WorldWideScience

Sample records for oxidation mechanisms governing

  1. Interfacial Reduction-Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Principal Investigator: Baolin Deng, University of Missouri, Columbia, MO; Co-Principal Investigator: Silvia Sabine Jurisson, University of Missouri, Columbia, MO; Co-Principal Investigator: Edward C. Thornton, Pacific Northwest National Laboratory Richland, WA; Co-Principal Investigator: Jeff Terry, Illinois Institute of Technology, Chicago, IL

    2008-05-12

    There are many soil contamination sites at the Department of Energy (DOE) installations that contain radionuclides and toxic metals such as uranium (U), technetium (Tc), and chromium (Cr). Since these contaminants are the main 'risk drivers' at the Hanford site (WA) and some of them also pose significant risk at other DOE facilities (e.g., Oak Ridge Reservation - TN; Rocky Flats - CO), development of technologies for cost effective site remediation is needed. Current assessment indicates that complete removal of these contaminants for ex-situ disposal is infeasible, thus in-situ stabilization through reduction to insoluble species is considered one of the most important approaches for site remediation. In Situ Gaseous Reduction (ISGR) is a technology developed by Pacific Northwest National Laboratory (PNNL) for vadose zone soil remediation. The ISGR approach uses hydrogen sulfide (H{sub 2}S) for reductive immobilization of contaminants that show substantially lower mobility in their reduced forms (e.g., Tc, U, and Cr). The technology can be applied in two ways: (i) to immobilize or stabilize pre-existing contaminants in the vadose zone soils by direct H{sub 2}S treatment, or (ii) to create a permeable reactive barrier (PRB) that prevents the migration of contaminants. Direct treatment involves reduction of the contaminants by H{sub 2}S to less mobile species. Formation of a PRB is accomplished through reduction of ferric iron species in the vadose zone soils by H{sub 2}S to iron sulfides (e.g., FeS), which provides a means for capturing the contaminants entering the treated zone. Potential future releases may occur during tank closure activities. Thus, the placement of a permeable reactive barrier by ISGR treatment can be part of the leak mitigation program. Deployment of these ISGR approaches, however, requires a better understanding of the immobilization kinetics and mechanisms, and a better assessment of the long-term effectiveness of treatment. The

  2. On atomic mechanisms governing the oxidation of Bi2Te3

    Science.gov (United States)

    Music, Denis; Chang, Keke; Schmidt, Paul; Braun, Felix N.; Heller, Martin; Hermsen, Steffen; Pöllmann, Peter J.; Schulzendorff, Till; Wagner, Cedric

    2017-12-01

    Oxidation of Bi2Te3 (space group R \\overline{3} m) has been investigated using experimental and theoretical means. Based on calorimetry, x-ray photoelectron spectroscopy and thermodynamic modelling, Bi2Te3 is at equilibrium with Bi2O3 and TeO2, whereby the most stable compound is Bi2Te3, followed by Bi2O3. The reactivity of Bi towards oxygen is expected to be higher than that of Te. This notion is supported by density functional theory. The strongest bond is formed between Bi and Te, followed by Bi-O. This gives rise to unanticipated atomic processes. Dissociatively adsorbed oxygen diffuses through Bi and Te basal planes of Bi2Te3(0 0 0 1) and preferably interacts with Bi. The Te termination considerably retards this process. These findings may clarify conflicting literature data. Any basal plane off-cut or Bi terminations trigger oxidation, but a perfect basal cleavage, where only Te terminations are exposed to air, may be stable for a longer period of time. These results are of relevance for applications in which surfaces are of key importance, such as nanostructured Bi2Te3 thermoelectric devices.

  3. Control mechanisms in corporate governance

    Directory of Open Access Journals (Sweden)

    Jovanović-Zattila Milena

    2016-01-01

    Full Text Available The structure of corporate governance is determined by the distribution of rights and responsibilities among different actors in the company structure. Organizationally complex structure of corporate entities, established as a reflection of composite forms of business corporations, give rise to the conflict of interest between the owners, the board of directors and managers, which is generally known as the principal-agency problem. Given the fact that operations of modern companies include interaction with a large number of stakeholders, matters of ethics and accountability to the owners, employees, creditors and the state are the basic postulates which have been subject to re-examination lately. The reasons for reassessing these issues are to be sought in numerous abuses by companies, which are on the other hand highly active in their effors to protect themselves from similar abuses (mainy cyber crime. In order to respond to new challenges and requirements, which include providing for the interests of both shareholders and stakeholders, corporate management is required to establish an adequate system of internal control covering all company activities. Contemporary trends in the development of internal audit, as a mechanism of good corporate governance, are reflected in providing advice in respect of anticipated future risks and risk management.

  4. Governance mechanisms for healthcare apps

    DEFF Research Database (Denmark)

    Manikas, Konstantinos; Hansen, Klaus Marius; Kyng, Morten

    2014-01-01

    The introduction of the `app store' concept has challenged the way software is distributed and marketed: developers have easier access to customers, while customers have easy access to innovative applications. Apps today are increasingly focusing on more "mission-critical" areas like healthcare...... with the Apple AppStore counting more than 40,000 apps under the category "health & fitness". This rapid development of healthcare apps increases the necessity of governance as, currently, healthcare apps are not thoroughly governed. The U.S. Food and Drug Administration and the European Commission only have...... policies for apps that are medical devices.In this paper, we approach the problem of how to govern healthcare and medical apps by addressing the risks the use of these apps pose, while at the same time inviting for development of new apps. To do so we (i) analyze four cases of healthcare app governance...

  5. Oxidation mechanisms occurring in wines

    OpenAIRE

    Oliveira, Carla Maria; Ferreira, António César Silva; Freitas, Victor De; Silva, Artur M. S.

    2011-01-01

    The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and paracoumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, al...

  6. Governance Mechanisms in Information Technology Outsourcing

    Science.gov (United States)

    Ravindran, Kiron

    2010-01-01

    While the dominance of Information Technology Outsourcing (ITO) as a sourcing strategy would seem to indicate successful and well-informed practice, frequent examples of unraveled engagements highlight the associated risks. Successful instances of outsourcing suggest that governance mechanisms effectively manage the related risks. This…

  7. BASELINE MECHANISMS FOR IT GOVERNANCE AT UNIVERSITIES

    NARCIS (Netherlands)

    Bianchi, Isaias; Sousa, Rui; Pereira, Ruben; van Hillegersberg, Jos

    The pervasive use of technology has created a critical dependency on Information Technology (IT) that requires IT Governance (ITG). ITG calls for the definition and implementation of formal mechanisms at the highest level in the organization taking into account structures, processes and relational

  8. Global Governance Mechanisms to Address Antimicrobial Resistance.

    Science.gov (United States)

    Padiyara, Ponnu; Inoue, Hajime; Sprenger, Marc

    2018-01-01

    Since their discovery, antibiotics, and more broadly, antimicrobials, have been a cornerstone of modern medicine. But the overuse and misuse of these drugs have led to rising rates of antimicrobial resistance, which occurs when bacteria adapt in ways that render antibiotics ineffective. A world without effective antibiotics can have drastic impacts on population health, global development, and the global economy. As a global common good, antibiotic effectiveness is vulnerable to the tragedy of the commons, where a shared limited resource is overused by a community when each individual exploits the finite resource for their own benefit. A borderless threat like antimicrobial resistance requires global governance mechanisms to mitigate its emergence and spread, and it is the responsibility of all countries and relevant multilateral organizations. These mechanisms can be in the form of legally binding global governance mechanisms such as treaties and regulatory standards or nonbinding mechanisms such as political declarations, resolutions, or guidelines. In this article, we argue that while both are effective methods, the strong, swift, and coordinated action needed to address rising rates of antimicrobial resistance will be better served through legally binding governance mechanisms.

  9. Cold pressure welding - the mechanisms governing bonding

    DEFF Research Database (Denmark)

    Bay, Niels

    1979-01-01

    Investigations of the bonding surface in scanning electron microscope after fracture confirm the mechanisms of bond formation in cold pressure welding to be: fracture of work-hardened surface layer, surface expansion increasing the area of virgin surface, extrusion of virgin material through cracks...... of the original surface layer, and establishment of real contact and bonding between virgin material. This implies that normal pressure as well as surface expansion are basic parameters governing the bond strength. Experimental investigations of pressure welding Al-Al under plane strain compression in a specially...

  10. A primary reduced TCA flux governs substrate oxidation in T2D skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    Our current knowledge on substrate oxidation in skeletal muscle in relation to insulin resistance and type 2 diabetes (T2D) originate mainly from in vivo studies. The oxidative capacity of skeletal muscle is highly influenced by physical activity, ageing, hormonal status, and fiber type composition...... further regulatory mechanism to our understanding of substrate oxidation in human skeletal muscle during normo- an pathophysiological conditions, focusing especially on the governing influence of a primary reduced TCA flux for the diabetic phenotype in skeletal muscle....

  11. Governance mechanisms in transnational business relationships

    OpenAIRE

    Homburg, Christian; Kiedaisch, Ingo; Cannon, Joseph P.

    1999-01-01

    Empirical research on buyer-supplier relationships has almost exclusively examined domestic (both firms from the same country) exchange. The growing importance of international marketing and global sourcing suggest a need to understand relationships across national boundaries -- transnational business relationships. Drawing on theories of governance, the authors hypothesize differences in governance between domestic and transnational business relationships. They examine the use...

  12. The Generative Mechanisms of Open Government Data

    DEFF Research Database (Denmark)

    Jetzek, Thorhildur; Avital, Michel; Bjørn-Andersen, Niels

    2013-01-01

    The exponentially growing production of data enables global connectivity as well as increased openness and sharing, which turn into a powerful force that is changing the global economy and society. Governments around the world have become active participants in this evolution by opening up...... their data for access and re-use by public and private agents alike. The recent phenomenon of Open Government Data (OGD) has spread around the world, driven by the proposition that opening government data has the ability to generate both economic and social value. However, a review of the academic research...

  13. Effective Information Technology Governance Mechanisms: An Australian Study

    Directory of Open Access Journals (Sweden)

    Syaiful Ali

    2006-01-01

    Full Text Available Growing importance of information technology (IT, as a strategic factor for organizations in achieving their objectives, have raised the concern of organizations in establishing and implementing effective IT governance. This study seeks to empirically examine the individual IT governance mechanisms that influence the overall effectiveness of IT governance. The data were obtained by using web based survey from 176 members of ISACA (Information Systems and Audit Control Association Australia. This study examines the influences of six proposed IT governance mechanisms on the overall effectiveness of IT governance. Using Factor Analysis and Multiple Regression techniques, the current study finds significant positive relationships between the overall level of effective IT governance and the following four IT governance mechanisms: the existence of ethics/ culture of compliance in IT, corporate communication systems, an IT strategy committee, and the involvement of senior management in IT.

  14. Governance systems in family SMEs: the substitution effects between family councils and corporate governance mechanisms

    OpenAIRE

    L. Gnan; D. Montemerlo; M. Huse

    2015-01-01

    The main objective of this paper is to explore the role of family councils vis-à-vis corporate governance mechanisms. Particularly, the paper explores whether family councils perform only their distinctive family governance role or if they also substitute for the roles performed by corporate governance control mechanisms. Based on a sample of 243 Italian family SMEs, our research findings show that the family council partially substitutes the shareholders' meeting and the board of directors i...

  15. Inclusive mechanisms of governance and justice targeting youth to ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Inclusive mechanisms of governance and justice targeting youth to counter violent extremism in the IGAD region ... and generate evidence to influence the existing and emerging processes and mechanisms related to CVE to ... Innovation.

  16. Study on Government Management Mechanism of Energy ...

    African Journals Online (AJOL)

    of energy conservation and emission reduction, and propose legal guarantees, management innovation, technology innovation, service system construction and upgrading of industrial structure are the critical factors to energy conservation and emission reduction management mechanism's performance. Then discuss the ...

  17. Atmospheric oxidation mechanism of toluene.

    Science.gov (United States)

    Wu, Runrun; Pan, Shanshan; Li, Yun; Wang, Liming

    2014-06-26

    The atmospheric oxidation mechanism of toluene initiated by OH radical addition is investigated by quantum chemistry calculations at M06-2X, G3MP2-RAD, and ROCBS-QB3 levels and by kinetics calculation by using transition state theory and unimolecular reaction theory coupled with master equation (RRKM-ME). The predicted branching ratios are 0.15, 0.59, 0.05, and 0.14 for OH additions to ipso, ortho, meta, and para positions (forming R1-R4 adducts), respectively. The fate of R2, R4, and R1 is investigated in detail. In the atmosphere, R2 reacts with O2 either by irreversible H-abstraction to form o-cresol (36%), or by reversible recombination to R2-1OO-syn and R2-3OO-syn, which subsequently cyclize to bicyclic radical R2-13OO-syn (64%). Similarly, R4 reacts with O2 with branching ratios of 61% for p-cresol and 39% for R4-35OO-syn, while reaction of R1 and O2 leads to R1-26OO-syn. RRKM-ME calculations show that the reactions of R2/R4 with O2 have reached their high-pressure limits at 760 Torr and the formation of R2-16O-3O-s is only important at low pressure, i.e., 5.4% at 100 Torr. The bicyclic radicals (R2-13OO-syn, R4-35OO-syn, and R1-26OO-syn) will recombine with O2 to produce bicyclic alkoxy radicals after reacting with NO. The bicyclic alkoxy radicals would break the ring to form products methylglyoxal/glyoxal (MGLY/GLY) and their corresponding coproducts butenedial/methyl-substituted butenedial as proposed in earlier studies. However, a new reaction pathway is found for the bicyclic alkoxy radicals, leading to products MGLY/GLY and 2,3-epoxybutandial/2-methyl-2,3-epoxybutandial. A new mechanism is proposed for the atmospheric oxidation mechanism of toluene based on current theoretical and previous theoretical and experimental results. The new mechanism predicts much lower yield of GLY and much higher yield of butenedial than other atmospheric models and recent experimental measurements. The new mechanism calls for detection of proposed products 2

  18. Reduction of Asymmetric Information through Corporate Governance Mechanisms

    DEFF Research Database (Denmark)

    Holm, Claus; Schøler, Finn

    Research Question/Issue: Is the reduction of asymmetric information through Corporate Governance mechanisms more important for some listed companies than for others? The purpose of this study is to examine how differences in "ownership dispersion" and "international orientation" affect the partic......Research Question/Issue: Is the reduction of asymmetric information through Corporate Governance mechanisms more important for some listed companies than for others? The purpose of this study is to examine how differences in "ownership dispersion" and "international orientation" affect...... the particular use of the Corporate Governance mechanisms "transparency" and "board independence" in listed companies. Research Findings/Insights: Our findings are based on a Danish dataset which includes 100 listed companies. We find that transparency is a more important Corporate Governance mechanism...

  19. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    Baxter, R.A.

    1987-08-01

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  20. Reduction of Asymmetric Information through Corporate Governance Mechanisms

    DEFF Research Database (Denmark)

    Holm, Claus; Schøler, Finn

    2010-01-01

    Research Question/Issue: The purpose of this study is to examine how differences in "ownership dispersion" and "exposure toward the international capital market" affect the particular use of the corporate governance mechanisms "transparency" and "board independence" in listed companies. Research...... Findings/Insights: Our findings are based on a Danish dataset which includes 100 listed companies. We find that transparency is a more important corporate governance mechanism for companies with an exposure toward the international capital market, while differences in ownership dispersion do not affect...... the use of the transparency mechanism. In contrast, we find that board independence in the context of a two-tier board member system is an important corporate governance mechanism for companies with widely dispersed ownership and not for companies with an exposure toward the international capital market...

  1. Reassessing the atmospheric oxidation mechanism of toluene

    OpenAIRE

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie

    2017-01-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmo...

  2. A novel mechanism of oxidative genotoxicity

    Indian Academy of Sciences (India)

    The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant ...

  3. Mechanical properties of phosphorene nanoribbons and oxides

    International Nuclear Information System (INIS)

    Hao, Feng; Chen, Xi

    2015-01-01

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion

  4. Mechanical properties of phosphorene nanoribbons and oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Feng [Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States); Chen, Xi, E-mail: xichen@columbia.edu [International Center for Applied Mechanics, SV Laboratory, School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027 (United States)

    2015-12-21

    Mechanical properties of phosphorene nanoribbons and oxides are investigated by using density functional theory. It is found that the ideal strength of nanoribbon decreases in comparison with that of 2D phosphorene. The Young's modulus of armchair nanoribbon has a remarkable size effect because of the edge relaxations. The analysis of the stress-strain relation indicates that, owing to chemisorbed oxygen atoms, the ideal strength and Young's modulus of 2D phosphorene oxide are greatly reduced along the zigzag direction, especially upon high oxidation ratios. In addition, strain and oxidation have significant impacts on phonon dispersion.

  5. The Value Generating Mechanisms of Open Government Data

    DEFF Research Database (Denmark)

    Jetzek, Thorhildur

    2013-01-01

    social progress, to an interconnected, networked world of shared resources and co-creation. One of the trends driving this change is open government data. This paper presents a framework of four value generating mechanisms from use of OGD. The framework makes it easier to compare and communicate......Recent trends towards openness and technical connectivity have offered the ability to drive massive social and economic change; however they demand a redefinition of relationships. We have observed a move from a polarized world where companies operate in economic markets while governments drive...

  6. Oxidation of coals in the course of mechanical treatment

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Proidakov; G.A. Kalabin [Irkutsk State University, Irkutsk (Russian Federation)

    2009-04-15

    The results of a study of coal oxidation under stationary conditions and during mechanical treatment are presented. A considerable increase in the reaction rate constants of coal oxidation during mechanical treatment because of oxidative mechanical degradation was found.

  7. Virtual Team Governance: Addressing the Governance Mechanisms and Virtual Team Performance

    Science.gov (United States)

    Zhan, Yihong; Bai, Yu; Liu, Ziheng

    As technology has improved and collaborative software has been developed, virtual teams with geographically dispersed members spread across diverse physical locations have become increasingly prominent. Virtual team is supported by advancing communication technologies, which makes virtual teams able to largely transcend time and space. Virtual teams have changed the corporate landscape, which are more complex and dynamic than traditional teams since the members of virtual teams are spread on diverse geographical locations and their roles in the virtual team are different. Therefore, how to realize good governance of virtual team and arrive at good virtual team performance is becoming critical and challenging. Good virtual team governance is essential for a high-performance virtual team. This paper explores the performance and the governance mechanism of virtual team. It establishes a model to explain the relationship between the performance and the governance mechanisms in virtual teams. This paper is focusing on managing virtual teams. It aims to find the strategies to help business organizations to improve the performance of their virtual teams and arrive at the objectives of good virtual team management.

  8. Pairing mechanism in oxide superconductors

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    1988-01-01

    A useful way to learn about the pairing mechanism that is responsible for high T c superconductivity is to study properties of model Hamiltonians on small systems. The goal is to find the simplest model that can describe the essential physics of high T c superconductivity. The authors have used Monte Carlo simulation and exact diagonalization techniques to study properties of systems of up to 64 sites. Their results show that spin fluctuations and other spin related mechanisms induced by a Hubbard on-site repulsion U are not likely to give rise to pairing, neither in one nor in multiple band models. In contrast, charge fluctuations in a model with both strong U and V (repulsion between Cu and O) are shown to give rise to pairing and it is suggested that this model provides a plausible mechanism for high T c superconductivity

  9. Corporate governance, accountability and mechanisms of accountability : an overview

    OpenAIRE

    Brennan, Niamh; Solomon, J. (Jill)

    2008-01-01

    Purpose – This paper reviews traditional corporate governance and accountability research, to suggest opportunities for future research in this field. The first part adopts an analytical frame of reference based on theory, accountability mechanisms, methodology, business sector/context, globalisation and time horizon. The second part of the paper locates the seven papers in the special issue in a framework of analysis showing how each one contributes to the field. The paper presents a frame o...

  10. Governance mechanisms, investment opportunity set and SMEs cash holdings

    OpenAIRE

    Belghitar, Yacine; Khan, James

    2013-01-01

    This study analyses the effect of firm characteristics and governance mechanisms on cash holdings for a sample of UK SMEs. The results show that UK SMEs with greater cash flow volatility and institutional investors hold more cash; whereas levered and dividend paying SMEs with non-executive ownership hold less cash. We also find that ownership structure is significant only in explaining the cash holdings for firms with high growth investment opportunities, and leverage is only significant in e...

  11. Laboratory Studies of Hydrocarbon Oxidation Mechanisms

    Science.gov (United States)

    Orlando, J. J.; Tyndall, G. S.; Wallington, T. J.; Burkholder, J. B.; Bertman, S. B.; Chen, W.

    2001-12-01

    The oxidation of hydrocarbon species (alkanes, alkenes, halogenated species, and oxygenates of both natural and anthropogenic origin) in the troposphere leads to the generation of numerous potentially harmful secondary pollutants, such as ozone, organic nitrates and acids, and aerosols. These oxidations proceed via the formation of alkoxy radicals, whose complex chemistry controls the ultimate product distributions obtained. Studies of hydrocarbon oxidation mechanisms are ongoing at NCAR and Ford, using environmental chamber / FTIR absorption systems. The focus of these studies is often on the product distributions obtained at low temperature; these studies not only provide data of direct relevance to the free/upper troposphere, but also allow for a more fundamental understanding of the alkoxy radical chemistry (eg., from the determination of the Arrhenius parameters for unimolecular processes, and the quantification of the extent of the involvement of chemical activation in the alkoxy radical chemistry). In this paper, data will be presented on some or all of the following topics: kinetics/mechanisms for the reactions of OH with the unsaturated species MPAN, acrolein, and crotonaldehyde; the mechanism for the oxidation of ethyl chloride and ethyl bromide; and the mechanism for the reaction of OH with acetone and acetaldehyde at low temperature. The relevance of the data to various aspects of tropospheric chemistry will be discussed.

  12. Mekanisme Corporate Governance dan Kecurangan Laporan Keuangan [Mechanisms of Corporate Governance and Financial Statement Fraud

    Directory of Open Access Journals (Sweden)

    Fitri Ismiyanti

    2015-09-01

    Full Text Available The purpose of this research is to examine factors that may affect fraud on financial statements that could encourage the emergence of corruption by management. This research uses banks as an industry sample because the banking industry is highly regulated and should report their financial statement to a central bank. Meanwhile, banks still frequently have fraudulent financial statements. Good corporate governance mechanisms indicated that banks have the capability to detect fraud in financial statements. This research focuses on testing factors that may affect the financial statements fraud which lead to the corruption of management. The data used in this research is financial statement data. Corporate governance mechanisms tested in this study are the number of commissioners, percentage of independent directors, number of commissioners meeting, percentage of largest share ownership, managerial ownership, long tenure of commissioners, and type of auditor. This research found that the number of commissioners and managerial ownership affects management's fraud, while the number of independent directors, the number of commissioners meeting, a long tenure managing director, large share ownership, and the type of auditor has no effect on fraud.

  13. Mechanism of the oxidation of diphenylamine compounds

    International Nuclear Information System (INIS)

    Pankratov, A.N.; Shmakov, S.L.; Mushtakova, S.P.; Gribov, L.A.

    1986-01-01

    A spectrophotometric, radiospectroscopic, and quantum chemical study of the oxidation of compounds of the diphenylamine series in acid medium has made it possible to establish a common reaction scheme for amines with different types of substituents and to determine certain details of the reaction mechanism: the participation of protonated amine molecules in the interaction with the oxidizing agent; intermediate formation of radical cations of the type of diphenylamine and N,N'-diarylbenzidine; the concrete directions of the dimerization of radical cations of diarylamines with the participation of the para-carbon atoms of the aromatic rings

  14. Mechanism of UO2 selfdisintegration by oxidation

    International Nuclear Information System (INIS)

    Ohai, D.; Furtuna, I.; Dumitrescu, I.

    2008-01-01

    Full text: The paper present the results of the study of UO 2 sintered pellets oxidation, part of FIPRED (Fission Product Release from Debris Bed) Project. The FIPRED Project is dedicated to the study the fission products release from irradiated pellets existing in debris bed. The product release is produced by oxidative self disintegration of sintered pellets at air ingress and it depends on temperature. The experimental program covered experiments of 300-1000 deg. C in air diluted with nitrogen at different oxygen concentrations. The experiments were performed using the SETARAM thermo gravimetric equipment and the FIPRED EQ equipment designed and manufactured especially for this type of experiment. The powders (fragments), resulted from UO 2 pellets self disintegration, were characterized by sieving and SEM. The self disintegration mechanism was demonstrated using the experimental results obtained and thermodynamical data of uranium oxides. (authors)

  15. Reassessing the atmospheric oxidation mechanism of toluene

    Science.gov (United States)

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Zhang, Annie L.; Shibuya, Kazuhiko; Molina, Mario J.; Zhang, Renyi

    2017-08-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmospheric models. Our experimental work indicates a larger-than-expected branching ratio for cresols, but a negligible formation of ring-opening products (e.g., methylglyoxal). Quantum chemical calculations also demonstrate that cresols are much more stable than their corresponding peroxy radicals, and, for the most favorable OH (ortho) addition, the pathway of H extraction by O2 to form the cresol proceeds with a smaller barrier than O2 addition to form the peroxy radical. Our results reveal that phenolic (rather than peroxy radical) formation represents the dominant pathway for toluene oxidation, highlighting the necessity to reassess its role in ozone and SOA formation in the atmosphere.

  16. Revised mechanism of Boyland-Sims oxidation.

    Science.gov (United States)

    Marjanović, Budimir; Juranić, Ivan; Cirić-Marjanović, Gordana

    2011-04-21

    New computational insights into the mechanism of the Boyland-Sims oxidation of arylamines with peroxydisulfate (S(2)O(8)(2-)) in an alkaline aqueous solution are presented. The key role of arylnitrenium cations, in the case of primary and secondary arylamines, and arylamine dications and immonium cations, in the case of tertiary arylamines, in the formation of corresponding o-aminoaryl sulfates, as prevalent soluble products, and oligoarylamines, as prevalent insoluble products, is proposed on the basis of the AM1 and RM1 computational study of the Boyland-Sims oxidation of aniline, ring-substituted (2-methylaniline, 3-methylaniline, 4-methylaniline, 2,6-dimethylaniline, anthranilic acid, 4-aminobenzoic acid, sulfanilic acid, sulfanilamide, 4-phenylaniline, 4-bromoaniline, 3-chloroaniline, and 2-nitroaniline) and N-substituted anilines (N-methylaniline, diphenylamine, and N,N-dimethylaniline). Arylnitrenium cations and sulfate anions (SO(4)(2-)) are generated by rate-determining two-electron oxidation of primary and secondary arylamines with S(2)O(8)(2-), while arylamine dications/immonium cations and SO(4)(2-) are initially formed by two-electron oxidation of tertiary arylamines with S(2)O(8)(2-). The subsequent regioselectivity-determining reaction of arylnitrenium cations/arylamine dications/immonium cations and SO(4)(2-), within the solvent cage, is computationally found to lead to the prevalent formation of o-aminoaryl sulfates. The formation of insoluble precipitates during the Boyland-Sims oxidation of arylamines was also computationally studied.

  17. Atomistic mechanisms governing structural stability change of zinc antimony thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaolong [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); Lin, Jianping, E-mail: jaredlin@163.com [School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China); Qiao, Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Zhao, E-mail: zwangzhao@gmail.com [Frontier Institute of Science and Technology, Xi' an Jiaotong University, Xi' an 710054 (China); State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-01-05

    The structural stability of thermoelectric materials is a subject of growing importance for their energy harvesting applications. Here, we study the microscopic mechanisms governing the structural stability change of zinc antimony at its working temperature, using molecular dynamics combined with experimental measurements of the electrical and thermal conductivity. Our results show that the temperature-dependence of the thermal and electrical transport coefficients is strongly correlated with a structural transition. This is found to be associated with a relaxation process, in which a group of Zn atoms migrates between interstitial sites. This atom migration gradually leads to a stabilizing structural transition of the entire crystal framework, and then results in a more stable crystal structure of β–Zn{sub 4}Sb{sub 3} at high temperature.

  18. THE MANAGEMENT SUBSIDIARIES: CORPORATE GOVERNANCE MECHANISMS IN GROUP OF COMPANIES

    Directory of Open Access Journals (Sweden)

    A. K. Tatulyan

    2016-01-01

    control of subsidiaries, and the effectiveness of corporate governance mechanisms in group of companies.

  19. Sorption mechanisms of metals to graphene oxide

    International Nuclear Information System (INIS)

    Showalter, Allison R; Bunker, Bruce A; Duster, Thomas A; Szymanowski, Jennifer E S; Na, Chongzheng; Fein, Jeremy B

    2016-01-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is an electrostatic attraction between the hydrated Cd +2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems. (paper)

  20. Corporate Governance in Banks and its Impact on Risk and Performance: Review of Literature on the Selected Governance Mechanisms

    Directory of Open Access Journals (Sweden)

    Himaj Shkendije

    2014-09-01

    Full Text Available Corporate governance is viewed as an important, essential, and most significant factor for well-functioning of firms. Recent academic work and policy analyses have given insight into the governance problems in banks exposed to the financial crisis and suggest possible solutions. This paper begins by explaining the importance of corporate governance and its impact on risk taking and bank performance based on the theoretical background relevant to the corporate governance of banks. I combine the literature that looks at three areas of governance: ownership structure; board structure; and risk management, with the literature on risk-taking and performance effects in order to better assess the weight of the impact that these governance mechanisms have on both performance and risk. The paper concludes by highlighting the areas where further research is needed.

  1. Contribution to and Use of Online Knowledge Repositories: The Role of Governance Mechanisms

    Science.gov (United States)

    Kayhan, Varol O.

    2010-01-01

    Drawing upon the concept of governance, this dissertation refers to the two most commonly employed mechanisms that ensure high quality knowledge in electronic repositories as expert-governance and community-governance. In three related but distinct essays, the dissertation examines the governance concept, and investigates contributing knowledge to…

  2. Governance Mechanisms for the Promotion of Social Capital for Knowledge Transfer in Multinational Corporations

    DEFF Research Database (Denmark)

    Gooderham, Paul; Minbaeva, Dana; Pedersen, Torben

    2011-01-01

    are combined with theory on the determinants of social capital. Three governance mechanisms are identified: market-based mechanisms, hierarchical mechanisms, and social mechanisms. The findings, based on data from two Danish MNCs, indicate that although the use of social governance mechanisms promotes positive......The aim of this paper is to extend social capital approaches to knowledge transfer by identifying governance mechanisms that managers can deploy to promote the development of social capital. In order to achieve this objective, insights from the micro-level, knowledge governance approach...... assessment of social capital, hierarchical governance mechanisms constrain its development. The application of market-based governance mechanisms has no significant effect. In addition, the findings provide evidence that social capital has a positive impact on knowledge transfer...

  3. Patching security governance : an empirical view of emergent governance mechanisms for cybersecurity

    NARCIS (Netherlands)

    van Eeten, M.J.G.

    2017-01-01

    Purpose: The issue of cybersecurity has been cast as the focal point of a fight between two conflicting governance models: the nation-state model of national security and the global governance model of multi-stakeholder collaboration, as seen in forums like IGF, IETF, ICANN, etc. There is a

  4. Security and Peace Mechanisms for Good Governance in Nigeria ...

    African Journals Online (AJOL)

    In Nigeria, governments at all levels have intensified efforts to address issues bordering on insecurity with a view to building security and peace for good governance. It is however, disheartening that despite various security measures put in place to tackle the problem, Nigeria is yet to be free from recurrent cases of armed ...

  5. Design of governance in virtual communities: definition, mechanisms, and variation patterns

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Salomo, Søren

    2013-01-01

    A fast-growing stream of literature has shown tremendous interests in the ‘wisdom of crowds’, embedded in various forms of Virtual Communities (VCs). However, it difficult to design an appropriate governance structure for VCs because: (1) it is not clear what governance exactly is in VCs; (2) our...... to underpin the theoretical and practical implications of our research endeavour....... knowledge on how key governance mechanisms differ among various types of VCs is limited to date; (3) the variation patterns of governance mechanisms are far from fully explored to guide the design of governance in VCs. Therefore, this paper seeks to propose a working definition for governance in VCs...

  6. Influence of temperature on oxidation mechanisms of fiber-textured AlTiTaN coatings.

    Science.gov (United States)

    Khetan, Vishal; Valle, Nathalie; Duday, David; Michotte, Claude; Delplancke-Ogletree, Marie-Paule; Choquet, Patrick

    2014-03-26

    The oxidation kinetics of AlTiTaN hard coatings deposited at 265 °C by DC magnetron sputtering were investigated between 700 and 950 °C for various durations. By combining dynamic secondary ion mass spectrometry (D-SIMS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) investigations of the different oxidized coatings, we were able to highlight the oxidation mechanisms involved. The TEM cross-section observations combined with XRD analysis show that a single amorphous oxide layer comprising Ti, Al, and Ta formed at 700 °C. Above 750 °C, the oxide scale transforms into a bilayer oxide comprising an Al-rich upper oxide layer and a Ti/Ta-rich oxide layer at the interface with the coated nitride layer. From the D-SIMS analysis, it could be proposed that the oxidation mechanism was governed primarily by inward diffusion of O for temperatures of ≤700 °C, while at ≥750 °C, it is controlled by outward diffusion of Al and inward diffusion of O. Via a combination of structural and chemical analysis, it is possible to propose that crystallization of rutile lattice favors the outward diffusion of Al within the AlTiTa mixed oxide layer with an increase in the temperature of oxidation. The difference in the mechanisms of oxidation at 700 and 900 °C also influences the oxidation kinetics with respect to oxidation time. Formation of a protective alumina layer decreases the rate of oxidation at 900 °C for long durations of oxidation compared to 700 °C. Along with the oxidation behavior, the enhanced thermal stability of AlTiTaN compared to that of the TiAlN coating is illustrated.

  7. Oxidative Damage and Its Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Tingting Wang

    2016-06-01

    Full Text Available Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNAdamage, then to investigate the possible mechanism.Methods: The protective effect was evaluated based on the content of malondialdehyde(MDA. The possible mechanism was analyzed using various antioxidant methods in vitro,including •OH scavenging (deoxyribose degradation, •O2- scavenging (pyrogallolautoxidation, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays.Results: Fisetin increased dose-dependently its protective percentages against •OH-inducedDNA damage (IC50 value =1535.00±29.60 μM. It also increased its radical-scavengingpercentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in•OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 μM, 34.05±0.87 μM, 9.69±0.53 μM, 2.43±0.14μM, and 1.49±0.16 μM, respectively.Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damagepossibly via reactive oxygen species (ROS scavenging approach, which is assumed to behydrogen atom (H• and/or single electron (e donation (HAT/SET pathways. In the HATpathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an importantrole, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  8. Protein kinase A governs oxidative phosphorylation kinetics and oxidant emitting potential at complex I

    Directory of Open Access Journals (Sweden)

    Daniel Stephen Lark

    2015-11-01

    Full Text Available The mitochondrial electron transport system (ETS is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC/cyclic AMP (cAMP/Protein kinase A (PKA axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduces complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowers both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS.

  9. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  10. Mechanisms of private meta-governance: an analysis of global private governance for sustainable development

    NARCIS (Netherlands)

    Glasbergen, P.

    2011-01-01

    One of the main characteristics of global governance for sustainable development is its fragmentation. Next to public regulations, there are often many private regulations in force on the same issue, which are induced by collaborations between businesses and NGOs. Traditionally, it is assumed that

  11. Oxidation mechanism of flavanone taxifolin. Electrochemical and spectroelectrochemical investigation

    International Nuclear Information System (INIS)

    Kocábová, Jana; Fiedler, Jan; Degano, Ilaria; Sokolová, Romana

    2016-01-01

    Highlights: • The oxidation mechanism of flavanone taxifolin was proposed. • The oxidation is specific and differs from oxidation of flavonol quercetin. • A benzofuranon common for quercetin is NOT the taxifolin oxidation product. • The absence of C2–C3 double bond is crucial in taxifolin oxidation. - Abstract: The oxidation of taxifolin on glassy carbon electrode in acetonitrile was studied by cyclic voltammetry, UV–vis and IR spectroelectrochemistry. The oxidation products were identified using HPLC-ESI-MS/MS. The two-electron oxidation mechanism differs from that of flavonols (e.g. quercetin) due to the absence of the double bond between atoms C-2 and C-3. As confirmed by IR spectroelectrochemistry, quinone at ring B is formed as low stable intermediate. The oxidation pathway leads to the formation of hydroxylated derivative of taxifolin 2′,3,3′,4′,5,7-hexahydroxyflavone accompanied by the 2,3-desaturation.

  12. Mechanisms of electrochemical reduction and oxidation of nitric oxide

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Beltramo, G.L.; Riet, van B.; Veen, van J.A.R.; Koper, M.T.M.

    2004-01-01

    A summary is given of recent work on the reactivity of nitric oxide on various metal electrodes. The significant differences between the reactivity of adsorbed NO and NO in solution are pointed out, both for the reduction and the oxidation reaction(s). Whereas adsorbed NO can be reduced only to

  13. CORPORATE GOVERNANCE MECHANISMS AND EARNINGS MANAGEMENT: A STATE OF THE ART

    Directory of Open Access Journals (Sweden)

    Vladu Alina Beattrice

    2015-07-01

    Full Text Available Extant research have for long identified that corporate governance has the potential to affect both financial performance and the opportunistic behavior of managers. Studies on the influence of corporate governance mechanisms on firm performance do not often assess the possibility that reported earnings can be misrepresented by managers with the scope of achieving various objectives. This paper examines the relationship between corporate governance mechanisms and earnings management practices. According to prior empirical studies in the field, corporate governance can reduce the extent of manipulative practices and increase the quality of financial reporting. As stated above, this study examined prior research investigating different corporate governance mechanisms that can have negative impact on earnings management practices. In this regard the legal system and the effects of takeover were examined as external mechanisms of corporate governance on manipulative behavior of managers. Internal mechanisms of corporate governance were also assessed. Board independence was found to enhance certain monitoring behaviors of managers while an audit committee can oversee the internal control for financial reporting and the quality of financial information. This paper contributes to corporate governance literature by providing detailed reviews of different corporate governance mechanisms on the most documented practice of creative accounting: earnings management. Limits of the current research are explored as well as the scope for future research.

  14. Primary atmospheric oxidation mechanism for toluene.

    Science.gov (United States)

    Baltaretu, Cristian O; Lichtman, Eben I; Hadler, Amelia B; Elrod, Matthew J

    2009-01-08

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique at temperatures ranging from 228 to 298 K. A major dienedial-producing pathway was detected for the first time for toluene oxidation, and glyoxal and methylglyoxal were found to be minor primary oxidation products. The results suggest that secondary oxidation processes involving dienedial and epoxide primary products are likely responsible for previous observations of glyoxal and methylglyoxal products from toluene oxidation. Because the dienedial-producing pathway is a null cycle for tropospheric ozone production and glyoxal and methylglyoxal are important secondary organic aerosol precursors, these new findings have important implications for the modeling of toluene oxidation in the atmosphere.

  15. Kinetics and mechanism of oxidation of chloramphenicol by 1 ...

    Indian Academy of Sciences (India)

    Unknown

    the kinetics and mechanism of oxidation of CAP by. CBT in HClO4 medium at 323 K for elucidating the mechanism of oxidation of this drug. 2. Experimental. Chloramphenicol (Sigma, USA) was purified before use. CBT was prepared and purified as reported ear- lier.10 AnalaR grade chemicals and double distilled.

  16. Accretion mode of oceanic ridges governed by axial mechanical strength

    Science.gov (United States)

    Sibrant, A. L. R.; Mittelstaedt, E.; Davaille, A.; Pauchard, L.; Aubertin, A.; Auffray, L.; Pidoux, R.

    2018-04-01

    Oceanic spreading ridges exhibit structural changes as a function of spreading rate, mantle temperature and the balance of tectonic and magmatic accretion. The role that these or other processes have in governing the overall shape of oceanic ridges is unclear. Here, we use laboratory experiments to simulate ridge spreading in colloidal aqueous dispersions whose rheology evolves from purely viscous to elastic and brittle when placed in contact with a saline water solution. We find that ridge shape becomes increasingly linear with spreading rate until reaching a minimum tortuosity. This behaviour is predicted by the axial failure parameter ΠF, a dimensionless number describing the balance of brittle and plastic failure of axial lithosphere. Slow-spreading, fault-dominated and fast-spreading, fluid intrusion-dominated ridges on Earth and in the laboratory are separated by the same critical ΠF value, suggesting that the axial failure mode governs ridge geometry. Values of ΠF can also be calculated for different mantle temperatures and applied to other planets or the early Earth. For higher mantle temperatures during the Archaean, our results preclude the predicted formation of large tectonic plates at high spreading velocity.

  17. IT Governance Mechanisms and Administration/IT Alignment in the Public Sector

    DEFF Research Database (Denmark)

    Winkler, Till

    2013-01-01

    The mechanisms of information technology (IT) governance have been widely recognized as practices to sustain alignment of business and IT units. However, the IT governance literature so far has drawn little attention to the possible idiosyncrasies of governance arrangements in the public sector....... In this paper we propose a conceptual model to investigate the relationship between IT governance mechanisms and according performance outcomes specifically for public sector organizations. A survey instrument is developed and validated based on in-depth interviews with IT representatives from three different...

  18. Formation mechanism of motivation of employees of local governments

    Directory of Open Access Journals (Sweden)

    O. M. Shovhelia

    2014-09-01

    Payment mechanisms and incentives can be considered as complete and efficient if wages as the main element of this mechanism does not only reproductive function, but also stimulating. That remuneration and its results should not only be sufficient to offset the costs that occurred in the course of employment of the employee, but also motivate them to realize their physical and intellectual abilities, getting those results are needed municipality, region, state as a whole.

  19. Kinetics and oxidation mechanisms of polycrystaline niobium

    International Nuclear Information System (INIS)

    Paschoal, J.O.A.

    1979-01-01

    The oxidation kinetics of annealed niobium was determined by thermogravimetric analysis between 450 and 800 0 C and for oxygen pressures varying from 20 to 700 mmHg. The oxidation kinetics of cold worked and/or irradiated niobium for temperatures between 500 and 700 0 C, with oxygen pressures varying from 100 to 300 mmHg. Was also determined. Using X-ray diffraction it was found that the oxide formed in the range of temperature and oxygen pressure considered in this research is γ-Nb 2 O 5 . Optical and scanning eletronic microscopy showed that for annealed niobium oxidized under 600 0 C there was formation of non-uniform oxide layers, containing cracks and pores, presenting very irregular metal/pentoxide interface. The presence of sub-oxide NbOsub(z) platelets was observed in this interface. This sub-oxide platelets where not observed in annealed oxidized niobium samples over 600 0 C; the oxide layers formed were compact. At 800 0 C and the beginning at 700 0 C the interfaces were quite regular. Through microhardness measurements for the metal near the metal/pentoxide interface, the formation of oxygen solid solution was found and the oxygen diffusion coefficient was calculated. The results showed that at 600 0 C the oxygen diffusion coefficient in cold worked niobium is three times larger than the value obtained for annealed niobium. The results suggest that the reaction between annealed niobium and oxygen undaer 600 0 C is controlled by reaction in interface where the oxide layers are not compacted, parcially due to Nb sub(z) platelets formation.(Author) [pt

  20. Mechanisms governing the health and performance benefits of exercise

    Science.gov (United States)

    Bishop-Bailey, D

    2013-01-01

    Humans are considered among the greatest if not the greatest endurance land animals. Over the last 50 years, as the population has become more sedentary, rates of cardiovascular disease and its associated risk factors such as obesity, type 2 diabetes and hypertension have all increased. Aerobic fitness is considered protective for all-cause mortality, cardiovascular disease, a variety of cancers, joint disease and depression. Here, I will review the emerging mechanisms that underlie the response to exercise, focusing on the major target organ the skeletal muscle system. Understanding the mechanisms of action of exercise will allow us to develop new therapies that mimic the protective actions of exercise. PMID:24033098

  1. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    Science.gov (United States)

    Rationale: Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  2. Novel exchange mechanisms in the surface diffusion of oxides

    International Nuclear Information System (INIS)

    Harris, Duncan J; Lavrentiev, Mikhail Yu; Harding, John H; Allan, Neil L; Purton, John A

    2004-01-01

    We use temperature-accelerated dynamics to show the importance of exchange mechanisms in surface diffusion and growth of simple oxides. Such mechanisms can dominate transport processes both on terraces and steps for both homoepitaxial and heteroepitaxial growth. We suggest that the mixing inevitable when an exchange mechanism is present must be considered when attempts are made to grow sharp interfaces in oxide nanostructures. (letter to the editor)

  3. Exploring Electric Polarization Mechanisms in Multiferroic Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, Trevor A. [New Jersey Institute of Technology (NJIT), Newark, NJ (United States)

    2017-01-24

    Multiferroic oxides are a class of systems which exhibit coupling between the electrical polarization and the magnetization. These materials show promise to lead to devices in which ferromagnetic memory can be written with magnetic fields or magnetic bits can be written by an electric field. The work conducted in our research focuses on single phase materials. We studied the detailed coupling of the spin and lattice correlations in these systems. In the first phase of the proposal, we explored the complex spin spiral systems and low temperature behavior of hexagonal layered REMnO3 (RE= rare earth, Y and Sc) system following the detailed structural changes which occurred on crossing into the magnetic states. The techniques were applied to other layered materials such as superconductors and thermoelectric where the same layered motif exists. The second phase of the proposal focused on understanding the mechanisms involved in the onset high temperature ferroelectricity ion hexagonal REMnO3 and at low temperature in E-Type magnetic ordered perovskite REMnO3. We wsynthesized preovskite small A site multiferroics by high pressure and high temperature methods. Detailed measurement of the structural properties and dynamics were conducted over a range of length scales from atomic to mesoscopic scale using, x-ray absorption spectroscopy, x-ray diffuse scattering, x-ray and neutron pair distribution analysis and high resolution x-ray diffraction. Changes in vibration modes which occur with the onset of polarization were probed with temperature and pressure dependent infrared absorption spectroscopy. In addition the orthorhombic system (small radius RE ions) which is believed to exhibit electronically driven ferroelectricity and is also not understood was examined. The multiple length scale synchrotron based measurements may assist in developing more detailed models of these materials and possibly lead to device applications. The experimental

  4. Mechanisms governing the health and performance benefits of exercise.

    Science.gov (United States)

    Bishop-Bailey, D

    2013-11-01

    Humans are considered among the greatest if not the greatest endurance land animals. Over the last 50 years, as the population has become more sedentary, rates of cardiovascular disease and its associated risk factors such as obesity, type 2 diabetes and hypertension have all increased. Aerobic fitness is considered protective for all-cause mortality, cardiovascular disease, a variety of cancers, joint disease and depression. Here, I will review the emerging mechanisms that underlie the response to exercise, focusing on the major target organ the skeletal muscle system. Understanding the mechanisms of action of exercise will allow us to develop new therapies that mimic the protective actions of exercise. © 2013 The British Pharmacological Society.

  5. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Science.gov (United States)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  6. Rules and mechanisms governing octahedral tilts in perovskites under pressure

    Science.gov (United States)

    Xiang, H. J.; Guennou, Mael; Íñiguez, Jorge; Kreisel, Jens; Bellaiche, L.

    2017-08-01

    The rotation of octahedra (octahedral tilting) is common in A B O3 perovskites and relevant to many physical phenomena, ranging from electronic and magnetic properties, metal-insulator transitions to improper ferroelectricity. Hydrostatic pressure is an efficient way to tune and control octahedral tiltings. However, the pressure behavior of such tiltings can dramatically differ from one material to another, with the origins of such differences remaining controversial. In this paper, we discover several new mechanisms and formulate a set of simple rules that allow us to understand how pressure affects oxygen octahedral tiltings via the use and analysis of first-principles results for a variety of compounds. Besides the known A -O interactions, we reveal that the interactions between specific B ions and oxygen ions contribute to the tilting instability. We explain the previously reported trend that the derivative of the oxygen octahedral tilting with respect to pressure (dR /dP ) usually decreases with both the tolerance factor and the ionization state of the A ion by illustrating the key role of A -O interactions and their change under pressure. Furthermore, three new mechanisms/rules are discovered, namely that (i) the octahedral rotations in A B O3 perovskites with empty low-lying d states on the B site are greatly enhanced by pressure, in order to lower the electronic kinetic energy; (ii) dR /dP is enhanced when the system possesses weak tilt instabilities, and (iii) for the most common phase exhibited by perovskites—the orthorhombic Pbnm state—the in-phase and antiphase octahedral rotations are not automatically both suppressed or both enhanced by the application of pressure because of a trilinear coupling between these two rotation types and an antipolar mode involving the A ions. We further predict that the polarization associated with the so-called hybrid improper ferroelectricity could be manipulated by hydrostatic pressure by indirectly controlling the

  7. The oxidation mechanism of the antioxidant quercetin in nonaqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Romana, E-mail: romana.sokolova@jh-inst.cas.cz [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic); Degano, Ilaria [Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56100 Pisa (Italy); Ramesova, Sarka; Bulickova, Jana; Hromadova, Magdalena; Gal, Miroslav; Fiedler, Jan [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic); Valasek, Michal [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic)

    2011-08-30

    The knowledge of the degradation pathways of natural dyes used in medieval textiles is necessary for the restoration of their original color. Quercetin, one of such colorants, reportedly yields the wide spectrum of oxidation products in different types of media. This study deals with electrochemical oxidation mechanism of quercetin in nonaqueous solution, which has not been yet attempted. The final oxidation product at the first oxidation wave was identified by HPLC-DAD and GC-MS techniques as 2-(3',4'-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The apparent two-electron process at the potential of the first oxidation wave yields current-voltage shapes with one-electron characteristics. The in situ spectroelectrochemistry measurements proved the oxidation mechanism leading through a short-lived anion radical. Two possibilities of the oxidation mechanism are discussed: two one-electron transfers, which do not have identical but similar redox potentials, or the presence of a disproportionation chemical reaction following the first one electron transfer. The quinone formed in either case is stable only on the time scale of a fast spectroelectrochemistry and undergoes fast hydroxylation reaction, where 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3-one is formed. This compound is oxidized at the potential of the second oxidation wave of quercetin.

  8. Sublethal RNA Oxidation as a Mechanism for Neurodegenerative Disease

    Directory of Open Access Journals (Sweden)

    Mark A. Smith

    2008-05-01

    Full Text Available Although cellular RNA is subjected to the same oxidative insults as DNA and other cellular macromolecules, oxidative damage to RNA has not been a major focus in investigations of the biological consequences of free radical damage. In fact, because it is largely single-stranded and its bases lack the protection of hydrogen bonding and binding by specific proteins, RNA may be more susceptible to oxidative insults than is DNA. Oxidative damage to protein-coding RNA or non-coding RNA will, in turn, potentially cause errors in proteins and/or dysregulation of gene expression. While less lethal than mutations in the genome, such sublethal insults to cells might be associated with underlying mechanisms of several chronic diseases, including neurodegenerative disease. Recently, oxidative RNA damage has been described in several neurodegenerative diseases including Alzheimer disease, Parkinson disease, dementia with Lewy bodies, and prion diseases. Of particular interest, oxidative RNA damage can be demonstrated in vulnerable neurons early in disease, suggesting that RNA oxidation may actively contribute to the onset of the disease. An increasing body of evidence suggests that, mechanistically speaking, the detrimental effects of oxidative RNA damage to protein synthesis are attenuated, at least in part, by the existence of protective mechanisms that prevent the incorporation of the damaged ribonucleotides into the translational machinery. Further investigations aimed at understanding the processing mechanisms related to oxidative RNA damage and its consequences may provide significant insights into the pathogenesis of neurodegenerative and other degenerative diseases and lead to better therapeutic strategies.

  9. The oxidation mechanism of the antioxidant quercetin in nonaqueous media

    International Nuclear Information System (INIS)

    Sokolova, Romana; Degano, Ilaria; Ramesova, Sarka; Bulickova, Jana; Hromadova, Magdalena; Gal, Miroslav; Fiedler, Jan; Valasek, Michal

    2011-01-01

    The knowledge of the degradation pathways of natural dyes used in medieval textiles is necessary for the restoration of their original color. Quercetin, one of such colorants, reportedly yields the wide spectrum of oxidation products in different types of media. This study deals with electrochemical oxidation mechanism of quercetin in nonaqueous solution, which has not been yet attempted. The final oxidation product at the first oxidation wave was identified by HPLC-DAD and GC-MS techniques as 2-(3',4'-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The apparent two-electron process at the potential of the first oxidation wave yields current-voltage shapes with one-electron characteristics. The in situ spectroelectrochemistry measurements proved the oxidation mechanism leading through a short-lived anion radical. Two possibilities of the oxidation mechanism are discussed: two one-electron transfers, which do not have identical but similar redox potentials, or the presence of a disproportionation chemical reaction following the first one electron transfer. The quinone formed in either case is stable only on the time scale of a fast spectroelectrochemistry and undergoes fast hydroxylation reaction, where 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3-one is formed. This compound is oxidized at the potential of the second oxidation wave of quercetin.

  10. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  11. Reaction mechanisms of ruthenium tetroxide mediated oxidations of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Froehaug, Astrid Elisabeth

    1995-12-31

    This thesis reports a study of the mechanism of ruthenium tetroxide mediated oxidations of saturated hydrocarbons, ethers, alkenes and alcohols. Several methods were used. The RuO{sub 4}-mediated oxidations of adamantane and cis-decalin were studied in CCl{sub 4}-CH{sub 3}CN-H{sub 2}O and in acetone-water. The rate of reaction was found to be moderately influenced by the polarity of the solvent. Solvent properties other than the polarity were also found to influence the reaction rates. From the oxidations of adamantane and adamantane-1,3,5,7-d{sub 4} two primary kinetic deuterium isotope effects were found. These were comparable with the deuterium isotope effects found for the analogous oxidations of cis-decalin and cis-decalin-d{sub 18}. The results seem to exclude both a one step hydride abstraction reaction mechanism and a one step concerted mechanism, as well as a scheme where two such mechanisms compete. The observations may be explained by a two step reaction mechanism consisting of a pre-equilibrium with formation of a substrate-RuO{sub 4} complex followed by a concerted rate determining reaction. The RuO{sub 4}-mediated oxidation of ethers was of kinetic second order with a small enthalpy of activation and a large negative entropy of activation. Oxidation of cyclopropylmethyl methyl ether gave methyl cyclopropanecarboxylate, no rearranged products were observed. On RuO{sub 4} oxidations in CCl{sub 4} with NaIO{sub 4} as stoichiometric oxidant, no chlorinated products were observed. Several observations not in agreement with a hydride or a hydrogen abstraction mechanism may be explained by assuming that the reaction proceeds by either a concerted reaction or by a reversible oxidative addition of the ether to RuO{sub 4} followed by a slow concerted step. 228 refs., 9 figs., 27 tabs.

  12. Interaction effects between internal governance mechanisms on the components of initial returns during the IPO

    Directory of Open Access Journals (Sweden)

    Mediha Mezhoud

    2012-12-01

    Full Text Available Our work provides an analysis of the interaction effects between internal governance mechanisms on the components of initial returns during the listing period. The application of multivariate regressions on a sample of 110 IPO French companies during 2005-2010, has allowed us to conclude that the different interactions between these mechanisms significantly influence the level of under / overpricing. Indeed, the positive relationship between internal governance mechanisms and overpricing reflects a substitutability relationship. In contrast, the complementarity effect comes from the negative relationship characterizing the combination of governance mechanisms and the underpricing. Thus, the interactions effects between institutional ownership, board structure and under / overpricing are not conforming to the existence of a complementarity or substitutability relationship between these variables given the absence of a significant combination between these variables

  13. Uncovering governance mechanisms surrounding harbour porpoise conservation in the Danish Skagerrak Sea

    DEFF Research Database (Denmark)

    Sørensen, Thomas Kirk; Kindt-Larsen, Lotte

    2016-01-01

    mainly by the economy and the varying perceptions of the bycatch issue, with great differences between government, NGO's and fishers. Interviews with fishers and fishing effort data reveal intra-sectoral conflicts pertaining to the incompatibility of active trawling and passive gillnetting in the areas......The harbour porpoise (Phocoena phocoena) is the focus of a range of conservation efforts and policies, including the Habitats Directive, aimed at reducing the bycatch of non-target species in gillnet fisheries. This paper describes the governance process and analyses the governance mechanisms...

  14. Mechanism of 1, 1-d2 propene oxidation over oxide catalysts

    International Nuclear Information System (INIS)

    Portefaix, J.L.; Figueras, F.; Forissier, M.

    1980-01-01

    CD 2 CHCH 3 was oxidized over bismuth molybdate, tin-antimony mixed oxides and supported molybdenum and vanadium oxide catalysts. The deuterium retention is high ( > 90%) in the recovered propene. Percentage retentions of deuterium in the acrolein agree with literature data when bismuth molybdate is used as catalyst. On Sb-Sn-O and supported Mo and V oxides, no isotope effect is noticed for the abstraction of the second hydrogen from the olefin. The slow step of the reaction may therefore be different for the oxidation of propene on Bi-Mo-O and Sb-Sn-O. The ethanal produced by oxidation of CD 2 CHCH 3 contains only minor amounts of deuterium, whatever the catalyst used. It is suggested that partial oxidation of propene to acrolein and C-C bond rupture are parallel reactions which involve different intermediates. Possible mechanisms adapted from organic chemistry are presented to explain these findings. 4 tables

  15. Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics

    International Nuclear Information System (INIS)

    Li Liang; Liu Yan

    2009-01-01

    This paper investigated the mechanism and pseudo-kinetics for removal of ammonia by electrochemical oxidation with RuO 2 /Ti anode using batch tests. The results show that the ammonia oxidation rates resulted from direct oxidation at electrode-liquid interfaces of the anode by stepwise dehydrogenation, and from indirect oxidation by hydroxyl radicals were so slow that their contribution to ammonia removal was negligible under the condition with Cl - . The oxidation rates of ammonia ranged from 1.0 to 12.3 mg N L -1 h -1 and efficiency reached nearly 100%, primarily due to the indirect oxidation of HOCl, and followed pseudo zero-order kinetics in electrochemical oxidation with Cl - . About 88% ammonia was removed from the solution. The removed one was subsequently found in the form of N 2 in the produced gas. The rate at which Cl - lost electrons at the anode was a major factor in the overall ammonia oxidation. Current density and Cl - concentration affected the constant of the pseudo zero-order kinetics, expressed by k = 0.0024[Cl - ] x j. The ammonia was reduced to less than 0.5 mg N L -1 after 2 h of electrochemical oxidation for the effluent from aerobic or anaerobic reactors which treated municipal wastewater. This result was in line with the strict discharge requirements

  16. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro; La Mantia, Fabio; Cui, Yi

    2010-01-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  17. Mechanism of glucose electrochemical oxidation on gold surface

    KAUST Repository

    Pasta, Mauro

    2010-08-01

    The complex oxidation of glucose at the surface of gold electrodes was studied in detail in different conditions of pH, buffer and halide concentration. As observed in previous studies, an oxidative current peak occurs during the cathodic sweep showing a highly linear dependence on glucose concentration, when other electrolyte conditions are unchanged. The effect of the different conditions on the intensity of this peak has stressed the limitations of the previously proposed mechanisms. A mechanism able to explain the presence of this oxidative peak was proposed. The mechanism takes into account ion-sorption and electrochemical adsorption of OH-, buffer species (K2HPO4/KH2PO4) and halides. © 2010 Elsevier Ltd. All rights reserved.

  18. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  19. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  20. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage

    Science.gov (United States)

    Redgrove, Kate A.; McLaughlin, Eileen A.

    2017-01-01

    In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte. PMID:29312475

  1. Oxidative Mechanisms of Monocyte-Mediated Cytotoxicity

    Science.gov (United States)

    Weiss, Stephen J.; Lobuglio, Albert F.; Kessler, Howard B.

    1980-01-01

    Human monocytes stimulated with phorbol myristate acetate were able to rapidly destroy autologous erythrocyte targets. Monocyte-mediated cytotoxicity was related to phorbol myristate acetate concentration and monocyte number. Purified preparations of lymphocytes were incapable of mediating erythrocyte lysis in this system. The ability of phorbol myristate acetate-stimulated monocytes to lyse erythrocyte targets was markedly impaired by catalase or superoxide dismutase but not by heat-inactivated enzymes or albumin. Despite a simultaneous requirement for superoxide anion and hydrogen peroxide in the cytotoxic event, a variety of hydroxyl radical and singlet oxygen scavengers did not effect cytolysis. However, tryptophan significantly inhibited cytotoxicity. The myeloperoxidase inhibitor cyanide enhanced erythrocyte destruction, whereas azide reduced it modestly. The inability of cyanide to reduce cytotoxicity coupled with the protective effect of superoxide dismutase suggests that cytotoxicity is independent of the classic myeloperoxidase system. We conclude that monocytes, stimulated with phorbol myristate acetate, generate superoxide anion and hydrogen peroxide, which together play an integral role in this cytotoxic mechanism.

  2. Differential effects of plural ownership and governance mechanisms in limiting shirkers and free riders

    OpenAIRE

    Silkoset, Ragnhild; Nygaard, Arne; Kidwell, Roland E.

    2016-01-01

    Using evidence from paired franchisor-franchisee dyads, this study identifies how plural formed ownership mechanisms curb the risk of shirking and free riding in franchise systems. These risks have damaging effects on the invested capital of franchisee entrepreneurs. Although shirking and free riding produce a major source of uncertainty for the franchisee entrepreneur it can be limited by plural formed governance dimensions. These mechanisms have different effects based on unit status,...

  3. Investigating the Relationship between Governance Mechanisms and the Disclosure of IT Control Weaknesses

    Science.gov (United States)

    Hamdan, Basil

    2012-01-01

    The current research is concerned with exploring the quality of information technology (IT) control over financial reporting systems as reported under Section 404 of the Sarbanes-Oxley Act of 2002. More specifically, this dissertation examines the association between organizational governance mechanisms and the occurrence and subsequent disclosure…

  4. The Influence of Corporate Governance Mechanism on the Relationship between Related Party Transactions and Earnings Management

    Directory of Open Access Journals (Sweden)

    Aria Farah Mita

    2014-04-01

    Full Text Available The objective of this study is to investigate the relationship between related party transactions (RPT and earnings management. This study argues there is a different influence between RPT a priori likely to result in expropriation and RPT a priori not likely to result in expropriation. RPT a priori likely to result in expropriation creates an incentive to management or controlling shareholder to overstate income to cover or mask their expropriation. This study uses non-absolute discretionary accruals based on Kazsnik model to proxy earnings management. Corporate governance mechanism should reduce the incentive to overstate income in a company that involves in RPT a priori likely to result in expropriation. The results of this study show that the earnings management (income increasing is affected by the existence of RPT a priori likely to result in expropriation and corporate governance mechanism, but it is not affected by the size/value of the transactions. As expected, companies involving in RPT a priori likely to result in expropriation with weak corporate governance mechanism, tend to manage earnings that increase income. We find that strong corporate governance mechanism decreases the discretionary accruals in companies which have RPT a priori likely to result in expropriation.

  5. Effect of corporate governance mechanisms on the relationship between legal origins and cost of debt

    DEFF Research Database (Denmark)

    Farooq, Omar; Derrabi, Mohamed

    2012-01-01

    How do differences in country-level governance and enforcement mechanisms affect firms? Using a large dataset from the MENA region, we document that differences in legal traditions translate into differences in cost of debt. Our results show that firms headquartered in the common law countries ha...

  6. Kinetics and mechanism of oxidation of carbidized electrolytic chromium coatings

    International Nuclear Information System (INIS)

    Arkharov, V.I.; Yar-Mukhamedov, Sh.Kh.

    1978-01-01

    Thermal stability carbidized electrolytic chromium coatings has been studied depending on the conditions of their formation; the specific features of the mechanism of oxidation at 1200 deg in an air atmosphere have been elucidated. It has been established that kinetics of high temperature oxidation of the coatings depends essentially on the conditions of their formation and on the composition of steel to which the coating is applied. It has been shown that two oxidation mechanisms are possible: by diffusion of the residual chromium through a carbide layer along the carbide grain boundaries outwards or, when there is no residual chromium, by chemical reaction of carbon combustion and oxidation of the liberated chromium. The comparison of oxidation kinetic curves of the samples of 38KhMYuA, 35KhGSA, and DI-22 steels with and without coating has shown that the coatings under study have a better protective effect on 38KhMYuA steel than on 35KhGSA, although without coating oxidability of the first steel is higher than that of the second

  7. Transport Physics Mechanisms in Thin-Film Oxides.

    Science.gov (United States)

    Tierney, Brian D.; Hjalmarson, Harold P.; Jacobs-Gedrim, Robin B.; James, Conrad D.; Marinella, Matthew M.

    A physics-based model of electron transport mechanisms in metal-insulating oxide-metal (M-I-M) systems is presented focusing on transport through the metal-oxide interfaces and in the bulk of the oxide. Interface tunneling, such as electron tunneling between the metal and the conduction band, or to oxide defect states, is accounted for via a WKB model. The effects of thermionic emission are also included. In the bulk of the oxide, defect-site hopping is dominant. Corresponding continuum calculations are performed for Ta2O5 M-I-M systems utilizing two different metal electrodes, e.g., platinum and tantalum. Such an asymmetrical M-I-M structure, applicable to resistive memory applications or oxide-based capacitors, reveals that the current can be either bulk or interface limited depending on the bias polarity and concentration of oxygen vacancy defects. Also, the dominance of some transport mechanisms over others is shown to be due to a complex interdependence between the vacancy concentration and bias polarity. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Kinetics that govern the release of tritium from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1986-01-01

    The Lithium Blanket Module (LBM) program being conducted at the Princeton Plasma Physics Laboratory requires that tritium concentrations as low as 0.1 nCi/g, bred in both LBM lithium oxide pellets and gram-size lithium samples, be measured with an uncertainty not exceeding +/-6%. This thesis reports two satisfactory methods of assaying LBM pellets and one satisfactory method of assaying lithium samples. Results of a fundamental kinetic investigation are also reported. The thermally driven release of tritium from neutron-irradiated lithium oxide pellets is studied between the temperatures of 300 and 400 0 C. The observed release clearly obeys first-order kinetics, and the governing activation energy appears to be 28.4 kcal/mole. Finally, a model is presented that may explain the thermally driven release of tritium from a lithium oxide crystal and assemblies thereof. It predicts that under most circumstances the release is controlled by either the diffusion of a tritiated species through the crystal, or by the desorption of tritiated water from it

  9. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  10. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453 (Russian Federation); Kapralov, Alexandr A. [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Michael, Zachary P.; Burkert, Seth C. [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shurin, Michael R. [Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 (United States); Star, Alexander [Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Shvedova, Anna A., E-mail: ats@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505 (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219 (United States); Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2016-05-15

    Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells – myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase – to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the “dormant” peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and ‘unmasking’ of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation. - Highlights: • Nanoparticles can be degraded by

  11. Mechanism of calcium oxide excitation by atom hydrogen

    International Nuclear Information System (INIS)

    Kharlamov, V.F.

    1991-01-01

    Heterogeneous recombination of hydrogen atoms on the surface of calcium oxide proceeds according to the Langmuir-Hinshelwood mechanism with participation of atoms in two different states, belonging to adsorption centres of the same type. CaO excitation is broughty about by vibration-electron transitions during associative desorption of H 2 molecules

  12. Quantum chemical investigation of mechanisms of silane oxidation

    DEFF Research Database (Denmark)

    Mader, Mary M.; Norrby, Per-Ola

    2001-01-01

    Several mechanisms for the peroxide oxidation of organosilanes to alcohols are compared by quantum chemical calculations, including solvation with the PCM method. Without doubt, the reaction proceeds via anionic, pentacoordinate silicate species, but a profound difference is found between in vacuo...

  13. Kinetics and mechanism of oxidation of aliphatic primary alcohols by ...

    Indian Academy of Sciences (India)

    Unknown

    Kinetics and mechanism of oxidation of aliphatic primary alcohols by quinolinium bromochromate. SONU SARASWAT, VINITA SHARMA and K K BANERJI*. Department of Chemistry, JNV University, Jodhpur 342 005, India e-mail: banerjikk@rediffmail.com. MS received 4 December 2001; revised 2 November 2002.

  14. Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue ...

    African Journals Online (AJOL)

    NICOLAAS

    Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue-R dye by Hypochlorite and Role of Acid there in. Srinivasu Nadupalli, Venkata D.B.C. Dasireddy, Neil A. Koorbanally and Sreekantha B. Jonnalagadda*. School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private.

  15. [Isolation and identification of Mn oxidizing bacterium Aminobacter sp. H1 and its oxidation mechanism].

    Science.gov (United States)

    Yan, Ping; Jiang, Li-Ying; Chen, Jian-Meng; He, Zhi-Min; Xiao, Shao-Dan; Jiang, Yi-Feng

    2014-04-01

    A bacterium with high manganese oxidizing activity was isolated from a biological manganese removal filter and named as H1. Based on its characteristics and the analysis of 16S rDNA sequence, the strain H1 belonged to the genus Aminobacter sp. and its manganese oxidizing ability had never been reported. In this paper, the microbiologic properties of the strain H1, the manganese oxidation mechanisms and characteristics of biogenic manganese oxides were investigated. The results showed that the maximal tolerant Mn concentration of strain H1 was 50 mmol x L(-1), and Mn(II) could be completely removed by strain H1 when the concentration was lower than 10 mmol x L(-1). Strain H1 could oxidize Mn2+ by both the production of manganese oxidizing activity factor and alkaline metabolites during growth, which were synthesized in the cell and then secreted into extracellular culture medium. During the oxidation process, the intermediate of soluble Mn(III) was detected. SEM showed that the biogenic manganese oxides were amorphous and poorly-crystalline, and it closely combined with bacteria. The components of the biogenic manganese oxides produced by strain H1 were identified as MnCO3, MnOOH, Mn3O4 and MnO2 by XRD, XPS and SEM-EDX.

  16. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  17. EXTERNAL CORPORATE GOVERNANCE MECHANISMS: MERGERS AND ACQUISITIONS ON THE BRAZILIAN MARKET

    Directory of Open Access Journals (Sweden)

    Mario Augusto Parente Monteiro

    2014-08-01

    Full Text Available The research aims to answer the following question: What is the effectiveness of mergers and acquisitions in the Brazilian market as external corporate governance mechanism? The main objective of the study is to verify if mergers and acquisitions operations in Brazilian market may act as an external mechanism of corporate governance, replacing managers and, as a consequence of changes in management, improving financial performance. The study is exploratory, qualitative in its approach, supported by documentary research on secondary data concerning an intentional sample of Brazilian companies aiming to identify the effect of M&A operations on the corporate governance structure of the acquired firm and on its financial results. Data obtained on the website of the Brazilian Securities and Exchange Commission (CVM, related to Brazilian M&A operations in the period 2005-2010, were analyzed. Although M&A operations in Brazil were found to have disciplinary nature in our sample of firms in the studied period, our results are inconclusive regarding the effectiveness of these transactions and external governance mechanisms.

  18. The importance and role of the corporate governance mechanism in increasing the level of management efficiency

    Directory of Open Access Journals (Sweden)

    Đorđević Slaviša

    2012-01-01

    Full Text Available There is inherent conflict of interests between owners and managers. They try to solve it in different ways. In this paper we have tried to briefly introduce the most important internal mechanisms of corporate governance (monitoring by the board of directors, incentive system for managers, internal audit and the importance of institutional investors. The financial scandals that included the world-famous corporations as well as current world economic crisis suggests that the protection of owners should continue to work to improve existing or new solutions that will improve the level of corporate governance.

  19. Oxidative stress and mechanisms of ochronosis in alkaptonuria.

    Science.gov (United States)

    Braconi, Daniela; Millucci, Lia; Bernardini, Giulia; Santucci, Annalisa

    2015-11-01

    Alkaptonuria (AKU) is a rare metabolic disease due to a deficient activity of the enzyme homogentisate 1,2-dioxygenase (HGD), involved in Phe and Tyr catabolism. Due to such a deficiency, AKU patients undergo accumulation of the metabolite homogentisic acid (HGA), which is prone to oxidation/polymerization reactions causing the production of a melanin-like pigment. Once the pigment is deposited onto connective tissues (mainly in joints, spine, and cardiac valves), a classical bluish-brown discoloration is imparted, leading to a phenomenon known as "ochronosis", the hallmark of AKU. A clarification of the molecular mechanisms for the production and deposition of the ochronotic pigment in AKU started only recently with a range of in vitro and ex vivo human models used for the study of HGA-induced effects. Thanks to redox-proteomic analyses, it was found that HGA could induce significant oxidation of a number of serum and chondrocyte proteins. Further investigations allowed highlighting how HGA-induced proteome alteration, lipid peroxidation, thiol depletion, and amyloid production could contribute to oxidative stress generation and protein oxidation in AKU. This review briefly summarizes the most recent findings on HGA-induced oxidative stress in AKU, helping in the clarification of the molecular mechanisms of ochronosis and potentially providing the basis for its pharmacological treatment. Future work should be undertaken in order to validate in vivo the results so far obtained in in vitro AKU models. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Laboratory, Richland, WA (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1999-12-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress-corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary-side IG attack or IGSCC is commonly attributed to the presence of strong, caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work conducted in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  1. Internal oxidation as a mechanism for steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Gendron, T.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Scott, P.M. [Framatome, Paris (France); Bruemmer, S.M. [Pacific Northwest National Lab., Richland, Washington (United States); Thomas, L.E. [Washington State Univ., School of Mechanical and Materials Engineering, Pullman, WA (United States)

    1998-07-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  2. Research progress in formation mechanism of anodizing aluminum oxide

    Science.gov (United States)

    Lv, Yudong

    2017-12-01

    The self-ordering porous anodizing aluminum oxide (AAO) has attracted much attention because of its potential value of application. Valve metals (Al, Ti, Zr etc.) anodic studies have been conducted for more than 80 years, but the mechanism of the formation of hexagonal prismatic cell structure has so far been different. In this paper, the research results of AAO film formation mechanism are reviewed, and the growth models of several AAO films are summarized, including the field-assisted dissolution (FAD), the viscous flow model, the critical current density effect model, the bulk expansion stress model and the steady-state pore growth model and so on. It analyzed the principle of each model and its rationality. This paper will be of great help to reveal the nature of pore formation and self-ordering, and with the hope that through the study of AAO film formation mechanism, the specific effects of various oxidation parameters on AAO film morphology can be obtained.

  3. Internal oxidation as a mechanism for steam generator tube degradation

    International Nuclear Information System (INIS)

    Gendron, T.S.; Scott, P.M.; Bruemmer, S.M.; Thomas, L.E.

    1998-01-01

    Internal oxidation has been proposed as a plausible mechanism for intergranular stress corrosion cracking (IGSCC) of alloy 600 steam generator tubing. This theory can reconcile the main thermodynamic and kinetic characteristics of the observed cracking in hydrogenated primary water. Although secondary side IG attack or IGSCC is commonly attributed to the presence of strong caustic or acidic solutions, more recent evidence suggests that this degradation takes place in a near-neutral environment, possibly dry polluted steam. As a result, internal oxidation is also a feasible mechanism for secondary side degradation. The present paper reviews experimental work carried out in an attempt to determine the validity of this mechanism. The consequences for the expected behaviour of alloys 690 and 800 replacement materials are also described. (author)

  4. Oxidation mechanism and passive behaviour of nickel in molten carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, J.P.T. (ECN Fossil Fuels, Petten (Netherlands)); Ament, P.C.H.; De Wit, J.H.W. (Div. of Corrosion, Lab. for Maaterials Sceince, Delft Univ. of Technology, Delft (Netherlands))

    1994-07-01

    The oxidation and passivation mechanism and the passive behaviour of nickel in molten carbonate have been investigated with impedance measurements. The oxidation of nickel proceeds according to a dissolution and reprecipitation process. The slowest steps in the reaction sequence are the dissociation reaction of the carbonate and the diffusion of the formed NiO to the metal surface. In the passive range, dissolution of Ni[sup 2+] proceeds after diffusion of Ni[sup 2+] through the oxide layer. The Ni[sup 2+] is formed at the metal/oxide interface. The slowest process is the diffusion of bivalent nickel ions through the passive scale. The formation of trivalent nickel ions probably takes place at the oxide/melt interface. This reaction is accompanied by the incorporation of an oxygen ion and a nickel vacancy in the NiO lattice. The trivalent nickel ions and the nickel vacancy diffuse to the bulk of the oxide scale. The slowest step in this sequence is the dissociation of the carbonate ions and the incorporation of the oxygen ion in the NiO lattice. 9 figs., 2 tabs., 11 refs.

  5. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    Science.gov (United States)

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  6. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  7. Linking governance mechanisms to health outcomes: a review of the literature in low- and middle-income countries.

    Science.gov (United States)

    Ciccone, Dana Karen; Vian, Taryn; Maurer, Lydia; Bradley, Elizabeth H

    2014-09-01

    We conducted a synthesis of peer-reviewed literature to shed light on links between governance mechanisms and health outcomes in low- and middle-income countries. Our review yielded 30 studies, highlighting four key governance mechanisms by which governance may influence health outcomes in these settings: Health system decentralization that enables responsiveness to local needs and values; health policymaking that aligns and empowers diverse stakeholders; enhanced community engagement; and strengthened social capital. Most, but not all, studies found a positive association between governance and health. Additionally, the nature of the association between governance mechanisms and health differed across studies. In some studies (N = 9), the governance effect was direct and positive, while in others (N = 5), the effect was indirect or modified by contextual factors. In still other studies (N = 4), governance was found to have a moderating effect, indicating that governance mechanisms influenced other system processes or structures that improved health. The remaining studies reported mixed findings about the association between governance and health (N = 6), no association between governance and health (N = 4), or had inconclusive results (N = 2). Further exploration is needed to fully understand the relationship between governance and health and to inform the design and delivery of evidence-based, effective governance interventions around the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The study of the oxidation of the natural flavonol fisetin confirmed quercetin oxidation mechanism

    International Nuclear Information System (INIS)

    Ramešová, Šárka; Sokolová, Romana; Degano, Ilaria

    2015-01-01

    Highlights: • The oxidation mechanisms of fisetin and quercetin were compared. • The oxidation product of fisetin was identified even if it was not stable. • A benzofuranon derivative is the common oxidation product of flavonols. • Fisetin decomposes in solution during minutes handled in the presence of air. - Abstract: Oxidation of the bioactive flavonoid fisetin was studied under inert atmosphere and under ambient conditions. The presence of fast subsequent chemical reactions following the electron transfer was supported by in situ spectroelectrochemistry and identification of products by HPLC-DAD and HPLC–ESI-MS/MS. In the absence of oxygen, 2,6-dihydroxy-2-(3′,4′-dihydroxybenzoyl)-benzofuran-3(2H)-one was identified as the only oxidation product of fisetin. This product was found also as the main oxidation product in the presence of oxygen. The oxidation pathway leading to formation of a benzofuranone derivative can be considered as common for flavonols containing C2-C3 double bond, C3-OH group and dihydroxy-substituted phenyl moiety in its structure. This product was not stable and decomposed further even in contact with oxygen coming from eluents during chromatography. Two oxidation pathways occur under ambient conditions. DFT calculations support the result.

  9. Family controlled firm, governance mechanisms and corporate performance: Evidence from Indonesia

    Directory of Open Access Journals (Sweden)

    Eko Suyono

    2016-07-01

    Full Text Available This study investigates, firstly, the influence of family-controlled firm on corporate performance, and secondly, the influences of corporate governance mechanisms including control variable on corporate performance in the companies listed on the Indonesian Stock Exchange. By using five years (2009-2013 company data, this study used Ordinary Least Square (OLS regression to test the hypotheses. The results based on OLS, indicate that family controlled firms tend to have better performance than non Family controlled firms. Moreover, in regard to the link between governance variables and corporate performance, only managerial ownership exhibits a positive relation with corporate performance, for both proxies, i.e. Tobins Q and ROA. Yet, the rests of governance variables (i.e. institutional ownership, audit committee, board of directors and independent board of commissioners do not confirm the relationship with corporate performance. These findings have significant policy implications for the government, regulatory bodies, companies and other stakeholders including the investors in Indonesia to shape and implement an optimal governance system that can improve corporate performance.

  10. Making partner relationship management systems work: The role of partnership governance mechanisms

    OpenAIRE

    Storey, C.; Kocabasoglu-Hillmer, C.

    2013-01-01

    While the adoption of Partner Relationship Management (PRM) systems by suppliers to manage and monitor its network of partners (i.e. resellers) has been on the rise, the performance improvements have not been consistently realized. Governance theory suggests this may be due to how the PRM system builds on the mechanisms employed by the supplier to oversee their partners. This study investigates how the two capabilities of PRM systems (relationship and fulfillment capabilities) and two partner...

  11. Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria Nitrosomonas to the Biocide Free Nitrous Acid.

    Science.gov (United States)

    Laloo, Andrew E; Wei, Justin; Wang, Dongbo; Narayanasamy, Shaman; Vanwonterghem, Inka; Waite, David; Steen, Jason; Kaysen, Anne; Heintz-Buschart, Anna; Wang, Qilin; Schulz, Benjamin; Nouwens, Amanda; Wilmes, Paul; Hugenholtz, Philip; Yuan, Zhiguo; Bond, Philip L

    2018-05-01

    Free nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system. However, the molecular mechanisms governing this atypical tolerance of AOB to FNA have yet to be understood. Herein we investigate the varying effects of the antimicrobial FNA on activated sludge containing AOB and NOB using an integrated metagenomics and label-free quantitative sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) metaproteomic approach. The Nitrosomonas genus of AOB, on exposure to FNA, maintains internal homeostasis by upregulating a number of known oxidative stress enzymes, such as pteridine reductase and dihydrolipoyl dehydrogenase. Denitrifying enzymes were upregulated on exposure to FNA, suggesting the detoxification of nitrite to nitric oxide. Interestingly, proteins involved in stress response mechanisms, such as DNA and protein repair enzymes, phage prevention proteins, and iron transport proteins, were upregulated on exposure to FNA. In addition enzymes involved in energy generation were also upregulated on exposure to FNA. The total proteins specifically derived from the NOB genus Nitrobacter was low and, as such, did not allow for the elucidation of the response mechanism to FNA exposure. These findings give us an understanding of the adaptive mechanisms of tolerance within the AOB Nitrosomonas to the biocidal agent FNA.

  12. Gaps in governance: protective mechanisms used by nurse leaders when policy and practice are misaligned.

    Science.gov (United States)

    Knight, Kaye M; Kenny, Amanda; Endacott, Ruth

    2015-04-09

    Due to large geographical distances, the telephone is central to enabling rural Australian communities to access care from their local health service. While there is a history of rural nurses providing care via the telephone, it has been a highly controversial practice that is not routinely documented and little is known about how the practice is governed. The lack of knowledge regarding governance extends to the role of Directors of Nursing as clinical leaders charged with the responsibility of ensuring practice safety, quality, regulation and risk management. The purpose of this study was to identify clinical governance processes related to managing telephone presentations, and to explore Directors of Nursing perceptions of processes and clinical practices related to the management of telephone presentations to health services in rural Victoria, Australia. Qualitative documentary analysis and semi structured interviews were used in the study to examine the content of health service policies and explore the perceptions of Directors of Nursing in eight rural health services regarding policy content and enactment when people telephone rural health services for care. Participants were purposively selected for their knowledge and leadership role in governance processes and clinical practice. Data from the interviews were analysed using framework analysis. The process of analysis resulted in the identification of five themes. The majority of policies reviewed provided little guidance for managing telephone presentations. The Directors of Nursing perceived policy content and enactment to be largely inadequate. When organisational structures failed to provide appropriate governance for the context, the Directors of Nursing engaged in protective mechanisms to support rural nurses who manage telephone presentations. Rural Directors of Nursing employed intuitive behaviours to protect rural nurses practicing within a clinical governance context that is inadequate for the

  13. Mechanical tearing of graphene on an oxidizing metal surface

    International Nuclear Information System (INIS)

    George, Lijin; Gupta, Aparna; Shaina, P R; Jaiswal, Manu; Gupta, Nandita Das

    2015-01-01

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3–0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp"3-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm. (paper)

  14. Mechanical tearing of graphene on an oxidizing metal surface.

    Science.gov (United States)

    George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-11

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  15. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    Energy Technology Data Exchange (ETDEWEB)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H2 generation and evolution of CO2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C3–C6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonyl group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.

  16. The Origin of Hierarchical Structure in Self-Assembled Graphene Oxide Papers and the Effect on Mechanical Properties

    Science.gov (United States)

    Nandy, Krishanu

    were found to play a key role in yielding tough papers with high failure stress. Finally, efforts to investigate the microstructural mechanisms that govern the mechanical properties of graphene oxide papers by 3D printing of a tensile tester are detailed. It is intended to release the design of the tensile tester to the community in an effort to reduce cost and improve availability of lab equipment.

  17. The governance of clean energy in India: The clean development mechanism (CDM) and domestic energy politics

    International Nuclear Information System (INIS)

    Phillips, Jon; Newell, Peter

    2013-01-01

    This paper explores the ways in which clean energy is being governed in India. It does so in order to improve our understanding of the potential and limitations of carbon finance in supporting lower carbon energy transitions, and to strengthen our appreciation of the role of politics in enabling or frustrating such endeavors. In particular we emphasize the importance of politics and the nature of India's political economy in understanding the development of energy sources and technologies defined as ‘clean’ both by the United Nations Clean Development Mechanism (CDM) and leading international actors. By considering the broad range of institutions that exert formal and informal political influence over how the benefits and costs of the CDM are distributed, the paper highlights shortcomings in the narrow way in which CDM governance has been conceptualized to date. This approach goes beyond analysis of technocratic aspects of governance – often reduced to a set of institutional design issues – in order to appreciate the political nature of the trade-offs that characterize debates about India's energy future and the relations of power which will determine how, and on whose terms, they are resolved. - Highlights: • Clean energy governance in practice is shaped by political power and influence. • Governance of clean energy requires strong institutions from local to global levels. • Un-governed areas of energy policy are often as revealing of the exercise of power as areas where there explicit policy is in place. • Climate and carbon finance interventions need to better understand the landscape of political power which characterises India’s energy sector

  18. Mechanism-Based Design of Green Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rybak-Akimova, Elena [Tufts Univ., Medford, MA (United States)

    2015-03-16

    situation. Growing families of synthetic iron complexes that resemble active sites of metalloenzymes produce metal-based intermediates (rather than hydroxyl radicals) in reactions with oxygen donors. These complexes are very promising for selective oxygen and peroxide activation. In order to understand the mechanisms of metal-based small molecule activation, kinetically competent metal-oxygen intermediates must be identified. One of the grand challenges identified by the Department of Energy workshop "Catalysis for Energy" is understanding mechanisms and dynamics of catalyzed reactions. The research summarized herein focuses on detailed characterization of the formation and reactivity of various iron-peroxo- and iron-oxo intermediates that are involved in catalysis. Rates of rapid reactions were studied at low temperatures by a specialized technique termed cryogenic stopped-flow spectrophotometry. These measurements identified reaction conditions which favor the formation of catalytically competent oxidants. Chemical structures of reactive complexes was determined, and new, efficient catalysts for hydrocarbon oxidation were synthesized. Importantly, these catalysts are selective, they promote oxidation of hydrocarbons at a specific site. The catalysts are also efficient and robust, hundreds of cycles of substrate oxidation occur within minutes at room temperature. Furthermore, they enable utilization of environmentally friendly oxidants, such as hydrogen peroxide, which produces water as the only byproduct. Mechanistic insights uncovered the role of various acid-containing additives in catalytic oxidations. Proton delivery to the active catalytic sites facilitated oxidations, similarly to the catalytic pathways in metal-containing enzymes. Under certain conditions, two metals in one complex can act in concert, modeling the reactivity of a bacterial enzyme which converts methane into methanol. In related studies, a family of nickel complexes that react with carbon dioxide at

  19. Mechanical behavior and coupling between mechanical and oxidation in alloy 718: effect of solide solution elements

    International Nuclear Information System (INIS)

    Max, Bertrand

    2014-01-01

    Alloy 718 is the superalloy the most widely used in industry due to its excellent mechanical properties, as well as oxidation and corrosion resistance in wide range of temperatures and solicitation modes. Nevertheless, it is a well-known fact that this alloy is sensitive to stress corrosion cracking and oxidation assisted cracking under loading in the range of temperatures met in service. Mechanisms explaining this phenomenon are not well understood: nevertheless, it is well established that a relation exists between a change in fracture mode and the apparition of plastic instabilities phenomenon. During this study, the instability phenomenon, Portevin-Le Chatelier effect, in alloy 718 was studied by tensile tests in wide ranges of temperatures and strain rates. Different domains of plastic instabilities have been evidenced. Their characteristics suggest the existence of interactions between dislocations and different types of solute elements: interstitials for lower temperatures and substitutionals for higher testing temperatures. Mechanical spectroscopy tests have been performed on alloy 718 and various alloys which composition is comparable to that of alloy 718. These tests prove the mobility of molybdenum atoms in the alloy in the studied temperature range. Specific tests have been performed to study interaction phenomenon between plasticity and oxidation. These results highlight the strong effect of plastic strain rate on both mechanical behavior and intergranular cracking in alloy 718. The subsequent discussion leads to propose hypothesis on coupling effects between deformation mechanisms and oxidation assisted embrittlement in the observed cracking processes. (author)

  20. Nonbinding Legal Instruments in Governance for Global Health: Lessons from the Global AIDS Reporting Mechanism.

    Science.gov (United States)

    Taylor, Allyn; Alfvén, Tobias; Hougendobler, Daniel; Buse, Kent

    2014-01-01

    Recent debate over World Health Organization reform has included unprecedented attention to international lawmaking as a future priority function of the Organization. However, the debate is largely focused on the codification of new binding legal instruments. Drawing upon lessons from the success of the Global AIDS Reporting Mechanism, established pursuant to the United Nations' Declaration of Commitment on HIV/AIDS, we argue that effective global health governance requires consideration of a broad range of instruments, both binding and nonbinding. A detailed examination of the Global AIDS Reporting Mechanism reveals that the choice of the nonbinding format makes an important contribution to its effectiveness. For instance, the flexibility and adaptability of the nonbinding format have allowed the global community to: (1) undertake commitments in a timely manner; (2) adapt and experiment in the face of a dynamic pandemic; and (3) grant civil society an unparalleled role in monitoring and reporting on state implementation of global commitments. UNAIDS' institutional support has also played a vital role in ensuring the continuing effectiveness of the Global AIDS Reporting Mechanism. Overall, the experience of the Global AIDS Reporting Mechanism evidences that, at times, nimbler nonbinding instruments can offer benefits over slower, more rigid binding legal approaches to governance, but depend critically, like all instruments, on the perceived legitimacy thereof. © 2014 American Society of Law, Medicine & Ethics, Inc.

  1. Internal corporate governance mechanisms and audit report lag: A study of Malaysian listed companies

    Directory of Open Access Journals (Sweden)

    Ummi Junaidda Binti Hashim

    2012-11-01

    Full Text Available This study attempts to investigate the link between corporate governance mechanisms and audit report lag for companies listed on Bursa Malaysia from 2007 to 2009. The 288 companies listed on Bursa Malaysia have been randomly selected. The corporate governance mechanisms examined include the board of directors and audit committee. It shows that there are significant negative relationships between board diligence, audit committee independence and expertise. The higher the number of meetings being held indicates that the board is discharging their role towards the company. The results show that audit committee independence and audit committee expertise could assist in reducing audit report lag among companies in Malaysia. Its provide some evidence supporting the resource based theory, whereby characteristics of the audit committee, such as the resources and capabilities, could improve companies’ performance as well as corporate reporting.However, it could not provide any evidence concerning the link between board independence, board expertise, CEO duality and audit committee diligence on audit report lag. This study provides comprehensive examination of ARL on Malaysian listed companies for three years period. It is consider the initial study to provide a thorough examination of the association between corporate governance characteristics and ARL.

  2. Relationship between Marketing Strategies and Governance Mechanisms: A Study in Exploration Chain Beef Cattle

    Directory of Open Access Journals (Sweden)

    Filipe Quevedo-Silva

    2015-09-01

    Full Text Available The relationship between actors has been unspoilt by marketing through the bias of Transaction Costs Economics. Some authors suggest that a marketing strategy can directly impact the transactional characteristics and hence the governance mechanisms chosen to coordinate transactions. Studies suggest that future work in the field of marketing include, among other factors, aspects related to the relationship between the actors. In this context, this article aims to analyze how marketing strategies can affect the choice of governance mechanisms. The study object is the chain of beef, view their representation to the national economy. To this end, we conducted a qualitative study using semi-structured interviews with various actors in the chain. It was possible to verify the existence of the relationship between marketing strategy and governance structure. In one of the cases, product differentiation, translated into more specific assets, led the producer to perform a relational contract with the fridge and to distribute your product, make an integration with retailers, through the opening of a boutique of meat. Factor that was not observed in transactions involving producers on products without distinction, for which the transactions via spot market are prevalent.  

  3. Water, Resilience and the Law: From General Concepts and Governance Design Principles to Actionable Mechanisms

    Science.gov (United States)

    Hill Clarvis, M.; Allan, A.; Hannah, D. M.

    2013-12-01

    Climate change has significant ramifications for water law and governance, yet, there is strong evidence that legal regulations have often failed to protect environments or promote sustainable development. Scholars have increasingly suggested that the preservation and restoration paradigms of legislation and regulation are no longer adequate for climate change related challenges in complex and cross-scale social-ecological systems. This is namely due to past assumptions of stationarity, uniformitarianism and the perception of ecosystem change as predictable and reversible. This paper reviews the literature on law and resilience and then presents and discusses a set of practical examples of legal mechanisms from the water resources management sector, identified according to a set of guiding principles from the literature on adaptive capacity, adaptive governance as well as adaptive and integrated water resources management. It then assesses the aptness of these different measures according to scientific evidence of increased uncertainty and changing ecological baselines. A review of the best practice examples demonstrates that there are a number of best practice examples attempting to integrate adaptive elements of flexibility, iterativity, connectivity and subsidiarity into a variety of legislative mechanisms, suggesting that there is not as significant a tension between resilience and the law as many scholars have suggested. However, while many of the mechanisms may indeed be suitable for addressing challenges relating to current levels of change and uncertainty, analysis across a broader range of uncertainty highlights challenges relating to more irreversible changes associated with greater levels of warming. Furthermore the paper identifies a set of pre-requisites that are fundamental to the successful implementation of such mechanisms, namely monitoring and data sharing, financial and technical capacity, particularly in nations that are most at risk with the

  4. Kinetics and mechanism of methane oxidation in supercritical water

    International Nuclear Information System (INIS)

    Rofer, C.K.; Streit, G.E.

    1988-10-01

    This project, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to achieve an understanding of the technology for use in scaling up and applying oxidation in supercritical water as a viable process for treating a variety of Department of Energy Defense Programs (DOE-DP) waste streams. This report presents experimental results for the kinetics of the oxidation of methane and methanol in supercritical water and computer modeling results for the oxidation of carbonmonoxide and methane in supercritical water. The experimental and modeling results obtained to date on these one-carbon model compounds indicate that the mechanism of oxidation in supercritical water can be represented by free-radical reactions with appropriate modifications for high pressure and the high water concentration. If these current trends are sustained, a large body of existing literature data on the kinetics of elementary reactions can be utilized to predict the behavior of other compounds and their mixtures. 7 refs., 4 figs., 3 tabs

  5. Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals.

    Science.gov (United States)

    Zhao, Xiaocan; Wang, Liming

    2017-05-04

    Furfural is emitted into the atmosphere because of its potential applications as an intermediate to alkane fuels from biomass, industrial usages, and biomass burning. The kinetic and mechanistic information on the furfural chemistry is necessary to assess the fate of furfural in the atmosphere and its impact on the air quality. Here we studied the atmospheric oxidation mechanisms of furfural initiated by the OH radicals using quantum chemistry and kinetic calculations. The reaction of OH and furfural was initiated mainly by OH additions to C 2 and C 5 positions, forming R2 and R5 adducts, which could undergo rapid ring-breakage to form R2B and R5B, respectively. Our calculations showed that these intermediate radicals reacted rather slowly with O 2 under the atmospheric conditions because the additions of O 2 to these radicals are only slightly exothermic and highly reversible. Alternatively, these radicals would react directly with O 3 , NO 2 , HO 2 /RO 2 , etc. Namely, the atmospheric oxidation of furfural would unlikely result in ozone formation. Under typical atmospheric conditions, the main products in OH-initiated furfural oxidation include 2-oxo-3-pentene-1,5-dialdehyde, 5-hydroxy-2(5H)-furanone, 4-oxo-2- butenoic acid, and 2,5-furandione. These compounds will likely stay in the gas phase and are subject to further photo-oxidation.

  6. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Kong, Deli; Xin, Tianjiao; Shu, Xinyu; Zheng, Kun; Xiao, Lirong; Sha, Xuechao; Lu, Yan; Han, Xiaodong, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Zhang, Ze [Department of Materials Science, Zhejiang University, Hangzhou 310008 (China); Zou, Jin, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au [Materials Engineering, The University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2016-04-11

    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensile surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.

  7. Failure mechanisms for compacted uranium oxide fuel cores

    International Nuclear Information System (INIS)

    Berghaus, D.G.; Peacock, H.B.

    1980-01-01

    Tension, compression, and shear tests were performed on test specimens of aluminum-clad, compacted powder fuel cores to determine failure mechanisms of the core material. The core, which consists of 70% uranium oxide in an aluminum matrix, frequently fails during post-extrusion drawing. Tests were conducted to various strain levels up to failure of the core. Sections were made of tested specimens to microscopically study initiation of failure. Two failure modes wee observed. Tensile failure mode is initiated by prior tensile failure of uranium oxide particles with the separation path strongly influenced by the arrangement of particles. Delamination mode consists of the separation of laminae formed during extrusion of tubes. Separation proceeds from fine cracks formed parallel to the laminae. Tensile failure mode was experienced in tension and shear tests. Delamination mode was produced in compression tests

  8. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms

    Directory of Open Access Journals (Sweden)

    Johan Øvrevik

    2015-07-01

    Full Text Available Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.

  9. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  10. Mechanisms for Fe(III) oxide reduction in sedimentary environments

    Science.gov (United States)

    Nevin, Kelly P.; Lovely, Derek R.

    2002-01-01

    Although it was previously considered that Fe(III)-reducing microorganisms must come into direct contact with Fe(III) oxides in order to reduce them, recent studies have suggested that electron-shuttling compounds and/or Fe(III) chelators, either naturally present or produced by the Fe(III)-reducing microorganisms themselves, may alleviate the need for the Fe(III) reducers to establish direct contact with Fe(III) oxides. Studies with Shewanella alga strain BrY and Fe(III) oxides sequestered within microporous beads demonstrated for the first time that this organism releases a compound(s) that permits electron transfer to Fe(III) oxides which the organism cannot directly contact. Furthermore, as much as 450 w M dissolved Fe(III) was detected in cultures of S. alga growing in Fe(III) oxide medium, suggesting that this organism releases compounds that can solublize Fe(III) from Fe(III) oxide. These results contrast with previous studies, which demonstrated that Geobacter metallireducens does not produce electron-shuttles or Fe(III) chelators. Some freshwater aquatic sediments and groundwaters contained compounds, which could act as electron shuttles by accepting electrons from G. metallireducens and then transferring the electrons to Fe(III). However, other samples lacked significant electron-shuttling capacity. Spectroscopic studies indicated that the electron-shuttling capacity of the waters was not only associated with the presence of humic substances, but water extracts of walnut, oak, and maple leaves contained electron-shuttling compounds did not appear to be humic substances. Porewater from a freshwater aquatic sediment and groundwater from a petroleum-contaminated aquifer contained dissolved Fe(III) (4-16 w M), suggesting that soluble Fe(III) may be available as an electron acceptor in some sedimentary environments. These results demonstrate that in order to accurately model the mechanisms for Fe(III) reduction in sedimentary environments it will be necessary

  11. The use of meta-governance mechanisms to fight social segregation in Copenhagen

    DEFF Research Database (Denmark)

    Engberg, Lars A.

    In 2011 Copenhagen City Council adopted a citywide Policy for Disadvantaged Areas in Copenhagen to combat geographically specific vicious circles of social deprivation and physical deterioration in the city. The policy was a result of an inter-departmental learning process, designed to come up wi...... study five years after adaptation of PDAC. The paper investigates how practices of joint leadership and meta-governance across city departments and between city officials and local stakeholders have been institutionalized as coordination mechanisms as a result of the new policy....

  12. Circuit Mechanisms Governing Local vs. Global Motion Processing in Mouse Visual Cortex

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Yonehara, Keisuke

    2017-01-01

    components represented by component direction-selective (CDS) cells. However, how PDS and CDS cells develop their distinct response properties is still unresolved. The visual cortex of the mouse is an attractive model for experimentally solving this issue due to the large molecular and genetic toolbox...... literature on global motion processing based on works in primates and mice. Lastly, we propose what types of experiments could illuminate what circuit mechanisms are governing cortical global visual motion processing. We propose that PDS cells in mouse visual cortex appear as the perfect arena...

  13. An Analysis of Change Mechanisms in Government Budgets on Science and Technology

    Science.gov (United States)

    Jung, C.

    2012-12-01

    Recent studies on policy changes have shown that there are limitations of incrementalism and that there no longer exists a general theory that can explain policy change. A number of studies have been conducted to examine policy changes in terms of drastic changes in budgets or policy agenda. According to the Punctuated Equilibrium Theory (PET), policy change is punctuated by long periods of stability, and large, but rare, changes due to shifts in society or the government. Although the reasons for these drastic changes are interpreted mainly from external events, the exact mechanisms of these changes are still not known. In this study, we assume that the punctuated budget changes are a result of not only external events but also the bureaucratic power of government departments. We attempt to identify the regularity of budget change pattern due to these internal characteristics (bureaucratic power). In order to understand budget changes caused by external events, especially for science and technology, the ARIMA-Intervention analysis was implemented. The results showed that the ARIMA-Intervention analysis explained the abrupt change in budget well. This means that a change in budget cannot be explained as incrementalism. Also, we analyzed the budget change kurtosis of government department along with various policy and organization types. Normally, a high kurtosis means there is a high probability of a punctuated equilibrium. The results show that science and technology agency as well as productive, delivery, and transfer agencies have a relatively high kurtosis.;

  14. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    Science.gov (United States)

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  15. Stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Osipova, Z.G.; Sokolovskii, V.D.

    1979-03-01

    The stepwise mechanism of oxidative ammonolysis of propane to acrylonitrile over gallium-antimony oxide catalysts GaSb/sub 19/O/sub x/, GaSb/sub 3/Ni/sub 1.5/0/sub x/, and GaSb/sub 2.5/Ni/sub 1.5/PW/sub 0//sub 0.25/O/sub x/ was studied at 450/sup 0/ and 550/sup 0/C by introducing alternating pulses of 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/helium (to reduce the steady-state catalytic surface) and 0.5Vertical Bar3< propane/0.6Vertical Bar3< ammonia/1.86Vertical Bar3< oxygen/helium mixtures into a fluidized-bed catalytic reactor. Over all the catalysts studied, the rates of acrylonitrile formation during the two types of pulses were very similar, but carbon dioxide was formed much faster during the reducing pulses, particularly at 450/sup 0/C. These findings suggested that acrylonitrile is formed by a stepwise redox mechanism involving consecutive interaction of propane and ammonia with the surface oxygen of the catalysts and oxidation of the reduced catalyst surface by gas-phase oxygen. The formation of carbon dioxide proceeds by both stepwise and associative mechanisms, the latter being more important at higher temperatures. The results are similar to published results for ammoxidation of propylene and olefins.

  16. 'Good Governance' dan 'Governability'

    Directory of Open Access Journals (Sweden)

    - Pratikno

    2005-03-01

    Full Text Available The article endeavors to trace the outset of governance concept, its dominant meanings and discourse, and its implication towards governability. The central role of government in the governing processes has predominantly been adopted. The concept of governance was emerged precisely in the context of the failure of government as key player in regulation, economic redistribution and political participation. Governance is therefore aimed to emphasize pattern of governing which are based both on democratic mechanism and sound development management. However, practices of such good governance concept –which are mainly adopted and promoted by donor states and agencies– tend to degrade state and/or government authority and legitimacy. Traditional function of the state as sole facilitator of equal societal, political and legal membership among citizens has been diminished. The logic of fair competition has been substituted almost completely by the logic of free competition in nearly all sectors of public life. The concept and practices of good governance have resulted in decayed state authority and failed state which in turn created a condition for "ungovernability". By promoting democratic and humane governance, the article accordingly encourages discourse to reinstall and bring the idea of accountable state back in.

  17. Optical and mechanical anisotropy of oxide glass fibers

    DEFF Research Database (Denmark)

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    products [1], whereas stretching (frozen-in strain) results in optical and mechanical anisotropy of glass fibers, which is quantified inter alia by the specific birefringence [2]. The paper will stress the later effects by combining previous results on the structural origins of birefringence...... and anisotropic shrinkage in silica and phosphate fibers with recent studies on relaxation of optical anisotropy in E-glass fibers [3,4].......Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass...

  18. Testing the effectiveness of network governance mechanisms to foster ambidexterity of agricultural innovation networks in East and Central Africa

    NARCIS (Netherlands)

    Pérez Perdomo, Silvia Andrea; Farrow, Andrew; Trienekens, Jacques H.; Omta, Onno S.W.F.; Velde, van der Gerben

    2017-01-01

    We tested three innovation network governance mechanisms for exploring and exploiting innovation opportunities. We analysed household-level panel data from agricultural innovation networks in Uganda, the Democratic Republic of the Congo and Rwanda. We found that first-order governed networks

  19. The mechanisms of corporate governance in the United States: an assessment

    Directory of Open Access Journals (Sweden)

    Aldrighi Dante Mendes

    2003-01-01

    Full Text Available This paper aims at evaluating the mechanisms of corporate governance currently at work in the United States. Section 1 turns its focus to the reasons accounting for the still relative scarceness of large shareholders in American publicly held companies. The analysis thereafter concentrates on assessing the efficacy of each of the pillars purportedly buttressing the American system of corporate control. The paper argues that the evidence provided by the existing corporate governance literature supports the following propositions: 1 the legal and regulatory framework actually restrains the scope for expropriating minority shareholders, though at the cost of inhibiting institutional investor activism; 2 as a rule, the board of directors do not comply with their mandatory duty of overseeing management, although some progress has recently been made, with directors in several companies becoming less submissive to chief executive officers; 3 the market for corporate control encounters a great number of difficulties (ranging from legal hurdles to high transaction costs and to serious free-riding problems, which are sufficient to cast a cloud on its reliability as a means of repressing managerial inefficiencies and rent-seeking; 4 competition in the product and capital markets is likely to produce effects only in the long-run.

  20. THE IMPACT OF IFRS NORMS ON INTERNAL GOVERNANCE MECHANISMS WITH REGARD TO SOCIO-ECONOMIC CONTEXT

    Directory of Open Access Journals (Sweden)

    Soumaya HERGLI

    2016-11-01

    Full Text Available The purpose of this paper is to examine the effect of International Financial Reporting Standards IFRS adoption on internal governance mechanisms with regard to socio-economic context. Empirical investigation was conducted to assess whether a company and an individual specifications can be presented as part of a general pattern. The results confirm that IFRS framework has introduced a new design of the accounting formalism facing a more complex activity leading to enlargement the discretionary space. Socio-economic factors explain perfectly the corporate governance behaviors and confirmed that the less powerful members of our firms sample expect and accept that power is distributed unequally, the leaders prefer to act as individuals rather than as members of groups, the management positions are generally held by men than by women, these members are threatened by ambiguous or unknown situations and finally, managers stand for the fostering in a society of pragmatic virtues oriented to future rewards, in particular perseverance, thrift and adapting to changing circumstances.

  1. Charge carrier transport mechanisms in nanocrystalline indium oxide

    International Nuclear Information System (INIS)

    Forsh, E.A.; Marikutsa, A.V.; Martyshov, M.N.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.

    2014-01-01

    The charge transport properties of nanocrystalline indium oxide (In 2 O 3 ) are studied. A number of nanostructured In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method and characterized using various techniques. The mean nanocrystals size varies from 7–8 nm to 18–20 nm depending on the conditions of their preparation. Structural characterizations of the In 2 O 3 samples are performed by means of transmission electron microscopy and X-ray diffraction. The analysis of dc and ac conductivity in a wide temperature range (T = 50–300 K) shows that at high temperatures charge carrier transport takes place over conduction band and at low temperatures a variable range hopping transport mechanism can be observed. We find out that the temperature of transition from one mechanism to another depends on nanocrystal size: the transition temperature rises when nanocrystals are bigger in size. The average hopping distance between two sites and the activation energy are calculated basing on the analysis of dc conductivity at low temperature. Using random barrier model we show a uniform hopping mechanism taking place in our samples and conclude that nanocrystalline In 2 O 3 can be regarded as a disordered system. - Highlights: • In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method. • The mean nanocrystal size varies from 7–8 nm to 18–20 nm. • At high temperatures charge carrier transport takes place over conduction band. • At low temperatures a variable range hopping transport mechanism can be observed. • We show a uniform hopping mechanism taking place in our samples

  2. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    International Nuclear Information System (INIS)

    Kim, Sang Woo

    2016-01-01

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions

  3. Evaluation of structural deformations of a mechanical connecting unit oxidizer supplies by thermo-mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Dept. of Mechanical Engineering, Institute of Machine Convergence Technology, Hankyong National University, Anseong (Korea, Republic of)

    2016-10-15

    A Mechanical connecting unit (MCU) used in ground facilities for a Liquid propellant rocket (LPR) acts as a bridge between the onboard system and the ground oxidizer filling system. It should be resistant to structural deformations in order to guarantee successful supply of a cryogenic oxidizer and high pressure gases without reduction of sealing capability. The MCU consists of many components and linkages and operates under harsh conditions induced by a cryogenic oxidizer, high pressure gases and other mechanical forces. Thus, the evaluation of structural deformation of the MCU considering complex conditions is expensive and time consuming. The present study efficiently evaluates the structural deformations of the key components of the MCU by Thermo-mechanical simulation (TMS) based on the superposition principle. Deformations due to the mechanical loadings including weights, pressures, and spring forces are firstly evaluated by using a non-linear flexible body simulation module (FFlex) of Multi-body dynamics (MBD) software, RecurDyn. Then, thermal deformations for the deformed geometries obtained by RecurDyn were subsequently calculated. It was conducted by using a Finite element (FE) analysis software, ANSYS. The total deformations for the onboard plate and multi-channel plate in the connecting section due to the mechanical and thermal loadings were successfully evaluated. Moreover, the outer gaps at six points between two plates were calculated and verified by comparison to the measured data. Their values and tendencies showed a good agreement. The author concluded that the TMS using MBD software considering flexible bodies and an FE simulator can efficiently evaluate structural deformations of the MCU operating under the complex load and boundary conditions.

  4. Mechanism governing heme synthesis reveals a GATA factor/heme circuit that controls differentiation.

    Science.gov (United States)

    Tanimura, Nobuyuki; Miller, Eli; Igarashi, Kazuhiko; Yang, David; Burstyn, Judith N; Dewey, Colin N; Bresnick, Emery H

    2016-02-01

    Metal ion-containing macromolecules have fundamental roles in essentially all biological processes throughout the evolutionary tree. For example, iron-containing heme is a cofactor in enzyme catalysis and electron transfer and an essential hemoglobin constituent. To meet the intense demand for hemoglobin assembly in red blood cells, the cell type-specific factor GATA-1 activates transcription of Alas2, encoding the rate-limiting enzyme in heme biosynthesis, 5-aminolevulinic acid synthase-2 (ALAS-2). Using genetic editing to unravel mechanisms governing heme biosynthesis, we discovered a GATA factor- and heme-dependent circuit that establishes the erythroid cell transcriptome. CRISPR/Cas9-mediated ablation of two Alas2 intronic cis elements strongly reduces GATA-1-induced Alas2 transcription, heme biosynthesis, and surprisingly, GATA-1 regulation of other vital constituents of the erythroid cell transcriptome. Bypassing ALAS-2 function in Alas2 cis element-mutant cells by providing its catalytic product 5-aminolevulinic acid rescues heme biosynthesis and the GATA-1-dependent genetic network. Heme amplifies GATA-1 function by downregulating the heme-sensing transcriptional repressor Bach1 and via a Bach1-insensitive mechanism. Through this dual mechanism, heme and a master regulator collaborate to orchestrate a cell type-specific transcriptional program that promotes cellular differentiation. © 2015 The Authors.

  5. The Government Incentive Regulation Model and Pricing Mechanism in Power Transmission and Distribution Market

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    2016-01-01

    Full Text Available The power transmission and distribution (T&D market’s natural monopoly and individual information have been the impediment to improving the energy efficiency in the whole T&D market. In order to improve the whole social welfare, T&D market should be controlled by government. An incentive regulation model with the target of maximizing social welfare has been studied. A list of contracts with transferring payment and quantity of T&D are given to motivate the corporation to reveal the true technical parameter and input the optimal investment. The corporate revenue, optimal investment, and effort are proved to depend on its own technical parameter. The part of incentive regulation model ends with the optimal pricing mechanism of T&D market. At the end of this paper, we give a numerical example to explain our research and confirm its function graphically.

  6. The Association between Related Party Transactions and Real Earnings Management: Internal Governance Mechanism as Moderating Variables

    Directory of Open Access Journals (Sweden)

    Khober Limanto Genius

    2017-01-01

    Full Text Available We investigate the association between related party transactions (RPT and real earnings management (REM. We also investigate the role of internal governance mechanism through the effectiveness of board of commissioner and audit committee in mitigating the association between RPT and REM. Our research sample consists of 386 firm-years of manufacturing firms listed in Indonesian Stock Exchange (IDX from year 2010 - 2014. Using linear regression, we find evidence that RPT has positive association with REM, only when the firm has higher RPT but not in the lower RPT. We find a contradictory result that board of commissioners strengthen the positive association between RPT and REM. Finally, we find evidence that the effectiveness of audit committees weaken the positive association between RPT and REM, both in full sample and in high RPT sample.

  7. How Do Corporate Governance Mechanisms Affect A Firm’s Potential For Bankruptcy?

    Directory of Open Access Journals (Sweden)

    Rhesa Theodorus Hanani

    2015-03-01

    Full Text Available The purpose of this thesis is to understand the effects of corporate governance mechanisms on the potential for bankruptcy. This study is done by utilizing the linear regression fixed effect vector decomposition model on 30 listed firms from the consumer goods sector of Indonesia Stock Exchange during the 2010-2012 periods. The results of the study indicate that: the board of commissioners’ independence and size of the commissioners’ board pose a significant positive effect on the potential for bankruptcy; the presence of an audit committee and the presence of a nomination and remuneration committee pose a significant negative effect and institutional ownership and managerial ownership do not significantly affect the potential for bankruptcy.

  8. Kinetics and mechanism of the oxidation of ZrC

    International Nuclear Information System (INIS)

    Rama Rao, G.A.; Venugopal, V.; Sood, D.D.

    1993-01-01

    The oxidation behaviour of sintered ZrC powder was studied under iso and non-isothermal heating conditions under varied oxygen pressures from 0.05 to 0.5 atm and the weight changes during the reaction were followed by thermogravimetry. The sample ignited under oxygen pressure of 1 atm when heated non-isothermally at 5 K/min. The end product was identified by X-ray diffraction method as cubic ZrO 2 at temperatures below 1073 K and monoclinic above that. The rate of the reaction was found to be diffusion controlled. The mechanism of the reaction was discussed in terms of the diffusion of oxygen through the product layer. (author). 8 refs., 1 fig., 1 tab

  9. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism.

    Science.gov (United States)

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-06-01

    The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2 (-) scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays. Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2(-) scavenging, DPPH• scavenging, ABTS•(+) scavenging, and Cu(2+)-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3',4'-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form.

  10. Influence of surface wettability on transport mechanisms governing water droplet evaporation.

    Science.gov (United States)

    Pan, Zhenhai; Weibel, Justin A; Garimella, Suresh V

    2014-08-19

    Prediction and manipulation of the evaporation of small droplets is a fundamental problem with importance in a variety of microfluidic, microfabrication, and biomedical applications. A vapor-diffusion-based model has been widely employed to predict the interfacial evaporation rate; however, its scope of applicability is limited due to incorporation of a number of simplifying assumptions of the physical behavior. Two key transport mechanisms besides vapor diffusion-evaporative cooling and natural convection in the surrounding gas-are investigated here as a function of the substrate wettability using an augmented droplet evaporation model. Three regimes are distinguished by the instantaneous contact angle (CA). In Regime I (CA ≲ 60°), the flat droplet shape results in a small thermal resistance between the liquid-vapor interface and substrate, which mitigates the effect of evaporative cooling; upward gas-phase natural convection enhances evaporation. In Regime II (60 ≲ CA ≲ 90°), evaporative cooling at the interface suppresses evaporation with increasing contact angle and counterbalances the gas-phase convection enhancement. Because effects of the evaporative cooling and gas-phase convection mechanisms largely neutralize each other, the vapor-diffusion-based model can predict the overall evaporation rates in this regime. In Regime III (CA ≳ 90°), evaporative cooling suppresses the evaporation rate significantly and reverses entirely the direction of natural convection induced by vapor concentration gradients in the gas phase. Delineation of these counteracting mechanisms reconciles previous debate (founded on single-surface experiments or models that consider only a subset of the governing transport mechanisms) regarding the applicability of the classic vapor-diffusion model. The vapor diffusion-based model cannot predict the local evaporation flux along the interface for high contact angle (CA ≥ 90°) when evaporative cooling is strong and the

  11. Electro-mechanical coupling of semiconductor film grown on stainless steel by oxidation

    Science.gov (United States)

    Lin, M. C.; Wang, G.; Guo, L. Q.; Qiao, L. J.; Volinsky, Alex A.

    2013-09-01

    Electro-mechanical coupling phenomenon in oxidation film on stainless steel has been discovered by using current-sensing atomic force microscopy, along with the I-V curves measurements. The oxidation films exhibit either ohmic, n-type, or p-type semiconductor properties, according to the obtained I-V curves. This technique allows characterizing oxidation films with high spatial resolution. Semiconductor properties of oxidation films must be considered as additional stress corrosion cracking mechanisms.

  12. Study of mechanism involved in synthesis of graphene oxide and reduced graphene oxide from graphene nanoplatelets

    Science.gov (United States)

    Sharma, Bhasha; Shekhar, Shashank; Malik, Parul; Jain, Purnima

    2018-06-01

    Graphene, a wonder material has inspired quest among researchers due to its numerous applications and exceptional properties. This paper highlights the mechanism and chemistry behind the fabrication of graphene oxide by using phosphoric acid. Chemical functionalization is of prime importance which avoids agglomeration of nanoparticles to attain inherent properties. As non-homogeneous dispersion limits its utilization due to interfacial interactions which restrict reactive sites to produce intercalated network. Thus, chemically functionalized graphene leads to stable dispersion and enhances thermal, mechanical and electrical properties of the resultant polymer composite materials. Solubility of graphene in aqueous solution is the major issue because graphene is hydrophobic, to rectify this oxygen containing hydrophilic groups must be introduced to make it compatible and this can be attained by covalent functionalization. Among all nanofiller GO has shown average particle size i.e. 95 nm and highest surface charge density. The characteristic changes were estimated using Raman spectra.

  13. Mechanical properties of graphene oxide (GO/epoxy composites

    Directory of Open Access Journals (Sweden)

    Shivan Ismael Abdullah

    2015-08-01

    Full Text Available In this study, the effects of graphene oxide (GO on composites based on epoxy resin were analyzed. Different contents of GO (1.5–6 vol.% were added to epoxy resin. The GO/epoxy composite was prepared using the casting method and was prepared under room temperature. Mechanical tests’ results such as tensile test, impact test and hardness test show enhancements of the mechanical properties of the GO/epoxy composite. The experimental results clearly show an improvement in the Young’s modulus, tensile strength and hardness. The impact strength was seen to decrease, pointing to brittleness increase of the GO/epoxy composite. A microstructure analysis using Scanning Electron Microscopy (SEM and X-ray diffraction (XRD analysis was also performed, which showed how GO impeded the propagation of cracks in the composite. From the SEM images we observed the interface between the GO and the epoxy composite. As can be seen from this research, the GO/epoxy composites can be used for a large number of applications. The results of this research are a strong evidence for GO/epoxy composites being a potential candidate for use in a variety of industrial applications, especially for automobile parts, aircraft components, and electronic parts such as supercapacitors, transistors, etc.

  14. Supercritical water oxidation of ion exchange resins: Degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A. [CEA Marcoule, DEN DTCD SPDE LFSM, F-30207 Bagnols Sur Ceze (France); Guichardon, P. [Ecole Cent Marseille, F-13451 Marseille 20 (France); Boutin, O. [Aix Marseille Univ, UMR CNRS 6181, F-13545 Aix En Provence 4 (France)

    2010-07-01

    Spent ion exchange resins are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation could offer a viable treatment alternative to destroy the organic structure of resins and contain radioactivity. IER degradation experiments were carried out in a continuous supercritical water reactor. Total organic carbon degradation rates in the range of 95-98% were obtained depending on operating conditions. GC-MS chromatography analyses were carried out to determine intermediate products formed during the reaction. Around 50 species were identified for cationic and anionic resins. Degradation of poly-styrenic structure leads to the formation of low molecular weight compounds. Benzoic acid, phenol and acetic acid are the main compounds. However, other products are detected in appreciable yields such as phenolic species or heterocycles, for anionic IERs degradation. Intermediates produced by intramolecular rearrangements are also obtained. A radical degradation mechanism is proposed for each resin. In this overall mechanism, several hypotheses are foreseen, according to HOO center dot radical attack sites. (authors)

  15. Corporate Governance at the Nacional Telecommunications Agency (ANATEL as a mechanism to improve the Agency’s Management

    Directory of Open Access Journals (Sweden)

    Fábio de Paula e Souza

    2016-04-01

    Full Text Available In the current scenario facing the country's government crisis of confidence, transparency and relationship with society, corporate governance is an important tool to monitor and improve the management, governance and corporate social responsibility in public organizations. The application of this mechanism in the National Telecommunications Agency (ANATEL has great impact to the economy and technological development of the country, capturing investments in the telecommunications sector, generating confidence to investors and stimulating competition between companies, which can offer products with best quality and services at affordable prices for consumers in Brazil. This paper investigates and analyzes by the theory of regulation, guides and reports, corporate governance as a mechanism to improve the management in ANATEL, using references, legislation and other documents in order to examine the transparency, fairness, accountability (providing accounts and corporate social responsibility in the Agency.

  16. [Explore microcosmic connection between autophagy mechanism and follicular development based on "kidney governing reproduction" theory].

    Science.gov (United States)

    Bai, Jun; Wu, Ke-Ming; Gao, Ran-Ran

    2018-03-01

    In the theory of traditional Chinese medicine(TCM) that "kidney storing essence and governing reproduction", reproductive essence is an important part of the kidney essence and acts as the original material of offspring embryos. Sperm, oocyte and zygote should be all included in the range of reproductive essence. Ovum is the essence of reproduction from inborn. The follicles maturation depends on the quality of oocyte and the vigor of kidney essence. Meanwhile, discharge of mature ovum relies on the stimulation and promotion by kidney Qi. Autophagy almost exists in different cells stages and all various of mammalian cells. Many studies have found that autophagy not only participates in the formation of follicles, but also in every phase of the follicles development, and is involved in the occurrence and development of ovarian diseases. Recently, more and more scholars believe that autophagy is a new field to explore the microcosmic relationship between autophagy and TCM. Kidney-nourishing TCM could promote follicular growth and improve variety clinical symptoms by inhibiting the apoptosis of ovarian granulosa cells and reducing follicular atresia. Meanwhile, apoptosis of ovarian granulosa cells is closely related to autophagy of ovarian granulosa cells. In order to provide some theoretical foundation for kidney-nourishing therapy's promoting effect on follicular growth and improving effect on ovarian function, also to further explore the molecular mechanism of kidney-nourishing medicine in promoting follicular development, this paper would explain the microcosmic relationship between autophagy and follicular development based on the theory of "kidney governing reproduction". All of these would be of great significance to prevent and intervene the diseases of reproductive system timely and effectively. Copyright© by the Chinese Pharmaceutical Association.

  17. Circuit Mechanisms Governing Local vs. Global Motion Processing in Mouse Visual Cortex

    Directory of Open Access Journals (Sweden)

    Rune Rasmussen

    2017-12-01

    Full Text Available A withstanding question in neuroscience is how neural circuits encode representations and perceptions of the external world. A particularly well-defined visual computation is the representation of global object motion by pattern direction-selective (PDS cells from convergence of motion of local components represented by component direction-selective (CDS cells. However, how PDS and CDS cells develop their distinct response properties is still unresolved. The visual cortex of the mouse is an attractive model for experimentally solving this issue due to the large molecular and genetic toolbox available. Although mouse visual cortex lacks the highly ordered orientation columns of primates, it is organized in functional sub-networks and contains striate- and extrastriate areas like its primate counterparts. In this Perspective article, we provide an overview of the experimental and theoretical literature on global motion processing based on works in primates and mice. Lastly, we propose what types of experiments could illuminate what circuit mechanisms are governing cortical global visual motion processing. We propose that PDS cells in mouse visual cortex appear as the perfect arena for delineating and solving how individual sensory features extracted by neural circuits in peripheral brain areas are integrated to build our rich cohesive sensory experiences.

  18. Coordination of frontline defense mechanisms under severe oxidative stress.

    Science.gov (United States)

    Kaur, Amardeep; Van, Phu T; Busch, Courtney R; Robinson, Courtney K; Pan, Min; Pang, Wyming Lee; Reiss, David J; DiRuggiero, Jocelyne; Baliga, Nitin S

    2010-07-01

    Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management program to transcriptionally coordinate three peroxidase/catalase enzymes, two superoxide dismutases, production of rhodopsins, carotenoids and gas vesicles, metal trafficking, and various other aspects of metabolism. Through experimental validation of interactions within the OSR regulatory network, we show that despite their inability to directly sense reactive oxygen species, general transcription factors have an important function in coordinating this response. Remarkably, a significant fraction of this OSR was accurately recapitulated by a model that was earlier constructed from cellular responses to diverse environmental perturbations--this constitutes the general stress response component. Notwithstanding this observation, comparison of the two models has identified the coordination of frontline defense and repair systems by regulatory mechanisms that are triggered uniquely by severe OS and not by other environmental stressors, including sub-inhibitory levels of redox-active metals, extreme changes in oxygen tension, and a sub-lethal dose of gamma rays.

  19. Some considerations referring to mechanisms of iron oxides dissolution

    International Nuclear Information System (INIS)

    Radulescu, M.; Stefanescu, D.; Popa, L.; Mogosan, S.

    2010-01-01

    Full text: Under nuclear power plant operational conditions, the carbon steel components in a such nuclear station react with high temperature cooling agent forming several iron oxides and oxyhydroxides. These substances forming some randomly located deposits on the piping walls, can result in some damaging consequences such as: tube constrictions, pitting and intergranular corrosion and finally decreasing of heat transfer and the development of a radiation field around the primary circuit. The decontamination process being in fact a descaling process, involves the chemical dissolution of corrosion deposits in diluted acidic reagents containing usually a complexing carboxylic acid, a reductant and a corrosion inhibitor. A comparative survey of our experimental results with those published in literature on the up-mentioned topics is presented in our paper. To evaluate the removing rates of these superficial films two types of methods were used: gravimetric and potentiodynamic techniques. While the gravimetry supplied us the weight losses data necessary to establish the descaling process kinetics, the potentiodynamic method was used to compare the values of descaling rates obtained from electrochemical data. Correlating our experimental data with those from literature, we adopted two models of mechanisms applicable to our specific conditions. (authors)

  20. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Ailton Melo

    2011-01-01

    Full Text Available The incidence and prevalence of neurodegenerative diseases (ND increase with life expectancy. This paper reviews the role of oxidative stress (OS in ND and pharmacological attempts to fight against reactive oxygen species (ROS-induced neurodegeneration. Several mechanisms involved in ROS generation in neurodegeneration have been proposed. Recent articles about molecular pathways involved in ROS generation were reviewed. The progress in the development of neuroprotective therapies has been hampered because it is difficult to define targets for treatment and determine what should be considered as neuroprotective. Therefore, the attention was focused on researches about pharmacological targets that could protect neurons against OS. Since it is necessary to look for genes as the ultimate controllers of all biological processes, this paper also tried to identify gerontogenes involved in OS and neurodegeneration. Since neurons depend on glial cells to survive, recent articles about the functioning of these cells in aging and ND were also reviewed. Finally, clinical trials testing potential neuroprotective agents were critically reviewed. Although several potential drugs have been screened in in vitro and in vivo models of ND, these results were not translated in benefit of patients, and disappointing results were obtained in the majority of clinical trials.

  1. Oxidation of Proteins in Plants-Mechanisms and Consequences

    DEFF Research Database (Denmark)

    Sweetlove, Lee J; Møller, Ian M

    2009-01-01

    The production of reactive oxygen and reactive nitrogen species in plant cells can lead to a variety of modifications of proteins through oxidation of amino acid side groups. The widespread occurrence of such modifications is becoming appreciated as new proteomic approaches allow their systematic....... A view that such modifications could have signalling ramifications is emerging. However, in many cases there is a lack of information as to the effect of oxidation on protein activity or function. Severe protein oxidation is costly to the cell since oxidatively damaged proteins need to be degraded...... of modified proteins by affinity purification. Although there are several technical caveats with such approaches, they have been useful in documenting the extent of oxidative modification of proteins and have highlighted a number of proteins where oxidative modification is critical for protein function...

  2. Fossil fuel subsidies and the new EU Climate and Energy Governance Mechanism

    International Nuclear Information System (INIS)

    Sartor, Oliver; Spencer, Thomas

    2016-07-01

    There is currently no dedicated process to track the extent of fossil fuel subsidies, nor to ensure that Member States phase them out. This situation is inconsistent with the European Union's stated decarbonization and energy efficiency dimensions under the Energy Union. The EU is therefore in need of an alternative process for tracking and ensuring the phase-out of fossil fuel subsidies by the Member States. The new Energy Union governance mechanism presents an opportunity for creating this alternative. Providing the right price signals is essential part of the policy mix that is needed to achieve Europe's climate policy goals. Phasing out fossil fuel subsidies in the EU is an important part of aligning energy prices with the EU's climate and energy goals. Depending on how they are measured, combined fossil fuel subsidies in the EU range from 39 to over euro 200 billion per annum (European Commission, 2014). They therefore constitute a significant source of incoherence between the EU's climate mitigation and fiscal policies for energy. However, there has recently been mixed progress in addressing fossil fuel subsidies in Europe. For instance, under the Europe 2020 Strategy, Member States had committed to begin developing plans for phasing out fossil fuel subsidies by 2020. Progress on implementing these plans was supposed to be monitored under the European Semester. However, the decision was taken to remove the focus on energy and fossil fuel subsidies from the European Semester in 2015. As yet, no new system for governing the phase-out of fossil fuel subsidies has been advanced, leaving the question of fossil fuel subsidy reform in limbo. The advent of the EU's Energy Union project creates an opportunity for putting the phase-out of fossil fuel subsidies back on track in Europe. This could be done by including requirements for national goal setting on specific kinds of fossil fuel subsidies in a dedicated sub-section of the National Climate and Energy Plans

  3. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction

    OpenAIRE

    Kumar, Santosh; Kim, Young-Rae; Vikram, Ajit; Naqvi, Asma; Li, Qiuxia; Kassan, Modar; Kumar, Vikas; Bachschmid, Markus M.; Jacobs, Julia S.; Kumar, Ajay; Irani, Kaikobad

    2017-01-01

    Many oxidative stimuli engage the 66-kDa Src homology 2 domain-containing protein (p66Shc) to induce reactive oxygen species (ROS). ROS regulated by p66Shc promotes aging and contributes to cancer, diabetes, obesity, cardiomyopathy, and atherosclerosis. Here we identify a fundamental mechanism that controls p66Shc and p66Shc-regulated ROS. We show that p66Shc is lysine acetylated when cells are faced with an oxidative stimulus (diabetes), and lysine acetylation of p66Shc is obligatory for p66...

  4. Effects of oxidation in the mechanical behavior of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Santos, A.M.M. dos.

    1981-07-01

    The kinetics of oxidation of zircaloy-4 is isothermally studied utilizing discontinous gravimetric method under two different oxidizing conditions, using gaseous oxigen and steam. The total weight gain during oxidation occurs in two different way: formation of oxide and solid solution. A mechanical test for studying the effect of embrittlement due to the absorption of oxygen in small zircalloy tubes have been developed. (Author) [pt

  5. Influence of water on the anodic oxidation mechanism of ...

    African Journals Online (AJOL)

    Diethylenetriamine was oxidised in different electrolytes on platinum electrode. In non-aqueous electrolyte, an irreversible oxidation peak characteristic of DETA oxidation appears on the voltammogram followed by a constant current until the higher limit of the sweeping potential domain is attained. The following successive ...

  6. Novel Magnetic Zinc Oxide Nanotubes for Phenol Adsorption: Mechanism Modeling

    Directory of Open Access Journals (Sweden)

    Marwa F. Elkady

    2017-11-01

    Full Text Available Considering the great impact of a material’s surface area on adsorption processes, hollow nanotube magnetic zinc oxide with a favorable surface area of 78.39 m2/g was fabricated with the assistance of microwave technology in the presence of poly vinyl alcohol (PVA as a stabilizing agent followed by sonic precipitation of magnetite nano-particles. Scanning electron microscopy (SEM and transmission electron microscopy (TEM micrographs identified the nanotubes’ morphology in the synthesized material with an average aspect ratio of 3. X-ray diffraction (XRD analysis verified the combination of magnetite material with the hexagonal wurtzite structure of ZnO in the prepared material. The immobilization of magnetite nanoparticles on to ZnO was confirmed using vibrating sample magnetometry (VSM. The sorption affinity of the synthesized magnetic ZnO nanotube for phenolic compounds from aqueous solutions was examined as a function of various processing factors. The degree of acidity of the phenolic solution has great influence on the phenol sorption process on to magnetic ZnO. The calculated value of ΔH0 designated the endothermic nature of the phenol uptake process on to the magnetic ZnO nanotubes. Mathematical modeling indicated a combination of physical and chemical adsorption mechanisms of phenolic compounds on to the fabricated magnetic ZnO nanotubes. The kinetic process correlated better with the second-order rate model compared to the first-order rate model. This result indicates the predominance of the chemical adsorption process of phenol on to magnetic ZnO nanotubes.

  7. The Adoption of Internal Audit as a Governance Control Mechanism in Australian Public Universities--Views from the CEOs

    Science.gov (United States)

    Christopher, Joe

    2012-01-01

    This study draws on the multi-theoretical approach to governance and the views of university chief executive officers (CEOs) to examine the extent to which internal auditing as a control mechanism is adopted in Australian public universities under an environment of change management. The findings highlight negative consequences of change and their…

  8. Nitrogen Removal in Greywater Living Walls: Insights into the Governing Mechanisms

    Directory of Open Access Journals (Sweden)

    Harsha S. Fowdar

    2018-04-01

    Full Text Available Nitrogen is a pollutant of great concern when present in excess in surface waters. Living wall biofiltration systems that employ ornamentals and climbing plants are an emerging green technology that has recently demonstrated significant potential to reduce nitrogen concentrations from greywater before outdoor domestic re-use. However, there still exists a paucity of knowledge around the mechanisms governing this removal, particularly in regards to the fate of dissolved organic nitrogen (DON within these systems. Understanding the fate of nitrogen in living wall treatment systems is imperative both to optimise designs and to predict the long-term viability of these systems, more so given the growing interest in adopting green infrastructure within urban cities. A laboratory study was undertaken to investigate the transformation and fate of nitrogen in biofilters planted with different climbing plants and ornamental species. An isotropic tracer (15N-urea was applied to quantify the amount removed through coupled nitrification-denitrification. The results found that nitrification-denitrification formed a minor removal pathway in planted systems, comprising only 0–15% of added 15N. DON and ammonium were effectively reduced by all biofilter designs, indicating effective mineralisation and nitrification rates. However, in designs with poor nitrogen removal, the effluent was enriched with nitrate, suggesting limited denitrification rates. Given the likely dominance of plant assimilation in removal, this indicates that plant selection is a critical design parameter, as is maintaining healthy plant growth for optimal nitrogen removal in greywater living wall biofilters in their early years of operation.

  9. Oxidation of zirconium alloys in steam: influence of tetragonal zirconia on oxide growth mechanism

    International Nuclear Information System (INIS)

    Godlewski, J.

    1990-07-01

    The oxidation of zirconium alloys in presence of steam, presents after a 'parabolic' growth law, an acceleration of the oxidation velocity. This phenomenon limits the use of zirconium alloys as nuclear fuel cladding element. In order to determine the physico-chemical process leading to this kinetic transition, two approaches have been carried out: the first one has consisted to determine the composition of the oxide layer and its evolution with the oxidation time; and the second one to determine the oxygen diffusion coefficients in the oxide layers of pre- and post-transition as well as their evolution with the oxidation time. The composition of the oxide layers has been determined by two analyses techniques: the X-ray diffraction and the laser Raman spectroscopy. This last method has allowed to confirm the presence of tetragonal zirconium oxide in the oxide layers. Analyses carried out by laser Raman spectroscopy on oxides oblique cuttings have revealed that the tetragonal zirconium oxide is transformed in monoclinic phase during the kinetic transition. A quantitative approach has allowed to corroborate the results obtained by these two techniques. In order to determine the oxygen diffusion coefficients in the oxides layers, two diffusion treatments have been carried out: 1)under low pressure with D 2 18 O 2 ) under high pressure in an autoclave with H 2 18 O. The oxygen 18 concentration profiles have been obtained by two analyses techniques: the nuclear microprobe and the secondary ions emission spectroscopy. The obtained profiles show that the mass transport is made by the volume and particularly by the grain boundaries. The corresponding diffusion coefficients have been calculated with the WHIPPLE and LE CLAIRE solution. The presence of tetragonal zirconium oxide, its relation with the kinetic transition, and the evolution of the diffusion coefficients with the oxidation time, are discussed in terms of internal stresses in the oxide layer and of the oxide layer

  10. Corrosion mechanisms of zirconium alloys - study of the initial oxidation kinetics and of the mechanical behaviour of the metal/oxide system

    International Nuclear Information System (INIS)

    Parise, M.

    1996-12-01

    Nuclear fuel claddings are made of zirconium alloys. The conditions of use lead the cladding oxidize outside. The so-formed layers behaves like a thermal barrier and prevents from using oxidized claddings with an oxide thickness larger than 100 μm. The oxidation kinetic is approximately cubic for oxide thicknesses smaller than about 2μm, linear beyond. A kinetic model has been proposed which estimates the post-transition growth rate from the kinetic parameters of the pre-transition state and morphological features of post-transition layers. This work aims at providing the necessary elements to validate this model and studying the layers around the kinetic transition, in order to determine whether the oxidation mechanisms before and after the transition are similar. Thicknesses of the 50 - 500 nm range of the oxide layers are measured by an optical method; pre-transition kinetics are thus precisely determined. The effect of the composition, the thermal treatment and the presence of oxygen in solid solution is studied. The morphological and crystallographic study of the layers show that they exhibit a lot of similarities before and after the kinetic transition. The results concerning the kinetic aspects and the morphology of the post-transition layers point out that the proposed model leads to realistic post-transition growth rates. Furthermore, the kinetic transition corresponds to the appearance of cracks in the oxide layer. The mechanical behaviour of the metal/oxide system has been modelled at different scales. When the specific behaviours of the metal and the oxide are taken into account together with the interface geometry, radial stresses appear, which are high enough to locally open cracks. The appearance and localization of cracks depend on both the interface geometry and the stress distribution in the metal/oxide system. (author)

  11. Understanding the processes governing performance and durability of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Ebbesen, Sune Dalgaard; Sun, Xiufu; Mogensen, Mogens Bjerg

    2015-01-01

    Operation of a Ni–YSZ electrode supported Solid Oxide Cell (SOC) was studied in both fuel cell mode (FC-mode) and electrolysis cell mode (EC-mode) in mixtures of H2O/H2, CO2/CO, H2O/H2O/CO2/CO at 750 °C, 800 °C and 850 °C. Although the SOCs are reversible, the polarisation characterisation shows ...

  12. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report; FINAL

    International Nuclear Information System (INIS)

    Brown, G. E. Jr.; Chambers, S. A.

    1999-01-01

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals

  13. Improving Shareholder Value through Corporate Governance Mechanism in Malaysian Listed Companies

    OpenAIRE

    Ibrahim, Mohammed Yussoff; Ahmad, Ayoib Che; Khan, Muhammad Anees

    2016-01-01

    This paper proposes to investigate the postulations of renowned agency theory and shareholder value (SHV) in relation to Corporate Governance (CG) attributes. Shareholder value is of a great concern to the shareholders of firms. Shareholder value have been investigated by numerous studies of corporate governance but with inconsistent empirical evidence. This study will focus on investigating the impact of CG attributes on Shareholder value measured by Tobin’s Q or return on both equity and as...

  14. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  15. Kinetics and Mechanism of the Oxidation of Coomassie Brilliant Blue ...

    African Journals Online (AJOL)

    , in aqueous solution by hypochlorite as a function of pH was investigated. While the degradation of dye obeyed pseudo-first-order kinetics, the oxidation of the dye occurred through two competitive reactions facilitated by [OCl–] and [HOCl].

  16. Mechanism of water oxidation by trivalent ruthenium trisdipyridyl complex

    International Nuclear Information System (INIS)

    Moravskij, A.P.; Khannanov, N.K.; Khramov, A.V.; Shafirovich, V.Ya.

    1983-01-01

    Results of kinetic investigation of water oxidation reaction with photogenerated single-electron oxidizer-trisdipyridyl complex of Ru(3) are presented. CoCl 2 x6H 2 O within the concentration range of [Co 2+ ] 0 =5x10 -7 - 5x10 -5 M was used as a reaction catalyst. The method of stopped flow with spectrophotometric recording was used in order to control the reaction kinetics

  17. Bioactivity and mechanical behaviour of cobalt oxide-doped ...

    Indian Academy of Sciences (India)

    tive base glass and cobalt oxide-doped glass were prepared by the addition of cobalt oxide (0, ... and 1 N HCl at 37. ◦. C as compared with the ... SO2−. 4. Cl. −. Simulated body fluid. 142.0. 5.0. 1.5. 2.5. 4.2. 1.0. 0.5. 147.8. Human blood plasma ...

  18. Nitrosospira sp. Govern Nitrous Oxide Emissions in a Tropical Soil Amended With Residues of Bioenergy Crop

    Directory of Open Access Journals (Sweden)

    Késia S. Lourenço

    2018-04-01

    Full Text Available Organic vinasse, a residue produced during bioethanol production, increases nitrous oxide (N2O emissions when applied with inorganic nitrogen (N fertilizer in soil. The present study investigated the role of the ammonia-oxidizing bacteria (AOB community on the N2O emissions in soils amended with organic vinasse (CV: concentrated and V: non-concentrated plus inorganic N fertilizer. Soil samples and N2O emissions were evaluated at 11, 19, and 45 days after fertilizer application, and the bacterial and archaea gene (amoA encoding the ammonia monooxygenase enzyme, bacterial denitrifier (nirK, nirS, and nosZ genes and total bacteria were quantified by real time PCR. We also employed a deep amoA amplicon sequencing approach to evaluate the effect of treatment on the community structure and diversity of the soil AOB community. Both vinasse types applied with inorganic N application increased the total N2O emissions and the abundance of AOB. Nitrosospira sp. was the dominant AOB in the soil and was correlated with N2O emissions. However, the diversity and the community structure of AOB did not change with vinasse and inorganic N fertilizer amendment. The results highlight the importance of residues and fertilizer management in sustainable agriculture and can be used as a reference and an input tool to determine good management practices for organic fertilization.

  19. Practice and effectiveness of internal corporate governance mechanisms in Saudi Arabia Stock Market: A review of empirical evidence

    Directory of Open Access Journals (Sweden)

    Marai Awidat

    2017-01-01

    Full Text Available The aim of this paper is to shed light on the Saudi corporate governance code, its practices and effectiveness. To do so, the paper conducted a detailed review of the articles of the code related to internal corporate governance mechanisms and the previous studies regarding its effectiveness in Saudi stock market context. The main finding is that the provisions of Saudi corporate governance code are adequate. Annual reports (2009-2014 show an increase in the level of the compliance by listed companies, indicating that the code is achieving its aims. However, the empirical evidence seems to suggest that the code has an insignificant impact on company's performance and mitigating earnings management. The main reasons behind that are the following: the code is still in its early stages, there is weak legal enforcement, and there are also some social, cultural, and economic factors. Therefore, the code needs more time for good practice and improvement to achieve its purposes.

  20. Mechanical test of E110 cladding material oxidized in hydrogen rich steam atmosphere

    International Nuclear Information System (INIS)

    Windberg, P.; Perez-Fero, E.

    2005-01-01

    The behavior of the fuel cladding under accidental conditions has been studied at the AEKI for more than a decade. Earlier, the effect of oxygen and hydrogen content on the mechanical properties was studied separately. The present experiments can help to understand what kind of processes took place in the cleaning tank at Paks NPP (2003). The purpose of our experiments was to investigate high temperature oxidation of E110 cladding in steam + hydrogen mixture. A high temperature tube furnace was used for oxidation of the samples. The oxidation was carried out at three different temperatures (900 0 C, 1000 0 C, 1100 0 C). The hydrogen content in the steam was varied between 19-36 vol%. The oxygen content of the sample was defined as oxidation ratio. Two sizes (length: 2 and 8 mm) of cladding rings and 100 mm long E110 cladding tubes were oxidized. After the oxidation we made compression and tensile tests for rings, and ballooning experiments for 100 mm long tube. The most important conclusions were the following. Oxidation in H-rich steam atmosphere need longer time to get the same oxidation ratio compared to the steam oxidation without hydrogen. The shorter oxidation time results in a more compact oxide layer. The longer oxidation time leads to a cracked oxide layer. (author)

  1. The mechanisms of pyrite oxidation and leaching: A fundamental perspective

    Science.gov (United States)

    Chandra, A. P.; Gerson, A. R.

    2010-09-01

    Pyrite is the earth's most abundant sulfide mineral. Its frequent undesirable association with minerals of economic value such as sphalerite, chalcopyrite and galena, and precious metals such as gold necessitates costly separation processes such as leaching and flotation. Additionally pyrite oxidation is a major contributor to the environmental problem of acid rock drainage. The surface oxidation reactions of pyrite are therefore important both economically and environmentally. Significant variations in electrical properties resulting from lattice substitution of minor and trace elements into the lattice structure exist between pyrite from different geographical locations. Furthermore the presence of low coordination surface sites as a result of conchoidal fracture causes a reduction in the band gap at the surface compared to the bulk thus adding further electrochemical variability. Given the now general acceptance after decades of research that electrochemistry dominates the oxidation process, the geographical location, elemental composition and semi-conductor type (n or p) of pyrite are important considerations. Aqueous pyrite oxidation results in the production of sulfate and ferrous iron. However other products such as elemental sulfur, polysulfides, hydrogen sulfide, ferric hydroxide, iron oxide and iron(III) oxyhydroxide may also form. Intermediate species such as thiosulfate, sulfite and polythionates are also proposed to occur. Oxidation and leach rates are generally influenced by solution Eh, pH, oxidant type and concentration, hydrodynamics, grain size and surface area in relation to solution volume, temperature and pressure. Of these, solution Eh is most critical as expected for an electrochemically controlled process, and directly correlates with surface area normalised rates. Studies using mixed mineral systems further indicate the importance of electrochemical processes during the oxidation process. Spatially resolved surface characterisation of fresh

  2. CARDIOVASCULAR DISEASES, SUSCEPTIBILITY TO OXIDATIVE INJURY AND COMPENSATORY MECHANISMS: INSIGHTS FROM RODENT MODELS

    Science.gov (United States)

    Cardiovascular diseases (CVD) are the number one cause for human mortality and nearly 25% of the population develops chronic CVD at an age of 65 years or older. Environmental and genetic interactions govern pathogenesis. Increased oxidative stress and compromised antioxidant stat...

  3. Diffusive, Displacive Deformations and Local Phase Transformation Govern the Mechanics of Layered Crystals: The Case Study of Tobermorite.

    Science.gov (United States)

    Tao, Lei; Shahsavari, Rouzbeh

    2017-07-19

    Understanding the deformation mechanisms underlying the mechanical behavior of materials is the key to fundamental and engineering advances in materials' performance. Herein, we focus on crystalline calcium-silicate-hydrates (C-S-H) as a model system with applications in cementitious materials, bone-tissue engineering, drug delivery and refractory materials, and use molecular dynamics simulation to investigate its loading geometry dependent mechanical properties. By comparing various conventional (e.g. shear, compression and tension) and nano-indentation loading geometries, our findings demonstrate that the former loading leads to size-independent mechanical properties while the latter results in size-dependent mechanical properties at the nanometer scales. We found three key mechanisms govern the deformation and thus mechanics of the layered C-S-H: diffusive-controlled and displacive-controlled deformation mechanisms, and strain gradient with local phase transformations. Together, these elaborately classified mechanisms provide deep fundamental understanding and new insights on the relationship between the macro-scale mechanical properties and underlying molecular deformations, providing new opportunities to control and tune the mechanics of layered crystals and other complex materials such as glassy C-S-H, natural composite structures, and manmade laminated structures.

  4. Oxidation mechanism of Fe–16Cr alloy as SOFC interconnect in dry/wet air

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Wang, Li-Jun; Li, Fu-Shen; Chou, Kuo-Chih

    2013-01-01

    Highlights: •A special thermodynamic description corresponding to the kinetics was applied. •We reported the relationships of degradation time with temperature and moisture. •”Turning time” in the Fe–16Cr alloy oxidation kinetic model was given. •The oxidation mechanism of Fe–16Cr alloy in the wet air was discussed. -- Abstract: Experimental study on the oxidation corrosions of Fe–16Cr alloy was carried out at 800–1100 °C under dry/wet air conditions. Faster oxidation rate was observed at higher temperature and water vapor content. The degradation time t d between two stages in oxidation process showed an exponential relationship with elevating corrosion temperature in dry air, and a linear relationship with the water content in the case of water vapor introduced to the system. The mechanism of oxidation corrosions of Fe–16Cr alloy was suggested by the Real Physical Picture (RPP) model. It was found that the break-away oxidation in stage II was controlled by diffusion at initial both in dry and wet air, then became linear with the exposure time, which implied that the oxidation rate was then controlled by chemical reaction of the interface between the metal and the oxidized scale. Moreover, the effect of water in the oxidation process is not only to supply more oxygen into system, but also to modify the structures of oxide scale due to the existence of hydrogen atom, which results in the accelerated corrosions

  5. Unpacking the mechanisms of the EU ‘throughput’ governance legitimacy

    DEFF Research Database (Denmark)

    Chatzopoulou, Sevasti

    2015-01-01

    The proliferation of EU agencies, referred to as agencification phenomenon, constitutes a significant EU institutional innovation. Agencification aimed to provide information, promote efficiency, decrease politicization and generate standards based on specialised technical knowledge. However...... this article claims that in order to assess the overall legitimacy of the EU regulatory governance through agencies, the ‘throughput’ criterion needs to be considered. Although important, the ‘input’ (politics) and ‘output’ (policy) criteria fail to capture what happens within the actual governance (process...

  6. Efficient synthesis of graphene oxide and the mechanisms of oxidation and exfoliation

    Science.gov (United States)

    Yuan, Rui; Yuan, Jing; Wu, Yanping; Chen, Lei; Zhou, Huidi; Chen, Jianmin

    2017-09-01

    An efficient method for the preparation of graphene oxide (GO) was descried through inducing the ultrasonic in the rate-determining step of oxidation processes. Both the transformation procedures and the detailed molecular behavior of parent graphene (PG), partially oxidized graphene (PGO) and GO in H2SO4 and aqueous solution were investigated by molecular dynamic simulation (MD) combining with experiments. The results obtained from MD simulation show that the addition of KMnO4 truly marked the beginning of the reaction which carried out from the border of PG flakes to the centre. This oxidation procedure was the rate-determining step and mainly contained three steps: the boundary carbon atoms oxidized, the distance of the corresponding interlayer enlarged and the oxidizing agent diffused into the unoxidized region, the processes was repeated until oxidized completely. So, the introducing ultrasonic in this section can accelerate not only the exfoliation of layers but also the diffusion of oxidizer and finally raises the oxidation efficiency dramatically. To further clarify these simulation results, the GO was prepared by the method mentioned above. The analyses results for the X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS) of the resulting GO show that the ultrasonic method could perfectly shortens the oxidation time from 12 h to 3 h and forms the higher degree of oxidation products with more carboxylic acid groups on its edges. Thus, this study provides a better understanding of the transformation procedures of graphite and proposes an efficient way to produce GOs suitable for various chemical modifications.

  7. An Investigation of the Impact of Corporate Governance Mechanisms on Level of Corporate Risk Disclosure: Evidence from Kuwait

    Directory of Open Access Journals (Sweden)

    Bader Al-Shammari

    2014-06-01

    Full Text Available This study investigated the association between corporate governance mechanisms and corporate risk disclosure (CRD in the annual reports for a sample of 109 Kuwaiti listed non-financial companies in 2012. The study used a manual content analysis to measure risk disclosure by counting the number of risk-related sentences in annual reports. A multiple regression analysis was used to test the impact of board size, non-executive directors, percentage of family members on board, role duality, and audit committee on CRD. The quantity of risk disclosures in the Kuwaiti companies' annual reports was very limited. The results showed that the larger board size has a positive impact on CRD. However, the findings also indicated the existence of role duality lead to lower risk disclosure. Other corporate governance mechanisms did not explain variation in CRD.

  8. Mechanisms of hybrid governance : Administrative committees in non-equity alliances

    NARCIS (Netherlands)

    Reuer, Jeffrey; Devarakonda, S.V.

    2016-01-01

    Recent research on the governance of hybrid organizational forms has investigated the contractual foundations of collaborations by examining how firms craft complex contracts as well as plan for changing circumstances during contract execution. We build upon and extend this research by considering

  9. The Effectiveness of Corporate Governance Mechanisms and Leadership Structure: Impacts on strategic change and firm performance

    NARCIS (Netherlands)

    Y. Feng (Ying)

    2017-01-01

    markdownabstractHow to assess and improve the effectiveness of corporate governance to accommodate the demands of strategic decision making has been one of the top concerns among both scholars and practitioners. While extensive research has taken an economic view when investigating corporate

  10. Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of Oxidation ...

    African Journals Online (AJOL)

    The oxidation of N-acetylthiourea (ACTU) by acidic bromate has been studied by observing formation of bromine in excess bromate conditions. The reaction displays an induction period before formation of bromine. The stoichiometry of the reaction was determined to be 4:3: 4BrO3 ...

  11. Oxyhalogen-Sulfur Chemistry: Kinetics and Mechanism of Oxidation ...

    African Journals Online (AJOL)

    NICOLAAS

    The oxidation of N-acetylthiourea (ACTU) by acidic bromate has been studied by observing formation of bromine in excess .... kinetics experiments were performed at 25.0 ± 0.1 °C and at an ..... thiourea compounds with potent anti-HIV activity.

  12. Effect of nickel oxide substitution on bioactivity and mechanical ...

    Indian Academy of Sciences (India)

    In the present work, the effect of addition of nickel oxide that annualizes the .... for required dimension using grinding machine, then sam- ples were subjected to ... the hardness testing machine, the size of the sample was. 10 × 10 × 10 mm ...

  13. Kinetics and mechanism of oxidation of chloramphenicol by 1

    Indian Academy of Sciences (India)

    Chloramphenicol (CAP) is an antibiotic drug having a wide spectrum of activity. The kinetics of oxidation of chloramphenicol by 1-chlorobenzotriazole (CBT) in HClO4 medium over the temperature range 293-323 K has been investigated. The reaction exhibits first-order kinetics with respect to [CBT]o and zero-order with ...

  14. Kinetics and mechanism of the oxidation of some diols by ...

    Indian Academy of Sciences (India)

    Abstract. The kinetics of oxidation of five vicinal and four non-vicinal diols, and two of their monoethers by benzyltrimethylammonium tribromide (BTMAB) have been studied in 3:7 (v/v) acetic acid–water mixture. The vicinal diols yield the carbonyl compounds arising out of the glycol bond fission while the other diols give.

  15. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  16. Kinetics and mechanism of the oxidation of substituted ...

    Indian Academy of Sciences (India)

    Unknown

    Oxidation of meta- and para-substituted benzylamines by cetyltrimethyl- ... method.12 As per this method, the aldimine is hydrolysed to the aldehyde and then ... reactions were studied at constant temperature (± 0⋅1 K) and were followed by .... electronic interaction between the substituent and the reaction centre, (σ+–σ0) is ...

  17. Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides

    DEFF Research Database (Denmark)

    Levi, Gianluca; Causà, Mauro; Lacovig, Paolo

    2017-01-01

    The present study investigates the coal char combustion by a combination of thermochemical and X-ray photoemission spectroscopy (XPS) analyses. Thermoanalytical methods (differential thermogravimetry, differential scanning calorimetry, and temperature-programmed desorption) are used to identify...... the key reactive steps that occur upon oxidation and heating of coal char (chemisorption, structural rearrangement and switchover of surface oxides, and desorption) and their energetics. XPS is used to reveal the chemical nature of the surface oxides that populate the char surface and to monitor...... functionalities prevail. The rearrangement of epoxy during preoxidation goes together with activation of the more stable and less reactive carbon sites. Results are in good agreement with semi-lumped kinetic models of carbon oxidation, which include (1) formation of "metastable" surface oxides, (2) complex...

  18. On the oxidation mechanism of microcrystalline silicon thin films studied by Fourier transform infrared spectroscopy

    NARCIS (Netherlands)

    Bronneberg, A. C.; Smets, A. H. M.; Creatore, M.; M. C. M. van de Sanden,

    2011-01-01

    Insight into the oxidation mechanism of microcrystalline silicon thin films has been obtained by means of Fourier transform infrared spectroscopy. The films were deposited by using the expanding thermal plasma and their oxidation upon air exposure was followed in time. Transmission spectra were

  19. The influence of initial defects on mechanical stress and deformation distribution in oxidized silicon

    Directory of Open Access Journals (Sweden)

    Kulinich O. A.

    2008-10-01

    Full Text Available The near-surface silicon layers in silicon – dioxide silicon systems with modern methods of research are investigated. It is shown that these layers have compound structure and their parameters depend on oxidation and initial silicon parameters. It is shown the influence of initial defects on mechanical stress and deformation distribution in oxidized silicon.

  20. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  1. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters

    KAUST Repository

    Allian, Ayman Daoud; Takanabe, Kazuhiro; Fujdala, Kyle L.; Hao, Xianghong; Truex., Timothy J.; Cai, Juan; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-01-01

    Kinetic, isotopic, and infrared studies on well-defined dispersed Pt clusters are combined here with first-principle theoretical methods on model cluster surfaces to probe the mechanism and structural requirements for CO oxidation catalysis

  2. Development of 3D Oxide Fuel Mechanics Models

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casagranda, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pitts, S. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-27

    This report documents recent work to improve the accuracy and robustness of the mechanical constitutive models used in the BISON fuel performance code. These developments include migration of the fuel mechanics models to be based on the MOOSE Tensor Mechanics module, improving the robustness of the smeared cracking model, implementing a capability to limit the time step size based on material model response, and improving the robustness of the return mapping iterations used in creep and plasticity models.

  3. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  4. Mechanical properties of melt-derived erbium oxide

    International Nuclear Information System (INIS)

    Neuman, A.D.; Blacic, M.J.; Platero, M.; Romero, R.S.; McClellan, K.J.; Petrovic, J.J.

    1998-01-01

    Erbium oxide (Er 2 O 3 ) is a rare earth oxide that is chemically and thermally stable and has a melting point of 2,430 C. There is relatively little information available regarding single crystal growth of erbia or the properties of erbia. In this study, erbia single crystals have been grown in a Xenon Optical Floating Zone Unit (XeOFZ) capable of melting materials at temperatures up to 3,000 C. Erbia was melt synthesized in the XeOFZ unit in a container less fashion, proving for little chance of contamination. Crystals were grown in compressed air and in reducing atmospheres. A recurring problem with melt synthesis of erbia is the appearance of flakes at the edges of the melt zone during growth; these flakes disrupt the growth process. The processing details and an initial survey of the physical properties of erbia single crystals is discussed

  5. Corrosion mechanisms of spent fuel under oxidizing conditions

    International Nuclear Information System (INIS)

    Finn, P.A.; Finch, R.; Buck, E.; Bates, J.

    1997-01-01

    The release of 99 Tc can be used as a reliable marker for the extent of spent oxide fuel reaction under unsaturated high-drip-rate conditions at 90 degrees C. Evidence from leachate data and from scanning and transmission electron microscopy (SEM and TEM) examination of reacted fuel samples is presented for radionuclide release, potential reaction pathways, and the formation of alteration products. In the ATM-103 fuel, 0.03 of the total inventory of 99 Tc is released in 3.7 years under unsaturated and oxidizing conditions. Two reaction pathways that have been identified from SEM are (1) through-grain dissolution with subsequent formation of uranyl alteration products, and (2) grain-boundary dissolution. The major alteration product identified by x-ray diffraction (XRD) and SEM, is Na-boltwoodite, Na[(UO 2 )(SiO 3 OH)]lg-bullet H 2 O, which is formed from sodium and silicon in the water leachant

  6. The Influence of Institutional Shareholder Activism as a Corporate Governance Monitoring Mechanism in Malaysia

    OpenAIRE

    Maizatul A. Musa

    2012-01-01

    Not many studies have been undertaken on shareholder activism in emerging economies, including Malaysia. Shareholder activism in emerging economies is on the rise. This paper seeks to comprehend the elements of this activism that are unique to Malaysia, specifically with respect to how the agency problem is controlled through shareholder activism in improving corporate governance practices within target companies. Through shareholder activism, shareholders make contact with a target company t...

  7. MECHANISMS OF NITROUS OXIDE FORMATION IN COAL FLAMES

    Science.gov (United States)

    The paper gives results of a study, using both detailed kinetic modeling and plug-flow simulator experiments, to investigate an unknown mechanism by which N2O is formed in coal flames. This mechanism has considerable importance in determining the influence of common and advanced ...

  8. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments.

    Science.gov (United States)

    Dong, Conglin; Yuan, Chengqing; Bai, Xiuqin; Li, Jian; Qin, Honglin; Yan, Xinping

    2017-05-24

    Stainless steel is widely used in strongly oxidizing hydrogen peroxide (H 2 O 2 ) environments. It is crucial to study its wear behaviour and failure mode. The tribological properties and oxidation of 304 stainless steel were investigated using a MMW-1 tribo-tester with a three-electrode setup in H 2 O 2 solutions with different concentrations. Corrosion current densities (CCDs), coefficients of frictions (COFs), wear mass losses, wear surface topographies, and metal oxide films were analysed and compared. The results show that the wear process and oxidation process interacted significantly with each other. Increasing the concentration of H 2 O 2 or the oxidation time was useful to form a layer of integrated, homogeneous, compact and thick metal oxide film. The dense metal oxide films with higher mechanical strengths improved the wear process and also reduced the oxidation reaction. The wear process removed the metal oxide films to increase the oxidation reaction. Theoretical data is provided for the rational design and application of friction pairs in oxidation corrosion conditions.

  9. Investigation on Fluorescence Quenching Mechanism of Perylene Diimide Dyes by Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Yuzhen Zhao

    2016-11-01

    Full Text Available Perylene diimide derivatives were used as probes to investigate the effect of the molecular structures on the fluorescence quenching mechanism in a perylene diimide/graphene oxide system. The electrons transferred from the excited state of dyes to the conductive band of graphene oxide with different concentrations were determined by fluorescence spectra. The results indicated that the quenching efficiency of perylene diimides by graphene oxide was not only dependent on the difference between the lowest unoccupied molecular orbital level of dyes and the conduction band of the graphene oxide, but also mainly on the difference in the molecular structures.

  10. Report on assessment of the mechanism of bacterially assisted oxidation of pyritic uranium tailings

    International Nuclear Information System (INIS)

    Halbert, B.B.; Scharer, J.M.; Knapp, R.A.

    1984-07-01

    The oxidation of pyritic minerals has been shown to be catalyzed by the presence of iron- and sulphur-oxidizing bacteria. Thiobacillus ferroxidans plays the most significant role in the formation and propagation of acidic conditions. Optimum growth conditions for the T. ferroxidans occurs at a temperature of 35 degrees C and pH of 2 to 3. Bacterially assisted oxidation of pyrite involves both direct and indirect contact mechanisms. The direct contact mechanism entails enzymatic oxidation of the insoluble sulphide moiety. The indirect mechanism involves bacterial oxidation of the dissolved ferrous component to the ferric state. The ferric iron, in turn, acts as the prime oxidant of pyrite and is reduced to ferrous iron. The re-oxidation of the dissolved ferrous component which is catalyzed by bacterial activity, completes the cyclic process. The rate of bacterial oxidation is affected by: the geochemistry and reactivity of the pyritic material; the amount of pyrite present in the waste material and the exposed surface area of the pyritic component; the availability of oxygen and carbon dioxide; the pH and temperature of the leach solution; and the presence (or absence) of organic inhibitors. Of the above factors, oxygen has been frequently identified as the rate limiting reactant in tailings

  11. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  12. Bismuth oxide based ceramics with improved electrical and mechanical properties: Part II. Structural and mechanical properties

    NARCIS (Netherlands)

    Kruidhof, H.; Seshan, Kulathuiyer; van de Velde, G.M.H.; de Vries, K.J.; Burggraaf, A.J.

    1988-01-01

    Coprecipitation as a method of preparation for bismuth oxides based ceramics yields relatively strong and machineable materials in comparison with the solid state reaction. Compositions within the system (1−x)Bi2O3|xEr2O3 containing up to twenty five mole percent of erbium oxide show a slow

  13. Leveraging non-binding instruments for global health governance: reflections from the Global AIDS Reporting Mechanism for WHO reform.

    Science.gov (United States)

    Taylor, A L; Alfven, T; Hougendobler, D; Tanaka, S; Buse, K

    2014-02-01

    As countries contend with an increasingly complex global environment with direct implications for population health, the international community is seeking novel mechanisms to incentivize coordinated national and international action towards shared health goals. Binding legal instruments have garnered increasing attention since the World Health Organization adopted its first convention in 2003. This paper seeks to expand the discourse on future global health lawmaking by exploring the potential value of non-binding instruments in global health governance, drawing on the case of the 2001 United Nations General Assembly Special Session Declaration of Commitment on HIV/AIDS. In other realms of international concern ranging from the environment to human rights to arms control, non-binding instruments are increasingly used as effective instruments of international cooperation. The experience of the Global AIDS Reporting Mechanism, established pursuant to the Declaration, evidences that, at times, non-binding legal instruments can offer benefits over slower, more rigid binding legal approaches to governance. The global AIDS response has demonstrated that the use of a non-binding instrument can be remarkably effective in galvanizing increasingly deep commitments, action, reporting compliance and ultimately accountability for results. Based on this case, the authors argued that non-binding instruments deserve serious consideration by the international community for the future of global health governance, including in the context of WHO reform. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  14. The effect of governance mechanisms on food safety in the supply chain: Evidence from the Lebanese dairy sector.

    Science.gov (United States)

    Abebe, Gumataw K; Chalak, Ali; Abiad, Mohamad G

    2017-07-01

    Food safety is a key public health issue worldwide. This study aims to characterise existing governance mechanisms - governance structures (GSs) and food safety management systems (FSMSs) - and analyse the alignment thereof in detecting food safety hazards, based on empirical evidence from Lebanon. Firm-to-firm and public baseline are the dominant FSMSs applied in a large-scale, while chain-wide FSMSs are observed only in a small-scale. Most transactions involving farmers are relational and market-based in contrast to (large-scale) processors, which opt for hierarchical GSs. Large-scale processors use a combination of FSMSs and GSs to minimise food safety hazards albeit potential increase in coordination costs; this is an important feature of modern food supply chains. The econometric analysis reveals contract period, on-farm inspection and experience having significant effects in minimising food safety hazards. However, the potential to implement farm-level FSMS is influenced by formality of the contract, herd size, trading partner choice, and experience. Public baseline FSMSs appear effective in controlling food safety hazards; however, this may not be viable due to the scarcity of public resources. We suggest public policies to focus on long-lasting governance mechanisms by introducing incentive schemes and farm-level FSMSs by providing loans and education to farmers. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Oxidation mechanism of porous Zr_2Fe used as a hydrogen getter

    International Nuclear Information System (INIS)

    Cohen, Dror; Nahmani, Moshe; Rafailov, Genadi; Attia, Smadar; Shamish, Zorik; Landau, Miron; Merchuk, Jose; Zeiri, Yehuda

    2016-01-01

    We determined the oxidation mechanism of porous ST-198, which mainly comprises Zr_2Fe. Oxidation kinetics depended on temperature, oxygen partial pressure, and oxidation extent. The passivation role of oxidation in hydrogen scavenging is probably due to the development of a surface oxide, independent of oxygen concentration. Zr_2Fe would be a superior hydrogen getter in oxygen-contaminated environments at high temperatures, as most oxygen will be consumed at the outer shell by mass transfer limitations, protecting the bulk of the getter for hydrogen scavenging. - Highlights: • Porous Zr_2Fe–O_2 interactions are characterized in detail. • Gettering efficiency at low temperature is hampered by oxide layer formation. • Gettering is better at high temperatures as outer shell consumes maximum oxygen.

  16. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  17. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie

    2009-12-10

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  18. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation

    KAUST Repository

    Quinet, Elodie; Piccolo, Laurent; Morfin, Franck; Avenier, Priscilla; Diehl, Fabrice; Caps, Valerie; Rousset, Jean Luc

    2009-01-01

    The kinetics of CO oxidation, H2 oxidation and preferential CO oxidation (PrOx) over Au/Al2O3 catalysts have been investigated. The catalysts with the smallest particles (∼2 nm) are the most active for all three reactions. As previously observed, the presence of H2 greatly promotes CO oxidation, which becomes faster than CO-free H2 oxidation at low temperature. From these results and on the basis of previous works, we propose a complete PrOx mechanism. The reaction involves Au-OOH, Au-OH and Au-H intermediates, also involved in H2 oxidation, and benefits from the presence of low-coordination sites. © 2009 Elsevier Inc. All rights reserved.

  19. GOOD CORPORATE GOVERNANCE MECHANISMS IN MEASURING QUALITY OF FINANCIAL STATEMENTS AND TRANSFER INVESTOR LEVELS

    OpenAIRE

    Hani, Syafrida; UMSU, Hafsah

    2017-01-01

    ABSTRACTThis study aims to develop a theory of determining the quality of financial statement reports that can increase  investor  confidence  in  financial  information  presented  by management.  This  research would like to find the role of good corporate governance  in improving the quality of financial statements as measured by accounting conservatism and earnings management, then it will be seen how the quality ability of financial statement can influence investor confidence level. The ...

  20. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Adam John Anthony McGuinness

    2017-02-01

    Full Text Available Markers of oxidative stress are increased in chronic obstructive pulmonary disease (COPD and reactive oxygen species (ROS are able to alter biological molecules, signaling pathways and antioxidant molecule function, many of which have been implicated in the pathogenesis of COPD. However, the involvement of ROS in the development and progression of COPD is not proven. Here, we discuss the sources of ROS, and the defences that have evolved to protect against their harmful effects. We address the role that ROS may have in the development and progression of COPD, as well as current therapeutic attempts at limiting the damage they cause. Evidence has indicated that the function of several key cells appears altered in COPD patients, and expression levels of important oxidant and antioxidant molecules may be abnormal. Therapeutic trials attempting to restore equilibrium to these molecules have not impacted upon all facets of disease and whilst the theory behind ROS influence in COPD appears sound, current models testing relevant pathways to tissue damage are limited. The heterogeneity seen in COPD patients presents a challenge to our understanding, and further research is essential to identify potential targets and stratified COPD patient populations where ROS therapies may be maximally efficacious.

  1. Governance mechanisms and the institutional design of the Health Secretariat in the Municipality of Rio de Janeiro (RJ), Brazil.

    Science.gov (United States)

    Ribeiro, José Mendes; Alcoforado, Flávio

    2016-05-01

    In this article, we outline the discussions about the mechanisms of governance and public administration taking into account the main political and economic schools of thought which affect the decisions taken by elected and public bodies. We discuss the pendulum-style approach of the reforms and the degree of minimization of the Weberian thesis on rational bureaucracy. Taking into account conceptual aspects and the trajectory of the debate on a new form of public governance and the 1995 State of Brazil reforms, we analyzed the institutional design of the Municipal Health Secretariat in Rio de Janeiro after the reforms were adopted, based on a social organizational model. We also took into account regulatory capacity and the sustainability of the governmental schools.

  2. Interlocking Friction Governs the Mechanical Fracture of Bilayer MoS2.

    Science.gov (United States)

    Jung, Gang Seob; Wang, Shanshan; Qin, Zhao; Martin-Martinez, Francisco J; Warner, Jamie H; Buehler, Markus J

    2018-04-24

    A molybdenum disulfide (MoS 2 ) layered system is a two-dimensional (2D) material, which is expected to provide the next generation of electronic devices together with graphene and other 2D materials. Due to its significance for future electronics applications, gaining a deep insight into the fundamental mechanisms upon MoS 2 fracture is crucial to prevent mechanical failure toward reliable applications. Here, we report direct experimental observation and atomic modeling of the complex failure behaviors of bilayer MoS 2 originating from highly variable interlayer frictions, elucidated with in situ transmission electron microscopy and large-scale reactive molecular dynamics simulations. Our results provide a systematic understanding of the effects that different stacking and loading conditions have on the failure mechanisms and crack-tip behaviors in the bilayer MoS 2 systems. Our findings unveil essential properties in fracture of this 2D material and provide mechanistic insight into its mechanical failure.

  3. On the mechanisms governing the repetition rate of mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    We investigate the mechanisms influencing the synchronization locking range of mode-locked lasers. We find that changes in repetition rates can be accomodated through a joint interplay of dispersion and pulse shaping effects....

  4. Competition between Bending and Internal Pressure Governs the Mechanics of Fluid Nanovesicles.

    Science.gov (United States)

    Vorselen, Daan; MacKintosh, Fred C; Roos, Wouter H; Wuite, Gijs J L

    2017-03-28

    Nanovesicles (∼100 nm) are ubiquitous in cell biology and an important vector for drug delivery. Mechanical properties of vesicles are known to influence cellular uptake, but the mechanism by which deformation dynamics affect internalization is poorly understood. This is partly due to the fact that experimental studies of the mechanics of such vesicles remain challenging, particularly at the nanometer scale where appropriate theoretical models have also been lacking. Here, we probe the mechanical properties of nanoscale liposomes using atomic force microscopy (AFM) indentation. The mechanical response of the nanovesicles shows initial linear behavior and subsequent flattening corresponding to inward tether formation. We derive a quantitative model, including the competing effects of internal pressure and membrane bending, that corresponds well to these experimental observations. Our results are consistent with a bending modulus of the lipid bilayer of ∼14k b T. Surprisingly, we find that vesicle stiffness is pressure dominated for adherent vesicles under physiological conditions. Our experimental method and quantitative theory represents a robust approach to study the mechanics of nanoscale vesicles, which are abundant in biology, as well as being of interest for the rational design of liposomal vectors for drug delivery.

  5. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.; Kutbee, Arwa T.; Ghodsi Nasseri, Seyed Faizelldin; Bersuker, G.; Hussain, Muhammad Mustafa

    2014-01-01

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect

  6. One-electron oxidation of DNA: mechanism and consequences.

    Science.gov (United States)

    Schuster, Gary B

    2009-01-01

    All living organisms store the information necessary to maintain life in their DNA. Any process that damages DNA and causes loss or corruption of that information threatens the viability of the organism. One-electron oxidation is such a process. Loss of an electron from DNA generates a radical cation that is located primarily on its nucleobases. The radical cation migrates reversibly through duplex DNA by hopping until it is eventually trapped in an irreversible chemical reaction. The particular sequence of nucleobases in a DNA oligomer determines both the efficiency of hopping and the specific location and nature of the damaging chemical reaction. In its normal aqueous solutions, DNA is a polyanion because of the negative charge carried by its phosphate groups. Counter ions (typically Na(+)) to the phosphate groups play an important role in facilitating both the migration of the radical cation and in its eventual reaction with H(2)O. Irreversible reaction of a radical cation with H(2)O in duplex DNA occurs preferentially at the most reactive site. In normal DNA that is comprised of the four common DNA nucleobases, reaction occurs most commonly at a guanine and results in its conversion primarily to 8-oxo-7,8-dihydroguanine (8-OxoG). Both electronic and steric effects control the outcome of this process. If the DNA oligomer does not contain a suitable guanine, then reaction of the radical cation occurs at the thymine of a TT step primarily by a tandem process. The general outcomes revealed in the one-electron oxidation of DNA oligomers in solution appear to be generally valid also for more complex DNA structures and for the cellular DNA of living organisms.

  7. Quantum chemical study of the mechanisms of oxidation of ethylene ...

    Indian Academy of Sciences (India)

    lanl2tz basis set.32–36. Spartan uses a graphical model builder for input preparation. Molecules were constructed and mini- mized interactively using an appropriate molecular mechanics force field. All structural optimizations were done without symmetry restrictions. Normal mode analysis was performed to verify the nature ...

  8. Mechanisms of Nitrogen Oxide Formation During Ensiling of Dairy Feeds

    Science.gov (United States)

    This product is the abstract of a proposed paper. The emission of NOx has been observed during the ensiling process (Peterson et al. 1958, Maw et al. 2002). Substantial NOx is not inherently present in corn. It is generated by an unknown mechanism during the early days of the ens...

  9. Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing

    International Nuclear Information System (INIS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Shimada, Akihiko; Sugimoto, Masaki; Kudoh, Hisaaki

    2012-01-01

    The mechanism of polymer oxidation by radiation and thermal ageing was investigated for the life evaluation of cables installed in radiation environments. The antioxidant as a stabilizer was very effective for thermal oxidation with a small content in polymers, but was not effective for radiation oxidation. The ionizing radiation induced the oxidation to result in chain scission even at low temperature, because the free radicals were produced and the antioxidant could not stop the oxidation of radicals with the chain scission. A new mechanism of antioxidant effect for polymer oxidation was proposed. The effect of antioxidant was not the termination of free radicals in polymer chains such as peroxy radicals, but was the depression of initial radical formation in polymer chains by thermal activation. The antioxidant molecule was assumed to delocalize the activated energy in polymer chains by the Boltzmann statics (distribution) to result in decrease in the probability of radical formation at a given temperature. The interaction distance (delocalization volume) by one antioxidant molecule was estimated to be 5–10 nm by the radius of sphere in polymer matrix, though the value would depend on the chemical structure of antioxidant. - Highlights: ► Interaction of antioxidant on polymer oxidation is discussed for thermal and radiation ageings. ► Antioxidant is very effective for thermal oxidation, but not for radiation induced oxidation. ► Interaction of antioxidant is not the termination reaction of radicals on polymers. ► Antioxidant is supposed to reduce the provability of polymer radical formation by thermal activation. ► Mechanism of polymer oxidation may not be chain reaction via peroxy radical and hydro-peroxide.

  10. The mental health care model in Brazil: analyses of the funding, governance processes, and mechanisms of assessment

    Directory of Open Access Journals (Sweden)

    Thiago Lavras Trapé

    Full Text Available ABSTRACT OBJECTIVE This study aims to analyze the current status of the mental health care model of the Brazilian Unified Health System, according to its funding, governance processes, and mechanisms of assessment. METHODS We have carried out a documentary analysis of the ordinances, technical reports, conference reports, normative resolutions, and decrees from 2009 to 2014. RESULTS This is a time of consolidation of the psychosocial model, with expansion of the health care network and inversion of the funding for community services with a strong emphasis on the area of crack cocaine and other drugs. Mental health is an underfunded area within the chronically underfunded Brazilian Unified Health System. The governance model constrains the progress of essential services, which creates the need for the incorporation of a process of regionalization of the management. The mechanisms of assessment are not incorporated into the health policy in the bureaucratic field. CONCLUSIONS There is a need to expand the global funding of the area of health, specifically mental health, which has been shown to be a successful policy. The current focus of the policy seems to be archaic in relation to the precepts of the psychosocial model. Mechanisms of assessment need to be expanded.

  11. Growth mechanisms of oxide scales on ODS alloys in the temperature range 1000-1100deg C

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1990-01-01

    After a short overview of the production, microstructure and mechanical properties of nickel- and iron-based oxide dispersion strengthened (ODS) alloys, the oxidation properties of this class of materials is extensively discussed. The excellent oxidation resistance of ODS alloys is illustrated by comparing their behaviour with conventional chromia and alumina forming wrought alloys of the same base composition. ODS alloys exhibit improved scale adherence, decreased oxide growth rates, enhanced selective oxidation and decreased oxide grain size compared to corresponding non-ODS alloys. It is shown, that these experimental observations can be explained by a change in oxide growth mechanism. The presence of the oxide dispersion reduces cation diffusion in the scale, causing the oxides on the ODS alloys to grow mainly by oxygen grain boundary transport. As oxide grain size increases with time, the oxide growth kinetics obey a sub-parabolic time dependence especially in the case of the alumina forming iron-based ODS alloy. (orig.) [de

  12. THE OWNERSHIP STRUCTURE AS A CORPORATE GOVERNANCE MECHANISM IN SERBIAN HOTELS

    Directory of Open Access Journals (Sweden)

    Pero Petrovic

    2010-06-01

    Full Text Available This article analyses the development in Serbien tourism sector during the last decade. The article is focused on the ownership structure and company performance in the light of corporate governance theory and the actuel privatisation process. Previous research has proven that Serbien state is a poor and pasive owner,whereas private owners and amployees are more active and more interested in their company’s economic performance. This article shows that the transition to private ownership in the Serbian hotels sector has not been finished. Consequently, state-owned and investment funds remain important owners of Serbien hotels. The financial performance of hotel companies is below average in the economy and can be correlated with the current ownership structure. Since the current ownership structure has a negative impact on the hotel sector competitiveness, an ownership change is needed to boost the sector’s competitivensess and the competitivensess of Serbia as tourist destination.

  13. Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites

    Directory of Open Access Journals (Sweden)

    Cristina Monteserín

    2017-09-01

    Full Text Available Composites based on epoxy/graphene oxide (GO and epoxy/reduced graphene oxide (rGO were investigated for thermal-mechanical performance focusing on the effects of the chemical groups present on nanoadditive-enhanced surfaces. GO and rGO obtained in the present study have been characterized by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, and X-ray powder diffraction (XRD demonstrating that materials with different oxidation degrees have been obtained. Thereafter, GO/epoxy and rGO/epoxy nanocomposites were successfully prepared and thoroughly characterized by dynamic mechanical thermal analysis (DMTA and transmission electron microscopy (TEM. A significant increase in the glass transition temperature was found in comparison with the neat epoxy. The presence of functional groups on the graphene surface leads to chemical interactions between these functional groups on GO and rGO surfaces with the epoxy, contributing to the possible formation of covalent bonds between GO and rGO with the matrix. The presence of oxidation groups on GO also contributes to an improved exfoliation, intercalation, and distribution of the GO sheets in the composites with respect to the rGO based composites.

  14. Mechanism of pyrogallol red oxidation induced by free radicals and reactive oxidant species. A kinetic and spectroelectrochemistry study.

    Science.gov (United States)

    Atala, E; Velásquez, G; Vergara, C; Mardones, C; Reyes, J; Tapia, R A; Quina, F; Mendes, M A; Speisky, H; Lissi, E; Ureta-Zañartu, M S; Aspée, A; López-Alarcón, C

    2013-05-02

    Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.

  15. Insight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key

    Czech Academy of Sciences Publication Activity Database

    Sofer, Z.; Jankovský, O.; Šimek, P.; Sedmidubský, D.; Šturala, J.; Kosina, J.; Mikšová, Romana; Macková, Anna; Mikulics, M.; Pumera, M.

    2015-01-01

    Roč. 9, č. 5 (2015), s. 5478-5485 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GA15-09001S; GA ČR(CZ) GBP108/12/G108 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61389005 Keywords : graphene * exfoliation * mechanism * isotope labeling * graphite oxide Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 13.334, year: 2015

  16. THE EFFECT OF CORPORATE GOVERNANCE MECHANISM, OWNERSHIP STRUCTURE, AND EXTERNAL AUDITOR TOWARD CORPORATE SOCIAL RESPONSIBILITY DISCLOSURE WITH EARNING MANAGEMENT AS MODERATING VARIABLE

    Directory of Open Access Journals (Sweden)

    Suwana M.A.J.

    2017-08-01

    Full Text Available The purpose of this study is to examine the moderating effect of earning management on corporate governance mechanism, ownership structure, and external auditor toward corporate social responsibility disclosure. This study finds that the increase of ownership structure (foreign ownership and institutional ownership will increase corporate social responsibility disclosure. However corporate governance mechanism and external auditor is not affecting corporate social responsibility disclosure. Furthermore, this study provides additional empirical evidence for agency theory especially agency cost, that corporate governance mechanism, ownership structure, and Big Four audit firm do not have an effective role as agency cost to prevent or decrease earning management practice.

  17. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-06-09

    We report the impact of mechanical anomaly on high-κ/metal-oxide-semiconductor capacitors built on flexible silicon (100) fabric. The mechanical tests include studying the effect of bending radius up to 5 mm minimum bending radius with respect to breakdown voltage and leakage current of the devices. We also report the effect of continuous mechanical stress on the breakdown voltage over extended periods of times.

  18. Mechanics governs single-cell signaling and multi-cell robustness in biofilm infections

    Science.gov (United States)

    Gordon, Vernita

    In biofilms, bacteria and other microbes are embedded in extracellular polymers (EPS). Multiple types of EPS can be produced by a single bacterial strain - the reasons for this redundancy are not well-understood. Our work suggests that different polymers may confer distinct mechanical benefits. Our model organism is Pseudomonas aeruginosa, an opportunistic human pathogen that forms chronic biofilm infections associated with increased antibiotic resistance and evasion of the immune defense. Biofilms initiate when bacteria attach to a surface, sense the surface, and change their gene expression. Changes in gene expression are regulated by a chemical signal, cyclic-di-GMP. We find that one EPS material, called ``PEL,'' enhances surface sensing by increasing mechanical coupling of single bacteria to the surface. Measurements of bacterial motility suggest that PEL may increase frictional interactions between the surface and the bacteria. Consistent with this, we show that bacteria increase cyclic-di-GMP signaling in response to mechanical shear stress. Mechanosensing has long been known to be important to the function of cells in higher eukaryotes, but this is one of only a handful of studies showing that bacteria can sense and respond to mechanical forces. For the mature biofilm, the embedding polymer matrix can protect bacteria both chemically and mechanically. P. aeruginosa infections in the cystic fibrosis (CF) lung often last for decades, ample time for the infecting strain(s) to evolve. Production of another EPS material, alginate, is well-known to tend to increase over time in CF infections. Alginate chemically protects biofilms, but also makes them softer and weaker. Recently, it is being increasingly recognized that bacteria in chronic CF infections also evolve to increase PSL production. We use oscillatory bulk rheology to determine the unique contributions of EPS materials to biofilm mechanics. Unlike alginate, increased PSL stiffens biofilms. Increasing both

  19. MARKET-BASED MECHANISM IN PUBLIC SERVICE DELIVERY IN LOCAL GOVERNMENT IN POLAND – A BRIEF OVERVIEW

    Directory of Open Access Journals (Sweden)

    Dawid Sześciło

    2013-12-01

    Full Text Available The reintroduction of local self-government at the level of communes (gminy in 1990 opened the way for an in-depth reform of the local governance framework in Poland. This included not only the legal, organizational and fiscal autonomisation of local communities, but also went in line with general trends concerning the transformation of the public sector. Therefore, among the core elements of the transformation we may identify the extensive privatization of the public service provision schemes. In Poland, this process was not based on the theoretical background of New Public Management, as was the case in a number of Western countries. Instead, it was natural consequence of the rebirth of a market economy with a limited public sector and the intense development of the private market. Those trends were, however, compatible with the NPM programme. The expansion of market-based mechanisms in public service delivery is one of its pillars. This article provides a historical overview of the development of market-based arrangements in public service provision at the most basic level of Polish local government. It is focused mainly on a legal framework, but also includes some observations on the practical side of this process.

  20. Performance evaluation on air pollution reducing facilities and mechanism research on the third-party governance on environmental pollution

    Science.gov (United States)

    Bingsheng, Xu; Ling, Lin; Jin, Huang; Geng, Wang; Jianhua, Chen; Shuo, Yang; Huiting, Guo

    2017-11-01

    The paper focuses on developing the operational efficiency of air pollution reducing facilities and the treatment effect of the third-party governance on environmental pollution. Comprehensive analysis method and influence factor analysis are employed to build an evaluation index system by means of discussing major pollution control factors derived from the performance of pollution control equipment operation, environmental protection, technological economy, recourse consumption and manufacturing management. Based on the pattern of environmental pollution control offered by the third-party company, the static games model is further established between the government and the pollution emission firm by considering the whole process of the pollution abatement including investment, construction and operation of the treatment project, which focuses on establishing the policy condition and consequence by discussing the cost and benefit in a short and a long time, respectively. The research results can improve the market access requests of the pollution control equipment and normalize the environmental protection service offered by the third-party company. Moreover, the establishment of the evaluation index system for pollution control equipment and the evaluation mechanism for the third-party governance on environmental pollution has guiding significance on leading environmental protection industry and promoting market-oriented development

  1. Mechanisms of oxide dissolution by acid chelating agents

    International Nuclear Information System (INIS)

    Blesa, M.A.; Maroto, A.J.G.

    1982-01-01

    In this paper, the different possible rate controlling processes in the dissolution of metallic oxides are examined. In particular, the following situations are assessed: mass-transfer control; coupling of mass-transfer and reactions at the interface; interface equilibration with the solution; various interface disruption and reconstruction phenomena. For each of the above mentioned cases, the influence of variables such as reagent concentration, temperature, pH, fluid hydrodynamics and general and specific catalysts is discussed. Depending upon the particular situation it is found that a more rational basis for the development of reagent is given by these considerations. The influence of chelating agents on both the thermodynamics and kinetics of the process is discussed, and the results of experimental studies in batch on magnetite and various ferrites are presented and discussed. For this purpose, several reagents were studied, including some very effective ones like thioglycolic acid, and others commonly used in actual decontamination, like ethylenediaminetetraacetic acid and oxalic acid. The relation to other (reductive) chemical decontamination procedures is discussed. The relevance of these studies to decontamination of metallic surfaces is discussed

  2. Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanjeev [School of Information and Communication Engineering, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gil-Ho [School of Information and Communication Engineering, and SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sreenivas, K [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India); Tandon, R P [Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)

    2007-11-28

    Ultraviolet photoconductivity in zinc oxide (ZnO) nanoneedles grown on the surface of a multilayer structure comprised of ZnO film (50 nm)/Zn layer (20 nm)/ZnO film (2 {mu}m) fabricated on a stainless steel substrate using an unbalanced magnetron sputtering technique is reported. It was observed that the multilayered structure with ZnO nanoneedles exhibited enhanced ultraviolet photoconductivity in comparison to the ZnO films that were without nanoneedles. The enhancement in the photoconductivity is attributed to the increase in the quantum yield of the photogenerated charge carriers due to the presence of nanoneedles. A successive slow photoresponse transient following after a fast rise is due to the establishment of equilibrium between the charge carriers in the conduction band and the trapping centers created due to the shallow defects in the ZnO film. The observed photoresponse is critically analyzed on the basis of trapping levels created by the oxygen species during the high pressure deposition of the ZnO multilayer. Results show the promise of ZnO nanostructures in ultraviolet detection applications. (fast track communication)

  3. Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Kim, Gil-Ho; Sreenivas, K; Tandon, R P

    2007-01-01

    Ultraviolet photoconductivity in zinc oxide (ZnO) nanoneedles grown on the surface of a multilayer structure comprised of ZnO film (50 nm)/Zn layer (20 nm)/ZnO film (2 μm) fabricated on a stainless steel substrate using an unbalanced magnetron sputtering technique is reported. It was observed that the multilayered structure with ZnO nanoneedles exhibited enhanced ultraviolet photoconductivity in comparison to the ZnO films that were without nanoneedles. The enhancement in the photoconductivity is attributed to the increase in the quantum yield of the photogenerated charge carriers due to the presence of nanoneedles. A successive slow photoresponse transient following after a fast rise is due to the establishment of equilibrium between the charge carriers in the conduction band and the trapping centers created due to the shallow defects in the ZnO film. The observed photoresponse is critically analyzed on the basis of trapping levels created by the oxygen species during the high pressure deposition of the ZnO multilayer. Results show the promise of ZnO nanostructures in ultraviolet detection applications. (fast track communication)

  4. Disentangling specific versus generic doping mechanisms in oxide heterointerfaces

    Science.gov (United States)

    Gabel, J.; Zapf, M.; Scheiderer, P.; Schütz, P.; Dudy, L.; Stübinger, M.; Schlueter, C.; Lee, T.-L.; Sing, M.; Claessen, R.

    2017-05-01

    More than a decade after the discovery of the two-dimensional electron system (2DES) at the interface between the band insulators LaAlO3 (LAO) and SrTiO3 (STO) its microscopic origin is still under debate. Several explanations have been proposed, the main contenders being electron doping by oxygen vacancies and electronic reconstruction, i.e., the redistribution of electrons to the interface to minimize the electrostatic energy in the polar LAO film. However, no experiment thus far could provide unambiguous information on the microscopic origin of the interfacial charge carriers. Here we utilize a novel experimental approach combining photoelectron spectroscopy (PES) with highly brilliant synchrotron radiation and apply it to a set of samples with varying key parameters that are thought to be crucial for the emergence of interfacial conductivity. Based on microscopic insight into the electronic structure, we obtain results tipping the scales in favor of polar discontinuity as a generic, robust driving force for the 2DES formation. Likewise, other functionalities such as magnetism or superconductivity might be switched in all-oxide devices by polarity-driven charge transfer.

  5. Mechanism governing nanoparticle flow behaviour in porous media: insight for enhanced oil recovery applications

    Science.gov (United States)

    Agi, Augustine; Junin, Radzuan; Gbadamosi, Afeez

    2018-06-01

    Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

  6. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Science.gov (United States)

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The Neurotoxicity of Nitrous Oxide: The Facts and “Putative” Mechanisms

    Science.gov (United States)

    Savage, Sinead; Ma, Daqing

    2014-01-01

    Nitrous oxide is a widely used analgesic agent, used also in combination with anaesthetics during surgery. Recent research has raised concerns about possible neurotoxicity of nitrous oxide, particularly in the developing brain. Nitrous oxide is an N-methyl-d-aspartate (NMDA)-antagonist drug, similar in nature to ketamine, another anaesthetic agent. It has been linked to post-operative cardiovascular problems in clinical studies. It is also widely known that exposure to nitrous oxide during surgery results in elevated homocysteine levels in many patients, but very little work has investigated the long term effect of these increased homocysteine levels. Now research in rodent models has found that homocysteine can be linked to neuronal death and possibly even cognitive deficits. This review aims to examine the current knowledge of mechanisms of action of nitrous oxide, and to describe some pathways by which it may have neurotoxic effects. PMID:24961701

  8. Mechanism of extractive/oxidative desulfurization using the ionic liquid inimidazole acetate: a computational study.

    Science.gov (United States)

    Wang, Hanlu; Xu, Mingsheng; Zhou, Rujin

    2017-02-01

    The dual role of the ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid ([C 4 mim]TFA) as an extractant for thiophene (TH) and a catalyst for the oxidation of TH was explored at the molecular level by performing density functional theory (DFT) calculations. The calculated interaction energies demonstrated why [C 4 mim]TFA is a better extractant for thiophene sulfone (THO 2 ) than for TH. Two pathways were proposed for the oxidation of TH to THO 2 with [C 4 mim]TFA acting as a catalyst. In the dominant pathway, a peracid is formed which then oxidizes TH to the sulfoxide and sulfones. The presence of [C 4 mim]TFA was found to greatly reduce the barrier to the oxidative desulfurization (ODS) of TH using H 2 O 2 as an oxidant. Graphical Abstract Possible reaction mechanisms of TH with the aid of [C4mim]TFAᅟ.

  9. Point defects and oxidation mechanism in cubic boron nitride

    International Nuclear Information System (INIS)

    Gorshin, A.P.; Shvajko-Shvajkovskij, V.E.

    1994-01-01

    A theoretical analysis of the defect formation in boron nitride by the Schottky mechanism within the framework of the quasi-chemical approximation method is carried out. On the base of solution of the disordering equations at different conditions of electroneutrality are obtained the dependences of defect concentrations in β-BN on the partial nitrogen pressure in equilibrium conditions. Experimental checking of the theoretical analysis proposed confirms the hypothesis on the presence of defects of nonstoichiometric origin in the β-BN anion sublattice

  10. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.

    Science.gov (United States)

    Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco

    2014-11-01

    Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. The study of the oxidation of the natural flavonol fisetin confirmed quercetin oxidation mechanism

    Czech Academy of Sciences Publication Activity Database

    Ramešová, Šárka; Sokolová, Romana; Degano, I.

    2015-01-01

    Roč. 182, NOV 2015 (2015), s. 544-549 ISSN 0013-4686 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR M200401201 Program:M Institutional support: RVO:61388955 Keywords : oxidation * flavonoids * cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 4.803, year: 2015

  12. Part II: Effects of gamma irradiation on lipid and cholesterol oxidation in mechanically deboned turkey meat

    International Nuclear Information System (INIS)

    Farkas, J.; Andrassy, E.; Meszaros, L.; Beczner, J.; Polyak-Feher, K.; Gaal, O.; Lebovics, V.K.; Lugasi, A.

    2009-01-01

    The pasteurizing effect of a 2 kGy radiation dose on non-frozen mechanically deboned turkey meat was achieved without increase in cholesterol oxidation products or increases in thiobarbituric acid reactive substance values during 15 d of chilled storage following the treatments, while untreated samples were spoiled. The addition of antioxidants, such as thyme oil or α-tocopherol plus ascorbic acid, significantly inhibited the oxidative changes of cholesterol and lipids during 3 kGy treatment. (author)

  13. Mechanism of water oxidation by [Ru(bda)(L)2]: the return of the "blue dimer".

    Science.gov (United States)

    Concepcion, Javier J; Zhong, Diane K; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2015-03-07

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)2] including X-ray structure of intermediates and their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)2], revealing key features unavailable from solution studies with sacrificial oxidants.

  14. Kinetics and mechanism of oxidation of tellurium (IV) by periodate in alkaline medium

    International Nuclear Information System (INIS)

    Srinivas, K.; Vani, P.; Dikshitulu, L.S.A.

    1995-01-01

    Detailed kinetic study of the oxidation of tellurium (IV) by periodate in alkaline medium has been carried out to compare the mechanisms of oxidation in the acid and alkaline media. It is interesting to note that the rate step involves a two-electron transfer from tellurium (IV) to periodate in alkaline medium although the kinetic pattern is somewhat different from that in the acid medium. 7 refs., 1 tab

  15. The liquid phase oxidation of n-butane: a search for plausible mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, C.C. [Celanese Ltd., TX (United States). Corpus Christi Technical Center

    1998-12-31

    This articles deals with an approach that has given some key information about the mechanisms of the liquid phase oxidation of butane to acetic acid. This procedure has been developed over the last 34 years; however, much of what will be discussed represents a synthesis of previous insights. Many of the observations are relatively recent and have not been previously published. In principle, this approach should be applicable to many oxidation processes. (orig.)

  16. Hydrogen bond dynamics governs the effective photoprotection mechanism of plant phenolic sunscreens.

    Science.gov (United States)

    Liu, Fang; Du, Likai; Lan, Zhenggang; Gao, Jun

    2017-02-15

    Sinapic acid derivatives are important sunscreen species in natural plants, which could provide protection from solar UV radiation. Using a combination of ultrafast excited state dynamics, together with classical molecular dynamics studies, we demonstrate that there is direct coupling of hydrogen bond motion with excited state photoprotection dynamics as part of the basic mechanism in solution. Beyond the intra-molecular degree of freedom, the inter-molecular motions on all timescales are potentially important for the photochemical or photophysical events, ranging from the ultrafast hydrogen bond motion to solvent rearrangements. This provides not only an enhanced understanding of the anomalous experimental spectroscopic results, but also the key idea in the development of sunscreen agents with improved photo-chemical properties. We suggest that the hydrogen bond dynamics coupled excited state photoprotection mechanism may also be possible in a broad range of bio-related molecules in the condensed phase.

  17. Financial Mechanisms for Integrating Higher Education of Ukraine into the Quadrangle “Education — Government — Business — Society”

    Directory of Open Access Journals (Sweden)

    Verbytska Anna V.

    2018-03-01

    Full Text Available The aim of the article is to identify the financial mechanisms for integrating higher education of Ukraine into the quadrangle “education — government – business — society”, which are intended for increasing the international competitiveness of higher education of Ukraine. There substantiated the formation of a new national financial strategy in the field of higher education, which is based on the introduction of a mechanism for distributing financial responsibility between the state and consumers of educational services represented by employers and business structures, which can be implemented within multi-channel financing; adaptation of the experience in creation of endowment funds as a tool for additional financing of the higher education system; increase in the effectiveness of the export policy in the market for educational services. The principle of performance-based budgeting of higher education and its coordination with the concept of effective financial management is revealed.

  18. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction

    OpenAIRE

    Flavell, Charlotte R.; Lambert, Elliot A.; Winters, Boyer D.; Bredy, Timothy W.

    2013-01-01

    The extinction of learned associations has traditionally been considered to involve new learning, which competes with the original memory for control over behaviour. However, a recent resurgence of interest in reactivation-dependent amnesia has revealed that the retrieval of fear-related memory (with what is essentially a brief extinction session) can result in it’s destabilization. This review discusses some of the cellular and molecular mechanisms that are involved in the destabilization of...

  19. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP

    Science.gov (United States)

    Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.

  20. Endogenous Cholinergic Inputs and Local Circuit Mechanisms Govern the Phasic Mesolimbic Dopamine Response to Nicotine

    Science.gov (United States)

    Graupner, Michael; Maex, Reinoud; Gutkin, Boris

    2013-01-01

    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement. PMID:23966848

  1. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  2. Dual mechanisms governing reward-driven perceptual learning [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dongho Kim

    2015-09-01

    Full Text Available In this review, we explore how reward signals shape perceptual learning in animals and humans. Perceptual learning is the well-established phenomenon by which extensive practice elicits selective improvement in one’s perceptual discrimination of basic visual features, such as oriented lines or moving stimuli. While perceptual learning has long been thought to rely on ‘top-down’ processes, such as attention and decision-making, a wave of recent findings suggests that these higher-level processes are, in fact, not necessary.  Rather, these recent findings indicate that reward signals alone, in the absence of the contribution of higher-level cognitive processes, are sufficient to drive the benefits of perceptual learning. Here, we will review the literature tying reward signals to perceptual learning. Based on these findings, we propose dual underlying mechanisms that give rise to perceptual learning: one mechanism that operates ‘automatically’ and is tied directly to reward signals, and another mechanism that involves more ‘top-down’, goal-directed computations.

  3. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films

    Science.gov (United States)

    Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.

    2017-11-01

    Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.

  4. Disciplining governance in Africa : a comparison of the World Bank’s Country Policy and Institutional Assessment and the African Union’s African Peer Review Mechanism

    NARCIS (Netherlands)

    S. Kassa (Saba)

    2017-01-01

    markdownabstractThis study examines the promotion of governance in the African Continent. It compares the Country Policy and Institutional Assessment (CPIA) of the World Bank to the African Peer Review Mechanism (APRM) of the African Union. These governance assessments represent differing

  5. Oxidation and Metal-Insertion in Molybdenite Surfaces: Evaluation of Charge-Transfer Mechanisms and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ramana, Chintalapalle V.; Becker, U.; Shutthanandan, V.; Julien, C. M.

    2008-06-05

    Molybdenum sulfide (MoS2), an important representative member of the layered transition-metal dichalcogenides, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and industrial science and technology. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. On the other hand understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is quite important to utilize these minerals in technological applications. Furthermore, such a detailed investigation of thermal oxidation behavior and intercalation process will provide a basis to further explore and model the mechanism of adsorption of metal ions on to geomedia. Therefore, the present work was performed to understand the oxidation and intercalation processes of molybdenite surfaces. The results obtained, using a wide variety of analytical techniques, are presented and discussed in this paper.

  6. Radiolytic modelling of spent fuel oxidative dissolution mechanism. Calibration against UO2 dynamic leaching experiments

    International Nuclear Information System (INIS)

    Merino, J.; Cera, E.; Bruno, J.; Quinones, J.; Casas, I.; Clarens, F.; Gimenez, J.; Pablo, J. de; Rovira, M.; Martinez-Esparza, A.

    2005-01-01

    Calibration and testing are inherent aspects of any modelling exercise and consequently they are key issues in developing a model for the oxidative dissolution of spent fuel. In the present work we present the outcome of the calibration process for the kinetic constants of a UO 2 oxidative dissolution mechanism developed for using in a radiolytic model. Experimental data obtained in dynamic leaching experiments of unirradiated UO 2 has been used for this purpose. The iterative calibration process has provided some insight into the detailed mechanism taking place in the alteration of UO 2 , particularly the role of · OH radicals and their interaction with the carbonate system. The results show that, although more simulations are needed for testing in different experimental systems, the calibrated oxidative dissolution mechanism could be included in radiolytic models to gain confidence in the prediction of the long-term alteration rate of the spent fuel under repository conditions

  7. Mechanisms for formation and disruption of surface oxides: Final report

    International Nuclear Information System (INIS)

    Lumsden, J.B.

    1987-08-01

    Mill-annealed alloys 600, 690 and 800 were exposed to 10 and 50% caustic solutions containing 1% Na 2 CO 3 to initiate IGA. IGA reproducibly occurred in all three alloys in the 10% caustic solution at 350 0 C after a 240 h exposure and in the 50% caustic solution at 320 0 C after a 120 h exposure. Reproducible IGA did not occur in the 10% caustic solution at 320 0 C after a 120 h exposure. IGA was not observed in mill annealed plus thermally treated alloys 600 and 690 after exposure to any of the test conditions. IGA initiation was correlated with a dealloying mechanism in which the more active alloying metals, iron and chromium, selectively dissolve. Boric acid and calcium hydroxide additives were found to slow or prevent IGA by inhibiting dealloying. Titanates prevented IGA in alloys 600, 690 and 800, passivating the surface with a nickel titanate film

  8. Study of the Stereochemistry and Oxidation Mechanism of Plant Polyphenols, Assisted by Computational Chemistry.

    Science.gov (United States)

    Matsuo, Yosuke

    2017-01-01

    In recent years, plant polyphenols have attracted great attention due to their wide range of biological activities. Certain kinds of polyphenols have complex structures; therefore, it is difficult to elucidate their total structure, including stereochemistry. In this study, we reinvestigated the stereostructures of two major C-glycosidic ellagitannins contained in Quercus plants, vescalagin and castalagin, and revised their stereostructures based on theoretical calculations of spectroscopic data. We also determined the structures of quercusnins A and B, isolated from the sapwood of Quercus crispula, based on theoretical calculations of NMR data. The oxidation mechanism of polyphenols has not been entirely elucidated. Therefore, we have also studied the oxidation mechanism of tea catechins during black tea production. Our investigation of the oxidation mechanism of black tea pigment theaflavins revealed that the difference in the position of the galloyl ester affords different oxidation products of theaflavins. In addition, oxidation products of pyrogallol-type catechins could be classified into three types-dehydrotheasinensins, theacitrins, and proepitheaflagallins; their detailed production and degradation mechanisms were also examined.

  9. Elastin governs the mechanical response of medial collateral ligament under shear and transverse tensile loading.

    Science.gov (United States)

    Henninger, Heath B; Valdez, William R; Scott, Sara A; Weiss, Jeffrey A

    2015-10-01

    Elastin is a highly extensible structural protein network that provides near-elastic resistance to deformation in biological tissues. In ligament, elastin is localized between and along the collagen fibers and fascicles. When ligament is stretched along the primary collagen axis, elastin supports a relatively high percentage of load. We hypothesized that elastin may also provide significant load support under elongation transverse to the primary collagen axis and shear along the collagen axis. Quasi-static transverse tensile and shear material tests were performed to quantify the mechanical contributions of elastin during deformation of porcine medial collateral ligament. Dose response studies were conducted to determine the level of elastase enzymatic degradation required to produce a maximal change in the mechanical response. Maximal changes in peak stress occurred after 3h of treatment with 2U/ml porcine pancreatic elastase. Elastin degradation resulted in a 60-70% reduction in peak stress and a 2-3× reduction in modulus for both test protocols. These results demonstrate that elastin provides significant resistance to elongation transverse to the collagen axis and shear along the collagen axis while only constituting 4% of the tissue dry weight. The magnitudes of the elastin contribution to peak transverse and shear stress were approximately 0.03 MPa, as compared to 2 MPa for axial tensile tests, suggesting that elastin provides a highly anisotropic contribution to the mechanical response of ligament and is the dominant structural protein resisting transverse and shear deformation of the tissue. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-01-01

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  11. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Vijay [Univ. of Cincinnati, OH (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  12. Decomposition mechanism of melamine borate in pyrolytic and thermo-oxidative conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hoffendahl, Carmen; Duquesne, Sophie; Fontaine, Gaëlle; Bourbigot, Serge, E-mail: serge.bourbigot@ensc-lille.fr

    2014-08-20

    Highlights: • Decomposition of melamine borate in pyrolytic and thermo-oxidative conditions was investigated. • With increasing temperature, orthoboric acid forms boron oxide releasing water. • Melamine decomposes evolving melamine, ammonia and other fragments. • Boron oxide is transformed into boron nitride and boron nitride-oxide structures through presence of ammonia. - Abstract: Decomposition mechanism of melamine borate (MB) in pyrolytic and thermo-oxidative conditions is investigated in the condensed and gas phases using solid state NMR ({sup 13}C and {sup 11}B), X-ray photoelectron spectroscopy (XPS), pyrolysis-gas chromatography–mass spectrometry (py-GCMS) and thermogravimetric analysis coupled with a Fourier transform infrared spectrometer (TGA–FTIR). It is evidenced that orthoboric acid dehydrates to metaboric and then to boron oxide. The melamine is partially sublimated. At the same time, melamine condensates, i.e., melem and melon are formed. Melon is only formed in thermo-oxidative conditions. At higher temperature, melem and melon decompose releasing ammonia which reacts with the boron oxide to form boron nitride (BN) and BNO structures.

  13. Understanding the differing governance of EU emissions trading and renewable: feedback mechanisms and policy entrepreneurs

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, Elin Lerum; Wettestad, Joergen

    2010-04-15

    This paper presents a comparative study of two central EU climate policies: the revised Emissions Trading System (ETS), and the revised Renewable Energy Directive (RES). Both were originally developed in the early 2000s and revised policies were adopted in December 2008. While the ETS from 2013 on will have a quite centralized and market-streamlined design, the revised RES stands forward as a more decentralized and technology-focused policy. Differing institutional feed-back mechanisms and related roles of policy entrepreneurs can shed considerable light on these policy differences. Due to member states' cautiousness and contrary to the preferences of the Commission, the initial ETS was designed as a rather decentralized and 'politicized' market system, creating a malfunctioning institutional dynamic. In the revision process, the Commission skillfully highlighted this ineffective dynamic to win support for a much more centralized and market-streamlined approach. In the case of RES, national technology-specific support schemes and the strong links between the renewable industry and member states promoted the converse outcome: decentralization and technology development. Members of the European Parliament utilized these mechanisms through policy networking, while the Commission successfully used developments within the global climate regime to induce some degree of centralization. (Author)

  14. Synthesis mechanism of heterovalent Sn2O3 nanosheets in oxidation annealing process

    International Nuclear Information System (INIS)

    Zhao Jun-Hua; Wu Guo-Qiang; Yang Xu-Feng; Tan Rui-Qin; Yang Ye; Xu Wei; Li Jia; Shen Wen-Feng; Song Wei-Jie

    2015-01-01

    Heterovalent Sn 2 O 3 nanosheets were fabricated via an oxidation annealing process and the formation mechanism was investigated. The temperature required to complete the phase transformation from Sn 3 O 4 to Sn 2 O 3 was considered. Two contrasting experiments showed that both oxygen and heating were not necessary conditions for the phase transition. Sn 2 O 3 was formed under an argon protective atmosphere by annealing and could also be obtained at room temperature by exposing Sn 3 O 4 in atmosphere or dispersing in ethanol. The synthesis mechanism was proposed and discussed. This fundamental research is important for the technological applications of intermediate tin oxide materials. (paper)

  15. Microstructure And Mechanical Properties Of Lead Oxide- Thermoplastic Elas Tomer Composite

    International Nuclear Information System (INIS)

    Sudirman; Handayani, Ari; Darwinto, Tri; Teguh, Yulius S.P.P.; Sunarni, Anik; Marlijanti, Isni

    2000-01-01

    Research on microstructure and mechanical properties of lead oxide-thermoplastic elastomer composite with Pb 3 O 4 as lead oxide. Thermoplastic elastomer synthesized from natural rubber as the elastomer and methyl metacrilate as the thermoplastic and irradiated simultaneously with optimum gamma ray. Thermoplastic elastomer (NR-PMMA) grind in a laboplastomill and Pb 3 O 4 was added in varied amount of 10%. 30%. 40% and 50%wt.The results showed that mechanical properties (tensile strength and elongation break) decreased as the Pb 3 O 4 composition increased. Microstructure from SEM observation showed that Pb 3 O 4 distributed evenly and having function as filler in composite

  16. Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems.

    Directory of Open Access Journals (Sweden)

    Debra Rossouw

    Full Text Available Flocculation has primarily been studied as an important technological property of Saccharomyces cerevisiae yeast strains in fermentation processes such as brewing and winemaking. These studies have led to the identification of a group of closely related genes, referred to as the FLO gene family, which controls the flocculation phenotype. All naturally occurring S. cerevisiae strains assessed thus far possess at least four independent copies of structurally similar FLO genes, namely FLO1, FLO5, FLO9 and FLO10. The genes appear to differ primarily by the degree of flocculation induced by their expression. However, the reason for the existence of a large family of very similar genes, all involved in the same phenotype, has remained unclear. In natural ecosystems, and in wine production, S. cerevisiae growth together and competes with a large number of other Saccharomyces and many more non-Saccharomyces yeast species. Our data show that many strains of such wine-related non-Saccharomyces species, some of which have recently attracted significant biotechnological interest as they contribute positively to fermentation and wine character, were able to flocculate efficiently. The data also show that both flocculent and non-flocculent S. cerevisiae strains formed mixed species flocs (a process hereafter referred to as co-flocculation with some of these non-Saccharomyces yeasts. This ability of yeast strains to impact flocculation behaviour of other species in mixed inocula has not been described previously. Further investigation into the genetic regulation of co-flocculation revealed that different FLO genes impact differently on such adhesion phenotypes, favouring adhesion with some species while excluding other species from such mixed flocs. The data therefore strongly suggest that FLO genes govern the selective association of S. cerevisiae with specific species of non-Saccharomyces yeasts, and may therefore be drivers of ecosystem organisational

  17. Toward an understanding of mechanism of aging-induced oxidative stress in human mesenchymal stem cells.

    Science.gov (United States)

    Benameur, Laila; Charif, Naceur; Li, Yueying; Stoltz, Jean-François; de Isla, Natalia

    2015-01-01

    Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.

  18. Insight into the Reaction Mechanism of Graphene Oxide with Oxidative Free Radical

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xuejiao; XU Liangyou

    2017-01-01

    Graphene oxide(GO),as an important derivative of graphene,could be considered as a super aromatic molecule decorated with a range of reactive oxygen-containing groups on its surface,which endows graphene high reactivity with other molecules.In our previous work,we demonstrated that GO sheets were cut into small pieces(graphene quantum dots,GQDs) by oxidative free radicals(hydroxyl radical HO or oxygen radical [O]) under UV irradiation.It is notable that reactions involving free radicals are influenced by reaction conditions pronouncedly.However,researches on details about reactions of GO with free radicals have not been reported thus far.In this work,the effects of different factors on the photo-Fenton reaction of GO were studied.It is demonstrated that the reaction rate is closely related to the concentration of free radicals.It is speculated that through the optimization of reaction conditions,the reaction of graphene with free radicals could carry out efficiently for further applications.

  19. Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction

    Directory of Open Access Journals (Sweden)

    Charlotte Rachael Flavell

    2013-12-01

    Full Text Available The extinction of learned associations has traditionally been considered to involve new learning, which competes with the original memory for control over behaviour. However, a recent resurgence of interest in reactivation-dependent amnesia has revealed that the retrieval of fear-related memory (with what is essentially a brief extinction session can result in it’s destabilization. This review discusses some of the cellular and molecular mechanisms that are involved in the destabilization of a memory following it’s reactivation and/or extinction, and investigates the evidence that extinction may involve both new learning as well as a partial destabilization-induced erasure of the original memory trace.

  20. Mechanism of the hydrogen reduction of molybdenum oxides

    International Nuclear Information System (INIS)

    Schulmeyer, W.V.; Ortner, H.M.

    2001-01-01

    The two stages of the hydrogen reduction of MoO 3 to Mo were investigated in a thermal balance under well defined reaction conditions. Starting with different grain and agglomerate sizes for both stages, the influence of a set of parameters (temperature, local partial pressure of H 2 O, gas flow, etc.) on the reaction progress and the final result were studied in detail. Depending on the set of parameters used, different reaction mechanisms like pseudomorphic transformation or chemical vapor transport (CVT) were observed. Taking into account that grains and agglomerates deviate from a spherical shape and a definite grain size, the extent of reaction is well described by standard theoretical gas-solid-reaction models such as the shrinking core model (SCM) or the crackling core model (CCM). Thermo-gravimetric analysis (TGA), x-ray diffraction (XRD), scanning electron microscopy (SEM), surface area measurements (BET-method) and laser diffraction were used for these studies. Under all conditions, the first stage shows a reaction path MoO 3 → Mo 4 O 11 → MoO 2 via chemical vapor transport (CVT). The reaction extent follows the crackling core model (Park/Levenspiel). Depending on the local partial pressure of H 2 O during reduction, the formed Mo 4 O 11 and MoO 2 exhibit different size distributions and shapes of the grains. The extent of reaction of the second stage develops according to the shrinking core model (Yagi/Kunii). Depending on the local dew point, two different reaction paths can occur: pseudomorphic transformation at low dew points and transformation via chemical vapor transport at high dew points. This paper is an extract from the Ph.D. thesis of W.V. Schulmeyer 'Mechanismen der Wasserstoffreduktion von Molybdaenoxiden', 1998, Darmstadt University of Technology, Institute of Material Science, Department of Chemical Analytics, FRG. It therefor focuses on a phenomenological description of the most important results. (author)

  1. On the physical mechanisms governing self-excited pressure surge in Francis turbines

    International Nuclear Information System (INIS)

    Müller, A; Favrel, A; Landry, C; Yamamoto, K; Avellan, F

    2014-01-01

    The required operating range for hydraulic machines is continually extended in an effort to integrate renewable energy sources with unsteady power outputs into the existing electrical grid. The off-design operation however brings forth unfavorable flow patterns in the machine, causing dynamic problems involving cavitation, which may represent a limiting factor to the energy production. In Francis turbines it is observed that the self-excited oscillation of a vortex rope in the draft tube cone prevents the delivery of maximum power when required. This phenomenon is referred to as full load pressure surge and has been the object of extensive research during the past decades. Several contributions deepened its understanding through measurement and simulation of the local flow properties and the global stability parameters. The draft tube pressure level and the runner outlet swirl are identified as key variables in the modelling of the vortex rope dynamics. Recently, a cyclic appearance of blade cavitation has been observed at overload conditions in a multiphase numerical simulation coupling the runner and the draft tube. From the analysis of the simulation it becomes obvious that the cyclic appearance of blade cavitation has a direct effect on the runner outlet swirl, thus introducing an additional interaction mechanism that is not accounted for in formerly published models. For the presented work, the results of this numerical study are confirmed experimentally on a reduced scale model of a Francis turbine. Several wall pressure measurements in the draft tube cone are performed, together with high speed visualizations of the vortex rope and the blade cavitation. The flow swirl is calculated based on Laser Doppler Velocimetry measurements. A possible mechanism explaining the coupling between the self-excited pressure and vortex rope oscillation and the cyclic appearance of the blade cavitation is proposed. Furthermore, the streamwise propagation speed of the flow

  2. Unraveling Recrystallization Mechanisms Governing Texture Development from Rare Earth Element Additions to Magnesium

    Science.gov (United States)

    Imandoust, Aidin

    The origin of texture components associated with rare-earth (RE) element additions in wrought magnesium (Mg) alloys is a long-standing problem in magnesium technology. The objective of this research is to identify the mechanisms accountable for rare-earth texture during dynamic recrystallization (DRX). Towards this end, we designed binary Mg-Cerium and Mg-Gadolinium alloys along with complex alloy compositions containing zinc, yttrium and Mischmetal. Binary alloys along with pure Mg were designed to individually investigate their effects on texture evolutions, while complex compositions are designed to develop randomized texture, and be used in automotive and aerospace applications. We selected indirect extrusion to thermo-mechanically process our materials. Different extrusion ratios and speeds were designed to produce partially and fully recrystallized microstructures, allowing us to analyze DRX from its early stages to completion. X-ray diffraction, electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to conduct microstructure and texture analyses. Our analyses revealed that rare-earth elements in zinc-containing magnesium alloys promote discontinuous dynamic recrystallization at the grain boundaries. During nucleation, the effect of rare earth elements on orientation selection was explained by the concomitant actions of multiple Taylor axes in the same grain. Isotropic grain growth was observed due to rare earth elements segregating to grain boundaries, which lead to texture randomization. The nucleation in binary Mg-RE alloys took place by continuous formation of necklace structures. Stochastic relaxation of basal and non-basal dislocations into low-angle grain boundaries produced chains of embryos with nearly random orientations. Schmid factor analysis showed a lower net activation of dislocations in RE textured grains compared to ones on the other side of the stereographic triangle. Lower dislocation densities within

  3. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    Science.gov (United States)

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  4. Oxidized Metal Powders for Mechanical Shock and Crush Safety Enhancers; TOPICAL

    International Nuclear Information System (INIS)

    GARINO, TERRY J.

    2002-01-01

    The use of oxidized metal powders in mechanical shock or crush safety enhancers in nuclear weapons has been investigated. The functioning of these devices is based on the remarkable electrical behavior of compacts of certain oxidized metal powders when subjected to compressive stress. For example, the low voltage resistivity of a compact of oxidized tantalum powder was found to decrease by over six orders of magnitude during compaction between 1 MPa, where the thin, insulating oxide coatings on the particles are intact, to 10 MPa, where the oxide coatings have broken down along a chain of particles spanning the electrodes. In this work, the behavior of tantalum and aluminum powders was investigated. The low voltage resistivity during compaction of powders oxidized under various conditions was measured and compared. In addition, the resistivity at higher voltages and the dielectric breakdown strength during compaction were also measured. A key finding was that significant changes in the electrical properties persist after the removal of the stress so that a mechanical shock enhancer is feasible. This was verified by preliminary shock experiments. Finally, conceptual designs for both types of enhancers are presented

  5. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    Science.gov (United States)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  6. Mechanisms of e-government activity in the Republic of Moldova compared to the decision-making framework of EU internationalization

    Directory of Open Access Journals (Sweden)

    Victoria GOREA

    2016-06-01

    Full Text Available The performances of the macrosystem e-Government denotes the macro and microenvironments of decision moving through the implementation and application of a variety of mechanisms and tools, which being diversified contribute to fortifying the common public opinion. The cyber administration develops the most important mechanisms to reinforce the uniformity of the microenvironment e-Government. The Republic of Moldova is a component and participative part of the evolutionary decisional microsystem of e-Government similar to the directives of the macrosystem vectors.

  7. Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites.

    Science.gov (United States)

    Xie, Wanting; Tadepalli, Sirimuvva; Park, Sang Hyun; Kazemi-Moridani, Amir; Jiang, Qisheng; Singamaneni, Srikanth; Lee, Jae-Hwang

    2018-02-14

    Biological materials have the ability to withstand extreme mechanical forces due to their unique multilevel hierarchical structure. Here, we fabricated a nacre-mimetic nanocomposite comprised of silk fibroin and graphene oxide that exhibits hybridized dynamic responses arising from alternating high-contrast mechanical properties of the components at the nanoscale. Dynamic mechanical behavior of these nanocomposites is assessed through a microscale ballistic characterization using a 7.6 μm diameter silica sphere moving at a speed of approximately 400 m/s. The volume fraction of graphene oxide in these composites is systematically varied from 0 to 32 vol % to quantify the dynamic effects correlating with the structural morphologies of the graphene oxide flakes. Specific penetration energy of the films rapidly increases as the distribution of graphene oxide flakes evolves from noninteracting, isolated sheets to a partially overlapping continuous sheet. The specific penetration energy of the nanocomposite at the highest graphene oxide content tested here is found to be significantly higher than that of Kevlar fabrics and close to that of pure multilayer graphene. This study evidently demonstrates that the morphologies of nanoscale constituents and their interactions are critical to realize scalable high-performance nanocomposites using typical nanomaterial constituents having finite dimensions.

  8. Improving global health governance to combat counterfeit medicines: a proposal for a UNODC-WHO-Interpol trilateral mechanism.

    Science.gov (United States)

    Mackey, Tim K; Liang, Bryan A

    2013-10-31

    Perhaps no greater challenge exists for public health, patient safety, and shared global health security, than fake/falsified/fraudulent, poor quality unregulated drugs, also commonly known as "counterfeit medicines", now endemic in the global drug supply chain. Counterfeit medicines are prevalent everywhere, from traditional healthcare settings to unregulated sectors, including the Internet. These dangerous medicines are expanding in both therapeutic and geographic scope, threatening patient lives, leading to antimicrobial resistance, and profiting criminal actors. Despite clear global public health threats, surveillance for counterfeit medicines remains extremely limited, with available data pointing to an increasing global criminal trade that has yet to be addressed appropriately. Efforts by a variety of public and private sector entities, national governments, and international organizations have made inroads in combating this illicit trade, but are stymied by ineffectual governance and divergent interests. Specifically, recent efforts by the World Health Organization, the primary international public health agency, have failed to adequately incorporate the broad array of stakeholders necessary to combat the problem. This has left the task of combating counterfeit medicines to other organizations such as UN Office of Drugs and Crime and Interpol in order to fill this policy gap. To address the current failure of the international community to mobilize against the worldwide counterfeit medicines threat, we recommend the establishment of an enhanced global health governance trilateral mechanism between WHO, UNODC, and Interpol to leverage the respective strengths and resources of these organizations. This would allow these critical organizations, already engaged in the fight against counterfeit medicines, to focus on and coordinate their respective domains of transnational crime prevention, public health, and law enforcement field operations. Specifically, by

  9. Processes and mechanisms governing hard rock cliff erosion in western Brittany, France

    Science.gov (United States)

    Laute, Katja; Letortu, Pauline; Le Dantec, Nicolas

    2017-04-01

    The evolution of rocky coasts is controlled by the interplay between subaerial, marine as well as biological processes, and the geological context. In times of ongoing climate change it is difficult to predict how these erosional landscapes will respond for example to anticipated sea-level rise or to an increase in storminess. However, it can be expected that changes in the morphodynamics of rocky coasts will have a noticeable effect on society and infrastructure. Recent studies have proven that monitoring cliff micro-seismic ground motion has been very effective in exploring both marine and atmospheric actions on coastal cliffs. But only few studies have focused so far on the effects of wave loading and water circulation (runoff, infiltration, water table variations) on cliff stability and subsequent erosion, considering the interaction between subaerial and marine processes. This project focuses on the identification and quantification of environmental controls on hard rock cliff erosion with an emphasis on discriminating the relative contributions of subaerial and marine processes. We aim at relating different sources of mechanical stress (e.g. wave loading, direct wave impact, hydrostatic pressure, thermal expansion) to cliff-scale strain (cliff-top swaying and shaking) and micro-fracturing (generation, expansion and contraction of micro-cracks) with the objective to unravel and discriminate triggering mechanisms of cliff failure. A four-month monitoring field experiment during the winter period (February-May) of 2017 is carried out at a cliff face located in Porsmilin beach (western Brittany, France). The selected cliff section is exposed to Atlantic swell from the south/southwest with a significant wave height of ca. 1.5 m on average and, reaching up to 4 m during storm events. The cliff rises ca. 20 m above the beach and is mainly formed of orthogneiss with intrusions of granodiorite. The entire cliff is highly fractured and altered, which can promote slope

  10. Investigation of the role of bicyclic peroxy radicals in the oxidation mechanism of toluene.

    Science.gov (United States)

    Birdsall, Adam W; Andreoni, John F; Elrod, Matthew J

    2010-10-07

    The products of the primary OH-initiated oxidation of toluene were investigated using the turbulent flow chemical ionization mass spectrometry technique under different oxygen, NO, and initial OH radical concentrations as well as a range of total pressures. The bicyclic peroxy radical intermediate, a key proposed intermediate species in the Master Chemical Mechanism (MCM) for the atmospheric oxidation of toluene, was detected for the first time. The toluene oxidation mechanism was shown to have a strong oxygen concentration dependence, presumably due to the central role of the bicyclic peroxy radical in determining the stable product distribution at atmospheric oxygen concentrations. The results also suggest a potential role for bicyclic peroxy radical + HO(2) reactions at high HO(2)/NO ratios. These reactions are postulated to be a source of the inconsistencies between environmental chamber results and predictions from the MCM.

  11. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  12. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors.

    Science.gov (United States)

    Shah, Firoz; Nicolás, César; Bentzer, Johan; Ellström, Magnus; Smits, Mark; Rineau, Francois; Canbäck, Björn; Floudas, Dimitrios; Carleer, Robert; Lackner, Gerald; Braesel, Jana; Hoffmeister, Dirk; Henrissat, Bernard; Ahrén, Dag; Johansson, Tomas; Hibbett, David S; Martin, Francis; Persson, Per; Tunlid, Anders

    2016-03-01

    Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose-degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition 'toolbox' has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Kinetics and mechanism of oxidation of glycine by iron(III)

    Indian Academy of Sciences (India)

    Kinetics and mechanism of oxidation of glycine by iron(III)-1,10-phenanthroline complex has been studied in perchloric acid medium. The reaction is first order with respect to iron(III) and glycine. An increase in (phenanthroline) increases the rate, while increase in [H+] decreases the rate. Hence it can be inferred that the ...

  14. Mechanism of oxidation of L-methionine by iron(III)-1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Kinetics and mechanism of oxidation of L-methionine by iron(III)–1,10- phenanthroline complex have been studied in perchloric acid medium. The reaction is first order each in iron(III) and methionine. Increase in [phenanthroline] increases the rate while increase in [HClO4] decreases it. While the reactive species ...

  15. Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation.

    Science.gov (United States)

    Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo

    2014-12-21

    Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.

  16. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe

    Science.gov (United States)

    Scheifinger, Helfried; Menzel, Annette; Koch, Elisabeth; Peter, Christian; Ahas, Rein

    2002-11-01

    A data set of 17 phenological phases from Germany, Austria, Switzerland and Slovenia spanning the time period from 1951 to 1998 has been made available for analysis together with a gridded temperature data set (1° × 1° grid) and the North Atlantic Oscillation (NAO) index time series. The disturbances of the westerlies constitute the main atmospheric source for the temporal variability of phenological events in Europe. The trend, the standard deviation and the discontinuity of the phenological time series at the end of the 1980s can, to a great extent, be explained by the NAO. A number of factors modulate the influence of the NAO in time and space. The seasonal northward shift of the westerlies overlaps with the sequence of phenological spring phases, thereby gradually reducing its influence on the temporal variability of phenological events with progression of spring (temporal loss of influence). This temporal process is reflected by a pronounced decrease in trend and standard deviation values and common variability with the NAO with increasing year-day. The reduced influence of the NAO with increasing distance from the Atlantic coast is not only apparent in studies based on the data set of the International Phenological Gardens, but also in the data set of this study with a smaller spatial extent (large-scale loss of influence). The common variance between phenological and NAO time series displays a discontinuous drop from the European Atlantic coast towards the Alps. On a local and regional scale, mountainous terrain reduces the influence of the large-scale atmospheric flow from the Atlantic via a proposed decoupling mechanism. Valleys in mountainous terrain have the inclination to harbour temperature inversions over extended periods of time during the cold season, which isolate the valley climate from the large-scale atmospheric flow at higher altitudes. Most phenological stations reside at valley bottoms and are thus largely decoupled in their temporal

  17. Direct observation and determination of the mechanisms governing mobility of asbestos in porous media

    Science.gov (United States)

    Seiphoori, A.; Ortiz, C. P.; Jerolmack, D. J.

    2017-12-01

    Transport of asbestos through soil by groundwater is typically considered to be negligible. There are indications, however, that under some conditions of pore-water/soil chemistry asbestos may become mobile, implying that buried contaminants could migrate from a disposal site and surface elsewhere. Shape, size and surface charge may influence the physical and chemical interactions of colloids with the soil matrix, and asbestos consists of elongated particles with different size and unique surface charge properties. Although chemical factors such as pH and ionic strength of pore water may affect the transport properties, the presence of dissolved organic carbon (DOC) has been identified to remarkably enhance the mobility of colloids including asbestos. To date, there is no explanation for how the presence of DOC may facilitate the mobilization of asbestos in soil - mainly because the soil medium has been treated as a black box without the possibility of observing particles within the matrix. Here, we investigated the mobility of chrysotile asbestos particles ( 10 um long) in porous media by developing a flow cell with an optically-transparent porous medium composed of granules of a refractive-index matched material. This enabled us to observe and track the particles within the water-saturated porous medium using in situ microscopy. The aqueous suspension of asbestos fibers was passed through this artificial soil, while the physical and chemical interaction of asbestos particles with the medium and their pore-scale distribution were analyzed. We studied the effects of changing solution chemistry (e.g., ionic strength, pH, and DOC content) on transport, attachment and aggregation of chrysotile particles. Experiments revealed a novel mechanism where the DOC-associated nanoparticles attach to chrysotile fibers by an electrostatic attraction, which facilitates their mobilization through the porous medium while modulating aggregation among fibers. Although pH and ionic

  18. Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials.

    Science.gov (United States)

    Gorgin Karaji, Zahra; Hedayati, Reza; Pouran, Behdad; Apachitei, Iulian; Zadpoor, Amir A

    2017-07-01

    Metallic porous biomaterials are recently attracting more attention thanks to the additive manufacturing techniques which help produce more complex structures as compared to conventional techniques. On the other hand, bio-functional surfaces on metallic biomaterials such as titanium and its alloys are necessary to enhance the biological interactions with the host tissue. This study discusses the effect of plasma electrolytic oxidation (PEO), as a surface modification technique to produce bio-functional layers, on the mechanical properties of additively manufactured Ti6Al4V scaffolds based on the cubic unit cell. For this purpose, the PEO process with two different oxidation times was applied on scaffolds with four different values of relative density. The effects of the PEO process were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), optical microscopy as well as static and dynamic (fatigue) mechanical testing under compression. SEM results indicated pore formation on the surface of the scaffolds after oxidation with a thickness of 4.85±0.36μm of the oxide layer after 2min and 9.04±2.27μm after 5min oxidation (based on optical images). The static test results showed the high effect of relative density of porous structure on its mechanical properties. However, oxidation did not influence most of the mechanical properties such as maximum stress, yield stress, plateau stress, and energy absorption, although its effect on the elastic modulus was considerable. Under fatigue loading, none of the scaffolds failed even after 10 6 loading cycles at 70% of their yield stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Coloration and bleaching mechanism of niobium oxide electrochromic thin films; Sanka niobu electromic usumaku no chakushoshoku mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, K; Miki, T; Tazawa, M; Jin, P; Igarashi, K; Tanemura, S [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    1997-11-25

    In order to search for the coloration and bleaching mechanism of niobium oxide, considerations were given on optical properties and electron conditions in niobium oxide thin films (glass plates as substrates coated with ITO) prepared by using the reactive DC magnetron sputtering process. The films were so grown that their thickness will all be 100 nm to facilitate data comparison. Coloration and bleaching of the grown test films were conducted by cyclic voltammetry. Electron spectra were measured by using XPS, and electron energy was analyzed. Coloration of niobium oxide occurs as a result of change in valency electron state from an Nb {sup 5+} state to an Nb {sup 4+} state, while change in the XPS spectra also corresponds with the above change. However, the XPS spectra differ greatly between crystalline samples and amorphous samples. The coloration and bleaching mechanism of the crystallized Nb2O5 film can be explained by a reaction formula similar to that for WO3. However, with regard to the amorphous Nb2O5 film, an independent reaction involving water in the film seems to occur together with the same reaction as in the crystallized film. 9 refs., 5 figs.

  20. Factors influencing the technology upgrading and catch-up of Chinese wind turbine manufacturers: Technology acquisition mechanisms and government policies

    International Nuclear Information System (INIS)

    Qiu, Yueming; Ortolano, Leonard; David Wang, Yi

    2013-01-01

    This paper uses firm level data for the Chinese wind turbine manufacturing industry from 1998 to 2009 to quantify the effects of technology acquisition mechanisms – purchasing production licenses from foreign manufacturers, joint design with foreign design firms, joint-ventures and domestic R and D – on wind turbine manufacturers' technology levels (as measured by turbine size, in megawatts). It also examines the impacts of government policies on manufacturer technology levels. Technology upgrading (measured by increase of turbine size) and catch-up (measured by decrease in the distance to the world technology frontier in terms of turbine size) are used to measure advances in technology level. Results from econometric modeling studies indicate that firms' technology acquisition mechanisms and degree of business diversification are statistically significant factors in influencing technology upgrading. Similar results were found for the catch-up variable (i.e., distance to the world technology frontier). The influence of government policies is significant for technology upgrading but not catch-up. These and other modeling results are shown to have implications for both policymakers and wind turbine manufacturers. - Highlights: ► Technology acquired through joint design has the highest level. ► Technology acquired through purchasing production license has the lowest level. ► Technology acquired through domestic R and D has the level in between. ► A firm with related other businesses tends to have a higher level of technology. ► The influence of policies is significant for technology upgrade but not catch-up

  1. Climate Change and Agriculture: Can market governance mechanisms reduce emissions from the food system fairly and effectively?

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, Tara

    2012-05-15

    Climate and agriculture are inextricably linked: the climate affects agricultural production and is itself affected by agricultural emissions. Agriculture is responsible for 30 per cent of global greenhouse gas emissions. How agriculture is practised therefore has significant potential for mitigating climate change, for providing food security and for improving the livelihoods of millions of food producers worldwide. There is growing interest in the use of market governance mechanisms for tackling climate change by giving the financial incentives to make the kinds of changes that are required. But how widely are these mechanisms being used in agriculture, and are they effective in reducing emissions? What impact do they have on adaptation and other aspects of sustainable development? Are they able to balance the competing demands of producers and consumers, the environment and food security? The key messages emerging from this study are that economic measures have a vital part to play within this regulatory context, but they need to be designed with care. To be effective, emissions from food production and consumption must be addressed together. If not, emissions reduced in one region will simply be displaced elsewhere. A balance needs to be struck by applying a mix of approaches – regulatory, economic, voluntary, and information: no single measure will be effective in achieving emissions reductions on its own. 'Soft' measures, such as voluntary agreements and information have a part to play in providing an enabling context for action, but they must be backed up by 'harder' regulatory or economic measures. Regulation, in the form of a cap on emissions, is a prerequisite for other market governance measures to function well. To be effective, MGMs need to consider the social, cultural and economic context within which they operate.

  2. Governance Structures of Free/Open Source Software Development : Examining the role of modular product design as a governance mechanism in the FreeBSD Project

    NARCIS (Netherlands)

    Dafermos, G.

    2012-01-01

    My dissertation looks at the Governance Structures of Free/Open Source (FOSS) Development, based on a case study of FreeBSD, a large FOSS project. More specifically, it examines 3 well-known theories. The 1st theory [decreasing returns to scale] holds that increasing the number of persons working

  3. Reaction mechanism of CO oxidation on Cu2O(111): A density functional study

    Science.gov (United States)

    Sun, Bao-Zhen; Chen, Wen-Kai; Xu, Yi-Jun

    2010-10-01

    The possible reaction mechanisms for CO oxidation on the perfect Cu2O(111) surface have been investigated by performing periodic density functional theoretical calculations. We find that Cu2O(111) is able to facilitate the CO oxidation with different mechanisms. Four possible mechanisms are explored (denoted as MER1, MER2, MLH1, and MLH2, respectively): MER1 is CO(gas)+O2(ads)-->CO2(gas) MER2 is CO(gas)+O2(ads)-->CO3(ads)-->O(ads)+CO2(gas) MLH1 refers to CO(ads)+O2(ads)-->O(ads)+CO2(ads) and MLH2 refers to CO(ads)+O2(ads)-->OOCO(ads)-->O(ads)+CO2(ads). Our transition state calculations clearly reveal that MER1 and MLH2 are both viable; but MER1 mechanism preferentially operates, in which only a moderate energy barrier (60.22 kJ/mol) needs to be overcome. When CO oxidation takes place along MER2 path, it is facile for CO3 formation, but is difficult for its decomposition, thereby CO3 species can stably exist on Cu2O(111). Of course, the reaction of CO with lattice O of Cu2O(111) is also considered. However, the calculated barrier is 600.00 kJ/mol, which is too large to make the path feasible. So, we believe that on Cu2O(111), CO reacts with adsorbed O, rather than lattice O, to form CO2. This is different from the usual Mars-van Krevene mechanism. The present results enrich our understanding of the catalytic oxidation of CO by copper-based and metal-oxide catalysts.

  4. Effect of poly(ethylene oxide) homopolymer and two different poly(ethylene oxide-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers on morphological, optical, and mechanical properties of nanostructured unsaturated polyester.

    Science.gov (United States)

    Builes, Daniel H; Hernández-Ortiz, Juan P; Corcuera, Ma Angeles; Mondragon, Iñaki; Tercjak, Agnieszka

    2014-01-22

    Novel nanostructured unsaturated polyester resin-based thermosets, modified with poly(ethylene oxide) (PEO), poly(propylene oxide) (PPO), and two poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymers (BCP), were developed and analyzed. The effects of molecular weights, blocks ratio, and curing temperatures on the final morphological, optical, and mechanical properties were reported. The block influence on the BCP miscibility was studied through uncured and cured mixtures of unsaturated polyester (UP) resins with PEO and PPO homopolymers having molecular weights similar to molecular weights of the blocks of BCP. The final morphology of the nanostructured thermosetting systems, containing BCP or homopolymers, was investigated, and multiple mechanisms of nanostructuration were listed and explained. By considering the miscibility of each block before and after curing, it was determined that the formation of the nanostructured matrices followed a self-assembly mechanism or a polymerization-induced phase separation mechanism. The miscibility between PEO or PPO blocks with one of two phases of UP matrix was highlighted due to its importance in the final thermoset properties. Relationships between the final morphology and thermoset optical and mechanical properties were examined. The mechanisms and physics behind the morphologies lead toward the design of highly transparent, nanostructured, and toughened thermosetting UP systems.

  5. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms.

    Science.gov (United States)

    Patel, Sonal A; Chaudhari, Amol; Gupta, Richa; Velingkaar, Nikkhil; Kondratov, Roman V

    2016-04-01

    Calorie restriction (CR) increases longevity in many species by unknown mechanisms. The circadian clock was proposed as a potential mediator of CR. Deficiency of the core component of the circadian clock-transcriptional factor BMAL1 (brain and muscle ARNT [aryl hydrocarbon receptor nuclear translocator]-like protein 1)-results in accelerated aging. Here we investigated the role of BMAL1 in mechanisms of CR. The 30% CR diet increased the life span of wild-type (WT) mice by 20% compared to mice on anad libitum(AL) diet but failed to increase life span ofBmal1(-/-)mice. BMAL1 deficiency impaired CR-mediated changes in the plasma levels of IGF-1 and insulin. We detected a statistically significantly reduction of IGF-1 in CRvs.AL by 50 to 70% in WT mice at several daily time points tested, while inBmal1(-/-)the reduction was not significant. Insulin levels in WT were reduced by 5 to 9%, whileBmal1(-/-)induced it by 10 to 35% at all time points tested. CR up-regulated the daily average expression ofBmal1(by 150%) and its downstream target genesPeriods(by 470% forPer1and by 130% forPer2). We propose that BMAL1 is an important mediator of CR, and activation of BMAL1 might link CR mechanisms with biologic clocks.-Patel, S. A., Chaudhari, A., Gupta, R., Velingkaar, N., Kondratov, R. V. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. © FASEB.

  6. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2017-01-01

    Full Text Available Diabetic retinopathy (DR is one of the most common microvascular complications of diabetes and is the leading cause of blindness in young adults. Oxidative stress has been implicated as a critical cause of DR. Metabolic abnormalities induced by high-glucose levels are involved in the development of DR and appear to be influenced by oxidative stress. The imbalance between reactive oxygen species (ROS production and the antioxidant defense system activates several oxidative stress-related mechanisms that promote the pathogenesis of DR. The damage caused by oxidative stress persists for a considerable time, even after the blood glucose concentration has returned to a normal level. Animal experiments have proved that the use of antioxidants is a beneficial therapeutic strategy for the treatment of DR, but more data are required from clinical trials. The aims of this review are to highlight the improvements to our understanding of the oxidative stress-related mechanisms underlying the development of DR and provide a summary of the main antioxidant therapy strategies used to treat the disease.

  7. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    Science.gov (United States)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  8. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  9. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States)

    2010-01-31

    An engineering code to model the irradiation behavior of UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  10. Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Mary Carmen Vázquez

    2012-01-01

    Full Text Available Niemann-Pick type C (NPC disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.

  11. Influence of Structure and Charge State on the Mechanism of CO Oxidation on Gold Clusters

    Science.gov (United States)

    Johnson, Grant; Burgel, Christian; Reilly, Nelly; Mitric, Roland; Kimble, Michele; Tyo, Eric; Castleman, A. W.; Bonacic-Koutecky, Vlasta

    2008-05-01

    Gas-phase reactivity experiments and high level theoretical calculations have been employed to study the interaction of both positively and negatively charged gold oxide clusters with carbon monoxide (CO). We demonstrate that for negatively charged clusters CO is oxidized to CO2 by an Eley-Ridel-like (ER-) mechanism involving the attack of CO on oxygen rather than gold. In contrast, for positively charged clusters, the oxidation reaction may also occur by a Langmuir-Hinshelwood-like (LH-) mechanism involving the initial binding of CO to a gold atom followed by subsequent migration to an oxygen site. The LH mechanism is made possible through the large energy gain associated with the adsorption of two CO molecules onto cationic gold clusters. Structure-reactivity relationships are also established which demonstrate that terminally bound oxygen atoms are the most active sites for CO oxidation. Bridge bonded oxygen atoms and molecularly bound O2 units are shown to be inert. We also establish an inverse relationship between the binding energy of CO to gold clusters and the energy of the clusters lowest unoccupied molecular orbital (LUMO).

  12. Influence of heat treatment on the high temperature oxidation mechanisms of an Fe-TiCN cermet

    OpenAIRE

    Alvaredo Olmos, Paula; Abajo Clemente, Carolina; Tsipas, Sophia Alexandra; Gordo Odériz, Elena

    2014-01-01

    In this study, the oxidation behaviour of an iron matrix cermet containing 50 % vol. Ti(C,N) was investigated before and after heat treatment by oxidation tests performed in static air at temperatures between 500 °C and 1000 °C. The oxidation mechanism for this type of composite materials was established and it was found that the heat treated material presents lower mass gain than the as-sintered material at the early stages of the oxidation, due to the volatilization of oxides. The oxidation...

  13. Mechanism of iron catalyzed oxidation of SO/sub 2/ in oxygenated solutions

    Energy Technology Data Exchange (ETDEWEB)

    Freiberg, J

    1975-01-01

    Previous experimental work concerning the iron catalyzed oxidation of SO/sub 2/ in oxygenated acid solutions failed to provide a consistent reaction mechanism and rate expression. As iron is one of the main constituents of urban atmospheric aerosols, the rate studies of heterogeneous sulphate formation in polluted city air were hampered. The present study develops a new theory for the iron catalyzed oxidation of SO/sub 2/. The resulting new rate expression is general enough to account for the results of previous experimental investigations that were performed in different ranges of SO/sub 2/ and catalyst concentrations.

  14. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Anju; Sailani, Riya; Gupta, Beena; Khandelwal, C. L.; Sharma, P. D. [Univ. of Rajasthan, Jaipur (India)

    2012-04-15

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations.

  15. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  16. The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

    International Nuclear Information System (INIS)

    Agrawal, Anju; Sailani, Riya; Gupta, Beena; Khandelwal, C. L.; Sharma, P. D.

    2012-01-01

    The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N→O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations

  17. Kinetics and mechanism of oxidation of acetanilide by quinquevalent vanadium in acid medium

    International Nuclear Information System (INIS)

    Gupta, R.

    1990-01-01

    The kinetics of the oxidation of acetanilide with vanadium(V) in sulphuric acid medium at constant ionic strength has been studied. The reaction is first order with oxidant. The order of reaction in acetanilide varies from one to zero. The reaction follows an acid catalyzed independent path, exhibiting square dependence in H + . A Bunnett plot indicates that the water acts as a nucleophile. The thermodynamic parameters have been computed. A probable reaction mechanism and rate law consistent with these data are given. (Author)

  18. Kinetics and mechanism of the selective oxidation of primary aliphatic alcohols under phase transfer catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-03-01

    Full Text Available Kinetics of the oxidation of primary aliphatic alcohols has been carried out using phase transferred monochromate in benzene. Tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB are used as phase transfer catalysts (PT catalyst. The reaction shows first order dependence on both [alcohol] and [monochromate ion]. The oxidation leads to the formation of corresponding aldehyde and no traces of carboxylic acid has been detected. The reaction mixture failed to induce the polymerization of added acrylonitrile which rules out the presence radical intermediates in the reaction. Various thermodynamic parameters have been evaluated and a suitable mechanism has been proposed.

  19. Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

    Directory of Open Access Journals (Sweden)

    J. Dharmaraja

    2008-01-01

    Full Text Available The kinetics of oxidation of benzyl alcohol (BzOH by benzimidazolium fluorochromate (BIFC has been studied in 50% aqueous acetic acid medium at 308 K. The reaction is first order with respect to [oxidant] and [benzyl alcohol]. The reaction is catalysed by hydrogen ions. The decrease in dielectric constant of the medium increases the rate of the reaction. Addition of sodium perchlorate increases the rate of the reaction appreciably. No polymerization with acrylonitrile. The reaction has been conducted at four different temperature and the activation parameters were calculated. From the observed kinetic results a suitable mechanism was proposed.

  20. Experimental study and modelling of the high temperature mechanical behavior of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Steckmeyer, A.

    2012-01-01

    The strength of metals, and therefore their maximum operating temperature, can be improved by oxide dispersion strengthening (ODS). Numerous research studies are carried out at the French Atomic Energy Commission (CEA) in order to develop a cladding tube material for Gen IV nuclear power reactors. Oxide dispersion strengthened steels appear to be the most promising candidates for such application, which demands a minimum operating temperature of 650 C. The present dissertation intends to improve the understanding of the mechanical properties of ODS steels, in terms of creep lifetime and mechanical anisotropy. The methodology of this work includes mechanical tests between room temperature and 900 C as well as macroscopic and polycrystalline modelling. These tests are carried out on a Fe-14Cr1W0,26Ti + 0,3 Y 2 O 3 ODS ferritic steel processed at CEA by mechanical alloying and hot extrusion. The as-received material is a bar with a circular section. The mechanical tests reveal the high mechanical strength of this steel at high temperature. A strong influence of the strain rate on the ductility and the mechanical strength is also observed. A macroscopic mechanical model has been developed on the basis of some experimental statements such as the high kinematic contribution to the flow stress. This model has a strong ability to reproduce the mechanical behaviour of the studied material. Two different polycrystalline models have also been developed in order to reproduce the mechanical anisotropy of the material. They are based on its specific grain morphology and crystallographic texture. The discrepancy between the predictions of both models and experimental results reveal the necessity to formulate alternate assumptions on the deformation mechanisms of ODS ferritic steels. (author) [fr

  1. Mechanisms of damage to the oxide layer of cladding of fuel rods under accident conditions like RI

    International Nuclear Information System (INIS)

    Busser, Vincent

    2009-01-01

    During reactivity initiated accident, the importance of cladding tube oxidation on its thermomechanical behavior has been investigated. After RIA tests in experimental reactors oxide damage including radial cracking and spallation of the outer oxide layer has been evidenced. This work aims at better understanding the key mechanisms controlling these phenomena. Laboratory air-oxidation of Zircaloy-4 cladding tubes has been performed at 470 C. SEM micrographs show that radial cracks are initiated from the outer surface of the oxide layer and propagated radially towards the oxide-metal interface. A model predicting the stress evolution within the oxide and the depth of crack has been developed and validated on literature tests and tests of this study. Ring compression tests were used for the experimental study of the oxide degradation under mechanical loading. Experimental data revealed three mechanisms: densification of the radial crack network, propagation of these radial cracks, branching and spallation of oxide fragments. The influence of the circumferential cracks, periodically distributed in the oxide layer, on the stress distribution in oxide fragments has been analysed using finite element modelling. The determining influence of these cracks on the maximum stress oxide fragments has been demonstrated. (author)

  2. Properties of protective oxide scales containing cerium on Incoloy 800H in oxidizing and sulfidizing environments. I. Constant-extension-rate study of mechanical properties

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Fransen, T.; Geerdink, Bert; Gellings, P.J.

    1988-01-01

    The mechanical properties of ceramic coatings containing cerium oxide, prepared by the sol-gel method and used to protect Incoloy 800H against aggressive environments, are reported. Deformation and cracking behavior in oxidizing and sulfidizing environments has been investigated by

  3. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.

    Science.gov (United States)

    Gao, Yun; Liu, Lu-Qi; Zu, Sheng-Zhen; Peng, Ke; Zhou, Ding; Han, Bao-Hang; Zhang, Zhong

    2011-03-22

    High mechanical performances of macroscopic graphene oxide (GO) papers are attracting great interest owing to their merits of lightweight and multiple functionalities. However, the loading role of individual nanosheets and its effect on the mechanical properties of the macroscopic GO papers are not yet well understood. Herein, we effectively tailored the interlayer adhesions of the GO papers by introducing small molecules, that is, glutaraldehyde (GA) and water molecules, into the gallery regions. With the help of in situ Raman spectroscopy, we compared the varied load-reinforcing roles of nanosheets, and further predicted the Young's moduli of the GO papers. Systematic mechanical tests have proven that the enhancement of the tensile modulus and strength of the GA-treated GO paper arose from the improved load-bearing capability of the nanosheets. On the basis of Raman and macroscopic mechanical tests, the influences of interlayer adhesions on the fracture mechanisms of the strained GO papers were inferred.

  4. Mechanical grooving of oxidized porous silicon to reduce the reflectivity of monocrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zarroug, A.; Dimassi, W.; Ouertani, R.; Ezzaouia, H. [Laboratoire de Photovoltaique, Centre des Recherches et des Technologies de l' Energie, BP. 95, Hammam-Lif 2050 (Tunisia)

    2012-10-15

    In this work, we are interested to use oxidized porous silicon (ox-PS) as a mask. So, we display the creating of a rough surface which enhances the absorption of incident light by solar cells and reduces the reflectivity of monocrystalline silicon (c-Si). It clearly can be seen that the mechanical grooving enables us to elaborate the texturing of monocrystalline silicon wafer. Results demonstrated that the application of a PS layer followed by a thermal treatment under O2 ambient easily gives us an oxide layer of uniform size which can vary from a nanometer to about ten microns. In addition, the Fourier transform infrared (FTIR) spectroscopy investigations of the PS layer illustrates the possibility to realize oxide layer as a mask for porous silicon. We found also that this simple and low cost method decreases the total reflectivity (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism.

    Science.gov (United States)

    Wolfson, Manuel Luis; Schander, Julieta Aylen; Bariani, María Victoria; Correa, Fernando; Franchi, Ana María

    2015-12-15

    Genital tract infections caused by Gram-negative bacteria induce miscarriage and are one of the most common complications of human pregnancy. LPS administration to 7-day pregnant mice induces embryo resorption after 24h, with nitric oxide playing a fundamental role in this process. We have previously shown that progesterone exerts protective effects on the embryo by modulating the inflammatory reaction triggered by LPS. Here we sought to investigate whether the in vivo administration of progesterone modulated the LPS-induced nitric oxide production from peripheral blood mononuclear cells from pregnant and non-pregnant mice. We found that progesterone downregulated LPS-induced nitric oxide production by a progesterone receptor-independent mechanism. Moreover, our results suggest a possible participation of glucocorticoid receptors in at least some of the anti-inflammatory effects of progesterone. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    International Nuclear Information System (INIS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-01-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  7. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Dabhi, Shweta D. [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar 364001 (India); Gupta, Sanjay D. [V. B. Institute of Science, Department of Physics, C. U. Shah University, Wadhwan City - 363030, Surendranagar (India); Jha, Prafulla K., E-mail: prafullaj@yahoo.com [Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390002 (India)

    2014-05-28

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  8. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  9. High temperature oxidation of metals: vacancy injection and consequences on the mechanical properties

    International Nuclear Information System (INIS)

    Perusin, S.

    2004-11-01

    The aim of this work is to account for the effects of the high temperature oxidation of metals on their microstructure and their mechanical properties. 'Model' materials like pure nickel, pure iron and the Ni-20Cr alloy are studied. Nickel foils have been oxidised at 1000 C on one side only in laboratory air, the other side being protected from oxidation by a reducing atmosphere. After the oxidation treatment, the unoxidized face was carefully examined by using an Atomic Force Microscope (AFM). Grain boundaries grooves were characterised and their depth were compared to the ones obtained on the same sample heat treated in the reducing atmosphere during the same time. They are found to be much deeper in the case of the single side oxidised samples. It is shown that this additional grooving is directly linked to the growth of the oxide scale on the opposite side and that it can be explained by the diffusion of the vacancies produced at the oxide scale - metal interface, across the entire sample through grain boundaries. Moreover, the comparison between single side oxidised samples and samples oxidised on both sides points out that voids in grain boundaries are only observed in this latter case proving the vacancies condensation in the metal when the two faces are oxidised. The role of the carbon content and the sample's geometry on this phenomenon is examined in detail. The diffusion of vacancies is coupled with the transport of oxygen so that a mechanism of oxygen transport by vacancies is suggested. The tensile tests realised at room temperature on nickel foils (bamboo microstructure) show that the oxide scale can constitute a barrier to the emergence of dislocations at the metal surface. Finally, the Ni-20Cr alloy is tested in tensile and creep tests between 25 and 825 C in oxidising or reducing atmospheres. (author)

  10. Network Partnership Diplomatic Mechanism: The New Path in Sino-Russian Cooperation - On the Sino-Russian Joint Dominance of BRICS Governance Mechanism

    Directory of Open Access Journals (Sweden)

    Zhijie Cheng

    2014-01-01

    mechanisms, and providing a new path for Sino-Russian cooperation. The BRICS countries should establish a BRICS governance mechanism which has to be promoted by a leading force. The network partnership diplomatic mechanism could play a leading role in shaping this type of governance mechanism with Sino-Russian cooperation at its core.

  11. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    Full Text Available Abstract The potential mechanisms of action of ozone therapy are reviewed in this paper. The therapeutic efficacy of ozone therapy may be partly due the controlled and moderate oxidative stress produced by the reactions of ozone with several biological components. The line between effectiveness and toxicity of ozone may be dependent on the strength of the oxidative stress. As with exercise, it is well known that moderate exercise is good for health, whereas excessive exercise is not. Severe oxidative stress activates nuclear transcriptional factor kappa B (NFκB, resulting in an inflammatory response and tissue injury via the production of COX2, PGE2, and cytokines. However, moderate oxidative stress activates another nuclear transcriptional factor, nuclear factor-erythroid 2-related factor 2 (Nrf2. Nrf2 then induces the transcription of antioxidant response elements (ARE. Transcription of ARE results in the production of numerous antioxidant enzymes, such as SOD, GPx, glutathione-s-transferase(GSTr, catalase (CAT, heme-oxygenase-1 (HO-1, NADPH-quinone-oxidoreductase (NQO-1, phase II enzymes of drug metabolism and heat shock proteins (HSP. Both free antioxidants and anti-oxidative enzymes not only protect cells from oxidation and inflammation but they may be able to reverse the chronic oxidative stress. Based on these observations, ozone therapy may also activate Nrf2 via moderate oxidative stress, and suppress NFκB and inflammatory responses. Furthermore, activation of Nrf2 results in protection against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Mild immune responses are induced via other nuclear transcriptional factors, such as nuclear factor of activated T-cells (NFAT and activated protein-1 (AP-1. Additionally, the effectiveness of ozone therapy in vascular diseases may also be explained by the activation of another nuclear transcriptional factor, hypoxia inducible factor-1α (HIF-1a, which is also induced via

  12. Study mechanism of growth and spallation of oxide scales formed after T91 steel oxidation in water vapor at 550 C

    International Nuclear Information System (INIS)

    Demizieux, Marie-Christine

    2015-01-01

    In the framework of the development of Generation IV reactors and specifically in the new Sodium Fast Reactor (SFR) project, Fe-9Cr ferritic-martensitic steels are candidates as structural materials for steam generators. Indeed, Fe-9Cr steels are already widely used in high temperature steam environments - like boilers and steam turbines- for their combination of creep strength and high thermal properties. Many studies have been focused on Fe-9Cr steels oxidation behavior between 550 C-700 C.Depending on the oxidizing environment, formation of a triplex (Fe-Cr spinel/magnetite/hematite) or duplex (Fe-Cr spinel/magnetite) oxide scales are reported.. Besides, for long time exposure in steam, the exfoliation of oxide scales can cause serious problems such as tube obstruction and steam turbine erosion. Consequently, this work has been dedicated to study, on the one hand the oxidation kinetics of T91 steel in water vapor environments, and on the other hand, the mechanisms leading to the spallation of the oxide scale. Oxidation tests have been carried out at 550 C in pure water vapor and in Ar/D_2O/H_2 environments with different hydrogen contents. Based on an analytical resolution, a quantitative modeling has shown that the 'available space model' proposed in the literature for duplex oxide scale formation well reproduces both scales growth kinetics and spinel oxide stoichiometry. Then, oxidized samples have been precisely characterized and it turns out that buckling then spalling of the oxide scale is always located in the magnetite layer. Voids observed in the magnetite layer are major initiation sites of de-cohesion of the outer oxide scale. A mechanism of formation of these voids has been proposed, in accordance with the mechanism of duplex scale formation. The derived model based on the assumption that vacancies accumulate where the iron vacancies flux divergence is maximal gives a good estimation of the location of pores inside the magnetite layer. Then, in order

  13. Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate

    Directory of Open Access Journals (Sweden)

    L. Li

    2006-01-01

    Full Text Available Sulfate particles play a key role in the air quality and the global climate, but the heterogeneous formation mechanism of sulfates on surfaces of atmospheric particles is not well established. Carbonates, which act as a reactive component in mineral dust due to their special chemical properties, may contribute significantly to the sulfate formation by heterogeneous processes. This paper presents a study on the oxidation of SO2 by O3 on CaCO3 particles. Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS, the formation of sulfite and sulfate on the surface was identified, and the roles of O3 and water in oxidation processes were determined. The results showed that in the presence of O3, SO2can be oxidized to sulfate on the surface of CaCO3 particles. The reaction is first order in SO2 and zero order in O3. The reactive uptake coefficient for SO2 [(0.6–9.8×1014 molecule cm-3] oxidation by O3 [(1.2–12×1014 molecule cm-3] was determined to be (1.4±0.3×10-7 using the BET area as the reactive area and (7.7±1.6×10-4 using the geometric area. A two-stage mechanism that involves adsorption of SO2 followed by O3 oxidation is proposed and the adsorption of SO2 on the CaCO3 surface is the rate-determining step. The proposed mechanism can well explain the experiment results. The atmospheric implications were explored based on a box model calculation. It was found that the heterogeneous reaction might be an important pathway for sulfate formation in the atmosphere.

  14. Mechanisms of realization of THz-waves of nitrogen oxide occurrence physiological effects

    Directory of Open Access Journals (Sweden)

    Vyacheslav F. Kirichuk

    2013-11-01

    Full Text Available In this review, there is generalized material of many experimental researches in interaction of THz-waves molecular emission and absorption spectrum (MEAS of nitrogen oxide occurrence with bioobjects. Thrombocytes and experimental animals were used as bioobjects. The experiments let indicate changes caused by THz-waves: at the cellular, tissular, system, organismic levels. There are all data of changes in physiological mechanisms of reglations at all levels: autocrine, paracrine, endocrine and nervous. There is a complex overview of experimental material firstly performed in the article. There had been shown that the effect of THz-waves of the given occurrence is realized by the changed activity of nitroxidergic system. It had been proved that THz-waves of nitrogen oxide occurrence can stimulate nitrogen oxide producing in organs and tissues in condition of its low concentration. Possible mechanisms of antiaggregative effect of the given waves had been described. There had been shown the possibility of regulating of vascular tone and system hemodynamics with the help of the studying these frequencies. The represented data of lipid peroxidation and enzymatic and nonenzymatic components of organism system under the influence of THz-waves of nitrogen oxide occurrence in stress conditions. Besides, there were shown changes of stress-regulating system activity and in concentration of important mediators - catecholamines and glucocorticosteroids. These data let characterize mechanism of realization of THz-waves basic effects. The research had shown the possibility of THz-waves of nitrogen oxide occurrence usage as a method of natural physiological noninvasive regulation of significant organism functions.

  15. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    Directory of Open Access Journals (Sweden)

    Shutthanandan V

    2008-06-01

    Full Text Available Abstract Molybdenum disulfide (MoS2, a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM, scanning electron microscopy (SEM, transmission electron microscopy (TEM, Rutherford backscattering spectrometry (RBS, and nuclear reaction analysis (NRA. Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and

  16. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics.

    Science.gov (United States)

    Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M

    2008-06-05

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant

  17. From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene-Cement Composites.

    Science.gov (United States)

    Gholampour, Aliakbar; Valizadeh Kiamahalleh, Meisam; Tran, Diana N H; Ozbakkaloglu, Togay; Losic, Dusan

    2017-12-13

    Graphene materials have been extensively explored and successfully used to improve performances of cement composites. These formulations were mainly optimized based on different dosages of graphene additives, but with lack of understanding of how other parameters such as surface chemistry, size, charge, and defects of graphene structures could impact the physiochemical and mechanical properties of the final material. This paper presents the first experimental study to evaluate the influence of oxygen functional groups of graphene and defectiveness of graphene structures on the axial tension and compression properties of graphene-cement mortar composites. A series of reduced graphene oxide (rGO) samples with different levels of oxygen groups (high, mild, and low) were prepared by the reduction of graphene oxide (GO) using different concentrations of hydrazine (wt %, 0.1, 0.15, 0.2, 0.3, and 0.4%) and different reduction times (5, 10, 15, 30, and 60 min) and were added to cement mortar composites at an optimal dosage of 0.1%. A series of characterization methods including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy were performed to determine the distribution and mixing of the prepared rGO in the cement matrix and were correlated with the observed mechanical properties of rGO-cement mortar composites. The measurement of the axial tension and compression properties revealed that the oxygen level of rGO additives has a significant influence on the mechanical properties of cement composites. An addition of 0.1% rGO prepared by 15 min reduction and 0.2% (wt %) hydrazine with mild level of oxygen groups resulted in a maximum enhancement of 45.0 and 83.7%, respectively, in the 28-day tensile and compressive strengths in comparison with the plain cement mortar and were higher compared to the composite prepared with GO (37.5 and 77.7%, respectively). These

  18. Mechanism and kinetics of the oxidation of synthetic alpha-NiS

    Directory of Open Access Journals (Sweden)

    BOYAN BOYANOV

    2008-02-01

    Full Text Available The results of an investigation of the mechanism and kinetics of the oxidation process of synthetic a-NiS are presented in this paper. The mechanism of a-NiS oxidation was investigated based on the comparative analysis of DTA–TG–DTG and XRD results, as well as the constructed phase stability diagrams (PSD for the Ni–S–O system. The kinetic investigations of the oxidation process were performed under isothermal conditions (temperature range 823–1073 K. The obtained degrees of desulfurization were used in the calculation process according to the Sharp model and the kinetic parameters, including the activation energies and the rate constants of the characteristic reactions, for the oxidation of a-NiS were determined. These results enabled the formulation of a kinetic equation for the desulfurization process: ‑ln(1−a = k1t = 27.89 exp(–9860/Tt, with an activation energy of 82±4 kJ mol-1, for the first stage of the process and –ln (1 − a = k2t = 1.177 exp(–4810/Tt, with an activation energy of 40±2 kJ mol-1, for the second stage.

  19. Oxidation resistance of quintuple Ti-Al-Si-C-N coatings and associated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wu Guizhi; Ma Shengli; Xu Kewei; Ji, Vincent; Chu, Paul K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); ICMMO/LEMHE, Universite Paris-Sud 11, 91405 Orsay Cedex (France); Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2012-07-15

    The oxidation behavior of Ti-Al-Si-C-N hard coatings with different Al contents deposited on high-speed steel and Si substrates by hybrid arc-enhanced magnetron sputtering is investigated in the temperature range of 500 Degree-Sign C-1000 Degree-Sign C. The coating hardness is maintained at around 35 GPa, and the parabolic oxidation rate constant K{sub p} at 1000 Degree-Sign C decreases to 3.36 Multiplication-Sign 10{sup -10} kg{sup 2} m{sup -4} s{sup -1} when the Al concentration is increased to 30 at. %, indicating that Ti-Al-Si-C-N coatings with larger Al concentrations have better oxidation resistance. X-ray diffraction, cross-sectional scanning electron microscopy, and x-ray photoelectron spectroscopy reveal a protective surface layer consisting of Al{sub 2}O{sub 3}, TiO{sub 2}, and SiO{sub 2} that retards inward oxygen diffusion. A mechanism is proposed to elucidate the oxide formation. As a consequence of the good oxidation resistance, the Ti-Al-Si-C-N coatings have a large potential in high-speed dry cutting as well as other high temperature applications.

  20. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome “Tor Vergata”, Rome (Italy); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, University of Rome “Tor Vergata”, Rome (Italy); Pietroiusti, Antonio [Department of Biopathology, University of Rome “Tor Vergata”, Rome (Italy); Fadeel, Bengt [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States); Kagan, Valerian E. [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States)

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  1. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet; da Silva, Gabriel; Chung, Suk-Ho

    2012-01-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  2. Shape and size transformation of gold nanorods (GNRs) via oxidation process: A reverse growth mechanism

    International Nuclear Information System (INIS)

    Chandrasekar, Govindasamy; Mougin, Karine; Haidara, Hamidou; Vidal, Loic; Gnecco, Enrico

    2011-01-01

    The anisotropic shape transformation of gold nanorods (GNRs) with H 2 O 2 was observed in the presence of 'cethyl trimethylammonium bromide' (CTAB). The adequate oxidative dissolution of GNR is provided by the following autocatalytic scheme with H 2 O 2 : Au 0 → Au + , Au 0 + Au n+ → 2Au 3+ , n = 1 and 3. The shape transformation of the GNRs was investigated by UV-vis spectroscopy and transmission electron microscopy (TEM). As-synthesised GNRs exhibit transverse plasmon band (TPB) at 523 nm and longitudinal plasmon band (LPB) at 731 nm. Upon H 2 O 2 oxidation, the LPB showed a systematic hypsochromic (blue) shift, while TPB stays at ca. 523 nm. In addition, a new emerging peak observed at ca. 390 nm due to Au(III)-CTAB complex formation during the oxidation. TEM analysis of as-synthesised GNRs with H 2 O 2 confirmed the shape transformation to spherical particles with 10 nm size in 2 h, whereas centrifuged nanorod solution showed no changes in the aspect ratio under the same condition. Au 3+ ions produced from oxidation, complex with excess free CTAB and approach the nanorods preferentially at the end, leading to spatially directed oxidation. This work provides some information to the crystal stability and the growth mechanism of GNRs, as both growth and shortening reactions occur preferentially at the edge of single-crystalline GNRs, all directed by Br - ions.

  3. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    International Nuclear Information System (INIS)

    Shvedova, Anna A.; Pietroiusti, Antonio; Fadeel, Bengt; Kagan, Valerian E.

    2012-01-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  4. Reaction mechanism for the free-edge oxidation of soot by O 2

    KAUST Repository

    Raj, Abhijeet

    2012-11-01

    The reaction pathways for the oxidation by O 2 of polycyclic aromatic hydrocarbons present in soot particles are investigated using density functional theory at B3LYP/6-311++G(d,p) level of theory. For this, pyrene radical (4-pyrenyl) is chosen as the model molecule, as most soot models present in the literature employ the reactions involving the conversion of 4-pyrenyl to 4-phenanthryl by O 2 and OH to account for soot oxidation. Several routes for the formation of CO and CO 2 are proposed. The addition of O 2 on a radical site to form a peroxyl radical is found to be barrierless and exothermic with reaction energy of 188kJ/mol. For the oxidation reaction to proceed further, three pathways are suggested, each of which involve the activation energies of 104, 167 and 115kJ/mol relative to the peroxyl radical. The effect of the presence of H atom on a carbon atom neighboring the radical site on the energetics of carbon oxidation is assessed. Those intermediate species formed during oxidation with seven-membered rings or with a phenolic group are found to be highly stable. The rate constants evaluated using transition state theory in the temperature range of 300-3000K for the reactions involved in the mechanism are provided. © 2012 The Combustion Institute.

  5. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    International Nuclear Information System (INIS)

    Tripathy, Sumanta K.; Rajeswari, V. P.

    2014-01-01

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn 3 O 4 , corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells

  6. Epiphytes modulate Posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms and oxidative damage

    Directory of Open Access Journals (Sweden)

    Monya Mendes Costa

    2015-12-01

    Full Text Available Epiphytes impose physical barriers to light penetration into seagrass leaves causing shading, which may decrease the production of oxygen reactive species (ROS, but also constitute a physical aggression that may trigger the production of ROS, leading to oxidative damage. Here we investigate the effects of epiphytes on Posidonia oceanica under both interactive perspectives, light attenuation and oxidative stress. Specifically the role of epiphytes in net photosynthesis, chlorophyll a and b, photoprotection (Violaxanthin+Anteraxanthin+Zeaxanthin cycle, soluble sugar and starch contents, enzymatic (ascorbate peroxidase (APX and dehydroascorbate reductase (DHAR and global (trolox equivalent antioxidant capacity (TEAC and oxygen radical antioxidant capacity (ORAC antioxidant responses, phenolics and oxidative damage (malondialdehyde are tested. Leaves with epiphytes showed higher chlorophyll b and lower content in VAZ cycle carotenoids. Epiphyte shading was the probable reason for the lower VAZ de-epoxidation-ratio of leaves with epiphytes. In spite of being shaded, leaves with epiphytes showed higher antioxidant levels, indicating that epiphytes trigger the production of ROS. Both ORAC and TEAC and also APX and DHAR activities were higher in leaves with epiphytes, indicating that this response was related with its presence. Malondialdehyde concentrations also suggest oxidative damage caused by epiphytes. We conclude that the epiphyte load causes oxidative stress in P. oceanica and the mechanisms to scavenge ROS were not completely effective to avoid cell damage.

  7. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Directory of Open Access Journals (Sweden)

    Mohammed Saeed-Zidane

    Full Text Available Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo or those released by granulosa cells without oxidative stress (NormalExo were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein, altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells

  8. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanxuan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); Wan, Jinquan, E-mail: ppjqwan@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, Yongwen [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China)

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO{sub 4}·{sup −}) and hydroxyl radical (·OH) were found to be primary oxidants at pH 3.0 and pH 7.0, respectively while ·OH was the major specie to oxidize DBP at pH 11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to ·OH, superoxide radical (O{sub 2}·{sup −}) was detected at pH 11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH 3.0 by GC–MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH 3.0. - Highlights: • Both SO{sub 4}{sup −}· and ·OH were found to be the major active species at pH 3.0 and pH 7.0. • ·OH and ·O2– were the primary oxidants pH 11.0. • The intermediate products were investigated as well as the degradation pathway. • Dealkylation, hydroxylation, decarboxylation, H-extraction were the major mechanisms.

  9. Effect of Thermally Reduced Graphene Oxide on Mechanical Properties of Woven Carbon Fiber/Epoxy Composite

    OpenAIRE

    Nitai Chandra Adak; Suman Chhetri; Naresh Chandra Murmu; Pranab Samanta; Tapas Kuila

    2018-01-01

    Thermally reduced graphene oxide (TRGO) was incorporated as a reinforcing filler in the epoxy resin to investigate the effect on the mechanical properties of carbon fiber (CF)/epoxy composites. At first, the epoxy matrix was modified by adding different wt % of TRGO from 0.05 to 0.4 wt % followed by the preparation of TRGO/CF/epoxy composites througha vacuum-assisted resin transfer molding process. The prepared TRGO was characterized by using Fourier transform infrared spectroscopy, Raman Spe...

  10. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties.

    Science.gov (United States)

    Ramazani, Soghra; Karimi, Mohammad

    2015-11-01

    A number of studies have demonstrated that the mechanical properties of electrospun polymeric nanofibrous scaffolds are enhanced with the incorporation of graphene and its derivatives, thus developing their applications in hard tissue engineering. However, our understanding of the relationship between the microstructure and properties of these fibrous scaffolds and how they are influenced by graphene oxide (GO) and reduced graphene oxide (RGO) loading is much more limited. Thus, in this paper, poly(ε-caprolactone) (PCL)/GO and RGO nanocomposite nanofibers containing 0, 0.1, 0.5 and 1wt.% GO and RGO were prepared using an electrospinning technique. With the addition of 0.1wt.% of GO and RGO nanosheets in PCL, the tensile strength of PCL scaffolds increased over ~160 and 304% respectively and elastic modulus increased over 103 and 163% due to the good dispersion of the nanosheets and their interaction with the molecular chains of PCL. These were supported by the parallel increase in relaxation time and molecular orientation of PCL chains at the presence of nanosheets with a loading of 0.1wt.%. The enhancement effect of the nanosheets was weakened with an increase in GO and RGO loading up to 1wt.% in which it is connected to a partial exfoliation of the nanosheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers.

    Science.gov (United States)

    Viapiana, R; Flumignan, D L; Guerreiro-Tanomaru, J M; Camilleri, J; Tanomaru-Filho, M

    2014-05-01

    To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. New insight into the mechanism of cathodic electrodeposition of zinc oxide thin films onto vitreous carbon

    OpenAIRE

    Ait Ahmed , N.; Eyraud , M.; Hammache , H.; Vacandio , F.; Sam , S.; Gabouze , N.; Knauth , P.; Pelzer , K.; Djenizian , T.

    2014-01-01

    International audience; In this study, the mechanism of zinc oxide (ZnO) electrodeposition from aqueous zinc nitrate solution at 70°C was investigated on vitreous carbon and bulk zinc electrodes using cyclic voltammetry experiments. Mechanisms are presented for the ZnO formation: the first widely accepted route corresponds to ZnO precipitation from Zn 2+ and OH-produced by NO3-reduction; the second route, which is discussed in this article, is due to Zn 2+ reduction into metallic Zn followed ...

  13. Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Babcock

    2017-01-01

    Full Text Available Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR and hypoxia inducible factor-1α (HIF-1α. The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D out of four potential HIF response elements of the hKOR gene (HIFA–D synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing, suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation.

  14. Species transport mechanisms governing capacity loss in vanadium flow batteries: Comparing Nafion® and sulfonated Radel membranes

    International Nuclear Information System (INIS)

    Agar, Ertan; Knehr, K.W.; Chen, D.; Hickner, M.A.; Kumbur, E.C.

    2013-01-01

    Highlights: • Species transport mechanisms are investigated in Nafion ® and s-Radel for VRFBs. • Unlike diffusion in Nafion ® , crossover in s-Radel is dominated by convection. • In particular, electro-osmotic convection is the dominant mode in s-Radel. • Change in direction of convection causes a lower crossover in s-Radel. • Hydraulic and electrokinetic permeability are as important as vanadium permeability. -- Abstract: In this study, a 2-D, transient vanadium redox flow battery (VRFB) model was used to investigate and compare the ion transport mechanisms responsible for vanadium crossover in Nafion ® 117 and sulfonated Radel (s-Radel) membranes. Specifically, the model was used to distinguish the relative contribution of diffusion, migration, osmotic and electro-osmotic convection to the net vanadium crossover in Nafion ® and s-Radel. Model simulations indicate that diffusion is the dominant mode of vanadium transport in Nafion ® , whereas convection dominates the vanadium transport through s-Radel due to the lower vanadium permeability, and thus diffusivity of s-Radel. Among the convective transport modes, electro-osmotic convection (i.e., electro-osmotic drag) is found to govern the species crossover in s-Radel due to its higher fixed acid concentration and corresponding free ions in the membrane. Simulations also show that vanadium crossover in s-Radel changes direction during charge and discharge due to the change in the direction of electro-osmotic convection. This reversal in the direction of crossover during charge and discharge is found to result in significantly lower “net” crossover for s-Radel when compared to Nafion ® . Comparison of these two membranes also provides guidance for minimizing crossover in VRFB systems and underscores the importance of measuring the hydraulic and the electro-kinetic permeability of a membrane in addition to vanadium diffusion characteristics, when evaluating new membranes for VRFB applications

  15. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  16. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  17. Effect of a surface oxide-dispersion-strengthened layer on mechanical strength of zircaloy-4 tubes

    Directory of Open Access Journals (Sweden)

    Yang-Il Jung

    2018-03-01

    Full Text Available An oxide-dispersion-strengthened (ODS layer was formed on Zircaloy-4 tubes by a laser beam scanning process to increase mechanical strength. Laser beam was used to scan the yttrium oxide (Y2O3–coated Zircaloy-4 tube to induce the penetration of Y2O3 particles into Zircaloy-4. Laser surface treatment resulted in the formation of an ODS layer as well as microstructural phase transformation at the surface of the tube. The mechanical strength of Zircaloy-4 increased with the formation of the ODS layer. The ring-tensile strength of Zircaloy-4 increased from 790 to 870 MPa at room temperature, from 500 to 575 MPa at 380°C, and from 385 to 470 MPa at 500°C. Strengthening became more effective as the test temperature increased. It was noted that brittle fracture occurred at room temperature, which was not observed at elevated temperatures. Resistance to dynamic high-temperature bursting improved. The burst temperature increased from 760 to 830°C at a heating rate of 5°C/s and internal pressure of 8.3 MPa. The burst opening was also smaller than those in fresh Zircaloy-4 tubes. This method is expected to enhance the safety of Zr fuel cladding tubes owing to the improvement of their mechanical properties. Keywords: Laser Surface Treatment, Microstructure, Oxide Dispersion Strengthened Alloy, Tensile Strength, Zirconium Alloy

  18. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications

    Directory of Open Access Journals (Sweden)

    Gh. Barati Darband

    2017-03-01

    Full Text Available Plasma Electrolyte Oxidation (PEO process has increasingly been employed to improve magnesium surface properties by fabrication of an MgO-based coating. Originating from conventional anodizing procedures, this high-voltage process produces an adhesive ceramic film on the surface. The present article provides a comprehensive review around mechanisms of PEO coatings fabrication and their different properties. Due to complexity of PEO coatings formation, a complete explanation regarding fabrication mechanisms of PEO coatings has not yet been proposed; however, the most important advancements in the field of fabrication mechanisms of PEO coatings were gathered in this work. Mechanisms of PEO coatings fabrication on magnesium were reviewed considering voltage–time plots, optical spectrometry, acoustic emission spectrometry and electronic properties of the ceramic film. Afterwards, the coatings properties, affecting parameters and improvement strategies were discussed. In addition, corrosion resistance of coatings, important factors in corrosion resistance and methods for corrosion resistance improvement were considered. Tribological properties (important factors and improvement methods of coatings were also studied. Since magnesium and its alloys are broadly used in biological applications, the biological properties of PEO coatings, important factors in their biological performance and existing methods for improvement of coatings were explained. Addition of ceramic based nanoparticles and formation of nanocomposite coatings may considerably influence properties of plasma electrolyte oxidation coatings. Nanocomposite coatings properties and nanoparticles adsorption mechanisms were included in a separate sector. Another method to improve coatings properties is formation of hybrid coatings on PEO coatings which was discussed in the end.

  19. The Semireduced Mechanism for Nitric Oxide Reduction by Non-Heme Diiron Complexes: Modeling Flavodiiron Nitric Oxide Reductases.

    Science.gov (United States)

    White, Corey J; Speelman, Amy L; Kupper, Claudia; Demeshko, Serhiy; Meyer, Franc; Shanahan, James P; Alp, E Ercan; Hu, Michael; Zhao, Jiyong; Lehnert, Nicolai

    2018-02-21

    Flavodiiron nitric oxide reductases (FNORs) are a subclass of flavodiiron proteins (FDPs) capable of preferential binding and subsequent reduction of NO to N 2 O. FNORs are found in certain pathogenic bacteria, equipping them with resistance to nitrosative stress, generated as a part of the immune defense in humans, and allowing them to proliferate. Here, we report the spectroscopic characterization and detailed reactivity studies of the diiron dinitrosyl model complex [Fe 2 (BPMP)(OPr)(NO) 2 ](OTf) 2 for the FNOR active site that is capable of reducing NO to N 2 O [Zheng et al., J. Am. Chem. Soc. 2013, 135, 4902-4905]. Using UV-vis spectroscopy, cyclic voltammetry, and spectro-electrochemistry, we show that one reductive equivalent is in fact sufficient for the quantitative generation of N 2 O, following a semireduced reaction mechanism. This reaction is very efficient and produces N 2 O with a first-order rate constant k > 10 2 s -1 . Further isotope labeling studies confirm an intramolecular N-N coupling mechanism, consistent with the rapid time scale of the reduction and a very low barrier for N-N bond formation. Accordingly, the reaction proceeds at -80 °C, allowing for the direct observation of the mixed-valent product of the reaction. At higher temperatures, the initial reaction product is unstable and decays, ultimately generating the diferrous complex [Fe 2 (BPMP)(OPr) 2 ](OTf) and an unidentified ferric product. These results combined offer deep insight into the mechanism of NO reduction by the relevant model complex [Fe 2 (BPMP)(OPr)(NO) 2 ] 2+ and provide direct evidence that the semireduced mechanism would constitute a highly efficient pathway to accomplish NO reduction to N 2 O in FNORs and in synthetic catalysts.

  20. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte

    International Nuclear Information System (INIS)

    Moreno, Mabel; Quijada, Raúl; Santa Ana, María A.; Benavente, Eglantina; Gomez-Romero, Pedro; González, Guillermo

    2011-01-01

    Highlights: ► Poly(ethylene oxide)/intercalated clay nanocomposite as filler in solid poly(ethylene oxide) electrolytes. ► Nanocomposite filler improves mechanical properties, transparency, and conductivity of poly(ethylene oxide) electrolyte films. ► Nanocomposite is more effective than unmodified clay in improving polymer electrolyte properties. ► Low Li/polymer ratio avoids crystalline Li complexes, so effects mainly arise from the polymer. ► High nanocomposite/poly(ethylene oxide)-matrix affinity enhances microhomogeneity in the polyelectrolyte. - Abstract: Solvent-free solid polymer electrolytes (SPEs) based on two different poly(ethylene oxide), PEO Mw 600,000 and 4,000,000 and intercalated clays are reported. The inorganic additives used were lithiated bentonite and the nanocomposite PEO-bentonite with the same polymer used as matrix. SPE films, obtained in the scale of grams by mixing the components in a Brabender-type batch mixer and molding at 130 °C, were characterized by X-ray diffraction analysis, UV–vis spectroscopy, and thermal analysis. During the preparation of the films, the unmodified clay got intercalated in situ. Comparative analysis of ionic conductivity and mechanical properties of the films show that the conductivity increases with the inclusion of fillers, especially for the polymer with low molecular weight. This effect is more pronounced when using PEO-bentonite as additive. Under selected work conditions, avoiding the presence of crystalline lithium complexes, observed effects are mainly centered on the polymer. An explanation, considering the higher affinity between the modified clay and PEO matrix which leads to differences in the micro homogeneity degree between both types of polymer electrolytes is proposed.

  1. Spectroscopic and electrical sensing mechanism in oxidant-mediated polypyrrole nanofibers/nanoparticles for ammonia gas

    International Nuclear Information System (INIS)

    Ishpal; Kaur, Amarjeet

    2013-01-01

    Ammonia gas sensing mechanism in oxidant-mediated polypyrrole (PPy) nanofibers/nanoparticles has been studied through spectroscopic and electrical investigations. PPy nanofibers/nanoparticles have been synthesized by chemical oxidation method in the presence of various oxidizing agents such as ammonium persulfate (APS), potassium persulfate (PPS), vanadium pentoxide (V 2 O 5 ), and iron chloride (FeCl 3 ). Scanning electron microscopy study revealed that PPy nanofibers of about 63, 71 and 79 nm diameters were formed in the presence of APS, PPS, V 2 O 5 , respectively, while PPy nanoparticles of about 100–110 nm size were obtained in the presence of FeCl 3 as an oxidant. The structural investigations and confirmation of synthesis of PPy were established through Fourier transform infrared and Raman spectroscopy. The gas sensing behavior of the prepared PPy samples is investigated by measuring the electrical resistance in ammonia environment. The observed gas sensing response (ΔR/Rx100) at 100 ppm level of ammonia is ∼4.5 and 18 % for the samples prepared with oxidizing agents FeCl 3 and APS, respectively, and by changing the ammonia level from 50 to 300 ppm, the sensing response varies from ∼4.5 to 11 % and ∼10 to 39 %, respectively. Out of all four samples, the PPy nanofibers prepared in the presence of APS have shown the best sensing response. The mechanism of gas sensing response of the PPy samples has been investigated through Raman spectroscopy study. The decrease of charge carrier concentration through reduction of polymeric chains has been recognized through Raman spectroscopic measurements recorded in ammonia environment.

  2. The mental health care model in Brazil: analyses of the funding, governance processes, and mechanisms of assessment.

    Science.gov (United States)

    Trapé, Thiago Lavras; Campos, Rosana Onocko

    2017-03-23

    This study aims to analyze the current status of the mental health care model of the Brazilian Unified Health System, according to its funding, governance processes, and mechanisms of assessment. We have carried out a documentary analysis of the ordinances, technical reports, conference reports, normative resolutions, and decrees from 2009 to 2014. This is a time of consolidation of the psychosocial model, with expansion of the health care network and inversion of the funding for community services with a strong emphasis on the area of crack cocaine and other drugs. Mental health is an underfunded area within the chronically underfunded Brazilian Unified Health System. The governance model constrains the progress of essential services, which creates the need for the incorporation of a process of regionalization of the management. The mechanisms of assessment are not incorporated into the health policy in the bureaucratic field. There is a need to expand the global funding of the area of health, specifically mental health, which has been shown to be a successful policy. The current focus of the policy seems to be archaic in relation to the precepts of the psychosocial model. Mechanisms of assessment need to be expanded. Analisar o estágio atual do modelo de atenção à saúde mental do Sistema Único de Saúde, segundo seu financiamento, processos de governança e mecanismos de avaliação. Foi realizada uma análise documental de portarias, informes técnicos, relatórios de conferência, resoluções e decretos de 2009 a 2014. Trata-se de um momento de consolidação do modelo psicossocial, com ampliação da rede assistencial, inversão de financiamento para serviços comunitários com forte ênfase na área de crack e outras drogas. A saúde mental é uma área subfinanciada dentro do subfinanciamento crônico do Sistema Único de Saúde. O modelo de governança constrange o avanço de serviços essenciais, havendo a necessidade da incorporação de um

  3. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  4. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome

    Directory of Open Access Journals (Sweden)

    Nikolai V. Gorbunov

    2015-02-01

    Full Text Available The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS. The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS. Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous

  5. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    International Nuclear Information System (INIS)

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A.

    2005-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  6. Study of the mechanisms controlling the oxide growth under irradiation: characterization of irradiated zircaloy-4 and Zr-1 Nb-O oxide scales

    International Nuclear Information System (INIS)

    Bossis, Ph.; Thomazet, J.; Lefebvre, F.

    2002-01-01

    In PWRs, the Zr-1Nb-O alloy shows a marked enhancement in corrosion resistance in comparison with Zircaloy-4. The aim of this work is to analyze the reasons for these different behaviors and to determine the respective nature of the oxide growth controlling mechanisms under irradiation. Samples taken from Zircaloy-4 irradiated 1, 2, and 4 cycles and Zr-1Nb-O irradiated 1 and 3 cycles have been systematically characterized by optical microscopy, SEM coupled with image analysis, hydride distribution, and XRD. Specific TEM characterizations have been performed on the Zr-1Nb-O samples. A XPS analysis of a nonirradiated sample is also reported. It has been shown that under irradiation the slow oxidation kinetics of the Zr-1Nb-O alloy is associated with very regular metal-oxide interface and oxide layer. On the contrary, the accelerated oxidation kinetics of Zircaloy-4 is associated with highly perturbed metal-oxide interface and oxide layer. On both irradiated alloys, cracks are observed to initiate preferentially above the delayed parts of the oxidation front. Hydrogen intake during water oxidation in PWR environment is found to be much lower on the Zr-1Nb-O alloy than on Zircaloy-4. More β-ZrO 2 is found on the oxide layer formed on Zircaloy-4 than on Zr-1NbO after oxidation in PWR. Classical irradiation-induced microstructural evolution is observed in the Zr-1Nb-O metallic alloy after 3 cycles, i.e., a fine β-Nb precipitation. β-Nb precipitates are observed to undergo a delayed oxidation associated with a crystalline to amorphous transformation. After water oxidation in autoclave, a pronounced Nb segregation is detected on the oxide surface of a Zr-1Nb-O sample. These results suggest that the oxidation kinetics of Zircaloy-4 is controlled essentially by oxygen diffusion through the inner barrier layer, which is significantly accelerated under irradiation. The oxidation kinetics of Zr-1Nb-O is controlled by both oxygen diffusion through the inner barrier and by

  7. Quinolinic Acid, an Endogenous Molecule Combining Excitotoxicity, Oxidative Stress and Other Toxic Mechanisms

    Directory of Open Access Journals (Sweden)

    Verónica Pérez-De La Cruz

    2012-01-01

    Full Text Available Quinolinic acid (QUIN, an endogenous metabolite of the kynurenine pathway, is involved in several neurological disorders, including Huntington's disease, Alzheimer's disease, schizophrenia, HIV associated dementia (HAD etc. QUIN toxicity involves several mechanisms which trigger various metabolic pathways and transcription factors. The primary mechanism exerted by this excitotoxin in the central nervous system (CNS has been largely related with the overactivation of N-methyl-D-aspartate receptors and increased cytosolic Ca 2+ concentrations, followed by mitochondrial dysfunction, cytochrome c release, ATP exhaustion, free radical formation and oxidative damage. As a result, this toxic pattern is responsible for selective loss of middle size striatal spiny GABAergic neurons and motor alterations in lesioned animals. This toxin has recently gained attention in biomedical research as, in addition to its proven excitotoxic profile, a considerable amount of evidence suggests that oxidative stress and energetic disturbances are major constituents of its toxic pattern in the CNS. Hence, this profile has changed our perception of how QUIN-related disorders combine different toxic mechanisms resulting in brain damage. This review will focus on the description and integration of recent evidence supporting old and suggesting new mechanisms to explain QUIN toxicity.

  8. The Long Road--How Evolving Institutional Governance Mechanisms Are Changing the Face of Quality in Portuguese Higher Education

    Science.gov (United States)

    Sarrico, Cláudia S.; Veiga, Amélia; Amaral, Alberto

    2013-01-01

    While a lot has been written regarding the changing management and governance arrangements in higher education, less is known about how this progression relates to quality in higher education. The purpose of this article is to describe the context of governance in Portuguese higher education institutions and how institutional governance…

  9. Mechanical and oxidation properties of some B2 rare earth–magnesium intermetallic

    Energy Technology Data Exchange (ETDEWEB)

    Stumphy, Brad [Iowa State Univ., Ames, IA (United States)

    2006-12-15

    The remainder of Chapter 1 provides background information on three main topics. First is a discussion about the basic structure and composition of binary B2 intermetallic compounds. Second, the mechanical properties of intermetallics are examined, starting with the cause for the typically inherent brittleness observed in B2 intermetallics. A number of B2 compounds have been found to possess an abnormal level of ductility compared to other intermetallics in this class, including a handful of other rare earth–non-rare earth (RM) B2 line compounds, and these findings are also discussed. Finally, oxidation studies of rare earth metals, focusing on yttrium and cerium, as well as magnesium and some B2 materials are discussed. Chapter 2 is an in-depth look into certain aspects of the laboratory work done during this study. The many challenges and difficulties encountered required that a variety of laboratory techniques be attempted in the making, processing, and testing of these two intermetallic materials. The results and ensuing discussion for the mechanical testing that was performed are found in Chapter 3. Tensile and compression testing results for YMg are shown first, followed by those for CeMg. Some samples were made using electrical discharge machining (EDM) while others were polished into the desired shape. A scanning electron microscope (SEM) was utilized to inspect surfaces of the tensile and compression samples. Hardness values and attempts to determine fracture toughness are also recorded before beginning the discussion. Chapter 4 follows the same basic format for the oxidation study portion of the research. Oxidation curves for CeMg are followed by a qualitative chemical analysis using energy dispersive spectroscopy (EDS). The YMg oxidation curves are shown next followed by an x-ray diffraction (XRD) analysis of the oxidation process for this material and a discussion of the results. Chapter 5 is a summary of the research performed in the mechanical and

  10. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Chang, Wen-Chun; Chang, Shih-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L{sup -1}). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  11. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-01-01

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L -1 ). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  12. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation.

    Science.gov (United States)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    International Nuclear Information System (INIS)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming

    2017-01-01

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y_2O-3 and Fe-9Cr-2W-0.3Zr-0.3Y_2O_3 were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y_4Zr_3O_1_2 oxides and body-centered cubic Y_2O_3 oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y_4Zr_3O_1_2 particles is much smaller than that of Y_2O_3. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10"2"3/m"3 with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time

  14. Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hai Jian; Lu, Zheng; Wang, Dong Mei; Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang (China)

    2017-02-15

    To study the effects of zirconium (Zr) addition on the microstructure, hardness and the tensile properties of oxide dispersion strengthened (ODS) ferritic-martensitic steels, two kinds of 9Cr-ODS ferritic-martensitic steels with nominal compositions (wt.%) of Fe-9Cr-2W-0.3Y{sub 2}O-3 and Fe-9Cr-2W-0.3Zr-0.3Y{sub 2}O{sub 3} were fabricated by the mechanical alloying (MA) of premixed powders and then consolidated by hot isostatic pressing (HIP) techniques. The experimental results showed that the average grain size decreases with Zr addition. The trigonal δ-phase Y{sub 4}Zr{sub 3}O{sub 12} oxides and body-centered cubic Y{sub 2}O{sub 3} oxides are formed in the 9Cr-Zr-ODS steel and 9Cr non-Zr ODS steel, respectively, and the average size of Y{sub 4}Zr{sub 3}O{sub 12} particles is much smaller than that of Y{sub 2}O{sub 3}. The dispersion morphology of the oxide particles in 9Cr-Zr-ODS steel is significantly improved and the number density is 1.1 x 10{sup 23}/m{sup 3} with Zr addition. The 9Cr-Zr-ODS steel shows much higher tensile ductility, ultimate tensile strength and Vickers hardness at the same time.

  15. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    International Nuclear Information System (INIS)

    Kim, Seong Woo; Choi, Hyun Muk

    2016-01-01

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  16. Oxidation mechanism of diethyl ether: a complex process for a simple molecule.

    Science.gov (United States)

    Di Tommaso, Stefania; Rotureau, Patricia; Crescenzi, Orlando; Adamo, Carlo

    2011-08-28

    A large number of organic compounds, such as ethers, spontaneously form unstable peroxides through a self-propagating process of autoxidation (peroxidation). Although the hazards of organic peroxides are well known, the oxidation mechanisms of peroxidizable compounds like ethers reported in the literature are vague and often based on old experiments, carried out in very different conditions (e.g. atmospheric, combustion). With the aim to (partially) fill the lack of information, in this paper we present an extensive Density Functional Theory (DFT) study of autoxidation reaction of diethyl ether (DEE), a chemical that is largely used as solvent in laboratories, and which is considered to be responsible for various accidents. The aim of the work is to investigate the most probable reaction paths involved in the autoxidation process and to identify all potential hazardous intermediates, such as peroxides. Beyond the determination of a complex oxidation mechanism for such a simple molecule, our results suggest that the two main reaction channels open in solution are the direct decomposition (β-scission) of DEE radical issued of the initiation step and the isomerization of the peroxy radical formed upon oxygen attack (DEEOO˙). A simple kinetic evaluation of these two competing reaction channels hints that radical isomerization may play an unexpectedly important role in the global DEE oxidation process. Finally industrial hazards could be related to the hydroperoxide formation and accumulation during the chain propagation step. The resulting information may contribute to the understanding of the accidental risks associated with the use of diethyl ether.

  17. The evolution mechanism of the dislocation loops in irradiated lanthanum doped cerium oxide

    International Nuclear Information System (INIS)

    Miao, Yinbin; Aidhy, Dilpuneet; Chen, Wei-Ying; Mo, Kun; Oaks, Aaron; Wolf, Dieter; Stubbins, James F.

    2014-01-01

    Cerium dioxide, a non-radioactive surrogate of uranium dioxide, is useful for simulating the radiation responses of uranium dioxide and mixed oxide fuel (MOX). Controlled additions of lanthanum can also be used to form various levels of lattice oxide or anion vacancies. In previous transmission electron microscopy (TEM) experimental studies, the growth rate of dislocation loops in irradiated lanthanum doped ceria was reported to vary with lanthanum concentration. This work reports findings of the evolution mechanisms of the dislocation loops in cerium oxide with and without lanthanum dopants based on a combination of molecular statics and molecular dynamics simulations. These dislocation loops are found to be b=1/3〈111〉 interstitial type Frank loops. Calculations of the defect energy profiles of the dislocation loops with different structural configurations and radii reveal the basis for preference of nucleation as well as the driving force of growth. Frenkel pair evolution simulations and displacement cascade overlaps simulations were conducted for a variety of lanthanum doping conditions. The nucleation and growth processes of the Frank loop were found to be controlled by the mobility of cation interstitials, which is significantly influenced by the lanthanum doping concentration. Competition mechanisms coupled with the mobility of cation point defects were discovered, and can be used to explain the lanthanum effects observed in experiments

  18. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    International Nuclear Information System (INIS)

    Wang, Wenchao; Wang, Zhipeng; Liu, Yu; Li, Nan; Wang, Wei; Gao, Jianping

    2012-01-01

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  19. Microstructure evolution of the oxide dispersion strengthened CLAM steel during mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Liangliang [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Mao, Xiaodong [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • A nano-sized oxides dispersed ODS-CLAM steel was obtained by MA and HIP. • A minimum saturated grain size of down to 30 nm was achieved by varying the milling time from 0 to 100 h. • Solution of W in the MA powder could be significantly improved by increasing MA rotation speed. - Abstracts: Oxide dispersion strengthened Ferritic/Martensitic steel is considered as one of the most potential structural material for future fusion reactor, owing to its high mechanical properties and good irradiation resistance. The oxide dispersion strengthened China Low Activation Martensitic (ODS-CLAM) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The microstructural evolutions during the process of ball milling and subsequent consolidation were investigated by SEM, XRD and TEM. The results showed that increasing the milling time during the first 36 h milling could effectively decrease the grain size to a value of around 30 nm, over which grain sized remained nearly constant. Increasing the rotation speed promoted the solution of tungsten (W) element obviously and decreased the grain size to a certain degree. Observation on the consolidated and further heat-treated ODS-CLAM steel samples indicated that a martensite microstructure with a high density of nano-particles was achieved.

  20. Mechanisms of nitrous oxide (N2 O) formation and reduction in denitrifying biofilms.

    Science.gov (United States)

    Sabba, Fabrizio; Picioreanu, Cristian; Nerenberg, Robert

    2017-12-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that can be formed in wastewater treatment processes by ammonium oxidizing and denitrifying microorganisms. While N 2 O emissions from suspended growth systems have been extensively studied, and some recent studies have addressed emissions from nitrifying biofilms, much less is known about N 2 O emissions from denitrifying biofilm processes. This research used modeling to evaluate the mechanisms of N 2 O formation and reduction in denitrifying biofilms. The kinetic model included formation and consumption of key denitrification species, including nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and N 2 O. The model showed that, in presence of excess of electron donor, denitrifying biofilms have two distinct layers of activity: an outer layer where there is net production of N 2 O and an inner layer where there is net consumption. The presence of oxygen (O 2 ) had an important effect on N 2 O emission from suspended growth systems, but a smaller effect on biofilm systems. The effects of NO3- and O 2 differed significantly based on the biofilm thickness. Overall, the effects of biofilm thickness and bulk substrate concentrations on N 2 O emissions are complex and not always intuitive. A key mechanism for denitrifying biofilms is the diffusion of N 2 O and other intermediates from one zone of the biofilm to another. This leads to zones of N 2 O formation or consumption transformations that would not exist in suspended growth systems. © 2017 Wiley Periodicals, Inc.

  1. Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying

    Science.gov (United States)

    Zhao, Ziqian; Xiao, Zhu; Li, Zhou; Zhu, Mengnan; Yang, Ziqi

    2017-11-01

    Cu-3.6 vol.% Al2O3 dispersion strengthened alloy was prepared by mechanical alloying (MA) of internal oxidation Cu-Al powders. The lattice parameter of Cu matrix decreased with milling time for powders milled in argon, while the abnormal increase of lattice parameter occurred in the air resulting from mechanochemical reactions. With a quantitative analysis, the combined method makes residual aluminum oxidized completely within 10-20 h while mechanical alloying method alone needs longer than 40 h. Lamellar structure formed and the thickness of lamellar structure decreased with milling time. The size of Al2O3 particles decreased from 46 to 22 nm after 40 h milling. After reduction, core-shell structure was found in MAed powders milled in the air. The compacted alloy produced by MAed powders milled in the argon had an average hardness and electrical conductivity of 172.2 HV and 82.1% IACS while the unmilled alloy's were 119.8 HV and 74.1% IACS due to the Al2O3 particles refinement and residual aluminum in situ oxidization.

  2. Optimization of mechanical performance of oxidative nano-particle electrode nitrile butadiene rubber conducting polymer actuator.

    Science.gov (United States)

    Kim, Baek-Chul; Park, S J; Cho, M S; Lee, Y; Nam, J D; Choi, H R; Koo, J C

    2009-12-01

    Present work delivers a systematical evaluation of actuation efficiency of a nano-particle electrode conducting polymer actuator fabricated based on Nitrile Butadiene Rubber (NBR). Attempts are made for maximizing mechanical functionality of the nano-particle electrode conducting polymer actuator that can be driven in the air. As the conducting polymer polypyrrole of the actuator is to be fabricated through a chemical oxidation polymerization process that may impose certain limitations on both electrical and mechanical functionality of the actuator, a coordinated study for optimization process of the actuator is necessary for maximizing its performance. In this article actuation behaviors of the nano-particle electrode polypyrrole conducting polymer is studied and an optimization process for the mechanical performance maximization is performed.

  3. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Science.gov (United States)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagye, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hildén, Kristiina; Kües, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wösten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-01-01

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the “button mushroom” forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics. PMID:23045686

  4. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R.; Foulongne-Oriol, Marie; Lombard, Vincent; Nagy, Laszlo G.; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L.; Bailey, Andrew M.; Billette, Christophe; Coutinho, Pedro M.; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hilden, Kristiina; Kues, Ursula; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Murat, Claude; Riley, Robert W.; Salamov, Asaf A.; Schmutz, Jeremy; Subramanian, Venkataramanan; Wosten, Han A. B.; Xu, Jianping; Eastwood, Daniel C.; Foster, Gary D.; Sonnenberg, Anton S. M.; Cullen, Dan; de Vries, Ronald P.; Lundell, Taina; Hibbett, David S.; Henrissat, Bernard; Burton, Kerry S.; Kerrigan, Richard W.; Challen, Michael P.; Grigoriev, Igor V.; Martin, Francis

    2012-04-27

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the button mushroom forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.

  5. Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche.

    Science.gov (United States)

    Morin, Emmanuelle; Kohler, Annegret; Baker, Adam R; Foulongne-Oriol, Marie; Lombard, Vincent; Nagy, Laszlo G; Ohm, Robin A; Patyshakuliyeva, Aleksandrina; Brun, Annick; Aerts, Andrea L; Bailey, Andrew M; Billette, Christophe; Coutinho, Pedro M; Deakin, Greg; Doddapaneni, Harshavardhan; Floudas, Dimitrios; Grimwood, Jane; Hildén, Kristiina; Kües, Ursula; Labutti, Kurt M; Lapidus, Alla; Lindquist, Erika A; Lucas, Susan M; Murat, Claude; Riley, Robert W; Salamov, Asaf A; Schmutz, Jeremy; Subramanian, Venkataramanan; Wösten, Han A B; Xu, Jianping; Eastwood, Daniel C; Foster, Gary D; Sonnenberg, Anton S M; Cullen, Dan; de Vries, Ronald P; Lundell, Taina; Hibbett, David S; Henrissat, Bernard; Burton, Kerry S; Kerrigan, Richard W; Challen, Michael P; Grigoriev, Igor V; Martin, Francis

    2012-10-23

    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost and during mushroom formation. The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation are more highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics.

  6. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  7. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  8. Equilibrium arsenic adsorption onto metallic oxides : Isotherm models, error analysis and removal mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Esra Bilgin [Yalova University, Yalova (Turkmenistan); Beker, Ulker [Yldz Technical University, Istanbul (Turkmenistan)

    2014-11-15

    Arsenic adsorption properties of mono- (Fe or Al) and binary (Fe-Al) metal oxides supported on natural zeolite were investigated at three levels of temperature (298, 318 and 338 K). All data obtained from equilibrium experiments were analyzed by Freundlich, Langmuir, Dubinin-Radushkevich, Sips, Toth and Redlich-Peterson isotherms, and error functions were used to predict the best fitting model. The error analysis demonstrated that the As(Ⅴ) adsorption processes were best described by the Dubinin-Raduskevich model with the lowest sum of normalized error values. According to results, the presence of iron and aluminum oxides in the zeolite network improved the As(Ⅴ) adsorption capacity of the raw zeolite (ZNa). The X-ray photoelectron spectroscopy (XPS) analyses of ZNa-Fe and ZNa-AlFe samples suggested that the redox reactions are the postulated mechanisms for the adsorption onto them while the adsorption process is followed by surface complexation reactions for ZNa-Al.

  9. Kinetics and Mechanism of Oxidation of Aromatic Aldehydes by Imidazolium Dichromate in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2009-01-01

    Full Text Available The kinetics of oxidation of benzaldehyde (BA and para-substituted benzaldehydes by imidazolium dichromate (IDC has been studied in aqueous acetic acid medium in the presence of perchloric acid. The reaction is first order each in [IDC], [Substrate] and [H+]. The reaction rates have been determined at different temperatures and the activation parameters calculated. Electron withdrawing substituents are found to increase the reaction and electron releasing substituents are found to retard the rate of the reaction and the rate data obey the Hammett relationship. The products of the oxidation are the corresponding acids. The rate decreases with the increase in the water content of the medium. A suitable mechanism is proposed.

  10. Dynamic mechanical properties of hydroxyapatite/polyethylene oxide nanocomposites: characterizing isotropic and post-processing microstructures

    Science.gov (United States)

    Shofner, Meisha; Lee, Ji Hoon

    2012-02-01

    Compatible component interfaces in polymer nanocomposites can be used to facilitate a dispersed morphology and improved physical properties as has been shown extensively in experimental results concerning amorphous matrix nanocomposites. In this research, a block copolymer compatibilized interface is employed in a semi-crystalline matrix to prevent large scale nanoparticle clustering and enable microstructure construction with post-processing drawing. The specific materials used are hydroxyapatite nanoparticles coated with a polyethylene oxide-b-polymethacrylic acid block copolymer and a polyethylene oxide matrix. Two particle shapes are used: spherical and needle-shaped. Characterization of the dynamic mechanical properties indicated that the two nanoparticle systems provided similar levels of reinforcement to the matrix. For the needle-shaped nanoparticles, the post-processing step increased matrix crystallinity and changed the thermomechanical reinforcement trends. These results will be used to further refine the post-processing parameters to achieve a nanocomposite microstructure with triangulated arrays of nanoparticles.

  11. Decarburization behavior and mechanical properties of Inconel 617 during high temperature oxidation in He environment

    International Nuclear Information System (INIS)

    Kim, Young Do; Kim, Dae Gun; Jo, Tae Sun; Kim, Hoon Sup; Lim, Jeong Hun

    2010-04-01

    Among Generation IV reactor concepts, high temperature gas-cooled reactors (HTGRs) are high-efficiency systems designed for the economical production of hydrogen and electricity. Inconel 617 is a solid-solution strengthening Ni-based superalloy that shows excellent strength, creep-rupture strength, and oxidation resistance at high temperatures. Thus, it is a desirable candidate for tube material of IHX and HGD in HTGRs. In spite of these excellent properties, aging degradation by long time exposure at high temperature induced to deterioration of mechanical properties and furthermore alloys' lifetime because of Cr-depleted zone and carbide free zone below external scale. Also, machinability of Inconel 617 is a important property for system design. In this study, oxidation and decarbrization behavior were evaluated at various aging temperature and environment. Also, cold rolling was carried out for the machinability evaluation of Inconel 617 and then microstructure change was evaluated

  12. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Science.gov (United States)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  13. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    International Nuclear Information System (INIS)

    Razavi, Behnaz; Song Weihua; Santoke, Hanoz; Cooper, William J.

    2011-01-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( · OH) and reducing aqueous electron (e - aq ), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with · OH determined, (6.96±0.16)x10 9 , (2.92±0.06)x10 9 , (4.16±0.13)x10 9 , and (3.13±0.15)x10 9 M -1 s -1 , and for e - aq (2.31±0.06)x10 9 , (0.45±0.01)x10 9 , (1.26±0.01)x10 9 , and (0.69±0.02)x10 9 M -1 s -1 , respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137 Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  14. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Behnaz, E-mail: brazavi@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song Weihua, E-mail: wsong@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Santoke, Hanoz, E-mail: hsantoke@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Cooper, William J., E-mail: wcooper@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States)

    2011-03-15

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ({sup {center_dot}O}H) and reducing aqueous electron (e{sup -}{sub aq}), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with {sup {center_dot}O}H determined, (6.96{+-}0.16)x10{sup 9}, (2.92{+-}0.06)x10{sup 9}, (4.16{+-}0.13)x10{sup 9}, and (3.13{+-}0.15)x10{sup 9} M{sup -1} s{sup -1}, and for e{sup -}{sub aq} (2.31{+-}0.06)x10{sup 9}, (0.45{+-}0.01)x10{sup 9}, (1.26{+-}0.01)x10{sup 9}, and (0.69{+-}0.02)x10{sup 9} M{sup -1} s{sup -1}, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using {sup 137}Cs {gamma}-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  15. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10473535 The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbio.... (.png) (.svg) (.html) (.csml) Show The oxidation of lipoproteins by monocytes-macrophages. Biochemical and...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathca

  16. Kinetics and mechanisms of the oxide film growth on the surface of α-Fe in transitional domains

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Berber, N.N.; Kargin, D.B.; Chalaya, O.V.

    2003-01-01

    The object of this work was to study the kinetics of the α-Fe surface oxidation with prevailing cubic texture at temperatures of 450-500 deg. C. The basic conformity to natural laws and mechanisms of the two-phase thin oxide films grows are determined. (author)

  17. [Protective effect and mechanism of compound Ginkgo biloba granules on oxidative stress injury of HUVEC].

    Science.gov (United States)

    Li, Qi; Chen, Xi; Kan, Xiao-Xi; Li, Yu-Jie; Yang, Qing; Wang, Ya-Jie; Chen, Ying; Weng, Xiao-Gang; Cai, Wei-Yan; Huang, He-Fei; Zhu, Xiao-Xin

    2016-02-01

    To reveal the protective and anti-apoptosis effect of compound Ginkgo biloba granules on oxidative stress injury of human umbilical vein endothelial cells (HUVEC). Negative control group, H2O2 model group and 4 drug pretreatment groups (80, 160, 320, 640 mg• L⁻¹) were established. The cell proliferation, morphological changes in each group after oxidative stress injury was detected by MTT assay and through microscope observation respectively. The content of LDH, MDA, SOD and NO and SOD activity in supernatant were detected to judge the protection effect of the drugs on endothelial cells. The protective effect on HUVEC apoptosis was analyzed by Caspase-3 activity test and Annexin V-FITC/PI staining. Western blot was used to observe the expression of apoptosis-related proteins Bcl-2 and Bax. Results showed that 1 200 μmol• L⁻¹ H2O2 can induce oxidative stress injury in endothelial cells and reduce the cell survival rate; cell proliferation inhibition degree is positively correlated with the effect time of H2O2. Besides, 80, 160, 320 640 mg•L⁻¹ compound Ginkgo biloba granules can protect HUVEC from oxidative stress injury, recover the normal proliferation level of cells, improve their state, prohibit cell apoptosis, and can up-regulate and down-regulate the expression level of Bcl-2 and Bax respectively. In conclusion, compound G. biloba granules can protect HUVEC from the oxidative stress injury induced by H2O2, its mechanism may be correlated with inhibition of the mitochondrial apoptotic pathway in HUVEC. Copyright© by the Chinese Pharmaceutical Association.

  18. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  19. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab

    2015-09-24

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  20. Reaction Mechanism for m- Xylene Oxidation in the Claus Process by Sulfur Dioxide

    KAUST Repository

    Sinha, Sourab; Raj, Abhijeet; Al Shoaibi, Ahmed S.; Chung, Suk-Ho

    2015-01-01

    In the Claus process, the presence of aromatic contaminants such benzene, toluene, and xylenes (BTX), in the H2S feed stream has a detrimental effect on catalytic reactors, where BTX form soot particles and clog and deactivate the catalysts. Among BTX, xylenes are proven to be most damaging contaminant for catalysts. BTX oxidation in the Claus furnace, before they enter catalyst beds, provides a solution to this problem. A reaction kinetics study on m-xylene oxidation by SO2, an oxidant present in Claus furnace, is presented. The density functional theory is used to study the formation of m-xylene radicals (3-methylbenzyl, 2,6-dimethylphenyl, 2,4-dimethylphenyl, and 3,5-dimethylphenyl) through H-abstraction and their oxidation by SO2. The mechanism begins with SO2 addition on the radicals through an O-atom rather than the S-atom with the release of 180.0-183.1 kJ/mol of reaction energies. This exothermic reaction involves energy barriers in the range 3.9-5.2 kJ/mol for several m-xylene radicals. Thereafter, O-S bond scission takes place to release SO, and the O-atom remaining on aromatics leads to CO formation. Among four m-xylene radicals, the resonantly stabilized 3-methylbenzyl exhibited the lowest SO2 addition and SO elimination rates. The reaction rate constants are provided to facilitate Claus process simulations to find conditions suitable for BTX oxidation. © 2015 American Chemical Society.

  1. Microstructure, mechanical properties and oxidation behaviors of magnetron sputtered NbN{sub x} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhengbing, E-mail: zbqi@xmut.edu.cn [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen (China); Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China); Wu, Zhengtao; Zhang, Dongfang [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China); Zuo, Juan [College of Materials Science and Engineering, Xiamen University of Technology, Xiamen (China); Wang, Zhoucheng, E-mail: zcwang@xmu.edu.cn [Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen (China)

    2016-08-05

    Mechanical properties and oxidation resistance are of importance for the NbN{sub x} coatings as used in cutting and forming tools. In this study, the NbN{sub x} coatings were deposited by magnetron sputtering at nitrogen partial pressure ranging from 0 to 40%. The chemical and phase compositions, morphologies, mechanical properties and oxidation behaviors of the NbN{sub x} coatings were investigated by electron probe microanalysis, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, scanning and transmission electron microscopy, and nanoindentation measurements. The results reveal the composition evolution of the NbN{sub x} coatings as α-Nb (0%), β-Nb{sub 2}N (5%), a mixture of β-Nb{sub 2}N and δ-NbN (10%), and δ-NbN (20–40%). The single phase coatings exhibit columnar structure while the mixed phases coating shows nano-composite structure. Compared with the single phase δ-NbN coatings (21.6 ± 0.8–28.0 ± 1.2 GPa), higher hardness of the single phase β-Nb{sub 2}N coating (30.9 ± 1.0 GPa) is due to the higher covalent character and much finer grains. The maximum hardness reaches 33.3 ± 1.5 GPa for the nano-composite coating with mixed phases of β-Nb{sub 2}N and δ-NbN. The oxidation results demonstrate that the activation energies are 219.3 and 192.3 kJ/mol for the Nb{sub 2}N and NbN coatings respectively. Non-protective Nb{sub 2}O{sub 5} scales with cracks and pores result in poorer oxidation resistance of the NbN coating in comparison to the Nb{sub 2}N coating. - Highlights: • Chemical and phase compositions and microstructure of NbN{sub x} coatings were investigated. • Maximum hardness is obtained for nano-composite coating with mixed Nb{sub 2}N and NbN phases. • Activation energies are 219.3 and 192.3 kJ/mol for oxidation of Nb{sub 2}N and NbN coatings. • Non-protective Nb{sub 2}O{sub 5} scales with cracks and pores lower oxidation resistance of NbN coating.

  2. Microstructure, mechanical properties and oxidation behaviors of magnetron sputtered NbN_x coatings

    International Nuclear Information System (INIS)

    Qi, Zhengbing; Wu, Zhengtao; Zhang, Dongfang; Zuo, Juan; Wang, Zhoucheng

    2016-01-01

    Mechanical properties and oxidation resistance are of importance for the NbN_x coatings as used in cutting and forming tools. In this study, the NbN_x coatings were deposited by magnetron sputtering at nitrogen partial pressure ranging from 0 to 40%. The chemical and phase compositions, morphologies, mechanical properties and oxidation behaviors of the NbN_x coatings were investigated by electron probe microanalysis, X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, scanning and transmission electron microscopy, and nanoindentation measurements. The results reveal the composition evolution of the NbN_x coatings as α-Nb (0%), β-Nb_2N (5%), a mixture of β-Nb_2N and δ-NbN (10%), and δ-NbN (20–40%). The single phase coatings exhibit columnar structure while the mixed phases coating shows nano-composite structure. Compared with the single phase δ-NbN coatings (21.6 ± 0.8–28.0 ± 1.2 GPa), higher hardness of the single phase β-Nb_2N coating (30.9 ± 1.0 GPa) is due to the higher covalent character and much finer grains. The maximum hardness reaches 33.3 ± 1.5 GPa for the nano-composite coating with mixed phases of β-Nb_2N and δ-NbN. The oxidation results demonstrate that the activation energies are 219.3 and 192.3 kJ/mol for the Nb_2N and NbN coatings respectively. Non-protective Nb_2O_5 scales with cracks and pores result in poorer oxidation resistance of the NbN coating in comparison to the Nb_2N coating. - Highlights: • Chemical and phase compositions and microstructure of NbN_x coatings were investigated. • Maximum hardness is obtained for nano-composite coating with mixed Nb_2N and NbN phases. • Activation energies are 219.3 and 192.3 kJ/mol for oxidation of Nb_2N and NbN coatings. • Non-protective Nb_2O_5 scales with cracks and pores lower oxidation resistance of NbN coating.

  3. Datasets used in the manuscript titled "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms and organic aerosol"

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset documents that all of the data used in the manuscript "Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic...

  4. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress

    KAUST Repository

    Yun, Kil-Young; Park, Myoung Ryoul; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Mauleon, Ramil; Wijaya, Edward; Bajic, Vladimir B.; Bruskiewich, Richard; de los Reyes, Benildo G

    2010-01-01

    -plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress

  5. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  6. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound.

    Science.gov (United States)

    Bhasarkar, Jaykumar B; Chakma, Sankar; Moholkar, Vijayanand S

    2015-05-01

    This paper attempts to discern the physical mechanism of the oxidative desulfurization process simultaneously assisted by ultrasound and phase transfer agent (PTA). With different experimental protocols, an attempt is made to deduce individual beneficial effects of PTA and ultrasound on the oxidative desulfurization system, and also the synergy between the effects of PTA and ultrasound. Effect of PTA is more marked for mechanically stirred system due to mass transfer limitations, while intense emulsification due to ultrasound helps overcome the mass transfer limitations and reduces the extent of enhancement of oxidation by PTA. Despite application of PTA and ultrasound, the intrinsic factors and properties of the reactants such as polarity (and hence partition coefficient) and diffusivity have a crucial effect on the extent of oxidation. The intrinsic reactivity of the oxidant also plays a vital role, as seen from the extent of oxidation achieved with performic acid and peracetic acid. The interfacial transport of oxidant in the form of oxidant-PTA complex reduces the undesired consumption of oxidant by the reducing species formed during transient cavitation in organic medium, which helps effective utilization of oxidant towards desulfurization. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dry corrosion prediction of radioactive waste containers in long term interim storage: mechanisms of low temperature oxidation of pure iron and numerical simulation of an oxide scale growth

    International Nuclear Information System (INIS)

    Bertrand, N.

    2006-10-01

    In the framework of research on long term behaviour of radioactive waste containers, this work consists on the one hand in the study of low temperature oxidation of iron and on the other hand in the development of a numerical model of oxide scale growth. Isothermal oxidation experiments are performed on pure iron at 300 and 400 C in dry and humid air at atmospheric pressure. Oxide scales formed in these conditions are characterized. They are composed of a duplex magnetite scale under a thin hematite scale. The inner layer of the duplex scale is thinner than the outer one. Both are composed of columnar grains, that are smaller in the inner part. The outer hematite layer is made of very small equiaxed grains. Markers and tracers experiments show that a part of the scale grows at metal/oxide interface thanks to short-circuits diffusion of oxygen. A model for iron oxide scale growth at low temperature is then deduced. Besides this experimental study, the numerical model EKINOX (Estimation Kinetics Oxidation) is developed. It allows to simulate the growth of an oxide scale controlled by mixed mechanisms, such as anionic and cationic vacancies diffusion through the scale, as well as metal transfer at metal/oxide interface. It is based on the calculation of concentration profiles of chemical species and also point defects in the oxide scale and in the substrate. This numerical model does not use the classical quasi-steady-state approximation and calculates the future of cationic vacancies at metal/oxide interface. Indeed, these point defects can either be eliminated by interface motion or injected in the substrate, where they can be annihilated, considering sinks as the climb of dislocations. Hence, the influence of substrate cold-work can be investigated. The EKINOX model is validated in the conditions of Wagner's theory and is confronted with experimental results by its application to the case of high temperature oxidation of nickel. (author)

  8. Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes

    Directory of Open Access Journals (Sweden)

    Ali Ammar

    2016-03-01

    Full Text Available This paper expresses a short review of research on the effects of graphene oxide (GO as a nanocomposite element on polymer morphology and resulting property modifications including mechanical, barrier, and electrical conductivity. The effects on mechanical enhancement related to stress measurements in particular are a focus of this review. To first order, varying levels of aggregation of GO in different polymer matrices as a result of their weak inter-particle attractive interactions mainly affect the nanocomposite mechanical properties. The near surface dispersion of GO in polymer/GO nanocomposites can be investigated by studying the surface morphology of these nanocomposites using scanning probe microscopy such as atomic force microscope (AFM and scanning electron microscope (SEM. In the bulk, GO dispersion can be studied by wide-angle X-ray scattering (WAXD by analyzing the diffraction peaks corresponding to the undispersed GO fraction in the polymer matrix. In terms of an application, we review how the hydrophilicity of graphene oxide and its hydrogen bonding potential can enhance water flux of these nanocomposite materials in membrane applications. Likewise, the electrical conductivity of polymer films and bulk polymers can be advantageously enhanced via the percolative dispersion of GO nanoparticles, but this typically requires some additional chemical treatment of the GO nanoparticles to transform it to reduced GO.

  9. Hydrogen sulfide increases nitric oxide production from endothelial cells by an Akt-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Arturo J Cardounel

    2011-12-01

    Full Text Available Hydrogen sulfide (H2S and nitric oxide (NO are both gasotransmitters that can elicit synergistic vasodilatory responses in the in the cardiovascular system, but the mechanisms behind this synergy are unclear. In the current study we investigated the molecular mechanisms through which H2S regulates endothelial NO production. Initial studies were performed to establish the temporal and dose-dependent effects of H2S on NO generation using EPR spin trapping techniques. H2S stimulated a two-fold increase in NO production from endothelial nitric oxide synthase (eNOS, which was maximal 30 min after exposure to 25-150 µM H2S. Following 30 min H2S exposure, eNOS phosphorylation at Ser 1177 was significantly increased compared to control, consistent with eNOS activation. Pharmacological inhibition of Akt, the kinase responsible for Ser 1177 phosphorylation, attenuated the stimulatory effect of H2S on NO production. Taken together, these data demonstrate that H2S up-regulates NO production from eNOS through an Akt-dependent mechanism. These results implicate H2S in the regulation of NO in endothelial cells, and suggest that deficiencies in H2S signaling can directly impact processes regulated by NO.

  10. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R. [Univ. of Massachusetts, Amherst, MA (United States)

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  11. Radiation Oxidation Mechanisms in Polyolefins Studied by C-13 Isotopic Labeling

    International Nuclear Information System (INIS)

    Clough, R.L.

    2006-01-01

    Control of oxidative degradation is a critical consideration in most applications involving polymers and radiation. In radiation crosslinking or sterilization, or in the use of polymers in radiation environments (such as nuclear plants), the objective is to minimize degradation as much as possible. In other applications, a controlled, partial degradation is desired to alter processing properties, or to enhance adhesion or solubility. To gain more understanding of the complex processes of radiation oxidation, samples of one important commercial polyolefin, polypropylene, were synthesized in which the three different carbon atoms along the chain were selectively labeled with carbon-13. These samples were subjected to radiation under inert and air atmospheres, and to post-irradiation thermal exposure in air at various temperatures. Analysis of macromolecular radiation-oxidation products was carried out using 13 C NMR and FTIR. Time-dependent plots of oxidation products have been obtained from the NMR measurements, including the post-irradiation oxidation of a sample held at room temperature in air that has been monitored for 2 years. Analysis of volatile oxidation products (CO, CO 2 , and small organic molecules) was accomplished with gas chromatography / mass spectroscopy. The position of the 13 C labels in the degradation products, have been traced back to their positions of origin on the macromolecule, providing insights into the chemical reaction mechanisms through which the products were formed. The major solid-phase products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of macromolecular products arising from reactions at the methyl side chain. Significant temperature-dependent differences are

  12. Mechanism of Penicillium expansum in response to exogenous nitric oxide based on proteomics analysis.

    Science.gov (United States)

    Lai, Tongfei; Chen, Yong; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2014-05-30

    Penicillium expansum is an important fungal pathogen, which causes blue mold rot in various fruits and produces a mycotoxin (patulin) with potential damage to public health. Here, we found that nitric oxide (NO) donor could significantly inhibit germinability of P. expansum spores, resulting in lower virulence to apple fruit. Based on two dimension electrophoresis (2-DE) and mass spectrometry (MS) analysis, we identified ten differentially expressed proteins in response to exogenous NO in P. expansum. Among of them, five proteins, such as glutamine synthetase (GS), amidohydrolase, nitrilases, nitric oxide dioxygenase (NOD) and heat shock protein 70, were up-regulated. Others including tetratricopeptide repeat domain, UDP-N-acetylglucosamine pyrophosphorylase, enolase (Eno), heat shock protein 60 and K homology RNA-binding domain were down-regulated. The expression of three genes associated with the identified proteins (GS, NOD, and Eno) was evaluated at the mRNA level by RT-PCR. Our results provide the novel evidence for understanding the mechanism, by which NO regulates growth of P. expansum and its virulence. Crop diseases caused by fungal pathogens lead to huge economic losses every year in the world. Application of chemical fungicides to control diseases brings the concern about food and environmental safety. Screening new antimicrobial compounds and exploring involved mechanisms have great significance to development of new disease management strategies. Nitric oxide (NO), as an important intracellular signaling molecule, has been proved to be involved in many physiological processes and defense responses during plant-pathogen interactions. In this study, we firstly found that NO at high concentration could distinctly delay spore germination and significantly reduce virulence of P. expansum to fruit host, identified some important proteins in response to NO stress and characterized the functions of these proteins. These results provide novel evidence for

  13. CIEMAT results in the frame of the european project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems

    International Nuclear Information System (INIS)

    Gasco, C.; Anton, M.P.

    1996-01-01

    This report summarises the objectives and more relevant conclusions obtained by CIEMAT in the frame of the project Mechanisms governing the behaviour and transport of transuranics (analogues) and other radionuclides in marine ecosystems. The overall objective of this project was to identify the basic mechanisms and define the key parameters governing the physico-chemical speciation, vertical and horizontal mobility, biological magnification, incorporation to seabed sediments and ultimate fate of transuranium and other long-lived radionuclides in the marine environment, with a view to providing high-quality data of a universal character for use in the development and validation of predictive models based on fundamental mechanisms rather than the simpler box-model approach. This research was carried out in different European marine ecosystems: those directly affected by controlled releases from Nuclear Industries and/or accidents and those characterized by being preferent radionuclides accumulation sites (submarine canyons, estuaries, etc.). (Author)

  14. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  15. Evaluation of mechanically treated cerium (IV) oxides as corrosion inhibitors for galvanized steel

    Energy Technology Data Exchange (ETDEWEB)

    Deflorian, F., E-mail: flavio.deflorian@ing.unitn.it [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Fedel, M.; Rossi, S. [Department of Materials Engineering and Industrial Technology, University of Trento, Via Mesiano 77, 38123 Trento (Italy); Kamarchik, P. [PPG Industries, Coatings Innovation Center, 4325 Rosanna Drive, Allison Park, PA 15101 (United States)

    2011-09-30

    The use of cerium salts as corrosion inhibitors for hot dip galvanized steel has been object of a numerous studies in the last few years. The role of cerium ions as corrosion inhibitors was proved: cerium is able to block the cathodic sites of the metal, forming insoluble hydroxides and oxides on the zinc surface. This fact leads to a dramatic decrease of the cathodic current densities and, therefore, to a reduction the overall corrosion processes. On the other hand, the potential of cerium oxides as corrosion inhibitors was also proposed. However, the real effectiveness of this kind of anticorrosive pigments has not been clarified yet. In this work cerium (IV) oxides are considered as corrosion inhibitors for galvanized steel. The corrosion inhibition mechanism of mechanically treated (milled) CeO{sub 2} alone and in combination with milled SiO{sub 2} nanoparticles was investigated. For this purpose milled CeO{sub 2}, CeO{sub 2} and SiO{sub 2} milled together and milled SiO{sub 2} particles were studied as corrosion inhibitors in water solution. Therefore, the different mechanically treated particles were dispersed in 0.1 M NaCl solution to test their effectiveness as corrosion inhibitors for galvanized steel. The galvanized steel was immersed in the different solutions and the corrosion inhibition efficiency of the different particles was measured by means of electrochemical techniques. For this purpose, electrochemical impedance spectroscopy (EIS) measurements were carried out, monitoring the evolution of the corrosion processes occurring at the metal surface with the immersion time in the solution. The effect of the different pigments was also investigated by carrying out anodic and cathodic polarization measurements. The polarization curves were acquired under conditions of varied pH. The experimental measurements suggest that the mechanical treatment performed on the SiO{sub 2} and CeO{sub 2} particles promote the formation of an effective corrosion pigment

  16. Soil nitrate reducing processes drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    OpenAIRE

    Giles, M.; Morley, N.; Baggs, E.M.; Daniell, T.J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium\\ud (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for\\ud the loss of nitrate (NO−\\ud 3 ) and production of the potent greenhouse gas, nitrous oxide (N2O).\\ud A number of factors are known to control these processes, including O2 concentrations and\\ud moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms\\ud responsible for the ...

  17. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-11-01

    Full Text Available Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO as a flocculant to remove methylene blue (MB from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  18. Manganese mediated oxidation of progesterone in alkaline medium: Mechanism study and quantitative determination

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Pashabadi, Afshin; Taherpour, Avat; Bahrami, Kiumars; Sharghi, Hashem

    2017-01-01

    Highlights: • This is first report on oxidation of progesterone in alkaline medium using a new manganese (III) Schiff base complex. • Utilizing QM and MM, we modelled and interpreted the observed electrochemical behavior of complex on carbon and gold materials as platform. • The long term stability of proposed sensor is improved relative to previously reported immunosensors for P4. • A detailed mechanism was developed for the oxidation of P4. • The proposed sensor was applied to quantify P4 in cow’s milk. - Abstract: We report here a non-immunosensing approach for the electrocatalytic oxidation of progesterone (P4) in alkaline medium using a salen-type manganese Schiff base complex (Mn(III)-SB) as a suitable electrocatalyst. We explored the role of carbon surface at glassy carbon electrode (GCE) and gold surface at glassy carbon/gold nanoparticles modified electrode (GCE/AuNPs) on immobilization of the Mn(III)-SB complex using cyclic voltammetry (CV) and density functional theory (DFT) calculations. The GCE/Mn(III)-SB displayed a pair of small redox peaks attributed to Mn(II) ⇄ Mn(III) with a small peak-to-peak separation (ΔE p ), while GCE/AuNP/Mn(III)-SB displayed redox peaks with larger densities, but with a wider ΔE p . A combined molecular mechanics (MM) and quantum mechanics (QM) study were carried out to investigate the variation of surface configuration and energy barrier, when the Mn(III)-SB immobilization was modeled on GCE and GCE/Au surface. Cyclic voltammetry and hydrodynamic amperometry were used for the quantitative determination of P4. A limit of detection (LOD) of 11.4 nM was obtained using amperometry. The sensor retained 91% of its original response after 3 months, which is improved compared to previously reported P4 immunosensors. For the first time, a detailed mechanism for oxidation of P4 in alkaline medium was suggested. The proposed sensor was utilized to determine progesterone in milk samples.

  19. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  20. Kinetics and Mechanism of Oxidation of Isoleucine by N-Bromophthalimide in Aqueous Perchloric Acid Medium

    Directory of Open Access Journals (Sweden)

    N. M. I. Alhaji

    2011-01-01

    Full Text Available The kinetics of oxidation of isoleucine with N-bromophthalimide has been studied in perchloric acid medium potentiometrically. The reaction is of first order each in [NBP] and [amino acid] and negative fractional order in [H+]. The rate is decreased by the addition of phthalimide. A decrease in the dielectric constant of the medium increases the rate. Addition of halide ions or acrylonitrile has no effect on the kinetics. Similarly, variation of ionic strength of the medium does not affect the reaction rate. The reaction rate has been determined at different temperatures and activation parameters have been calculated. A suitable mechanism involving hypobromous acid as reactive species has been proposed.

  1. High-temperature oxidation behavior of dense SiBCN monoliths: Carbon-content dependent oxidation structure, kinetics and mechanisms

    International Nuclear Information System (INIS)

    Li, Daxin; Yang, Zhihua; Jia, Dechang; Wang, Shengjin; Duan, Xiaoming; Zhu, Qishuai; Miao, Yang; Rao, Jiancun; Zhou, Yu

    2017-01-01

    Highlights: •The scale growth for all investigated monoliths at 1500 °C cannot be depicted by a linear or parabolic rate law. •The carbon-rich monoliths oxidize at 1500 °C according to a approximately linear weight loss equation. •The excessive carbon in SiBCN monoliths deteriorates the oxidation resistance. •The oxidation resistance stems from the characteristic oxide structures and increased oxidation resistance of BN(C). -- Abstract: The high temperature oxidation behavior of three SiBCN monoliths: carbon-lean SiBCN with substantial Si metal, carbon-moderate SiBCN and carbon-rich SiBCN with excessive carbon, was investigated at 1500 °C for times up to15 h. Scale growth for carbon-lean and −moderate monoliths at 1500 °C cannot be described by a linear or parabolic rate law, while the carbon-rich monoliths oxidize according to a approximately linear weight loss equation. The microstructures of the oxide scale compose of three distinct layers. The passivating layer of carbon and boron containing amorphous SiO 2 and increased oxidation resistance of BN(C) both benefit the oxidation resistance.

  2. Mechanical Properties of Oxide Films on Electrolytic In-process Dressing (ELID) Copper-based Grinding Wheel

    Science.gov (United States)

    Kuai, J. C.; Wang, J. W.; Jiang, C. R.; Zhang, H. L.; Yang, Z. B.

    2018-05-01

    The mechanical properties of oxide films on copper based grinding wheel were studied by nanoindentation technique. The analysis of load displacement shows that the creep phenomenon occurs during the loading stage. Results show that the oxide film and the matrix have different characteristics, and the rigidity of the copper based grinding wheel is 0.6-1.3mN/nm, which is weaker than that of the matrix; the hardness of the oxide film is 2000-2300MPa, which is higher than the matrix; and the elastic modulus of the oxide film is 100-120GPa, also higher than the matrix.

  3. Oxidation mechanism studies of T-111 alloy by 238Pu dioxide

    International Nuclear Information System (INIS)

    Teaney, P.E.; Selle, J.E.

    1975-01-01

    A simple set of experiments was conducted in order to determine the actual mechanism by which oxygen is transported to a T-lll alloy liner in a heat source capsule. Two mechanisms are possible: (1) transport through the vapor phase; or (2) solid state diffusion across the fuel-liner interface. Two T-lll alloy capsules were fabricated containing six-watt plutonia pellets. The pellet in one capsule was wrapped several times with iridium wire to provide a stand-off to prevent contact between the fuel and liner. The pellet in the second capsule was placed in direct contact with the liner. After fabrication, the specimens were tested for 60 days at 900 0 C. Metallographic examination, microhardness measurements, and oxygen and nitrogen analyses of the cross sectioned specimen were utilized to determine the oxidation mechanism. Although the vapor phase mechanism contributed to the total oxygen uptake, solid state diffusion across the fuel-liner interface was the primary mechanism. 6 fig, 1 table

  4. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole

  5. Cross-linkable graphene oxide embedded nanocomposite hydrogel with enhanced mechanics and cytocompatibility for tissue engineering.

    Science.gov (United States)

    Liu, Xifeng; Miller, A Lee; Waletzki, Brian E; Lu, Lichun

    2018-05-01

    Graphene oxide (GO) is an attractive material that can be utilized to enhance the modulus and conductivities of substrates and hydrogels. To covalently cross-link graphene oxide sheets into hydrogels, abundant cross-linkable double bonds were introduced to synthesize the graphene-oxide-tris-acrylate sheet (GO-TrisA). Polyacrylamide (PAM) nanocomposite hydrogels were then fabricated with inherent covalently and permanently cross-linked GO-TrisA sheets. Results showed that the covalently cross-linked GO-TrisA/PAM nanocomposite hydrogel had enhanced mechanical strength, thermo stability compared with GO/PAM hydrogel maintained mainly by hydrogen bonding between PAM chains and GO sheets. In vitro cell study showed that the covalently cross-linked rGO-TrisA/PAM nanocomposite hydrogel had excellent cytocompatibility after in situ reduction. These results suggest that rGO-TrisA/PAM nanocomposite hydrogel holds great potential for tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1247-1257, 2018. © 2018 Wiley Periodicals, Inc.

  6. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  7. Enhanced mechanical properties of chitosan/nanodiamond composites by improving interphase using thermal oxidation of nanodiamond.

    Science.gov (United States)

    Delavar, Zahra; Shojaei, Akbar

    2017-07-01

    Polymer composite films based on chitosan (CS) and nanodimaond (ND) were prepared using solution casting method. ND with variable contents of carboxylic functional group was prepared using thermal oxidation at temperature of 420°C under air atmosphere at various durations of 1.5 and 4.5h. The interfacial interaction between NDs and CS and morphological evolution of CS in presence of NDs were investigated by Fourier transform infrared (FTIR), differential scanning calorimeter (DSC) and X-ray diffraction (XRD) analyses. A significant improvement in tensile strength (∼85%) and tensile modulus (∼125%) of CS was achieved by oxidized ND (OND) obtained at higher oxidation time of 4.5 at low concentrations (below 1.5wt%). Theoretical analyses based on micromechanical models showed that the ND with higher degree of carboxylic functionality provided thicker and stronger interphase region which was reflected in higher mechanical properties. The equilibrium water uptake of CS decreased by incorporating ND and increasing its degree of carboxyl functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Signaling in a polluted world: oxidative stress as an overlooked mechanism linking contaminants to animal communication

    Directory of Open Access Journals (Sweden)

    Valeria Marasco

    2016-08-01

    Full Text Available The capacity to communicate effectively with other individuals plays a critical role in the daily life of an individual and can have important fitness consequences. Animals rely on a number of visual and non-visual signals, whose production brings costs to the individual. The theory of honest signaling states that these costs are higher for low than for high-quality individuals, which prevents cheating and makes signals, such as skin and plumage colouration, indicators of individual’s quality or condition. The condition-dependent nature of signals makes them ideally suited as indicators of environmental quality, implying that signal production might be affected by contaminants. In this mini-review article, we have made the point that oxidative stress (OS is one overlooked mechanism linking exposure to contaminants to signaling because (i many contaminants can influence the individual’s oxidative balance, and (ii generation of both visual and non-visual signals is sensitive to oxidative stress. To this end, we have provided the first comprehensive review on the way both non-organic (heavy metals, especially mercury and organic (persistent organic pollutants contaminants may influence either OS or sexual signaling. We have also paid special attention to emerging classes of pollutants like brominated flame-retardants and perfluoroalkoxy alkanes in order to stimulate research in this area. We have finally provided suggestions and warnings for future work on the links among OS, sexual signaling and contaminant exposure.

  9. Skin photoprotection by natural polyphenols: Anti-inflammatory, anti-oxidant and DNA repair mechanisms

    Science.gov (United States)

    Nichols, Joi A.; Katiyar, Santosh K.

    2009-01-01

    Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including premature aging of the skin and melanoma and nonmelanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc.. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse, or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress, and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models, suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage. PMID:19898857

  10. Nitrate Ion Photochemistry at Interfaces: A New Mechanism for Oxidation of alpha-Pinene

    International Nuclear Information System (INIS)

    Yu, Yong; Ezell, Michael J.; Zelenyuk, Alla N.; Imre, Dan G.; Alexander, M. Lizabeth; Ortega, John V.; Thomas, Jennie L.; Gogna, Karun; Tobias, Douglas J.; D'Anna, Barbara; Harmon, Chris W.; Johnson, Stan; Finlayson-Pitts, Barbara J.

    2008-01-01

    The photooxidation of 0.6-0.9 ppm α-pinene in the presence of a deliquesced thin film of NaNO3, and for comparison increasing concentrations of NO2, was studied in a 100 L Teflon(reg s ign) chamber at relative humidities from 70-88% and temperatures from 296-304 K. The loss of α-pinene and the formation of gaseous products were followed with time using proton transfer mass spectrometry. The yields of gas phase products were smaller in the NaNO3 experiments than in NO2 experiments. In addition, pinonic acid, pinic acid, trans-sobrerol and other unidentified products were detected in the extracts of the wall washings only for the NaNO3 photolysis. These data indicate enhanced loss of α-pinene at the NaNO3 thin film during photolysis. Supporting the experimental results are molecular dynamics simulations which predict that α-pinene has an affinity for the surface of the deliquesced nitrate thin film, enhancing the opportunity for oxidation of the impinging organic gas during the nitrate photolysis. This new mechanism of oxidation of organics may be partially responsible for the correlation between nitrate and the organic component of particles observed in many field studies, and may also contribute to the missing source of SOA needed to reconcile model predictions and field measurements. In addition, photolysis of nitrate on surfaces in the boundary layer may lead to oxidation of co-adsorbed organics

  11. Microstructure and Mechanical Property of 12Cr Oxide Dispersion Strengthened Steel

    Science.gov (United States)

    Xu, Haijian; Lu, Zheng; Jia, Chunyan; Gao, Hao; Liu, Chunming

    2016-03-01

    Nanostructured oxide dispersion strengthened (ODS) steels with nominal compositions (wt%): Fe-12Cr-2W-0.3Ti-0.3Y2O3 were produced by mechanical alloying and hot isostatic pressing. The microstructure was characterized by means of electron microscopy (EBSD, TEM and HRTEM) and the hardness and the tensile properties at different temperatures were measured. The results showed that the ultimate tensile strength of the fabricated 12Cr-ODS steel reached nearly 1,100 MPa at room temperature and maintained around 340 MPa at 700°C. Nano-oxide particles with size ranging from several nm to 30 nm and the number density was 3.6 × 1020/m3 were observed by TEM. Following heat treatment, including normalizing at 1,100°C for 1 h and tempering at 750°C for 2 h, the average grain size was a little decreased. The number of nano-oxide particles increased and the number density was 8.9 × 1020/m3. Specimens showed much higher ductility and there was a slight increase of ultimate tensile strength and Vickers hardness at the same time.

  12. Mechanism of the rapid dissolution of Pu02 under oxidizing conditions and applications

    International Nuclear Information System (INIS)

    Madic, C.; Lecomte, M.; Bourges, J.; Koehly, G.

    1991-01-01

    Until the recent years, plutonium dioxide was known to be among the metallic oxides the most difficult to dissolve. From thermodynamic calculations it can be predicted that PuO 2 will dissolve under oxidizing conditions. This can be achieved using Ag(II) species possibly regenerated by electrochemical means. The mechanism of such a process has been elucidated using carbon paste electrochemistry and 18 O labelling. These studies demonstrate that the chemical reaction limiting the overall proces is located on the surface of the solid PuO 2 , and that the first step consists in the oxidation of the plutonium into Pu(V) species. Applications of the dissolution process of PuO 2 by electrogenerated Ag(II) were growing in the recent years in FRANCE. These applications developed often in collaboration with SGN and COGEMA, concern the treatment of: out of specifications PuO 2 , incineration ashes, wastes produced during MOX fuel fabrication, and during the dismantling of old nuclear facilities. A general overview of these different applications is given

  13. Evidence of interfacial charge trapping mechanism in polyaniline/reduced graphene oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Rakibul; Brun, Jean-François; Roussel, Frederick, E-mail: frederick.roussel@univ-lille1.fr [University of Lille, Sciences & Technologies, Unité Matériaux et Transformations (UMET), UMR CNRS 8207, U.F.R. de Physique, P5, 59655 Villeneuve d' Ascq Cedex (France); COMUE Lille Nord de France, BP 50458-59658 Villeneuve d' Ascq Cedex (France); Papathanassiou, Anthony N. [Physics Department, Solid State Physics Section, University of Athens, Panepistimiopolis, GR15784 Zografos, Athens (Greece); Chan Yu King, Roch [Science Division, University of Science and Arts of Oklahoma, Chickasha, Oklahoma 73018 (United States)

    2015-08-03

    Relaxation mechanisms in polyaniline (PANI)/Reduced Graphene Oxide (RGO) nanocomposites are investigated using broad band dielectric spectroscopy. The multilayered nanostructural features of the composites and the intimate interactions between PANI and RGO are evidenced by field emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. Increasing the RGO fraction in the composites results in a relaxation process observed at a frequency of ca. 5 kHz. This mechanism is associated with an electrical charge trapping phenomenon occurring at the PANI/RGO interfaces. The dielectric relaxation processes are interpreted according to the Sillars approach and the results are consistent with the presence of conducting prolate spheroids (RGO) embedded into a polymeric matrix (PANI). Dielectric permittivity data are analyzed within the framework of the Kohlrausch-William-Watts model, evidencing a Debye-like relaxation process.

  14. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    Science.gov (United States)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  15. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    International Nuclear Information System (INIS)

    Han, Wentuo; Kimura, Akihiko; Tsuda, Naoto; Serizawa, Hisashi; Chen, Dongsheng; Je, Hwanil; Fujii, Hidetoshi; Ha, Yoosung; Morisada, Yoshiaki; Noto, Hiroyuki

    2014-01-01

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  16. Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wentuo, E-mail: hanwentuo@hotmail.com [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Tsuda, Naoto [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Serizawa, Hisashi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Chen, Dongsheng [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Je, Hwanil [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Ha, Yoosung [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Morisada, Yoshiaki [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Noto, Hiroyuki [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-12-15

    The weldability of oxide dispersion strengthened (ODS) ferritic steels is a critical obstructive in the development and use of these steels. Friction stir welding has been considered to be a promising way to solve this problem. The main purpose of this work was to reveal the effects of mechanical force on grain structures of friction stir welded ODS ferritic steel. The grain appearances and the misorientation angles of grain boundaries in different welded zones were investigated by the electron backscatter diffraction (EBSD). Results showed that the mechanical force imposed by the stir tool can activate and promote the recrystallization characterized by the transformation of boundaries from LABs to HABs, and contribute to the grain refinement. The type of recrystallization in the stir zone can be classified as the continuous dynamic recrystallization (CDRX)

  17. Effect of reduced graphene oxide-carbon nanotubes hybrid nanofillers in mechanical properties of polymer nanocomposites

    Science.gov (United States)

    Sa, Kadambinee; Mahakul, Prakash C.; Subramanyam, B. V. R. S.; Raiguru, Jagatpati; Das, Sonali; Alam, Injamul; Mahanandia, Pitamber

    2018-03-01

    Graphene and carbon nanotubes (CNTs) have tremendous interest as reinforcing fillers due to their excellent physical properties. However, their reinforcing effect in polymer matrix is limited due to agglomeration of graphene and CNTs within the polymer matrix. Mechanical properties by the admixture of reduced graphene oxide (rGO) and CNTs in Poly (methyl methacrylate) (PMMA) prepared by solution mixing method has been investigated. The prepared samples are characterized using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy. The hybrid composite shows improvement in the mechanical properties compared to rGO/PMMA and MWCNTs/PMMA composites due to better interaction between rGO-MWCNTs and polymer matrix.

  18. Mechanism of Dimercaptosuccinic Acid Coated Superparamagnetic Iron Oxide Nanoparticles with Human Serum Albumin.

    Science.gov (United States)

    Zhao, Lining; Song, Wei; Wang, Jing; Yan, Yunxing; Chen, Jiangwei; Liu, Rutao

    2015-12-01

    To research the mechanism of dimercaptosuccinic acid coated-superparamagnetic iron oxide nanoparticles (SPION) with human serum albumin (HSA), the methods of spectroscopy, molecular modeling calculation, and calorimetry were used in this paper. The inner filter effect of the fluorescence intensity was corrected to obtain the accurate results. Ultraviolet-visible absorption and circular dichroism spectra reflect that SPION changed the secondary structure with a loss of α-helix and loosened the protein skeleton of HSA; the activity of the protein was also affected by the increasing exposure of SPION. Fluorescence lifetime measurement indicates that the quenching mechanism type of this system was static quenching. The isothermal titration calorimetry measurement and molecular docking calculations prove that the predominant force of this system was the combination of Van der Waals' force and hydrogen bonds. © 2015 Wiley Periodicals, Inc.

  19. Release mechanisms of acetaminophen from polyethylene oxide/polyethylene glycol matrix tablets utilizing magnetic resonance imaging.

    Science.gov (United States)

    Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Suzuki, Masazumi; Yamanashi, Shigeyuki; Ozaki, Yukihiro; Kitamura, Satoshi

    2010-08-16

    Release mechanism of acetaminophen (AAP) from extended-release tablets of hydrogel polymer matrices containing polyethylene oxide (PEO) and polyethylene glycol (PEG) were achieved using flow-through cell with magnetic resonance imaging (MRI). The hydrogel forming abilities are observed characteristically and the layer thickness which is corresponding to the diffusion length of AAP has a good correlation with the drug release profiles. In addition, polymeric erosion contribution to AAP releasing from hydrogel matrix tablets was directly quantified using size-exclusion chromatography (SEC). The matrix erosion profile indicates that the PEG erosion kinetic depends primarily on the composition ratio of PEG to PEO. The present study has confirmed that the combination of in situ MRI and SEC should be well suited to investigate the drug release mechanisms of hydrogel matrix such as PEO/PEG. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Oxidative degradation of chlorophenol derivatives promoted by microwaves or power ultrasound: a mechanism investigation.

    Science.gov (United States)

    Cravotto, Giancarlo; Binello, Arianna; Di Carlo, Stefano; Orio, Laura; Wu, Zhi-Lin; Ondruschka, Bernd

    2010-03-01

    Phenols are the most common pollutants in industrial wastewaters (particularly from oil refineries, resin manufacture, and coal processing). In the last two decades, it has become common knowledge that they can be effectively destroyed by nonconventional techniques such as power ultrasound (US) and/or microwave (MW) irradiation. Both techniques may strongly promote advanced oxidation processes (AOPs). The present study aimed to shed light on the effect and mechanism of US- and MW-promoted oxidative degradation of chlorophenols; 2,4-dichlorophenoxyacetic acid (2,4-D), a pesticide widespread in the environment, was chosen as the model compound. 2,4-D degradation by AOPs was carried out either under US (20 and 300 kHz) in aqueous solutions (with and without the addition of Fenton reagent) or solvent-free under MW with sodium percarbonate (SPC). All these reactions were monitored by gas chromatography-mass spectrometry (GC-MS) analysis and compared with the classical Fenton reaction in water under magnetic stirring. The same set of treatments was also applied to 2,4-dichlorophenol (2,4-DCP) and phenol, the first two products that occur a step down in the degradation sequence. Fenton and Fenton-like reagents were employed at the lowest active concentration. The effects of US and MW irradiation were investigated and compared with those of conventional treatments. Detailed mechanisms of Fenton-type reactions were suggested for 2,4-D, 2,4-DCP, and phenol, underlining the principal degradation products identified. MW-promoted degradation under solvent-free conditions with solid Fenton-like reagents (viz. SPC) is extremely efficient and mainly follows pyrolytic pathways. Power US strongly accelerates the degradation of 2,4-D in water through a rapid generation of highly reactive radicals; it does not lead to the formation of more toxic dimers. We show that US and MW enhance the oxidative degradation of 2,4-D and that a considerable saving of oxidants and cutting down of

  1. Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Rui [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lu, Zheng, E-mail: luz@atm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Lu, Chenyang; Li, Zhengyuan [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Ding, Xueyong [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    Highlights: • A 9Cr-ODS steel was produced by mechanical alloying and spark plasma sintering. • Bimodal grain size distribution was observed. • Formation mechanism of bimodal grain size distribution was discussed. • The size and number density of nanoscale particles were obtained by SAXS and HRTEM. • The contribution of nano-sized particles to yield strength is dominating. - Abstract: 9Cr oxide dispersion strengthened (ODS) steel was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The nano-sized particles, grain size distribution and mechanical properties of 9Cr-ODS steel sintered at 950 °C were studied by synchrotron radiation small angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), electron backscatter diffraction (EBSD) and tensile experiment. The results showed that bimodal grain size distribution in the matrix is observed, which is attributed to the heterogeneous recrystallization process during the SPS. High-density nano-sized Y{sub 2}Ti{sub 2}O{sub 7} and some large oxides of Cr{sub 2}Mn(Ti)O{sub 4} are formed in 9Cr-ODS steel. The number density and average size of Y{sub 2}Ti{sub 2}O{sub 7} obtained from SAXS are 4.72 × 10{sup 22}/m{sup 3} and 4.4 nm, respectively. The yield strengths of 9Cr-ODS steel fabricated by SPS are compared with the typical 9Cr-ODS steel produced by HIP.

  2. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms.

    Science.gov (United States)

    Torres, M J; Simon, J; Rowley, G; Bedmar, E J; Richardson, D J; Gates, A J; Delgado, M J

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation. © 2016 Elsevier Ltd. All rights reserved.

  3. Mechanism of formation and growth of sunflower-shaped imperfections in anodic oxide films on niobium

    Energy Technology Data Exchange (ETDEWEB)

    Nagahara, K. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan); Sakairi, M. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan); Takahashi, H. [Graduate School of Engineering, Hokkaido University, N13 W8 Kita-ku, Sapporo 060-8628 (Japan)]. E-mail: Takahasi@elechem1-mc.eng.hokudai.ac.jp; Matsumoto, K. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan); Takayama, K. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan); Oda, Y. [Cabot Supermetals K.K., Higashinagahara Works, 111 Nagayachi, Kawahigashi-machi, Kawanuma-gun, Fukushima-ken 969-3431 (Japan)

    2007-01-01

    Anodizing of niobium has been investigated to develop niobium solid electrolytic capacitors. Chemically polished niobium specimens were anodized in a diluted phosphoric acid solution, initially galvanostatically at i {sub a} = 4 A m{sup -2} up to E {sub a} = 100 V, and then potentiostatically at E {sub a} = 100 V for t {sub pa} = 43.2 ks. During the galvanostatic anodizing, the anode potential increased almost linearly with time, while, during potentiostatic anodizing, the anodic current decreased up to t {sub pa} = 3.6 ks, and then increased slowly before decreasing again after t {sub pa} = 30.0 ks. Images of FE-SEM and in situ AFM showed that nuclei of imperfections were formed at the ridge of cell structures before t {sub pa} = 3.6 ks. After formation, the imperfection nuclei grew, showing cracking and rolling-up of the anodic oxide film, and crystalline oxide was formed at the center of imperfections after t {sub pa} = 3.6 ks. The growth of imperfections caused increases in the anodic current between t {sub pa} = 3.6 and 30.0 ks. Long-term anodizing caused a coalescence of the imperfections, leading to decreases in the anodic current after t {sub pa} = 30.0 ks. As the imperfections grew, the dielectric dispersion of the anodic oxide films became serious, showing a bias voltage dependence of the parallel equivalent capacitance, C {sub p}, and a dielectric dissipation factor, tan {delta}. The mechanism of formation and growth of the imperfections, and the correlation between the structure and dielectric properties of anodic oxide films is discussed.

  4. Dynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites

    Directory of Open Access Journals (Sweden)

    Wu-Jian Long

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA. Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ultrasonication by transmission electron microscope (TEM atomic force microscope (AFM, and Raman to characterize the dispersion effect of graphite oxide. Dynamic mechanical analyzer test showed that the maximum increased amount of loss factor and storage modulus, energy absorption was 125%, 53%, and 200% when compared to the control sample, respectively. The flexural and compressive strengths of GO-mortar increased up to 22% to 41.3% and 16.2% to 16.4% with 0.20 wt % GO at 14 and 28 days, respectively. However the workability decreased by 7.5% to 18.8% with 0.05% and 0.2% GO addition. Microstructural analysis with environmental scanning electron microscopy (ESEM/backscattered mode (BSEM showed that the GO-cement composites had a much denser structure and better crystallized hydration products, meanwhile mercury intrusion porosimetry (MIP testing and image analysis demonstrated that the incorporation of GO in the composites can help in refining capillary pore structure and reducing the air voids content.

  5. Kinetics and Mechanism of Oxidation of Diethyl Ether by Chloramine-T in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Y. I. Hassan

    2012-01-01

    Full Text Available The kinetics of oxidation of diethyl ether (DE with sodium N-chloro-p-toluenesulphonamide (CAT in hydrochloric acid solution has been studied at (313°K.The reaction rate show a first order dependence on [CAT] and fractional order dependence on each [DE] and [H+] .The variation of ionic strength of the medium has no significant effect on the reaction rate , addition of p-toluenesulphonamide (p-TSA affects the reaction rate marginally the rate increased with decreasing dielectric constant of the medium , the stochiometry of the reaction was found to be 1:2 and oxidation products were identified , A Michaelis – Menten type mechanism has been suggested to explain the results.The equilibrium and the decomposition constants of CAT – diethyl ether complex have been evaluated. Thermodynamic parameters were computed by studying reaction at temperatures range ( 308 – 323°K for the rate limiting step and for the observed first order constants by the linear Arrhenius plot. The mechanism proposed and the derived rate law are consistent with observed kinetics.

  6. Abiotic mechanism for the formation of atmospheric nitrous oxide from ammonium nitrate.

    Science.gov (United States)

    Rubasinghege, Gayan; Spak, Scott N; Stanier, Charles O; Carmichael, Gregory R; Grassian, Vicki H

    2011-04-01

    Nitrous oxide (N2O) is an important greenhouse gas and a primary cause of stratospheric ozone destruction. Despite its importance, there remain missing sources in the N2O budget. Here we report the formation of atmospheric nitrous oxide from the decomposition of ammonium nitrate via an abiotic mechanism that is favorable in the presence of light, relative humidity and a surface. This source of N2O is not currently accounted for in the global N2O budget. Annual production of N2O from atmospheric aerosols and surface fertilizer application over the continental United States from this abiotic pathway is estimated from results of an annual chemical transport simulation with the Community Multiscale Air Quality model (CMAQ). This pathway is projected to produce 9.3(+0.7/-5.3) Gg N2O annually over North America. N2O production by this mechanism is expected globally from both megacities and agricultural areas and may become more important under future projected changes in anthropogenic emissions.

  7. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics.

    Science.gov (United States)

    Hirsch, Rhoda Elison; Sibmooh, Nathawut; Fucharoen, Suthat; Friedman, Joel M

    2017-05-10

    Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The β E -globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.

  8. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics

    Science.gov (United States)

    Sibmooh, Nathawut; Fucharoen, Suthat

    2017-01-01

    Abstract Significance: Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. Critical Issues: While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. Future Directions: Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794–813. PMID:27650096

  9. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions. Copyright © Physiologia Plantarum 2012.

  10. Coprecipitation mechanisms and products in manganese oxidation in the presence of cadmium

    Science.gov (United States)

    Hem, J.D.; Lind, Carol J.

    1991-01-01

    Manganese oxidation products were precipitated in an aerated open-aqueous system where a continuous influx of mixed Mn2+ and Cd2+ solution was supplied and pH was maintained with an automated pH-stat adding dilute NaOH. X-ray diffraction and electron diffraction identified the solids produced as mixtures of Cd2Mn34+O8, Mn2+2Mn4+3O8, MnO2 (ramsdellite), and CdCO3. Mean oxidation numbers of the total precipitated Mn as great as 3.6 were reached during titrations. During subsequent aging in solution, oxidation numbers between 3.8 and 3.9 were reached in some precipitates in less than 40 days. Conditional oxidation rate constants calculated from a crystal-growth equation applied to titration data showed the overall precipitation rate, without considering manganese oxidation state in the precipitate, was increased by a factor of ~4 to ~7 when the mole ratio (Cd/Mn + Cd) of cadmium in the feed solution was 0.40 compared with rate constants for hausmannite (Mn2+Mn23+O4 precipitation under similar conditions but without accessory metals. Kinetic experiments were made to test effects of various Cd/Mn + Cd mole ratios and rates of addition of the feed solution, different temperatures from 5.0 to 35??C, and pH from 8.0 to 9.0. Oxidation rates were slower when the Cd mole ratio was less than 0.40. The rate increased by a factor of ~10 when pH was raised one-half unit. The effect of temperature on the rate constants was also substantial, but the meaning of this is uncertain because the rate of formation of Mn4+ oxide in the absence of Cd or other accessory metals was too slow to be measurable in titration experiments. The increased rate of Mn4+ oxide formation in the presence of Cd2+ can be ascribed to the formation of a labile adsorbed intermediate, CdMn2O4 Int, an analog of hausmannite, formed on precipitate surfaces at the beginning of the oxidation process. The increased lability of this structure, resulting from coordination-chemical behavior of Cd2+ during the titration

  11. Quantum mechanics/molecular mechanics simulation of the ligand vibrations of the water-oxidizing Mn4CaO5 cluster in photosystem II.

    Science.gov (United States)

    Nakamura, Shin; Noguchi, Takumi

    2016-10-11

    During photosynthesis, the light-driven oxidation of water performed by photosystem II (PSII) provides electrons necessary to fix CO 2 , in turn supporting life on Earth by liberating molecular oxygen. Recent high-resolution X-ray images of PSII show that the water-oxidizing center (WOC) is composed of an Mn 4 CaO 5 cluster with six carboxylate, one imidazole, and four water ligands. FTIR difference spectroscopy has shown significant structural changes of the WOC during the S-state cycle of water oxidation, especially within carboxylate groups. However, the roles that these carboxylate groups play in water oxidation as well as how they should be properly assigned in spectra are unresolved. In this study, we performed a normal mode analysis of the WOC using the quantum mechanics/molecular mechanics (QM/MM) method to simulate FTIR difference spectra on the S 1 to S 2 transition in the carboxylate stretching region. By evaluating WOC models with different oxidation and protonation states, we determined that models of high-oxidation states, Mn(III) 2 Mn(IV) 2 , satisfactorily reproduced experimental spectra from intact and Ca-depleted PSII compared with low-oxidation models. It is further suggested that the carboxylate groups bridging Ca and Mn ions within this center tune the reactivity of water ligands bound to Ca by shifting charge via their π conjugation.

  12. Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees

    Science.gov (United States)

    Xue, Xiaodong; Yin, Qing; Jia, Hongbing; Zhang, Xuming; Wen, Yanwei; Ji, Qingmin; Xu, Zhaodong

    2017-11-01

    Graphene oxide (GO) with various oxidation degrees were prepared through a modified Hummer's method by varying the dosage of oxidizing agent. Styrene-butadiene rubber (SBR)/carboxylated acrylonitrile butadiene rubber (XNBR)/GO nanocomposites were fabricated by aqueous-phase mixing of GO colloidal dispersion with SBR latex and a small loading of XNBR latex, followed by co-coagulation. Effects of GO oxidation degree on the morphology, structure, mechanical and thermal properties of nanocomposites were thoroughly investigated. The results showed that the mechanical strength of nanocomposites were enhanced with the increase of oxidation degree of GO. Especially, when the weight ratio of KMnO4 to graphite was 15/5, the tensile strength, tear strength and thermal conductivity of SBR/XNBR/GO filled with 3 phr (parts per hundred rubber) GO increased by 255.3%, 141.5% and 22.8%, respectively, compared to those of neat SBR/XNBR blend. In addition, the thermal stability and the solvent resistance of the nanocomposites were also improved significantly. This work suggested that GO with higher oxidation degree could effectively improve the properties of SBR/XNBR blend.

  13. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism

    Science.gov (United States)

    The adaptive mechanisms that protect brain metabolism during and after hypoxia, for instance, during hypoxic preconditioning, are coordinated in part by nitric oxide (NO). We tested the hypothesis that acute transient hypoxia stimulates NO synthase (NOS)-activated mechanisms of m...

  14. Cycle oxidation behavior and anti-oxidation mechanism of hot-dipped aluminum coating on TiBw/Ti6Al4V composites with network microstructure.

    Science.gov (United States)

    Li, X T; Huang, L J; Wei, S L; An, Q; Cui, X P; Geng, L

    2018-04-10

    Controlled and compacted TiAl 3 coating was successfully fabricated on the network structured TiBw/Ti6Al4V composites by hot-dipping aluminum and subsequent interdiffusion treatment. The network structure of the composites was inherited to the TiAl 3 coating, which effectively reduces the thermal stress and avoids the cracks appeared in the coating. Moreover, TiB reinforcements could pin the TiAl 3 coating which can effectively improve the bonding strength between the coating and composite substrate. The cycle oxidation behavior of the network structured coating on 873 K, 973 K and 1073 K for 100 h were investigated. The results showed the coating can remarkably improve the high temperature oxidation resistance of the TiBw/Ti6Al4V composites. The network structure was also inherited to the Al 2 O 3 oxide scale, which effectively decreases the tendency of cracking even spalling about the oxide scale. Certainly, no crack was observed in the coating after long-term oxidation due to the division effect of network structured coating and pinning effect of TiB reinforcements. Interfacial reaction between the coating and the composite substrate occurred and a bilayer structure of TiAl/TiAl 2 formed next to the substrate after oxidation at 973 K and 1073 K. The anti-oxidation mechanism of the network structured coating was also discussed.

  15. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  16. Crystallographic studies with xenon and nitrous oxide provide evidence for protein-dependent processes in the mechanisms of general anesthesia.

    Science.gov (United States)

    Abraini, Jacques H; Marassio, Guillaume; David, Helene N; Vallone, Beatrice; Prangé, Thierry; Colloc'h, Nathalie

    2014-11-01

    The mechanisms by which general anesthetics, including xenon and nitrous oxide, act are only beginning to be discovered. However, structural approaches revealed weak but specific protein-gas interactions. To improve knowledge, we performed x-ray crystallography studies under xenon and nitrous oxide pressure in a series of 10 binding sites within four proteins. Whatever the pressure, we show (1) hydrophobicity of the gas binding sites has a screening effect on xenon and nitrous oxide binding, with a threshold value of 83% beyond which and below which xenon and nitrous oxide, respectively, binds to their sites preferentially compared to each other; (2) xenon and nitrous oxide occupancies are significantly correlated respectively to the product and the ratio of hydrophobicity by volume, indicating that hydrophobicity and volume are binding parameters that complement and oppose each other's effects; and (3) the ratio of occupancy of xenon to nitrous oxide is significantly correlated to hydrophobicity of their binding sites. These data demonstrate that xenon and nitrous oxide obey different binding mechanisms, a finding that argues against all unitary hypotheses of narcosis and anesthesia, and indicate that the Meyer-Overton rule of a high correlation between anesthetic potency and solubility in lipids of general anesthetics is often overinterpreted. This study provides evidence that the mechanisms of gas binding to proteins and therefore of general anesthesia should be considered as the result of a fully reversible interaction between a drug ligand and a receptor as this occurs in classical pharmacology.

  17. Investigations of oxidative stress effects and their mechanisms in rat brain after systemic administration of ceria engineered nanomaterials

    Science.gov (United States)

    Hardas, Sarita S.

    Advancing applications of engineered nanomaterials (ENM) in various fields create the opportunity for intended (e.g. drug and gene delivery) or unintended (e.g. occupational and environmental) exposure to ENM. However, the knowledge of ENM-toxicity is lagging behind their application development. Understanding the ENM hazard can help us to avoid potential human health problems associated with ENM applications as well as to increase their public acceptance. Ceria (cerium [Ce] oxide) ENM have many current and potential commercial applications. Beyond the traditional use of ceria as an abrasive, the scope of ceria ENM applications now extends into fuel cell manufacturing, diesel fuel additives and for therapeutic intervention as a putative antioxidant. However, the biological effects of ceria ENM exposure have yet to be fully defined. Both pro-and anti-oxidative effects of ceria ENM exposure are repeatedly reported in literature. EPA, NIEHS and OECD organizations have nominated ceria for its toxicological evaluation. All these together gave us the impetus to examine the oxidative stress effects of ceria ENM after systemic administration. Induction of oxidative stress is one of the primary mechanisms of ENM toxicity. Oxidative stress plays an important role in maintaining the redox homeostasis in the biological system. Increased oxidative stress, due to depletion of antioxidant enzymes or molecules and / or due to increased production of reactive oxygen (ROS) or nitrogen (RNS) species may lead to protein oxidation, lipid peroxidation and/or DNA damage. Increased protein oxidation or lipid peroxidation together with antioxidant protein levels and activity can serve as markers of oxidative stress. To investigate the oxidative stress effects and the mechanisms of ceria-ENM toxicity, fully characterized ceria ENM of different sizes (˜ 5nm, 15nm, 30nm, 55nm and nanorods) were systematically injected into rats intravenously in separate experiments. Three brain regions

  18. Inverse spinel transition metal oxides for lithium-ion storage with different discharge/charge conversion mechanisms

    International Nuclear Information System (INIS)

    Wang, Jiawei; Ren, Yurong; Huang, Xiaobing; Ding, Jianning

    2016-01-01

    Highlights: • Inverse spinel structure relieves the irreversible phase transition of electrodes. • Anodes with the same structure show different discharge/charge conversion mechanisms. • High reversible capacity confirms the potential feasibility of composites. - Abstract: Inverse spinel transition metal oxides (Fe 3 O 4 , MnFe 2 O 4 , Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide) are prepared by a facile ethylene-glycol-assisted hydrothermal method. The stability of inverse spinel structure and the high specific surface area of nanoscale provide transition metal oxides with high specific capacity. And the surface modification with reduced graphene oxide improves the poor conductivity of pristine transition metal oxides. Pristine Fe 3 O 4 and MnFe 2 O 4 deliver the high initial discharge capacity of 1137.1 and 1088.9 mAh g −1 , respectively. Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide get the reversible capacity of 645.8 and 720 mAh g −1 , respectively, even after 55 cycles. The different discharge/charge conversion mechanisms make them different capacity stability. The great electrochemical performances of composites offer electrodes with suitable characteristics for high-performance energy storage application.

  19. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    Science.gov (United States)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode

  20. Enhanced mechanical properties and increased corrosion resistance of a biodegradable magnesium alloy by plasma electrolytic oxidation (PEO)

    International Nuclear Information System (INIS)

    White, Leon; Koo, Youngmi; Neralla, Sudheer; Sankar, Jagannathan; Yun, Yeoheung

    2016-01-01

    Highlights: • Plasma electrolytic oxidation (PEO) method was developed to control corrosion, porosity, and mechanical property. • Mechanical properties of PEO-coated AZ31 alloys were affected by the different electrolyte. • Mechanical properties and corrosion resistance of PEO-coated AZ31 alloys were compared with uncoated one. - Abstract: We report the enhanced mechanical properties of AZ31 magnesium alloys by plasma electrolytic oxidation (PEO) coating in NaOH, Na_2SiO_3, KF and NaH_2PO_4·2H_2O containing electrolytes. Mechanical properties including wear resistance, surface hardness and elastic modulus were increased for PEO-coated AZ31 Mg alloys (PEO-AZ31). DC polarization in Hank's solution indicating that the corrosion resistance significantly increased for PEO-coating in KF-contained electrolyte. Based on these results, the PEO coating method shows promising potential for use in biodegradable implant applications where tunable corrosion and mechanical properties are needed.

  1. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Kamonkhantikul K

    2017-03-01

    Full Text Available Krid Kamonkhantikul,1 Mansuang Arksornnukit,1 Hidekazu Takahashi2 1Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; 2Oral Biomaterials Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Background: Fungal infected denture, which is typically composed of polymethylmethacrylate (PMMA, is a common problem for a denture wearer, especially an elderly patient with limited manual dexterity. Therefore, increasing the antifungal effect of denture by incorporating surface modification nanoparticles into the PMMA, while retaining its mechanical properties, is of interest. Aim of the study: This study aimed to evaluate antifungal, optical, and mechanical properties of heat-cured PMMA incorporated with different amounts of zinc oxide nanoparticles (ZnOnps with or without methacryloxypropyltrimethoxysilane modification. Materials and methods: Specimens made from heat-cured PMMA containing 1.25, 2.5, and 5% (w/w nonsilanized (Nosi or silanized (Si ZnOnps were evaluated. Specimens without filler served as control. The fungal assay was performed placing a Candida albicans suspension on the PMMA surface for 2 h, then Sabouraud Dextrose Broth was added, and growth after 24 h was determined by counting colony forming units on agar plates. A spectrophotometer was used to measure the color in L* (brightness, a* (red-green, b* (yellow-blue and opacity of the experimental groups. Flexural strength and flexural modulus were determined using a three-point bending test on universal testing machine after 37°C water storage for 48 h and 1 month. Results: The antifungal, optical, and mechanical properties of the PMMA incorporated with ZnOnps changed depending on the amount. With the same amount of ZnOnps, the silanized groups demonstrated a greater reduction in C. albicans compared with the Nosi groups. The color difference (ΔE and opacity of the Nosi groups were

  2. What Governs Friction of Silicon Oxide in Humid Environment: Contact Area between Solids, Water Meniscus around the Contact, or Water Layer Structure?

    Science.gov (United States)

    Chen, Lei; Xiao, Chen; Yu, Bingjun; Kim, Seong H; Qian, Linmao

    2017-09-26

    In order to understand the interfacial parameters governing the friction force (F t ) between silicon oxide surfaces in humid environment, the sliding speed (v) and relative humidity (RH) dependences of F t were measured for a silica sphere (1 μm radius) sliding on a silicon oxide (SiO x ) surface, using atomic force microscopy (AFM), and analyzed with a mathematical model describing interfacial contacts under a dynamic condition. Generally, F t decreases logarithmically with increasing v to a cutoff value below which its dependence on interfacial chemistry and sliding condition is relatively weak. Above the cutoff value, the logarithmic v dependence could be divided into two regimes: (i) when RH is lower than 50%, F t is a function of both v and RH; (ii) in contrast, at RH ≥ 50%, F t is a function of v only, but not RH. These complicated v and RH dependences were hypothesized to originate from the structure of the water layer adsorbed on the surface and the water meniscus around the annulus of the contact area. This hypothesis was tested by analyzing F t as a function of the water meniscus area (A m ) and volume (V m ) estimated from a thermally activated water-bridge formation model. Surprisingly, it was found that F t varies linearly with V m and correlates poorly with A m at RH contact under ambient conditions.

  3. Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine

    Science.gov (United States)

    Liao, Yi-Ting; Manson, Anthony C.; DeLyser, Michael R.; Noid, William G.; Cremer, Paul S.

    2017-01-01

    We report experimental and computational studies investigating the effects of three osmolytes, trimethylamine N-oxide (TMAO), betaine, and glycine, on the hydrophobic collapse of an elastin-like polypeptide (ELP). All three osmolytes stabilize collapsed conformations of the ELP and reduce the lower critical solution temperature (LSCT) linearly with osmolyte concentration. As expected from conventional preferential solvation arguments, betaine and glycine both increase the surface tension at the air–water interface. TMAO, however, reduces the surface tension. Atomically detailed molecular dynamics (MD) simulations suggest that TMAO also slightly accumulates at the polymer–water interface, whereas glycine and betaine are strongly depleted. To investigate alternative mechanisms for osmolyte effects, we performed FTIR experiments that characterized the impact of each cosolvent on the bulk water structure. These experiments showed that TMAO red-shifts the OH stretch of the IR spectrum via a mechanism that was very sensitive to the protonation state of the NO moiety. Glycine also caused a red shift in the OH stretch region, whereas betaine minimally impacted this region. Thus, the effects of osmolytes on the OH spectrum appear uncorrelated with their effects upon hydrophobic collapse. Similarly, MD simulations suggested that TMAO disrupts the water structure to the least extent, whereas glycine exerts the greatest influence on the water structure. These results suggest that TMAO stabilizes collapsed conformations via a mechanism that is distinct from glycine and betaine. In particular, we propose that TMAO stabilizes proteins by acting as a surfactant for the heterogeneous surfaces of folded proteins. PMID:28228526

  4. Fabrication and mechanical evaluation of hydroxyapatite/oxide nano-composite materials.

    Science.gov (United States)

    Mohamed, Khaled R; Beherei, Hanan H; El Bassyouni, Gehan T; El Mahallawy, Nahed

    2013-10-01

    In the current study, the semiconducting metal oxides such as nano-ZnO and SiO2 powders were prepared via sol-gel technique and conducted on nano-hydroxyapatite (nHA) which was synthesized by chemical precipitation. The properties of fabricated nano-structured composites containing different ratios of HA, ZnO and SiO2 were examined using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The effect of the variation of ratios between the three components on mechanical, microstructure and in-vitro properties was assessed to explore the possibility of enhancing these properties. The results proved that the mechanical properties exhibited an increment with increasing the ZnO content at the extent of HA. In-vitro study proved the formation and nucleation of apatite onto the surface of the fabricated composites after one week of immersion. It is concluded that HA composites containing SiO2 or SiO2/ZnO content had a suitable mechanical properties and ability to form apatite particles onto the composite surface. Based on bioactivity behavior, Si-HA is more bioactive than pure hydroxyapatite and nano-arrangements will provide an interface for better bone formation. Therefore, these nano-composites will be promising as bone substitutes especially in load bearing sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Myocardial Oxidative Metabolism and Protein Synthesis during Mechanical Circulatory Support by Extracorporeal Membrane Oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Priddy, MD, Colleen M.; Kajimoto, Masaki; Ledee, Dolena; Bouchard, Bertrand; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-02-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support essential for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative. We focused on the amino acid leucine, and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart (i) the fractional contribution of leucine (FcLeucine) and pyruvate (FCpyruvate) to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and (ii) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 hours of normal circulation or ECMO) and intracoronary infusion [13C6,15N]-L-leucine (3.7 mM) alone or with [2-13C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (~ 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. Conclusion: The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining (i) metabolic flexibility indicated by ability to respond to pyruvate, and (ii) a normal or increased capacity for global protein synthesis, suggesting an improved protein balance.

  6. Effect of oxidizing environment on mechanical properties of molybdenum and TZM

    International Nuclear Information System (INIS)

    Liu, C.T.; Anderson, S.H.; Inouye, H.

    1978-10-01

    The effect of environment on mechanical properties of molybdenum and TZM was investigated in low-pressure (1.3-mPa) oxygen at 1150 0 C. Specimens of TZM picked up oxygen and lost carbon. The oxygen concentration increases linearly with exposure time, indicating that the chemisorption of oxygen molecules at the specimen surface, rather than bulk diffusion, controls the kinetics of oxygen absorption at 1150 0 C. Specimens of TZM increase in tensile strength and decrease in ductility with increasing oxygen content. Exposed TZM loses its ductility at elevated temperatures at an oxygen level of 500 ppM. The embrittlement is due to the formation of zones or oxide precipitates, which harden the alloy and promote the brittle fracture associated with cleavage and grain-boundary separation. Unalloyed molybdenum responds to the oxidizing environment quite differently from TZM. The molybdenum (containing no active element such as Ti and Zr) showed no internal oxidation at 1150 0 C. Instead, our results indicate that a trace of oxygen penetrated into molybdenum through its grain boundaries. This penetration raises the ductile-to-brittle transition temperature of molybdenum by 200 0 C lowers the ductility above 900 0 C. The ductility of oxygen-exposed molybdenum is virtually unaffected in the temperature range from 400 to 900 0 C. A ductility minimum (10%) is observed at 1350 0 C because of dynamic embrittlement effects; that is, diffusion of oxygen to grain boundaries or crack tips where high triaxial states of stress are generated during plastic deformation. This embrittlement can be totally eliminated by an increase in strain rate

  7. Radiation-induced destruction of organic compounds in aqueous solutions by dual oxidation/reduction mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Chaychiana, M.; Silverman, J.; Al-Sheikhly, M. [Department of Materials Science and Engineering, University of Maryland (United States); Poster, D.; Neta, P.; Huie, R. [Chemical Science and Technology Laboratory, National Institute of Standard and Technology (United States)

    2011-07-01

    This research presents the feasibility and mechanisms of using high energy electrons for the dechlorination of polychlorinated biphenyls (PCBs) in marine sediment, and hazardous organic compounds in waste water. The remediation of the organic contaminants by ionizing radiation is achieved by means of both reduction and oxidation processes. PCBs in marine sediment can be effectively dechlorinated by reduction, while toxic organic compounds in water are removed mainly by oxidation. Radiolytic degradation of aqueous suspensions of PCBs in marine sediments in the presence of isopropanol was also studied. Addition of isopropanol was necessary to enhance the radiolytic yield and the dechlorination of PCBs. Also presented are results from an examination of the oxidative and reductive effects of electron-beam irradiation on the concentrations of six organic solvents in water. The organic solvents in water were prepared to mimic a pharmaceutical waste stream. Radiation-induced destruction of benzene was also investigated using pulse radiolysis technique. Pulse radiolysis with spectrophotometric and conductometric detection was utilized to study the formation and reactions of radicals from benzene and dienes in aqueous solutions. The benzene OH adduct, {sup ●}C{sub 6}H{sub 6}OH, reacts with O{sub 2} (k = 3x10{sup 8} L mol{sup -1} s{sup -1}) in a reversible reaction. The peroxyl radical, HOC{sub 6}H{sub 6}O{sub 2}{sup ●}, undergoes O{sub 2}●- elimination, bimolecular decay, and reaction with benzene to initiate a chain reaction, depending on the dose rate, benzene concentration, and pH. The occurrence of the chain reaction is demonstrated in low-dose-rate gamma radiolysis experiments where the consumption of O{sub 2} was monitored. (author)

  8. [Action mechanism of electroacupuncture at stomach meridian acupoints for oxidative damage in rats with gastric ulcer].

    Science.gov (United States)

    Yang, Zongbao; Wang, Yadong; Liu, Qiong; Liu, Mi; Chen, Huijuan; Chang, Xiaorong

    2016-06-12

    To observe the effects of electroacupuncture (EA) at stomach meridian acupoints on expression of oxidation damage factors in serum and gastric mucosal cells in rats with gastric ulcer, and to explore the mechanism of EA at stomach meridian acupoints for oxidative damage in rats with gastric ulcer. Forty clean-grade SD rats were randomly divided into a normal group, a model group, a stomach meridian group and a gallbladder meridian group, ten rats in each one. Except the normal group, rats in the remaining groups were applied the restraint-cold stress method to establish the model of gastric ulcer. Rats in the normal group and model group received no treatment; rats in the stomach meridian group were treated with EA at "Liangmen" (ST 21) and "Zusanli" (ST 36); rats in the gallbladder meridian group were treated with EA at "Riyue" (GB 24) and "Yanglingquan" (GB 34). The EA was given for 30 min, once a day for 7 days totally. The change of gastric mucosal morphology was observed by routine light microscope; enzyme linked immunosorbent assay was used to detect the expressions of malondialdehyde (MDA), glutathione peroxidase (GSH-px) and tumor necrosis factor-α (TNF-α), interleukin-2(IL-2), interleukin-6(IL-6) in serum and gastric mucosal cells of rats. After treatment, compared with the model group, the gastric mucosal damage index was decreased in the stomach meridian group and gallbladder meridian group (both P stomach meridian group (all P stomach meridian group rats ( P stomach meridian acupoints is likely to inhibit the expressions of oxidative damage factors to promote the repair of gastric mucosal injury, which indicates the correlation between meridians and zang-fu .

  9. Microstructural evolution and some mechanical properties of nanosized yttrium oxide dispersion strengthened 13Cr steel

    International Nuclear Information System (INIS)

    Nguyen, Van Tich; Doan, Dinh Phuong; Tran, Tran BaoTrung; Luong, Van Duong; Nguyen, Van An; Phan, Anh Tu

    2010-01-01

    Oxide dispersion strengthened (ODS) steels, manufactured by a mechanical alloying method, during the past few years, appear to be promising candidates for structural applications in nuclear power plants. The purpose of this work is to elaborate the manufacturing processes of ODS 13Cr steel with the addition of 1.0 wt% yttrium oxide through the powder metallurgy route using the high energy ball mill. Microstructural analysis by scanning electron microscopy (SEM), x-ray diffraction (XRD) and hardness testing have been used to optimize the technological parameters of milling, hot isostatic pressing and heat-treatment processes. The steel hardness increases with decreasing particle size of 13Cr ODS steel. The best hardness was obtained from more than 70 h of milling in the two tanks planetary ball mill or 30 h of milling in the one tank planetary ball mill and hot isostatic pressing at 1150 °C . The particle size of the steel is less than 100 nm, and the density and hardness are about 7.3 g cm −3 and 490 HB, respectively

  10. Evidence for negative effects of elevated intra-abdominal pressure on pulmonary mechanics and oxidative stress.

    Science.gov (United States)

    Davarcı, I; Karcıoğlu, M; Tuzcu, K; İnanoğlu, K; Yetim, T D; Motor, S; Ulutaş, K T; Yüksel, R

    2015-01-01

    To compare the effects of pneumoperitoneum on lung mechanics, end-tidal CO2 (ETCO2), arterial blood gases (ABG), and oxidative stress markers in blood and bronchoalveolar lavage fluid (BALF) during laparoscopic cholecystectomy (LC) by using lung-protective ventilation strategy. Forty-six patients undergoing LC and abdominal wall hernia (AWH) surgery were assigned into 2 groups. Measurements and blood samples were obtained before, during pneumoperitoneum, and at the end of surgery. BALF samples were obtained after anesthesia induction and at the end of surgery. Peak inspiratory pressure, ETCO2, and pCO2 values at the 30th minute were significantly increased, while there was a significant decrease in dynamic lung compliance, pH, and pO2 values in LC group. In BALF samples, total oxidant status (TOS), arylesterase, paraoxonase, and malondialdehyde levels were significantly increased; the glutathione peroxidase levels were significantly decreased in LC group. The serum levels of TOS and paraoxonase were significantly higher at the end of surgery in LC group. In addition, arylesterase level in the 30th minute was increased compared to baseline. Serum paraoxonase level at the end of surgery was significantly increased when compared to AWH group. Our study showed negative effects of pneumoperitoneum in both lung and systemic levels despite lung-protective ventilation strategy.

  11. Evidence for Negative Effects of Elevated Intra-Abdominal Pressure on Pulmonary Mechanics and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    I. Davarcı

    2015-01-01

    Full Text Available Objective. To compare the effects of pneumoperitoneum on lung mechanics, end-tidal CO2 (ETCO2, arterial blood gases (ABG, and oxidative stress markers in blood and bronchoalveolar lavage fluid (BALF during laparoscopic cholecystectomy (LC by using lung-protective ventilation strategy. Materials and Methods. Forty-six patients undergoing LC and abdominal wall hernia (AWH surgery were assigned into 2 groups. Measurements and blood samples were obtained before, during pneumoperitoneum, and at the end of surgery. BALF samples were obtained after anesthesia induction and at the end of surgery. Results. Peak inspiratory pressure, ETCO2, and pCO2 values at the 30th minute were significantly increased, while there was a significant decrease in dynamic lung compliance, pH, and pO2 values in LC group. In BALF samples, total oxidant status (TOS, arylesterase, paraoxonase, and malondialdehyde levels were significantly increased; the glutathione peroxidase levels were significantly decreased in LC group. The serum levels of TOS and paraoxonase were significantly higher at the end of surgery in LC group. In addition, arylesterase level in the 30th minute was increased compared to baseline. Serum paraoxonase level at the end of surgery was significantly increased when compared to AWH group. Conclusions. Our study showed negative effects of pneumoperitoneum in both lung and systemic levels despite lung-protective ventilation strategy.

  12. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  13. Mechanical Property and Oxidation Behavior of ATF cladding developed in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To realize the coating cladding, coating material (Cr-based alloy) as well as coating technology (3D laser coating and arc ion plating combined with vacuum annealing) can be developed to meet the fuel cladding criteria. The coated Zr cladding can be produced after the optimization of coating technologies. The coated cladding sample showed the good oxidation/corrosion and adhesion properties without the spalling and/or severe interaction with the Zr alloy cladding from the various tests. Thus, it is known that the mechanical property and oxidation behavior of coated cladding concept developed in KAERI is reasonable for applying the ATF cladding in LWRs. At the present time various ATF concepts have been proposed and developing in many countries. The ATF concepts with potentially improved accident performance can be summarized to the coating cladding, Mo-Zr cladding, FeCrAl cladding, and SiCf/SiC cladding. Regarding the cladding performance, ATF cladding concepts will be evaluated with respect to the accident scenarios and normal operations of LWRs as well as to the fuel cladding fabrication.

  14. Protective mechanism of agmatine pretreatment on RGC-5 cells injured by oxidative stress

    Directory of Open Access Journals (Sweden)

    Y. Iizuka

    2010-04-01

    Full Text Available Agmatine has neuroprotective effects on retinal ganglion cells (RGCs as well as cortical and spinal neurons. It protects RGCs from oxidative stress even when it is not present at the time of injury. As agmatine has high affinity for various cellular receptors, we assessed protective mechanisms of agmatine using transformed RGCs (RGC-5 cell line. Differentiated RGC-5 cells were pretreated with 100 μM agmatine and consecutively exposed to 1.0 mM hydrogen peroxide (H2O2. Cell viability was determined by measuring lactate dehydrogenase (LDH, and the effects of selective alpha 2-adrenergic receptor antagonist yohimbine (0-500 nM and N-methyl-D-aspartic acid (NMDA receptor agonist NMDA (0-100 µM were evaluated. Agmatine’s protective effect was compared to a selective NMDA receptor antagonist MK-801. After a 16-h exposure to H2O2, the LDH assay showed cell loss greater than 50%, which was reduced to about 30% when agmatine was pretreated before injury. Yohimbine almost completely inhibited agmatine’s protective effect, but NMDA did not. In addition, MK-801 (0-100 µM did not significantly attenuate the H2O2-induced cytotoxicity. Our results suggest that neuroprotective effects of agmatine on RGCs under oxidative stress may be mainly attributed to the alpha 2-adrenergic receptor signaling pathway.

  15. Block of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2014-04-01

    Full Text Available Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD. One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mitochondrial damage, leading to oxidative stress and pro-inflammatory cytokines’ release. Moreover, it has been demonstrated that cellular death results from the balance between apoptosis and pyroptosis, both driven by mitochondrial damage and the molecular platform inflammasome. In order to rescue the deregulated pathway and decrease inflammatory markers, exogenous isoprenoid compounds were administered to a biochemical model of MKD obtained treating a murine monocytic cell line with a compound able to block the mevalonate pathway, plus an inflammatory stimulus. Our results show that isoprenoids acted in different ways, mainly increasing the expression of the evaluated markers [apoptosis, mitochondrial dysfunction, nucleotide-binding oligomerization-domain protein-like receptors 3 (NALP3, cytokines and nitric oxide (NO]. Our findings confirm the hypothesis that inflammation is triggered, at least partially, by the shortage of isoprenoids. Moreover, although further studies are necessary, the achieved results suggest a possible role for exogenous isoprenoids in the treatment of MKD.

  16. Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast.

    Science.gov (United States)

    Yoshikawa, Yuki; Nasuno, Ryo; Kawahara, Nobuhiro; Nishimura, Akira; Watanabe, Daisuke; Takagi, Hiroshi

    2016-07-01

    Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. The regulatory mechanism of NO generation in unicellular eukaryotic yeast cells is poorly understood due to the lack of mammalian and bacterial NO synthase (NOS) orthologues, even though yeast produces NO under oxidative stress conditions. Recently, we reported that the flavoprotein Tah18, which was previously shown to transfer electrons to the iron-sulfur cluster protein Dre2, is involved in NOS-like activity in the yeast Saccharomyces cerevisiae. On the other hand, Tah18 was reported to promote apoptotic cell death after exposure to hydrogen peroxide (H2O2). Here, we showed that NOS-like activity requiring Tah18 induced cell death upon treatment with H2O2. Our experimental results also indicate that Tah18-dependent NO production and cell death are suppressed by enhancement of the interaction between Tah18 and its molecular partner Dre2. Our findings indicate that the Tah18-Dre2 complex regulates cell death as a molecular switch via Tah18-dependent NOS-like activity in response to environmental changes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress.

    Science.gov (United States)

    Guzman, David Calderón; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; de la Cruz, Diego Zamora; Soto, Monica Punzo

    2017-01-01

    Diabetic retinopathy (DR) is one of the main complications in patients with diabetes and has been the leading cause of visual loss since 1990. Oxidative stress is a biological process resulting from excessive production of reactive oxygen species (ROS). This process contributes to the development of many diseases and disease complications. ROS interact with various cellular components to induce cell injury. Fortunately, there is an antioxidan t system that protects organisms against ROS. Indeed, when ROS exceed antioxidant capacity, the resulting cell injury can cause diverse physiological and pathological changes that could lead to a disease like DR. This paper reviews the possible mechanisms of common and novel biomarkers involved in the development of DR and explores how these biomarkers could be used to monitor the damage induced by oxidative stress in DR, which is a significant complication in people with diabetes. The poor control of glucemy in pacients with DB has been shown contribute to the development of complications in eyes as DR.

  18. Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides.

    Science.gov (United States)

    Reardon, Patrick N; Chacon, Stephany S; Walter, Eric D; Bowden, Mark E; Washton, Nancy M; Kleber, Markus

    2016-04-05

    The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response.

  19. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    Directory of Open Access Journals (Sweden)

    M. Zervos

    2014-05-01

    Full Text Available Indium tin oxide nanowires were grown by the reaction of In and Sn with O2 at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001. We obtain Sn doped In2O3 nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO2 and suppression of In2O3 permitting compositional and structural tuning from SnO2 to In2O3 which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  20. Oxide Nanoparticle EUV (ONE) Photoresists: Current Understanding of the Unusual Patterning Mechanism

    KAUST Repository

    Jiang, Jing; Zhang, Ben; Yu, Mufei; Li, Li; Neisser, Mark; Sung Chun, Jun; Giannelis, Emmanuel P.; Ober, Christopher K.

    2015-01-01

    © 2015 SPST. In the past few years, industry has made significant progress to deliver a stable high power EUV scanner and a 100 W light source is now being tested on the manufacuring scale. The success of a high power EUV source demands a fast and high resolution EUV resist. However, chemcially amplied resists encounter unprecedented challenges beyond the 22 nm node due to resolution, roughness and sensitivity tradeoffs. Unless novel solutions for EUV resists are proposed and further optimzed, breakthroughs can hardly be achieved. Oxide nanoparticle EUV (ONE) resists stablized by organic ligands were originally proposed by Ober et al. Recently this work attracts more and more attention due to its extraordinanry EUV sensitivity. This new class of photoresist utilizes ligand cleavage with a ligand exchange mechanism to switch its solubilty for dual-tone patterning. Therefore, ligand selection of the nanoparticles is extremely important to its EUV performance.

  1. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  2. Mechanism of chromium poisoning the conventional cathode material for solid oxide fuel cells

    Science.gov (United States)

    Zhang, Xiaoqiang; Yu, Guangsen; Zeng, Shumao; Parbey, Joseph; Xiao, Shuhao; Li, Baihai; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Chromium poisoning the La0.875Sr0.125MnO3 (LSM) cathode for solid oxide fuel cells is a critical issue that can strongly affect the stability. In this study, we evaluate the temperature distribution in a SOFC based on a 3D model and then combine conductivity test and material computation to reveal the effects of chromium in SUS430 stainless steels on LSM conductivities. The starch concentration in LSM pellets and the applied pressure on the contact with interconnect materials show close relationships with the chromium poisoning behavior. The density functional theory (DFT) computing results indicate that chromium atoms preferably adsorb on the MnO2-terminated and La (Sr)-O-terminated (001) surfaces. The resulting conclusions are expected to deeply understand mechanism of chromium deactivating conventional cathodes at some typical operational conditions, and offer crucial information to optimize the structure to avoid the poisoning effect.

  3. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boltax, A [Westinghouse Electric Corporation, Advanced Reactor Division, Madison, PA (United States); Biancheria, A

    1977-04-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  4. Study on mechanism for oxidation of N,N-dimethylhydroxylamine by nitrous acid

    International Nuclear Information System (INIS)

    Li Gaoliang; He Hui

    2011-01-01

    The oxidation of N,N-dimethylhydroxylamine (DMHAN) by nitrous acid is investigated in perchloric acid and nitric acid medium, respectively. The effects of H + , DMHAN, ionic strength and temperature on the reaction are studied. The rate equation in perchloric acid medium has been determined to be -d[HNO 2 ]/dt = k[DMHAN][HNO 2 ], where k = 12.8 ± 1.0 (mol/L) -1 min -1 when the temperature is 18.5 deg C and the ionic strength is 0.73 mol/L with an activation energy about 41.5 kJ mol -1 . The reaction becomes complicated when it is performed in nitric acid medium. When the molarity of HNO 3 is higher than 1.0 mol/L, nitrous acid will be produced via the reaction between nitric acid and DMHAN. The reaction products are analyzed and the reaction mechanism is discussed in this paper. (author)

  5. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    International Nuclear Information System (INIS)

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  6. Downstream mechanisms of nitric oxide-mediated skeletal muscle glucose uptake during contraction.

    Science.gov (United States)

    Merry, Troy L; Lynch, Gordon S; McConell, Glenn K

    2010-12-01

    There is evidence that nitric oxide (NO) is required for the normal increases in skeletal muscle glucose uptake during contraction, but the mechanisms involved have not been elucidated. We examined whether NO regulates glucose uptake during skeletal muscle contractions via cGMP-dependent or cGMP-independent pathways. Isolated extensor digitorum longus (EDL) muscles from mice were stimulated to contract ex vivo, and potential NO signaling pathways were blocked by the addition of inhibitors to the incubation medium. Contraction increased (P contraction by ∼50% (P contraction; however, DTT attenuated (P contraction-stimulated glucose uptake (by 70%). NOS inhibition and antioxidant treatment reduced contraction-stimulated increases in protein S-glutathionylation and tyrosine nitration (P skeletal muscle glucose uptake during ex vivo contractions via a cGMP/PKG-, AMPK-, and p38 MAPK-independent pathway. In addition, it appears that NO and ROS may regulate skeletal muscle glucose uptake during contraction through a similar pathway.

  7. Kinetics and mechanism of azo dye destruction in advanced oxidation processes

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2007-01-01

    The kinetics and mechanism of dye destruction in advanced oxidation processes is discussed on the example of Apollofix Red (Ar-28) radiolysis in aqueous solution. When the reactive intermediate reacts with the color bearing part of the molecule causing with nearly 100% efficiency destruction of the conjugation, the dose dependence, or time dependence of color disappearance is linear. In this case, spectrophotometry can be used to follow-up dye decomposition. Linear dependence was observed when hydrated electrons or hydrogen atoms reacted with the dye. In hydroxyl radical reactions some colored products form with spectra similar to those of the starting dye molecules. For that reason, spectrophotometry gives false result about the intact dye molecule concentration. Analysis by the HPLC reveals logarithmic time dependence in agreement with a theoretical model developed

  8. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  9. Fuel-cladding mechanical interaction effects in fast reactor mixed oxide fuel

    International Nuclear Information System (INIS)

    Boltax, A.; Biancheria, A.

    1977-01-01

    Thermal and fast reactor irradiation experiments on mixed oxide fuel pins under steady-state and power change conditions reveal evidence for significant fuel-cladding mechanical interaction (FCMI) effects. Analytical studies with the LIFE-III fuel performance code indicate that high cladding stresses can be produced by general and local FCMI effects. Also, evidence is presented to show that local cladding strains can be caused by the accumulation of cesium at the fuel-cladding interface. Although it is apparent that steady-state FCMI effects have not given rise to cladding breaches in current fast reactors, it is anticipated that FCMI may become more important in the future because of interest in: higher fuel burnups; increased power ramp rates; load follow operation; and low swelling cladding alloys. (author)

  10. Sulfuric acid intercalated-mechanical exfoliation of reduced graphene oxide from old coconut shell

    Science.gov (United States)

    Islamiyah, Wildatun; Nashirudin, Luthfi; Baqiya, Malik A.; Cahyono, Yoyok; Darminto

    2018-04-01

    We report a fecile preparation of reduced grapheme oxide (rGO) from an old coconut shell by rapid reduction of heating at 400°C, chemical exfoliation using H2SO4 and HCl intercalating and mechanical exfoliation using ultrasonication. The produced samples consist of random stacks of nanometer-sized sheets. The dispersions prepared from H2SO4 had broader size distributions and larger particle sizes than the that from HCl. An average size of rGO in H2SO4 and HCl is respectively 23.62 nm and 570.4 nm. Furthermore, sample prepared in H2SO4 exhibited a high electronical conductivity of 1.1 × 10-3 S/m with a low energy gap of 0.11 eV.

  11. Mechanism of Oxidative Amidation of Nitroalkanes with Oxygen and Amine Nucleophiles by Using Electrophilic Iodine.

    Science.gov (United States)

    Li, Jing; Lear, Martin J; Kwon, Eunsang; Hayashi, Yujiro

    2016-04-11

    Recently, we developed a direct method to oxidatively convert primary nitroalkanes into amides that entailed mixing an iodonium source with an amine, base, and oxygen. Herein, we systematically investigated the mechanism and likely intermediates of such methods. We conclude that an amine-iodonium complex first forms through N-halogen bonding. This complex reacts with aci-nitronates to give both α-iodo- and α,α-diiodonitroalkanes, which can act as alternative sources of electrophilic iodine and also generate an extra equimolar amount of I(+) under O2. In particular, evidence supports α,α-diiodonitroalkane intermediates reacting with molecular oxygen to form a peroxy adduct; alternatively, these tetrahedral intermediates rearrange anaerobically to form a cleavable nitrite ester. In either case, activated esters are proposed to form that eventually reacts with nucleophilic amines in a traditional fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

    Science.gov (United States)

    Vedenyapina, M. D.; Borisova, D. A.; Rosenwinkel, K.-H.; Weichgrebe, D.; Stopp, P.; Vedenyapin, A. A.

    2013-08-01

    The kinetics and mechanism of the deep oxidation of sodium diclofenac on a boron-doped diamond electrode are studied to develop a technique for purifying wastewater from pharmaceutical products. The products of sodium diclofenac electrolysis are analyzed using cyclic voltammetry and nuclear magnetic resonance techniques. It is shown that the toxicity of the drug and products of its electrolysis decreases upon its deep oxidation.

  13. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nga Lee; Brown, Steven S.; Archibald, Alexander T.; Atlas, Elliot; Cohen, Ronald C.; Crowley, John N.; Day, Douglas A.; Donahue, Neil M.; Fry, Juliane L.; Fuchs, Hendrik; Griffin, Robert J.; Guzman, Marcelo I.; Herrmann, Hartmut; Hodzic, Alma; Iinuma, Yoshiteru; Jimenez, José L.; Kiendler-Scharr, Astrid; Lee, Ben H.; Luecken, Deborah J.; Mao, Jingqiu; McLaren, Robert; Mutzel, Anke; Osthoff, Hans D.; Ouyang, Bin; Picquet-Varrault, Benedicte; Platt, Ulrich; Pye, Havala O. T.; Rudich, Yinon; Schwantes, Rebecca H.; Shiraiwa, Manabu; Stutz, Jochen; Thornton, Joel A.; Tilgner, Andreas; Williams, Brent J.; Zaveri, Rahul A.

    2017-01-01

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models.

    This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

  14. Polyamine modification by acrolein exclusively produces 1,5-diazacyclooctanes: a previously unrecognized mechanism for acrolein-mediated oxidative stress.

    Science.gov (United States)

    Tsutsui, Ayumi; Imamaki, Rie; Kitazume, Shinobu; Hanashima, Shinya; Yamaguchi, Yoshiki; Kaneda, Masato; Oishi, Shinya; Fujii, Nobutaka; Kurbangalieva, Almira; Taniguchi, Naoyuki; Tanaka, Katsunori

    2014-07-28

    Acrolein, a toxic unsaturated aldehyde generated as a result of oxidative stress, readily reacts with a variety of nucleophilic biomolecules. Polyamines, which produced acrolein in the presence of amine oxidase, were then found to react with acrolein to produce 1,5-diazacyclooctane, a previously unrecognized but significant downstream product of oxidative stress. Although diazacyclooctane formation effectively neutralized acrolein toxicity, the diazacyclooctane hydrogel produced through a sequential diazacyclooctane polymerization reaction was highly cytotoxic. This study suggests that diazacyclooctane formation is involved in the mechanism underlying acrolein-mediated oxidative stress.

  15. Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.

    Science.gov (United States)

    Brazard, Johanna; Usman, Anwar; Lacombat, Fabien; Ley, Christian; Martin, Monique M; Plaza, Pascal; Mony, Laetitia; Heijde, Marc; Zabulon, Gérald; Bowler, Chris

    2010-04-07

    The photoactivation dynamics of two new flavoproteins (OtCPF1 and OtCPF2) of the cryptochrome photolyase family (CPF), belonging to the green alga Ostreococcus tauri , was studied by broadband UV-vis femtosecond absorption spectroscopy. Upon excitation of the protein chromophoric cofactor, flavin adenine dinucleotide in its oxidized form (FAD(ox)), we observed in both cases the ultrafast photoreduction of FAD(ox): in 390 fs for OtCPF1 and 590 fs for OtCPF2. Although such ultrafast electron transfer has already been reported for other flavoproteins and CPF members, the present result is the first demonstration with full spectral characterization of the mechanism. Analysis of the photoproduct spectra allowed identifying tryptophan as the primary electron donor. This residue is found to be oxidized to its protonated radical cation form (WH(*+)), while FAD(ox) is reduced to FAD(*-). Subsequent kinetics were observed in the picosecond and subnanosecond regime, mostly described by a biexponential partial decay of the photoproduct transient signal (9 and 81 ps for OtCPF1, and 13 and 340 ps for OtCPF2), with reduced spectral changes, while a long-lived photoproduct remains in the nanosecond time scale. We interpret these observations within the model proposed by the groups of Brettel and Vos, which describes the photoreduction of FADH(*) within E. coli CPD photolyase (EcCPD) as a sequential electron transfer along a chain of three tryptophan residues, although in that case the rate limiting step was the primary photoreduction in 30 ps. In the present study, excitation of FAD(ox) permitted to reveal the following steps and spectroscopically assign them to the hole-hopping process along the tryptophan chain, accompanied by partial charge recombination at each step. In addition, structural analysis performed by homology modeling allowed us to propose a tentative structure of the relative orientations of FAD and the conserved tryptophan triad. The results of preliminary

  16. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    International Nuclear Information System (INIS)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-01-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Signifi