recently reported by the authors for mapping space charge defects and measuring space charge potentials, is shown to be of potential importance for understanding conductivity mechanisms in oxides. The influence of defects on gas-surface reactions is exemplified on the interaction of CO 2 and H 2 O with ceria, by correlating between the defect distribution in the material and its adsorption capacity or splitting efficiency. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Modeling of mechanical behavior of quenched zirconium-based nuclear fuel claddings after a high temperature oxidation

    International Nuclear Information System (INIS)

    Cabrera-Salcedo, A.

    2012-01-01

    During the second stage of Loss Of Coolant Accident (LOCA) in Pressurized Water Reactors (PWR) zirconium-based fuel claddings undergo a high temperature oxidation (up to 1200 C), then a water quench. After a single-side steam oxidation followed by a direct quench, the cladding is composed of three layers: an oxide (Zirconia) outer layer (formed at HT), always brittle at Room Temperature (RT), an intermediate oxygen stabilized alpha layer, always brittle at RT, called alpha(O), and an inner 'prior-beta' layer, which is the only layer able to keep some significant Post Quench (PQ) ductility at RT. However, hydrogen absorbed because of service exposure or during the LOCA transient, concentrates in this layer and may leads to its embrittlement. To estimate the PQ mechanical properties of these materials, Ring Compression Tests (RCT) are widely used because of their simplicity. Small sample size makes RCTs advantageous when a comparison with irradiated samples is required. Despite their good reproducibility, these tests are difficult to interpret as they often present two or more load drops on the engineering load-displacement curve. Laboratories disagree about their interpretation. This study proposes an original fracture scenario for a stratified PQ cladding tested by RCT, and its associated FE model. Strong oxygen content gradient effect on layers mechanical properties is taken into account in the model. PQ thermal stresses resulting from water quench of HT oxidized cladding are investigated, as well as progressive damage of three layers during an RCT. The proposed scenario is based on interrupted RCT analysis, post- RCT sample's outer layers observation for damage evaluation, RCTs of prior-beta single-layer rings, and mechanical behavior of especially chemically adjusted samples. The force displacement curves appearance is correctly reproduced using the obtained FE model. The proposed fracture scenario elucidates RCTs of quenched zirconium-based nuclear fuel

  17. China's Insurance Regulatory Reform, Corporate Governance Behavior and Insurers' Governance Effectiveness.

    Science.gov (United States)

    Li, Huicong; Zhang, Hongliang; Tsai, Sang-Bing; Qiu, Aichao

    2017-10-17

    External regulation is an important mechanism to improve corporate behavior in emerging markets. China's insurance governance regulation, which began to supervise and guide insurance corporate governance behavior in 2006, has experienced a complex process of reform. This study tested our hypotheses with a sample of 85 firms during 2010-2011, which was obtained by providing a questionnaire to all of China's shareholding insurance companies. The empirical study results generally show that China's insurance governance effectiveness has significantly improved through strict regulation. Insurance corporate governance can improve business acumen and risk-control ability, but no significant evidence was found to prove its influence on profitability, as a result of focusing less attention on governance than on management. State ownership is associated with higher corporate governance effectiveness than non-state ownership. Listed companies tend to outperform non-listed firms, and life insurance corporate governance is more effective than that of property insurers. This study not only contributes to the comprehensive understanding of corporate governance effectiveness but also to the literature by highlighting the effect of corporate governance regulation in China's insurance industry and other emerging economies of the financial sector.

  18. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications

    Directory of Open Access Journals (Sweden)

    Gh. Barati Darband

    2017-03-01

    Full Text Available Plasma Electrolyte Oxidation (PEO process has increasingly been employed to improve magnesium surface properties by fabrication of an MgO-based coating. Originating from conventional anodizing procedures, this high-voltage process produces an adhesive ceramic film on the surface. The present article provides a comprehensive review around mechanisms of PEO coatings fabrication and their different properties. Due to complexity of PEO coatings formation, a complete explanation regarding fabrication mechanisms of PEO coatings has not yet been proposed; however, the most important advancements in the field of fabrication mechanisms of PEO coatings were gathered in this work. Mechanisms of PEO coatings fabrication on magnesium were reviewed considering voltage–time plots, optical spectrometry, acoustic emission spectrometry and electronic properties of the ceramic film. Afterwards, the coatings properties, affecting parameters and improvement strategies were discussed. In addition, corrosion resistance of coatings, important factors in corrosion resistance and methods for corrosion resistance improvement were considered. Tribological properties (important factors and improvement methods of coatings were also studied. Since magnesium and its alloys are broadly used in biological applications, the biological properties of PEO coatings, important factors in their biological performance and existing methods for improvement of coatings were explained. Addition of ceramic based nanoparticles and formation of nanocomposite coatings may considerably influence properties of plasma electrolyte oxidation coatings. Nanocomposite coatings properties and nanoparticles adsorption mechanisms were included in a separate sector. Another method to improve coatings properties is formation of hybrid coatings on PEO coatings which was discussed in the end.

  19. Mechanism of extractive/oxidative desulfurization using the ionic liquid inimidazole acetate: a computational study.

    Science.gov (United States)

    Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin

    2017-02-01

    The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.

  20. Effect of different B contents on the mechanical properties and cyclic oxidation behaviour of β-NiAlDy coatings

    International Nuclear Information System (INIS)

    Jia, Fang; Peng, Hui; Zheng, Lei; Guo, Hongbo; Gong, Shengkai; Xu, Huibin

    2015-01-01

    Highlights: • Dy and B co-doping strategy was proposed to modify β-NiAl coatings. • Mechanical properties and cyclic oxidation behaviour of coatings were investigated. • The addition of boron improves the mechanical properties of β-NiAl coatings. • Cyclic oxidation behaviour of coatings is influenced by chemical reactions of boron. - Abstract: NiAlDy coatings doped with 0.05 at.% and 1.00 at.% B were produced by electron beam physical vapour deposition (EB-PVD). The mechanical properties and cyclic oxidation behaviour of the coatings were investigated. Compared to the undoped NiAlDy coating, the B doped coatings exhibited improved ductility, higher micro-hardness and elastic modulus. The NiAlDy alloys revealed similar thermal expansion behaviour in a temperature range of 200–1100 °C. However, the addition of B did not show significant improvement in the cyclic oxidation resistance of NiAlDy coatings, on the contrary, the addition of 1.00 at.% B accelerated the scale growth rate and aggravated the scale rumpling, which led to severe spallation. Related mechanisms were preliminarily discussed

  1. Mechanism of water oxidation by [Ru(bda)(L)2]: the return of the "blue dimer".

    Science.gov (United States)

    Concepcion, Javier J; Zhong, Diane K; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2015-03-07

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)2] including X-ray structure of intermediates and their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)2], revealing key features unavailable from solution studies with sacrificial oxidants.

  2. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  3. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Science.gov (United States)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  4. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    International Nuclear Information System (INIS)

    Razavi, Behnaz; Song Weihua; Santoke, Hanoz; Cooper, William J.

    2011-01-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( · OH) and reducing aqueous electron (e - aq ), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with · OH determined, (6.96±0.16)x10 9 , (2.92±0.06)x10 9 , (4.16±0.13)x10 9 , and (3.13±0.15)x10 9 M -1 s -1 , and for e - aq (2.31±0.06)x10 9 , (0.45±0.01)x10 9 , (1.26±0.01)x10 9 , and (0.69±0.02)x10 9 M -1 s -1 , respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137 Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  5. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    International Nuclear Information System (INIS)

    Wang, Wenchao; Wang, Zhipeng; Liu, Yu; Li, Nan; Wang, Wei; Gao, Jianping

    2012-01-01

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  6. Energy Efficiency Governance: Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This handbook has been written to assist EE practitioners, government officials and stakeholders to establish effective EE governance structures for their country. The handbook provides readers with relevant information in an accessible format that will help develop comprehensive and effective governance mechanisms. For each of the specific topics dealt with (see Figure 1 in the Handbook), the IEA offers guidelines for addressing issues, or directs readers to examples of how such issues have been dealt with by specific countries.

  7. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    Science.gov (United States)

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  8. Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying

    Science.gov (United States)

    Zhao, Ziqian; Xiao, Zhu; Li, Zhou; Zhu, Mengnan; Yang, Ziqi

    2017-11-01

    Cu-3.6 vol.% Al2O3 dispersion strengthened alloy was prepared by mechanical alloying (MA) of internal oxidation Cu-Al powders. The lattice parameter of Cu matrix decreased with milling time for powders milled in argon, while the abnormal increase of lattice parameter occurred in the air resulting from mechanochemical reactions. With a quantitative analysis, the combined method makes residual aluminum oxidized completely within 10-20 h while mechanical alloying method alone needs longer than 40 h. Lamellar structure formed and the thickness of lamellar structure decreased with milling time. The size of Al2O3 particles decreased from 46 to 22 nm after 40 h milling. After reduction, core-shell structure was found in MAed powders milled in the air. The compacted alloy produced by MAed powders milled in the argon had an average hardness and electrical conductivity of 172.2 HV and 82.1% IACS while the unmilled alloy's were 119.8 HV and 74.1% IACS due to the Al2O3 particles refinement and residual aluminum in situ oxidization.

  9. 'Governance' sebagai Pengelolaan Konflik

    Directory of Open Access Journals (Sweden)

    Riza Noer Arfani

    2005-03-01

    Full Text Available The article explores the notion of understanding governance as part of conflict management, or vice versa, of undustanding conflict management aspects as benefiting from governance concepts and practices. Governance, with its much broader meaning than government, suggests diverse relevant and significant clues, hints and ideas in the context of conflict management endeavors. one of which is the idea to involve larger audiences and stakeholders –beyond the conventional institutions such as governmental bodies– in policy making processes and public discourses. Such comprehension and appreciation of governance concepts and practices is certainly parallel with the conflict management philosophies, concepis and practices which based on and oriented toward integrative, non-formal and non-litigative mechanisms.

  10. Towards the improvement of the oxidation resistance of Nb-silicides in situ composites: A solid state diffusion approach

    International Nuclear Information System (INIS)

    Mathieu, S.; Knittel, S.; François, M.; Portebois, L.; Mathieu, S.; Vilasi, M.

    2014-01-01

    Highlights: •Local equilibrium is attained during oxidation at phase boundaries (steady state conditions). •A solid state diffusion model explains the oxidation mechanism of Nb-silicides composites. •The Nb ss fraction is not the only parameters governing the oxidation rate of Nb-silicides. •Aluminium increases the thermodynamic activity of Si in the Nb-silicides composites. •The results indicate the need to develop a Nb–Ti–Hf–Al–Cr–Si thermodynamic database. -- Abstract: The present study focuses on the oxidation mechanism of Nb-silicide composites and on the effect of the composition on the oxidation rate at 1100 °C. A theoretical approach is proposed based on experimental results and used to optimise the oxidation resistance. The growth model based on multiphase diffusion was experimentally tested and confirmed by manufacturing seven composites with different compositions. It was also found that the effect of the composition has to be evaluated at 1100 °C within a short time duration (50 h), where the oxide scale and the internal oxidation zone both grow according to parabolic kinetics

  11. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  12. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Sun, Yu; Liu, Yilun; Chen, Xuefeng; Zhai, Zhi; Xu, Fei; Liu, Yijun

    2017-01-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  13. Micromechanism of oxygen transport during initial stage oxidation in Si(100) surface: A ReaxFF molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu, E-mail: yu.sun@xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yilun [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Chen, Xuefeng; Zhai, Zhi [State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Xu, Fei [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yijun [Institute for Computational Mechanics and Its Applications, Northwestern Polytechnical University, Xi’an 710072 (China); Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)

    2017-06-01

    Highlights: • A competition mechanism between thermal actuation and compressive stress blocking was found for the oxygen transport. • At low temperature, a compressive stress was generated in the oxide layer which blocked oxygen transport into the deeper region. • O atoms gained larger possibility to go deeper inward as temperature increase. • The related film quality was well explained by the competition mechanism. - Abstract: The early stage oxidation in Si(100) surface has been investigated in this work by a reactive force field molecular dynamics (ReaxFF MD) simulation, manifesting that the oxygen transport acted as a dominant issue for initial oxidation process. Due to the oxidation, a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Si(100) surface and further prevented oxidation in the deeper layer. In contrast, thermal actuation was beneficial to the oxygen transport into deeper layer as temperature increases. Therefore, a competition mechanism was found for the oxygen transport during early stage oxidation in Si(100) surface. At room temperature, the oxygen transport was governed by the blocking effect of compressive stress, so a better quality oxide film with more uniform interface and more stoichiometric oxide structure was obtained. Indeed, the mechanism presented in this work is also applicable for other self-limiting oxidation (e.g. metal oxidation) and is helpful for the design of high-performance electronic devices.

  14. Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation

    Science.gov (United States)

    Yuan, Rui; Yuan, Jing; Wu, Yanping; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2017-09-01

    An efficient method for the preparation of graphene oxide (GO) was descried through inducing the ultrasonic in the rate-determining step of oxidation processes. Both the transformation procedures and the detailed molecular behavior of parent graphene (PG), partially oxidized graphene (PGO) and GO in H2SO4 and aqueous solution were investigated by molecular dynamic simulation (MD) combining with experiments. The results obtained from MD simulation show that the addition of KMnO4 truly marked the beginning of the reaction which carried out from the border of PG flakes to the centre. This oxidation procedure was the rate-determining step and mainly contained three steps: the boundary carbon atoms oxidized, the distance of the corresponding interlayer enlarged and the oxidizing agent diffused into the unoxidized region, the processes was repeated until oxidized completely. So, the introducing ultrasonic in this section can accelerate not only the exfoliation of layers but also the diffusion of oxidizer and finally raises the oxidation efficiency dramatically. To further clarify these simulation results, the GO was prepared by the method mentioned above. The analyses results for the X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS) of the resulting GO show that the ultrasonic method could perfectly shortens the oxidation time from 12 h to 3 h and forms the higher degree of oxidation products with more carboxylic acid groups on its edges. Thus, this study provides a better understanding of the transformation procedures of graphite and proposes an efficient way to produce GOs suitable for various chemical modifications.

  15. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism

    Science.gov (United States)

    The adaptive mechanisms that protect brain metabolism during and after hypoxia, for instance, during hypoxic preconditioning, are coordinated in part by nitric oxide (NO). We tested the hypothesis that acute transient hypoxia stimulates NO synthase (NOS)-activated mechanisms of m...

  16. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  17. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 2, chemical-mechanical degradation model

    Science.gov (United States)

    Purewal, Justin; Wang, John; Graetz, Jason; Soukiazian, Souren; Tataria, Harshad; Verbrugge, Mark W.

    2014-12-01

    Capacity fade is reported for 1.5 Ah Li-ion batteries containing a mixture of Li-Ni-Co-Mn oxide (NCM) + Li-Mn oxide spinel (LMO) as positive electrode material and a graphite negative electrode. The batteries were cycled at a wide range of temperatures (10 °C-46 °C) and discharge currents (0.5C-6.5C). The measured capacity losses were fit to a simple physics-based model which calculates lithium inventory loss from two related mechanisms: (1) mechanical degradation at the graphite anode particle surface caused by diffusion-induced stresses (DIS) and (2) chemical degradation caused by lithium loss to continued growth of the solid-electrolyte interphase (SEI). These two mechanisms are coupled because lithium is consumed through SEI formation on newly exposed crack surfaces. The growth of crack surface area is modeled as a fatigue phenomenon due to the cyclic stresses generated by repeated lithium insertion and de-insertion of graphite particles. This coupled chemical-mechanical degradation model is consistent with the observed capacity loss features for the NCM + LMO/graphite cells.

  18. Charge carrier transport mechanisms in nanocrystalline indium oxide

    International Nuclear Information System (INIS)

    Forsh, E.A.; Marikutsa, A.V.; Martyshov, M.N.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.

    2014-01-01

    The charge transport properties of nanocrystalline indium oxide (In 2 O 3 ) are studied. A number of nanostructured In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method and characterized using various techniques. The mean nanocrystals size varies from 7–8 nm to 18–20 nm depending on the conditions of their preparation. Structural characterizations of the In 2 O 3 samples are performed by means of transmission electron microscopy and X-ray diffraction. The analysis of dc and ac conductivity in a wide temperature range (T = 50–300 K) shows that at high temperatures charge carrier transport takes place over conduction band and at low temperatures a variable range hopping transport mechanism can be observed. We find out that the temperature of transition from one mechanism to another depends on nanocrystal size: the transition temperature rises when nanocrystals are bigger in size. The average hopping distance between two sites and the activation energy are calculated basing on the analysis of dc conductivity at low temperature. Using random barrier model we show a uniform hopping mechanism taking place in our samples and conclude that nanocrystalline In 2 O 3 can be regarded as a disordered system. - Highlights: • In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method. • The mean nanocrystal size varies from 7–8 nm to 18–20 nm. • At high temperatures charge carrier transport takes place over conduction band. • At low temperatures a variable range hopping transport mechanism can be observed. • We show a uniform hopping mechanism taking place in our samples

  19. Spent-fuel special-studies progress report: probable mechanisms for oxidation and dissolution of single-crystal UO2 surfaces

    International Nuclear Information System (INIS)

    Wang, R.

    1981-03-01

    Due to the complexity of the structural, microstructural and compositional characteristics of spent fuel, basic leaching and dissolution mechanisms were studied with UO 2 matrix material, specifically with single-crystal UO 2 , to isolate individual contributory factors. The effects of oxidation and oxidation-dissolution were investigated in different oxidation conditions, such as in air, oxygenated solutions and deionized water containing H 2 O 2 . In addition, the effects of temperature on dissolution of UO 2 were studied in autoclaves at 75 and 150 0 C. Also, oxidation and dissolution measurements were investigated via electrochemical methods to determine if those techniques could be applied to the characterization of leaching and dissolution of spent fuel in a hot cell. Finally, the effects of radiation were explored since the radiolysis of water may create a localized oxidizing condition at or near the spent fuel-solution interface, even in neutral or reducing conditions as commonly found in deep geological environments. The oxidation and oxidation-dissolution mechanisms for UO 2 are proposed as follows: The UO 2 surface is first oxidized in solution to form a UO/sub 2+x/ surface layer several angstroms thick. This oxidized surface has a high dissolution rate since the UO/sub 2+x/ reacts with the dissolved O 2 , or H 2 O 2 , to form uranyl complex ions in a U(VI) state. As the uranyl ions exceed the solubility limits in solution, they become hydrolyzed to form solid deposits and suspended particles of UO 3 hydrates. The thickness and porosity of the deposited UO 3 hydrate surface-film is dependent on temperature, pH and deposition time. A long-term dissolution rate is then determined by the nature of the surface film, such as porosity, solubility and mechanical properties

  20. Implikasi Corporate Governance terhadap Kinerja Family Business di Indonesia

    Directory of Open Access Journals (Sweden)

    Iskandar Itan

    2017-02-01

    Full Text Available Penelitian ini melihat hubungan antara corporate governance quality dan kinerja pada perusahaan keluarga di Indonesia. Penelitian ini dilakukan pada 126 perusahaan yang terdaftar di Bursa Efek Indonesia untuk periode 2008 sampai 2012 dengan menggunakan analisis regresi berganda. Dalam penelitian ini, corporate governance quality di proksikan dengan corporate governance process dan corporate governance mechanism, sedangkan kinerja perusahaan diukur dengan ROA dan Tobin’s Q. Corporate governace process terdiri dari variabel hak-hak pemegang saham, perlakuan yang adil terhadap pemegang saham, peran pemangku kepentingan, pengungkapan dan transparansi, dan tanggung jawab dewan. Sedangkan variabel corporate governance mechanism adalah ukuran dewan direksi, komisaris independen, kepemilikan manajerial, dan kepemilikan asing. Hasil analisis menunjukkan bahwa variabel hak-hak pemegang saham, perlakuan yang adil terhadap pemegang saham, ukuran dewan direksi, kepemilikan manajerial, dan kepemilikan asing mempunyai pengaruh signifikan terhadap kinerja perusahaan yang diukur dengan ROA. Sementara itu, variabel pengungkapan dan transparansi, tanggung jawab dewan, dan ukuran dewan direksi berpengaruh terhadap Tobin’s Q.Kata kunci:  Mekanisme corporate governance; corporate governance process kinerja perusahaanThis paper explores the relationship between corporate governance quality and firm performance of family business in Indonesia. This study covers the period of 2008 to 2012 and 126 listed family companies from Indonesia Stock Exchange are included has been examined by using multiple regression analysis. In this study, corporate governance quality is proxied by corporate governance process and corporate governance mechanism, while performance is measured by return on assets (ROA and Tobin‘s Q. Measures of corporate governance process employed are rights of shareholders, equitable treatment of shareholders, role of stakeholders, disclosure and

  1. In situ Investigation of Oxide Films on Zirconium Alloy in PWR Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Zirconium alloys are used as fuel cladding materials in nuclear power reactors, because these materials have a very low thermal neutron capture cross section as well as desirable mechanical properties. However, the Fukushima accident shows that the oxidation behavior of zirconium alloy is an important issue because the zirconium alloy functions as a shield of nuclear material (i.e., uranium, fission gas), and the degradation on zirconium cladding directly causes severe accident on nuclear power plant. Therefore, to ensure the safety of nuclear power reactors, the performance and sustainability of nuclear fuel should be understood. Currently, the water-metal interface is regarded as the rate-controlling site governing the rapid oxidation transition in high-burn-up fuels. Zirconium oxide is formed at the water-metal interface, and its structure and phase play an important role in determining its mechanical properties. In the early stage of the oxidation process, zirconium oxide with both tetragonal and monoclinic phases is formed. With an increase in the oxidation time to 150 h, the unstable tetragonal phase disappears and the monoclinic phase is dominant and possibly because of the stress relaxation according to previous and present results.

  2. Evaluation of mechanically treated cerium (IV) oxides as corrosion inhibitors for galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Deflorian, F., E-mail: flavio.deflorian@ing.unitn.it [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Fedel, M.; Rossi, S. [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Kamarchik, P. [PPG Industries, Coatings Innovation Center, 4325 Rosanna Drive, Allison Park, PA 15101 (United States)

    2011-09-30

    The use of cerium salts as corrosion inhibitors for hot dip galvanized steel has been object of a numerous studies in the last few years. The role of cerium ions as corrosion inhibitors was proved: cerium is able to block the cathodic sites of the metal, forming insoluble hydroxides and oxides on the zinc surface. This fact leads to a dramatic decrease of the cathodic current densities and, therefore, to a reduction the overall corrosion processes. On the other hand, the potential of cerium oxides as corrosion inhibitors was also proposed. However, the real effectiveness of this kind of anticorrosive pigments has not been clarified yet. In this work cerium (IV) oxides are considered as corrosion inhibitors for galvanized steel. The corrosion inhibition mechanism of mechanically treated (milled) CeO{sub 2} alone and in combination with milled SiO{sub 2} nanoparticles was investigated. For this purpose milled CeO{sub 2}, CeO{sub 2} and SiO{sub 2} milled together and milled SiO{sub 2} particles were studied as corrosion inhibitors in water solution. Therefore, the different mechanically treated particles were dispersed in 0.1 M NaCl solution to test their effectiveness as corrosion inhibitors for galvanized steel. The galvanized steel was immersed in the different solutions and the corrosion inhibition efficiency of the different particles was measured by means of electrochemical techniques. For this purpose, electrochemical impedance spectroscopy (EIS) measurements were carried out, monitoring the evolution of the corrosion processes occurring at the metal surface with the immersion time in the solution. The effect of the different pigments was also investigated by carrying out anodic and cathodic polarization measurements. The polarization curves were acquired under conditions of varied pH. The experimental measurements suggest that the mechanical treatment performed on the SiO{sub 2} and CeO{sub 2} particles promote the formation of an effective corrosion pigment

  3. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)

    International Nuclear Information System (INIS)

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-01-01

    Highlights: • Plasma electrolytic oxidation (PEO) method was developed to control corrosion, porosity, and mechanical property. • Mechanical properties of PEO-coated AZ31 alloys were affected by the different electrolyte. • Mechanical properties and corrosion resistance of PEO-coated AZ31 alloys were compared with uncoated one. - Abstract: We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na_2SiO_3, KF and NaH_2PO_4·2H_2O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  4. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)

    Energy Technology Data Exchange (ETDEWEB)

    White, Leon; Koo, Youngmi [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States); Neralla, Sudheer [Jet-Hot LLC, Burlington, NC 27215 (United States); Sankar, Jagannathan [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States); Yun, Yeoheung, E-mail: yyun@ncat.edu [FIT BEST Laboratory, Engineering Research Center, Department of Chemical, Biological, and Bio Engineering, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-06-15

    Highlights: • Plasma electrolytic oxidation (PEO) method was developed to control corrosion, porosity, and mechanical property. • Mechanical properties of PEO-coated AZ31 alloys were affected by the different electrolyte. • Mechanical properties and corrosion resistance of PEO-coated AZ31 alloys were compared with uncoated one. - Abstract: We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na{sub 2}SiO{sub 3}, KF and NaH{sub 2}PO{sub 4}·2H{sub 2}O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  5. The effect of governance mechanisms on food safety in the supply chain: Evidence from the Lebanese dairy sector.

    Science.gov (United States)

    Abebe, Gumataw K; Chalak, Ali; Abiad, Mohamad G

    2017-07-01

    Food safety is a key public health issue worldwide. This study aims to characterise existing governance mechanisms - governance structures (GSs) and food safety management systems (FSMSs) - and analyse the alignment thereof in detecting food safety hazards, based on empirical evidence from Lebanon. Firm-to-firm and public baseline are the dominant FSMSs applied in a large-scale, while chain-wide FSMSs are observed only in a small-scale. Most transactions involving farmers are relational and market-based in contrast to (large-scale) processors, which opt for hierarchical GSs. Large-scale processors use a combination of FSMSs and GSs to minimise food safety hazards albeit potential increase in coordination costs; this is an important feature of modern food supply chains. The econometric analysis reveals contract period, on-farm inspection and experience having significant effects in minimising food safety hazards. However, the potential to implement farm-level FSMS is influenced by formality of the contract, herd size, trading partner choice, and experience. Public baseline FSMSs appear effective in controlling food safety hazards; however, this may not be viable due to the scarcity of public resources. We suggest public policies to focus on long-lasting governance mechanisms by introducing incentive schemes and farm-level FSMSs by providing loans and education to farmers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  7. Microstructure evolution of the oxide dispersion strengthened CLAM steel during mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Liangliang [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Mao, Xiaodong [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • A nano-sized oxides dispersed ODS-CLAM steel was obtained by MA and HIP. • A minimum saturated grain size of down to 30 nm was achieved by varying the milling time from 0 to 100 h. • Solution of W in the MA powder could be significantly improved by increasing MA rotation speed. - Abstracts: Oxide dispersion strengthened Ferritic/Martensitic steel is considered as one of the most potential structural material for future fusion reactor, owing to its high mechanical properties and good irradiation resistance. The oxide dispersion strengthened China Low Activation Martensitic (ODS-CLAM) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The microstructural evolutions during the process of ball milling and subsequent consolidation were investigated by SEM, XRD and TEM. The results showed that increasing the milling time during the first 36 h milling could effectively decrease the grain size to a value of around 30 nm, over which grain sized remained nearly constant. Increasing the rotation speed promoted the solution of tungsten (W) element obviously and decreased the grain size to a certain degree. Observation on the consolidated and further heat-treated ODS-CLAM steel samples indicated that a martensite microstructure with a high density of nano-particles was achieved.

  8. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate.

    Science.gov (United States)

    Rubasinghege, Gayan; Spak, Scott N; Stanier, Charles O; Carmichael, Gregory R; Grassian, Vicki H

    2011-04-01

    Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.

  9. Insight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key

    Czech Academy of Sciences Publication Activity Database

    Sofer, Z.; Jankovský, O.; Šimek, P.; Sedmidubský, D.; Šturala, J.; Kosina, J.; Mikšová, Romana; Macková, Anna; Mikulics, M.; Pumera, M.

    2015-01-01

    Roč. 9, č. 5 (2015), s. 5478-5485 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GA15-09001S; GA ČR(CZ) GBP108/12/G108 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61389005 Keywords : graphene * exfoliation * mechanism * isotope labeling * graphite oxide Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 13.334, year: 2015

  10. In situ studies of oxide nucleation, growth, and transformation using slow electrons

    Science.gov (United States)

    Flege, Jan Ingo; Grinter, David C.

    2018-05-01

    Surface processes such as metal oxidation and metal oxide growth invariably influence the physical and chemical properties of materials and determine their interaction with their surroundings and hence their functionality in many technical applications. On a fundamental level, these processes are found to be governed by a complex interplay of thermodynamic variables and kinetic constraints, resulting in a rich variety of material-specific phenomena. In this review article, we discuss recent results and insights on transition metal oxidation and rare-earth oxide growth acquired by low-energy electron microscopy and related techniques. We demonstrate that the use of in situ surface sensitive methods is a prerequisite to gaining a deeper understanding of the underlying concepts and the mechanisms responsible for the emerging oxide structure and morphology. Furthermore, examples will be provided on how structural and chemical modifications of the oxide films and nanostructures can be followed in real-time and analyzed in terms of local reactivity and cooperative effects relevant for heterogeneous model catalysis.

  11. Kinetics and oxidation mechanisms of polycrystaline niobium

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.

    1979-01-01

    The oxidation kinetics of annealed niobium was determined by thermogravimetric analysis between 450 and 800 0 C and for oxygen pressures varying from 20 to 700 mmHg. The oxidation kinetics of cold worked and/or irradiated niobium for temperatures between 500 and 700 0 C, with oxygen pressures varying from 100 to 300 mmHg. Was also determined. Using X-ray diffraction it was found that the oxide formed in the range of temperature and oxygen pressure considered in this research is γ-Nb 2 O 5 . Optical and scanning eletronic microscopy showed that for annealed niobium oxidized under 600 0 C there was formation of non-uniform oxide layers, containing cracks and pores, presenting very irregular metal/pentoxide interface. The presence of sub-oxide NbOsub(z) platelets was observed in this interface. This sub-oxide platelets where not observed in annealed oxidized niobium samples over 600 0 C; the oxide layers formed were compact. At 800 0 C and the beginning at 700 0 C the interfaces were quite regular. Through microhardness measurements for the metal near the metal/pentoxide interface, the formation of oxygen solid solution was found and the oxygen diffusion coefficient was calculated. The results showed that at 600 0 C the oxygen diffusion coefficient in cold worked niobium is three times larger than the value obtained for annealed niobium. The results suggest that the reaction between annealed niobium and oxygen undaer 600 0 C is controlled by reaction in interface where the oxide layers are not compacted, parcially due to Nb sub(z) platelets formation.(Author) [pt

  12. Kinetics and mechanisms of the oxide film growth on the surface of α-Fe in transitional domains

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Berber, N.N.; Kargin, D.B.; Chalaya, O.V.

    2003-01-01

    The object of this work was to study the kinetics of the α-Fe surface oxidation with prevailing cubic texture at temperatures of 450-500 deg. C. The basic conformity to natural laws and mechanisms of the two-phase thin oxide films grows are determined. (author)

  13. China’s Insurance Regulatory Reform, Corporate Governance Behavior and Insurers’ Governance Effectiveness

    Science.gov (United States)

    Zhang, Hongliang; Qiu, Aichao

    2017-01-01

    External regulation is an important mechanism to improve corporate behavior in emerging markets. China’s insurance governance regulation, which began to supervise and guide insurance corporate governance behavior in 2006, has experienced a complex process of reform. This study tested our hypotheses with a sample of 85 firms during 2010–2011, which was obtained by providing a questionnaire to all of China’s shareholding insurance companies. The empirical study results generally show that China’s insurance governance effectiveness has significantly improved through strict regulation. Insurance corporate governance can improve business acumen and risk-control ability, but no significant evidence was found to prove its influence on profitability, as a result of focusing less attention on governance than on management. State ownership is associated with higher corporate governance effectiveness than non-state ownership. Listed companies tend to outperform non-listed firms, and life insurance corporate governance is more effective than that of property insurers. This study not only contributes to the comprehensive understanding of corporate governance effectiveness but also to the literature by highlighting the effect of corporate governance regulation in China’s insurance industry and other emerging economies of the financial sector. PMID:29039781

  14. China’s Insurance Regulatory Reform, Corporate Governance Behavior and Insurers’ Governance Effectiveness

    Directory of Open Access Journals (Sweden)

    Huicong Li

    2017-10-01

    Full Text Available External regulation is an important mechanism to improve corporate behavior in emerging markets. China’s insurance governance regulation, which began to supervise and guide insurance corporate governance behavior in 2006, has experienced a complex process of reform. This study tested our hypotheses with a sample of 85 firms during 2010–2011, which was obtained by providing a questionnaire to all of China’s shareholding insurance companies. The empirical study results generally show that China’s insurance governance effectiveness has significantly improved through strict regulation. Insurance corporate governance can improve business acumen and risk-control ability, but no significant evidence was found to prove its influence on profitability, as a result of focusing less attention on governance than on management. State ownership is associated with higher corporate governance effectiveness than non-state ownership. Listed companies tend to outperform non-listed firms, and life insurance corporate governance is more effective than that of property insurers. This study not only contributes to the comprehensive understanding of corporate governance effectiveness but also to the literature by highlighting the effect of corporate governance regulation in China’s insurance industry and other emerging economies of the financial sector.

  15. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: Development of a new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Stochastic reactor model used for numerical study of HCCI engine. • New reduced oxidation mechanism with NOx developed (47 species and 272 reactions). • Mechanism predicts cylinder pressure and heat release with sufficient accuracy. • Mechanism was able to capture the trend in NO x emission with sufficient accuracy. - Abstract: Ethanol is considered a potential biofuel for internal combustion engines. In this study, homogeneous charge compression ignition (HCCI) simulations of ethanol engine experiments were performed using stochastic reactor model (SRM). Detailed ethanol oxidation mechanism is developed by including NO x reaction in existing detailed oxidation mechanism with 57 species and 383 reactions. Detailed ethanol mechanism with NO x used in this study contains 76 species and 495 reactions. This mechanism was reduced by direct relation graph (DRG) method, which was validated with the experimental results. Existing Lu’s 40-species skeletal mechanism with NO formation were also compared with detailed and reduced mechanisms for predicting maximum cylinder pressure, maximum heat release rate and crank angle position of maximum cylinder pressure in HCCI engine. Reduced mechanism developed in this study exhibited the best resemblance with the experimental data. This reduced mechanism was also validated by measured engine cylinder pressure curves and measured ignition delays in constant volume reactors. The results showed that reduced mechanism is capable of predicting HCCI engine performance parameters with sufficient accuracy. Sensitivity analysis was conducted to determine the influential reactions in ethanol oxidation. Results also show that detailed and reduced mechanism was able to predict NO x emission in good agreement with the corresponding experimental data.

  16. Oxidation resistance of quintuple Ti-Al-Si-C-N coatings and associated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wu Guizhi; Ma Shengli; Xu Kewei; Ji, Vincent; Chu, Paul K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); ICMMO/LEMHE, Universite Paris-Sud 11, 91405 Orsay Cedex (France); Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2012-07-15

    The oxidation behavior of Ti-Al-Si-C-N hard coatings with different Al contents deposited on high-speed steel and Si substrates by hybrid arc-enhanced magnetron sputtering is investigated in the temperature range of 500 Degree-Sign C-1000 Degree-Sign C. The coating hardness is maintained at around 35 GPa, and the parabolic oxidation rate constant K{sub p} at 1000 Degree-Sign C decreases to 3.36 Multiplication-Sign 10{sup -10} kg{sup 2} m{sup -4} s{sup -1} when the Al concentration is increased to 30 at. %, indicating that Ti-Al-Si-C-N coatings with larger Al concentrations have better oxidation resistance. X-ray diffraction, cross-sectional scanning electron microscopy, and x-ray photoelectron spectroscopy reveal a protective surface layer consisting of Al{sub 2}O{sub 3}, TiO{sub 2}, and SiO{sub 2} that retards inward oxygen diffusion. A mechanism is proposed to elucidate the oxide formation. As a consequence of the good oxidation resistance, the Ti-Al-Si-C-N coatings have a large potential in high-speed dry cutting as well as other high temperature applications.

  17. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Behnaz, E-mail: brazavi@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song Weihua, E-mail: wsong@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Santoke, Hanoz, E-mail: hsantoke@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Cooper, William J., E-mail: wcooper@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States)

    2011-03-15

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ({sup {center_dot}O}H) and reducing aqueous electron (e{sup -}{sub aq}), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with {sup {center_dot}O}H determined, (6.96{+-}0.16)x10{sup 9}, (2.92{+-}0.06)x10{sup 9}, (4.16{+-}0.13)x10{sup 9}, and (3.13{+-}0.15)x10{sup 9} M{sup -1} s{sup -1}, and for e{sup -}{sub aq} (2.31{+-}0.06)x10{sup 9}, (0.45{+-}0.01)x10{sup 9}, (1.26{+-}0.01)x10{sup 9}, and (0.69{+-}0.02)x10{sup 9} M{sup -1} s{sup -1}, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using {sup 137}Cs {gamma}-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  18. Structural evolution in nanocrystalline Cu obtained by high-energy mechanical milling: Phases formation of copper oxides

    International Nuclear Information System (INIS)

    Khitouni, Mohamed; Daly, Rakia; Mhadhbi, Mohsen; Kolsi, Abdelwaheb

    2009-01-01

    Nanocrystalline copper with mean crystallite size of 18 nm was synthesized by using high-energy mechanical milling. The structural and morphological changes during mechanical milling especially, the formation of CuO and Cu 2 O phases were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy in transmittance mode (FTIR). Mechanical milling of Cu results in a continuous decrease in the Cu means crystallite size and an increase in microstrain. Moreover, milling of Cu, in air synthetic, results in partial oxidation to Cu 2 O and CuO. Prolonged milling supports the formation of CuO oxide. SEM results show that flattened Cu flakes were laid and welded on each other and tend to form a matrix of randomly welded thin layers of highly deformed particles.

  19. THE IMPACT OF IFRS NORMS ON INTERNAL GOVERNANCE MECHANISMS WITH REGARD TO SOCIO-ECONOMIC CONTEXT

    Directory of Open Access Journals (Sweden)

    Soumaya HERGLI

    2016-11-01

    Full Text Available The purpose of this paper is to examine the effect of International Financial Reporting Standards IFRS adoption on internal governance mechanisms with regard to socio-economic context. Empirical investigation was conducted to assess whether a company and an individual specifications can be presented as part of a general pattern. The results confirm that IFRS framework has introduced a new design of the accounting formalism facing a more complex activity leading to enlargement the discretionary space. Socio-economic factors explain perfectly the corporate governance behaviors and confirmed that the less powerful members of our firms sample expect and accept that power is distributed unequally, the leaders prefer to act as individuals rather than as members of groups, the management positions are generally held by men than by women, these members are threatened by ambiguous or unknown situations and finally, managers stand for the fostering in a society of pragmatic virtues oriented to future rewards, in particular perseverance, thrift and adapting to changing circumstances.

  20. LITERATURE REVIEW ON CORPORATE GOVERNANCE - FIRM PERFORMANCE RELATIONSHIP

    Directory of Open Access Journals (Sweden)

    Pintea Mirela-Oana

    2015-07-01

    Full Text Available In the matter of corporate governance reforms, an important aspect is whether the implementation of corporate governance principles and codes has a positive impact on firm performance. The literature testing the relationship between different corporate governance mechanisms and firm performance is extensive. Over time, a lot of corporate governances mechanisms were studied in relation to firm performance and the most used are: CEO duality, board size, proportion of non- executive directors, board committees, ownership structure and concentration, managers’ compensation and incentives schemes. With time, different authors began to use more comprehensive measures for corporate governance rather than a single variable or a single governance mechanism, the so called corporate governance indexes. Regarding performance there are three main approaches to firm performance in social science research: research based on market prices, accounting ratios and total factor profitability.The most used performance measures are: Tobin’s Q, return on equity, return on asset and economic value added. In our paper, we present the studies undertaken since the 1990’s regarding the relationship between different mechanisms of corporate governance and firm performance and between corporate governance index and performance for both developed and developing countries around the world. Regarding the working tools used in this theoretical research we can mention the longitudinal method, by presenting the evolution in time of empirical studies on the research topic and the comparative method used in presenting the resulys of different studies mentioned in our paper. The results of the studies are inconclusive, some studies founded a strog positive relation, others founded a negative correlation between corporate governance and firm performance, while a third category of studies didn’t found any relationship at all. We used participative observation method by issuing

  1. Disciplining governance in Africa : a comparison of the World Bank’s Country Policy and Institutional Assessment and the African Union’s African Peer Review Mechanism

    NARCIS (Netherlands)

    S. Kassa (Saba)

    2017-01-01

    markdownabstractThis study examines the promotion of governance in the African Continent. It compares the Country Policy and Institutional Assessment (CPIA) of the World Bank to the African Peer Review Mechanism (APRM) of the African Union. These governance assessments represent differing

  2. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Science.gov (United States)

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  3. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia.

    Science.gov (United States)

    Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie

    2014-11-01

    The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.

  4. The Adoption of Internal Audit as a Governance Control Mechanism in Australian Public Universities--Views from the CEOs

    Science.gov (United States)

    Christopher, Joe

    2012-01-01

    This study draws on the multi-theoretical approach to governance and the views of university chief executive officers (CEOs) to examine the extent to which internal auditing as a control mechanism is adopted in Australian public universities under an environment of change management. The findings highlight negative consequences of change and their…

  5. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet

    2012-11-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  6. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet; da Silva, Gabriel; Chung, Suk-Ho

    2012-01-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  7. The interplay of structural and relational governance in innovation alliances

    NARCIS (Netherlands)

    Garbade, P.J.P.; Omta, S.W.F.; Fortuin, F.T.J.M.

    2016-01-01

    The present paper aims to extend the discussion in the governance literature about whether structural and relational governance mechanisms complement or substitute each other in innovation alliances. Where structural governance mechanisms refer to the division of tasks within the alliance and to

  8. Supercritical water oxidation of ion exchange resins: Degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A. [CEA Marcoule, DEN DTCD SPDE LFSM, F-30207 Bagnols Sur Ceze (France); Guichardon, P. [Ecole Cent Marseille, F-13451 Marseille 20 (France); Boutin, O. [Aix Marseille Univ, UMR CNRS 6181, F-13545 Aix En Provence 4 (France)

    2010-07-01

    Spent ion exchange resins are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation could offer a viable treatment alternative to destroy the organic structure of resins and contain radioactivity. IER degradation experiments were carried out in a continuous supercritical water reactor. Total organic carbon degradation rates in the range of 95-98% were obtained depending on operating conditions. GC-MS chromatography analyses were carried out to determine intermediate products formed during the reaction. Around 50 species were identified for cationic and anionic resins. Degradation of poly-styrenic structure leads to the formation of low molecular weight compounds. Benzoic acid, phenol and acetic acid are the main compounds. However, other products are detected in appreciable yields such as phenolic species or heterocycles, for anionic IERs degradation. Intermediates produced by intramolecular rearrangements are also obtained. A radical degradation mechanism is proposed for each resin. In this overall mechanism, several hypotheses are foreseen, according to HOO center dot radical attack sites. (authors)

  9. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  10. Terrestrial Fe-oxide Concretions and Mars Blueberries: Comparisons of Similar Advective and Diffusive Chemical Infiltration Reaction Mechanisms

    Science.gov (United States)

    Park, A. J.; Chan, M. A.

    2006-12-01

    Abundant iron oxide concretions occurring in Navajo Sandstone of southern Utah and those discovered at Meridiani Planum, Mars share many common observable physical traits such as their spheriodal shapes, occurrence, and distribution patterns in sediments. Terrestrial concretions are products of interaction between oxygen-rich aquifer water and basin-derived reducing (iron-rich) water. Water-rock interaction simulations show that diffusion of oxygen and iron supplied by slow-moving water is a reasonable mechanism for producing observed concretion patterns. In short, southern Utah iron oxide concretions are results of Liesegang-type diffusive infiltration reactions in sediments. We propose that the formation of blueberry hematite concretions in Mars sediments followed a similar diagenetic mechanism where iron was derived from the alteration of volcanic substrate and oxygen was provided by the early Martian atmosphere. Although the terrestrial analog differs in the original host rock composition, both the terrestrial and Mars iron-oxide precipitation mechanisms utilize iron and oxygen interactions in sedimentary host rock with diffusive infiltration of solutes from two opposite sources. For the terrestrial model, slow advection of iron-rich water is an important factor that allowed pervasive and in places massive precipitation of iron-oxide concretions. In Mars, evaporative flux of water at the top of the sediment column may have produced a slow advective mass-transfer mechanism that provided a steady source and the right quantity of iron. The similarities of the terrestrial and Martian systems are demonstrated using a water-rock interaction simulator Sym.8, initially in one-dimensional systems. Boundary conditions such as oxygen content of water, partial pressure of oxygen, and supply rate of iron were varied. The results demonstrate the importance of slow advection of water and diffusive processes for producing diagenetic iron oxide concretions.

  11. Placing Teachers in Global Governance Agendas

    Science.gov (United States)

    Robertson, Susan L.

    2012-01-01

    This article examines the focus on teacher policies and practices by a range of global actors and explores their meaning for the governance of teachers. Through a historical and contemporary reading, I argue that an important shift in the locus of power to govern has taken place. I show how the mechanisms of global governance of teachers are being…

  12. Spectroscopic and electrical sensing mechanism in oxidant-mediated polypyrrole nanofibers/nanoparticles for ammonia gas

    International Nuclear Information System (INIS)

    Ishpal; Kaur, Amarjeet

    2013-01-01

    Ammonia gas sensing mechanism in oxidant-mediated polypyrrole (PPy) nanofibers/nanoparticles has been studied through spectroscopic and electrical investigations. PPy nanofibers/nanoparticles have been synthesized by chemical oxidation method in the presence of various oxidizing agents such as ammonium persulfate (APS), potassium persulfate (PPS), vanadium pentoxide (V 2 O 5 ), and iron chloride (FeCl 3 ). Scanning electron microscopy study revealed that PPy nanofibers of about 63, 71 and 79 nm diameters were formed in the presence of APS, PPS, V 2 O 5 , respectively, while PPy nanoparticles of about 100–110 nm size were obtained in the presence of FeCl 3 as an oxidant. The structural investigations and confirmation of synthesis of PPy were established through Fourier transform infrared and Raman spectroscopy. The gas sensing behavior of the prepared PPy samples is investigated by measuring the electrical resistance in ammonia environment. The observed gas sensing response (ΔR/Rx100) at 100 ppm level of ammonia is ∼4.5 and 18 % for the samples prepared with oxidizing agents FeCl 3 and APS, respectively, and by changing the ammonia level from 50 to 300 ppm, the sensing response varies from ∼4.5 to 11 % and ∼10 to 39 %, respectively. Out of all four samples, the PPy nanofibers prepared in the presence of APS have shown the best sensing response. The mechanism of gas sensing response of the PPy samples has been investigated through Raman spectroscopy study. The decrease of charge carrier concentration through reduction of polymeric chains has been recognized through Raman spectroscopic measurements recorded in ammonia environment.

  13. Practice and effectiveness of internal corporate governance mechanisms in Saudi Arabia Stock Market: A review of empirical evidence

    Directory of Open Access Journals (Sweden)

    Marai Awidat

    2017-01-01

    Full Text Available The aim of this paper is to shed light on the Saudi corporate governance code, its practices and effectiveness. To do so, the paper conducted a detailed review of the articles of the code related to internal corporate governance mechanisms and the previous studies regarding its effectiveness in Saudi stock market context. The main finding is that the provisions of Saudi corporate governance code are adequate. Annual reports (2009-2014 show an increase in the level of the compliance by listed companies, indicating that the code is achieving its aims. However, the empirical evidence seems to suggest that the code has an insignificant impact on company's performance and mitigating earnings management. The main reasons behind that are the following: the code is still in its early stages, there is weak legal enforcement, and there are also some social, cultural, and economic factors. Therefore, the code needs more time for good practice and improvement to achieve its purposes.

  14. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism.

    Science.gov (United States)

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-06-01

    The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2 (-) scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays. Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2(-) scavenging, DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3',4'-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  15. Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides

    DEFF Research Database (Denmark)

    Levi, Gianluca; Causà, Mauro; Lacovig, Paolo

    2017-01-01

    The present study investigates the coal char combustion by a combination of thermochemical and X-ray photoemission spectroscopy (XPS) analyses. Thermoanalytical methods (differential thermogravimetry, differential scanning calorimetry, and temperature-programmed desorption) are used to identify...... the key reactive steps that occur upon oxidation and heating of coal char (chemisorption, structural rearrangement and switchover of surface oxides, and desorption) and their energetics. XPS is used to reveal the chemical nature of the surface oxides that populate the char surface and to monitor...... functionalities prevail. The rearrangement of epoxy during preoxidation goes together with activation of the more stable and less reactive carbon sites. Results are in good agreement with semi-lumped kinetic models of carbon oxidation, which include (1) formation of "metastable" surface oxides, (2) complex...

  16. Microstructure and Mechanical Property of 12Cr Oxide Dispersion Strengthened Steel

    Science.gov (United States)

    Xu, Haijian; Lu, Zheng; Jia, Chunyan; Gao, Hao; Liu, Chunming

    2016-03-01

    Nanostructured oxide dispersion strengthened (ODS) steels with nominal compositions (wt%): Fe-12Cr-2W-0.3Ti-0.3Y2O3 were produced by mechanical alloying and hot isostatic pressing. The microstructure was characterized by means of electron microscopy (EBSD, TEM and HRTEM) and the hardness and the tensile properties at different temperatures were measured. The results showed that the ultimate tensile strength of the fabricated 12Cr-ODS steel reached nearly 1,100 MPa at room temperature and maintained around 340 MPa at 700°C. Nano-oxide particles with size ranging from several nm to 30 nm and the number density was 3.6 × 1020/m3 were observed by TEM. Following heat treatment, including normalizing at 1,100°C for 1 h and tempering at 750°C for 2 h, the average grain size was a little decreased. The number of nano-oxide particles increased and the number density was 8.9 × 1020/m3. Specimens showed much higher ductility and there was a slight increase of ultimate tensile strength and Vickers hardness at the same time.

  17. The mechanism of mediated oxidation of carboxylates with ferrocene as redox catalyst in absence of grafting effects. An experimental and theoretical approach

    International Nuclear Information System (INIS)

    Hernández-Muñoz, Lindsay S.; Galano, Annia; Astudillo-Sánchez, Pablo D.; Abu-Omar, Mahdi M.; González, Felipe J.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of mediated oxidation of carboxylates. • Thermodynamics of the mediated Kolbe and Non-Kolbe mechanisms. • The oxidation of acetate and diphenylacetate ions by using ferrocene as redox catalyst. • Simulation and DFT calculations of the mediated oxidation of carboxylates. • Radical and carbocationic pathways in the carboxylate oxidation in acetonitrile. - Abstract: The oxidation of tetrabutylammonium carboxylates by using ferrocene derivatives as redox mediators has been recently used to perform the covalent grafting of carbon surfaces with organic and organometallic groups. Due to the intervention of this surface process, a partial description of the reaction mechanism has only been stated. Therefore, this article concerns about two features of the oxidation of carboxylates mediated by ferrocene. In the first part, it is discussed that in the oxidation of acetate ions by using ferrocene as redox catalyst, the gap between both oxidation potentials is very high, which means that the homogeneous electron transfer between the acetate ion and the electrochemically generated ferrocenium ion is energetically unfavorable. However, by using density functional theory calculations, it has been shown that the whole set of coupled chemical reactions involved either in a Kolbe or Non-Kolbe pathway drive the overall mechanisms towards a thermodynamically favorable situation. In order to avoid the strong covalent grafting process that occurs during the mediated oxidation of acetate ions, the second part of this work deals with the oxidation of tetrabutylammonium diphenylacetate by using ferrocene as a redox mediator in acetonitrile on glassy carbon electrodes. With this carboxylate, no electrode inhibition process occurs and, therefore cyclic voltammetry simulation was done to propose the electrochemical and chemical steps that are present when a carboxylate oxidation is performed in the presence of ferrocene derivatives

  18. Leveraging non-binding instruments for global health governance: reflections from the Global AIDS Reporting Mechanism for WHO reform.

    Science.gov (United States)

    Taylor, A L; Alfven, T; Hougendobler, D; Tanaka, S; Buse, K

    2014-02-01

    As countries contend with an increasingly complex global environment with direct implications for population health, the international community is seeking novel mechanisms to incentivize coordinated national and international action towards shared health goals. Binding legal instruments have garnered increasing attention since the World Health Organization adopted its first convention in 2003. This paper seeks to expand the discourse on future global health lawmaking by exploring the potential value of non-binding instruments in global health governance, drawing on the case of the 2001 United Nations General Assembly Special Session Declaration of Commitment on HIV/AIDS. In other realms of international concern ranging from the environment to human rights to arms control, non-binding instruments are increasingly used as effective instruments of international cooperation. The experience of the Global AIDS Reporting Mechanism, established pursuant to the Declaration, evidences that, at times, non-binding legal instruments can offer benefits over slower, more rigid binding legal approaches to governance. The global AIDS response has demonstrated that the use of a non-binding instrument can be remarkably effective in galvanizing increasingly deep commitments, action, reporting compliance and ultimately accountability for results. Based on this case, the authors argued that non-binding instruments deserve serious consideration by the international community for the future of global health governance, including in the context of WHO reform. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  19. The evolution mechanism of the dislocation loops in irradiated lanthanum doped cerium oxide

    International Nuclear Information System (INIS)

    Miao, Yinbin; Aidhy, Dilpuneet; Chen, Wei-Ying; Mo, Kun; Oaks, Aaron; Wolf, Dieter; Stubbins, James F.

    2014-01-01

    Cerium dioxide, a non-radioactive surrogate of uranium dioxide, is useful for simulating the radiation responses of uranium dioxide and mixed oxide fuel (MOX). Controlled additions of lanthanum can also be used to form various levels of lattice oxide or anion vacancies. In previous transmission electron microscopy (TEM) experimental studies, the growth rate of dislocation loops in irradiated lanthanum doped ceria was reported to vary with lanthanum concentration. This work reports findings of the evolution mechanisms of the dislocation loops in cerium oxide with and without lanthanum dopants based on a combination of molecular statics and molecular dynamics simulations. These dislocation loops are found to be b=1/3〈111〉 interstitial type Frank loops. Calculations of the defect energy profiles of the dislocation loops with different structural configurations and radii reveal the basis for preference of nucleation as well as the driving force of growth. Frenkel pair evolution simulations and displacement cascade overlaps simulations were conducted for a variety of lanthanum doping conditions. The nucleation and growth processes of the Frank loop were found to be controlled by the mobility of cation interstitials, which is significantly influenced by the lanthanum doping concentration. Competition mechanisms coupled with the mobility of cation point defects were discovered, and can be used to explain the lanthanum effects observed in experiments

  20. Mechanisms of private meta-governance: an analysis of global private governance for sustainable development

    NARCIS (Netherlands)

    Glasbergen, P.

    2011-01-01

    One of the main characteristics of global governance for sustainable development is its fragmentation. Next to public regulations, there are often many private regulations in force on the same issue, which are induced by collaborations between businesses and NGOs. Traditionally, it is assumed that

  1. Diffusive, Displacive Deformations and Local Phase Transformation Govern the Mechanics of Layered Crystals: The Case Study of Tobermorite.

    Science.gov (United States)

    Tao, Lei; Shahsavari, Rouzbeh

    2017-07-19

    Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.

  2. Microstructure, mechanical properties and oxidation behaviors of magnetron sputtered NbN_x coatings

    International Nuclear Information System (INIS)

    Qi, Zhengbing; Wu, Zhengtao; Zhang, Dongfang; Zuo, Juan; Wang, Zhoucheng

    2016-01-01

    Mechanical properties and oxidation resistance are of importance for the NbN_x coatings as used in cutting and forming tools. In this study, the NbN_x coatings were deposited by magnetron sputtering at nitrogen partial pressure ranging from 0 to 40%. The chemical and phase compositions, morphologies, mechanical properties and oxidation behaviors of the NbN_x coatings were investigated by electron probe microanalysis, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, scanning and transmission electron microscopy, and nanoindentation measurements. The results reveal the composition evolution of the NbN_x coatings as α-Nb (0%), β-Nb_2N (5%), a mixture of β-Nb_2N and δ-NbN (10%), and δ-NbN (20–40%). The single phase coatings exhibit columnar structure while the mixed phases coating shows nano-composite structure. Compared with the single phase δ-NbN coatings (21.6 ± 0.8–28.0 ± 1.2 GPa), higher hardness of the single phase β-Nb_2N coating (30.9 ± 1.0 GPa) is due to the higher covalent character and much finer grains. The maximum hardness reaches 33.3 ± 1.5 GPa for the nano-composite coating with mixed phases of β-Nb_2N and δ-NbN. The oxidation results demonstrate that the activation energies are 219.3 and 192.3 kJ/mol for the Nb_2N and NbN coatings respectively. Non-protective Nb_2O_5 scales with cracks and pores result in poorer oxidation resistance of the NbN coating in comparison to the Nb_2N coating. - Highlights: • Chemical and phase compositions and microstructure of NbN_x coatings were investigated. • Maximum hardness is obtained for nano-composite coating with mixed Nb_2N and NbN phases. • Activation energies are 219.3 and 192.3 kJ/mol for oxidation of Nb_2N and NbN coatings. • Non-protective Nb_2O_5 scales with cracks and pores lower oxidation resistance of NbN coating.

  3. WO3 and W Thermal Atomic Layer Etching Using "Conversion-Fluorination" and "Oxidation-Conversion-Fluorination" Mechanisms.

    Science.gov (United States)

    Johnson, Nicholas R; George, Steven M

    2017-10-04

    The thermal atomic layer etching (ALE) of WO 3 and W was demonstrated with new "conversion-fluorination" and "oxidation-conversion-fluorination" etching mechanisms. Both of these mechanisms are based on sequential, self-limiting reactions. WO 3 ALE was achieved by a "conversion-fluorination" mechanism using an AB exposure sequence with boron trichloride (BCl 3 ) and hydrogen fluoride (HF). BCl 3 converts the WO 3 surface to a B 2 O 3 layer while forming volatile WO x Cl y products. Subsequently, HF spontaneously etches the B 2 O 3 layer producing volatile BF 3 and H 2 O products. In situ spectroscopic ellipsometry (SE) studies determined that the BCl 3 and HF reactions were self-limiting versus exposure. The WO 3 ALE etch rates increased with temperature from 0.55 Å/cycle at 128 °C to 4.19 Å/cycle at 207 °C. W served as an etch stop because BCl 3 and HF could not etch the underlying W film. W ALE was performed using a three-step "oxidation-conversion-fluorination" mechanism. In this ABC exposure sequence, the W surface is first oxidized to a WO 3 layer using O 2 /O 3 . Subsequently, the WO 3 layer is etched with BCl 3 and HF. SE could simultaneously monitor the W and WO 3 thicknesses and conversion of W to WO 3 . SE measurements showed that the W film thickness decreased linearly with number of ABC reaction cycles. W ALE was shown to be self-limiting with respect to each reaction in the ABC process. The etch rate for W ALE was ∼2.5 Å/cycle at 207 °C. An oxide thickness of ∼20 Å remained after W ALE, but could be removed by sequential BCl 3 and HF exposures without affecting the W layer. These new etching mechanisms will enable the thermal ALE of a variety of additional metal materials including those that have volatile metal fluorides.

  4. Assembly of tantalum porous films with graded oxidation profile from size-selected nanoparticles

    Science.gov (United States)

    Singh, Vidyadhar; Grammatikopoulos, Panagiotis; Cassidy, Cathal; Benelmekki, Maria; Bohra, Murtaza; Hawash, Zafer; Baughman, Kenneth W.; Sowwan, Mukhles

    2014-05-01

    Functionally graded materials offer a way to improve the physical and chemical properties of thin films and coatings for different applications in the nanotechnology and biomedical fields. In this work, design and assembly of nanoporous tantalum films with a graded oxidation profile perpendicular to the substrate surface are reported. These nanoporous films are composed of size-selected, amorphous tantalum nanoparticles, deposited using a gas-aggregated magnetron sputtering system, and oxidized after coalescence, as samples evolve from mono- to multi-layered structures. Molecular dynamics computer simulations shed light on atomistic mechanisms of nanoparticle coalescence, which govern the films porosity. Aberration-corrected (S) TEM, GIXRD, AFM, SEM, and XPS were employed to study the morphology, phase and oxidation profiles of the tantalum nanoparticles, and the resultant films.

  5. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    Full Text Available Abstract The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB, resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2. Nrf2 then induces the transcription of antioxidant response elements (ARE. Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr, catalase (CAT, heme-oxygenase-1 (HO-1, NADPH-quinone-oxidoreductase (NQO-1, phase II enzymes of drug metabolism and heat shock proteins (HSP. Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT and activated protein-1 (AP-1. Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a, which is also induced via

  6. Oxidation mechanism of diethyl ether: a complex process for a simple molecule.

    Science.gov (United States)

    Di Tommaso, Stefania; Rotureau, Patricia; Crescenzi, Orlando; Adamo, Carlo

    2011-08-28

    A large number of organic compounds, such as ethers, spontaneously form unstable peroxides through a self-propagating process of autoxidation (peroxidation). Although the hazards of organic peroxides are well known, the oxidation mechanisms of peroxidizable compounds like ethers reported in the literature are vague and often based on old experiments, carried out in very different conditions (e.g. atmospheric, combustion). With the aim to (partially) fill the lack of information, in this paper we present an extensive Density Functional Theory (DFT) study of autoxidation reaction of diethyl ether (DEE), a chemical that is largely used as solvent in laboratories, and which is considered to be responsible for various accidents. The aim of the work is to investigate the most probable reaction paths involved in the autoxidation process and to identify all potential hazardous intermediates, such as peroxides. Beyond the determination of a complex oxidation mechanism for such a simple molecule, our results suggest that the two main reaction channels open in solution are the direct decomposition (β-scission) of DEE radical issued of the initiation step and the isomerization of the peroxy radical formed upon oxygen attack (DEEOO˙). A simple kinetic evaluation of these two competing reaction channels hints that radical isomerization may play an unexpectedly important role in the global DEE oxidation process. Finally industrial hazards could be related to the hydroperoxide formation and accumulation during the chain propagation step. The resulting information may contribute to the understanding of the accidental risks associated with the use of diethyl ether.

  7. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Li

    2006-01-01

    Full Text Available Sulfate particles play a key role in the air quality and the global climate, but the heterogeneous formation mechanism of sulfates on surfaces of atmospheric particles is not well established. Carbonates, which act as a reactive component in mineral dust due to their special chemical properties, may contribute significantly to the sulfate formation by heterogeneous processes. This paper presents a study on the oxidation of SO2 by O3 on CaCO3 particles. Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS, the formation of sulfite and sulfate on the surface was identified, and the roles of O3 and water in oxidation processes were determined. The results showed that in the presence of O3, SO2can be oxidized to sulfate on the surface of CaCO3 particles. The reaction is first order in SO2 and zero order in O3. The reactive uptake coefficient for SO2 [(0.6–9.8×1014 molecule cm-3] oxidation by O3 [(1.2–12×1014 molecule cm-3] was determined to be (1.4±0.3×10-7 using the BET area as the reactive area and (7.7±1.6×10-4 using the geometric area. A two-stage mechanism that involves adsorption of SO2 followed by O3 oxidation is proposed and the adsorption of SO2 on the CaCO3 surface is the rate-determining step. The proposed mechanism can well explain the experiment results. The atmospheric implications were explored based on a box model calculation. It was found that the heterogeneous reaction might be an important pathway for sulfate formation in the atmosphere.

  8. Investigations of oxidative stress effects and their mechanisms in rat brain after systemic administration of ceria engineered nanomaterials

    Science.gov (United States)

    Hardas, Sarita S.

    Advancing applications of engineered nanomaterials (ENM) in various fields create the opportunity for intended (e.g. drug and gene delivery) or unintended (e.g. occupational and environmental) exposure to ENM. However, the knowledge of ENM-toxicity is lagging behind their application development. Understanding the ENM hazard can help us to avoid potential human health problems associated with ENM applications as well as to increase their public acceptance. Ceria (cerium [Ce] oxide) ENM have many current and potential commercial applications. Beyond the traditional use of ceria as an abrasive, the scope of ceria ENM applications now extends into fuel cell manufacturing, diesel fuel additives and for therapeutic intervention as a putative antioxidant. However, the biological effects of ceria ENM exposure have yet to be fully defined. Both pro-and anti-oxidative effects of ceria ENM exposure are repeatedly reported in literature. EPA, NIEHS and OECD organizations have nominated ceria for its toxicological evaluation. All these together gave us the impetus to examine the oxidative stress effects of ceria ENM after systemic administration. Induction of oxidative stress is one of the primary mechanisms of ENM toxicity. Oxidative stress plays an important role in maintaining the redox homeostasis in the biological system. Increased oxidative stress, due to depletion of antioxidant enzymes or molecules and / or due to increased production of reactive oxygen (ROS) or nitrogen (RNS) species may lead to protein oxidation, lipid peroxidation and/or DNA damage. Increased protein oxidation or lipid peroxidation together with antioxidant protein levels and activity can serve as markers of oxidative stress. To investigate the oxidative stress effects and the mechanisms of ceria-ENM toxicity, fully characterized ceria ENM of different sizes (˜ 5nm, 15nm, 30nm, 55nm and nanorods) were systematically injected into rats intravenously in separate experiments. Three brain regions

  9. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    International Nuclear Information System (INIS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-01-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  10. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)

    2014-05-28

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  11. MARKET-BASED MECHANISM IN PUBLIC SERVICE DELIVERY IN LOCAL GOVERNMENT IN POLAND – A BRIEF OVERVIEW

    Directory of Open Access Journals (Sweden)

    Dawid Sześciło

    2013-12-01

    Full Text Available The reintroduction of local self-government at the level of communes (gminy in 1990 opened the way for an in-depth reform of the local governance framework in Poland. This included not only the legal, organizational and fiscal autonomisation of local communities, but also went in line with general trends concerning the transformation of the public sector. Therefore, among the core elements of the transformation we may identify the extensive privatization of the public service provision schemes. In Poland, this process was not based on the theoretical background of New Public Management, as was the case in a number of Western countries. Instead, it was natural consequence of the rebirth of a market economy with a limited public sector and the intense development of the private market. Those trends were, however, compatible with the NPM programme. The expansion of market-based mechanisms in public service delivery is one of its pillars. This article provides a historical overview of the development of market-based arrangements in public service provision at the most basic level of Polish local government. It is focused mainly on a legal framework, but also includes some observations on the practical side of this process.

  12. Study of mechanism involved in synthesis of graphene oxide and reduced graphene oxide from graphene nanoplatelets

    Science.gov (United States)

    Sharma, Bhasha; Shekhar, Shashank; Malik, Parul; Jain, Purnima

    2018-06-01

    Graphene, a wonder material has inspired quest among researchers due to its numerous applications and exceptional properties. This paper highlights the mechanism and chemistry behind the fabrication of graphene oxide by using phosphoric acid. Chemical functionalization is of prime importance which avoids agglomeration of nanoparticles to attain inherent properties. As non-homogeneous dispersion limits its utilization due to interfacial interactions which restrict reactive sites to produce intercalated network. Thus, chemically functionalized graphene leads to stable dispersion and enhances thermal, mechanical and electrical properties of the resultant polymer composite materials. Solubility of graphene in aqueous solution is the major issue because graphene is hydrophobic, to rectify this oxygen containing hydrophilic groups must be introduced to make it compatible and this can be attained by covalent functionalization. Among all nanofiller GO has shown average particle size i.e. 95 nm and highest surface charge density. The characteristic changes were estimated using Raman spectra.

  13. How the nature of the chemical bond governs resistance to amorphization by radiation damage

    International Nuclear Information System (INIS)

    Trachenko, Kostya; Artacho, Emilio; Dove, Martin T.; Pruneda, J.M.

    2005-01-01

    We discuss what defines a material's resistance to amorphization by radiation damage. We propose that resistance is generally governed by the competition between the short-range covalent and long-range ionic forces, and we quantify this picture using quantum-mechanical calculations. We calculate the Voronoi deformation density charges and Mulliken overlap populations of 36 materials, representative of different families, including complex oxides. We find that the computed numbers generally follow the trends of experimental resistance in several distinct families of materials: the increase (decrease) of the short-range covalent component in material's total force field decreases (increases) its resistance

  14. Hubungan antara Corporate Governance dan Variabel Pengurang Masalah Agensi

    Directory of Open Access Journals (Sweden)

    Zaenal Arifin

    2009-08-01

    Full Text Available The main objective of this research is to investigate whether there are a significant relationship be¬tween corporate governance and agency-problem-reducing variables. The corporate governance is concern on all stakeholders’ interest while the agency variables are concern on one of the most important stakeholders’ that is the stockholders-interest. Theoretically, there should be a significant relationship between the corporate govern¬ance and the agency-problem-reducing variables. Using 52 Indonesian listed companies in 2001 that had been investigated by Indonesian Institute for Corporate Governance (IICG for the companies’ practice of corporate governance and presented on SWA Magazine, this research found that no relationship between the corporate governance and the agency-problem-reducing variables. There are some possible explanations for this finding. First, reducing agency problems does not perceived (by investor affecting the companies’ practice of corporate governance. Second, the bonding mechanisms to reduce the free cash flows by increasing the dividend payment or increasing the debt and monitoring by the independent board of directors are not an effective mechanism to re¬duce agency problems. So these mechanisms do not correlate to the companies’ practice of corporate govern¬ance. Third, the score of corporate governance released by IICG are not valid. Further investigations are needed to find the true explanation.Key words: Corporate Governance, Masalah Agensi

  15. The effects of trichloroethane HCl and ion-implantation on the oxidation rate of silicon

    International Nuclear Information System (INIS)

    Ahmed, W.; Ahmed, E.

    1994-01-01

    The thermal oxidation of silicon was studied using a large-scale industrial oxidation system. The characteristics of the oxides resulting from pure hydrogen/oxygen (Hsub(2)/Osub(2)), trichloroethane/oxygen (TCA/Osub(2) and hydrogen chloride/oxygen (HCI/Osub(2)) mixtures are compared. Both HCI and TCA addition to oxygen produced an enhanced oxidation rate. The oxidation rate for TCA/Osub(2) was approximately 30-40% higher than for HCI/Osub(2) mixtures. A molar ratio of TCA/Osub(2) of 1% gives an optimum process for very-large-scale industrial (VLSI) applications. However, 3% HCI/Osub(2) gives comparable results to 1% TCA. In addition, boron and phosphorus implantation are observed to increase the oxidation rate. Phosphorus doping of the silicon yields a higher rate than boron-doped wafers. This behaviour is explained in terms of surface damage and chemistry. It appears that the overall mechanisms governing all these processes are similar. (8 figures, 22 references) (Author)

  16. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome

    Directory of Open Access Journals (Sweden)

    Nikolai V. Gorbunov

    2015-02-01

    Full Text Available The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS. The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS. Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous

  17. Oxidation rate in ferritic superheater materials

    International Nuclear Information System (INIS)

    Falk, I.

    1992-05-01

    On the steam side of superheater tubes, compact oxide layers are formed which have a tendency to crack and flake off (exfoliate). Oxide particles then travel with the steam and can give rise to erosion damage in valves and on turbine blades. In an evaluation of conditions in superheater tubes from Swedish power boilers, it was found that the exfoliation frequency for one material quality (SS 2218) was greater than for other qualities. Against this background, a literature study has been carried out in order to determine which mechanisms govern the build-up of oxide and the exfoliation phenomenon. The study reveals that the oxide morphology is similar on all ferritic steels with Cr contents up to 5%. and that the oxide properties can therefore be expected to be similar. The reason why the exfoliation frequency is greater for tubes of SS 2218 is probably that the tubes have been exposed to higher temperatures. SS 2218 (2.25 Cr) is normally used in a higher temperature range which is accompanied by improved strength data as compared with SS 2216 (1 Cr). The principal cause of the exfoliation is said to be stresses which arise in the oxide during the cooling-down process associated with shutdowns. The stresses give rise to longitudinal cracks in the oxide, and are formed as a result of differences in thermal expansion between the oxide and the tube material. In addition, accounts are presented of oxidation constants and growth velocities, and thickness and running time. These data constitute a valuable basis for practical estimates of the operating temperature in routine checks and investigations into damage in superheater tubes. (au)

  18. Oxidation of zirconium alloys in steam: influence of tetragonal zirconia on oxide growth mechanism

    International Nuclear Information System (INIS)

    Godlewski, J.

    1990-07-01

    The oxidation of zirconium alloys in presence of steam, presents after a 'parabolic' growth law, an acceleration of the oxidation velocity. This phenomenon limits the use of zirconium alloys as nuclear fuel cladding element. In order to determine the physico-chemical process leading to this kinetic transition, two approaches have been carried out: the first one has consisted to determine the composition of the oxide layer and its evolution with the oxidation time; and the second one to determine the oxygen diffusion coefficients in the oxide layers of pre- and post-transition as well as their evolution with the oxidation time. The composition of the oxide layers has been determined by two analyses techniques: the X-ray diffraction and the laser Raman spectroscopy. This last method has allowed to confirm the presence of tetragonal zirconium oxide in the oxide layers. Analyses carried out by laser Raman spectroscopy on oxides oblique cuttings have revealed that the tetragonal zirconium oxide is transformed in monoclinic phase during the kinetic transition. A quantitative approach has allowed to corroborate the results obtained by these two techniques. In order to determine the oxygen diffusion coefficients in the oxides layers, two diffusion treatments have been carried out: 1)under low pressure with D 2 18 O 2 ) under high pressure in an autoclave with H 2 18 O. The oxygen 18 concentration profiles have been obtained by two analyses techniques: the nuclear microprobe and the secondary ions emission spectroscopy. The obtained profiles show that the mass transport is made by the volume and particularly by the grain boundaries. The corresponding diffusion coefficients have been calculated with the WHIPPLE and LE CLAIRE solution. The presence of tetragonal zirconium oxide, its relation with the kinetic transition, and the evolution of the diffusion coefficients with the oxidation time, are discussed in terms of internal stresses in the oxide layer and of the oxide layer

  19. Kinetics and mechanism of the oxidation of ZrC

    International Nuclear Information System (INIS)

    Rama Rao, G.A.; Venugopal, V.; Sood, D.D.

    1993-01-01

    The oxidation behaviour of sintered ZrC powder was studied under iso and non-isothermal heating conditions under varied oxygen pressures from 0.05 to 0.5 atm and the weight changes during the reaction were followed by thermogravimetry. The sample ignited under oxygen pressure of 1 atm when heated non-isothermally at 5 K/min. The end product was identified by X-ray diffraction method as cubic ZrO 2 at temperatures below 1073 K and monoclinic above that. The rate of the reaction was found to be diffusion controlled. The mechanism of the reaction was discussed in terms of the diffusion of oxygen through the product layer. (author). 8 refs., 1 fig., 1 tab

  20. Unpacking the mechanisms of the EU ‘throughput’ governance legitimacy

    DEFF Research Database (Denmark)

    Chatzopoulou, Sevasti

    2015-01-01

    The proliferation of EU agencies, referred to as agencification phenomenon, constitutes a significant EU institutional innovation. Agencification aimed to provide information, promote efficiency, decrease politicization and generate standards based on specialised technical knowledge. However...... this article claims that in order to assess the overall legitimacy of the EU regulatory governance through agencies, the ‘throughput’ criterion needs to be considered. Although important, the ‘input’ (politics) and ‘output’ (policy) criteria fail to capture what happens within the actual governance (process...

  1. Keeping Government Secrecy Safe: Beyond Whack-a-Mole

    NARCIS (Netherlands)

    Curtin, D.M.

    2011-01-01

    The concept of secrecy as a mechanism for not providing government information, on the one hand, and the commitment to openness of government, on the other, reflect certain historical understandings of the relationship between a government, citizens, officials and information. Within democratic

  2. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  3. Mechanical properties of graphene oxide (GO/epoxy composites

    Directory of Open Access Journals (Sweden)

    Shivan Ismael Abdullah

    2015-08-01

    Full Text Available In this study, the effects of graphene oxide (GO on composites based on epoxy resin were analyzed. Different contents of GO (1.5–6 vol.% were added to epoxy resin. The GO/epoxy composite was prepared using the casting method and was prepared under room temperature. Mechanical tests’ results such as tensile test, impact test and hardness test show enhancements of the mechanical properties of the GO/epoxy composite. The experimental results clearly show an improvement in the Young’s modulus, tensile strength and hardness. The impact strength was seen to decrease, pointing to brittleness increase of the GO/epoxy composite. A microstructure analysis using Scanning Electron Microscopy (SEM and X-ray diffraction (XRD analysis was also performed, which showed how GO impeded the propagation of cracks in the composite. From the SEM images we observed the interface between the GO and the epoxy composite. As can be seen from this research, the GO/epoxy composites can be used for a large number of applications. The results of this research are a strong evidence for GO/epoxy composites being a potential candidate for use in a variety of industrial applications, especially for automobile parts, aircraft components, and electronic parts such as supercapacitors, transistors, etc.

  4. Enzymatic oxidation of rutin by horseradish peroxidase: kinetic mechanism and identification of a dimeric product by LC-Orbitrap mass spectrometry.

    Science.gov (United States)

    Savic, Sasa; Vojinovic, Katarina; Milenkovic, Sanja; Smelcerovic, Andrija; Lamshoeft, Marc; Petronijevic, Zivomir

    2013-12-15

    Flavonoid oxidation is important issue in food processing and quality. The kinetic mechanism of enzymatic oxidation of rutin by horseradish peroxidase (HRP) was studied. Rutin oxidation reaction was followed by recording of spectral changes over the time at 360 nm. The studied oxidation is mostly enzymatic and less part non-enzymatic. The reaction with HRP has a higher rate compared with the reaction without of HRP, whereby is part of non-enzymatic reaction about 10% of the total reaction. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation, and it was found that investigated reactions of rutin oxidation by HRP take place in a ping-pong kinetic mechanism. High resolution HPLC-MS analysis of the mixture of oxidized products of rutin revealed the presence of rutin dimer. Because of widely distribution of rutin as well as presence of peroxidases and hydrogen peroxide in fresh foods identification of this enzymatic modification product can be beneficial for foods quality and safety. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Epiphytes modulate Posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms and oxidative damage

    Directory of Open Access Journals (Sweden)

    Monya Mendes Costa

    2015-12-01

    Full Text Available Epiphytes impose physical barriers to light penetration into seagrass leaves causing shading, which may decrease the production of oxygen reactive species (ROS, but also constitute a physical aggression that may trigger the production of ROS, leading to oxidative damage. Here we investigate the effects of epiphytes on Posidonia oceanica under both interactive perspectives, light attenuation and oxidative stress. Specifically the role of epiphytes in net photosynthesis, chlorophyll a and b, photoprotection (Violaxanthin+Anteraxanthin+Zeaxanthin cycle, soluble sugar and starch contents, enzymatic (ascorbate peroxidase (APX and dehydroascorbate reductase (DHAR and global (trolox equivalent antioxidant capacity (TEAC and oxygen radical antioxidant capacity (ORAC antioxidant responses, phenolics and oxidative damage (malondialdehyde are tested. Leaves with epiphytes showed higher chlorophyll b and lower content in VAZ cycle carotenoids. Epiphyte shading was the probable reason for the lower VAZ de-epoxidation-ratio of leaves with epiphytes. In spite of being shaded, leaves with epiphytes showed higher antioxidant levels, indicating that epiphytes trigger the production of ROS. Both ORAC and TEAC and also APX and DHAR activities were higher in leaves with epiphytes, indicating that this response was related with its presence. Malondialdehyde concentrations also suggest oxidative damage caused by epiphytes. We conclude that the epiphyte load causes oxidative stress in P. oceanica and the mechanisms to scavenge ROS were not completely effective to avoid cell damage.

  6. The association of hospital governance with innovation in Taiwan.

    Science.gov (United States)

    Yang, Chen-Wei; Yan, Yu-Hua; Fang, Shih-Chieh; Inamdar, Syeda Noorein; Lin, Hsien-Cheng

    2018-01-01

    Hospitals in Taiwan are facing major changes and innovation is increasingly becoming a critical factor for remaining competitive. One determinant that can have a significant impact on innovation is hospital governance. However, there is limited prior research on the relationship between hospital governance and innovation. The purpose of this study is to propose a conceptual framework to hypothesize the relationship between governance mechanisms and innovation and to empirically test the hypotheses in hospital organizations. We examine the relationship between governance mechanisms and innovation using data on 102 hospitals in Taiwan from the Taiwan Joint Commission on Hospital Accreditation and Quality Improvement. We model governance mechanisms using board structure, information transparency and strategic decision-making processes. For our modeling and data analysis we use measurement and structural models. We find that in hospital governance, information transparency and strategic decision making did impact innovation. However, governance structure did not. To facilitate innovation, hospital boards can increase information transparency and improve the decision-making process when considering strategic investments in innovative initiatives. To remain competitive, hospital boards need to develop and monitor indices that measure hospital innovation to ensure ongoing progress. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  8. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  9. The characteristics of TiC and oxidation resistance and mechanical properties of TiC coated graphite under corrosive environment

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Oku, Tatsuo; Ioka, Ikuo; Umekawa, Shokichi.

    1982-07-01

    Core region of the Very High Temperature Gas Cooled Reactor (VHTR) consists mainly of polycrystalline graphite whose mechanical properties degradated by corrosion resulting from such impurities as O 2 , H 2 O, and CO 2 in coolant He gas. Mechanical properties and oxidation resistance of TiC coated graphite under corrosive condition were examined in order to evaluate the effects of TiC coating on preventing the graphite from its degradation in service condition of the VHTR. Characteristics of TiC coating was also examined using EPMA. Holding the specimen at 1373 K for 6 hr produced strong interface between TiC coating and the graphite, however, microcracks on TiC coating was observed, the origin of which is ascribed to mismatch in thermal expansion between TiC coating and the graphite. Oxidation rate of TiC coated graphite was one-thirds of that of uncoated graphite, which demonstrated that TiC coating on the graphite improved the oxidation resistance of the graphite. However, debonding of TiC coating layer at the interface was observed after heating for 3 to 4 hr in the oxidation condition. Changes in Young's modulus of TiC coated graphite were a half of that of uncoated graphite. Flexural strength of TiC coated graphite remained at the original value up to about 4 hr oxidation, therafter it decreased abruptly as was the trend of uncoated graphite. It is concluded that TiC coating on graphite materials is very effective in improving oxidation resistance and suppressing degradation of mechanical properties of the graphite. (author)

  10. Oxidation of Proteins in Plants-Mechanisms and Consequences

    DEFF Research Database (Denmark)

    Sweetlove, Lee J; Møller, Ian M

    2009-01-01

    The production of reactive oxygen and reactive nitrogen species in plant cells can lead to a variety of modifications of proteins through oxidation of amino acid side groups. The widespread occurrence of such modifications is becoming appreciated as new proteomic approaches allow their systematic....... A view that such modifications could have signalling ramifications is emerging. However, in many cases there is a lack of information as to the effect of oxidation on protein activity or function. Severe protein oxidation is costly to the cell since oxidatively damaged proteins need to be degraded...... of modified proteins by affinity purification. Although there are several technical caveats with such approaches, they have been useful in documenting the extent of oxidative modification of proteins and have highlighted a number of proteins where oxidative modification is critical for protein function...

  11. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Polycentrism in Global Health Governance Scholarship

    Science.gov (United States)

    Tosun, Jale

    2018-01-01

    Drawing on an in-depth analysis of eight global health networks, a recent essay in this journal argued that global health networks face four challenges to their effectiveness: problem definition, positioning, coalition-building, and governance. While sharing the argument of the essay concerned, in this commentary, we argue that these analytical concepts can be used to explicate a concept that has implicitly been used in global health governance scholarship for quite a few years. While already prominent in the discussion of climate change governance, for instance, global health governance scholarship could make progress by looking at global health governance as being polycentric. Concisely, polycentric forms of governance mix scales, mechanisms, and actors. Drawing on the essay, we propose a polycentric approach to the study of global health governance that incorporates coalitionbuilding tactics, internal governance and global political priority as explanatory factors. PMID:29325406

  13. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

    Science.gov (United States)

    Vedenyapina, M. D.; Borisova, D. A.; Rosenwinkel, K.-H.; Weichgrebe, D.; Stopp, P.; Vedenyapin, A. A.

    2013-08-01

    The kinetics and mechanism of the deep oxidation of sodium diclofenac on a boron-doped diamond electrode are studied to develop a technique for purifying wastewater from pharmaceutical products. The products of sodium diclofenac electrolysis are analyzed using cyclic voltammetry and nuclear magnetic resonance techniques. It is shown that the toxicity of the drug and products of its electrolysis decreases upon its deep oxidation.

  14. Governing Individual Knowledge Sharing Behavior

    DEFF Research Database (Denmark)

    Minbaeva, Dana; Pedersen, Torben

    2010-01-01

    The emerging Knowledge Governance Approach asserts the need to build microfoundations grounded in individual action. Toward this goal, using the Theory of Planned Behavior, we aim to explain individual knowledge sharing behavior as being determined by the intention to share knowledge and its...... antecedents: attitude toward knowledge sharing, subjective norms, and perceived behavioral control. In addition, we consider managerial interventions (governance mechanisms) that managers can employ to influence the identified antecedents and thereby govern individual knowledge sharing behavior. We test...... a positive effect on subjective norms and perceived behavioral control, respectively....

  15. Adaptive approaches to biosecurity governance.

    Science.gov (United States)

    Cook, David C; Liu, Shuang; Murphy, Brendan; Lonsdale, W Mark

    2010-09-01

    This article discusses institutional changes that may facilitate an adaptive approach to biosecurity risk management where governance is viewed as a multidisciplinary, interactive experiment acknowledging uncertainty. Using the principles of adaptive governance, evolved from institutional theory, we explore how the concepts of lateral information flows, incentive alignment, and policy experimentation might shape Australia's invasive species defense mechanisms. We suggest design principles for biosecurity policies emphasizing overlapping complementary response capabilities and the sharing of invasive species risks via a polycentric system of governance. © 2010 Society for Risk Analysis

  16. Studying the processes relating to oxidation of organic substances contained in the coolant of thermal and nuclear power stations

    Science.gov (United States)

    Khodyrev, B. N.; Krichevtsov, A. L.; Sokolyuk, A. A.

    2010-07-01

    A radical-chain mechanism governing thermal-oxidation destruction of organic substances contained in the coolant of thermal and nuclear power stations is considered. Hypotheses on the chemical nature of antioxidation properties of amines are presented. Theoretical conjectures about the fundamental processes through which protective amine films are formed on the surface of metals are suggested.

  17. Morphology, mechanical and thermal oxidative aging properties of HDPE composites reinforced by nonmetals recycled from waste printed circuit boards.

    Science.gov (United States)

    Yang, Shuangqiao; Bai, Shibing; Wang, Qi

    2016-11-01

    In this study nonmetals recycled from waste printed circuit boards (NPCB) is used as reinforce fillers in high-density polyethylene (HDPE) composites. The morphology, mechanical and thermal oxidative aging properties of NPCB reinforced HDPE composites are assessed and it compared with two other commercial functional filler for the first time. Mechanical test results showed that NPCB could be used as reinforcing fillers in the HDPE composites and mechanical properties especially for stiffness is better than other two commercial fillers. The improved mechanical property was confirmed by the higher aspect ratio and strong interfacial adhesion in scanning electron microscopy (SEM) studies. The heat deflection temperature (HDT) test showed the presence of fiberglass in NPCB can improve the heat resistance of composite for their potential applications. Meanwhile, the oxidation induction time (OIT) and the Fourier transform infrared (FTIR) spectroscopy results showed that NPCB has a near resistance to oxidation as two other commercial fillers used in this paper. The above results show the reuse of NPCB in the HDPE composites represents a promising way for resolving both the environmental pollution and the high-value reuse of resources. Copyright © 2015. Published by Elsevier Ltd.

  18. Part II: Effects of gamma irradiation on lipid and cholesterol oxidation in mechanically deboned turkey meat

    International Nuclear Information System (INIS)

    Farkas, J.; Andrassy, E.; Meszaros, L.; Beczner, J.; Polyak-Feher, K.; Gaal, O.; Lebovics, V.K.; Lugasi, A.

    2009-01-01

    The pasteurizing effect of a 2 kGy radiation dose on non-frozen mechanically deboned turkey meat was achieved without increase in cholesterol oxidation products or increases in thiobarbituric acid reactive substance values during 15 d of chilled storage following the treatments, while untreated samples were spoiled. The addition of antioxidants, such as thyme oil or α-tocopherol plus ascorbic acid, significantly inhibited the oxidative changes of cholesterol and lipids during 3 kGy treatment. (author)

  19. Reverse Engineering Applied to Red Human Hair Pheomelanin Reveals Redox-Buffering as a Pro-Oxidant Mechanism

    Science.gov (United States)

    Kim, Eunkyoung; Panzella, Lucia; Micillo, Raffaella; Bentley, William E.; Napolitano, Alessandra; Payne, Gregory F.

    2015-01-01

    Pheomelanin has been implicated in the increased susceptibility to UV-induced melanoma for people with light skin and red hair. Recent studies identified a UV-independent pathway to melanoma carcinogenesis and implicated pheomelanin’s pro-oxidant properties that act through the generation of reactive oxygen species and/or the depletion of cellular antioxidants. Here, we applied an electrochemically-based reverse engineering methodology to compare the redox properties of human hair pheomelanin with model synthetic pigments and natural eumelanin. This methodology exposes the insoluble melanin samples to complex potential (voltage) inputs and measures output response characteristics to assess redox activities. The results demonstrate that both eumelanin and pheomelanin are redox-active, they can rapidly (sec-min) and repeatedly redox-cycle between oxidized and reduced states, and pheomelanin possesses a more oxidative redox potential. This study suggests that pheomelanin’s redox-based pro-oxidant activity may contribute to sustaining a chronic oxidative stress condition through a redox-buffering mechanism. PMID:26669666

  20. Network governance and capacity of local governments to deliver LED in Uganda

    Directory of Open Access Journals (Sweden)

    Rose B Namara

    2016-02-01

    Full Text Available This paper discusses network governance and its contribution to the capacity of local governments (LGs to deliver local economic development (LED in Uganda. Although a formal LED policy was only established in Uganda in February 2014, there have been LED-inspired practices in the past decade. Various scholars and practitioners have observed that the autonomy and capacity of LGs to deliver LED is limited, but have been hopeful that new governance strategies like network governance would increase the capacities of LGs. However, neither network governance arrangements among LGs, nor their potential to improve governance capacity, have been documented. In a case study of Kyenjojo District, this paper finds that existing network governance arrangements have been fundamental in improving financial autonomy at this LG, delivering some income to invest in LED activities, although no evidence was found of reduced transaction costs in transforming local economies. The study further reveals that network governance arrangements have not led to the development of specialised skills in regulation or law enforcement, and capacity gaps are evident amongst staff and members in understanding the private sector and how it works. On a positive note, there is clear evidence of attempts by the LG to be innovative. Based on these findings, this study recommends that LGs need to consider a multi-pronged or multi-network governance approach to LED, which in turn will require a refocusing of governance mechanisms to become more dynamic and responsive, and offer incentives to the various actors in the development sector.

  1. Induction of oxidative DNA damage by mesalamine in the presence of copper: A potential mechanism for mesalamine anticancer activity

    International Nuclear Information System (INIS)

    Zimmerman, Ryan P.; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P.; Wang, Jianmin; Li, Yunbo

    2011-01-01

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis.

  2. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  3. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes

    Directory of Open Access Journals (Sweden)

    Ali Ammar

    2016-03-01

    Full Text Available This paper expresses a short review of research on the effects of graphene oxide (GO as a nanocomposite element on polymer morphology and resulting property modifications including mechanical, barrier, and electrical conductivity. The effects on mechanical enhancement related to stress measurements in particular are a focus of this review. To first order, varying levels of aggregation of GO in different polymer matrices as a result of their weak inter-particle attractive interactions mainly affect the nanocomposite mechanical properties. The near surface dispersion of GO in polymer/GO nanocomposites can be investigated by studying the surface morphology of these nanocomposites using scanning probe microscopy such as atomic force microscope (AFM and scanning electron microscope (SEM. In the bulk, GO dispersion can be studied by wide-angle X-ray scattering (WAXD by analyzing the diffraction peaks corresponding to the undispersed GO fraction in the polymer matrix. In terms of an application, we review how the hydrophilicity of graphene oxide and its hydrogen bonding potential can enhance water flux of these nanocomposite materials in membrane applications. Likewise, the electrical conductivity of polymer films and bulk polymers can be advantageously enhanced via the percolative dispersion of GO nanoparticles, but this typically requires some additional chemical treatment of the GO nanoparticles to transform it to reduced GO.

  4. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Arturo J Cardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  5. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers.

    Science.gov (United States)

    Viapiana, R; Flumignan, D L; Guerreiro-Tanomaru, J M; Camilleri, J; Tanomaru-Filho, M

    2014-05-01

    To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  6. 'Pop-Up' Governance: developing internal governance frameworks for consortia: the example of UK10K.

    Science.gov (United States)

    Kaye, Jane; Muddyman, Dawn; Smee, Carol; Kennedy, Karen; Bell, Jessica

    2015-01-01

    Innovations in information technologies have facilitated the development of new styles of research networks and forms of governance. This is evident in genomics where increasingly, research is carried out by large, interdisciplinary consortia focussing on a specific research endeavour. The UK10K project is an example of a human genomics consortium funded to provide insights into the genomics of rare conditions, and establish a community resource from generated sequence data. To achieve its objectives according to the agreed timetable, the UK10K project established an internal governance system to expedite the research and to deal with the complex issues that arose. The project's governance structure exemplifies a new form of network governance called 'pop-up' governance. 'Pop-up' because: it was put together quickly, existed for a specific period, was designed for a specific purpose, and was dismantled easily on project completion. In this paper, we use UK10K to describe how 'pop-up' governance works on the ground and how relational, hierarchical and contractual governance mechanisms are used in this new form of network governance.

  7. Microstructure, mechanical properties and oxidation behaviors of magnetron sputtered NbN{sub x} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhengbing, E-mail: zbqi@xmut.edu.cn [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China); Wu, Zhengtao; Zhang, Dongfang [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China); Zuo, Juan [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen (China); Wang, Zhoucheng, E-mail: zcwang@xmu.edu.cn [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China)

    2016-08-05

    Mechanical properties and oxidation resistance are of importance for the NbN{sub x} coatings as used in cutting and forming tools. In this study, the NbN{sub x} coatings were deposited by magnetron sputtering at nitrogen partial pressure ranging from 0 to 40%. The chemical and phase compositions, morphologies, mechanical properties and oxidation behaviors of the NbN{sub x} coatings were investigated by electron probe microanalysis, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, scanning and transmission electron microscopy, and nanoindentation measurements. The results reveal the composition evolution of the NbN{sub x} coatings as α-Nb (0%), β-Nb{sub 2}N (5%), a mixture of β-Nb{sub 2}N and δ-NbN (10%), and δ-NbN (20–40%). The single phase coatings exhibit columnar structure while the mixed phases coating shows nano-composite structure. Compared with the single phase δ-NbN coatings (21.6 ± 0.8–28.0 ± 1.2 GPa), higher hardness of the single phase β-Nb{sub 2}N coating (30.9 ± 1.0 GPa) is due to the higher covalent character and much finer grains. The maximum hardness reaches 33.3 ± 1.5 GPa for the nano-composite coating with mixed phases of β-Nb{sub 2}N and δ-NbN. The oxidation results demonstrate that the activation energies are 219.3 and 192.3 kJ/mol for the Nb{sub 2}N and NbN coatings respectively. Non-protective Nb{sub 2}O{sub 5} scales with cracks and pores result in poorer oxidation resistance of the NbN coating in comparison to the Nb{sub 2}N coating. - Highlights: • Chemical and phase compositions and microstructure of NbN{sub x} coatings were investigated. • Maximum hardness is obtained for nano-composite coating with mixed Nb{sub 2}N and NbN phases. • Activation energies are 219.3 and 192.3 kJ/mol for oxidation of Nb{sub 2}N and NbN coatings. • Non-protective Nb{sub 2}O{sub 5} scales with cracks and pores lower oxidation resistance of NbN coating.

  8. Pulmonary Oxidative Stress, Inflammation and Cancer: Respirable Particulate Matter, Fibrous Dusts and Ozone as Major Causes of Lung Carcinogenesis through Reactive Oxygen Species Mechanisms

    Directory of Open Access Journals (Sweden)

    Spyridon Loridas

    2013-08-01

    Full Text Available Reactive oxygen or nitrogen species (ROS, RNS and oxidative stress in the respiratory system increase the production of mediators of pulmonary inflammation and initiate or promote mechanisms of carcinogenesis. The lungs are exposed daily to oxidants generated either endogenously or exogenously (air pollutants, cigarette smoke, etc.. Cells in aerobic organisms are protected against oxidative damage by enzymatic and non-enzymatic antioxidant systems. Recent epidemiologic investigations have shown associations between increased incidence of respiratory diseases and lung cancer from exposure to low levels of various forms of respirable fibers and particulate matter (PM, at occupational or urban air polluting environments. Lung cancer increases substantially for tobacco smokers due to the synergistic effects in the generation of ROS, leading to oxidative stress and inflammation with high DNA damage potential. Physical and chemical characteristics of particles (size, transition metal content, speciation, stable free radicals, etc. play an important role in oxidative stress. In turn, oxidative stress initiates the synthesis of mediators of pulmonary inflammation in lung epithelial cells and initiation of carcinogenic mechanisms. Inhalable quartz, metal powders, mineral asbestos fibers, ozone, soot from gasoline and diesel engines, tobacco smoke and PM from ambient air pollution (PM10 and PM2.5 are involved in various oxidative stress mechanisms. Pulmonary cancer initiation and promotion has been linked to a series of biochemical pathways of oxidative stress, DNA oxidative damage, macrophage stimulation, telomere shortening, modulation of gene expression and activation of transcription factors with important role in carcinogenesis. In this review we are presenting the role of ROS and oxidative stress in the production of mediators of pulmonary inflammation and mechanisms of carcinogenesis.

  9. CORPORATE GOVERNANCE IN INDIA: AN ANALYSIS

    Directory of Open Access Journals (Sweden)

    Meghna Thapar

    2017-03-01

    Full Text Available Corporate governance is a process, relation and mechanism set up for the corporations and firms based on certain guidelines and principles by which a company is controlled and directed. The principles provided in the system ensure that the company is governed in a way that it is able to set and achieve its goals and objectives in the context of the social, regulatory and market environment, and is able to maximize profits and also benefit those whose interest is involved in it, in the long run. The division and distribution of rights and responsibilities among different participants in the corporation (such as the board of directors, managers, shareholders, creditors, auditors, regulators, and other stakeholders and inclusion of the rules and procedures for making decisions in corporate affairs are identified with the help of Corporate Governance mechanism and guidelines. The need to make corporate governance in India transparent was felt after the high profile corporate governance failure scams like the stock market scam, the UTI scam, Ketan Parikh scam, Satyam scam, which were severely criticized by the shareholders. Thus, Corporate Governance is not just company administration but more than that and includes monitoring the actions, policies, practices, and decisions of corporations, their agents, and affected stakeholders thereby ensuring fair, efficient and transparent functioning of the corporate management system. By this paper, the authors intend to examine the concept of corporate governance in India with regard to the provisions of corporate governance under the Companies Act 2013. The paper will highlight the importance and need of corporate governance in India. We will also discuss the important case laws which contributed immensely in the emergence of corporate governance in India.

  10. Radiation Oxidation Mechanisms in Polyolefins Studied by C-13 Isotopic Labeling

    International Nuclear Information System (INIS)

    Clough, R.L.

    2006-01-01

    Control of oxidative degradation is a critical consideration in most applications involving polymers and radiation. In radiation crosslinking or sterilization, or in the use of polymers in radiation environments (such as nuclear plants), the objective is to minimize degradation as much as possible. In other applications, a controlled, partial degradation is desired to alter processing properties, or to enhance adhesion or solubility. To gain more understanding of the complex processes of radiation oxidation, samples of one important commercial polyolefin, polypropylene, were synthesized in which the three different carbon atoms along the chain were selectively labeled with carbon-13. These samples were subjected to radiation under inert and air atmospheres, and to post-irradiation thermal exposure in air at various temperatures. Analysis of macromolecular radiation-oxidation products was carried out using 13 C NMR and FTIR. Time-dependent plots of oxidation products have been obtained from the NMR measurements, including the post-irradiation oxidation of a sample held at room temperature in air that has been monitored for 2 years. Analysis of volatile oxidation products (CO, CO 2 , and small organic molecules) was accomplished with gas chromatography / mass spectroscopy. The position of the 13 C labels in the degradation products, have been traced back to their positions of origin on the macromolecule, providing insights into the chemical reaction mechanisms through which the products were formed. The major solid-phase products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of macromolecular products arising from reactions at the methyl side chain. Significant temperature-dependent differences are

  11. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    Science.gov (United States)

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  12. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  13. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S.; Chung, Suk-Ho

    2015-01-01

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  14. Coexistence of contrasting principles in corporate governance: Two tales of Japanese firms

    Directory of Open Access Journals (Sweden)

    Taeyoung Yoo

    2015-09-01

    Full Text Available The underlying logic that shapes the coexistence of contrasting mechanisms in a firm’s governance system remains unclear. We examine the logic that promotes a hybrid form of corporate governance in functional terms. The empirical analysis of Japanese firms shows that a firm’s reliance on capital markets for resource acquisition facilitates its adoption of shareholder-oriented mechanisms, such as committee systems. In contrast, corporate performance is still influenced by some of Japanese society’s characteristic governance mechanisms, such as bank ownership. This finding illustrates that contrasting governance mechanisms coexist in a given system owing to their respective or interacting contributions to corporate performance.

  15. Corporate governance : What’s special about banks?

    NARCIS (Netherlands)

    Laeven, L.

    2013-01-01

    This review surveys the literature on the corporate governance of banks. Traditional corporate governance mechanisms, such as concentrated ownership and takeover threats, in principle, also apply to banks. However, banks have special traits and are heavily regulated, preventing natural forms of

  16. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  17. Experimental study and modelling of the high temperature mechanical behavior of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Steckmeyer, A.

    2012-01-01

    The strength of metals, and therefore their maximum operating temperature, can be improved by oxide dispersion strengthening (ODS). Numerous research studies are carried out at the French Atomic Energy Commission (CEA) in order to develop a cladding tube material for Gen IV nuclear power reactors. Oxide dispersion strengthened steels appear to be the most promising candidates for such application, which demands a minimum operating temperature of 650 C. The present dissertation intends to improve the understanding of the mechanical properties of ODS steels, in terms of creep lifetime and mechanical anisotropy. The methodology of this work includes mechanical tests between room temperature and 900 C as well as macroscopic and polycrystalline modelling. These tests are carried out on a Fe-14Cr1W0,26Ti + 0,3 Y 2 O 3 ODS ferritic steel processed at CEA by mechanical alloying and hot extrusion. The as-received material is a bar with a circular section. The mechanical tests reveal the high mechanical strength of this steel at high temperature. A strong influence of the strain rate on the ductility and the mechanical strength is also observed. A macroscopic mechanical model has been developed on the basis of some experimental statements such as the high kinematic contribution to the flow stress. This model has a strong ability to reproduce the mechanical behaviour of the studied material. Two different polycrystalline models have also been developed in order to reproduce the mechanical anisotropy of the material. They are based on its specific grain morphology and crystallographic texture. The discrepancy between the predictions of both models and experimental results reveal the necessity to formulate alternate assumptions on the deformation mechanisms of ODS ferritic steels. (author) [fr

  18. Effect of different sintering aids on thermo-mechanical properties and oxidation of SiC fibers - Reinforced ZrB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Sciti, D., E-mail: diletta.sciti@istec.cnr.it [ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, I-48018 Faenza (Italy); Silvestroni, L. [ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, I-48018 Faenza (Italy); Saccone, G.; Alfano, D. [CIRA, Italian Aerospace Research Center, 81043 Capua (Italy)

    2013-01-15

    Reinforced zirconium diboride composites containing 15 vol% of Hi Nicalon SiC chopped fibers were hot pressed with addition of various sintering additives, Si{sub 3}N{sub 4}, ZrSi{sub 2} or MoSi{sub 2}. Depending on the sintering aid, different densification temperatures were set in the range 1650-1750 Degree-Sign C. Temperature and additive strongly influenced the matrix/fiber interface, which in turn had a strong impact on the mechanical properties and the oxidation behavior at 1650 Degree-Sign C. Even the workability, performed either by conventional machining or electro discharge machining, varied depending on the sintering additive and the secondary phases formed in the system. The system containing Si{sub 3}N{sub 4} turned out to have the highest mechanical properties, but intermediate oxidation resistance; the composite containing ZrSi{sub 2} had the lowest sintering temperature, but displayed the worst oxidation resistance, and finally the composite containing MoSi{sub 2} showed intermediate mechanical properties, but the highest oxidation resistance and lowest degree of damage upon machining. Preliminary measurements of thermal shock resistance by the water quenching method were also carried out. -- Highlights: Black-Right-Pointing-Pointer We produced SiC fibers reinforced ZrB{sub 2} using different sintering aids. Black-Right-Pointing-Pointer The sintering additives affected properties, oxidation and machinability. Black-Right-Pointing-Pointer The system containing Si{sub 3}N{sub 4} had the highest mechanical properties. Black-Right-Pointing-Pointer The composite containing MoSi{sub 2} had the highest oxidation resistance. Black-Right-Pointing-Pointer ZrB{sub 2}-SiC fibers have higher thermal shock resistance than ZrB{sub 2}-SiC particles.

  19. Governance mechanisms and the institutional design of the Health Secretariat in the Municipality of Rio de Janeiro (RJ), Brazil.

    Science.gov (United States)

    Ribeiro, José Mendes; Alcoforado, Flávio

    2016-05-01

    In this article, we outline the discussions about the mechanisms of governance and public administration taking into account the main political and economic schools of thought which affect the decisions taken by elected and public bodies. We discuss the pendulum-style approach of the reforms and the degree of minimization of the Weberian thesis on rational bureaucracy. Taking into account conceptual aspects and the trajectory of the debate on a new form of public governance and the 1995 State of Brazil reforms, we analyzed the institutional design of the Municipal Health Secretariat in Rio de Janeiro after the reforms were adopted, based on a social organizational model. We also took into account regulatory capacity and the sustainability of the governmental schools.

  20. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide) demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Joao Batista V.S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Lechuga, Fernanda C.; Lucas, Elizabete F., E-mail: elucas@ima.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2010-07-01

    Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface. (author)

  1. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide) demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    International Nuclear Information System (INIS)

    Ramalho, Joao Batista V.S.; Lechuga, Fernanda C.; Lucas, Elizabete F.

    2010-01-01

    Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface. (author)

  2. Mechanism of the rapid dissolution of Pu02 under oxidizing conditions and applications

    International Nuclear Information System (INIS)

    Madic, C.; Lecomte, M.; Bourges, J.; Koehly, G.

    1991-01-01

    Until the recent years, plutonium dioxide was known to be among the metallic oxides the most difficult to dissolve. From thermodynamic calculations it can be predicted that PuO 2 will dissolve under oxidizing conditions. This can be achieved using Ag(II) species possibly regenerated by electrochemical means. The mechanism of such a process has been elucidated using carbon paste electrochemistry and 18 O labelling. These studies demonstrate that the chemical reaction limiting the overall proces is located on the surface of the solid PuO 2 , and that the first step consists in the oxidation of the plutonium into Pu(V) species. Applications of the dissolution process of PuO 2 by electrogenerated Ag(II) were growing in the recent years in FRANCE. These applications developed often in collaboration with SGN and COGEMA, concern the treatment of: out of specifications PuO 2 , incineration ashes, wastes produced during MOX fuel fabrication, and during the dismantling of old nuclear facilities. A general overview of these different applications is given

  3. Corporate Governance in the Swedish Banking Sector

    OpenAIRE

    Palmberg, Johanna

    2010-01-01

    This paper studies the corporate governance structure among Swedish banks. Who controls the Swedish banks and what characteristics does the Swedish banking sector have? Issues related to corporate governance such as ownership structure, board of directors and control-enhancing mechanisms will be studied. The Swedish banking law, how Swedish banks handled the financial crises and government measures to deal with the financial crisis is also analyzed.

  4. OPTIMALISASI BANK SYARI’AH MENUJU GOOD CORPORATE GOVERNANCE

    Directory of Open Access Journals (Sweden)

    Fahrur Ulum Fahrur Ulum

    2013-08-01

    Full Text Available Abstract: Syarî’ah banking must be optimized earnestly to fulfill the stakeholders interest. The effective implementation of cooporate governance would realize the goal of fairness, accountability, and transparancy.  There are several prior focus of this system manager: basic concept and problems of cooperate governance in syarî’ah banking, the pillars of implementation, and the mechanism.  As a result, to create an effective  cooperate governance of syariah banking, the following aspects must be urgently required: a contract clarity, market discipline, moral dimension, socio-political atmosphere,  law enforcement, and institution. Board of directors, senior management, stockholders, and depositors have important roles to establish the  harmony of syariah banking development. The stakeholders  are directly connected to the mechanism of cooperate governance of syariah banking. Key Words: corporate governance, bank syari’ah, stakeholders, dan mudlârabah

  5. Performance evaluation on air pollution reducing facilities and mechanism research on the third-party governance on environmental pollution

    Science.gov (United States)

    Bingsheng, Xu; Ling, Lin; Jin, Huang; Geng, Wang; Jianhua, Chen; Shuo, Yang; Huiting, Guo

    2017-11-01

    The paper focuses on developing the operational efficiency of air pollution reducing facilities and the treatment effect of the third-party governance on environmental pollution. Comprehensive analysis method and influence factor analysis are employed to build an evaluation index system by means of discussing major pollution control factors derived from the performance of pollution control equipment operation, environmental protection, technological economy, recourse consumption and manufacturing management. Based on the pattern of environmental pollution control offered by the third-party company, the static games model is further established between the government and the pollution emission firm by considering the whole process of the pollution abatement including investment, construction and operation of the treatment project, which focuses on establishing the policy condition and consequence by discussing the cost and benefit in a short and a long time, respectively. The research results can improve the market access requests of the pollution control equipment and normalize the environmental protection service offered by the third-party company. Moreover, the establishment of the evaluation index system for pollution control equipment and the evaluation mechanism for the third-party governance on environmental pollution has guiding significance on leading environmental protection industry and promoting market-oriented development

  6. Kinetics and Mechanism of Oxidation of Diethyl Ether by Chloramine-T in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Y. I. Hassan

    2012-01-01

    Full Text Available The kinetics of oxidation of diethyl ether (DE with sodium N-chloro-p-toluenesulphonamide (CAT in hydrochloric acid solution has been studied at (313°K.The reaction rate show a first order dependence on [CAT] and fractional order dependence on each [DE] and [H+] .The variation of ionic strength of the medium has no significant effect on the reaction rate , addition of p-toluenesulphonamide (p-TSA affects the reaction rate marginally the rate increased with decreasing dielectric constant of the medium , the stochiometry of the reaction was found to be 1:2 and oxidation products were identified , A Michaelis – Menten type mechanism has been suggested to explain the results.The equilibrium and the decomposition constants of CAT – diethyl ether complex have been evaluated. Thermodynamic parameters were computed by studying reaction at temperatures range ( 308 – 323°K for the rate limiting step and for the observed first order constants by the linear Arrhenius plot. The mechanism proposed and the derived rate law are consistent with observed kinetics.

  7. CIEMAT results in the frame of the european project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1996-01-01

    This report summarises the objectives and more relevant conclusions obtained by CIEMAT in the frame of the project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems. The overall objective of this project was to identify the basic mechanisms and define the key parameters governing the physico-chemical speciation, vertical and horizontal mobility, biological magnification, incorporation to seabed sediments and ultimate fate of transuranium and other long-lived radionuclides in the marine environment, with a view to providing high-quality data of a universal character for use in the development and validation of predictive models based on fundamental mechanisms rather than the simpler box-model approach. This research was carried out in different European marine ecosystems: those directly affected by controlled releases from Nuclear Industries and/or accidents and those characterized by being preferent radionuclides accumulation sites (submarine canyons, estuaries, etc.). (Author)

  8. Polyamine modification by acrolein exclusively produces 1,5-diazacyclooctanes: a previously unrecognized mechanism for acrolein-mediated oxidative stress.

    Science.gov (United States)

    Tsutsui, Ayumi; Imamaki, Rie; Kitazume, Shinobu; Hanashima, Shinya; Yamaguchi, Yoshiki; Kaneda, Masato; Oishi, Shinya; Fujii, Nobutaka; Kurbangalieva, Almira; Taniguchi, Naoyuki; Tanaka, Katsunori

    2014-07-28

    Acrolein, a toxic unsaturated aldehyde generated as a result of oxidative stress, readily reacts with a variety of nucleophilic biomolecules. Polyamines, which produced acrolein in the presence of amine oxidase, were then found to react with acrolein to produce 1,5-diazacyclooctane, a previously unrecognized but significant downstream product of oxidative stress. Although diazacyclooctane formation effectively neutralized acrolein toxicity, the diazacyclooctane hydrogel produced through a sequential diazacyclooctane polymerization reaction was highly cytotoxic. This study suggests that diazacyclooctane formation is involved in the mechanism underlying acrolein-mediated oxidative stress.

  9. Responsibility with accountability: A FAIR governance framework for performance accountability of local governments

    Directory of Open Access Journals (Sweden)

    Anwar Shah

    2014-12-01

    Full Text Available This paper focuses on the role of local governments in bringing about fair, accountable, incoorruptible and responsive (FAIR governance. Local governments around the world have done important innovations to earn the trust of their residents and their comparative performance is of great interest yet a comprehensive framework to provide such benchmarking is not available. This paper attempts to fill this void, by developing a general framework for performance accountability of local governments and by relating real world practices to aspects of this framework. The proposed rating framework requires several types of assessments: (a their compliance with due process and law; (b monitoring of fiscal health for sustainability; (c monitoring of service delivery ; and (d citizens’ satisfaction with local services. The approach yields key indicators useful for benchmarking performance that can be used in selfevaluation and improvement of performance. t From an analysis of practices in local government performance monitoring and evaluation, the paper concludes that ad hoc ad-on self standing monitoring and evaluation systems are more costly and less useful than built-in tools and mechanisms for government transparency, self–evaluation and citizen based accountability such as local government output budgeting and output based fiscal transfers to finance local services.

  10. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  11. Corporate Governance & Auditor Choice in Malaysia

    Directory of Open Access Journals (Sweden)

    Wan Nasrudin Wan Asma

    2017-01-01

    Full Text Available The aim of this paper is to investigate the determinants of firm’s auditor choice in Malaysia in respect of their corporate governance mechanisms. A logit regression model was developed to test the impact of firms’ internal corporate governance mechanism on auditor choice decisions made by public listed companies listed on main board of Bursa Malaysia from year 2006 to 2015. Five variables are used to proxy for firm’s internal corporate mechanism which are the ownership concentration, the duality of CEO and chairman of BOD, the size of audit committee, the size of BOD and the number of independent directors on the board. All auditors in Malaysia were classified into Big Four and non-Big Four, assuming Big Four auditors can provide higher quality audit services. The final result show that firms with less concentrated ownership, with larger size of audit committee, larger size of the BOD, with lower proportion of independent directors on the board, or in which CEO and BOD’s chairman are not the same person are more likely to hire a high-quality auditor. Hence, it suggests that when benefits from lowering capital raising costs are trivial, firms with good corporate governance mechanism are prone to choose a high-quality auditor.

  12. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    International Nuclear Information System (INIS)

    Kim, Seong Woo; Choi, Hyun Muk

    2016-01-01

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  13. Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites

    Directory of Open Access Journals (Sweden)

    Wu-Jian Long

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA. Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM atomic force microscope (AFM, and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM/backscattered mode (BSEM showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.

  14. FINANCING DECISION AND CORPORATE GOVERNANCE

    OpenAIRE

    ANDREI STANCULESCU; DAN NICOLAE IVANESCU; PETRE BREZEANU

    2011-01-01

    This paper sustains the existence of a biunivocal link between a company’s financing decision and the corporate governance. On the one hand, the financing decision has an impact on corporate performance, which has been confirmed. According to the agency theory, the financing decision will contribute to solving interest conflicts between shareholders and managers. On the other hand, the corporate governance mechanism provides the proper contractual framework for attracting financing resources....

  15. THE GLOBAL GOVERNANCE PROBLEM AND THE ROLE OF THE INTERNATIONAL MONETARY FUND

    Directory of Open Access Journals (Sweden)

    Sidorova E. A.

    2015-06-01

    Full Text Available Currently, globalization begins to permeate more and more areas of human activity, therefore it is important question of the complex mechanisms and principles of global governance formation.The article analyzes the essence, subjects and mechanisms for the implementation of the global economic governance. Moreover, it investigates the role and current state of the International Monetary Fund (IMF in the global economy. In conclusion, it clarifies the relationship of the IMF and processes of global governance. Research has shown that it is necessary to create within the IMF more representative, economically and politically balanced system of global governance of the world monetary and financial relations as part of the emerging mechanisms of global economic governance. This article extends the knowledge about the features of the IMF in the forming global governance.

  16. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Anju; Sailani, Riya; Gupta, Beena; Khandelwal, C. L.; Sharma, P. D. [Univ. of Rajasthan, Jaipur (India)

    2012-04-15

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations.

  17. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    International Nuclear Information System (INIS)

    Agrawal, Anju; Sailani, Riya; Gupta, Beena; Khandelwal, C. L.; Sharma, P. D.

    2012-01-01

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations

  18. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms

    Directory of Open Access Journals (Sweden)

    Izabella Kovacs

    2016-11-01

    Full Text Available Nitric oxide (NO has emerged as a signaling molecule in plants being involved in diverse physiological processes like germination, root growth, stomata closing and response to biotic and abiotic stress. S-nitrosoglutathione (GSNO as a biological NO donor has a very important function in NO signaling since it can transfer its NO moiety to other proteins (trans-nitrosylation. Such trans-nitrosylation reactions are equilibrium reactions and depend on GSNO level. The breakdown of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR. In this way, this enzyme controls S-nitrosothiol levels and regulates NO signaling. Here we report that Arabidopsis thaliana GSNOR activity is reversibly inhibited by H2O2 in-vitro and by paraquat-induced oxidative stress in-vivo. Light scattering analyses of reduced and oxidized recombinant GSNOR demonstrated that GSNOR proteins form dimers under both reducing and oxidizing conditions. Moreover, mass spectrometric analyses revealed that H2O2-treatment increased the amount of oxidative modifications on Zn2+-coordinating Cys47 and Cys177. Inhibition of GSNOR results in enhanced levels of S-nitrosothiols followed by accumulation of glutathione. Moreover, transcript levels of redox-regulated genes and activities of glutathione-dependent enzymes are increased in gsnor-ko plants, which may contribute to the enhanced resistance against oxidative stress. In sum, our results demonstrate that ROS-dependent inhibition of GSNOR is playing an important role in activation of anti-oxidative mechanisms to damping oxidative damage and imply a direct crosstalk between ROS- and NO-signaling.

  19. Corporate Governance, between Classicism and Modernism

    Directory of Open Access Journals (Sweden)

    Niculae Feleaga

    2006-07-01

    Full Text Available Corporate governance represents a complex concept, being an assembly of mechanisms used to set order into company leaders’ decisions. The rules of corporate governance are the ones keeping the score between the economic entity’s leaders and the third parties who invest their resources in the business. The corporate governance issue did not appear by hazard, but it resulted from the necessity to reconcile many business interests within a company (sometimes contradictory issues, especially the ones between the shareholders and the business leaders. The Anglo-Saxon view, in which the business power is given to the Equity items, is traditionally opposing the European (continental vision, where focus is being made on the Stakeholders’ interests. Within a world dominated by globalization issues, and where the financial markets evolve on an exponential curve, the two above mentioned corporate governance models ought to interact one with another in a constructive manner. Even if the corporate governance concept has developed recently, mainly during the last 25 years, its origins are rooted way back into the world history. Corporate governance is organically linked to the capitalist society and economy. After the 11 September attacks, many of the contemporary authors had the tendency to declare this date as the beginning of the XXIst century. If the ‘Twin Towers’ had hosted companies like: Tyco, Enron, Xerox, Wordcom and many other Stock Exchange-quoted businesses, it is likely that the financial crisis from 2000-2002 would have been differently perceived, and corporate governance had developed slightly different evolutionary mechanisms. A scientific article, based on the comparison between the classical and modern corporate governance experiences, would therefore suit the Romanian business environment.

  20. Corporate Governance, between Classicism and Modernism

    Directory of Open Access Journals (Sweden)

    Cristina Vasile

    2006-09-01

    Full Text Available Corporate governance represents a complex concept, being an assembly of mechanisms used to set order into company leaders’ decisions. The rules of corporate governance are the ones keeping the score between the economic entity’s leaders and the third parties who invest their resources in the business. The corporate governance issue did not appear by hazard, but it resulted from the necessity to reconcile many business interests within a company (sometimes contradictory issues, especially the ones between the shareholders and the business leaders. The Anglo-Saxon view, in which the business power is given to the Equity items, is traditionally opposing the European (continental vision, where focus is being made on the Stakeholders’ interests. Within a world dominated by globalization issues, and where the financial markets evolve on an exponential curve, the two above mentioned corporate governance models ought to interact one with another in a constructive manner. Even if the corporate governance concept has developed recently, mainly during the last 25 years, its origins are rooted way back into the world history. Corporate governance is organically linked to the capitalist society and economy. After the 11 September attacks, many of the contemporary authors had the tendency to declare this date as the beginning of the XXIst century. If the ‘Twin Towers’ had hosted companies like: Tyco, Enron, Xerox, Wordcom and many other Stock Exchange-quoted businesses, it is likely that the financial crisis from 2000-2002 would have been differently perceived, and corporate governance had developed slightly different evolutionary mechanisms. A scientific article, based on the comparison between the classical and modern corporate governance experiences, would therefore suit the Romanian business environment.

  1. Material removal mechanisms in electrochemical-mechanical polishing of tantalum

    International Nuclear Information System (INIS)

    Gao, F.; Liang, H.

    2009-01-01

    Material removal mechanisms in tantalum chemical-mechanical polishing (CMP) and electrochemical-mechanical polishing (ECMP) were investigated using the single frequency electrochemical impedance spectroscopy (EIS). Through measuring the impedance of the tantalum surface, the single frequency EIS scan made it possible to observe the CMP and ECMP processes in situ. The impedance results presented competing mechanisms of removal and formation of a surface oxide layer of tantalum. Analysis indicated that the thickness of the oxide layer formed during polishing was related to the mechanical power correlated to the friction force and the rotating speed. Furthermore, the rate of growth and removal of the oxide film was a function of the mechanical power. This understanding is beneficial for optimization of CMP and ECMP processes.

  2. Mechanical Property and Oxidation Behavior of ATF cladding developed in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To realize the coating cladding, coating material (Cr-based alloy) as well as coating technology (3D laser coating and arc ion plating combined with vacuum annealing) can be developed to meet the fuel cladding criteria. The coated Zr cladding can be produced after the optimization of coating technologies. The coated cladding sample showed the good oxidation/corrosion and adhesion properties without the spalling and/or severe interaction with the Zr alloy cladding from the various tests. Thus, it is known that the mechanical property and oxidation behavior of coated cladding concept developed in KAERI is reasonable for applying the ATF cladding in LWRs. At the present time various ATF concepts have been proposed and developing in many countries. The ATF concepts with potentially improved accident performance can be summarized to the coating cladding, Mo-Zr cladding, FeCrAl cladding, and SiCf/SiC cladding. Regarding the cladding performance, ATF cladding concepts will be evaluated with respect to the accident scenarios and normal operations of LWRs as well as to the fuel cladding fabrication.

  3. Practical application of corporate governance principles in a developing country: A case study

    Directory of Open Access Journals (Sweden)

    Wanjiru Gachie

    2017-03-01

    Full Text Available The importance of examining corporate governance in organisations cannot be overemphasised. Corporate governance failure which has resulted from weak corporate governance systems has highlighted the need for research aimed at contributing to the improvement and reform of corporate governance at business, national and international level. A review of corporate governance mechanisms and their practical application in two retail companies in South Africa was undertaken. The research question that informed the study was: What is the nature of corporate governance mechanisms in the South African retail sector? The research design entailed analysis of secondary data, namely Annual Reports and other pertinent documents, and document analysis was used to show what is accessible to the ordinary share/stake-holder and what is not. Data analysis was conducted both qualitatively and quantitatively. With regard to corporate governance mechanisms, the results and discussion show that the two companies have not yet complied with the King II and III codes. Recommended strategies to strengthen corporate governance mechanisms in the South African retail sector should include a commitment to risk disclosure and revamping of the corporate governance structure of the ‘whole’ system.

  4. Experimental study of the zirconium alloy oxidation under high pressure of steam and modelling of the mechanisms

    International Nuclear Information System (INIS)

    Dali, Yacoub

    2007-01-01

    The corrosion of the cladding materials used for the fuel rods is one of the limiting factor of their lifetime in light water reactors. In this field, the aim of the nuclear industry is today to increase the time and the number of cycles and to submit the claddings in zirconium alloys to higher corrosive conditions. In this way, new alloys devoted to replace the standard Zircaloy-4, for instance Nb containing alloys, have been recently developed and licensed and show better corrosion resistance. A better understanding of the corrosion mechanisms of the zirconium alloys is necessary to predict the corrosion behaviour of these materials. In this work, the oxidation rate of model alloys of two metallurgic families has been studied in steam in a pressure range between 100 milli-bars and 100 bars. The Zircaloy type alloys contain as alloying elements oxygen and/or tin and/or iron and chromium. For the Zr-Nb family, three niobium contents have been studied, respectively 0.2, 0.4 and 1 weight percent of niobium. Our objectives were to understand the variations of the reactivity between the low pressure and the high pressure range, in quantifying the dependency of the corrosion rate with the steam pressure and the alloying element concentrations. The segregation process of the niobium at the surface has also been studied on the Zr-Nb alloys. During this work, a magnetic suspension thermo-balance has been developed and used to follow in-situ the corrosion rate at high pressure of water vapour. The oxide layers have been characterized by many techniques, macro and micro-photo-electrochemistry, XRD, FEG-SEM, XPS, HR-TEM and SIMS. For the Zircaloy type alloys, we have confirmed the major role of the intermetallic precipitates Zr(Fe,Cr) 2 on the corrosion resistance. Unlike the standard Zircaloy-4, for which the oxidation rate does not depend on the pressure of the water vapour and is thus limited by the vacancy diffusion in the oxide layer, we have shown that the rate of the

  5. Fact and Fiction of Nitrous Oxide Production By Nitrification

    Science.gov (United States)

    Stein, L. Y.; Kozlowski, J.; Stieglmeier, M.; Klotz, M. G.; Schleper, C.

    2014-12-01

    An accepted dogma in nitrification research is that ammonia-oxidizing bacteria (AOB) produce a modicum of nitrous oxide (N2O) during nitritation via incomplete oxidation of hydroxylamine, and substantially more at low oxygen concentrations via nitrifier denitrification.The nitrifier denitrification pathway involves the reduction of nitrite to N2O via nitric oxide and was thought to require activities of a copper-containing nitrite reductase (NirK) and nitric oxide reductase (NorB); inventory encoded in most, but not all AOB genome sequences. The discovery of nirK genes in ammonia-oxidizing Thaumarchaeota (AOA) resulted in a slew of publications stating that AOA must also perform nitrifier denitrification and, due to their high abundance, must control the majority of nitrification-linked N2O emissions. Prior to a publication by Stieglmeier et al. (2014), which definitively showed a lack of nitrifier denitrification by two axenic AOA cultures, other researchers relied on enrichment cultures, negative data, and heavy inferencing without direct demonstration of either a functional pathway or involvement of specific genes or enzymes. AOA genomes lack recognizable nitric oxide reductases and thermophilic AOA also lack nirK genes. Physiological and microrespirometry experiments with axenic AOB and AOA cultures allowed us to demonstrate that: 1) AOB produce N2O via nitrifier denitrification even though some lack annotated nirK and/or norB genes; 2) nitrifier denitrification by AOB is reliant on nitric oxide but ammonia oxidation is not; 3) ammonia oxidation by AOA is reliant on production of nitric oxide; 4) AOA are incapable of generating N2O via nitrifier denitrification; 5) N2O production by AOA is from chemical interactions between NO and media components, most likely not by enzyme activity. Our results reveal operation of different N oxide transformation pathways in AOB and AOA governed by different environmental controls and involving different mechanisms of N2O

  6. PENGARUH INTERDEPENDENSI MEKANISME CORPORATE GOVERNANCE TERHADAP KINERJA PERBANKAN

    Directory of Open Access Journals (Sweden)

    Ali Muktiyanto

    2011-12-01

    Full Text Available This study aims to examine the effect of interdependence mechanisms of corporate governance on company performance (Agrawal and Knoeber 1996. These mechanisms are: managerial ownership, institutional ownership, independent commissioner, board size, debt policy, dividend policy, market concentration, and market share with the control variables are growth, size, and firm ages. Test results on 349 firm-years using OLS regression for each mechanism and 2SLS regression for simultaneous testing indicate the presence of interdependence between the mechanisms. both parsial and simultanously; managerial ownership and dividend policy does not significantly influence on the banking efficiency. Significant positive effect of the board size and institutional ownership when tested by OLS did not recur when tested simultaneously using 2SLS. Instead, the independent commissioner when tested by 2SLS have significant negative effect but using OLS no significant effect. There are three variables of corporate governance mechanisms have consistent effect on the banking efficiency; debt policy has significant negative effect, while the market concentration and market share have significant positive effect. Different results between the tests using OLS and 2SLS emphasize the interdependence of these mechanisms is also shown that application of the policy of corporate governance mechanisms should be done carefully so that the expected performance can be achieved.

  7. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism

    DEFF Research Database (Denmark)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik

    2016-01-01

    )-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers......The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R...... indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site...

  8. Possible involvement of membrane lipids peroxidation and oxidation of catalytically essential thiols of the cerebral transmembrane sodium pump as component mechanisms of iron-mediated oxidative stress-linked dysfunction of the pump's activity

    Directory of Open Access Journals (Sweden)

    T.I. Omotayo

    2015-04-01

    Full Text Available The precise molecular events defining the complex role of oxidative stress in the inactivation of the cerebral sodium pump in radical-induced neurodegenerative diseases is yet to be fully clarified and thus still open. Herein we investigated the modulation of the activity of the cerebral transmembrane electrogenic enzyme in Fe2+-mediated in vitro oxidative stress model. The results show that Fe2+ inhibited the transmembrane enzyme in a concentration dependent manner and this effect was accompanied by a biphasic generation of aldehydic product of lipid peroxidation. While dithiothreitol prevented both Fe2+ inhibitory effect on the pump and lipid peroxidation, vitamin E prevented only lipid peroxidation but not inhibition of the pump. Besides, malondialdehyde (MDA inhibited the pump by a mechanism not related to oxidation of its critical thiols. Apparently, the low activity of the pump in degenerative diseases mediated by Fe2+ may involve complex multi-component mechanisms which may partly involve an initial oxidation of the critical thiols of the enzyme directly mediated by Fe2+ and during severe progression of such diseases; aldehydic products of lipid peroxidation such as MDA may further exacerbate this inhibitory effect by a mechanism that is likely not related to the oxidation of the catalytically essential thiols of the ouabain-sensitive cerebral electrogenic pump.

  9. Industry Evidence on the Effects of Government Spending

    OpenAIRE

    Christopher J. Nekarda; Valerie A. Ramey

    2010-01-01

    This paper investigates industry-level effects of government purchases in order to shed light on the transmission mechanism for government spending on the aggregate economy. We begin by highlighting the different theoretical predictions concerning the effects of government spending on industry labor market equilibrium. We then create a panel data set that matches output and labor variables to shifts in industry-specific government demand. The empirical results indicate that increases in gover...

  10. Project governance: "Schools of thought"

    Directory of Open Access Journals (Sweden)

    Michiel Christiaan Bekker

    2014-02-01

    Full Text Available The terminology, definition and context of project governance have become a focal subject for research and discussions in project management literature. This article reviews literature on the subject of project governance and categorise the arguments into three schools of thought namely the single-firm school, multi-firm school and large capital school. The single-firm school is concerned with governance principles related to internal organisational projects and practice these principles at a technical level. The multi-firm school address the governance principles concerned with two of more organisations participating on a contractual basis on the same project and focus their governance efforts at the technical and strategic level. The large capital school consider projects as temporary organisations, forming their own entity and establishing governance principles at an institutional level. From these schools of thought it can be concluded that the definition of project governance is dependent on the type of project and hierarchical positioning in the organisation. It is also evident that further research is required to incorporate other governance variables and mechanisms such as transaction theory, social networks and agency theory. The development of project governance frameworks should also consider the complexity of projects spanning across international companies, across country borders and incorporating different value systems, legal systems, corporate governance guidelines, religions and business practices.

  11. Comparative Corporate Governance of Non-Profit Organizations

    DEFF Research Database (Denmark)

    Thomsen, Steen

    2014-01-01

    Based on the impressive work of Hopt and von Hippel (2010), I review the comparative corporate governance of non-profit organizations and propose topics for future research. There is evidence of agency problems in non-profit as well as for-profit organizations, but the governance mechanisms...

  12. Computational Modeling of Cobalt-based Water Oxidation: Current Status and Future Challenges

    Science.gov (United States)

    Schilling, Mauro; Luber, Sandra

    2018-04-01

    A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysis. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability towards real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  13. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges

    Directory of Open Access Journals (Sweden)

    Mauro Schilling

    2018-04-01

    Full Text Available A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  14. Improving Shareholder Value through Corporate Governance Mechanism in Malaysian Listed Companies

    OpenAIRE

    Ibrahim, Mohammed Yussoff; Ahmad, Ayoib Che; Khan, Muhammad Anees

    2016-01-01

    This paper proposes to investigate the postulations of renowned agency theory and shareholder value (SHV) in relation to Corporate Governance (CG) attributes. Shareholder value is of a great concern to the shareholders of firms. Shareholder value have been investigated by numerous studies of corporate governance but with inconsistent empirical evidence. This study will focus on investigating the impact of CG attributes on Shareholder value measured by Tobin’s Q or return on both equity and as...

  15. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    Directory of Open Access Journals (Sweden)

    João Batista V. S. Ramalho

    2010-01-01

    Full Text Available Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent. No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.

  16. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.

    Science.gov (United States)

    Gao, Yun; Liu, Lu-Qi; Zu, Sheng-Zhen; Peng, Ke; Zhou, Ding; Han, Bao-Hang; Zhang, Zhong

    2011-03-22

    High mechanical performances of macroscopic graphene oxide (GO) papers are attracting great interest owing to their merits of lightweight and multiple functionalities. However, the loading role of individual nanosheets and its effect on the mechanical properties of the macroscopic GO papers are not yet well understood. Herein, we effectively tailored the interlayer adhesions of the GO papers by introducing small molecules, that is, glutaraldehyde (GA) and water molecules, into the gallery regions. With the help of in situ Raman spectroscopy, we compared the varied load-reinforcing roles of nanosheets, and further predicted the Young's moduli of the GO papers. Systematic mechanical tests have proven that the enhancement of the tensile modulus and strength of the GA-treated GO paper arose from the improved load-bearing capability of the nanosheets. On the basis of Raman and macroscopic mechanical tests, the influences of interlayer adhesions on the fracture mechanisms of the strained GO papers were inferred.

  17. Evidence of interfacial charge trapping mechanism in polyaniline/reduced graphene oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Rakibul; Brun, Jean-François; Roussel, Frederick, E-mail: frederick.roussel@univ-lille1.fr [University of Lille, Sciences & Technologies, Unité Matériaux et Transformations (UMET), UMR CNRS 8207, U.F.R. de Physique, P5, 59655 Villeneuve d' Ascq Cedex (France); COMUE Lille Nord de France, BP 50458-59658 Villeneuve d' Ascq Cedex (France); Papathanassiou, Anthony N. [Physics Department, Solid State Physics Section, University of Athens, Panepistimiopolis, GR15784 Zografos, Athens (Greece); Chan Yu King, Roch [Science Division, University of Science and Arts of Oklahoma, Chickasha, Oklahoma 73018 (United States)

    2015-08-03

    Relaxation mechanisms in polyaniline (PANI)/Reduced Graphene Oxide (RGO) nanocomposites are investigated using broad band dielectric spectroscopy. The multilayered nanostructural features of the composites and the intimate interactions between PANI and RGO are evidenced by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Increasing the RGO fraction in the composites results in a relaxation process observed at a frequency of ca. 5 kHz. This mechanism is associated with an electrical charge trapping phenomenon occurring at the PANI/RGO interfaces. The dielectric relaxation processes are interpreted according to the Sillars approach and the results are consistent with the presence of conducting prolate spheroids (RGO) embedded into a polymeric matrix (PANI). Dielectric permittivity data are analyzed within the framework of the Kohlrausch-William-Watts model, evidencing a Debye-like relaxation process.

  18. Reaction mechanisms and evaluation of effective process operation for catalytic oxidation and coagulation by ferrous solution and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.; Moon, H.J.; Kim, Y.M. [Dept. of Environmental Engineering, Sangmyung Univ., Cheonan (Korea); Bae, W.K. [Dept. of Civil and Environmental Engineering, Hanyang Univ., Ansan, Kyounggi (Korea)

    2003-07-01

    This research was carried out to evaluate the removal efficiencies of COD{sub cr} and colour for the dyeing wastewater by ferrous solution and the different dosage of H{sub 2}O{sub 2} in Fenton process. In the case of H{sub 2}O{sub 2} divided dosage, 7:3 was more effective than 3:7 to remove COD{sub cr} and colour. The results showed that COD was mainly removed by Fenton coagulation, where the ferric ions are formed in the initial step of Fenton reaction. On the other hand colour was removed by Fenton oxidation rather than Fenton coagulation. This paper also aims at pursuing to investigate the effective removal mechanisms using ferrous ion coagulation, ferric ion coagulation and Fenton oxidation process. The removal mechanism of COD{sub cr} and colour was mainly coagulation by ferrous ion, ferric ion and Fenton oxidation. The removal efficiencies were dependent on the ferric ion amount at the beginning of the reaction. However the final removal efficiency of COD and colour was in the order of Fenton oxidation, ferric ion coagulation and ferrous ion coagulation. The reason of the highest removal efficiency by Fenton oxidation can be explained by the chain reactions with ferrous solution, ferric ion and hydrogen peroxide. (orig.)

  19. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    Science.gov (United States)

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  20. Social innovations in local government : The case of local development agent

    NARCIS (Netherlands)

    Junjan, Veronica; Balogh, Marton

    2013-01-01

    Background: There is an increased attention in the administrative reform literature accorded to the mechanisms governing the processes of institutionalisation of changes and of diffusion of innovations in local governments. Objectives: Current paper investigates mechanisms that influence the process

  1. Governance of public health: Norway in a Nordic context.

    Science.gov (United States)

    Helgesen, Marit K

    2014-11-01

    The two pillars of public health are health promotion and disease prevention. Based on a notion of governance in the state -local relation as changing from hierarchical via New Public Management (NPM) to New Public Governance (NPG), the governance of public health in Norway is contrasted to governance of public health in the other Nordic states: Denmark, Finland and Sweden. The article aims to present and discuss the governance of public health as it is played out in the state-local relationship. The method is to study central state documents in the four countries, as well as articles, research reports and papers on public health. The article shows that the governance modes (hierarchy, NPM and NPG) exist in parallel, but that their mechanisms actually vary in use. Legal, economic and informational mechanisms are, to a varying degree, in use. In Finnish and Swedish public health policies, health promotion is at the forefront; while Danish and Norwegian public health policies spur the local governments to carry out interventions to prevent disease and hospital admissions. © 2014 the Nordic Societies of Public Health.

  2. Evolution of grain structure in nickel oxide scales

    International Nuclear Information System (INIS)

    Atkinson, H.V.

    1987-01-01

    In systems such as the oxidation of nickel, in which grain-boundary diffusion in the oxide can control the rate of oxidation, understanding of the factors governing the grain structure is of importance. High-purity mechanically polished polycrystalline nickel was oxidized at 700 0 C, 800 0 C, and 1000 0 C for times up to 20 hr in 1 atm O 2 . The scale microstructures were examined by parallel and transverse cross section transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Texture coefficients were found by x-ray diffraction (XRD). Each grain in the transverse section grain boundary networks was systematically analyzed for width parallel to the Ni-NiO interface and perpendicular length, for boundary radius of curvature and for number of sides. The variation of these parameters with depth in the scale was examined. In particular, grains were increasingly columnar (i.e., with ratio of grain length to width > 1) at higher temperatures and longer times. Columnar grain boundaries tended to be fairly static; the columnar grain width was less than the rate controlling grain size predicted from the oxidation rate. The mean boundary curvature per grain provided a guide to the tendency for grain growth, except in the region of the Ni-NiO interface, where the boundaries were thought to be pinned

  3. Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress.

    Science.gov (United States)

    Guzman, David Calderón; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; de la Cruz, Diego Zamora; Soto, Monica Punzo

    2017-01-01

    Diabetic retinopathy (DR) is one of the main complications in patients with diabetes and has been the leading cause of visual loss since 1990. Oxidative stress is a biological process resulting from excessive production of reactive oxygen species (ROS). This process contributes to the development of many diseases and disease complications. ROS interact with various cellular components to induce cell injury. Fortunately, there is an antioxidan t system that protects organisms against ROS. Indeed, when ROS exceed antioxidant capacity, the resulting cell injury can cause diverse physiological and pathological changes that could lead to a disease like DR. This paper reviews the possible mechanisms of common and novel biomarkers involved in the development of DR and explores how these biomarkers could be used to monitor the damage induced by oxidative stress in DR, which is a significant complication in people with diabetes. The poor control of glucemy in pacients with DB has been shown contribute to the development of complications in eyes as DR.

  4. Government Services Information Infrastructure Management

    Energy Technology Data Exchange (ETDEWEB)

    Cavallini, J.S.; Aiken, R.J.

    1995-04-01

    The Government Services Information Infrastructure (GSII) is that portion of the NII used to link Government and its services, enables virtual agency concepts, protects privacy, and supports emergency preparedness needs. The GSII is comprised of the supporting telecommunications technologies, network and information services infrastructure and the applications that use these. The GSII is an enlightened attempt by the Clinton/Gore Administration to form a virtual government crossing agency boundaries to interoperate more closely with industry and with the public to greatly improve the delivery of government services. The GSII and other private sector efforts, will have a significant impact on the design, development, and deployment of the NII, even if only through the procurement of such services. The Federal Government must adopt new mechanisms and new paradigms for the management of the GSII, including improved acquisition and operation of GSII components in order to maximize benefits. Government requirements and applications will continue to evolv. The requirements from government services and users of form affinity groups that more accurately and effectively define these common requirements, that drive the adoption and use of industry standards, and that provide a significant technology marketplace.

  5. Corporate Governance and Pension Fund Performance

    Directory of Open Access Journals (Sweden)

    Oskar Kowalewski

    2012-03-01

    Full Text Available This study provides new evidence on the impact of governance on the performance of privately defined contribution pension plans. Using a hand collected data set on governance factors, the study shows that the external and internal governance mechanisms in pension plans are weak. One explanation for this weakness is the potential conflict between the pension beneficiaries and the fund’s owner, which depends on who bears the investment risk in the pension plan. Hence, different governance factors are found to be important for pension fund return on invested assets and also for its economic performance. Consequently, the overall policy conclusion is that more focus should be put on the governance of the pension funds, taking into account the different interests of the beneficiaries and owners as it may determine their performance.

  6. The Economy Governing During Globalization Era

    Directory of Open Access Journals (Sweden)

    Ion Bucur

    2006-09-01

    Full Text Available World and national economie governing is an essential premise of the political stability and democratic evolution. In this study are approached theoretical and practical aspects of the economie governing. Theoretical acquisitions in this field highlit multiple perspectives of approaching and difficulties to characterize this complex and multisized fenomenon. A possible theory of governing the economy needs to use some concepts and mechanisms particular to more scientific fields (political science, economy, cibernetics, the theory of systems and others. The dinamic character and the instability of the present system of governing imposed the analysis of the factors and conditions which have generated the crises of the national and world economic governing. In this context, there are indentified the forms of manifesting the instability (lack of legitimacy, transpa¬rence and democratic responsability, and also the direction of necessary action to implement an efficient and responsable economic governing.

  7. The Economy Governing During Globalization Era

    Directory of Open Access Journals (Sweden)

    Ion Bucur

    2006-07-01

    Full Text Available World and national economie governing is an essential premise of the political stability and democratic evolution. In this study are approached theoretical and practical aspects of the economie governing. Theoretical acquisitions in this field highlit multiple perspectives of approaching and difficulties to characterize this complex and multisized fenomenon. A possible theory of governing the economy needs to use some concepts and mechanisms particular to more scientific fields (political science, economy, cibernetics, the theory of systems and others. The dinamic character and the instability of the present system of governing imposed the analysis of the factors and conditions which have generated the crises of the national and world economic governing. In this context, there are indentified the forms of manifesting the instability (lack of legitimacy, transpa¬rence and democratic responsability, and also the direction of necessary action to implement an efficient and responsable economic governing.

  8. On the mechanical stress of Zr, Zry, and other materials due to the formation of oxide layers

    International Nuclear Information System (INIS)

    Hofmann, P.

    1977-06-01

    Several mechanisms are indicated which during oxidation of sheets, tubes, and cylinders of pure metals and alloys might lead to plastic deformation of the remaining uncorroded cross section. Some experimental methods are described which allow evaluation of stresses occurring in oxide layers. The main reason for the creep deformation of flat and tubular specimens made of Zr and Zr alloys lies in the stresses that arise from volume increase due to the growth of oxide layers. Plastic deformations of the sheet metal specimens can be up to 100% and are anisotropic. In tubular specimens the changes in geometry (axial, radial) are much smaller in the course of oxidation and attain 2% at the maximum for Zr- or Zry-tubes and go up to 10% for Ta-tubes when no differential pressure is applied simultaneously. (orig.) [de

  9. Plasma-assisted partial oxidation of methane at low temperatures: numerical analysis of gas-phase chemical mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, Valentin; Nozaki, Tomohiro; Yuzawa, Shuhei; Okazaki, Ken [Department of Mechanical and Control Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, 1528552, Tokyo (Japan); Agiral, Anil, E-mail: tnozaki@mech.titech.ac.jp [Mesoscale Chemical Systems, MESA Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede (Netherlands)

    2011-07-13

    Methane partial oxidation was investigated using a plasma microreactor. The experiments were performed at 5 and 300 deg. C. Microreactor configuration allows an efficient evacuation of the heat generated by methane partial oxidation and dielectric barrier discharges, allowing at the same time a better temperature control. At 5 deg. C, liquid condensation of low vapour pressure compounds, such as formaldehyde and methanol, occurs. {sup 1}H-NMR analysis allowed us to demonstrate significant CH{sub 3}OOH formation during plasma-assisted partial oxidation of methane. Conversion and product selectivity were discussed for both temperatures. In the second part of this work, a numerical simulation was performed and a gas-phase chemical mechanism was proposed and discussed. From the comparison between the experimental results and the simulation it was found that CH{sub 3}OO{center_dot} formation has a determinant role in oxygenated compound production, since its fast formation disfavoured radical recombination. At 5 deg. C the oxidation leads mainly towards oxygenated compound formation, and plasma dissociation was the major phenomenon responsible for CH{sub 4} conversion. At 300 deg. C, higher CH{sub 4} conversion resulted from oxidative reactions induced by {center_dot}OH radicals with a chemistry predominantly oxidative, producing CO, H{sub 2}, CO{sub 2} and H{sub 2}O.

  10. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    Science.gov (United States)

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    Directory of Open Access Journals (Sweden)

    Wijaya Edward

    2010-01-01

    Full Text Available Abstract Background The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10°C, an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. Results Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10°C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters. Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. Conclusion Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries.

  12. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young

    2010-01-25

    Background: The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach.Results: Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters.Conclusion: Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries. 2010 Yun et al; licensee BioMed Central Ltd.

  13. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  14. Environmental Governance by Transnational Municipal Networks : The Case of Indonesian Cities

    NARCIS (Netherlands)

    Wiharani, Annisa; Holzhacker, Ronald

    2016-01-01

    Global environmental governance has developed a multi-layer of government from the global to the local. Transnational Municipal Networks (TMNs) are a newly emerging form of organization within global environmental governance. The TMNs are an institutional mechanism to enhance how local governments

  15. Datasets used in the manuscript titled "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data used in the manuscript "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic...

  16. Corporate Law and Corporate Governance

    OpenAIRE

    Roberta Romano

    1998-01-01

    We have seen a revival in interest in corporate law and corporate governance since the 1980s, as researchers applied the tools of the new institutional economics and modern corporate finance to analyze the new transactions emerging in the 1980s takeover wave. This article focuses on three mechanisms of corporate governance to illustrate the analytical usefulness of transaction cost economics for corporate law. They are the board of directors; relational investing, a form of block ownership in...

  17. Control of territorial communities in local government

    Directory of Open Access Journals (Sweden)

    О. А. Смоляр

    2015-11-01

    Full Text Available According to Art. 5 of the Constitution of Ukraine all power in Ukraine belong to people, which is primary, unified, inalienable and carried people through free will through elections, referendum and other forms of direct democracy, including those intended to control the activity of bodies and officials of the government and local government. Paper objective. At the local level the main supervisory entity in local government is local community. Consolidation of the Constitution of Ukraine the primary subject of local self-government territorial community not only meets current international practice, but also the historical traditions of Ukrainian people. Control territorial community in all phases of local government is one of the most important functions of managing the development of appropriate settlements, and therefore needs an effective mechanism of legal regulation, clearly define mutual rights and responsibilities of controlling and controlled entities. Recent research and publications analysis. Problems Assessment of local communities and the activities of local government officials in their works viewed Y.G. Barabash, P.M. Liubchenko, O.D. Skopych, Y.P. Strilets. However, given the variety of aspects of this area of research remain many questions that need resolving, on which depends largely on the further process of local governance. The paper main body. The existing regulation territorial communities can exercise control in local government actually only through local governments. The control of the executive bodies of village, town council municipalities can only be made through the appropriate council. The existing regulation of territorial communities can exercise control in local government actually only through local governments. The control of the executive bodies of village, town council municipalities can only be made through the appropriate council. The author emphasizes that only by implementing self-control powers local

  18. Molecular theory of graphene oxide.

    Science.gov (United States)

    Sheka, Elena F; Popova, Nadezhda A

    2013-08-28

    Applied to graphene oxide, the molecular theory of graphene considers its oxide as a final product in the succession of polyderivatives related to a series of oxidation reactions involving different oxidants. The graphene oxide structure is created in the course of a stepwise computational synthesis of polyoxides of the (5,5) nanographene molecule governed by an algorithm that takes into account the molecule's natural radicalization due to the correlation of its odd electrons, the extremely strong influence of the structure on properties, and a sharp response of the molecule behavior on small actions of external factors. Taking these together, the theory has allowed for a clear, transparent and understandable explanation of the hot points of graphene oxide chemistry and suggesting reliable models of both chemically produced and chemically reduced graphene oxides.

  19. Corporate governance and its effect on the liquidity of a stock

    DEFF Research Database (Denmark)

    Farooq, Omar; Seffar, Mohammed

    2012-01-01

    concentration, and having big-four auditors as external auditors lead to higher liquidity. All of these factors are considered to be the proxies of better corporate governance mechanisms. We argue that better corporate governance mechanisms lower the extent of adverse selection problems and therefore lead...

  20. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    Science.gov (United States)

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  1. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  2. The emerging knowledge governance approach : challenges and characteristics

    OpenAIRE

    Foss, Nicolai Juul

    2006-01-01

    The “knowledge governance approach” is characterized as a distinctive, emerging approach that cuts across the fields of knowledge management, organisation studies, strategy, and human resource management. Knowledge governance is taken up with how the deployment of governance mechanisms influences knowledge processes, such as sharing, retaining and creating knowledge. It insists on clear micro (behavioural) foundations, adopts an economizing perspective, and examines the links between knowledg...

  3. Coprecipitation mechanisms and products in manganese oxidation in the presence of cadmium

    Science.gov (United States)

    Hem, J.D.; Lind, Carol J.

    1991-01-01

    Manganese oxidation products were precipitated in an aerated open-aqueous system where a continuous influx of mixed Mn2+ and Cd2+ solution was supplied and pH was maintained with an automated pH-stat adding dilute NaOH. X-ray diffraction and electron diffraction identified the solids produced as mixtures of Cd2Mn34+O8, Mn2+2Mn4+3O8, MnO2 (ramsdellite), and CdCO3. Mean oxidation numbers of the total precipitated Mn as great as 3.6 were reached during titrations. During subsequent aging in solution, oxidation numbers between 3.8 and 3.9 were reached in some precipitates in less than 40 days. Conditional oxidation rate constants calculated from a crystal-growth equation applied to titration data showed the overall precipitation rate, without considering manganese oxidation state in the precipitate, was increased by a factor of ~4 to ~7 when the mole ratio (Cd/Mn + Cd) of cadmium in the feed solution was 0.40 compared with rate constants for hausmannite (Mn2+Mn23+O4 precipitation under similar conditions but without accessory metals. Kinetic experiments were made to test effects of various Cd/Mn + Cd mole ratios and rates of addition of the feed solution, different temperatures from 5.0 to 35??C, and pH from 8.0 to 9.0. Oxidation rates were slower when the Cd mole ratio was less than 0.40. The rate increased by a factor of ~10 when pH was raised one-half unit. The effect of temperature on the rate constants was also substantial, but the meaning of this is uncertain because the rate of formation of Mn4+ oxide in the absence of Cd or other accessory metals was too slow to be measurable in titration experiments. The increased rate of Mn4+ oxide formation in the presence of Cd2+ can be ascribed to the formation of a labile adsorbed intermediate, CdMn2O4 Int, an analog of hausmannite, formed on precipitate surfaces at the beginning of the oxidation process. The increased lability of this structure, resulting from coordination-chemical behavior of Cd2+ during the titration

  4. Fighting software piracy: Which governance tools matter in Africa?

    OpenAIRE

    Antonio R. Andrés; Simplice A. Asongu

    2012-01-01

    This article integrates previously missing components of government quality into the governance-piracy nexus in exploring governance mechanisms by which global obligations for the treatment of IPRs are effectively transmitted from international to the national level in the battle against piracy. It assesses the best governance tools in the fight against piracy and upholding of Intellectual Property Rights (IPRs). The instrumentality of IPR laws (treaties) in tackling piracy through good gover...

  5. Organizational Enablers for Governance and Governmentality of Projects

    DEFF Research Database (Denmark)

    Müller, Ralf; Pemsel, Sofia; Shao, Jingting

    2014-01-01

    This study identifies the organizational enablers for governance in the realm of projects. We first conceptualize organizational enablers as comprising of process facilitators and discursive abilities, each with its own factors and mechanisms. Then we apply this concept to the literature on proje......, and through development of self-responsible, self-organizing people for governmentality in project settings. Questions for future research are indicated....... governance, governance of projects and governmentality. Outcomes indicate that governance is enabled through different forms of flexibility at different levels of governance, institutional setup and authority at the project level, flexible structures and mindsets of people at the organizational level...

  6. Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis.

    Science.gov (United States)

    Lai, Tongfei; Chen, Yong; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2014-05-30

    Penicillium expansum is an important fungal pathogen, which causes blue mold rot in various fruits and produces a mycotoxin (patulin) with potential damage to public health. Here, we found that nitric oxide (NO) donor could significantly inhibit germinability of P. expansum spores, resulting in lower virulence to apple fruit. Based on two dimension electrophoresis (2-DE) and mass spectrometry (MS) analysis, we identified ten differentially expressed proteins in response to exogenous NO in P. expansum. Among of them, five proteins, such as glutamine synthetase (GS), amidohydrolase, nitrilases, nitric oxide dioxygenase (NOD) and heat shock protein 70, were up-regulated. Others including tetratricopeptide repeat domain, UDP-N-acetylglucosamine pyrophosphorylase, enolase (Eno), heat shock protein 60 and K homology RNA-binding domain were down-regulated. The expression of three genes associated with the identified proteins (GS, NOD, and Eno) was evaluated at the mRNA level by RT-PCR. Our results provide the novel evidence for understanding the mechanism, by which NO regulates growth of P. expansum and its virulence. Crop diseases caused by fungal pathogens lead to huge economic losses every year in the world. Application of chemical fungicides to control diseases brings the concern about food and environmental safety. Screening new antimicrobial compounds and exploring involved mechanisms have great significance to development of new disease management strategies. Nitric oxide (NO), as an important intracellular signaling molecule, has been proved to be involved in many physiological processes and defense responses during plant-pathogen interactions. In this study, we firstly found that NO at high concentration could distinctly delay spore germination and significantly reduce virulence of P. expansum to fruit host, identified some important proteins in response to NO stress and characterized the functions of these proteins. These results provide novel evidence for

  7. Effect of nano-ZrO2 addition on microstructure, mechanical property and thermal shock behaviour of dense chromic oxide refractory material

    International Nuclear Information System (INIS)

    Lu, Lixia; Ding, Chunhui; Zhanga, Chi; Yanga, De'an; Di, Lizhi

    2015-01-01

    To obtain a good performance hot-face lining material in gasifier, nano-ZrO 2 , up to 5 wt %, was added into chromic oxide powder with 3 wt % TiO 2 followed by sintering at 1500°C for 2.5 h. The effect of nano-ZrO 2 addition on microstructure, mechanical property and thermal shock behaviour was studied. ZrO 2 promoted densification at contents higher than 1 wt %. Microcracks and phase transformation toughened the dense chromic oxide refractory material. The main reason for decrease of strength was the existence microcracks in specimens and weakening of intergranular fracture. Dense chromic oxide refractory material with 2∼3 wt % nano-ZrO 2 possessed good densification, uniform microstructure, normal mechanical property and proper thermal shock resistance. The rupture strength retention ratio was nearly twice than that of chromic oxide material without ZrO 2 after three cycles of quenching test from 950°C to cold water. (author)

  8. Product market competition and corporate governance

    Directory of Open Access Journals (Sweden)

    Julia Chou

    2011-04-01

    Full Text Available This paper investigates whether product market competition acts as an external mechanism for disciplining management and also whether there is any relationship between the degree of competition a firm faces and its corporate governance. We find that firms in competitive industries or with low market power tend to have weak corporate governance structures. Results are robust to various competition measures at firm and industry levels, even after controlling for firm-specific variables. We further find that corporate governance quality has a significant effect on performance only when product market competition is weak. The overall evidence suggests that product market competition has a substantial impact on corporate governance and that it substitutes for corporate governance quality. Finally, we provide evidence that the disciplinary force of competition on management is from the fear of liquidation.

  9. Effect of oxidizing environment on mechanical properties of molybdenum and TZM

    International Nuclear Information System (INIS)

    Liu, C.T.; Anderson, S.H.; Inouye, H.

    1978-10-01

    The effect of environment on mechanical properties of molybdenum and TZM was investigated in low-pressure (1.3-mPa) oxygen at 1150 0 C. Specimens of TZM picked up oxygen and lost carbon. The oxygen concentration increases linearly with exposure time, indicating that the chemisorption of oxygen molecules at the specimen surface, rather than bulk diffusion, controls the kinetics of oxygen absorption at 1150 0 C. Specimens of TZM increase in tensile strength and decrease in ductility with increasing oxygen content. Exposed TZM loses its ductility at elevated temperatures at an oxygen level of 500 ppM. The embrittlement is due to the formation of zones or oxide precipitates, which harden the alloy and promote the brittle fracture associated with cleavage and grain-boundary separation. Unalloyed molybdenum responds to the oxidizing environment quite differently from TZM. The molybdenum (containing no active element such as Ti and Zr) showed no internal oxidation at 1150 0 C. Instead, our results indicate that a trace of oxygen penetrated into molybdenum through its grain boundaries. This penetration raises the ductile-to-brittle transition temperature of molybdenum by 200 0 C lowers the ductility above 900 0 C. The ductility of oxygen-exposed molybdenum is virtually unaffected in the temperature range from 400 to 900 0 C. A ductility minimum (10%) is observed at 1350 0 C because of dynamic embrittlement effects; that is, diffusion of oxygen to grain boundaries or crack tips where high triaxial states of stress are generated during plastic deformation. This embrittlement can be totally eliminated by an increase in strain rate

  10. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Chang, Wen-Chun; Chang, Shih-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L{sup -1}). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  11. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-01-01

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L -1 ). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  12. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation.

    Science.gov (United States)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Corporate governance and stock price performance of firms during the crisis

    DEFF Research Database (Denmark)

    Farooq, Omar; Chetioui, Youssef

    2012-01-01

    This paper examines the impact of corporate governance mechanisms on stock price performance of firms in the MENA region, i.e. Morocco, Egypt, Saudi Arabia, United Arab Emirates, Jordan, Kuwait, and Bahrain, during the recent financial crisis. Using dividend policy, choice of auditors, and transa......This paper examines the impact of corporate governance mechanisms on stock price performance of firms in the MENA region, i.e. Morocco, Egypt, Saudi Arabia, United Arab Emirates, Jordan, Kuwait, and Bahrain, during the recent financial crisis. Using dividend policy, choice of auditors......, and transactional complexity as proxies for corporate governance, we document better stock price performance for firms with superior governance mechanisms. Our results show that firms with one of the big-four auditors, firms paying dividends, and firms with lower transactional complexity are associated...

  14. New insight into the mechanism of cathodic electrodeposition of zinc oxide thin films onto vitreous carbon

    OpenAIRE

    Ait Ahmed , N.; Eyraud , M.; Hammache , H.; Vacandio , F.; Sam , S.; Gabouze , N.; Knauth , P.; Pelzer , K.; Djenizian , T.

    2014-01-01

    International audience; In this study, the mechanism of zinc oxide (ZnO) electrodeposition from aqueous zinc nitrate solution at 70°C was investigated on vitreous carbon and bulk zinc electrodes using cyclic voltammetry experiments. Mechanisms are presented for the ZnO formation: the first widely accepted route corresponds to ZnO precipitation from Zn 2+ and OH-produced by NO3-reduction; the second route, which is discussed in this article, is due to Zn 2+ reduction into metallic Zn followed ...

  15. The Government Incentive Regulation Model and Pricing Mechanism in Power Transmission and Distribution Market

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2016-01-01

    Full Text Available The power transmission and distribution (T&D market’s natural monopoly and individual information have been the impediment to improving the energy efficiency in the whole T&D market. In order to improve the whole social welfare, T&D market should be controlled by government. An incentive regulation model with the target of maximizing social welfare has been studied. A list of contracts with transferring payment and quantity of T&D are given to motivate the corporation to reveal the true technical parameter and input the optimal investment. The corporate revenue, optimal investment, and effort are proved to depend on its own technical parameter. The part of incentive regulation model ends with the optimal pricing mechanism of T&D market. At the end of this paper, we give a numerical example to explain our research and confirm its function graphically.

  16. From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene-Cement Composites.

    Science.gov (United States)

    Gholampour, Aliakbar; Valizadeh Kiamahalleh, Meisam; Tran, Diana N H; Ozbakkaloglu, Togay; Losic, Dusan

    2017-12-13

    Graphene materials have been extensively explored and successfully used to improve performances of cement composites. These formulations were mainly optimized based on different dosages of graphene additives, but with lack of understanding of how other parameters such as surface chemistry, size, charge, and defects of graphene structures could impact the physiochemical and mechanical properties of the final material. This paper presents the first experimental study to evaluate the influence of oxygen functional groups of graphene and defectiveness of graphene structures on the axial tension and compression properties of graphene-cement mortar composites. A series of reduced graphene oxide (rGO) samples with different levels of oxygen groups (high, mild, and low) were prepared by the reduction of graphene oxide (GO) using different concentrations of hydrazine (wt %, 0.1, 0.15, 0.2, 0.3, and 0.4%) and different reduction times (5, 10, 15, 30, and 60 min) and were added to cement mortar composites at an optimal dosage of 0.1%. A series of characterization methods including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy were performed to determine the distribution and mixing of the prepared rGO in the cement matrix and were correlated with the observed mechanical properties of rGO-cement mortar composites. The measurement of the axial tension and compression properties revealed that the oxygen level of rGO additives has a significant influence on the mechanical properties of cement composites. An addition of 0.1% rGO prepared by 15 min reduction and 0.2% (wt %) hydrazine with mild level of oxygen groups resulted in a maximum enhancement of 45.0 and 83.7%, respectively, in the 28-day tensile and compressive strengths in comparison with the plain cement mortar and were higher compared to the composite prepared with GO (37.5 and 77.7%, respectively). These

  17. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  18. Mechanical grooving of oxidized porous silicon to reduce the reflectivity of monocrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zarroug, A.; Dimassi, W.; Ouertani, R.; Ezzaouia, H. [Laboratoire de Photovoltaique, Centre des Recherches et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2012-10-15

    In this work, we are interested to use oxidized porous silicon (ox-PS) as a mask. So, we display the creating of a rough surface which enhances the absorption of incident light by solar cells and reduces the reflectivity of monocrystalline silicon (c-Si). It clearly can be seen that the mechanical grooving enables us to elaborate the texturing of monocrystalline silicon wafer. Results demonstrated that the application of a PS layer followed by a thermal treatment under O2 ambient easily gives us an oxide layer of uniform size which can vary from a nanometer to about ten microns. In addition, the Fourier transform infrared (FTIR) spectroscopy investigations of the PS layer illustrates the possibility to realize oxide layer as a mask for porous silicon. We found also that this simple and low cost method decreases the total reflectivity (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Cross-linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering.

    Science.gov (United States)

    Liu, Xifeng; Miller, A Lee; Waletzki, Brian E; Lu, Lichun

    2018-05-01

    Graphene oxide (GO) is an attractive material that can be utilized to enhance the modulus and conductivities of substrates and hydrogels. To covalently cross-link graphene oxide sheets into hydrogels, abundant cross-linkable double bonds were introduced to synthesize the graphene-oxide-tris-acrylate sheet (GO-TrisA). Polyacrylamide (PAM) nanocomposite hydrogels were then fabricated with inherent covalently and permanently cross-linked GO-TrisA sheets. Results showed that the covalently cross-linked GO-TrisA/PAM nanocomposite hydrogel had enhanced mechanical strength, thermo stability compared with GO/PAM hydrogel maintained mainly by hydrogen bonding between PAM chains and GO sheets. In vitro cell study showed that the covalently cross-linked rGO-TrisA/PAM nanocomposite hydrogel had excellent cytocompatibility after in situ reduction. These results suggest that rGO-TrisA/PAM nanocomposite hydrogel holds great potential for tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1247-1257, 2018. © 2018 Wiley Periodicals, Inc.

  20. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leading to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive

  1. The Influence of Good Corporate Governance Mechanism on Earnings Management: Empirical Study in Indonesian Stock Exchange Listed Company for Periods of 2006-2010

    Directory of Open Access Journals (Sweden)

    Hermiyetti Hermiyetti

    2013-01-01

    Full Text Available The purpose of this research is to examine the influence of good corporate governance mechanism about earnings management in companies listed in Indonesian Stock Exchange during 2006 to 2010. The independent variables include the size of commissioner board, independent commissioner board percentage, size of audit committee, and commissioner meeting frequency. The dependent variable is earnings management which is measured by discretionary revenue model (Stubben, 2010. Size of company is used as the control variable in this research. The population of this research is 465 samples from companies listed at Indonesian Stock Exchange during 2006 to 2010. The sampling method used in this research is purposive sampling method. In addition, the data analysis method used is regression analysis and descriptive statistics. The result of this research indicates that the mechanism of good corporate governance which is represented by the size of commissioner board, independent commissioner board percentage, size of audit committee, and commissioner meeting frequency do not have any significant impact on earnings management. However, the result shows that company size gave positive influence toward earning management. Keywords: Good corporate governance, size of commissioner board, independent commissioner board percentage, size of audit committee, commissioner meeting frequency, earnings management

  2. High temperature mechanisms and kinetics of SiC oxidation under low partial pressures of oxygen: application to the fuel cladding of gas fast reactors

    International Nuclear Information System (INIS)

    Hun, N.

    2011-01-01

    Gas Fast Reactor (GFR) is one of the different Generation IV concepts under investigation for energy production. SiC/SiC composites are candidates of primary interest for a GFR fuel cladding use, thanks to good corrosion resistance among other properties. The mechanisms and kinetics of SiC oxidation under operating conditions have to be identified and quantified as the corrosion can decrease the mechanical properties of the composite. An experimental device has been developed to study the oxidation of silicon carbide under high temperature and low oxygen partial pressure. The results pointed out that not only parabolic oxidation, but also interfacial reactions and volatilization occur under such conditions. After determining the kinetics of each mechanism, as functions of oxygen partial pressure and temperature, the data are used for the modeling of the composites oxidation. The model will be used to predict the lifetime of the composite in operating conditions. (author) [fr

  3. ADR characteristics and corporate governance in the Greater China region

    Directory of Open Access Journals (Sweden)

    Lee-Hsien Pan

    2012-04-01

    Full Text Available We examine the relationship between firm valuation and governance mechanisms, firm characteristics, and institutional factors of the American Depository Receipts (ADRs domiciled in the Greater China region. We find that China ADRs have the highest market-to-book value ratio followed by Hong Kong and Taiwan ADRs. It appears that Chinese firms with the poorest external governance environment stand to benefit the most from cross listing under the ADR programs. Listing in the U.S. that requires more stringent regulations and disclosure rules may strengthen the firms’ governance practices and thereby enhance their firm value. Among the internal governance mechanisms, institutional ownership and insider ownership are important for firm value.

  4. Highly Efficient Adsorption of Copper Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yongji Zhang; HuiJuan Chi; WenHui Zhang; Youyi Sun; Qing Liang; Yu Gu; Riya Jing

    2014-01-01

    Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial p H value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.

  5. Network Partnership Diplomatic Mechanism: The New Path in Sino-Russian Cooperation - On the Sino-Russian Joint Dominance of BRICS Governance Mechanism

    Directory of Open Access Journals (Sweden)

    Zhijie Cheng

    2014-01-01

    mechanisms, and providing a new path for Sino-Russian cooperation. The BRICS countries should establish a BRICS governance mechanism which has to be promoted by a leading force. The network partnership diplomatic mechanism could play a leading role in shaping this type of governance mechanism with Sino-Russian cooperation at its core.

  6. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  7. Privatization and Corporate Governance in Poland: Problems and Trends

    OpenAIRE

    Piotr Kozarzewski

    2006-01-01

    The paper is devoted to the problems of the impact of privatization on corporate governance formation in Poland. It discusses the dilemmas of choosing a model for privatization and corporate governance, legal background, mechanisms of corporate governance formation depending on a privatization method applied, and the evolution of these structures in the course of systemic transformation in Poland. The Author comes to the conclusion that the processes of privatization and corporate governance ...

  8. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide.

    Science.gov (United States)

    Zhong, Rui; Zhang, Zhao; Zhao, Hongguo; He, Xianru; Wang, Xin; Zhang, Rui

    2018-05-30

    Graphene oxide (GO), modified with anti-aging agent p -phenylenediamine (PPD), was added into nitrile rubber (NBR) in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR), Raman, and X-ray diffraction (XRD). Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA) show an increased storage modulus (G') and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn⁻Wall⁻Ozawa (FWO) equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO⁻PPD. In addition, mechanical properties (tensile strength and elongation at break) of both before and after aged NBR/GO⁻PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  9. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young; Park, Myoung Ryoul; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Mauleon, Ramil; Wijaya, Edward; Bajic, Vladimir B.; Bruskiewich, Richard; de los Reyes, Benildo G

    2010-01-01

    -plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress

  10. What is the scope for the Dutch government to use the flexible mechanisms of the Renewables Directive cost-effectively? A preliminary assessment

    International Nuclear Information System (INIS)

    Jansen, J.C.; Uslu, A.; Lako, P.

    2010-03-01

    This report provides a preliminary assessment of the scope for cost-effective use by the Dutch government of each of four flexible mechanisms available to EU Member States to achieve their respective mandatory renewables target in year 2020. The flexible mechanisms, defined in the Renewables Directive 2009/28/CE, are: Statistical transfers between Member States; Joint projects between Member States; Joint projects between Member States and third countries; Joint support schemes. In theory, statistical transfers and joint support schemes are the flexible mechanisms with the most potential for cost-effective use. The Dutch government is advised to explore each of these options. In this report, it is argued that in practice well-designed joint support schemes are likely to turn out having most potential. To that effect, the report presents a concrete suggestion on the most promising short-term application. To successfully harness a substantial part of the joint support schemes potential warrants protracted efforts in the design phase: the devil is in the detail. Moreover, the joint projects between Member States mechanism may well turn out to provide some interesting opportunities. For collaboration between the Netherlands and a selection of (four) other Member States some technologies to focus upon are identified. Reasons are given why the flexible instrument joint projects between Member States and third countries is poised to have quite limited potential to cost-effectively contribute to the Dutch renewables target in year 2020.

  11. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    Science.gov (United States)

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Correlation analysis of reactivity in the oxidation of some para- substituted benzhydrols by triethylammonium chlorochromate in non-aqueous media

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2017-02-01

    Full Text Available Triethylammonium chlorochromate (TriEACC oxidation of some para-substituted benzhydrols (BH in dimethylsulfoxide (DMSO leads to the formation of corresponding benzophenones. The reaction was run under pseudo-first-order conditions. The reaction is catalyzed by hydrogen ions. The hydrogen ion dependence has the form: kobs = a + b[H+]. Various thermodynamic parameters for the oxidation have been reported and discussed along with the validity of isokinetic relationship. Oxidation of benzhydrol was studied in 18 different organic solvents. The rate data showing satisfactory correlation with Kamlet–Taft solvatochromic parameters (α, β and π∗ suggests that the specific solute–solvent interactions play a major role in governing the reactivity, and the observed solvent effects have been explained on the basis of solute–solvent complexation. A suitable mechanism of oxidation has been proposed.

  13. Mechanisms of hybrid governance : Administrative committees in non-equity alliances

    NARCIS (Netherlands)

    Reuer, Jeffrey; Devarakonda, S.V.

    2016-01-01

    Recent research on the governance of hybrid organizational forms has investigated the contractual foundations of collaborations by examining how firms craft complex contracts as well as plan for changing circumstances during contract execution. We build upon and extend this research by considering

  14. Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Rui [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lu, Zheng, E-mail: luz@atm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Lu, Chenyang; Li, Zhengyuan [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Ding, Xueyong [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    Highlights: • A 9Cr-ODS steel was produced by mechanical alloying and spark plasma sintering. • Bimodal grain size distribution was observed. • Formation mechanism of bimodal grain size distribution was discussed. • The size and number density of nanoscale particles were obtained by SAXS and HRTEM. • The contribution of nano-sized particles to yield strength is dominating. - Abstract: 9Cr oxide dispersion strengthened (ODS) steel was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The nano-sized particles, grain size distribution and mechanical properties of 9Cr-ODS steel sintered at 950 °C were studied by synchrotron radiation small angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), electron backscatter diffraction (EBSD) and tensile experiment. The results showed that bimodal grain size distribution in the matrix is observed, which is attributed to the heterogeneous recrystallization process during the SPS. High-density nano-sized Y{sub 2}Ti{sub 2}O{sub 7} and some large oxides of Cr{sub 2}Mn(Ti)O{sub 4} are formed in 9Cr-ODS steel. The number density and average size of Y{sub 2}Ti{sub 2}O{sub 7} obtained from SAXS are 4.72 × 10{sup 22}/m{sup 3} and 4.4 nm, respectively. The yield strengths of 9Cr-ODS steel fabricated by SPS are compared with the typical 9Cr-ODS steel produced by HIP.

  15. Equilibrium arsenic adsorption onto metallic oxides : Isotherm models, error analysis and removal mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Esra Bilgin [Yalova University, Yalova (Turkmenistan); Beker, Ulker [Yldz Technical University, Istanbul (Turkmenistan)

    2014-11-15

    Arsenic adsorption properties of mono- (Fe or Al) and binary (Fe-Al) metal oxides supported on natural zeolite were investigated at three levels of temperature (298, 318 and 338 K). All data obtained from equilibrium experiments were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, Sips, Toth and Redlich-Peterson isotherms, and error functions were used to predict the best fitting model. The error analysis demonstrated that the As(Ⅴ) adsorption processes were best described by the Dubinin-Raduskevich model with the lowest sum of normalized error values. According to results, the presence of iron and aluminum oxides in the zeolite network improved the As(Ⅴ) adsorption capacity of the raw zeolite (ZNa). The X-ray photoelectron spectroscopy (XPS) analyses of ZNa-Fe and ZNa-AlFe samples suggested that the redox reactions are the postulated mechanisms for the adsorption onto them while the adsorption process is followed by surface complexation reactions for ZNa-Al.

  16. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  17. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole

  18. Kinetics and mechanism of the oxidation of uranium(III) by aqueous acidic solutions of iodine and bromine

    International Nuclear Information System (INIS)

    Adegite, A.; Egboh, H.; Ojo, J.F.; Olieh, R.

    1977-01-01

    The rates of oxidation of U 3+ by I 2 and Br 2 in aqueous acidic solutions have been investigated. The rate equations for iodine and bromine are shown, together with the corresponding activation parameters. An excellent correlation has been obtained between the rates of uranium(III) reduction of some oxidants, including iodine and bromine, and the free energies of these reactions. Since these other non-halogen reactions go via the outer-sphere mechanism, it is concluded that at least the first step in the two-step oxidation of U 3+ by Br 2 , I 2 , or [I 3 ] - is outer sphere. The homonuclear exchange rate constant ksub(ex) for U 3+ + U 4+ is deduced to be 1.66 +- 0.16 dm 3 mol -1 s -1 . (author)

  19. Modified Wagner model for the active-to-passive transition in the oxidation of Si3N4

    International Nuclear Information System (INIS)

    Wang Junjie; Zhang Litong; Zeng Qingfeng; Cheng Laifei; Xu Yongdong

    2008-01-01

    Si 3 N 4 is used as the coating material of space shuttle structures which receive very high thermal fluxes during the atmospheric re-entry phase. Two main regimes govern the oxidation of Si 3 N 4 : the passive oxidation, with the formation of a protective silica layer leading generally to a mass gain, and the active oxidation, with vaporization of SiO leading to a mass loss of the sample. To ensure that silicon nitride will efficiently protect a material in given oxidizing environments, its own oxidation behaviour must be previously known. Therefore, the active-to-passive transition of Si 3 N 4 oxidation is a problem of deep scientific importance and of wide technological relevance. In this paper, a modified Wager model for the active-to-passive transition in the oxidation of Si 3 N 4 is presented, which includes the non-equilibrium effects caused by the mass transfer. The present theoretical calculations satisfactorily explained the reported experimental and theoretical data. The influence of flow rate on the active-to-passive transition boundary has been explained using our model. The rate controlling mechanism of the oxidation at the active-to-passive transition point is proposed

  20. Faculty in Governance at the University of Minnesota.

    Science.gov (United States)

    Deegan, William L.; Mortimer, Kenneth P.

    This is 1 of 3 related case studies of faculty in college and university government. The purpose was to investigate: the formal mechanisms and the informal practices of faculty participation in governance; the emergence of oligarchies and the relationships of these "ruling" groups to faculty constituencies and administrative agencies;…

  1. Corporate governance : disclosure on directors’ remuneration in Malaysia – is it adequate?

    OpenAIRE

    Wong, Irene Ling Chiong

    2014-01-01

    Ever since numerous corporate failures that shaken the faith and confidence of the public, the introduction of good corporate governance mechanism has swept the world off their feet. A sound corporate governance mechanism not only encourages proper management of risk, but at the same time, promotes effective performance. A vital part of corporate governance, directors’ remuneration has gain considerable focus from the policy makers, academics, media and public over the years. The measurements...

  2. Corporate Risk Disclosure and Corporate Governance

    Directory of Open Access Journals (Sweden)

    Kaouthar Lajili

    2009-12-01

    Full Text Available To date, research which integrates corporate governance and risk management has been limited. Yet, risk exposure and management are increasingly becoming the core function of modern business enterprises in various sectors and industries domestically and globally. Risk identification and management are crucial in any business strategy design and implementation. From the investors’ point of view, knowledge of the risk profile, risk appetite and risk management are key elements in making sound portfolio investment decisions. This paper examines the relationships between corporate governance mechanisms and risk disclosure behavior using a sample of Canadian publicly-traded companies (TSX 230. Results show that Canadian public companies are more likely to disclose risk management information over and above the mandatory risk disclosures, if they are larger in size and if their boards of directors have more independent members. Minority voting control ownership structures appear to negatively impact risk disclosure and CEO incentive compensation shows mixed results. The paper concludes that more research is needed to further assess the impact of various governance mechanisms on corporate risk management and disclosure behavior.

  3. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics

    Science.gov (United States)

    Sibmooh, Nathawut; Fucharoen, Suthat

    2017-01-01

    Abstract Significance: Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. Critical Issues: While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. Future Directions: Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794–813. PMID:27650096

  4. Mechanism and kinetic properties for the OH-initiated atmospheric oxidation degradation of 9,10-Dichlorophenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu, E-mail: zqz@sdu.edu.cn; Hu, Jingtian; Wang, Wenxing

    2015-02-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have become a serious environmental concern due to their widespread occurrence and dioxin-like toxicities. In this work, the mechanism of the OH-initiated atmospheric oxidation degradation of 9,10-dichlorophenanthrene (9,10-Cl{sub 2}Phe) was investigated by using high-accuracy quantum chemistry calculations. The rate constants of the crucial elementary reactions were determined by the Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The theoretical results were compared with the available experimental data. The main oxidation products are a group of ring-retaining and ring-opening compounds including chlorophenanthrols, 9,10-dichlorophenanthrene-3,4-dione, dialdehydes, chlorophenanthrenequinones, nitro-9,10-Cl{sub 2}Phe and epoxides et al. The overall rate constant of the OH addition reaction is 2.35 × 10{sup −12} cm{sup 3} molecule{sup −1} s{sup −1} at 298 K and 1 atm. The atmospheric lifetime of 9,10-Cl{sub 2}Phe determined by OH radicals is about 5.05 days. This study provides a comprehensive investigation of the OH-initiated oxidation degradation of 9,10-Cl{sub 2}Phe and should contribute to clarifying its atmospheric fate. - Highlights: • We studied a comprehensive mechanism of OH-initiated degradation of 9,10-Cl{sub 2}Phe. • The atmospheric lifetime of 9,10-Cl{sub 2}Phe determined by OH radical is about 5.05 d. • The rate constants of the crucial elementary steps were evaluated. • Water plays an important role in the formation of nitro-9,10-Cl{sub 2}Phe.

  5. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics.

    Science.gov (United States)

    Hirsch, Rhoda Elison; Sibmooh, Nathawut; Fucharoen, Suthat; Friedman, Joel M

    2017-05-10

    Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The β E -globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.

  6. investors behavior, earnings management and governance

    Directory of Open Access Journals (Sweden)

    Afraa Khzouri

    2014-07-01

    Full Text Available The aim of this paper is to study the relationship between earnings management, governance and investors behavior, since this latter can inform about the nature of earnings management and can be considered as a governance mechanism to reduce accounts manipulations. On the basis of a sample of 700 American firms for the period of 1996-2006, our empirical results show that investors who take short positions, are able to interpret the information detected from the earnings management. The activity of these investors may be considered as an indicator of the quality of the governance structure and the presence and nature of earnings management. The under-reaction of investors to information leads to short-term sale of the shares of poorly governed firms and characterized by an opportunistic earnings management and to invest in firms well-governed and characterized by an informational earnings management therefore an abnormal profit can be realized.

  7. Shape and size transformation of gold nanorods (GNRs) via oxidation process: A reverse growth mechanism

    International Nuclear Information System (INIS)

    Chandrasekar, Govindasamy; Mougin, Karine; Haidara, Hamidou; Vidal, Loic; Gnecco, Enrico

    2011-01-01

    The anisotropic shape transformation of gold nanorods (GNRs) with H 2 O 2 was observed in the presence of 'cethyl trimethylammonium bromide' (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H 2 O 2 : Au 0 → Au + , Au 0 + Au n+ → 2Au 3+ , n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H 2 O 2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H 2 O 2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au 3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br - ions.

  8. Transforming local government by project portfolio management: Identifying and overcoming control problems

    DEFF Research Database (Denmark)

    Hansen, Lars Kristian

    2013-01-01

    Purpose – As public organizations strive for higher e-government maturity, information technology (IT) Project Portfolio Management (IT PPM) has become a high priority issue. Assuming control is central in IT PPM, the purpose of this paper is to investigate how a Danish local government conducts...... to understand how local governments can improve IT PPM. Keywords IT project portfolio management, E-government, Control theory, Control problems, Formal mechanisms, Informal mechanisms, Local government, Denmark...... control in IT PPM. The authors identify control problems and formulate recommendations to address these. Design/methodology/approach – Adopting principles from Engaged Scholarship, the authors have conducted a case study using a wide variety of data collection methods, including 29 interviews, one...

  9. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: Kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Beherei, Hanan H. [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Physics Dept., Faculty of Science, El-Taif University (Saudi Arabia); El Bassyouni, Gehan T. [Biomaterials Dept., National Research Centre, El-Behoos St., Cairo (Egypt); Medical Physics Dept., Faculty of Medicine, El-Taif University (Saudi Arabia); El Mahallawy, Nahed [Design and Production Engineering Department, Faculty of Engineering, Ain Shams University on secondment to the German University in Cairo (Egypt)

    2013-10-15

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO{sub 2} powders were prepared via sol–gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO{sub 2} were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO{sub 2} or SiO{sub 2}/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. - Graphical abstract: Nano-structures of (a) HA, (b) ZnO and (c) SiO{sub 2} powders. Highlights: • The nano-structured composites containing different ratios of HA, ZnO and SiO{sub 2} were prepared. • ZnO helps improve the mechanical properties of HA composites. • SiO{sub 2} helps improve the bioactivity of HA composites.

  10. Bioactivity and mechanical behaviour of cobalt oxide-doped ...

    Indian Academy of Sciences (India)

    tive base glass and cobalt oxide-doped glass were prepared by the addition of cobalt oxide (0, ... and 1 N HCl at 37. ◦. C as compared with the ... SO2−. 4. Cl. −. Simulated body fluid. 142.0. 5.0. 1.5. 2.5. 4.2. 1.0. 0.5. 147.8. Human blood plasma ...

  11. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform

    OpenAIRE

    Lundberg, Pontus; Lee, Bongjae F.; van den Berg, Sebastiaan A.; Pressly, Eric D.; Lee, Annabelle; Hawker, Craig J.; Lynd, Nathaniel A.

    2012-01-01

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxi...

  12. Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites

    Science.gov (United States)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Naik, Jagadish

    2014-04-01

    In this work the composite films of poly(vinyl alcohol) (PVA) doped with functionalized Graphene Oxide (GO) were prepared by solution casting method. The films were characterized using FT-IR, DSC, XRD, mechanical properties and dielectric studies at room temperature. FTIR spectra shows the formation of hydrogen bonds between hydroxyl groups of PVA and the hydroxy groups of GO. The DSC thermograms shows the addition of GO to PVA greatly improves the thermal stability of the composites. XRD patterns shows that the GO exfoliated and uniformly dispersed in PVA matrix. Mechanical properties are significantly improved in PVA/GO composites. The tensile strength increased from 8.2 to 13.7 MPa and the Young's modulus increased from 7.5 to 24.8 MPa for 5 wt% GO doped sample. Dielectric spectroscopy showed a highest dielectric constant for the 5 wt% GO doped PVA films. This work provides a potential design strategy on PVA/GO composite, which would lead to higher-performance, flexible dielectric materials, high charge-storage devices.

  13. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  14. High-temperature oxidation behavior of dense SiBCN monoliths: Carbon-content dependent oxidation structure, kinetics and mechanisms

    International Nuclear Information System (INIS)

    Li, Daxin; Yang, Zhihua; Jia, Dechang; Wang, Shengjin; Duan, Xiaoming; Zhu, Qishuai; Miao, Yang; Rao, Jiancun; Zhou, Yu

    2017-01-01

    Highlights: •The scale growth for all investigated monoliths at 1500 °C cannot be depicted by a linear or parabolic rate law. •The carbon-rich monoliths oxidize at 1500 °C according to a approximately linear weight loss equation. •The excessive carbon in SiBCN monoliths deteriorates the oxidation resistance. •The oxidation resistance stems from the characteristic oxide structures and increased oxidation resistance of BN(C). -- Abstract: The high temperature oxidation behavior of three SiBCN monoliths: carbon-lean SiBCN with substantial Si metal, carbon-moderate SiBCN and carbon-rich SiBCN with excessive carbon, was investigated at 1500 °C for times up to15 h. Scale growth for carbon-lean and −moderate monoliths at 1500 °C cannot be described by a linear or parabolic rate law, while the carbon-rich monoliths oxidize according to a approximately linear weight loss equation. The microstructures of the oxide scale compose of three distinct layers. The passivating layer of carbon and boron containing amorphous SiO 2 and increased oxidation resistance of BN(C) both benefit the oxidation resistance.

  15. Environmental governance in China: Interactions between the state and "nonstate actors".

    Science.gov (United States)

    Guttman, Dan; Young, Oran; Jing, Yijia; Bramble, Barbara; Bu, Maoliang; Chen, Carmen; Furst, Kathinka; Hu, Tao; Li, Yifei; Logan, Kate; Liu, Lingxuan; Price, Lydia; Spencer, Michael; Suh, Sangwon; Sun, Xiaopu; Tan, Bowen; Wang, Harold; Wang, Xin; Zhang, Juan; Zhang, Xinxin; Zeidan, Rodrigo

    2018-08-15

    In the West, limited government capacity to solve environmental problems has triggered the rise of a variety of "nonstate actors" to supplement government efforts or provide alternative mechanisms for addressing environmental issues. How does this development - along with our efforts to understand it - map onto environmental governance processes in China? China's efforts to address environmental issues reflect institutionalized governance processes that differ from parallel western processes in ways that have major consequences for domestic environmental governance practices and the governance of China "going abroad." China's governance processes blur the distinction between the state and other actors; the "shadow of the state" is a major factor in all efforts to address environmental issues. The space occupied by nonstate actors in western systems is occupied by shiye danwei ("public service units"), she hui tuanti ("social associations") and e-platforms, all of which have close links to the state. Meanwhile, international NGOs and multinational corporations are also significant players in China. As a result, the mechanisms of influence that produce effects in China differ in important ways from mechanisms familiar from the western experience. This conclusion has far-reaching implications for those seeking to address global environmental concerns, given the importance of China's growing economy and burgeoning network of trade relationships. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties.

    Science.gov (United States)

    Ramazani, Soghra; Karimi, Mohammad

    2015-11-01

    A number of studies have demonstrated that the mechanical properties of electrospun polymeric nanofibrous scaffolds are enhanced with the incorporation of graphene and its derivatives, thus developing their applications in hard tissue engineering. However, our understanding of the relationship between the microstructure and properties of these fibrous scaffolds and how they are influenced by graphene oxide (GO) and reduced graphene oxide (RGO) loading is much more limited. Thus, in this paper, poly(ε-caprolactone) (PCL)/GO and RGO nanocomposite nanofibers containing 0, 0.1, 0.5 and 1wt.% GO and RGO were prepared using an electrospinning technique. With the addition of 0.1wt.% of GO and RGO nanosheets in PCL, the tensile strength of PCL scaffolds increased over ~160 and 304% respectively and elastic modulus increased over 103 and 163% due to the good dispersion of the nanosheets and their interaction with the molecular chains of PCL. These were supported by the parallel increase in relaxation time and molecular orientation of PCL chains at the presence of nanosheets with a loading of 0.1wt.%. The enhancement effect of the nanosheets was weakened with an increase in GO and RGO loading up to 1wt.% in which it is connected to a partial exfoliation of the nanosheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Chapter 6: Working together in the federal government

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In his review of the management of the environment and sustainable development within the federal government, the Commissioner stressed the importance of defining clearly of 'who does what' and identified a variety of mechanisms government departments have at their disposal to work together. These mechanisms range from the creation of new organizations to cost sharing agreements to voluntary networks for information exchange. Six case studies are described in detail designed to examine the key factors that could affect the success of such mechanisms. These factors include managing the effects of participant turnover, ensuring the continuity of departmental incentives, and paying attention to results of monitoring and evaluation to learn from past experience. It is suggested that since other than persuasion and negotiation, interdepartmental cooperation is limited by departments' inability to compel other departments to act, the primary central agencies, such as the Privy Council Office and the Treasury Board Secretariat must play a crucial leadership role in achieving a 'Government of Canada' perspective.

  18. Enhanced mechanical properties of chitosan/nanodiamond composites by improving interphase using thermal oxidation of nanodiamond.

    Science.gov (United States)

    Delavar, Zahra; Shojaei, Akbar

    2017-07-01

    Polymer composite films based on chitosan (CS) and nanodimaond (ND) were prepared using solution casting method. ND with variable contents of carboxylic functional group was prepared using thermal oxidation at temperature of 420°C under air atmosphere at various durations of 1.5 and 4.5h. The interfacial interaction between NDs and CS and morphological evolution of CS in presence of NDs were investigated by Fourier transform infrared (FTIR), differential scanning calorimeter (DSC) and X-ray diffraction (XRD) analyses. A significant improvement in tensile strength (∼85%) and tensile modulus (∼125%) of CS was achieved by oxidized ND (OND) obtained at higher oxidation time of 4.5 at low concentrations (below 1.5wt%). Theoretical analyses based on micromechanical models showed that the ND with higher degree of carboxylic functionality provided thicker and stronger interphase region which was reflected in higher mechanical properties. The equilibrium water uptake of CS decreased by incorporating ND and increasing its degree of carboxyl functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Rui Zhong

    2018-05-01

    Full Text Available Graphene oxide (GO, modified with anti-aging agent p-phenylenediamine (PPD, was added into nitrile rubber (NBR in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR, Raman, and X-ray diffraction (XRD. Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA show an increased storage modulus (G’ and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG and differential scanning calorimetry (DSC. Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn–Wall–Ozawa (FWO equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO–PPD. In addition, mechanical properties (tensile strength and elongation at break of both before and after aged NBR/GO–PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  20. Mechanisms of LiCoO2 Cathode Degradation by Reaction with HF and Protection by Thin Oxide Coatings.

    Science.gov (United States)

    Tebbe, Jonathon L; Holder, Aaron M; Musgrave, Charles B

    2015-11-04

    Reactions of HF with uncoated and Al and Zn oxide-coated surfaces of LiCoO2 cathodes were studied using density functional theory. Cathode degradation caused by reaction of HF with the hydroxylated (101̅4) LiCoO2 surface is dominated by formation of H2O and a LiF precipitate via a barrierless reaction that is exothermic by 1.53 eV. We present a detailed mechanism where HF reacts at the alumina coating to create a partially fluorinated alumina surface rather than forming AlF3 and H2O and thus alumina films reduce cathode degradation by scavenging HF and avoiding H2O formation. In contrast, we find that HF etches monolayer zinc oxide coatings, which thus fail to prevent capacity fading. However, thicker zinc oxide films mitigate capacity loss by reacting with HF to form a partially fluorinated zinc oxide surface. Metal oxide coatings that react with HF to form hydroxyl groups over H2O, like the alumina monolayer, will significantly reduce cathode degradation.